

1 Decoding of columnar-level 2 organization across cortical depth 3 using BOLD- and CBV-fMRI at 7 T

✉ For correspondence:
dhaenelt@mgh.harvard.edu

Present address: Daniel Haenelt, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129 USA

Data and code availability: Anonymized and defaced MRI data used in the present study are openly accessible (<https://osf.io/awmc6/>). The code for the decoding analysis is available on Github (<https://github.com/haenelt/fMRI-decoder>). Associated code to reproduce the figures can be obtained from the corresponding author upon reasonable request.

Funding: Bundesministerium für Bildung und Forschung, Grant/Award Number: 01EW1711A & B; FP7 Ideas: European Research Council, Grant/Award Number: 616905; European Union's Horizon 2020 research and innovation program, Grant/Award Number: 681094; NIH National Eye Institute (NEI), Grant/Award Number: R01EY030434

Competing interests: The authors declare the following competing interests: The Max Planck Institute for Human Cognitive and Brain Sciences and Wellcome Centre for Human Neuroimaging have institutional research agreements with Siemens Healthcare. NW holds a patent on acquisition of MRI data during spoiler gradients (US 10,401,453 B2). NW was a speaker at an event organized by Siemens Healthcare and was reimbursed for the travel expenses.

4 **Daniel Haenelt** ^{1,2}✉, **Denis Chaimow** ¹, **Marianna Elisa Schmidt** ^{1,3}, **Shahin Nasr** ^{4,5}, **Nikolaus Weiskopf** ^{1,6,7}, **Robert Trampel** ¹

6 ¹Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain
7 Sciences, 04103 Leipzig, Germany; ²International Max Planck Research School on
8 Neuroscience of Communication: Function, Structure, and Plasticity, 04103 Leipzig,
9 Germany; ³Max Planck School of Cognition, 04103 Leipzig, Germany; ⁴Athinoula A.
10 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown,
11 MA 02129, USA; ⁵Department of Radiology, Harvard Medical School, Boston, MA 02114,
12 USA; ⁶Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences,
13 Leipzig University, 04103 Leipzig, Germany; ⁷Wellcome Centre for Human
14 Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR,
15 UK

17 **Abstract**

18 Multivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from
19 neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques.
20 Since fMRI is based on measuring the hemodynamic response following neural activation, the
21 spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular
22 compartments that drain the signal from the actual location of neural activation, making it
23 challenging to image cortical structures at the spatial scale of cortical columns and layers. By
24 relying on information from multiple voxels, MVPA has shown promising results in retrieving
25 information encoded in fine-grained spatial patterns. We examined the spatial specificity of the
26 signal exploited by MVPA. Over multiple sessions, we measured ocular dominance columns
27 (ODCs) in human primary visual cortex (V1) with different acquisition techniques at 7 T. For
28 measurements with blood oxygenation level dependent (BOLD) contrast, we included both
29 gradient echo- (GE-BOLD) and spin echo-based (SE-BOLD) sequences. Furthermore, we acquired
30 data using the vascular-space-occupancy (VASO) fMRI technique, which is sensitive to cerebral
31 blood volume (CBV) changes. We used the data to decode eye-of-origin from signals across
32 cortical layers. While ocularity information can be decoded with all imaging techniques, laminar
33 profiles reveal that macrovascular contributions affect all acquisition methods, limiting their
34 specificity across cortical depth. Therefore, although MVPA is a promising approach for
35 investigating the mesoscopic circuitry of the human cerebral cortex, careful consideration of
36 macrovascular contributions is needed that render the spatial specificity of the extracted signal.

38 Introduction

39 In the cerebral cortex, neurons tend to cluster into functional units across cortical depth (Mount-
40 castle, 1957; Hubel and Wiesel, 1962), which are usually called cortical columns and often de-
41 noted as the fundamental building blocks of the cortex (Mountcastle, 1997); however, see (Hort-
42 ton and Adams, 2005) for an alternative perspective. A prominent example is found in the pri-
43 mary visual cortex (V1). V1 mainly receives thalamocortical projections from the lateral geniculate
44 nucleus (LGN) (Wandell, 1995), which contains monocular neurons that are segregated into eye-
45 specific layers (Andrews, Halpern, and Purves, 1997). The monocular information is preserved
46 when entering V1, and projections from the left and right eye are sent to segregated cortical
47 columns, widely known as ocular dominance columns (ODCs) (Hubel and Wiesel, 1969; Tootell
48 et al., 1988; Dougherty et al., 2019), which form a repeating stripes pattern of alternating eye pre-
49 ference (Adams, Sincich, and Horton, 2007).

50 Functional magnetic resonance imaging (fMRI) is a versatile neuroimaging technique for non-
51 invasive measuring and mapping of brain activity by assessing the hemodynamic response follow-
52 ing neural activation (Buxton, 2013). However, due to the limited spatial resolution, conventional
53 fMRI techniques only allow the detection of relatively large pieces of cortex involved in the execu-
54 tion of a specific task (Glover, 2011). Therefore, ODCs with an approximate column width of around
55 1 mm in humans (Adams, Sincich, and Horton, 2007) and other cortical columns were out of reach
56 for usual fMRI applications.

57 With the development of MR scanners with higher magnetic field strengths and more sophisti-
58 cated radiofrequency (RF) coils providing higher signal-to-noise ratio (SNR), mesoscopic structures
59 like ODCs became accessible in humans at the expense of prolonged acquisition times and usage
60 of anisotropic voxels (Menon et al., 1997; Menon and Goodyear, 1999; Dechant and Frahm, 2000;
61 Goodyear and Menon, 2001; Cheng, Waggoner, and Tanaka, 2001; Yacoub et al., 2007). Only with
62 the emergence of ultra-high field MRI at a field strength of 7 Tesla and above, it became possible
63 to measure ODCs with isotropic voxels at sub-millimeter resolution (Nasr, Polimeni, and Tootell,
64 2016; Feinberg, Vu, and Beckett, 2018; Zaretskaya et al., 2020; Hollander et al., 2021; Akbari et al.,
65 2023; Nasr et al., 2025).

66 Given the average cortical thickness of 2–4 mm (Fischl and Dale, 2000) and its convoluted struc-
67 ture, the use of isotropic voxels at sub-millimeter resolution is necessary for the reliable sampling
68 of data at different cortical depths (Turner and Geyer, 2014). This recent possibility is intriguing
69 since the cerebral cortex is known to be composed of several layers, e.g., in terms of cytoarchitec-
70 ture (Brodmann, 1909), myeloarchitecture (Vogt and Vogt, 1919), and vasculature (Duvernoy, De-
71 lon, and Vannson, 1981). Furthermore, cortical layers generally differ in their connectivity profile
72 within and to other cortical areas, e.g., feedforward and feedback signaling between cortical areas
73 in a hierarchically organized cortical system (Felleman and Van Essen, 1991). Thus, the mapping of
74 cortical columns at different cortical depths with fMRI enables studying the local microcircuitry of
75 the cerebral cortex *in vivo* (Yang et al., 2021).

76 The monocular feedforward signal from the LGN enters V1 in layer 4C of corresponding ODCs
77 (Kennedy et al., 1976; Tootell et al., 1988). Layer 4C is located directly below layer 4B, which con-
78 tains the highly myelinated external band of Baillarger, also called stria of Gennari (Trampel, Ott,
79 and Turner, 2011). Typically, layer 4C is further divided into layers 4C α and 4C β , which receive
80 color-selective parvocellular and “color-blind” magnocellular input from corresponding LGN layers,
81 respectively (Nieuwenhuys, Voogd, and Huijzen, 2008). Above and below layer 4C, the signals from
82 the two eyes converge onto single neurons, which lead to a variable degree of ocularity across
83 cortical depth. However, individual neurons of the same column still tend to receive input pre-
84 dominantly from either the left or right eye, respectively (Wandell, 1995). In this regard, V1 is the
85 first main stage of binocular integration, which is important, for example, for the processing of
86 stereopsis (Poggio, 1995).

87 However, fMRI provides only an indirect measure of neural activity, most commonly relying

88 on the blood oxygenation level-dependent (BOLD) signal acquired with gradient echo-based se-
89 quences (GE-BOLD), which are known to be most sensitive to macrovascular compartments of the
90 cerebral cortex (Turner, 2002), specifically draining veins that carry the deoxygenated blood back
91 to the cortical surface (Polimeni et al., 2010a; Markuerkiaga, Barth, and Norris, 2016). This usually
92 leads to a signal accumulation toward the pial surface, limiting the ability to associate the BOLD
93 response with a specific cortical layer. Alternatively, spin echo-based sequences (SE-BOLD) can be
94 used at high magnetic field strengths (Yacoub et al., 2007). SE-BOLD promises a more specific sig-
95 nal due to the refocusing of extravascular signal contributions from around larger veins (Boxerman
96 et al., 1995). This has the advantage of increasing signal weighting to the microvasculature, which
97 is believed to be closer to the actual location of neural activation. Furthermore, recent advances of
98 imaging approaches with contrast weighted by cerebral blood volume (CBV) using vascular-space-
99 occupancy (VASO) fMRI at higher magnetic fields show promising results in terms of increased
100 laminar specificity (Huber et al., 2017; Huber et al., 2021) at the expense of overall sensitivity.

101 Next to the choice of the proper acquisition technique, multivariate pattern analysis (MVPA)
102 (Haxby, 2012) methods have been shown to retrieve information manifested in spatial patterns
103 of fMRI activity, which promise increased sensitivity compared to univariate methods (Kriegeskorte
104 and Bandettini, 2007; Formisano and Kriegeskorte, 2012; Vizioli et al., 2020), for example, for
105 the dissociation of bottom-up and top-down processing into different cortical layers (Muckli et al.,
106 2015; Kok et al., 2016; Iamshchinina et al., 2021). However, though the presence of pattern informa-
107 tion provides strong evidence for neuronal effects, the spatial scale of the exploited information
108 remains unknown (Formisano and Kriegeskorte, 2012). Interestingly, already at a conventional
109 resolution of $3 \times 3 \times 3 \text{ mm}^3$ using GE-BOLD at 3 T, decoding of orientation information is possi-
110 ble from responses in V1 (Haynes and Rees, 2005a; Kamitani and Tong, 2005), which is known
111 to be encoded at a much finer spatial scale at the level of cortical columns (Obermayer and Blas-
112 del, 1993). In the same year, the eye-of-origin could also be decoded from V1 voxels based on
113 a binocular rivalry stimulus (Haynes and Rees, 2005b). These studies started a controversy sev-
114 eral years ago (Boynton, 2005; Beeck, 2010; Swisher et al., 2010; Gardner, 2010; Shmuel et al.,
115 2010; Kriegeskorte, Cusack, and Bandettini, 2010; Chaimow et al., 2011; Misaki, Luh, and Bandet-
116 tini, 2013) about the source of the exploited information. Possible mechanisms were suggested
117 like the aliasing of high spatial frequency information encoded above the Nyquist frequency of
118 the MRI sampling process (Boynton, 2005) (but see (Chaimow et al., 2011)), the contributions from
119 random irregularities of the fine-scale columnar pattern, which lead to information at low spa-
120 tial frequencies (Haynes and Rees, 2005a; Kamitani and Tong, 2005; Kriegeskorte and Bandettini,
121 2007) or the exploitation of large-scale information that is not related to the fine-scale columnar
122 pattern (Beeck, 2010). Growing evidence showed that functional biases can also be introduced by
123 large vessels (Turner, 2002; Gardner, 2010; Shmuel et al., 2010; Sengupta et al., 2017), which can
124 be conceptualized as a form of lowpass filtering the neural pattern, which results in a coarser spa-
125 tial venous pattern (Formisano and Kriegeskorte, 2012). Therefore, neural patterns encoded at the
126 columnar/laminar level might be represented at multiple spatial scales in the fMRI signal (Swisher
127 et al., 2010; Sengupta et al., 2017).

128 To study the microcircuitry of the cerebral cortex, it is of importance to know the source of
129 the decoded information, e.g., by relating the decoded information to specific cortical layers. In
130 this regard, it might be appealing to use fMRI acquisition techniques that are less sensitive to large
131 vessels in combination with MVPA methods to benefit from the increased sensitivity of multivariate
132 methods, while keeping a high spatial specificity of the exploited signal. However, most decoding
133 studies use the GE-BOLD technique, which is known to be inherently limited by macrovascular
134 contributions, reducing the potential benefits.

135 In our study, we acquired ODC data from five participants using GE-BOLD, SE-BOLD, and VASO
136 in different sessions to study the laminar specificity of the respective acquisition technique in com-
137 bination with MVPA to decode the signal of the stimulated eye in V1. Functional data were acquired
138 with nominal isotropic voxel size of 0.8 mm allowing data sampling at different cortical depths.

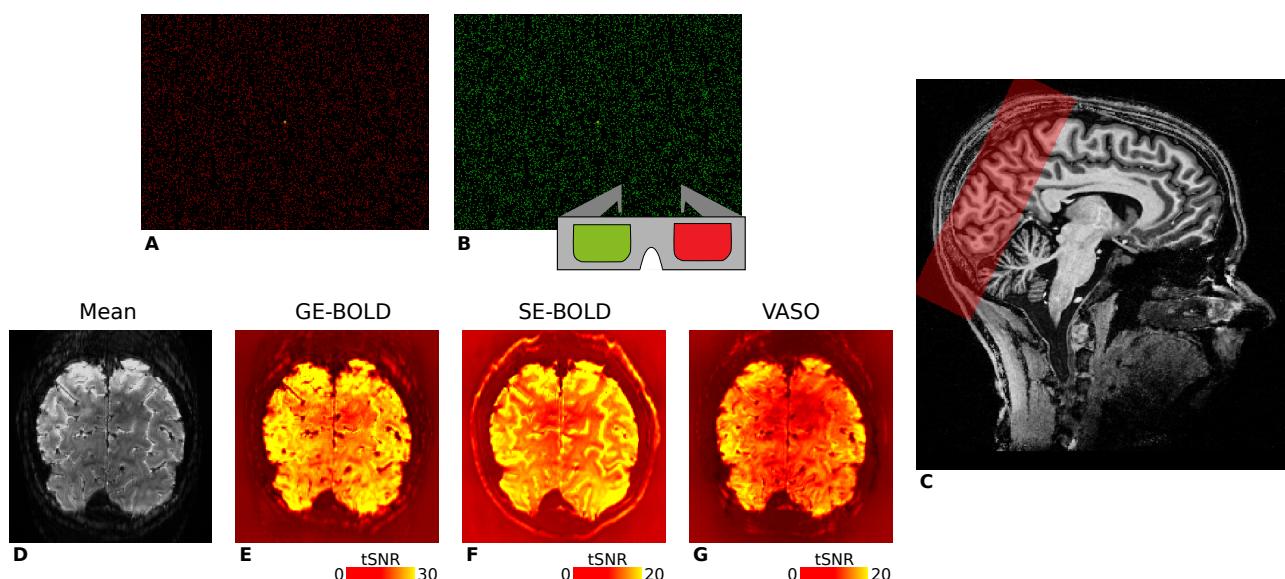


Figure 1. Illustration of the stimuli used for ocular dominance column mapping and representative fMRI data. For visual stimulation, we used red (A) and green (B) random dot stereograms (RDSs) that were viewed through anaglyph goggles by participants, respectively. Stimuli were based on Nasr, Polimeni, and Tootell, 2016 and enabled full field of view visual stimulation of the left or right eye in separate experimental blocks. RDSs formed the percept of an 8×6 checkerboard with independent sinusoidal movements in the horizontal direction of individual squares. C shows the spatial coverage of GE-BOLD acquisitions (red box) overlaid on a T_1 -weighted anatomical scan in sagittal view. Fewer slices were acquired for SE-BOLD and VASO sessions depending on specific absorption rate (SAR) limitations. For one representative participant (subject 1), the temporal mean of one GE-BOLD run and corresponding tSNR maps are shown D–G. Note the different color scales.

139 From the perspective of neural processing, we expected highest eye-of-origin discriminability in
140 deeper cortical layers since eye-specific segregation is most preserved in the input layer 4C. How-
141 ever, due to the drainage of deoxygenated blood toward the pial surface, macrovascular contribu-
142 tions to the fMRI signal were expected to bias the discriminability across cortical depth. Therefore,
143 studying decoding performance of a feedforward signal between acquisition techniques across
144 cortical depth enables the analysis of their different sensitivities to draining vein contributions. We
145 believe that this study gives insights into the capabilities and limitations of using multivariate tech-
146 niques with different fMRI sequences for disentangling information at the level of cortical layers.

147 Materials and methods

148 Participants

149 A total of five healthy volunteers participated in this study, of which two were female (age =
150 28.00 ± 2.61 , mean \pm standard deviation in years). Written informed consent was obtained from
151 all participants, and the study received ethical approval from the local ethics committee of the Uni-
152 versity of Leipzig. All participants had normal or corrected-to-normal visual acuity. We performed
153 the Miles Test (Miles, 1929) with each participant to determine eye dominance, which is stated
154 in *Supplementary Figure 1–Supplementary Figure 5* for single participants.

155 General procedure

156 Each participant underwent multiple scanning sessions on different days using an ultra-high field
157 (7T) MRI scanner. The first session was used for reference measurements, during which a high-
158 resolution anatomical reference scan and retinotopy data (Sereno et al., 1995; Engel, Glover, and
159 Wandell, 1997) were acquired. In addition, a high-resolution functional time series without task
160 (GE-BOLD) was obtained using the same parameters as in subsequent functional measurements,
161 in order to aid with between-session registration.

162 The remaining six sessions were exclusively devoted to ODC mapping (2x GE-BOLD, 2x SE-BOLD,
163 2x VASO). **Figure 1** provides an illustration of slab positioning along with representative temporal
164 signal-to-noise ratio (tSNR) maps for all contrasts. A subset of the retinotopy data had previously
165 been utilized in another experiment (Movahedian Attar et al., 2020), but underwent independent
166 processing for this study. All functional measurements were accompanied by associated field map
167 acquisitions, which were not further used in this project.

168 **Visual stimulation**

169 For the purpose of visual stimulation, an LCD projector (Sanyo PLC-XT20L) with custom-built focusing
170 objective lens was used (refresh rate: 60 Hz, pixel resolution: 1024 × 768) that was positioned in
171 the magnet room. To prevent interferences with the MR scanner, the projector was housed within
172 a custom-built Faraday cage. The stimuli were projected onto a rear projection screen, mounted
173 above the participants' chest within the bore. Participants viewed the stimuli by means of a mirror
174 attached to the head coil. In order to minimize scattered light reaching the participants' eyes, the
175 projection screen was surrounded by black felt, and all ambient lighting was turned off during data
176 acquisition. This setup allowed visual stimulation within an approximate visual angle of 22° × 13°
177 (width × height). Stimulus generation and presentation were carried out using the Psychophysics
178 Toolbox (3.0.14, <http://psychtoolbox.org/>) (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) with GNU
179 Octave (4.0.0, <http://www.gnu.org/software/octave/>).

180 *ODC mapping* We used a block design with two experimental conditions that was previously
181 reported in detail (Nasr, Polimeni, and Tootell, 2016; Haenelt et al., 2023), with the following mini-
182 mal modifications for the current study. Every scanning session comprised ten runs, each lasting
183 for 270 s. Within each run, a baseline period of 15 s was placed at the beginning and end, during
184 which participants were presented with a uniform black background. The experimental protocol
185 consisted of eight blocks, each lasting for 30 s, allowing four distinct stimulation periods targeting
186 the left and right eye, respectively. The ordering of blocks was pseudorandomized. Throughout the
187 runs, participants were instructed to maintain fixation on a central point (0.2° × 0.2°) and respond on
188 a keypad when the fixation point changed its form (square or circle). Presented stimuli consisted of
189 red or green random dot stereograms (RDS) (Julesz, 1971) shown on a black background (dot size:
190 0.1°, dot density: ~ 17%) that were viewed through custom-built anaglyph spectacles using Kodak
191 Wratten filters No. 25 (red) and 44A (cyan), which enabled the stimulation of either the left or right
192 eye in separate blocks, see **Figure 1**. RDSs performed a horizontal sinusoidal movement (temporal
193 frequency: 0.25 Hz, amplitude: 0.11°), and phases of dots were initialized to create the appearance
194 of an 8 × 6 checkerboard with independent movement of squares. To reduce cross-talk between
195 the eyes, the luminance of the dots was maintained at a low level (red through red filter: 3.1 cd/m²,
196 red through cyan filter: 0.07 cd/m², green through cyan filter: 5.7 cd/m², green through red filter:
197 0.09 cd/m²). It is worth noting that the luminance of the green dots was approximately doubled rel-
198 ative to red to ensure a similar excitation of cone photoreceptors for both colors (Dobkins, Thiele,
199 and Albright, 2000).

200 *Retinotopic mapping* To delineate the location of area V1, we employed a conventional phase-
201 encoded paradigm (Sereno et al., 1995; Engel, Glover, and Wandell, 1997). Visual stimuli consisted
202 of a flickering (4 Hz) black-and-white radial checkerboard restricted to a clockwise/anticlockwise
203 rotating wedge (angle: 30°, temporal frequency: 1/64 Hz) or expanding/contracting ring (temporal
204 frequency: 1/32 Hz) shown in separate runs. Each run presented 8.25 cycles of stimulation, with a
205 baseline block of 12 s at the beginning and end of each run, in which a uniform gray background was
206 shown. Runs lasted 552 s for the rotating wedge stimulus and 288 s for the moving ring stimulus.
207 The mean luminance of the stimuli was set to 44 cd/m². Throughout the run, participants were
208 instructed to maintain fixation on a central point. No explicit task was given.

209 **Imaging**

210 We used a whole-body MR scanner operating at 7 T (MAGNETOM 7 T, Siemens Healthineers, Er-
211 langen, Germany) for measurements. The scanner was equipped with SC72 body gradients (max-
212 imum gradient strength: 70 mT/m; maximum slew rate: 200 mT/m/s). We used a single-channel
213 transmit/32-channel receive head coil (Nova Medical, Wilmington, DE, USA) for RF signal transmis-
214 sion and reception. To optimize the transmit voltage over the occipital lobe, we always acquired a
215 low-resolution transmit field map at the beginning of each scanning session using a sequence that
216 exploits the ratio of consecutive spin and stimulated echoes (WIP-658).

217 For ODC mapping measurements, we acquired functional data with GE-BOLD, SE-BOLD, and
218 VASO in different sessions. GE- and SE-BOLD data were acquired using a single-shot sequence
219 with 2D echo planar imaging (EPI) readout (Feinberg et al., 2010; Moeller et al., 2010). For VASO
220 measurements, we used a single-shot slice-selective slab-inversion (SS-SI) VASO sequence (Huber
221 et al., 2014) with a 3D EPI readout (Poser et al., 2010). An oblique-coronal slab was imaged posi-
222 tioned over the occipital lobe. For all acquisition techniques, we used the following parameters:
223 nominal voxel size = 0.8 mm isotropic, field of view (FOV) = 148 × 148 mm², readout bandwidth (rBW)
224 = 1182 Hz/px. For acceleration, we used GRAPPA = 3 with FLASH-based calibration (Talagala et al.,
225 2016) and in-plane partial Fourier = 6/8 in the EPI phase-encoding direction, which resulted in an
226 effective echo spacing of 0.33 ms. For GE- and SE-BOLD, we set the repetition time to TR = 3000 ms
227 and used an echo time of TE = 24 ms and TE = 38 ms, respectively. The flip angle in GE-BOLD mea-
228 surements was set to the Ernst angle FA = 77°, while in SE-BOLD, flip angles were set to 90° and
229 180° for excitation and refocusing pulses, respectively. For VASO measurements, we used an effec-
230 tive TR = 5000 ms, during which one image with (nulled) and one image without (not-nulled) blood
231 nulling was acquired. Other parameters were the following: TE = 25 ms, TI = 1370 ms for the blood-
232 nulling point, FA = 26°, 7.7% slice oversampling. 50 slices were acquired in GE-BOLD measurements
233 that covered the whole stimulated area of V1. Due to specific absorption rate (SAR) constraints,
234 the number of slices was limited for SE-BOLD and VASO measurements. For VASO, we acquired 26
235 slices. For SE-BOLD, we used the maximum number of allowed slices that varied between subjects
236 and sessions and was between 16 and 29 slices.

237 A slightly modified GE-BOLD protocol was employed for retinotopy measurements, with the
238 following parameters changed: voxel size = 1.0 mm isotropic, TR = 2000 ms, TE = 21 ms, FA = 68°,
239 rBW = 1164 Hz/px, 40 slices.

240 For anatomical reference, we acquired a whole-brain anatomy using a 3D T_1 -weighted MP2RAGE
241 sequence (Marques et al., 2010) with the following parameters: voxel size = 0.7 mm isotropic, TR =
242 5000 ms, TE = 2.45 ms, inversion times (TI1/TI2) = 900 ms/2750 ms with FA1/FA2 = 5°/3°, respectively,
243 FOV = 224 × 224 × 168 mm³ (read × phase × partition), rBW = 250 Hz/px, GRAPPA = 2, partial Fourier =
244 6/8 (phase-encoding direction; outer loop). During online reconstruction on the scanner, a uniform
245 T_1 -weighted image (UNI) was generated by combining data from both inversion times.

246 Protocols of all acquisitions are publicly available (<https://osf.io/umnyr/>).

247 **Data preprocessing**

248 Functional time series from individual ODC mapping sessions were first subjected to motion cor-
249 rection to address within-run and between-run motion using SPM12 (v6906, <https://www.fil.ion.ucl.ac.uk/spm/>) with Matlab R2019b (MathWorks, Natick, MA, USA). Due to the used long stimulation
250 periods and since transient time points were discarded in the analysis (see Pattern classification),
251 no slice-timing correction was applied. In the case of VASO measurements, the time series were
252 initially separated into individual time series for nulled and not-nulled images prior to motion cor-
253 rection. Motion correction was then independently applied to each of these time series. Final VASO
254 time series were obtained by correcting the nulled time series for residual BOLD contamination. To
255 achieve this, the motion-corrected nulled and not-nulled VASO time series were temporally upsam-
256 pled onto a common grid using 3drefit from AFNI (19.1.05, <https://afni.nimh.nih.gov/>) (Cox, 1996),

258 matching the effective temporal resolution of GE- and SE-BOLD measurements. Subsequently, the
259 nulled time points were divided by the not-nulled time points to perform BOLD correction (Huber
260 et al., 2014). All time series underwent then highpass filtering¹ (cutoff frequency: 1/270 Hz), and a
261 voxel-wise statistical analysis was performed for each session using a fixed-effects general linear
262 model (GLM) as implemented in SPM12 with both experimental conditions as regressors convolved
263 with the canonical hemodynamic response function (HRF). Note that GLM results were only used
264 to visualize statistical maps and for the repeatability analysis (see *Consistency of ocular dominance*
265 *maps*), while the main analysis was based on pre-processed fMRI time series.

266 The functional time series obtained from retinotopy measurements underwent similar pre-
267 processing steps. However, prior to motion correction, each time series was corrected for dif-
268 ferent slice timings by voxel-wise temporal interpolation to a common time grid using `3drefit`.
269 Following motion correction, the time series were subjected to highpass filtering (cutoff frequency:
270 1/(3 × stimulus cycle period) Hz), which resulted in 1/192 Hz and 1/96 Hz for polar angle and eccen-
271 tricity runs, respectively. The data from the first quarter stimulus cycle was discarded from further
272 analysis. A voxel-wise Fourier transform was computed, and the signal at stimulus frequency was
273 averaged from runs with opposite stimulus directions to compensate for the hemodynamic lag.
274 The phase at stimulus frequency from polar angle runs was used to delineate the borders of V1.

275 To achieve registration between the reference anatomy and the functional time series without
276 task, the anatomical image underwent an initial transformation to align with the functional space
277 based on the scanner coordinate system. Only for registration, the mean functional image was bias
278 field corrected (Tustison et al., 2010). Both images were then brain-masked and rigidly registered
279 using ANTs (2.3.1, <http://stnava.github.io/ANTs/>). A similar procedure was employed for registering
280 functional images from other sessions to the functional time series without task (between-session
281 registration), except that a nonlinear registration was performed using the Symmetric Normalization
282 (SyN) algorithm (Avants et al., 2008) implemented in ANTs.

283 The MP2RAGE (UNI) image was used for surface reconstruction of the cerebral cortex. Initially,
284 the UNI image underwent bias field correction using SPM12. The corrected image was then fed
285 into the `recon-all` pipeline in FreeSurfer (6.0.0, <http://surfer.nmr.mgh.harvard.edu/>) (Dale, Fischl,
286 and Sereno, 1999; Fischl, Sereno, and Dale, 1999) with the `hires` flag to perform segmentation at
287 the original voxel resolution (Zaretskaya et al., 2018). The brain mask was separately created based
288 on the second inversion image of the MP2RAGE by using the SPM12 segmentation algorithm and
289 excluding voxels in a binary mask that exceeded the tissue class threshold of 10% in all non-white
290 matter (WM) and non-gray matter (GM) tissue classes. Subsequently, generated boundary sur-
291 faces of GM to WM and cerebrospinal fluid (CSF; pial boundary surface) were manually corrected,
292 with particular attention given to the region surrounding the sagittal sinus. To counteract poten-
293 tial segmentation biases arising from basing FreeSurfer segmentation on the UNI image from the
294 MP2RAGE, the resulting GM/WM boundary surfaces were shifted inward by 0.5 mm (Fujimoto et al.,
295 2014). The final surfaces underwent smoothing using `mrismooth` with 2 smoothing iterations im-
296 plemented in FreeSurfer and were upsampled to an average edge length of approximately 0.3 mm.

297 Based on a computed registration between whole-brain anatomy and functional time series,
298 boundary surfaces were transformed to the space of the reference EPI acquisition without task
299 from the same session by applying the deformation field to surface vertices using linear inter-
300 polation. Functional images are spatially distorted in the phase-encoded direction due to the low band-
301 width in this direction that leads to a sensitivity to variations in the main magnetic field. These
302 distortions necessitate careful consideration (Jezzard and Balaban, 1995; Andersson, Skare, and
303 Asburner, 2003), particularly when analyzing at the spatial scale of cortical layers.

304 We used the Gradient-Based Boundary (GBB) package (0.1.6, <https://pypi.org/project/gbb/>), which
305 corrects the boundary surfaces by moving them to the GM/WM border found in functional im-
306 ages based on an iterative procedure, which is illustrated in *Supplementary Figure 6*. To enhance

¹For the decoding analysis, highpass filtering was based on an in-house filter that convolved the time series with a Gaussian running line smoother. For all other analyses, highpass filtering was performed with SPM12.

307 the robustness of this method, we increased the GM/WM contrast in functional images follow-
308 ing the method suggested in Fracasso, Petridou, and Dumoulin, 2016 that weights the magnitude
309 image by its phase (both provided by the online reconstruction on the scanner) as conventionally
310 practiced in susceptibility-weighted imaging methods². For this purpose, the magnitude time se-
311 ries was corrected for motion using AFNI. Each image of the phase time series was individually
312 phase unwrapped using the method by Abdul-Rahman et al., 2005 implemented in Nighres (1.2.0,
313 <https://pypi.org/project/nighres/>) (Huntenburg, Steele, and Bazin, 2018), and computed motion pa-
314 rameters were subsequently applied to the unwrapped phase time series. The temporal mean of
315 both magnitude and phase data was calculated, and the phase data underwent thresholding and
316 normalization. Finally, the contrast of the magnitude data was enhanced by assigning weights to
317 each voxel based on the contrast-reversed phase data.

318 Nine equidistant surfaces were computed and positioned between boundary surfaces³. This
319 resulted in 11 cortical layers for subsequent analyses.

320 For sampling data onto reconstructed surfaces, surfaces were first moved into the space of
321 individual functional sessions based on the computed registration. Subsequently, the functional
322 data were sampled onto the surface mesh using linear interpolation.

323 **Pattern classification**

324 We used a linear support vector machine (SVM) algorithm for pattern classification from single time
325 points of motion-corrected and detrended functional time series. Each ODC mapping session and
326 each cortical depth was analyzed independently. For classification, functional time series were first
327 sampled onto a cortical layer. One run contained 90 time points, and 10 runs were acquired per
328 session. All time points from the baseline condition were discarded. Additionally, the first two time
329 points from each experimental condition were discarded from further analysis to omit contamina-
330 tion from transient effects of the hemodynamic response during classification. This resulted in 64
331 time points per run, evenly divided between left and right eye stimulation. Sampled time series
332 were then standardized and divided into a training data set (9 runs, 576 time points) and a test
333 data set (1 run, 64 time points).

334 Feature selection was performed by only considering time series data from locations within V1
335 that were present in the FOV of all functional sessions. Based on the training data, we further used
336 an *F*-test implemented in the scikit-learn library (1.2.0, <https://scikit-learn.org/>) (Pedregosa et al.,
337 2011), specifically `sklearn.feature_selection.f_classif`, to select the vertices whose time series
338 strongest correlated with the experimental paradigm. We used the training data averaged across
339 cortical depth to select the same features across cortical depth. The top 200 vertices with the high-
340 est correlation were chosen for further analysis. The number of selected vertices was determined
341 by selecting less features than samples to decrease the chances of overfitting as similarly done
342 in Haynes and Rees, 2005b.

343 For classification, we used the SVM implementation `sklearn.svm.SVC` with fixed regularization
344 term $C = 1$ that is based on the `libsvm` library (Chang and Lin, 2011). This method was repeated
345 for all possible splittings of training and test data sets using a leave-one-run-out cross-validation
346 procedure to estimate mean prediction accuracies.

347 **Results**

348 **Topography of ocular dominance columns**

349 **Figure 2** shows ocular dominance column maps (contrast: left eye > right eye) for a representative
350 participant sampled at mid-cortical depth. Maps from single participants can be found in **Supple-
351 *imentary Figure 1–Supplementary Figure 5***. **Figure 2A** shows the average activation map across

²Note that the phase data was solely used for moving the boundary surfaces during preprocessing and was not considered in further analyses.

³Since the cortical surfaces were defined in a spatially distorted fMRI space, the equidistant approach was preferred over the more anatomically precise equivolume approach (Waehnert et al., 2014).

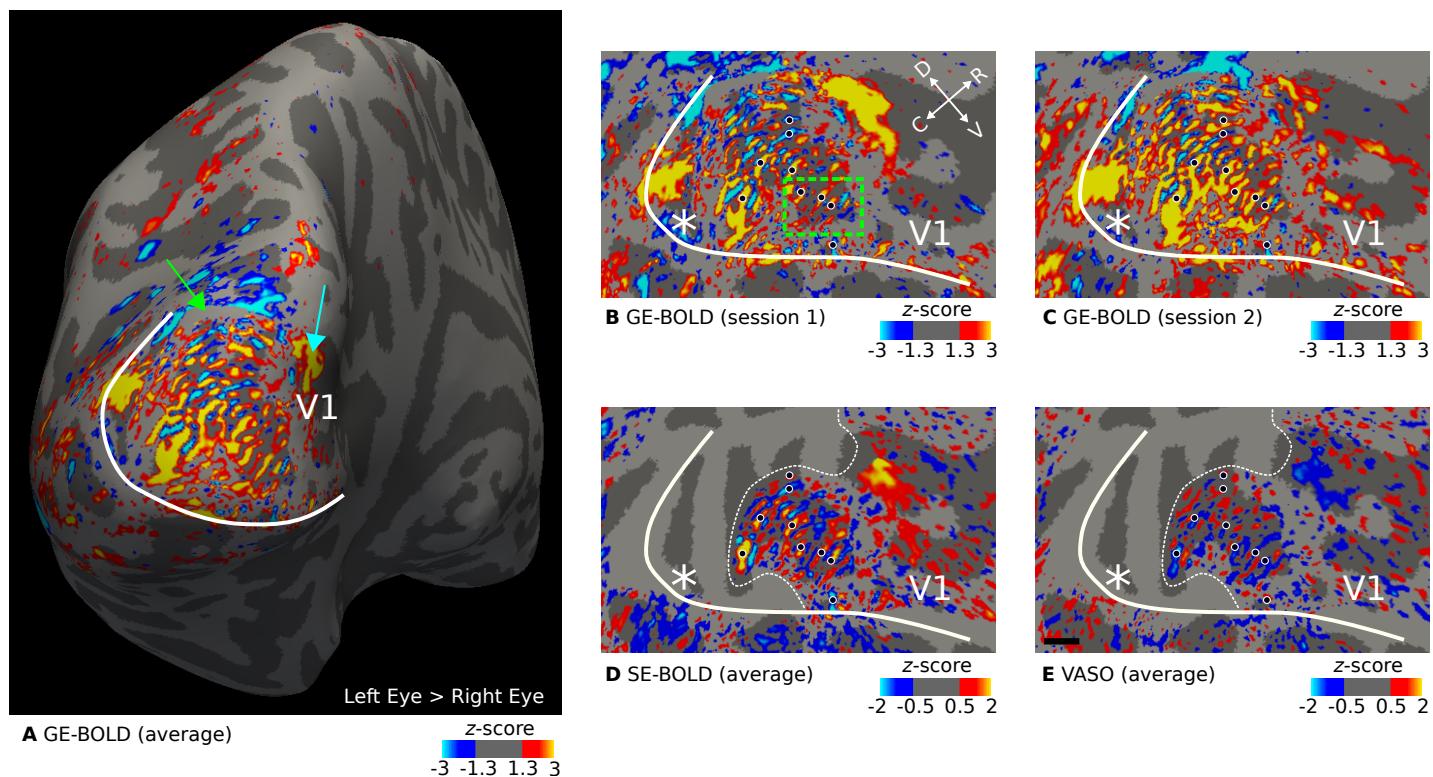


Figure 2. Representative maps of ocular dominance columns (ODCs). Thresholded activation maps (contrast: left eye > right eye) are shown for the left hemisphere of one representative participant (subject 1). Data were sampled at mid-cortical depth. In **A**, the contrast from GE-BOLD sessions (average across two sessions) is shown on the inflated surface. Several columns confined to V1 can be identified. The green arrow points to a small location (gray area) outside of the imaging field of view. **B–C** show the contrast from single GE-BOLD sessions on the flattened surface. The similar appearance of both maps illustrates the consistency of the columnar pattern across sessions conducted on different days. **D–E** show the contrast from SE-BOLD and VASO sessions (average across sessions). Due to the reduced number of slices, the area around the foveal representation was not covered (see the white dotted line that outlines the covered area). A similar ocular dominance pattern can be seen in all maps (see black dots with white outline for reference). Note that VASO has an inverted contrast compared to BOLD. The white line shows the representation of the vertical meridian (V1/V2 border) that was based on a separate retinotopy measurement. White asterisks indicate the location of the foveal representation. The black line in **E** shows a scale bar (5 mm). Maps from all participants can be found in *Supplementary Figure 1–Supplementary Figure 5*.

352 two GE-BOLD sessions. Some features can be seen that are expected from ODCs: (1) V1 shows a
 353 fine-scale pattern. (2) The pattern is constrained to area V1. (3) Around the approximate location
 354 of the horizontal meridian, columns are oriented more in parallel to both vertical meridians (V1/V2
 355 border) (LeVay, Hubel, and Wiesel, 1975). This is the expected topography as depicted in (Adams,
 356 Sincich, and Horton, 2007; Adams and Horton, 2009).

357 The blind spot is a further distinctive monocular region of V1 (Tootell et al., 1998). Due to the
 358 lack of photoreceptor cells on the optic disc of the retina where the optic nerve bundles and passes
 359 through, there is an oval area in V1 on the contralateral hemisphere that is solely “filled” by the
 360 response from the ipsilateral eye. In *Figure 2A*, there is a spatially extended response from the
 361 ipsilateral eye at the anterior end of the stimulated area (see cyan arrow in *Figure 2A*), which could
 362 be the blind spot representation on this hemisphere. However, due to the limited visual field in
 363 our experiment, we did not expect to have covered the blind spot region, which should be found at
 364 around 15° eccentricity (Tootell et al., 1998). Therefore, we assume that this response is of vascular
 365 origin or a response that was elicited by the border of the stimulus. This region was carefully left
 366 out in the decoding analysis.

367 We cannot exclude the possibility that some columns merged due to idiosyncrasies in local vas-
 368 culation, which might explain the appearance of some broader activation clusters in V1. Further

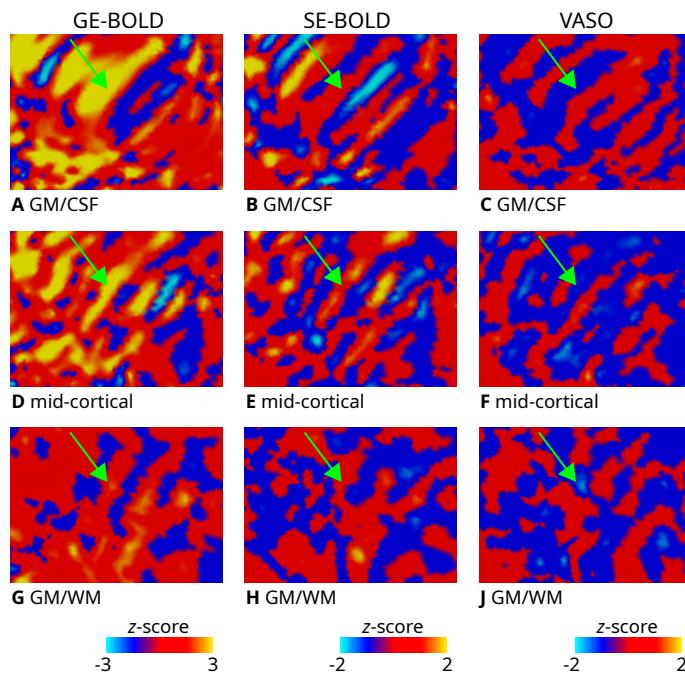


Figure 3. Zoomed view of ODC maps. Unthresholded activation maps (contrast: left eye > right eye; average across two sessions) are shown for the left hemisphere of one representative participant (subject 1). The section shown corresponds to the inset (green rectangle) defined in *Figure 2B*. Data were sampled on the flattened GM/CSF (A–C), mid-cortical (D–F), GM/WM G–J boundary surfaces for GE-BOLD (left column), SE-BOLD (middle column), and VASO (right column), respectively. Despite lower SNR of SE-BOLD and VASO, some similar patterns can be identified across contrasts and cortical depth (see green arrow). Note that VASO has an inverted contrast compared to BOLD and different color scales were used.

369 analyses of possible mechanisms would be compelling but is outside of the scope of the current
370 study. But interestingly, these clusters were repeatable across sessions, as can be seen when com-
371 paring *Figure 2B* and *Figure 2C* that show GE-BOLD activation maps from single sessions. The
372 comparison also indicated the overall high consistency of ODCs between sessions. This was also
373 confirmed by the fact that the pattern remained stable after averaging, as shown in *Figure 2A*. A
374 more quantitative repeatability analysis is given in the next section (Consistency of ocular domi-
375 nance maps). Black dots are displayed to aid comparison of ODC patterns between maps.

376 *Figure 2C* and *Figure 2D* show the average activation maps across sessions for SE-BOLD and
377 VASO, respectively. Due to SAR constraints (see Materials and methods, fewer slices were acquired
378 for SE-BOLD and VASO. Coverage boundaries are outlined by white dotted lines. However, within
379 the imaged region, a similar ODC pattern can be identified at the expense of overall reduced signal
380 strength.

381 For the inset presented in *Figure 2B*, *Figure 3* illustrates the unthresholded contrast sampled at
382 different cortical depths. It can be seen that certain columns display consistent activation through
383 the cortical ribbon, suggesting a degree of columnar stability.

384 **Consistency of ocular dominance maps**

385 We quantified the repeatability of ocular dominance maps between sessions. For this purpose, we
386 computed Spearman's rank correlation coefficient between z-scores (contrast: left eye > right eye)
387 restricted to mid-cortical depth from both sessions of each acquisition method. In the analysis,
388 only vertices within V1 were considered that were located within the FOV of all sessions.

389 *Figure 4* shows scatter plots for one representative participant. Spearman's rank correlation co-
390 efficient and the corresponding *p*-value are stated in the figures, which demonstrates the repeata-
391 bility of elicited responses across sessions. The *p*-value was determined by permutation testing. A

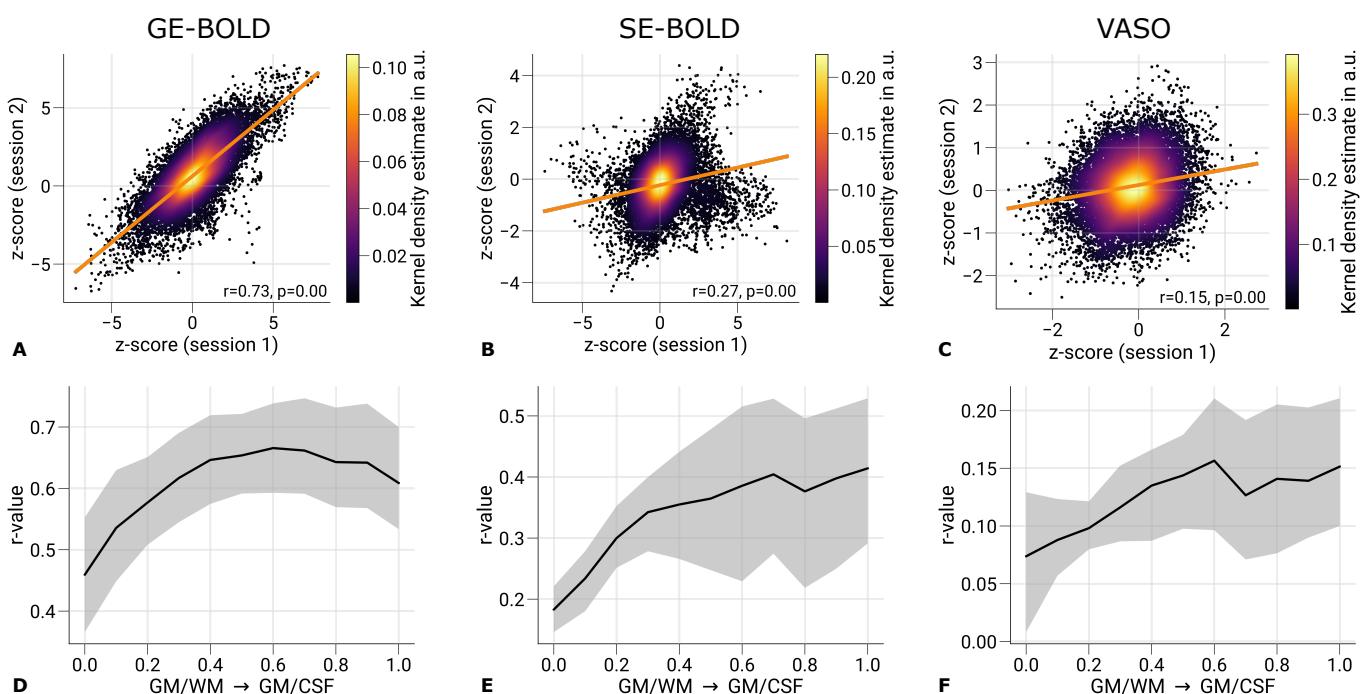


Figure 4. Repeatability of ODC maps across scanning sessions. Scatter plots with kernel density estimation illustrate the consistency of activation maps (contrast: left eye > right eye) across GE-BOLD (A), SE-BOLD (B), and VASO (C) scanning sessions for one representative participant (subject 1). Only data from V1 sampled at mid-cortical depth were used. The regression line is shown as an orange line. Spearman's rank correlation coefficients and corresponding *p*-values are stated next to the plots. Statistical significance was determined by permutation testing ($n = 10,000$). Due to the spatial covariance of data from neighboring vertices, only randomly selected 10% of all data points were used for significance testing. In D-F, the mean correlation is shown across cortical depth. Black lines indicate the mean across participants and scanning sessions. The gray area demarcates the bootstrap 95% confidence interval ($n = 1,000$). See Table 1 for the results of the correlation analysis from all participants.

392 null distribution was created by computing the correlation coefficients between data from the first
 393 session and spatially shuffled data from the second session ($n = 10,000$). The *p*-value was then cal-
 394 culated as the fraction of the null distribution greater or smaller than the computed statistics with
 395 unshuffled maps. Considering the non-independency of data from neighboring vertices, we used
 396 only a fraction of randomly chosen 10% of vertices for the analysis (Nasr, Polimeni, and Tootell,
 397 2016).

398 We acknowledged the variability σ of the estimated *p*-value due to the finite size of generated
 399 null distributions. A correction was applied by modeling the variability by the variance of a binomial
 400 distribution $\sigma^2 = np(1-p)$ and adding an upper bound of 3σ to the number of samples exceeding the
 401 test statistics (Burt et al., 2020). A corrected *p*-value of < 0.05 was considered statistically significant.

402 **Figures 4D-F** illustrate the correlation between sessions across cortical depth. All plots show an
 403 increase in correlation toward the pial surface, which matches the typically seen increase in signal
 404 changes in BOLD acquisitions. However, correlation coefficients decrease again in upper layers in
 405 **Figure 4D**. This might be explained by overall higher temporal variability in upper cortical layers
 406 caused by multiple sources, e.g., brain pulsatility, which lead to dynamic partial volume changes
 407 with the high-intensity CSF signal (Polimeni et al., 2010b).

408 Overall, the correlation coefficients were relatively low. However, this outcome is expected
 409 given that the analysis included all V1 vertices rather than a subset with most strongly activated
 410 clusters as in the main analysis, which could have artificially inflated the correlation estimates.
 411 The lower correlations thus partly reflect the fact that ODCs were not uniformly resolvable across
 412 V1, with stable columnar patterns observed only in a subset of locations, as illustrated in **Figure 2**.
 413 Whether these more consistent regions are driven by vascular or neuronal factors remains an open

Table 1. Repeatability of ODC maps across scanning sessions for single participants. Spearman's rank correlation coefficients and corresponding *p*-values are shown to illustrate the consistency of activation maps (contrast: left eye > right eye) between scanning sessions for single participants. Only data from V1 sampled at mid-cortical depth were used. Statistical significance was determined by permutation testing (*n* = 10,000). Due to the spatial covariance of data from neighboring vertices, only randomly selected 10% of all data points were used for significance testing.

	GE-BOLD		SE-BOLD		VASO	
	Correlation coefficient (<i>r</i>)	<i>p</i> -value	Correlation coefficient (<i>r</i>)	<i>p</i> -value	Correlation coefficient (<i>r</i>)	<i>p</i> -value
Subject 1	0.623	<0.001	0.219	<0.001	0.129	<0.001
Subject 2	0.634	<0.001	0.185	<0.001	0.049	<0.05
Subject 3	0.755	<0.001	0.493	<0.001	0.186	<0.001
Subject 4	0.586	<0.001	0.418	<0.001	0.167	<0.001
Subject 5	0.643	<0.001	0.379	<0.001	0.132	<0.001

414 question and is beyond the scope of the present study.

415 **Table 1** summarizes the correlation results across all participants.

416 **Univariate contrasts across cortical depth**

417 **Figure 5** shows the strength of cortical responses by plotting the percent signal changes of left and
418 right eye stimulation across cortical depth. The mean across participants and sessions and the
419 corresponding 95% bootstrap confidence interval are shown. Red lines (solid and dashed) depict
420 the mean response for single sessions, demonstrating the repeatability of cortical profiles.

421 We used the same vertices that were included in the classification analysis after feature selec-
422 tion. As expected, GE-BOLD signal changes were overall larger than SE-BOLD and VASO. Note that
423 signal changes for VASO, which has a negative relationship with CBV changes, were inverted for
424 visual purposes.

425 Across cortical depth, both GE- and SE-BOLD showed a steady increase toward the pial surface,
426 most likely reflecting draining vein contributions to the signal (Polimeni et al., 2010a; Markuerki-
427 aga, Barth, and Norris, 2016). The VASO signal profile was more restricted to GM and shows a
428 peak within GM. But an overall trend toward the pial surface could be seen as well. In **Supplemen-**
429 **tary Figure 7**, cortical profiles of signal changes across participants are shown with all V1 vertices
430 included. In these plots, VASO shows a more pronounced peak within GM. However, due to the
431 averaging across more data points, V1 vertices that were not activated and therefore only contain
432 noise contributions were included, which led to a general decrease of percent signal changes from
433 all acquisition techniques. This suggests the hypothesis that the often seen reduced signal changes
434 at the pial surface and pronounced peak within gray matter for SS-SI VASO may partly be driven by
435 inclusion of pure signal noise. **Supplementary Figure 8** further illustrates cortical profiles of signal
436 changes from single participants, demonstrating the variability between participants in our study.

437 **Decoding accuracies across cortical depth**

438 **Figure 6** shows mean prediction accuracies across cortical depth from the pattern classifica-
439 tion analysis. An independent classification was performed for each cortical depth with features se-
440 lected from the mean response across cortical depth. Black lines indicate the mean across partic-
441 ipants and sessions with the corresponding 95% bootstrap confidence interval. Red lines depict
442 mean prediction accuracies from single sessions. **Supplementary Figure 9** further illustrates pre-
443 diction accuracies from single participants.

444 With all acquisition techniques, the eye-of-origin could be decoded with statistical significance
445 at all cortical depths (chance level: 50%, *p*-value determined by bootstrapping). Among acquisition

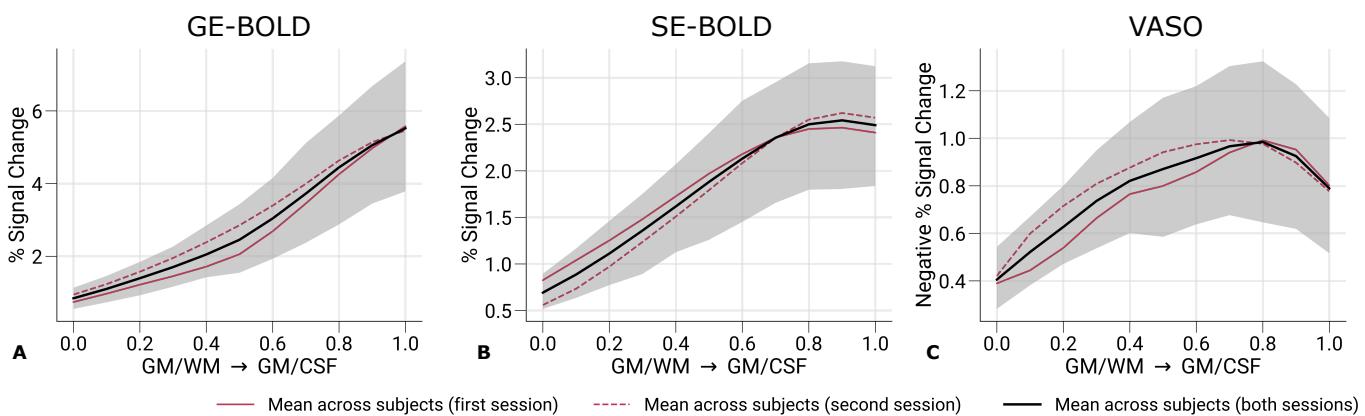


Figure 5. Percent signal changes across cortical depth. Mean percent signal changes (contrast: left eye and right eye > baseline) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are shown across cortical depth. Red solid and dashed lines show the mean across participants from the first and second session, respectively. Black lines indicate the mean across participants and scanning sessions. The gray area demarcates the bootstrap 95% confidence interval ($n = 1,000$). Only data points ($n = 200$) were used that were also selected for the decoding analysis. Note that we inverted the y-axis in C for consistency with A and B. Mean percent signal changes across cortical depth with all V1 data can be found in *Supplementary Figure 7*. Percent signal change curves from single participants can be found in *Supplementary Figure 8*.

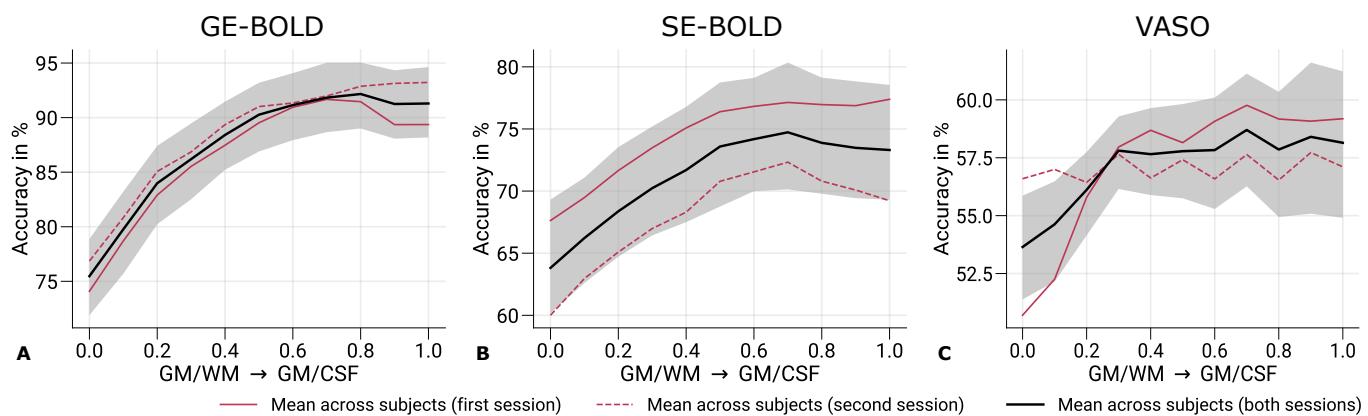


Figure 6. Prediction accuracies across cortical depth. Mean prediction accuracies (prediction of the stimulated eye) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are shown across cortical depth. Red solid and dashed lines show the mean across participants from the first and second session, respectively. Black lines indicate the mean across participants and scanning sessions. The gray area demarcates the bootstrap 95% confidence interval ($n = 1,000$). In A-C, data were significantly different ($p < 0.05$) from a 50% chance level at each cortical depth. The p -value was determined by bootstrapping ($n = 1,000$) and corrected for multiple comparisons of individual layers (FDR correction using the Benjamini and Hochberg procedure). Prediction accuracy curves from single participants can be found in *Supplementary Figure 9*.

446 techniques, GE-BOLD showed the highest prediction accuracies. Furthermore, prediction accuracies increased toward the pial surface, mirroring the increase of univariate responses across 447 cortical depth as shown in the previous section (Univariate contrasts across cortical depth). How- 448 ever, prediction accuracies did not show a steady increase compared to signal change profiles but 449 saturated around mid-cortical depth, more resembling the cortical profile from the repeatability 450 analysis (Consistency of ocular dominance maps). A similar behavior could be seen for SE-BOLD 451 with an overall reduced level of prediction accuracies. 452

453 Since VASO encodes volumes without blood nulling that are purely BOLD-weighted in addition 454 to time points with blood nulling, we also used the not-nullled time points for decoding the eye-of- 455 origin, which is shown in *Supplementary Figure 10*. Overall, a similar profile to *Figure 6A* can be 456 seen with general lower decoding accuracies that is most probably related to the lower temporal 457 efficiency of the VASO measurements due to the longer volume TR.

458 From a neuronal perspective, one would have expected highest eye-of-origin decoding in deeper

459 cortical layers since thalamocortical projections from the LGN primarily enter in layer 4C of V1
460 (Nieuwenhuys, Voogd, and Huijzen, 2008), which is located slightly below mid-cortical depth, see (We-
461 ber et al., 2008; Oga, Okamoto, and Fujita, 2016). Despite the anticipated higher laminar speci-
462 ficity of VASO, the decoding profile also showed a large resemblance to the profiles obtained with
463 GE- and SE-BOLD. This suggests that remaining macrovascular contributions also limit the laminar
464 specificity in VASO.

465 To better understand the potential impact of the feature selection process, we also conducted
466 exploratory analyses by changing the cortical depth at which the feature selection process, which
467 is presented in *Supplementary Figure 11* and *Supplementary Figure 12*. In the main analysis, fea-
468 tures were selected based on the training data averaged across all cortical depths, with the ra-
469 tionale of preserving the columnar organization by applying the same features set across corti-
470 cal depth. Interestingly, *Supplementary Figure 12* reveals that when feature selection is confined
471 to deeper cortical layers, a peak in decoding performance appears to emerge slightly below mid-
472 cortical depth as expected for monocular thalamocortical input. This change in decoding pattern
473 across cortical depth is more prominent in VASO compared to GE- and SE-BOLD. These findings
474 suggest that excluding superficial layers—more susceptible to physiological noise and large drain-
475 ing veins—during feature selection may help uncover the enhanced laminar specificity inherent to
476 VASO. Nonetheless, these results should be interpreted with caution, and further systematic inves-
477 tigations are required to confirm this effect, which lies beyond the scope of the present study.

478 Discussion

479 In this study, we used high-resolution fMRI at sub-millimeter resolution to map ODCs in human
480 V1 and decoded the eye-of-origin from pre-processed fMRI time courses. High-resolution imaging
481 has previously characterised the depth profile of ODCs with GE-BOLD (Hollander et al., 2021) and
482 VASO (Akbari et al., 2023). Building on this work, we directly compared the laminar specificity of
483 eye-of-origin decoding across three contrasts—GE-BOLD, SE-BOLD, and VASO.

484 Early MVPA studies showed that eye-of-origin and orientation information could be decoded
485 from V1 even with conventional resolution ($3 \times 3 \times 3 \text{ mm}^3$) (Kamitani and Tong, 2005; Haynes and
486 Rees, 2005a; Haynes and Rees, 2005b). Those findings sparked debate about whether the classi-
487 fiers exploited columnar signals or coarse-scale biases (Boynton, 2005; Beeck, 2010; Swisher et al.,
488 2010; Gardner, 2010; Shmuel et al., 2010; Kriegeskorte, Cusack, and Bandettini, 2010; Chaimow et
489 al., 2011; Misaki, Luh, and Bandettini, 2013). Because LGN inputs terminate monocularly in layer
490 4C and become increasingly binocular after intracortical processing (Wandell, 1995), the cortical
491 depth profile of decoding accuracy can help to disambiguate these sources.

492 Our sub-millimeter fMRI acquisitions allowed us to sample the functional signal across cortical
493 depth with sufficient resolution to study laminar differences. By tracking decoding performance as
494 a function of depth, we assessed how much eye-of-origin information is available at each lamina
495 and under each contrast. Finally, since macrovascular draining might act as a spatial-temporal
496 filter that redistributes columnar signals to coarser scales (Kriegeskorte, Cusack, and Bandettini,
497 2010), depth-dependent decoding also potentially provides a means to distinguish microvascular
498 from macrovascular contributions to the patterns exploited by the classifier.

499 As a prerequisite, we demonstrated robust *in vivo* mapping of ODCs across all acquisition meth-
500 ods, as shown in *Figure 2* (see *Supplementary Figure 1*–*Supplementary Figure 5* for activation
501 maps of all participants). The observed activation patterns were consistent across imaging ses-
502 sions and aligned well with ODC topographies previously reported in postmortem histological stu-
503 dies (Adams, Sincich, and Horton, 2007; Adams and Horton, 2009). In addition to the expected fine-
504 scale columnar structures, some activation maps exhibited larger, coarser clusters that may reflect
505 vascular contributions, particularly from regions dominated by larger draining veins. However, pin-
506 pointing the exact source of these larger clusters is beyond the scope of the present study. *Figure 3*
507 further illustrates the columnar nature of these patterns across cortical depth. Note that the con-

508 sistency of the cortical-depth dependent ODC reponse was also shown in earlier results (Haenelt
509 et al., 2019).

510 Overall, both SE-BOLD and VASO produced lower signal changes and exhibited increased noise
511 levels, consistent with their inherently lower SNR. Despite these limitations, a subset of ODCs could
512 be reliably mapped across sessions for all acquisition types. This reduced SNR was reflected in the
513 repeatability analysis shown in **Figures 4A-C** and **Table 1**. The session-to-session correlations of
514 ODC maps were highest for GE-BOLD, followed by SE-BOLD and VASO. Depth-resolved visualiza-
515 tions of inter-session correlation (**Figures 4D-F**) revealed increasing repeatability toward the pial
516 surface, likely driven by stronger signal contributions from macrovasculature in upper layers. No-
517 tably, for GE-BOLD (**Figure 4A**), the correlation did not increase monotonically across cortical depth
518 but instead dropped in the outermost layers, likely due to higher signal variability near the CSF
519 boundary (Polimeni et al., 2010b).

520 The MVPA analysis revealed that eye-of-origin information could be reliably decoded from fMRI
521 time series across cortical depth for all acquisition methods, see **Figure 6**. Decoding performance
522 was highest for GE-BOLD, followed by SE-BOLD and VASO. These decoding profiles closely mir-
523 rrored the patterns observed in the repeatability analysis, underscoring the critical role of signal-
524 to-noise ratio (SNR) in classifier performance. Notably, decoding accuracy peaked around mid-
525 cortical depth, in contrast to the monotonic increase in signal amplitude across depth observed
526 in univariate analyses shown in **Figure 5**. As discussed earlier, if the classifier primarily relied on
527 laminar-specific information, we would expect a peak in deeper layers, particularly around layer
528 4C, where monocular input is most segregated. The absence of such a peak suggests that laminar
529 specificity is limited across all acquisition types (but see further below for a discussion on the role
530 of feature selection).

531 For VASO measurements, we initially expected to see increased laminar specificity by enhanced
532 responses in deeper layers. A recent ODC mapping study by Akbari et al., 2023 indeed reported a
533 peak in deeper layers in univariate response profiles from data sampled in V1. Differences between
534 studies, including experimental design, acquisition parameters, or analysis choices, may underlie
535 these discrepancies but cannot be completely resolved in this study. One possible factor, however,
536 might be differences in the definition of regions of interest (ROIs). In our study, ROIs for univariate
537 cortical profiles in **Figure 5** were based on the same feature selection process as for the main decod-
538 ing analysis, which might have biased voxel selection toward regions with increased macrovascular
539 contributions and elevated SNR. For example, **Supplementary Figure 7** shows univariate profiles
540 with all V1 voxels included, where, the VASO response peaks closer to the mid-cortical depth. How-
541 ever, including all voxels introduces additional noise, particularly in superficial layers where partial
542 volume effects with CSF are more pronounced (Polimeni et al., 2010b; Pfaffenrot et al., 2021).

543 Higher spatial resolution is expected to decrease this effect. Interestingly, a recent study by
544 Feinberg et al., 2022 employed GE-BOLD and VASO acquisitions with an isotropic voxel size of
545 0.4 mm, i.e., an 8-times smaller voxel volumes compared to the current study, which showed a
546 pronounced peak in deeper cortical layers in V1 for binocular visual stimulation. In addition, a
547 second peak was observed in the upper layers. When considering feedforward thalamocortical
548 input to V1, the deeper peak likely reflects input to layer 4, while the superficial peak may result
549 from cortico-cortical processing or residual contributions from draining veins. Thus, the double-
550 peak profile observed by Feinberg et al., 2022 may reflect a combination of neuronal and vascular
551 origins.

552 In the main decoding analysis, feature selection was based on the mean cortical response. This
553 ensured that the same vertices were selected across cortical depth, acknowledging the columnar
554 topography of ODCs in V1. However, this approach may bias selection toward regions with higher
555 SNR, which are also more likely to contain macrovascular contributions. Feature selection based
556 on data further away should decrease these contributions. To address this, we conducted an addi-
557 tional analysis where we selected features solely from data sampled at the GM/WM, mid-cortical,
558 GM/CSF surface, respectively, and independently for each cortical depth. The resulting univariate

559 and decoding profiles are shown in **Supplementary Figure 11** and **Supplementary Figure 12**, re-
560 spectively. These results highlight the influence of feature selection on the observed profiles. For
561 instance, univariate responses in **Supplementary Figure 11** show that GE-BOLD shows a steady in-
562 crease toward the pial surface irrespective of the feature selection process. However, SE-BOLD
563 and VASO only exhibit a steady increase if feature selection is based on the GM/CSF surface. This
564 behavior is also mimicked in decoding profiles shown in **Supplementary Figure 12**. Interestingly,
565 VASO shows a peak below mid-cortical depth, which does not coincide with the GM/WM surface,
566 when feature selection is based on the GM/WM surface, further away from macrovascular contri-
567 butions at the pial surface. Conversely, when feature selection is based on the GM/CSF surface,
568 VASO shows a peak above mid-cortical depth. In case of independent feature selection for each
569 cortical depth, this sums up to the resemblance of a double-peak (see **Supplementary Figure 12M**)
570 similar to Feinberg et al., 2022. The deeper peak corresponds to the approximate location of layer
571 4C (Palomero-Gallagher and Zilles, 2019) (relative cortical depth of 73%). This might hint to in-
572 creased laminar specificity inherent in the VASO signal that might be exploited by the classifier,
573 but also shows the dependence on the chosen feature selection process. However, due to the low
574 sample size, this exploratory analysis prohibits detailed analysis and awaits further study. Future
575 studies might want to reproduce and locate the exact cortical depth of the peak by combining using
576 myelin-sensitive MRI acquisitions (Stüber et al., 2014; Trampel et al., 2019; Weiskopf et al., 2021)
577 to locate the stria of Gennari (Trampel, Ott, and Turner, 2011; Fracasso et al., 2016) as a reference
578 depth, see e.g. (Koopmans, Barth, and Norris, 2010; Huber et al., 2021).

579 Another methodological factor in our study is the arbitrary choice of the number of features
580 used for classification. The main decoding analysis was restricted to 200 features (vertices). To
581 investigate the effect of feature number on decoding performance, we conducted an additional
582 analysis in which prediction accuracies were computed as a function of the number of selected
583 vertices [1, 2, ..., 500]. Results are shown in **Figure 7**. It can be seen that only a few voxels were nec-
584 essary to decode the eye-of-origin, which was similarly found for orientation decoding (Haynes and
585 Rees, 2005a). GE- and SE-BOLD show a consistent trend across number of features with saturation
586 at mid-cortical depth for prediction accuracies (**Figures 7A-B**) and steady increase of univariate re-
587 sponds toward the pial surface (**Figures 7D-E**). In contrast, VASO exhibited more variable patterns
588 (**Figure 7C**) and showed a tendency for increased decoding accuracies at deeper layers. Corre-
589 sponding univariate responses (**Figure 7F**) also peaked at mid-depth, which got more pronounced
590 with increased number of features (cf. with univariate profile based on all V1 voxels shown in
591 **Supplementary Figure 7**). Additionally, **Supplementary Figure 13** illustrates decoding results using
592 depth-specific feature selection at varying feature numbers. While GE- and SE-BOLD results re-
593 mainained stable, an apparent peak emerged at deeper layers for VASO. However, due to the limited
594 dataset, these trends require further statistical validation.

595 The interpretation of the laminar profile is built on the assumption that the monocular feed-
596 forward information is exploited in V1, which is encoded at the fine-grained level of ODCs. Note
597 that the larger monocular regions in V1, like the blind spot (Tootell et al., 1998) and the tempo-
598 ral monocular crescent (Nasr et al., 2020), were not covered in our experiment due to the limited
599 field of view. However, we cannot exclude that other features besides ocularity might have con-
600 tributed to the successful eye-of-origin decoding. Therefore, we conducted an additional analysis,
601 in which we decoded the stimulated eye from cortical areas outside of V1 that are known not to be
602 driven by monocular input. **Figure 8** shows cortical profiles of prediction accuracies from GE-BOLD
603 data (200 vertices) sampled in the secondary visual cortex (V2) and the tertiary visual cortex (V3),
604 respectively. V2 and V3 were further divided into two halves (*a*: half closer to V1, *b*: half further
605 away from V1). The stimulated eye could be decoded in both V2 and V3 across cortical depth, but
606 with overall decreased decoding performance compared to **Figure 6A**. Furthermore, a similar in-
607 crease toward the pial surface was visible. Since no information about ocularity is expected from
608 extrastriate cortex, the exploited fMRI signal also needs to contain other information that enables
609 classification. V2 and V3 were split in half to examine the dependency on the distance to V1.

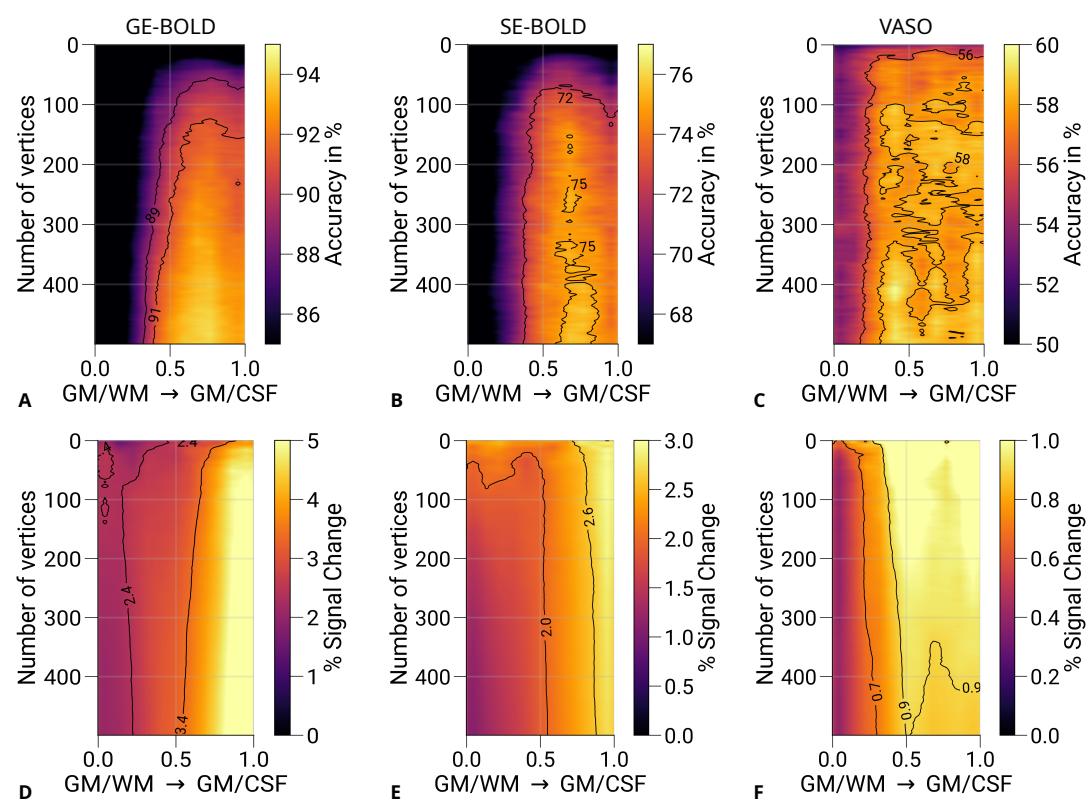


Figure 7. Prediction accuracies and percent signal changes for different number of features. Mean prediction accuracies (prediction of the stimulated eye) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are shown for a varying number of features (vertices) across cortical depth. Note that 200 vertices were used for the principal analysis (see *Figure 6*). D-F show corresponding percent signal changes (left eye and right eye > baseline) using the same data points also selected in the decoding analysis. Both prediction accuracies and percent signal changes appear to peak closer to the GM/WM boundary compared to GE- and SE-BOLD, respectively. Isolines are shown as black lines. For visualization purposes, images were slightly smoothed with a Gaussian kernel.

Indeed, *Figure 8* shows a gradual performance decrease with larger distances to V1. This could be a hint to remaining partial volume contributions with V1 voxels due to the convoluted nature of the cerebral cortex.

To exclude this alternative explanation, we ran an additional analysis, which is illustrated in *Figure 9*. In brief, we computed the Euclidean distances between each vertex in V3 to its nearest vertex in V1 on the same surface for all participants. This was done both for GM/WM and GM/CSF surfaces, respectively. *Figure 9* shows that partial volume effects are unlikely to contribute to decoding accuracies from V3 regarding the used nominal voxel sizes used in fMRI acquisitions. However, it should be kept in mind that signal contributions might still leak into data sampled from neighboring areas due to the large physiological point-spread function of the BOLD signal (Engel, Glover, and Wandell, 1997; Parkes et al., 2005; Shmuel et al., 2007), which should be addressed in further studies.

In VASO measurements, we exploit a CBV-weighted contrast that has a different temporal evolution compared to the BOLD response (Buxton, Wong, and Frank, 1998; Silva, Koretsky, and Duyn, 2007). More specifically, the CBV response has no initial dip, a shorter time-to-peak after stimulus onset, no poststimulus undershoot after stimulus offset, and needs more time to return to baseline. However, for the univariate analysis and the repeatability analysis, we processed data from all acquisition types with the same canonical HRF. As a control, we also analyzed the VASO data with a modified HRF that more closely resembled the CBV response's time evolution (data not shown),

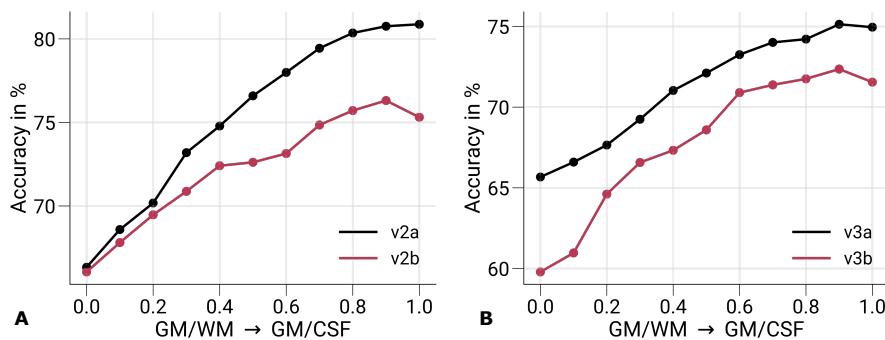


Figure 8. Prediction accuracies in V2 and V3. Mean prediction accuracies (prediction of the stimulated eye) for GE-BOLD are shown for V2 (A) and V3 (B) across cortical depth, respectively. Both areas were split in half based on retinotopy, with V2a and V3a being the half closer to V1. In A-B, data were significantly different ($p < 0.05$) from a 50% chance level at each cortical depth. The p -value was determined by bootstrapping ($n = 1,000$) and corrected for multiple comparisons of individual layers (FDR correction using the Benjamini and Hochberg procedure). Decoding performance in areas V2 and V3 cannot be attributed to responses at the columnar level and indicate that also decoding performance in V1 may not be exclusively caused by responses at the columnar level. V2: secondary visual cortex, V3: tertiary visual cortex.

629 which only resulted in minor differences to the presented results. Note that we did not use an HRF
630 model for the multivariate analysis, since analysis was based on the steady-state time points in
631 pre-processed fMRI time series.

632 One limitation of the experimental setup was that the used stimulus differed in color and lu-
633 minance between eyes that was not explicitly accounted for. This might have led to decodable
634 information along the parvo- and magnocellular streams inside but also outside of V1 (Tootell and
635 Nasr, 2017). For example, *Supplementary Figure 1-Supplementary Figure 5* illustrate ODC maps
636 from single participants, which generally show higher responses for the left eye, irrespective of eye
637 dominance of single participants (eye dominance is stated in corresponding figure captions), which
638 might be caused by remaining luminance differences between colors and therefore between eyes.
639 Similar observations were made in an early fMRI decoding study, in which the eye-of-origin was de-
640 coded from a binocular rivalry stimulus (Haynes and Rees, 2005b). In binocular rivalry, the left and
641 right eye receives incongruent stimuli, which were presented via anaglyph goggles. In that study,
642 color filters were swapped between successive fMRI scanning runs in a control experiment. This
643 resulted in decreased decoding performance in V1, whereas in extrastriate area V3 it stayed above
644 chance level. From these results, it was concluded that performance in V1 was mostly based on
645 ocularity information, while extrastriate areas V2 and V3 exploited more the color information in
646 the stimulus. While not having the data to confirm these results in our experiment, we hypothesize
647 that a similar effect contributed to the decodability in extrastriate areas as seen in *Figure 8*.

648 Another limitation in the analysis is that data was pooled irrespective of visual field location.
649 ODCs are known to vary in size and strength at different visual field locations (Adams, Sincich, and
650 Horton, 2007), which might have influenced the results to some degree.

651 The acquired fMRI signal might therefore be influenced by several biases that are not related
652 to ocularity information. These biases will also lead to differences in the expected laminar profile.
653 However, we emphasize that, compared to other decoding studies exploiting information encoded
654 at the columnar level with a conventional resolution, we could map and visualize ODCs in all single
655 participants. That means that fine-grained information at the spatial scale of ODCs was present
656 and the dominant pattern in univariate activation maps (see *Figure 2*), which potentially could have
657 been exploited by the linear classifier.

658 Our study analyzed the laminar specificity of MVPA with GE-BOLD, SE-BOLD, and VASO for the
659 retrieval of information encoded at the spatial scale of cortical columns. For the first time, we used
660 VASO in combination with MVPA to retrieve information from fine-grained cortical structures at the

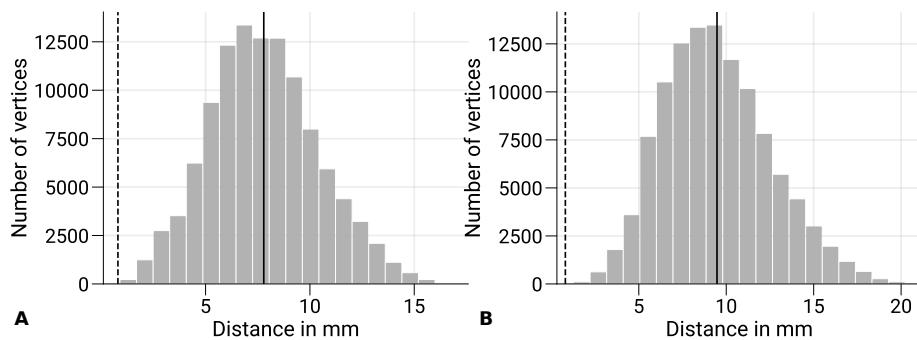


Figure 9. Minimum distances between V1 and sampled V3 data. The distribution of Euclidean distances between V3 vertices of the GM/WM (**A**) and the GM/CSF (**B**) and the closest V1 vertex of the same surface is shown across subjects and hemispheres. The overall mean is denoted as black vertical line and the nominal voxel size (0.8 mm) of functional acquisition is shown as vertical dashed line for reference. Voxel data sampled on V3 surfaces show minimal overlap with V1 regarding the used voxel size.

661 level of cortical layers. GE-BOLD is a very time-efficient acquisition method with larger SNR compared
662 to SE-BOLD and VASO. This enables GE-BOLD to decode columnar information with high
663 accuracy. However, the signal is weighted toward macrovascular signal contributions, limiting its
664 capabilities to resolve information at the level of cortical layers. In comparison, VASO encodes
665 two volumes at two inversion times, which limits its time efficiency. In addition, the BOLD correction
666 in VASO is performed by a division operation, which enhances noise in the time series. This
667 manifested itself in overall lower decoding accuracies for VASO.

668 In this regard, it might be a viable alternative to exploit the high SNR of GE-BOLD in combination
669 with post-processing techniques to enhance the spatial specificity of the signal. Over
670 the years, several approaches have been suggested that included deconvolution of cortical profiles
671 (Markuerkiaga, Barth, and Norris, 2016; Hollander et al., 2021; Marquardt et al., 2020), masking
672 out veins (Shmuel et al., 2007; Koopmans, Barth, and Norris, 2010; Moerel et al., 2018; Kay
673 et al., 2019), spatial filtering of lower spatial frequencies of no interest (Sengupta et al., 2017; Mandelkow, Zwart, and Duyn, 2017; Hollander et al., 2021; Schmidt et al., 2024) or exploiting temporal
674 information in the hemodynamic response (Kay et al., 2020) to remove macrovascular biases from
675 GE-BOLD data. An extensive comparison between these postprocessing steps is out of scope
676 of the current study but might be an alternative route for decoding information at the mesoscopic
677 scale based on acquisition techniques relying on the BOLD contrast.

678 In conclusion, the similar decoding profiles between acquisition techniques suggest that macroscopic
679 venous effects are the predominant contributor that is exploited by the classifier in all cases.
680 However, an exploratory analysis showed enhanced laminar specificity when using MVPA with
681 VASO if the influence of feature selection is carefully considered. Future work is needed to further
682 examine the potential increase in laminar specificity when combining multivariate techniques
683 as MVPA with VASO.

685 **Acknowledgments**

686 The research leading to these results has received funding from the European Research Council
687 under the European Union's Seventh Framework Program (FP7/2007-2013) / ERC grant agreement
688 n° 616905. Nikolaus Weiskopf has received funding from the European Union's Horizon
689 2020 research and innovation program under the grant agreement n° 681094 and from the BMBF
690 (01EW1711A & B) in the framework of ERA-NET NEURON. Shahin Nasr has received funding from
691 the NIH National Eye Institute (NEI) under the grant agreement n° R01EY030434. We thank the University
692 of Minnesota Center for Magnetic Resonance Research for the provision of the multiband
693 EPI sequence software. We thank Roland Mueller for the help with building the anaglyph spectacles.
694 Furthermore, we thank Laurentius Huber for the provision of the SS-SI VASO sequence.

695 **Author contributions**

696 Daniel Haenelt, Conceptualization, Methodology, Software, Formal analysis, Investigation, Data cu-
697 ration, Writing - original draft preparation, Writing - review & editing, Visualization; Denis Chaimow,
698 Conceptualization, Methodology, Writing - review & editing; Marianna Elisa Schmidt, Formal anal-
699 ysis, Writing - review & editing; Shahin Nasr, Methodology, Software, Writing - review & editing;
700 Nikolaus Weiskopf, Conceptualization, Resources, Writing - review & editing, Supervision, Project
701 administration, Funding acquisition; Robert Trampel, Investigation, Writing - review & editing, Su-
702 pervision

703 **References**

- 704 Abdul-Rahman, Hussein, Munther Gdeisat, David Burton, and Michael Lalor (2005). "Fast three-
705 dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous
706 path". In: *Optical Measurement Systems for Industrial Inspection IV*. Ed. by Wolfgang Osten, Christophe
707 Gorecki, and Erik L. Novak. Vol. 5856. International Society for Optics and Photonics. SPIE, pp. 32-
708 40. DOI: [10.1117/12.611415](https://doi.org/10.1117/12.611415).
- 709 Adams, Daniel L. and Jonathan C. Horton (2009). "Ocular dominance columns: enigmas and chal-
710 lenges". In: *The Neuroscientist* 15.1, pp. 62-77. DOI: [10.1177/1073858408327806](https://doi.org/10.1177/1073858408327806).
- 711 Adams, Daniel L., Lawrence C. Sincich, and Jonathan C. Horton (2007). "Complete pattern of oc-
712 ular dominance columns in human primary visual cortex". In: *Journal of Neuroscience* 27.39,
713 pp. 10391-10403. DOI: [10.1523/JNEUROSCI.2923-07.2007](https://doi.org/10.1523/JNEUROSCI.2923-07.2007).
- 714 Akbari, Atena, Joseph S. Gati, Peter Zeman, Brett Liem, and Ravi S. Menon (2023). "Layer depen-
715 dence of monocular and binocular responses in human ocular dominance columns at 7T using
716 VASO and BOLD". In: *bioRxiv*. DOI: [10.1101/2023.04.06.535924](https://doi.org/10.1101/2023.04.06.535924). URL: <https://www.biorxiv.org/content/10.1101/2023.04.06.535924>.
- 717 Andersson, Jesper L. R., Stefan Skare, and John Asburner (2003). "How to correct susceptibility dis-
718 tortions in spin-echo echo-planar images: application to diffusion tensor imaging". In: *NeuroIm-
719 age* 20.2, pp. 870-888. DOI: [10.1016/S1053-8119\(03\)00336-7](https://doi.org/10.1016/S1053-8119(03)00336-7).
- 720 Andrews, Timothy J., Scott D. Halpern, and Dale Purves (1997). "Correlated size variations in hu-
721 man visual cortex, lateral geniculate nucleus, and optic tract". In: *Journal of Neuroscience* 17.8,
722 pp. 2859-2868. DOI: [10.1523/JNEUROSCI.17-08-02859.1997](https://doi.org/10.1523/JNEUROSCI.17-08-02859.1997).
- 723 Avants, Brian B., Charles L. Epstein, Murray Grossman, and James C. Gee (2008). "Symmetric dif-
724 feomorphic image registration with cross-correlation: evaluating automated labeling of elderly
725 and neurodegenerative brain". In: *Medical Image Analysis* 12.1, pp. 26-41. DOI: [10.1016/j.media.2007.06.004](https://doi.org/10.1016/j.media.2007.06.004).
- 726 Beeck, Hans P. Op de (2010). "Against hyperacuity in brain reading: spatial smoothing does not
727 hurt multivariate fMRI analyses?" In: *NeuroImage* 49.3, pp. 1943-1948. DOI: [10.1016/j.neuroimage.2009.02.047](https://doi.org/10.1016/j.neuroimage.2009.02.047).
- 728 Boxerman, Jerrold L., Leena M. Hamberg, Bruce R. Rosen, and Robert M. Weisskoff (1995). "MR
729 contrast due to intravascular magnetic susceptibility perturbations". In: *Magnetic Resonance in
730 Medicine* 34.4, pp. 555-566. DOI: [10.1002/mrm.1910340412](https://doi.org/10.1002/mrm.1910340412).
- 731 Boynton, Geoffrey M. (2005). "Imaging orientation selectivity: decoding conscious perception in V1".
732 In: *Nature Neuroscience* 8.5, pp. 541-542. DOI: [10.1038/nn0505-541](https://doi.org/10.1038/nn0505-541).
- 733 Brainard, David H. (1997). "The psychophysics toolbox". In: *Spatial Vision* 10.4, pp. 433-436. DOI:
734 [10.1163/156856897X00357](https://doi.org/10.1163/156856897X00357).
- 735 Brodmann, Korbinian (1909). *Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien
736 dargestellt auf Grund des Zellenbaues*. Leipzig, Germany: J.A. Barth.
- 737 Burt, Joshua B., Markus Helmer, Maxwell Shinn, Alan Anticevic, and John D. Murray (2020). "Gener-
738 ative modeling of brain maps with spatial autocorrelation". In: *NeuroImage* 220, p. 117038. DOI:
739 [10.1016/j.neuroimage.2020.117038](https://doi.org/10.1016/j.neuroimage.2020.117038).

- 743 Buxton, Richard B. (2013). "The physics of functional magnetic resonance imaging (fMRI)". In: *Reports on Progress in Physics* 76.9, p. 096601. DOI: [10.1088/0034-4885/76/9/096601](https://doi.org/10.1088/0034-4885/76/9/096601).
- 744 Buxton, Richard B., Eric C. Wong, and Lawrence R. Frank (1998). "Dynamics of blood flow and oxygenation changes during brain activation: the balloon model". In: *Magnetic Resonance in Medicine* 39.6, pp. 855–864. DOI: [10.1002/mrm.1910390602](https://doi.org/10.1002/mrm.1910390602).
- 745 Chaimow, Denis, Essa Yacoub, Kâmil Uğurbil, and Amir Shmuel (2011). "Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns". In: *NeuroImage* 56.2, pp. 627–642. DOI: [10.1016/j.neuroimage.2010.09.037](https://doi.org/10.1016/j.neuroimage.2010.09.037).
- 746 Chang, Chih-Chung and Chih-Jen Lin (2011). "LIBSVM: a library for support vector machines". In: *ACM Transactions on Intelligent Systems and Technology* 2.3. DOI: [10.1145/1961189.1961199](https://doi.org/10.1145/1961189.1961199).
- 747 Cheng, Kang, R. Allen Waggoner, and Keiji Tanaka (2001). "Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging". In: *Neuron* 32.2, pp. 359–374. DOI: [10.1016/S0896-6273\(01\)00477-9](https://doi.org/10.1016/S0896-6273(01)00477-9).
- 748 Cox, Robert W. (1996). "AFNI: software for analysis and visualization of functional magnetic resonance neuroimages". In: *Computers and Biomedical Research* 29.3, pp. 162–173. DOI: [10.1006/cbmr.1996.0014](https://doi.org/10.1006/cbmr.1996.0014).
- 749 Dale, Anders M., Bruce Fischl, and Martin I. Sereno (1999). "Cortical surface-based analysis: I. segmentation and surface reconstruction". In: *NeuroImage* 9.2, pp. 179–194. DOI: [10.1006/nimg.1998.0395](https://doi.org/10.1006/nimg.1998.0395).
- 750 Dechent, Peter and Jens Frahm (2000). "Direct mapping of ocular dominance columns in human primary visual cortex". In: *NeuroReport* 11.14, pp. 3247–3249. DOI: [10.1097/00001756-200009280-00039](https://doi.org/10.1097/00001756-200009280-00039).
- 751 Dobkins, Karen R., Alex Thiele, and Thomas D. Albright (2000). "Comparison of red–green equiluminescence points in humans and macaques: evidence for different L:M cone ratios between species". In: *Journal of the Optical Society of America A* 17.3, pp. 545–556. DOI: [10.1364/josaa.17.000545](https://doi.org/10.1364/josaa.17.000545).
- 752 Dougherty, Kacie, Michele A. Cox, Jacob A. Westerberg, and Alexander Maier (2019). "Binocular modulation of monocular V1 neurons". In: *Current Biology* 29.3, pp. 381–391. DOI: [10.1016/j.cub.2018.12.004](https://doi.org/10.1016/j.cub.2018.12.004).
- 753 Duvernoy, Henri M., S. Delon, and J. L. Vannson (1981). "Cortical blood vessels of the human brain". In: *Brain Research Bulletin* 7.5, pp. 519–579. DOI: [10.1016/0361-9230\(81\)90007-1](https://doi.org/10.1016/0361-9230(81)90007-1).
- 754 Engel, Stephen A., Gary H. Glover, and Brian A. Wandell (1997). "Retinotopic organization in human visual cortex and the spatial precision of functional MRI". In: *Cerebral Cortex* 7.2, pp. 181–192. DOI: [10.1093/cercor/7.2.181](https://doi.org/10.1093/cercor/7.2.181).
- 755 Feinberg, David A., Steen Moeller, Stephen M. Smith, Edward Auerbach, Sudhir Ramanna, Matt F. Glasser, Karla L. Miller, Kâmil Uğurbil, and Essa Yacoub (2010). "Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging". In: *PLoS ONE* 5.12, e15710. DOI: [10.1371/journal.pone.0015710](https://doi.org/10.1371/journal.pone.0015710).
- 756 Feinberg, David A., Salvatore Torrisi, Alexander J. S. Becket, Rüdiger Stirnberg, Tony Stöcker, Philipp Ehses, and Renzo Huber (2022). "Sub-0.1 microliter CBV fMRI on the Next Generation 7T scanner". In: *Proceedings International Society for Magnetic Resonance in Medicine*. London, UK.
- 757 Feinberg, David A., An T. Vu, and Alexander Beckett (2018). "Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI". In: *NeuroImage* 164, pp. 155–163. DOI: [10.1016/j.neuroimage.2017.02.020](https://doi.org/10.1016/j.neuroimage.2017.02.020).
- 758 Felleman, Daniel J. and David C. Van Essen (1991). "Distributed hierarchical processing in the primate cerebral cortex". In: *Cerebral Cortex* 1.1, pp. 1–47. DOI: [10.1093/cercor/1.1.1-a](https://doi.org/10.1093/cercor/1.1.1-a).
- 759 Fischl, Bruce and Anders M. Dale (2000). "Measuring the thickness of the human cerebral cortex from magnetic resonance images". In: *Proceedings of the National Academy of Sciences* 97.20, pp. 11050–11055. DOI: [10.1073/pnas.200033797](https://doi.org/10.1073/pnas.200033797).
- 760 Fischl, Bruce, Martin I. Sereno, and Anders M. Dale (1999). "Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system". In: *NeuroImage* 9.2, pp. 195–207. DOI: [10.1006/nimg.1998.0396](https://doi.org/10.1006/nimg.1998.0396).

- 794 Formisano, Elia and Nikolaus Kriegeskorte (2012). "Seeing patterns through the hemodynamic veil
795 — the future of pattern-information fMRI". In: *NeuroImage* 62.2, pp. 1249–1256. DOI: [10.1016/j.neuroimage.2012.02.078](https://doi.org/10.1016/j.neuroimage.2012.02.078).
- 797 Fracasso, Alessio, Natalia Petridou, and Serge O. Dumoulin (2016). "Systematic variation of popu-
798 lation receptive field properties across cortical depth in human visual cortex". In: *NeuroImage*
799 139, pp. 427–438. DOI: [10.1016/j.neuroimage.2016.06.048](https://doi.org/10.1016/j.neuroimage.2016.06.048).
- 800 Fracasso, Alessio, Susanne J. van Veluw, Fredy Visser, Peter R. Luijten, Wim Spliet, Jaco J. M. Zwanen-
801 burg, Serge O. Dumoulin, and Natalia Petridou (2016). "Lines of Baillarger in vivo and ex vivo:
802 myelin contrast across lamina at 7T MRI and histology". In: *NeuroImage* 133, pp. 163–175. DOI:
803 [10.1016/j.neuroimage.2016.02.072](https://doi.org/10.1016/j.neuroimage.2016.02.072).
- 804 Fujimoto, Kyoko, Jonathan R. Polimeni, André J. W. van der Kouwe, Martin Reuter, Tobias Kober,
805 Thomas Benner, Bruce Fischl, and Lawrence L. Wald (2014). "Quantitative comparison of corti-
806 cal surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 Tesla". In:
807 *NeuroImage* 90, pp. 60–73. DOI: [10.1016/j.neuroimage.2013.12.012](https://doi.org/10.1016/j.neuroimage.2013.12.012).
- 808 Gardner, Justin L. (2010). "Is cortical vasculature functionally organized?" In: *NeuroImage* 49.3, pp. 1953–
809 1956. DOI: [10.1016/j.neuroimage.2009.07.004](https://doi.org/10.1016/j.neuroimage.2009.07.004).
- 810 Glover, Gary H. (2011). "Overview of functional magnetic resonance imaging". In: *Neurosurgery Clin-
811 ics of North America* 22.2, pp. 133–139. DOI: [10.1016/j.nec.2010.11.001](https://doi.org/10.1016/j.nec.2010.11.001).
- 812 Goodyear, Bradley G. and Ravi S. Menon (2001). "Brief visual stimulation allows mapping of ocular
813 dominance in visual cortex using fMRI". In: *Human Brain Mapping* 14.4, pp. 210–217. DOI: [10.1002/hbm.1053](https://doi.org/10.1002/hbm.1053).
- 815 Greve, Douglas N. and Bruce Fischl (2009). "Accurate and robust brain image alignment using
816 boundary-based registration". In: *NeuroImage* 48.1, pp. 63–72. DOI: [10.1016/j.neuroimage.2009.06.060](https://doi.org/10.1016/j.neuroimage.2009.06.060).
- 818 Haenelt, Daniel, Robert Trampel, Shahin Nasr, Jonathan R. Polimeni, Roger B. H. Tootell, Martin I.
819 Sereno, Kerrin J. Pine, Luke J. Edwards, Saskia Helbling, and Nikolaus Weiskopf (2023). "High-
820 resolution quantitative and functional MRI indicate lower myelination of thin and thick stripes
821 in human secondary visual cortex". In: *eLife* 12, e78756. DOI: [10.7554/eLife.78756](https://doi.org/10.7554/eLife.78756).
- 822 Haenelt, Daniel, Nikolaus Weiskopf, Roland Mueller, Shahin Nasr, Jonathan R. Polimeni, Roger B H.
823 Tootell, Martin I. Sereno, and Robert Trampel (2019). "Reliable 3D mapping of ocular dominance
824 columns in humans using GE-EPI fMRI at 7 T". In: *Organization for Human Brain Mapping Annual
825 Meeting (OHBM)*. Rome, Italy.
- 826 Haxby, James V. (2012). "Multivariate pattern analysis of fMRI: the early beginnings". In: *NeuroImage*
827 62.2, pp. 852–855. DOI: [10.1016/j.neuroimage.2012.03.016](https://doi.org/10.1016/j.neuroimage.2012.03.016).
- 828 Haynes, John-Dylan and Geraint Rees (2005a). "Predicting the orientation of invisible stimuli from
829 activity in human primary visual cortex". In: *Nature Neuroscience* 8.5, pp. 686–691. DOI: [10.1038/nn1445](https://doi.org/10.1038/nn1445).
- 831 — (2005b). "Predicting the stream of consciousness from activity in human visual cortex". In: *Cur-
832 rent Biology* 15.14, pp. 1301–1307. DOI: [10.1016/j.cub.2005.06.026](https://doi.org/10.1016/j.cub.2005.06.026).
- 833 Hollander, Gilles de, Wietske van der Zwaag, Chencan Qian, Peng Zhang, and Tomas Knapen (2021).
834 "Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of
835 human ocular dominance columns". In: *NeuroImage* 228, p. 117683. DOI: [10.1016/j.neuroimage.2020.117683](https://doi.org/10.1016/j.neuroimage.2020.117683).
- 837 Horton, Jonathan C. and Daniel L. Adams (2005). "The cortical column: a structure without a func-
838 tion". In: *Philosophical Transactions of the Royal Society B: Biological Sciences* 360.1456, pp. 837–
839 862. DOI: [10.1098/rstb.2005.1623](https://doi.org/10.1098/rstb.2005.1623).
- 840 Hubel, David H. and Torsten N. Wiesel (1962). "Receptive fields, binocular interaction and functional
841 architecture in the cat's visual cortex". In: *The Journal of Physiology* 160.1, pp. 106–154. DOI: [10.1113/jphysiol.1962.sp006837](https://doi.org/10.1113/jphysiol.1962.sp006837).
- 843 — (1969). "Anatomical demonstration of columns in the monkey striate cortex". In: *Nature* 221.5182,
844 pp. 747–750. DOI: [10.1038/221747a0](https://doi.org/10.1038/221747a0).

- 845 Huber, Laurentius, Emily S. Finn, Yuhui Chai, Rainer Goebel, Rüdiger Stirnberg, Tony Stöcker, Sean
846 Marrett, Kâmil Uludağ, Seong-Gi Kim, SoHyun Han, Peter A. Bandettini, and Benedikt A. Poser
847 (2021). "Layer-dependent functional connectivity methods". In: *Progress in Neurobiology* 207,
848 p. 101835. DOI: [10.1016/j.pneurobio.2020.101835](https://doi.org/10.1016/j.pneurobio.2020.101835).
- 849 Huber, Laurentius, Daniel A. Handwerker, David C. Jangraw, Gang Chen, Andrew Hall, Carsten
850 Stüber, Javier Gonzalez-Castillo, Dimo Ivanov, Sean Marrett, Maria Guidi, Jozien Goense, Benedikt
851 A. Poser, and Peter A. Bandettini (2017). "High-resolution CBV-fMRI allows mapping of laminar
852 activity and connectivity of cortical input and output in human M1". In: *Neuron* 96.6, pp. 1253–
853 1263. DOI: [10.1016/j.neuron.2017.11.005](https://doi.org/10.1016/j.neuron.2017.11.005).
- 854 Huber, Laurentius, Dimo Ivanov, Steffen N. Krieger, Markus N. Streicher, Toralf Mildner, Benedikt
855 A. Poser, Harald E. Möller, and Robert Turner (2014). "Slab-selective, BOLD-corrected VASO at 7
856 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio". In:
857 *Magnetic Resonance in Medicine* 72.1, pp. 137–148. DOI: [10.1002/mrm.24916](https://doi.org/10.1002/mrm.24916).
- 858 Huntenburg, Julia M., Christopher J. Steele, and Pierre-Louis Bazin (2018). "Nighres: processing tools
859 for high-resolution neuroimaging". In: *GigaScience* 7.7. DOI: [10.1093/gigascience/giy082](https://doi.org/10.1093/gigascience/giy082).
- 860 Iamshchinina, Polina, Daniel Kaiser, Renat Yakupov, Daniel Haenelt, Alessandro Sciarra, Hendrik
861 Mattern, Falk Luesebrink, Emrah Duezel, Oliver Speck, Nikolaus Weiskopf, and Radoslaw M. Ci-
862 chy (2021). "Perceived and mentally rotated contents are differentially represented in cortical
863 depth of V1". In: *Communications Biology* 4.1, p. 1069. DOI: [10.1038/s42003-021-02582-4](https://doi.org/10.1038/s42003-021-02582-4).
- 864 Jezzard, Peter and Robert S. Balaban (1995). "Correction for geometric distortion in echo planar
865 images from B_0 field variations". In: *Magnetic Resonance in Medicine* 34.1, pp. 65–73. DOI: [10.1002/mrm.1910340111](https://doi.org/10.1002/mrm.1910340111).
- 866 Julesz, Béla (1971). *Foundations of cyclopean perception*. Chicago: University of Chicago Press.
- 867 Kamitani, Yukiyasu and Frank Tong (2005). "Decoding the visual and subjective contents of the
868 human brain". In: *Nature Neuroscience* 8.5, pp. 679–685. DOI: [10.1038/nn1444](https://doi.org/10.1038/nn1444).
- 869 Kay, Kendrick, Keith W. Jamison, Luca Vizioli, Ru-Yuan Zhang, Eshed Margalit, and Kâmil Uğurbil
870 (2019). "A critical assessment of data quality and venous effects in sub-millimeter fMRI". In: *Neu-
871 roImage* 189, pp. 847–869. DOI: [10.1016/j.neuroimage.2019.02.006](https://doi.org/10.1016/j.neuroimage.2019.02.006).
- 872 Kay, Kendrick, Keith W. Jamison, Ru-Yuan Zhang, and Kâmil Uğurbil (2020). "A temporal decom-
873 position method for identifying venous effects in task-based fMRI". In: *Nature Methods* 17.10,
874 pp. 1033–1039. DOI: [10.1038/s41592-020-0941-6](https://doi.org/10.1038/s41592-020-0941-6).
- 875 Kennedy, C., M. H. Des Rosiers, O. Sakurada, M. Shinohara, M. Reivich, J. W. Jehle, and L. Sokoloff
876 (1976). "Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic
877 [14C]deoxyglucose technique". In: *Proceedings of the National Academy of Sciences*
878 73.11, pp. 4230–4234. DOI: [10.1073/pnas.73.11.4230](https://doi.org/10.1073/pnas.73.11.4230).
- 879 Kleiner, Mario, David H. Brainard, Denis G. Pelli, Allen Ingling, Richard Murray, and Chris Broussard
880 (2007). "What's new in psychtoolbox-3". In: *Perception* 36.14, pp. 1–16. DOI: [10.1177/03010066070360S101](https://doi.org/10.1177/03010066070360S101).
- 881 Kok, Peter, Lauren J. Bains, Tim van Mourik, David G. Norris, and Floris P. de Lange (2016). "Selective
882 activation of the deep layers of the human primary visual cortex by top-down feedback". In:
883 *Current Biology* 26.3, pp. 371–376. DOI: [10.1016/j.cub.2015.12.038](https://doi.org/10.1016/j.cub.2015.12.038).
- 884 Koopmans, Peter J., Markus Barth, and David G. Norris (2010). "Layer-specific BOLD activation in
885 human V1". In: *Human Brain Mapping* 31.9, pp. 1297–1304. DOI: [10.1002/hbm.20936](https://doi.org/10.1002/hbm.20936).
- 886 Kriegeskorte, Nikolaus and Peter A. Bandettini (2007). "Analyzing for information, not activation, to
887 exploit high-resolution fMRI". In: *NeuroImage* 38.4, pp. 649–662. DOI: [10.1016/j.neuroimage.2007.02.022](https://doi.org/10.1016/j.neuroimage.2007.02.022).
- 888 Kriegeskorte, Nikolaus, Rhodri Cusack, and Peter A. Bandettini (2010). "How does an fMRI voxel
889 sample the neuronal activity pattern: compact-kernel or complex spatiotemporal filter?" In: *Neu-
890 roImage* 49.3, pp. 1965–1976. DOI: [10.1016/j.neuroimage.2009.09.059](https://doi.org/10.1016/j.neuroimage.2009.09.059).
- 891 LeVay, Simon, David H. Hubel, and Torsten N. Wiesel (1975). "The pattern of ocular dominance
892 columns in macaque visual cortex revealed by a reduced silver stain". In: *Journal of Comparative
893 Neurology* 159.4, pp. 559–575. DOI: <https://doi.org/10.1002/cne.901590408>.

- 896 Mandelkow, Hendrik, Jacobus A. Zwart, and Jeff H. Duyn (2017). "Effects of spatial fMRI resolution
897 on the classification of naturalistic movies". In: *NeuroImage* 162, pp. 45–55. DOI: [10.1016/j.neuroimage.2017.08.053](https://doi.org/10.1016/j.neuroimage.2017.08.053).
- 898 Markuerkiaga, Irati, Markus Barth, and David G. Norris (2016). "A cortical vascular model for examining
899 the specificity of the laminar BOLD signal". In: *NeuroImage* 132, pp. 491–498. DOI: [10.1016/j.neuroimage.2016.02.073](https://doi.org/10.1016/j.neuroimage.2016.02.073).
- 900 Marquardt, Ingo, Peter De Weerd, Marian Schneider, Omer Faruk Gulban, Dimo Ivanov, Yawen
901 Wang, and Kâmil Uludağ (2020). "Feedback contribution to surface motion perception in the
902 human early visual cortex". In: *eLife* 9, e50933. DOI: [10.7554/eLife.50933](https://doi.org/10.7554/eLife.50933).
- 903 Marques, José P, Tobias Kober, Gunnar Krueger, Wietske van der Zwaag, Pierre-François Van de
904 Moortele, and Rolf Gruetter (2010). "MP2RAGE, a self bias-field corrected sequence for improved
905 segmentation and T_1 -mapping at high field". In: *NeuroImage* 49.2, pp. 1271–1281. DOI: [10.1016/j.neuroimage.2009.10.002](https://doi.org/10.1016/j.neuroimage.2009.10.002).
- 906 Menon, Ravi S. and Bradley G. Goodyear (1999). "Submillimeter functional localization in human
907 striate cortex using BOLD contrast at 4 Tesla: implications for the vascular point-spread function". In: *Magnetic Resonance in Medicine* 41.2, pp. 230–235. DOI: [10.1002/\(SICI\)1522-2594\(199902\)41:2<230::AID-MRM3>3.0.CO;2-0](https://doi.org/10.1002/(SICI)1522-2594(199902)41:2<230::AID-MRM3>3.0.CO;2-0).
- 908 Menon, Ravi S., Seiji Ogawa, John P. Strupp, and Kâmil Ügurbil (1997). "Ocular dominance in hu-
909 man V1 demonstrated by functional magnetic resonance imaging". In: *Journal of Neurophysiology*
910 77.5, pp. 2780–2787. DOI: [10.1152/jn.1997.77.5.2780](https://doi.org/10.1152/jn.1997.77.5.2780).
- 911 Miles, Walter R. (1929). "Ocular dominance demonstrated by unconscious sighting". In: *Journal of
912 Experimental Psychology* 12.2, pp. 113–126. DOI: [10.1037/h0075694](https://doi.org/10.1037/h0075694).
- 913 Misaki, Masaya, Wen-Ming Luh, and Peter A. Bandettini (2013). "The effect of spatial smoothing on
914 fMRI decoding of columnar-level organization with linear support vector machine". In: *Journal
915 of Neuroscience Methods* 212.2, pp. 355–361. DOI: [10.1016/j.jneumeth.2012.11.004](https://doi.org/10.1016/j.jneumeth.2012.11.004).
- 916 Moeller, Steen, Essa Yacoub, Cheryl A. Olman, Edward Auerbach, John Strupp, Noam Harel, and
917 Kâmil Ügurbil (2010). "Multiband multislice GE-EPI at 7 Tesla, with 16-fold acceleration using
918 partial parallel imaging with application to high spatial and temporal whole-brain fMRI". In: *Magnetic
919 Resonance in Medicine* 63.5, pp. 1144–1153. DOI: [10.1002/mrm.22361](https://doi.org/10.1002/mrm.22361).
- 920 Moerel, Michelle, Federico De Martino, Valentin G. Kemper, Sebastian Schmitter, An T. Vu, Kâmil
921 Ügurbil, Elia Formisano, and Essa Yacoub (2018). "Sensitivity and specificity considerations for
922 fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field". In: *NeuroImage*
923 164, pp. 18–31. DOI: [10.1016/j.neuroimage.2017.03.063](https://doi.org/10.1016/j.neuroimage.2017.03.063).
- 924 Mountcastle, Vernon B. (1957). "Modality and topographic properties of single neurons of cat's
925 somatic sensory cortex". In: *Journal of Neurophysiology* 20.4, pp. 408–434. DOI: [10.1152/jn.1957.20.4.408](https://doi.org/10.1152/jn.1957.20.4.408).
- 926 — (1997). "The columnar organization of the neocortex". In: *Brain* 120.4, pp. 701–722. DOI: [10.1093/brain/120.4.701](https://doi.org/10.1093/brain/120.4.701).
- 927 Movahedian Attar, Fakhreh, Evgeniya Kirilina, Daniel Haenelt, Kerrin J. Pine, Robert Trampel, Luke
928 J. Edwards, and Nikolaus Weiskopf (2020). "Mapping short association fibers in the early cortical
929 visual processing stream using in vivo diffusion tractography". In: *Cerebral Cortex* 30.8, pp. 4496–
930 4514. DOI: [10.1093/cercor/bhaa049](https://doi.org/10.1093/cercor/bhaa049).
- 931 Muckli, Lars, Federico De Martino, Luca Vizioli, Lucy S. Petro, Fraser W. Smith, Kâmil Ügurbil, Rainer
932 Goebel, and Essa Yacoub (2015). "Contextual feedback to superficial layers of V1". In: *Current
933 Biology* 25.20, pp. 2690–2695. DOI: [10.1016/j.cub.2015.08.057](https://doi.org/10.1016/j.cub.2015.08.057).
- 934 Nasr, Shahin, Cristen LaPierre, Christopher E. Vaughn, Thomas Witzel, Jason P. Stockmann, and
935 Jonathan R. Polimeni (2020). "In vivo functional localization of the temporal monocular crescent
936 representation in human primary visual cortex". In: *NeuroImage* 209, p. 116516. DOI: [10.1016/j.neuroimage.2020.116516](https://doi.org/10.1016/j.neuroimage.2020.116516).

- 945 Nasr, Shahin, Jonathan R. Polimeni, and Roger B. H. Tootell (2016). "Interdigitated color- and disparity-
946 selective columns within human visual cortical areas V2 and V3". In: *The Journal of Neuroscience*
947 36.6, pp. 1841–1857. DOI: [10.1523/JNEUROSCI.3518-15.2016](https://doi.org/10.1523/JNEUROSCI.3518-15.2016).
- 948 Nasr, Shahin, Jan Skerswetat, Eric D. Gaier, Sarala N. Malladi, Bryan Kennedy, Roger B. H. Tootell,
949 Peter Bex, and David G. Hunter (2025). "Differential impacts of strabismic and anisometropic
950 amblyopia on the mesoscale functional organization of the human visual cortex". In: *The Journal*
951 of *Neuroscience* 45.6, e0745242024. DOI: [10.1523/JNEUROSCI.0745-24.2024](https://doi.org/10.1523/JNEUROSCI.0745-24.2024).
- 952 Nieuwenhuys, Rudolf, Jan Voogd, and Christiaan van Huijzen (2008). *The human central nervous*
953 *system: a synopsis and atlas*. Berlin, Heidelberg, Germany: Springer. ISBN: 9783540346845.
- 954 Obermayer, Klaus and Gary G. Blasdel (1993). "Geometry of orientation and ocular dominance
955 columns in monkey striate cortex". In: *Journal of Neuroscience* 13.10, pp. 4114–4129. DOI: [10.1523/JNEUROSCI.13-10-04114.1993](https://doi.org/10.1523/JNEUROSCI.13-10-04114.1993).
- 956 Oga, Tomofumi, Tsuguhsia Okamoto, and Ichiro Fujita (2016). "Basal dendrites of layer-III pyramidal
957 neurons do not scale with changes in cortical magnification factor in macaque primary visual
958 cortex". In: *Frontiers in Neural Circuits* 10. DOI: [10.3389/fncir.2016.00074](https://doi.org/10.3389/fncir.2016.00074).
- 959 Palomero-Gallagher, Nicola and Karl Zilles (2019). "Cortical layers: cyto-, myelo-, receptor- and synap-
960 tic architecture in human cortical areas". In: *NeuroImage* 197, pp. 716–741. DOI: [10.1016/j.neuroimage.2017.08.035](https://doi.org/10.1016/j.neuroimage.2017.08.035).
- 961 Parkes, Laura M., Jens V. Schwarzbach, Annemiek A. Bouts, Roel H. R. Deckers, Pim Pullens, Chris-
962 tian M. Kerskens, and David G. Norris (2005). "Quantifying the spatial resolution of the gradient
963 echo and spin echo BOLD response at 3 Tesla". In: *Magnetic Resonance in Medicine* 54.6, pp. 1465–
964 1472. DOI: [10.1002/mrm.20712](https://doi.org/10.1002/mrm.20712).
- 965 Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
966 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
967 dre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay
968 (2011). "Scikit-learn: machine learning in Python". In: *Journal of Machine Learning Research* 12,
969 pp. 2825–2830.
- 970 Pelli, Denis G. (1997). "The VideoToolbox software for visual psychophysics: transforming numbers
971 into movies". In: *Spatial Vision* 10.4, pp. 437–442. DOI: [10.1163/156856897X00366](https://doi.org/10.1163/156856897X00366).
- 972 Pfaffenrot, Viktor, Maximilian N. Voelker, Sriranga Kashyap, and Peter J. Koopmans (2021). "Lami-
973 nar fMRI using T_2 -prepared multi-echo FLASH". In: *NeuroImage* 236, p. 118163. DOI: [10.1016/j.neuroimage.2021.118163](https://doi.org/10.1016/j.neuroimage.2021.118163).
- 974 Poggio, Gian F. (1995). "Mechanisms of stereopsis in monkey visual cortex". In: *Cerebral Cortex* 5.3,
975 pp. 193–204. DOI: [10.1093/cercor/5.3.193](https://doi.org/10.1093/cercor/5.3.193).
- 976 Polimeni, Jonathan R., Bruce Fischl, Douglas N. Greve, and Lawrence L. Wald (2010a). "Laminar
977 analysis of 7T BOLD using an imposed spatial activation pattern in human V1". In: *NeuroImage*
978 52.4, pp. 1334–1346. DOI: [10.1016/j.neuroimage.2010.05.005](https://doi.org/10.1016/j.neuroimage.2010.05.005).
- 979 Polimeni, Jonathan R., Douglas N. Greve, Bruce Fischl, and Lawrence L. Wald (2010b). "Depth-resolved
980 laminar analysis of resting-state fluctuation amplitude in high-resolution 7T fMRI". In: *Proceed-
981 ings International Society for Magnetic Resonance in Medicine*. Stockholm, Sweden.
- 982 Poser, Benedikt A., Peter J. Koopmans, Thomas Witzel, Lawrence L. Wald, and Markus Barth (2010).
983 "Three dimensional echo-planar imaging at 7 Tesla". In: *NeuroImage* 51.1, pp. 261–266. DOI: [10.1016/j.neuroimage.2010.01.108](https://doi.org/10.1016/j.neuroimage.2010.01.108).
- 984 Schmidt, Marianna E., Daniel Haenelt, Evgeniya Kirilina, and Nikolaus Weiskopf (2024). "Enhanced
985 specificity for single eye ocular dominance column (ODC) mapping using neurophysiologically
986 informed spatial filtering in ultra-high-resolution fMRI". In: *Society for Neuroscience (SfN) Annual*
987 *Meeting*. Chicago, IL USA.
- 988 Sengupta, Ayan, Renat Yakupov, Oliver Speck, Stefan Pollmann, and Michael Hanke (2017). "The ef-
989 fect of acquisition resolution on orientation decoding from V1 BOLD fMRI at 7 T". In: *NeuroImage*
990 148, pp. 64–76. DOI: [10.1016/j.neuroimage.2016.12.040](https://doi.org/10.1016/j.neuroimage.2016.12.040).

- 995 Sereno, Martin I., Anders M. Dale, John B. Reppas, Kenneth K. Kwong, John W. Belliveau, Thomas
996 J. Brady, Bruce R. Rosen, and Roger B. H. Tootell (1995). "Borders of multiple visual areas in
997 humans revealed by functional magnetic resonance imaging". In: *Science* 268.5212, pp. 889–
998 893. DOI: [10.1126/science.7754376](https://doi.org/10.1126/science.7754376).
- 999 Shmuel, Amir, Denis Chaimow, Guenter Raddatz, Kâmil Uğurbil, and Essa Yacoub (2010). "Mechanisms
1000 underlying decoding at 7 T: ocular dominance columns, broad structures, and macro-
1001 scopic blood vessels in V1 convey information on the stimulated eye". In: *NeuroImage* 49.3,
1002 pp. 1957–1964. DOI: [10.1016/j.neuroimage.2009.08.040](https://doi.org/10.1016/j.neuroimage.2009.08.040).
- 1003 Shmuel, Amir, Essa Yacoub, Denis Chaimow, Nikos K. Logothetis, and Kâmil Uğurbil (2007). "Spatio-
1004 temporal point-spread function of fMRI signal in human gray matter at 7 Tesla". In: *NeuroImage*
1005 35.2, pp. 539–552. DOI: [10.1016/j.neuroimage.2006.12.030](https://doi.org/10.1016/j.neuroimage.2006.12.030).
- 1006 Silva, Afonso C., Alan P. Koretsky, and Jeff H. Duyn (2007). "Functional MRI impulse response for
1007 BOLD and CBV contrast in rat somatosensory cortex". In: *Magnetic Resonance in Medicine* 57.6,
1008 pp. 1110–1118. DOI: [10.1002/mrm.21246](https://doi.org/10.1002/mrm.21246).
- 1009 Stüber, Carsten, Markus Morawski, Andreas Schäfer, Christian Labadie, Miriam Wähnert, Christoph
1010 Leuze, Markus Streicher, Nirav Barapatre, Katja Reimann, Stefan Geyer, Daniel Spemann, and
1011 Robert Turner (2014). "Myelin and iron concentration in the human brain: a quantitative study
1012 of MRI contrast". In: *NeuroImage* 93.Pt 1, pp. 95–106. DOI: [10.1016/j.neuroimage.2014.02.026](https://doi.org/10.1016/j.neuroimage.2014.02.026).
- 1013 Swisher, Jascha D., J. Christopher Gatenby, John C. Gore, Benjamin A. Wolfe, Chan-Hong Moon,
1014 Seong-Gi Kim, and Frank Tong (2010). "Multiscale pattern analysis of orientation-selective ac-
1015 tivity in the primary visual cortex". In: *Journal of Neuroscience* 30.1, pp. 325–330. DOI: [10.1523/JNEUROSCI.4811-09.2010](https://doi.org/10.1523/JNEUROSCI.4811-09.2010).
- 1017 Talagala, S. Lalith, Joelle E. Sarlls, Siyuan Liu, and Souheil J. Inati (2016). "Improvement of temporal
1018 signal-to-noise ratio of GRAPPA accelerated echo planar imaging using a FLASH based calibra-
1019 tion scan". In: *Magnetic Resonance in Medicine* 75.6, pp. 2362–2371. DOI: [10.1002/mrm.25846](https://doi.org/10.1002/mrm.25846).
- 1020 Tootell, Roger B. H., Nouchine K. Hadjikhani, Wim Vanduffel, Arthur K. Liu, Janine D. Mendola, Martin
1021 I. Sereno, and Anders M. Dale (1998). "Functional analysis of primary visual cortex (V1) in
1022 humans". In: *Proceedings of the National Academy of Sciences* 95.3, pp. 811–817. DOI: [10.1073/pnas.95.3.811](https://doi.org/10.1073/pnas.95.3.811).
- 1024 Tootell, Roger B. H., Susan L. Hamilton, Martin S. Silverman, and Eugene Switkes (1988). "Functional
1025 anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline
1026 conditions". In: *Journal of Neuroscience* 8.5, pp. 1500–1530. DOI: [10.1523/JNEUROSCI.08-05-01500.1988](https://doi.org/10.1523/JNEUROSCI.08-05-01500.1988).
- 1028 Tootell, Roger B. H. and Shahin Nasr (2017). "Columnar segregation of magnocellular and parvocel-
1029 lular streams in human extrastriate cortex". In: *The Journal of Neuroscience* 37.33, pp. 8014–8032.
1030 DOI: [10.1523/JNEUROSCI.0690-17.2017](https://doi.org/10.1523/JNEUROSCI.0690-17.2017).
- 1031 Trampel, Robert, Pierre-Louis Bazin, Kerrin J. Pine, and Nikolaus Weiskopf (2019). "In-vivo magnetic
1032 resonance imaging (MRI) of laminae in the human cortex". In: *NeuroImage* 197, pp. 707–715.
1033 DOI: [10.1016/j.neuroimage.2017.09.037](https://doi.org/10.1016/j.neuroimage.2017.09.037).
- 1034 Trampel, Robert, Derek V. M. Ott, and Robert Turner (2011). "Do the congenitally blind have a stria
1035 of Gennari? First intracortical insights in vivo". In: *Cerebral Cortex* 21.9, pp. 2075–2081. DOI: [10.1093/cercor/bhq282](https://doi.org/10.1093/cercor/bhq282).
- 1037 Turner, Robert (2002). "How much cortex can a vein drain? Downstream dilution of activation-
1038 related cerebral blood oxygenation changes". In: *NeuroImage* 16.4, pp. 1062–1067. DOI: [10.1006/nimg.2002.1082](https://doi.org/10.1006/nimg.2002.1082).
- 1040 Turner, Robert and Stefan Geyer (2014). "Comparing like with like: the power of knowing where
1041 you are". In: *Brain Connectivity* 4.7, pp. 547–557. DOI: [10.1089/brain.2014.0261](https://doi.org/10.1089/brain.2014.0261).
- 1042 Tustison, Nicholas J., Brian B. Avants, Philip A. Cook, Yuanjie Zheng, Alexander Egan, Paul A. Yushke-
1043 vich, and James C. Gee (2010). "N4ITK: improved N3 bias correction". In: *IEEE Transactions on
1044 Medical Imaging* 29.6, pp. 1310–1320. DOI: [10.1109/TMI.2010.2046908](https://doi.org/10.1109/TMI.2010.2046908).

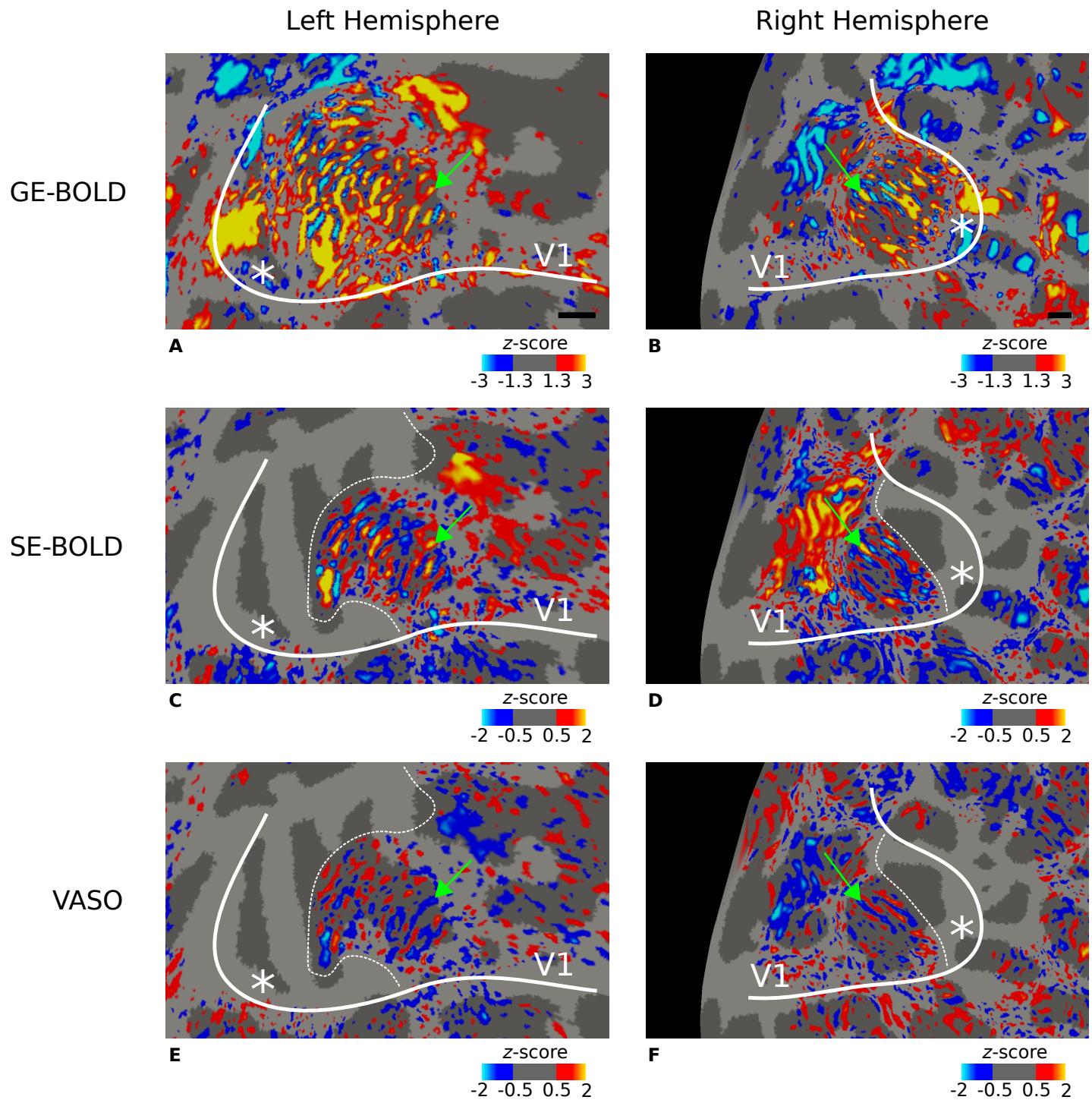
- 1045 Vizioli, Luca, Federico De Martino, Lucy S. Petro, Daniel Kersten, Kâmil Uğurbil, Essa Yacoub, and
1046 Lars Muckli (2020). "Multivoxel pattern of blood oxygen level dependent activity can be sensitive
1047 to stimulus specific fine scale responses". In: *Scientific Reports* 10.1, p. 7565. DOI: [10.1038/s41598-020-64044-x](https://doi.org/10.1038/s41598-020-64044-x).
- 1048
1049 Vogt, Cécile and Oskar Vogt (1919). *Allgemeine Ergebnisse unserer Hirnforschung*. Leipzig, Germany:
1050 J.A. Barth.
- 1051 Waehnert, Miriam, Juliane Dinse, Marcel Weiss, Markus Streicher, Waehnert P., Stefan Geyer, Robert
1052 Turner, and Pierre-Louis Bazin (2014). "Anatomically motivated modeling of cortical laminae". In:
1053 *NeuroImage* 93.2, pp. 210–220. DOI: [10.1016/j.neuroimage.2013.03.078](https://doi.org/10.1016/j.neuroimage.2013.03.078).
- 1054 Wandell, Brian A. (1995). *Foundations of vision*. Sinauer Associates.
- 1055 Weber, Bruno, Anna Lena Keller, Johannes Reichold, and Nikos K. Logothetis (2008). "The microvas-
1056 cular system of the striate and extrastriate visual cortex of the macaque". In: *Cerebral Cortex*
1057 18.10, pp. 2318–2330. DOI: [10.1093/cercor/bhm259](https://doi.org/10.1093/cercor/bhm259).
- 1058 Weiskopf, Nikolaus, Luke J. Edwards, Gunther Helms, Siawoosh Mohammadi, and Evgeniya Kirilina
1059 (2021). "Quantitative magnetic resonance imaging of brain anatomy and in-vivo histology". In:
1060 *Nature Reviews Physics* 3, pp. 570–588. DOI: [10.1038/s42254-021-00326-1](https://doi.org/10.1038/s42254-021-00326-1).
- 1061 Yacoub, Essa, Amir Shmuel, Nikos Logothetis, and Kâmil Uğurbil (2007). "Robust detection of ocu-
1062 lar dominance columns in humans using Hahn spin echo BOLD functional MRI at 7 Tesla". In:
1063 *NeuroImage* 37.4, pp. 1161–1177. DOI: [10.1016/j.neuroimage.2007.05.020](https://doi.org/10.1016/j.neuroimage.2007.05.020).
- 1064 Yang, Jiajia, Laurentius Huber, Yinghua Yu, and Peter A. Bandettini (2021). "Linking cortical circuit
1065 models to human cognition with laminar fMRI". In: *Neuroscience & Biobehavioral Reviews* 128,
1066 pp. 467–478. DOI: [10.1016/j.neubiorev.2021.07.005](https://doi.org/10.1016/j.neubiorev.2021.07.005).
- 1067 Zaretskaya, Natalia, Jonas Bause, Jonathan R. Polimeni, Pablo R. Grassi, Klaus Scheffler, and An-
1068 dreas Bartels (2020). "Eye-selective fMRI activity in human primary visual cortex: comparison
1069 between 3 T and 9.4 T, and effects across cortical depth". In: *NeuroImage* 220, p. 117078. DOI:
1070 [10.1016/j.neuroimage.2020.117078](https://doi.org/10.1016/j.neuroimage.2020.117078).
- 1071 Zaretskaya, Natalia, Bruce Fischl, Martin Reuter, Ville Renvall, and Jonathan R. Polimeni (2018). "Ad-
1072 vantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE". In: *NeuroImage*
1073 165, pp. 11–26. DOI: [10.1016/j.neuroimage.2017.09.060](https://doi.org/10.1016/j.neuroimage.2017.09.060).

1074 **Supplementary Information**

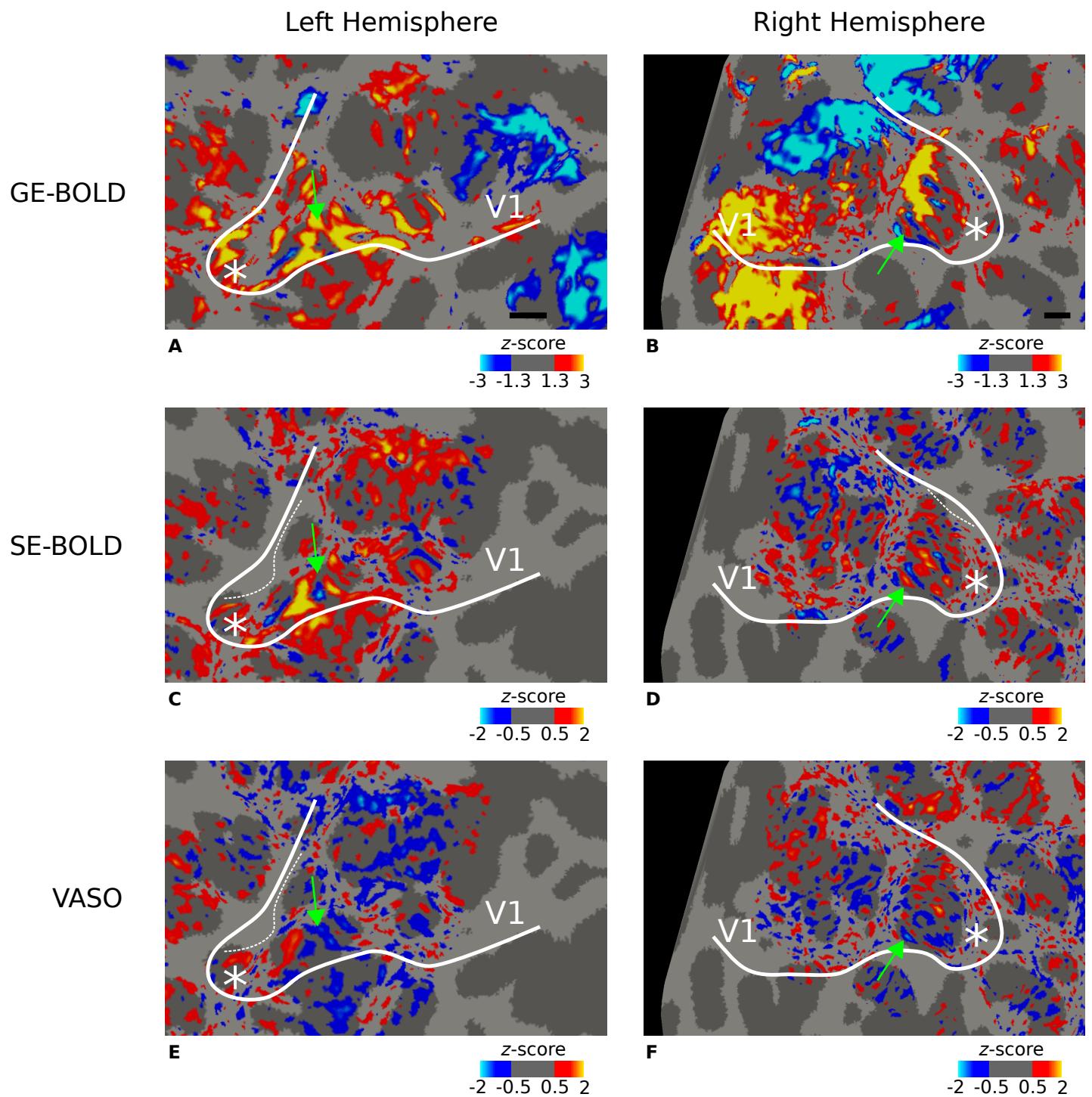
1075 **Decoding of columnar-level organization across cortical depth**
1076 **using BOLD- and CBV-fMRI at 7 T**

1077 **Daniel Haenelt ^{1,2}✉, Denis Chaimow ¹, Marianna Elisa Schmidt ^{1,3}, Shahin
1078 Nasr ^{4,5}, Nikolaus Weiskopf ^{1,6,7}, Robert Trampel ¹**

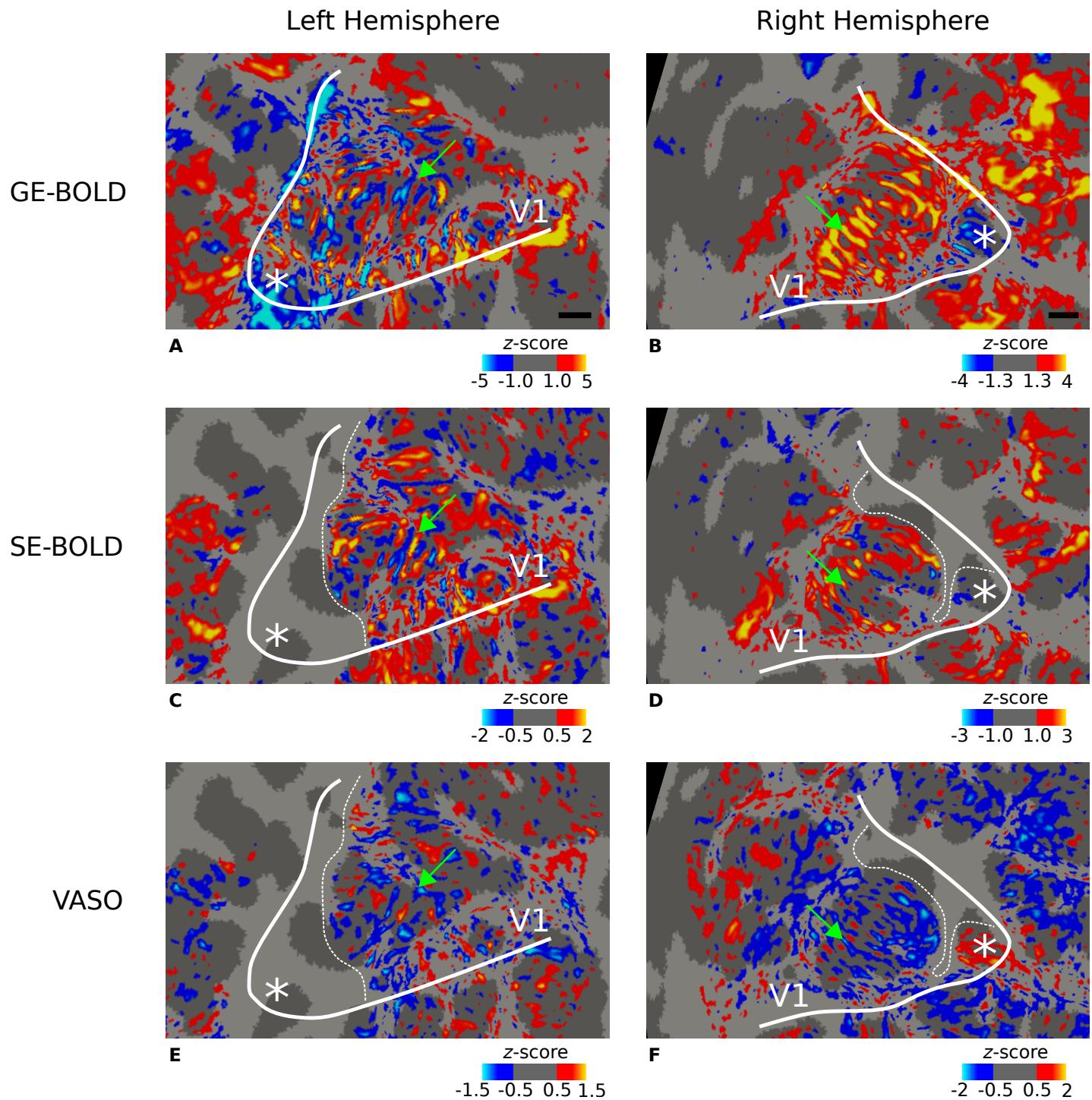
1079 ¹Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sci-
1080 ences, 04103 Leipzig, Germany; ²International Max Planck Research School on Neuro-
1081 science of Communication: Function, Structure, and Plasticity, 04103 Leipzig, Germany;
1082 ³Max Planck School of Cognition, 04103 Leipzig, Germany; ⁴Athinoula A. Martinos Center
1083 for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA;
1084 ⁵Department of Radiology, Harvard Medical School, Boston, MA 02114, USA; ⁶Felix Bloch
1085 Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University,
1086 04103 Leipzig, Germany; ⁷Wellcome Centre for Human Neuroimaging, Institute of Neu-
1087 rology, University College London, London WC1N 3AR, UK



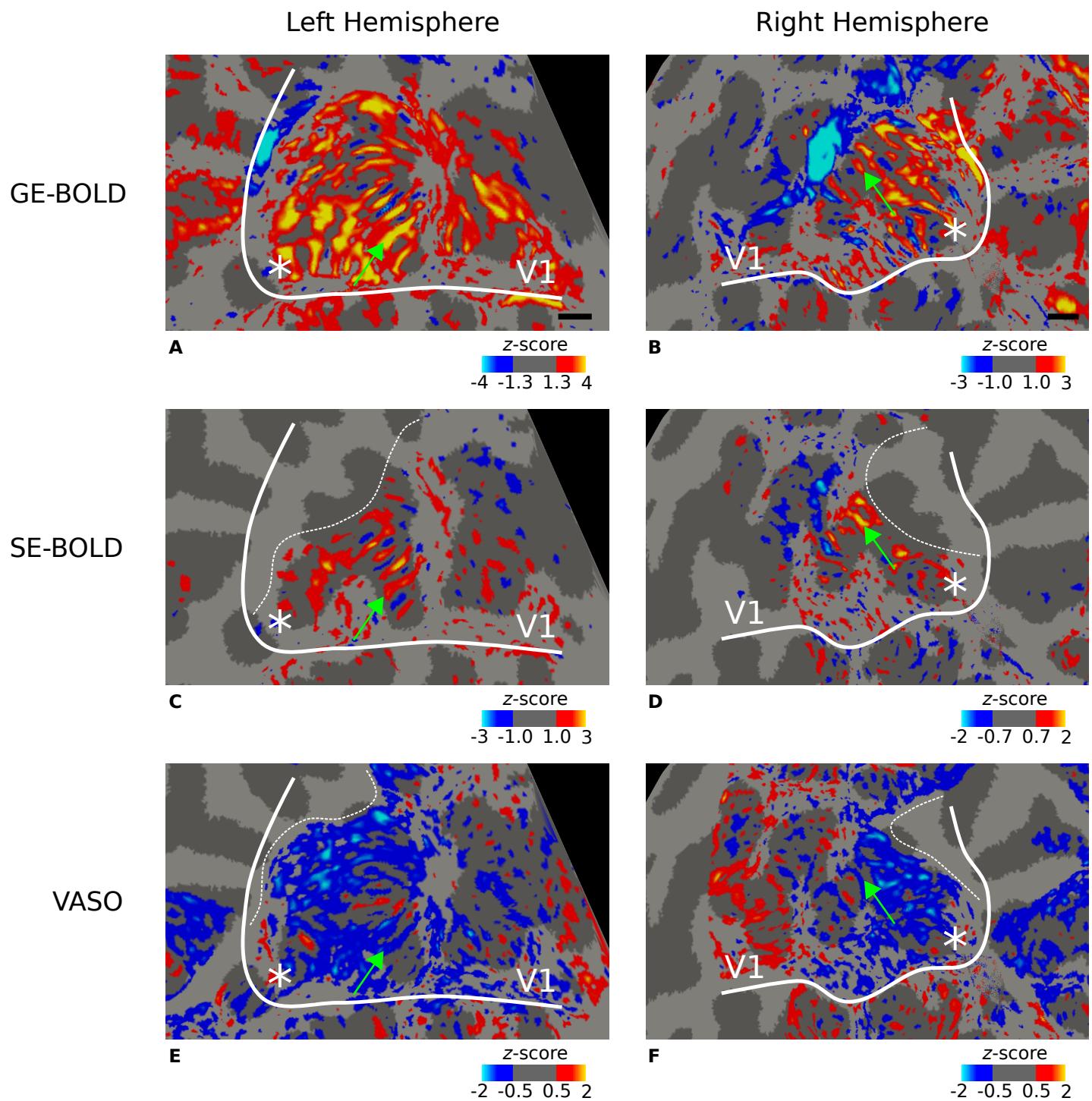
Supplementary Figure 1. Ocular dominance columns (ODCs) from subject 1. Thresholded activation maps (contrast left eye > right eye) are shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions, sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that were reproducibly activated between scanning sessions. This participant was left eye dominant. Note that VASO has an inverted contrast compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in *Figure 2*.



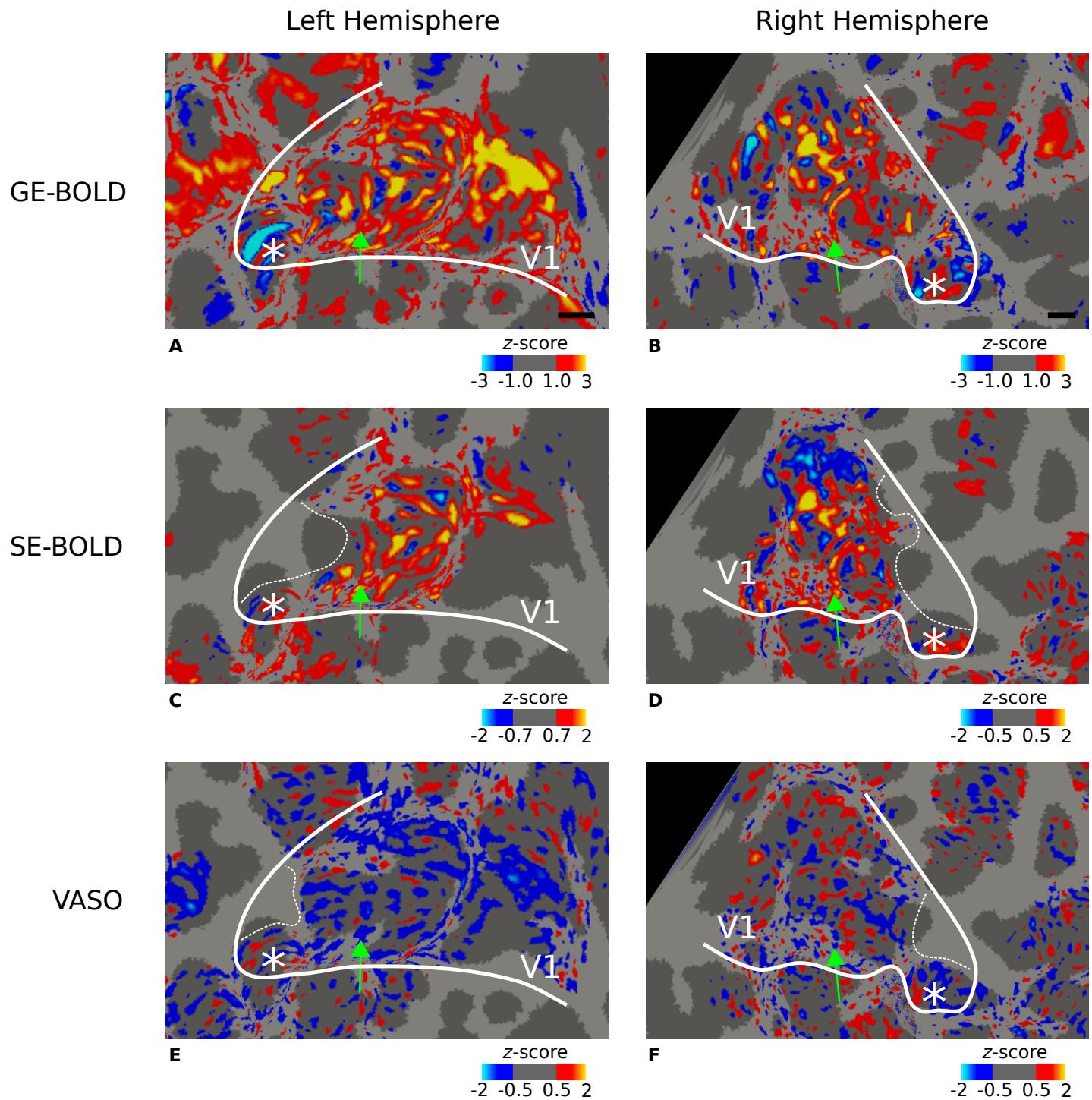
Supplementary Figure 2. Ocular dominance columns (ODCs) from subject 2. Thresholded activation maps (contrast left eye > right eye) are shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions, sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that were reproducibly activated between scanning sessions. This participant was right eye dominant. Note that VASO has an inverted contrast compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in *Figure 2*.



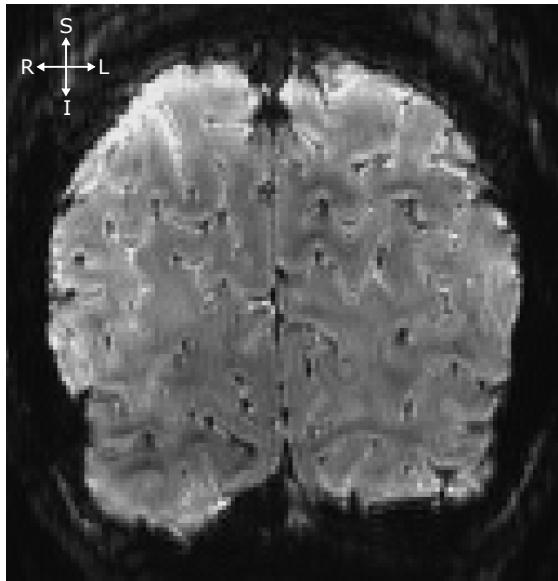
Supplementary Figure 3. Ocular dominance columns (ODCs) from subject 3. Thresholded activation maps (contrast left eye > right eye) are shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions, sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that were reproducibly activated between scanning sessions. This participant was left eye dominant. Note that VASO has an inverted contrast compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in *Figure 2*.



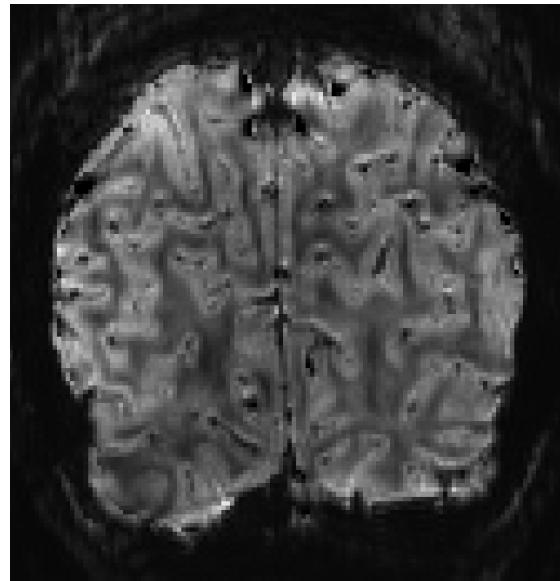
Supplementary Figure 4. Ocular dominance columns (ODCs) from subject 4. Thresholded activation maps (contrast left eye > right eye) are shown for the left and right hemisphere, respectively, for GE-BOLD (A-B), SE-BOLD (C-D), and VASO (E-F). Data were averaged across sessions, sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that were reproducibly activated between scanning sessions. This participant was right eye dominant. Note that VASO has an inverted contrast compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in *Figure 2*.



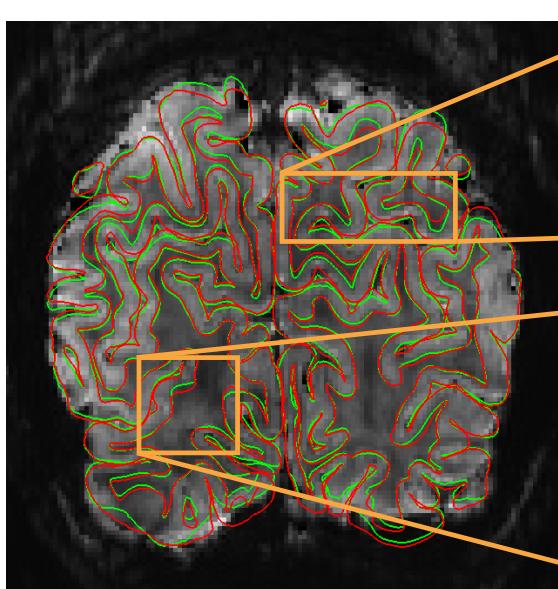
Supplementary Figure 5. Ocular dominance columns (ODCs) from subject 5. Thresholded activation maps (contrast left eye > right eye) are shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions, sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that were reproducibly activated between scanning sessions. This participant was left eye dominant. Note that VASO has an inverted contrast compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in *Figure 2*.



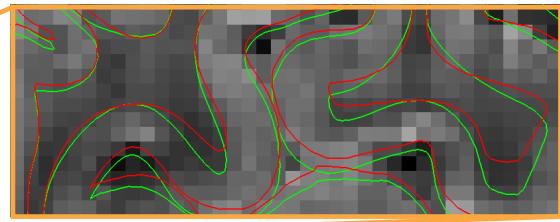
A Mean EPI



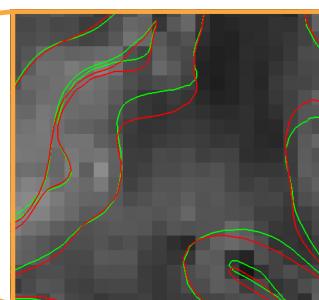
B Mean EPI with enhanced GM/WM contrast



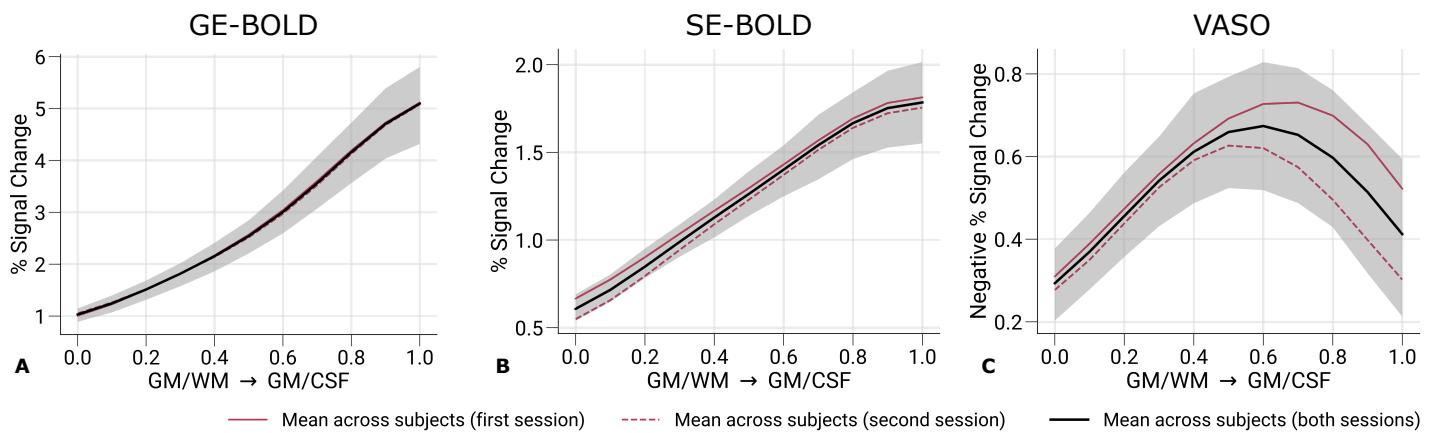
C Mean EPI with GM/WM and GM/CSF boundary surfaces



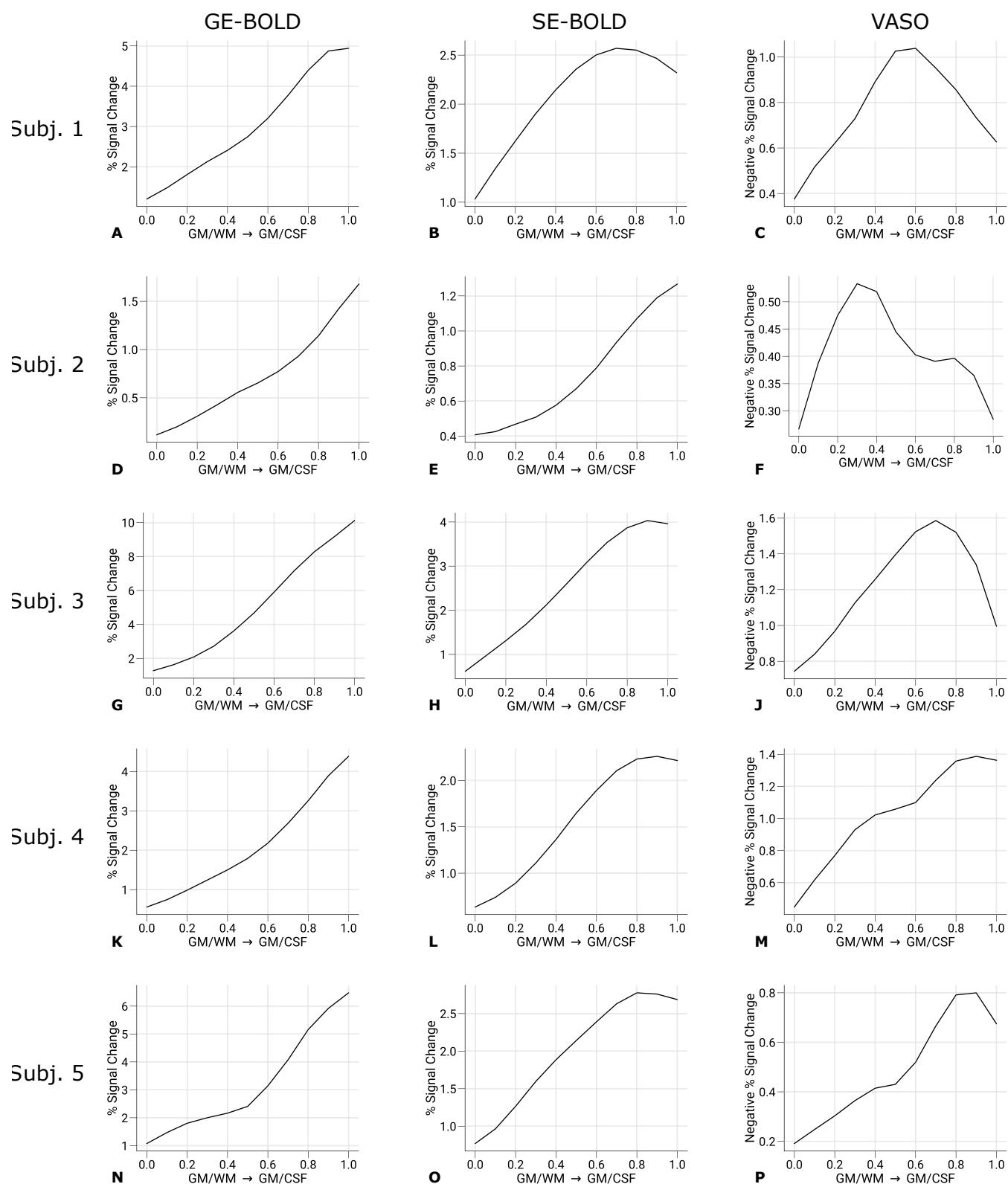
— Original surface
— Deformed surface



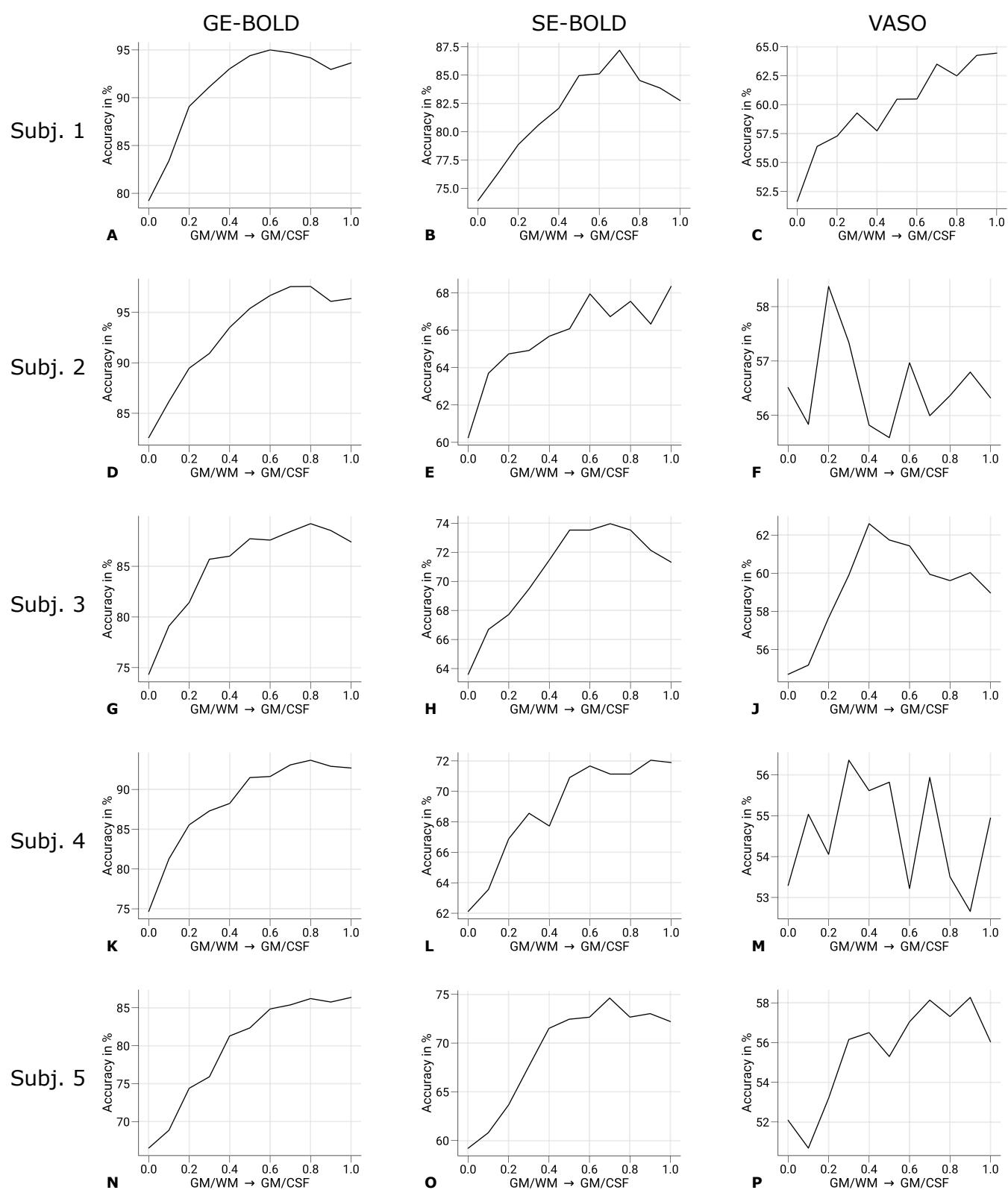
Supplementary Figure 6. Illustration of the GBB method. The method is used to enhance the alignment of cortical boundary surfaces based on an undistorted whole-brain anatomy to the cortical borders found in distorted functional images. **A** shows the temporal mean of the functional time series without task (GE-BOLD, 200 time points, subject 3) in coronal view that was acquired in the first session. **B** To enhance the GM/WM border and thereby increase the robustness of the proposed method, we weighted the temporal mean by its phase (see to Data preprocessing for detailed information) as usually done in susceptibility-weighted imaging methods. In **C**, the surfaces before (depicted in red) and after (depicted in green) alignment with the GBB method are presented. This technique is implemented in the GBB package (0.1.6, <https://pypi.org/project/gbb/>). The core idea of the method is to locally deform the GM/WM boundary surface iteratively until it reaches the GM/WM border found in the functional data. Each iteration starts by randomly selecting one vertex. Then, the vertex and its surrounding neighborhood is moved a small amount along the direction of increased GM/WM contrast scaled by a set step size. The change is evaluated by using the same cost function proposed in Greve and Fischl, 2009. Before alignment, surfaces are transformed into functional space via a rigid registration. From resulting vertex displacements of the GM/WM border, a deformation field is estimated that is then applied to the GM/CSF surface. The method improves spatial correspondence between the surfaces and the GM/WM boundaries observed in the functional images. GM: gray matter, WM: white matter, CSF: cerebrospinal fluid.



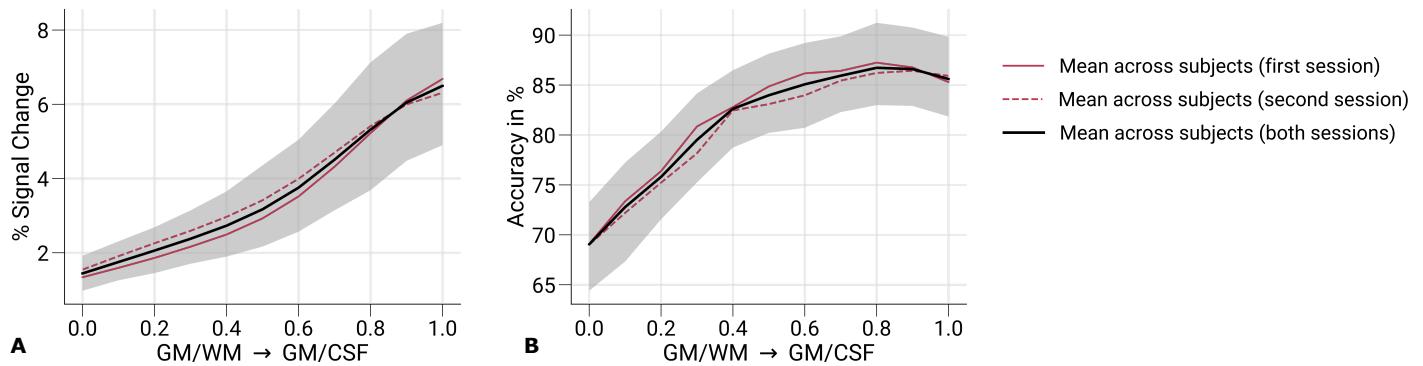
Supplementary Figure 7. Percent signal changes across cortical depth from whole V1. Mean percent signal changes (contrast: left eye and right eye > baseline) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are shown across cortical depth. Contrary to [Figure 5](#), all V1 data inside the field of view across all scanning sessions were used. Compared to [Figure 5](#), lower percent signal changes and lower variability across participants can be identified. In C, the peak at mid-cortical depth is more pronounced. Note that we inverted the y-axis in C for consistency with A and B—other details as in [Figure 5](#).



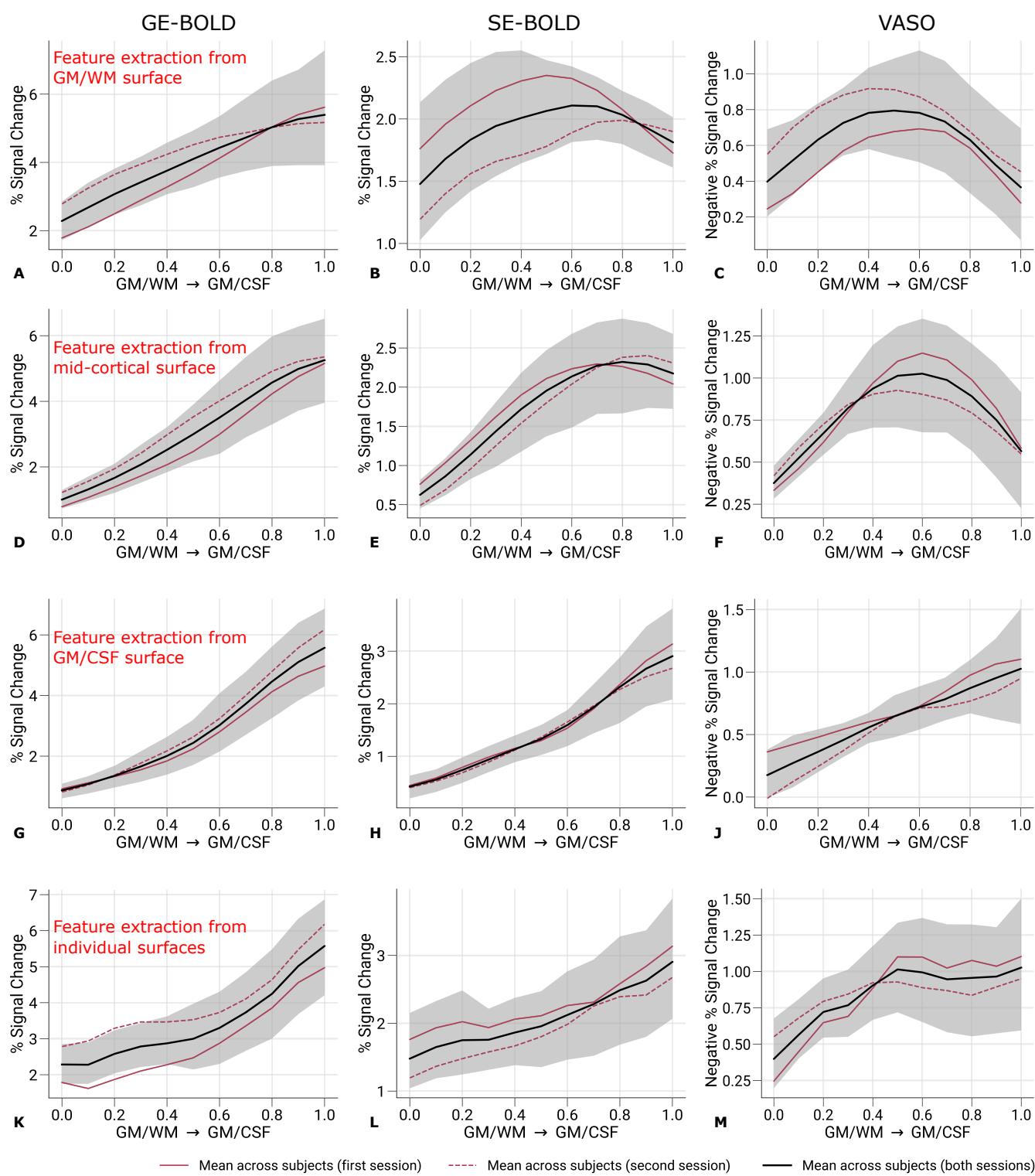
Supplementary Figure 8. Percent signal changes across cortical depth from single participants. Percent signal changes (contrast: left eye and right eye > baseline) for GE-BOLD (left column), SE-BOLD (middle column), and VASO (right column) are shown across cortical depth for single participants (average across two sessions). Only data points ($n = 200$) were used that were also selected for the decoding analysis. Note that we inverted the y-axis for VASO (right column) for easier interpretation. The variability of cortical profiles between participants can be identified.



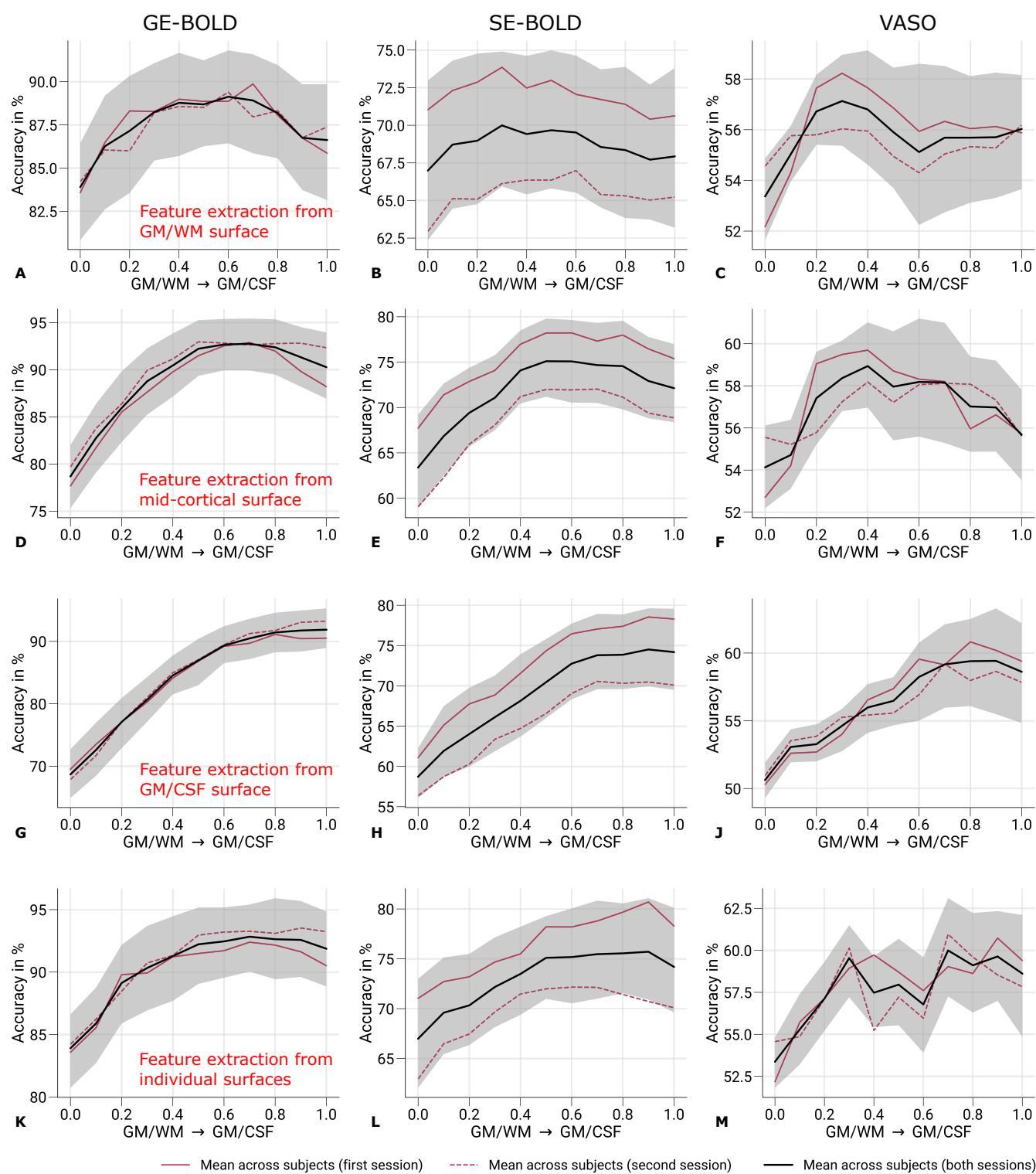
Supplementary Figure 9. Prediction accuracies across cortical depth from single participants. Prediction accuracies (prediction of the stimulated eye) for GE-BOLD (left column), SE-BOLD (middle column), and VASO (column) are shown across cortical depth for single participants (average across two sessions). The variability of cortical profiles between participants can be identified.



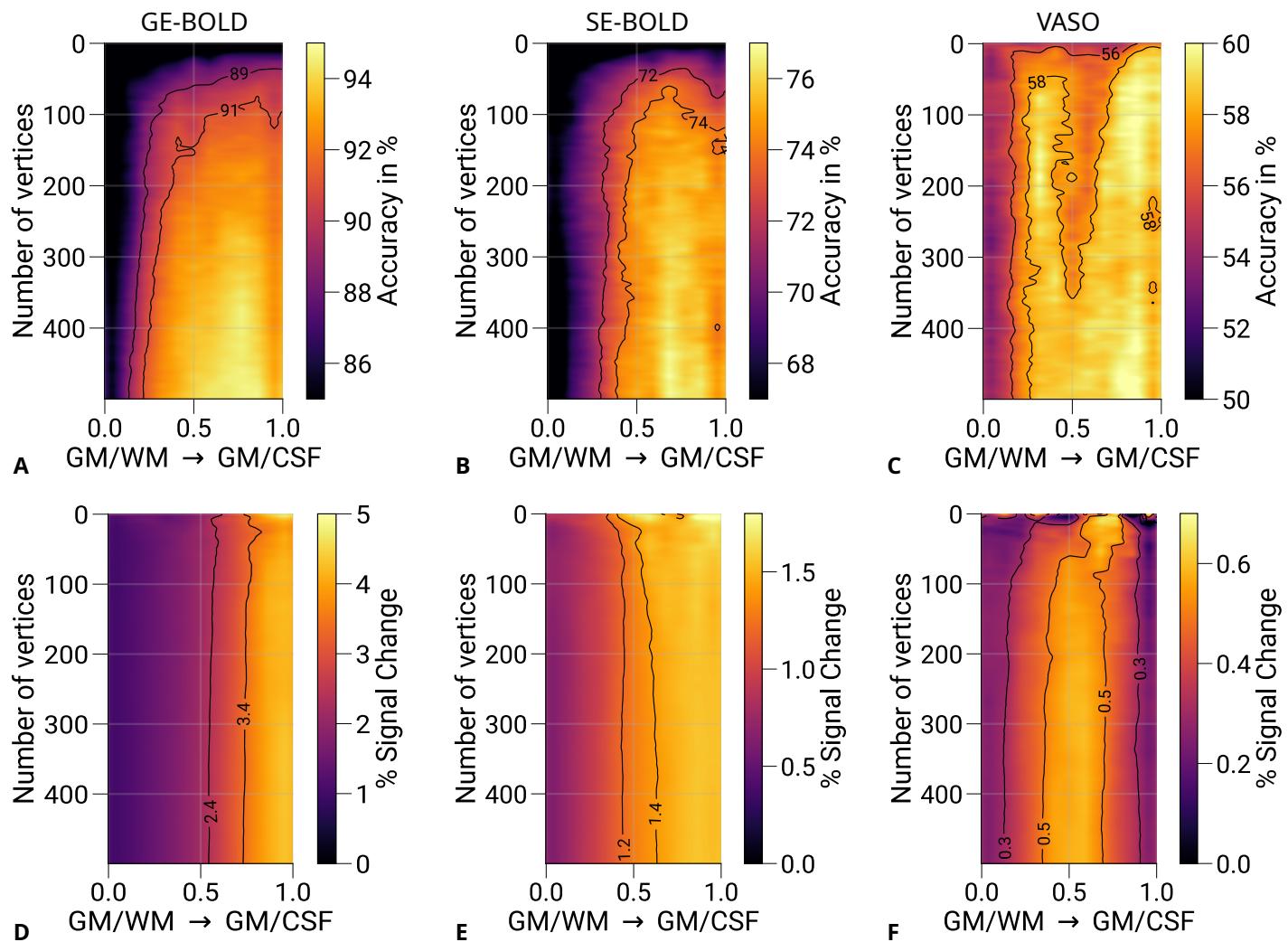
Supplementary Figure 10. Percent signal changes and prediction accuracies for not-nulled time points in VASO sessions. Mean percent signal changes (contrast: left eye and right eye > baseline) (A) and mean prediction accuracies (prediction of the stimulated eye) (B) are shown across cortical depth for not-nulled (BOLD-weighted) time series from VASO sessions. Red solid and dashed lines show the mean across participants from the first and second session, respectively. Black lines indicate the mean across participants and scanning sessions. The gray area demarcates the bootstrap 95% confidence interval ($n = 1,000$). Shapes of cortical profiles are similar to *Figure 5A* and *Figure 6A*, respectively. Overall, lower prediction accuracies compared to *Figure 6A* might be attributable to the smaller temporal efficiency due to the longer TR in VASO acquisitions.



Supplementary Figure 11. Percent signal changes across cortical depth. Mean percent signal changes (contrast: left eye and right eye > baseline) for GE-BOLD (left column), SE-BOLD (middle column), and VASO (right column) are shown across cortical depth. In contrast to [Figure 5](#), features selection was restricted to data points sampled on the GM/WM (**A-C**), the mid-cortical (**D-F**), and the GM/CSF (**G-J**) boundary surfaces, respectively. In **K-M**, feature selection was performed for each cortical layer independently—other details as in [Figure 5](#).



Supplementary Figure 12. Prediction accuracies across cortical depth. Mean prediction accuracies (prediction of the stimulated eye) for GE-BOLD (left column), SE-BOLD (middle column), and VASO (right column) are shown across cortical depth. In contrast to [Figure 6](#), features selection was restricted to data points sampled on the GM/WM (**A-C**), the mid-cortical (**D-F**), and the GM/CSF (**G-J**) boundary surfaces, respectively. In **K-M**, feature selection was performed for each cortical layer independently—other details as in [Figure 6](#).



Supplementary Figure 13. Prediction accuracies and percent signal changes for different number of features. Mean prediction accuracies (prediction of the stimulated eye) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are shown for a varying number of features (vertices) across cortical depth. D-F show corresponding percent signal changes (left eye and right eye > baseline) using the same data points. In contrast to *Figure 7*, feature selection was performed for each cortical layer independently—other details as in *Figure 7*.