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Abstract17

Multivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from18

neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques.19

Since fMRI is based on measuring the hemodynamic response following neural activation, the20

spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular21

compartments that drain the signal from the actual location of neural activation, making it22

challenging to image cortical structures at the spatial scale of cortical columns and layers. By23

relying on information from multiple voxels, MVPA has shown promising results in retrieving24

information encoded in fine-grained spatial patterns. We examined the spatial specificity of the25

signal exploited by MVPA. Over multiple sessions, we measured ocular dominance columns26

(ODCs) in human primary visual cortex (V1) with different acquisition techniques at 7 T. For27

measurements with blood oxygenation level dependent (BOLD) contrast, we included both28

gradient echo- (GE-BOLD) and spin echo-based (SE-BOLD) sequences. Furthermore, we acquired29

data using the vascular-space-occupancy (VASO) fMRI technique, which is sensitive to cerebral30

blood volume (CBV) changes. We used the data to decode eye-of-origin from signals across31

cortical layers. While ocularity information can be decoded with all imaging techniques, laminar32

profiles reveal that macrovascular contributions affect all acquisition methods, limiting their33

specificity across cortical depth. Therefore, although MVPA is a promising approach for34

investigating the mesoscopic circuitry of the human cerebral cortex, careful consideration of35

macrovascular contributions is needed that render the spatial specificity of the extracted signal.36

37
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Introduction38

In the cerebral cortex, neurons tend to cluster into functional units across cortical depth (Mount-39

castle, 1957; Hubel and Wiesel, 1962), which are usually called cortical columns and often de-40

noted as the fundamental building blocks of the cortex (Mountcastle, 1997); however, see (Hor-41

ton and Adams, 2005) for an alternative perspective. A prominent example is found in the pri-42

mary visual cortex (V1). V1 mainly receives thalamocortical projections from the lateral geniculate43

nucleus (LGN) (Wandell, 1995), which contains monocular neurons that are segregated into eye-44

specific layers (Andrews, Halpern, and Purves, 1997). The monocular information is preserved45

when entering V1, and projections from the left and right eye are sent to segregated cortical46

columns, widely known as ocular dominance columns (ODCs) (Hubel and Wiesel, 1969; Tootell47

et al., 1988; Dougherty et al., 2019), which form a repeating stripes pattern of alternating eye pref-48

erence (Adams, Sincich, and Horton, 2007).49

Functional magnetic resonance imaging (fMRI) is a versatile neuroimaging technique for non-50

invasive measuring and mapping of brain activity by assessing the hemodynamic response follow-51

ing neural activation (Buxton, 2013). However, due to the limited spatial resolution, conventional52

fMRI techniques only allow the detection of relatively large pieces of cortex involved in the execu-53

tion of a specific task (Glover, 2011). Therefore, ODCswith an approximate columnwidth of around54

1mm in humans (Adams, Sincich, and Horton, 2007) and other cortical columns were out of reach55

for usual fMRI applications.56

With the development of MR scanners with higher magnetic field strengths and more sophisti-57

cated radiofrequency (RF) coils providing higher signal-to-noise ratio (SNR), mesoscopic structures58

like ODCs became accessible in humans at the expense of prolonged acquisition times and usage59

of anisotropic voxels (Menon et al., 1997; Menon and Goodyear, 1999; Dechent and Frahm, 2000;60

Goodyear and Menon, 2001; Cheng, Waggoner, and Tanaka, 2001; Yacoub et al., 2007). Only with61

the emergence of ultra-high field MRI at a field strength of 7 Tesla and above, it became possible62

to measure ODCs with isotropic voxels at sub-millimeter resolution (Nasr, Polimeni, and Tootell,63

2016; Feinberg, Vu, and Beckett, 2018; Zaretskaya et al., 2020; Hollander et al., 2021; Akbari et al.,64

2023; Nasr et al., 2025).65

Given the average cortical thickness of 2–4mm (Fischl and Dale, 2000) and its convoluted struc-66

ture, the use of isotropic voxels at sub-millimeter resolution is necessary for the reliable sampling67

of data at different cortical depths (Turner and Geyer, 2014). This recent possibility is intriguing68

since the cerebral cortex is known to be composed of several layers, e.g., in terms of cytoarchitec-69

ture (Brodmann, 1909), myeloarchitecture (Vogt and Vogt, 1919), and vasculature (Duvernoy, De-70

lon, and Vannson, 1981). Furthermore, cortical layers generally differ in their connectivity profile71

within and to other cortical areas, e.g., feedforward and feedback signaling between cortical areas72

in a hierarchically organized cortical system (Felleman and Van Essen, 1991). Thus, the mapping of73

cortical columns at different cortical depths with fMRI enables studying the local microcircuitry of74

the cerebral cortex in vivo (Yang et al., 2021).75

The monocular feedforward signal from the LGN enters V1 in layer 4C of corresponding ODCs76

(Kennedy et al., 1976; Tootell et al., 1988). Layer 4C is located directly below layer 4B, which con-77

tains the highly myelinated external band of Baillarger, also called stria of Gennari (Trampel, Ott,78

and Turner, 2011). Typically, layer 4C is further divided into layers 4Cα and 4Cβ, which receive79

color-selective parvocellular and “color-blind” magnocellular input from corresponding LGN layers,80

respectively (Nieuwenhuys, Voogd, and Huijzen, 2008). Above and below layer 4C, the signals from81

the two eyes converge onto single neurons, which lead to a variable degree of ocularity across82

cortical depth. However, individual neurons of the same column still tend to receive input pre-83

dominantly from either the left or right eye, respectively (Wandell, 1995). In this regard, V1 is the84

first main stage of binocular integration, which is important, for example, for the processing of85

stereopsis (Poggio, 1995).86

However, fMRI provides only an indirect measure of neural activity, most commonly relying87
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on the blood oxygenation level-dependent (BOLD) signal acquired with gradient echo-based se-88

quences (GE-BOLD), which are known to be most sensitive to macrovascular compartments of the89

cerebral cortex (Turner, 2002), specifically draining veins that carry the deoxygenated blood back90

to the cortical surface (Polimeni et al., 2010a; Markuerkiaga, Barth, and Norris, 2016). This usually91

leads to a signal accumulation toward the pial surface, limiting the ability to associate the BOLD92

response with a specific cortical layer. Alternatively, spin echo-based sequences (SE-BOLD) can be93

used at high magnetic field strengths (Yacoub et al., 2007). SE-BOLD promises a more specific sig-94

nal due to the refocusing of extravascular signal contributions from around larger veins (Boxerman95

et al., 1995). This has the advantage of increasing signal weighting to the microvasculature, which96

is believed to be closer to the actual location of neural activation. Furthermore, recent advances of97

imaging approaches with contrast weighted by cerebral blood volume (CBV) using vascular-space-98

occupancy (VASO) fMRI at higher magnetic fields show promising results in terms of increased99

laminar specificity (Huber et al., 2017; Huber et al., 2021) at the expense of overall sensitivity.100

Next to the choice of the proper acquisition technique, multivariate pattern analysis (MVPA)101

(Haxby, 2012) methods have been shown to retrieve information manifested in spatial patterns102

of fMRI activity, which promise increased sensitivity compared to univariate methods (Kriegesko-103

rte and Bandettini, 2007; Formisano and Kriegeskorte, 2012; Vizioli et al., 2020), for example, for104

the dissociation of bottom-up and top-down processing into different cortical layers (Muckli et al.,105

2015; Kok et al., 2016; Iamshchinina et al., 2021). However, though the presence of pattern informa-106

tion provides strong evidence for neuronal effects, the spatial scale of the exploited information107

remains unknown (Formisano and Kriegeskorte, 2012). Interestingly, already at a conventional108

resolution of 3 × 3 × 3mm3 using GE-BOLD at 3 T, decoding of orientation information is possi-109

ble from responses in V1 (Haynes and Rees, 2005a; Kamitani and Tong, 2005), which is known110

to be encoded at a much finer spatial scale at the level of cortical columns (Obermayer and Blas-111

del, 1993). In the same year, the eye-of-origin could also be decoded from V1 voxels based on112

a binocular rivalry stimulus (Haynes and Rees, 2005b). These studies started a controversy sev-113

eral years ago (Boynton, 2005; Beeck, 2010; Swisher et al., 2010; Gardner, 2010; Shmuel et al.,114

2010; Kriegeskorte, Cusack, and Bandettini, 2010; Chaimow et al., 2011; Misaki, Luh, and Bandet-115

tini, 2013) about the source of the exploited information. Possible mechanisms were suggested116

like the aliasing of high spatial frequency information encoded above the Nyquist frequency of117

the MRI sampling process (Boynton, 2005) (but see (Chaimow et al., 2011)), the contributions from118

random irregularities of the fine-scale columnar pattern, which lead to information at low spa-119

tial frequencies (Haynes and Rees, 2005a; Kamitani and Tong, 2005; Kriegeskorte and Bandettini,120

2007) or the exploitation of large-scale information that is not related to the fine-scale columnar121

pattern (Beeck, 2010). Growing evidence showed that functional biases can also be introduced by122

large vessels (Turner, 2002; Gardner, 2010; Shmuel et al., 2010; Sengupta et al., 2017), which can123

be conceptualized as a form of lowpass filtering the neural pattern, which results in a coarser spa-124

tial venous pattern (Formisano and Kriegeskorte, 2012). Therefore, neural patterns encoded at the125

columnar/laminar level might be represented at multiple spatial scales in the fMRI signal (Swisher126

et al., 2010; Sengupta et al., 2017).127

To study the microcircuitry of the cerebral cortex, it is of importance to know the source of128

the decoded information, e.g., by relating the decoded information to specific cortical layers. In129

this regard, it might be appealing to use fMRI acquisition techniques that are less sensitive to large130

vessels in combinationwithMVPAmethods to benefit from the increased sensitivity ofmultivariate131

methods, while keeping a high spatial specificity of the exploited signal. However, most decoding132

studies use the GE-BOLD technique, which is known to be inherently limited by macrovascular133

contributions, reducing the potential benefits.134

In our study, we acquired ODC data from five participants using GE-BOLD, SE-BOLD, and VASO135

in different sessions to study the laminar specificity of the respective acquisition technique in com-136

bination withMVPA to decode the signal of the stimulated eye in V1. Functional data were acquired137

with nominal isotropic voxel size of 0.8mm allowing data sampling at different cortical depths.138
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Figure 1. Illustration of the stimuli used for ocular dominance column mapping and representative fMRI data. For visual stimulation, we

used red (A) and green (B) random dot stereograms (RDSs) that were viewed through anaglyph goggles by participants, respectively. Stimuli

were based on Nasr, Polimeni, and Tootell, 2016 and enabled full field of view visual stimulation of the left or right eye in separate experimental

blocks. RDSs formed the percept of an 8 x 6 checkerboard with independent sinusoidal movements in the horizontal direction of individual

squares. C shows the spatial coverage of GE-BOLD acquisitions (red box) overlaid on a 𝑇1-weighted anatomical scan in sagittal view. Fewer slices

were acquired for SE-BOLD and VASO sessions depending on specific absorption rate (SAR) limitations. For one representative participant

(subject 1), the temporal mean of one GE-BOLD run and corresponding tSNR maps are shown in D–G. Note the different color scales.

From the perspective of neural processing, we expected highest eye-of-origin discriminability in139

deeper cortical layers since eye-specific segregation is most preserved in the input layer 4C. How-140

ever, due to the drainage of deoxygenated blood toward the pial surface, macrovascular contribu-141

tions to the fMRI signal were expected to bias the discriminability across cortical depth. Therefore,142

studying decoding performance of a feedforward signal between acquisition techniques across143

cortical depth enables the analysis of their different sensitivities to draining vein contributions. We144

believe that this study gives insights into the capabilities and limitations of using multivariate tech-145

niques with different fMRI sequences for disentangling information at the level of cortical layers.146

Materials and methods147

Participants148

A total of five healthy volunteers participated in this study, of which two were female (age =149

28.00 ± 2.61, mean ± standard deviation in years). Written informed consent was obtained from150

all participants, and the study received ethical approval from the local ethics committee of the Uni-151

versity of Leipzig. All participants had normal or corrected-to-normal visual acuity. We performed152

the Miles Test (Miles, 1929) with each participant to determine eye dominance, which is stated153

in Supplementary Figure 1–Supplementary Figure 5 for single participants.154

General procedure155

Each participant underwent multiple scanning sessions on different days using an ultra-high field156

(7 T) MRI scanner. The first session was used for reference measurements, during which a high-157

resolution anatomical reference scan and retinotopy data (Sereno et al., 1995; Engel, Glover, and158

Wandell, 1997) were acquired. In addition, a high-resolution functional time series without task159

(GE-BOLD) was obtained using the same parameters as in subsequent functional measurements,160

in order to aid with between-session registration.161
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The remaining six sessionswere exclusively devoted toODCmapping (2×GE-BOLD, 2× SE-BOLD,162

2× VASO). Figure 1 provides an illustration of slab positioning along with representative temporal163

signal-to-noise ratio (tSNR) maps for all contrasts. A subset of the retinotopy data had previously164

been utilized in another experiment (Movahedian Attar et al., 2020), but underwent independent165

processing for this study. All functional measurements were accompanied by associated field map166

acquisitions, which were not further used in this project.167

Visual stimulation168

For the purpose of visual stimulation, an LCD projector (Sanyo PLC-XT20L) with custom-built focus-169

ing objective lens was used (refresh rate: 60Hz, pixel resolution: 1024 × 768) that was positioned in170

the magnet room. To prevent interferences with the MR scanner, the projector was housed within171

a custom-built Faraday cage. The stimuli were projected onto a rear projection screen, mounted172

above the participants’ chest within the bore. Participants viewed the stimuli by means of a mirror173

attached to the head coil. In order to minimize scattered light reaching the participants’ eyes, the174

projection screen was surrounded by black felt, and all ambient lighting was turned off during data175

acquisition. This setup allowed visual stimulation within an approximate visual angle of 22◦ × 13◦176

(width × height). Stimulus generation and presentation were carried out using the Psychophysics177

Toolbox (3.0.14, http://psychtoolbox.org/) (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) with GNU178

Octave (4.0.0, http://www.gnu.org/software/octave/).179

ODC mapping We used a block design with two experimental conditions that was previously180

reported in detail (Nasr, Polimeni, and Tootell, 2016; Haenelt et al., 2023), with the following mini-181

mal modifications for the current study. Every scanning session comprised ten runs, each lasting182

for 270 s. Within each run, a baseline period of 15 s was placed at the beginning and end, during183

which participants were presented with a uniform black background. The experimental protocol184

consisted of eight blocks, each lasting for 30 s, allowing four distinct stimulation periods targeting185

the left and right eye, respectively. The ordering of blocks was pseudorandomized. Throughout the186

runs, participants were instructed tomaintain fixation on a central point (0.2◦×0.2◦) and respond on187

a keypadwhen the fixation point changed its form (square or circle). Presented stimuli consisted of188

red or green random dot stereograms (RDS) (Julesz, 1971) shown on a black background (dot size:189

0.1◦, dot density: ∼ 17%) that were viewed through custom-built anaglyph spectacles using Kodak190

Wratten filters No. 25 (red) and 44A (cyan), which enabled the stimulation of either the left or right191

eye in separate blocks, see Figure 1. RDSs performed a horizontal sinusoidal movement (temporal192

frequency: 0.25Hz, amplitude: 0.11◦), and phases of dots were initialized to create the appearance193

of an 8 × 6 checkerboard with independent movement of squares. To reduce cross-talk between194

the eyes, the luminance of the dots was maintained at a low level (red through red filter: 3.1 cd/m2
,195

red through cyan filter: 0.07 cd/m2
, green through cyan filter: 5.7 cd/m2

, green through red filter:196

0.09 cd/m2
). It is worth noting that the luminance of the green dots was approximately doubled rel-197

ative to red to ensure a similar excitation of cone photoreceptors for both colors (Dobkins, Thiele,198

and Albright, 2000).199

Retinotopic mapping To delineate the location of area V1, we employed a conventional phase-200

encoded paradigm (Sereno et al., 1995; Engel, Glover, and Wandell, 1997). Visual stimuli consisted201

of a flickering (4Hz) black-and-white radial checkerboard restricted to a clockwise/anticlockwise202

rotating wedge (angle: 30◦, temporal frequency: 1∕64Hz) or expanding/contracting ring (temporal203

frequency: 1∕32Hz) shown in separate runs. Each run presented 8.25 cycles of stimulation, with a204

baseline block of 12 s at the beginning and endof each run, inwhich a uniformgray backgroundwas205

shown. Runs lasted 552 s for the rotating wedge stimulus and 288 s for the moving ring stimulus.206

The mean luminance of the stimuli was set to 44 cd/m2
. Throughout the run, participants were207

instructed to maintain fixation on a central point. No explicit task was given.208
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Imaging209

We used a whole-body MR scanner operating at 7 T (MAGNETOM 7 T, Siemens Healthineers, Er-210

langen, Germany) for measurements. The scanner was equipped with SC72 body gradients (max-211

imum gradient strength: 70mT/m; maximum slew rate: 200mT/m/s). We used a single-channel212

transmit/32-channel receive head coil (Nova Medical, Wilmington, DE, USA) for RF signal transmis-213

sion and reception. To optimize the transmit voltage over the occipital lobe, we always acquired a214

low-resolution transmit field map at the beginning of each scanning session using a sequence that215

exploits the ratio of consecutive spin and stimulated echoes (WIP-658).216

For ODC mapping measurements, we acquired functional data with GE-BOLD, SE-BOLD, and217

VASO in different sessions. GE- and SE-BOLD data were acquired using a single-shot sequence218

with 2D echo planar imaging (EPI) readout (Feinberg et al., 2010; Moeller et al., 2010). For VASO219

measurements, we used a single-shot slice-selective slab-inversion (SS-SI) VASO sequence (Huber220

et al., 2014) with a 3D EPI readout (Poser et al., 2010). An oblique-coronal slab was imaged posi-221

tioned over the occipital lobe. For all acquisition techniques, we used the following parameters:222

nominal voxel size = 0.8mm isotropic, field of view (FOV) = 148×148mm2, readout bandwidth (rBW)223

= 1182Hz/px. For acceleration, we used GRAPPA = 3 with FLASH-based calibration (Talagala et al.,224

2016) and in-plane partial Fourier = 6∕8 in the EPI phase-encoding direction, which resulted in an225

effective echo spacing of 0.33ms. For GE- and SE-BOLD, we set the repetition time to TR = 3000ms226

and used an echo time of TE = 24ms and TE = 38ms, respectively. The flip angle in GE-BOLD mea-227

surements was set to the Ernst angle FA = 77◦, while in SE-BOLD, flip angles were set to 90◦ and228

180◦ for excitation and refocusing pulses, respectively. For VASOmeasurements, we used an effec-229

tive TR = 5000ms, during which one image with (nulled) and one image without (not-nulled) blood230

nulling was acquired. Other parameters were the following: TE = 25ms, TI = 1370ms for the blood-231

nulling point, FA = 26◦, 7.7% slice oversampling. 50 slices were acquired in GE-BOLDmeasurements232

that covered the whole stimulated area of V1. Due to specific absorption rate (SAR) constraints,233

the number of slices was limited for SE-BOLD and VASOmeasurements. For VASO, we acquired 26234

slices. For SE-BOLD, we used the maximum number of allowed slices that varied between subjects235

and sessions and was between 16 and 29 slices.236

A slightly modified GE-BOLD protocol was employed for retinotopy measurements, with the237

following parameters changed: voxel size = 1.0mm isotropic, TR = 2000ms, TE = 21ms, FA = 68◦,238

rBW = 1164Hz/px, 40 slices.239

For anatomical reference, we acquired awhole-brain anatomyusing a 3D 𝑇1-weightedMP2RAGE240

sequence (Marques et al., 2010) with the following parameters: voxel size = 0.7mm isotropic, TR =241

5000ms, TE = 2.45ms, inversion times (TI1/TI2) = 900ms/2750ms with FA1/FA2 = 5◦/3◦, respectively,242

FOV = 224× 224× 168mm3 (read×phase×partition), rBW = 250Hz/px, GRAPPA = 2, partial Fourier =243

6∕8 (phase-encoding direction; outer loop). During online reconstruction on the scanner, a uniform244

𝑇1-weighted image (UNI) was generated by combining data from both inversion times.245

Protocols of all acquisitions are publicly available (https://osf.io/umnyr/).246

Data preprocessing247

Functional time series from individual ODC mapping sessions were first subjected to motion cor-248

rection to address within-run and between-run motion using SPM12 (v6906, https://www.fil.ion.ucl.249

ac.uk/spm/) with Matlab R2019b (MathWorks, Natick, MA, USA). Due to the used long stimulation250

periods and since transient time points were discarded in the analysis (see Pattern classification),251

no slice-timing correction was applied. In the case of VASO measurements, the time series were252

initially separated into individual time series for nulled and not-nulled images prior to motion cor-253

rection. Motion correctionwas then independently applied to each of these time series. Final VASO254

time series were obtained by correcting the nulled time series for residual BOLD contamination. To255

achieve this, themotion-corrected nulled and not-nulled VASO time series were temporally upsam-256

pled onto a common grid using 3drefit from AFNI (19.1.05, https://afni.nimh.nih.gov/) (Cox, 1996),257
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matching the effective temporal resolution of GE- and SE-BOLDmeasurements. Subsequently, the258

nulled time points were divided by the not-nulled time points to perform BOLD correction (Huber259

et al., 2014). All time series underwent then highpass filtering1 (cutoff frequency: 1∕270Hz), and a260

voxel-wise statistical analysis was performed for each session using a fixed-effects general linear261

model (GLM) as implemented in SPM12with both experimental conditions as regressors convolved262

with the canonical hemodynamic response function (HRF). Note that GLM results were only used263

to visualize statistical maps and for the repeatability analysis (see Consistency of ocular dominance264

maps), while the main analysis was based on pre-processed fMRI time series.265

The functional time series obtained from retinotopy measurements underwent similar pre-266

processing steps. However, prior to motion correction, each time series was corrected for dif-267

ferent slice timings by voxel-wise temporal interpolation to a common time grid using 3drefit.268

Following motion correction, the time series were subjected to highpass filtering (cutoff frequency:269

1∕(3 × stimulus cycle period)Hz), which resulted in 1∕192Hz and 1∕96Hz for polar angle and eccen-270

tricity runs, respectively. The data from the first quarter stimulus cycle was discarded from further271

analysis. A voxel-wise Fourier transform was computed, and the signal at stimulus frequency was272

averaged from runs with opposite stimulus directions to compensate for the hemodynamic lag.273

The phase at stimulus frequency from polar angle runs was used to delineate the borders of V1.274

To achieve registration between the reference anatomy and the functional time series without275

task, the anatomical image underwent an initial transformation to align with the functional space276

based on the scanner coordinate system. Only for registration, themean functional imagewas bias277

field corrected (Tustison et al., 2010). Both images were then brain-masked and rigidly registered278

using ANTs (2.3.1, http://stnava.github.io/ANTs/). A similar procedure was employed for registering279

functional images from other sessions to the functional time series without task (between-session280

registration), except that a nonlinear registration was performed using the Symmetric Normaliza-281

tion (SyN) algorithm (Avants et al., 2008) implemented in ANTs.282

The MP2RAGE (UNI) image was used for surface reconstruction of the cerebral cortex. Initially,283

the UNI image underwent bias field correction using SPM12. The corrected image was then fed284

into the recon-all pipeline in FreeSurfer (6.0.0, http://surfer.nmr.mgh.harvard.edu/) (Dale, Fischl,285

and Sereno, 1999; Fischl, Sereno, and Dale, 1999) with the hires flag to perform segmentation at286

the original voxel resolution (Zaretskaya et al., 2018). The brainmask was separately created based287

on the second inversion image of the MP2RAGE by using the SPM12 segmentation algorithm and288

excluding voxels in a binary mask that exceeded the tissue class threshold of 10% in all non-white289

matter (WM) and non-gray matter (GM) tissue classes. Subsequently, generated boundary sur-290

faces of GM to WM and cerebrospinal fluid (CSF; pial boundary surface) were manually corrected,291

with particular attention given to the region surrounding the sagittal sinus. To counteract poten-292

tial segmentation biases arising from basing FreeSurfer segmentation on the UNI image from the293

MP2RAGE, the resulting GM/WMboundary surfaces were shifted inward by 0.5mm (Fujimoto et al.,294

2014). The final surfaces underwent smoothing using mris_smooth with 2 smoothing iterations im-295

plemented in FreeSurfer and were upsampled to an average edge length of approximately 0.3mm.296

Based on a computed registration between whole-brain anatomy and functional time series,297

boundary surfaces were transformed to the space of the reference EPI acquisition without task298

from the same session by applying the deformation field to surface vertices using linear interpola-299

tion. Functional images are spatially distorted in the phase-encoded direction due to the low band-300

width in this direction that leads to a sensitivity to variations in the main magnetic field. These301

distortions necessitate careful consideration (Jezzard and Balaban, 1995; Andersson, Skare, and302

Asburner, 2003), particularly when analyzing at the spatial scale of cortical layers.303

Weused theGradient-BasedBoundary (GBB) package (0.1.6, https://pypi.org/project/gbb/), which304

corrects the boundary surfaces by moving them to the GM/WM border found in functional im-305

ages based on an iterative procedure, which is illustrated in Supplementary Figure 6. To enhance306

1For the decoding analysis, highpass filtering was based on an in-house filter that convolved the time series with a Gaussian

running line smoother. For all other analyses, highpass filtering was performed with SPM12.
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the robustness of this method, we increased the GM/WM contrast in functional images follow-307

ing the method suggested in Fracasso, Petridou, and Dumoulin, 2016 that weights the magnitude308

image by its phase (both provided by the online reconstruction on the sanner) as conventionally309

practiced in susceptibility-weighted imaging methods2. For this purpose, the magnitude time se-310

ries was corrected for motion using AFNI. Each image of the phase time series was individually311

phase unwrapped using the method by Abdul-Rahman et al., 2005 implemented in Nighres (1.2.0,312

https://pypi.org/project/nighres/) (Huntenburg, Steele, and Bazin, 2018), and computed motion pa-313

rameters were subsequently applied to the unwrapped phase time series. The temporal mean of314

both magnitude and phase data was calculated, and the phase data underwent thresholding and315

normalization. Finally, the contrast of the magnitude data was enhanced by assigning weights to316

each voxel based on the contrast-reversed phase data.317

Nine equidistant surfaces were computed and positioned between boundary surfaces3. This318

resulted in 11 cortical layers for subsequent analyses.319

For sampling data onto reconstructed surfaces, surfaces were first moved into the space of320

individual functional sessions based on the computed registration. Subsequently, the functional321

data were sampled onto the surface mesh using linear interpolation.322

Pattern classification323

Weused a linear support vectormachine (SVM) algorithm for pattern classification from single time324

points of motion-corrected and detrended functional time series. Each ODC mapping session and325

each cortical depth was analyzed independently. For classification, functional time series were first326

sampled onto a cortical layer. One run contained 90 time points, and 10 runs were acquired per327

session. All time points from the baseline condition were discarded. Additionally, the first two time328

points from each experimental condition were discarded from further analysis to omit contamina-329

tion from transient effects of the hemodynamic response during classification. This resulted in 64330

time points per run, evenly divided between left and right eye stimulation. Sampled time series331

were then standardized and divided into a training data set (9 runs, 576 time points) and a test332

data set (1 run, 64 time points).333

Feature selection was performed by only considering time series data from locations within V1334

that were present in the FOV of all functional sessions. Based on the training data, we further used335

an 𝐹 -test implemented in the scikit-learn library (1.2.0, https://scikit-learn.org/) (Pedregosa et al.,336

2011), specifically sklearn.feature_selection.f_classif, to select the vertices whose time series337

strongest correlated with the experimental paradigm. We used the training data averaged across338

cortical depth to select the same features across cortical depth. The top 200 vertices with the high-339

est correlation were chosen for further analysis. The number of selected vertices was determined340

by selecting less features than samples to decrease the chances of overfitting as similarly done341

in Haynes and Rees, 2005b.342

For classification, we used the SVM implementation sklearn.svm.SVC with fixed regularization343

term 𝐶 = 1 that is based on the libsvm library (Chang and Lin, 2011). This method was repeated344

for all possible splittings of training and test data sets using a leave-one-run-out cross-validation345

procedure to estimate mean prediction accuracies.346

Results347

Topography of ocular dominance columns348

Figure 2 shows ocular dominance columnmaps (contrast: left eye > right eye) for a representative349

participant sampled at mid-cortical depth. Maps from single participants can be found in Supple-350

mentary Figure 1–Supplementary Figure 5. Figure 2A shows the average activation map across351

2Note that the phase data was solely used for moving the boundary surfaces during preprocessing and was not considered

in further analyses.
3Since the cortical surfaces were defined in a spatially distorted fMRI space, the equidistant approach was preferred over

the more anatomically precise equivolume approach (Waehnert et al., 2014).
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Left Eye > Right Eye
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* *

V1 V1

V1 V1
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Figure 2. Representative maps of ocular dominance columns (ODCs). Thresholded activation maps (contrast: left eye > right eye) are shown

for the left hemisphere of one representative participant (subject 1). Data were sampled at mid-cortical depth. In A, the contrast from GE-BOLD

sessions (average across two sessions) is shown on the inflated surface. Several columns confined to V1 can be identified. The green arrow

points to a small location (gray area) outside of the imaging field of view. B–C show the contrast from single GE-BOLD sessions on the flattened

surface. The similar appearance of both maps illustrates the consistency of the columnar pattern across sessions conducted on different days.

D–E show the contrast from SE-BOLD and VASO sessions (average across sessions). Due to the reduced number of slices, the area around the

foveal representation was not covered (see the white dotted line that outlines the covered area). A similar ocular dominance pattern can be

seen in all maps (see black dots with white outline for reference). Note that VASO has an inverted contrast compared to BOLD. The white line

shows the representation of the vertical meridian (V1/V2 border) that was based on a separate retinotopy measurement. White asterisks

indicate the location of the foveal representation. The black line in E shows a scale bar (5 mm). Maps from all participants can be found in

Supplementary Figure 1–Supplementary Figure 5.

two GE-BOLD sessions. Some features can be seen that are expected from ODCs: (1) V1 shows a352

fine-scale pattern. (2) The pattern is constrained to area V1. (3) Around the approximate location353

of the horizontal meridian, columns are orientedmore in parallel to both vertical meridians (V1/V2354

border) (LeVay, Hubel, and Wiesel, 1975). This is the expected topography as depicted in (Adams,355

Sincich, and Horton, 2007; Adams and Horton, 2009).356

The blind spot is a further distinctive monocular region of V1 (Tootell et al., 1998). Due to the357

lack of photoreceptor cells on the optic disc of the retina where the optic nerve bundles and passes358

through, there is an oval area in V1 on the contralateral hemisphere that is solely “filled” by the359

response from the ipsilateral eye. In Figure 2A, there is a spatially extended response from the360

ipsilateral eye at the anterior end of the stimulated area (see cyan arrow in Figure 2A), which could361

be the blind spot representation on this hemisphere. However, due to the limited visual field in362

our experiment, we did not expect to have covered the blind spot region, which should be found at363

around 15◦ eccentricity (Tootell et al., 1998). Therefore, we assume that this response is of vascular364

origin or a response that was elicited by the border of the stimulus. This region was carefully left365

out in the decoding analysis.366

We cannot exclude the possibility that some columnsmerged due to idiosyncrasies in local vas-367

culature, which might explain the appearance of some broader activation clusters in V1. Further368
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A GM/CSF B GM/CSF C GM/CSF

D mid-cortical E mid-cortical F mid-cortical

G GM/WM H GM/WM J GM/WM
z-score
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GE-BOLD SE-BOLD VASO

z-score

-2 2

z-score

-2 2

Figure 3. Zoomed view of ODC maps. Unthresholded activation maps (contrast: left eye > right eye; average

across two sessions) are shown for the left hemisphere of one representative participant (subject 1). The

section shown corresponds to the inset (green rectangle) defined in Figure 2B. Data were sampled on the

flattened GM/CSF (A–C), mid-cortical (D–F), GM/WM G–J boundary surfaces for GE-BOLD (left column),

SE-BOLD (middle column), and VASO (right column), respectively. Despite lower SNR of SE-BOLD and VASO,

some similar patterns can be identified across contrasts and cortical depth (see green arrow). Note that VASO

has an inverted contrast compared to BOLD and different color scales were used.

analyses of possible mechanisms would be compelling but is outside of the scope of the current369

study. But interestingly, these clusters were repeatable across sessions, as can be seen when com-370

paring Figure 2B and Figure 2C that show GE-BOLD activation maps from single sessions. The371

comparison also indicated the overall high consistency of ODCs between sessions. This was also372

confirmed by the fact that the pattern remained stable after averaging, as shown in Figure 2A. A373

more quantitative repeatability analysis is given in the next section (Consistency of ocular domi-374

nance maps). Black dots are displayed to aid comparison of ODC patterns between maps.375

Figure 2C and Figure 2D show the average activation maps across sessions for SE-BOLD and376

VASO, respectively. Due to SAR constraints (seeMaterials andmethods, fewer slices were acquired377

for SE-BOLD and VASO. Coverage boundaries are outlined by white dotted lines. However, within378

the imaged region, a similar ODC pattern can be identified at the expense of overall reduced signal379

strength.380

For the inset presented in Figure 2B, Figure 3 illustrates the unthresholded contrast sampled at381

different cortical depths. It can be seen that certain columns display consistent activation through382

the cortical ribbon, suggesting a degree of columnar stability.383

Consistency of ocular dominance maps384

We quantified the repeatability of ocular dominance maps between sessions. For this purpose, we385

computed Spearman’s rank correlation coefficient between 𝑧-scores (contrast: left eye > right eye)386

restricted to mid-cortical depth from both sessions of each acquisition method. In the analysis,387

only vertices within V1 were considered that were located within the FOV of all sessions.388

Figure 4 shows scatter plots for one representative participant. Spearman’s rank correlation co-389

efficient and the corresponding 𝑝-value are stated in the figures, which demonstrates the repeata-390

bility of elicited responses across sessions. The 𝑝-value was determined by permutation testing. A391
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GE-BOLD SE-BOLD VASO

A B C

D E F

Figure 4. Repeatability of ODC maps across scanning sessions. Scatter plots with kernel density estimation illustrate the consistency of

activation maps (contrast: left eye > right eye) across GE-BOLD (A), SE-BOLD (B), and VASO (C) scanning sessions for one representative
participant (subject 1). Only data from V1 sampled at mid-cortical depth were used. The regression line is shown as an orange line. Spearman’s

rank correlation coefficients and corresponding p-values are stated next to the plots. Statistical significance was determined by permutation

testing (n = 10,000). Due to the spatial covariance of data from neighboring vertices, only randomly selected 10% of all data points were used for

significance testing. In D–F, the mean correlation is shown across cortical depth. Black lines indicate the mean across participants and scanning

sessions. The gray area demarcates the bootstrap 95% confidence interval (n = 1,000). See Table 1 for the results of the correlation analysis
from all participants.

null distribution was created by computing the correlation coefficients between data from the first392

session and spatially shuffled data from the second session (𝑛 = 10, 000). The 𝑝-value was then cal-393

culated as the fraction of the null distribution greater or smaller than the computed statistics with394

unshuffled maps. Considering the non-independency of data from neighboring vertices, we used395

only a fraction of randomly chosen 10% of vertices for the analysis (Nasr, Polimeni, and Tootell,396

2016).397

We acknowledged the variability 𝜎 of the estimated 𝑝-value due to the finite size of generated398

null distributions. A correctionwas applied bymodeling the variability by the variance of a binomial399

distribution 𝜎2 = 𝑛𝑝(1−𝑝) and adding an upper bound of 3𝜎 to the number of samples exceeding the400

test statistics (Burt et al., 2020). A corrected 𝑝-value of < 0.05was considered statistically significant.401

Figures 4D–F illustrate the correlation between sessions across cortical depth. All plots show an402

increase in correlation toward the pial surface, which matches the typically seen increase in signal403

changes in BOLD acquisitions. However, correlation coefficients decrease again in upper layers in404

Figure 4D. This might be explained by overall higher temporal variability in upper cortical layers405

caused by multiple sources, e.g., brain pulsatility, which lead to dynamic partial volume changes406

with the high-intensity CSF signal (Polimeni et al., 2010b).407

Overall, the correlation coefficients were relatively low. However, this outcome is expected408

given that the analysis included all V1 vertices rather than a subset with most strongly activated409

clusters as in the main analysis, which could have artificially inflated the correlation estimates.410

The lower correlations thus partly reflect the fact that ODCs were not uniformly resolvable across411

V1, with stable columnar patterns observed only in a subset of locations, as illustrated in Figure 2.412

Whether thesemore consistent regions are driven by vascular or neuronal factors remains an open413
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Table 1. Repeatability of ODC maps across scanning sessions for single participants. Spearman’s rank

correlation coefficients and corresponding p-values are shown to illustrate the consistency of activation maps

(contrast: left eye > right eye) between scanning sessions for single participants. Only data from V1 sampled

at mid-cortical depth were used. Statistical significance was determined by permutation testing (n = 10,000).

Due to the spatial covariance of data from neighboring vertices, only randomly selected 10% of all data points

were used for significance testing.

GE-BOLD SE-BOLD VASO

Correlation

coefficient (𝑟)
𝑝-value Correlation

coefficient (𝑟)
𝑝-value Correlation

coefficient (𝑟)
𝑝-value

Subject 1 0.623 <0.001 0.219 <0.001 0.129 <0.001

Subject 2 0.634 <0.001 0.185 <0.001 0.049 <0.05

Subject 3 0.755 <0.001 0.493 <0.001 0.186 <0.001

Subject 4 0.586 <0.001 0.418 <0.001 0.167 <0.001

Subject 5 0.643 <0.001 0.379 <0.001 0.132 <0.001

question and is beyond the scope of the present study.414

Table 1 summarizes the correlation results across all participants.415

Univariate contrasts across cortical depth416

Figure 5 shows the strength of cortical responses by plotting the percent signal changes of left and417

right eye stimulation across cortical depth. The mean across participants and sessions and the418

corresponding 95% bootstrap confidence interval are shown. Red lines (solid and dashed) depict419

the mean response for single sessions, demonstrating the repeatability of cortical profiles.420

We used the same vertices that were included in the classification analysis after feature selec-421

tion. As expected, GE-BOLD signal changes were overall larger than SE-BOLD and VASO. Note that422

signal changes for VASO, which has a negative relationship with CBV changes, were inverted for423

visual purposes.424

Across cortical depth, both GE- and SE-BOLD showed a steady increase toward the pial surface,425

most likely reflecting draining vein contributions to the signal (Polimeni et al., 2010a; Markuerki-426

aga, Barth, and Norris, 2016). The VASO signal profile was more restricted to GM and shows a427

peak within GM. But an overall trend toward the pial surface could be seen as well. In Supplemen-428

tary Figure 7, cortical profiles of signal changes across participants are shown with all V1 vertices429

included. In these plots, VASO shows a more pronounced peak within GM. However, due to the430

averaging across more data points, V1 vertices that were not activated and therefore only contain431

noise contributions were included, which led to a general decrease of percent signal changes from432

all acquisition techniques. This suggests the hypothesis that the often seen reduced signal changes433

at the pial surface and pronounced peak within gray matter for SS-SI VASOmay partly be driven by434

inclusion of pure signal noise. Supplementary Figure 8 further illustrates cortical profiles of signal435

changes from single participants, demonstrating the variability between participants in our study.436

Decoding accuracies across cortical depth437

Figure 6 shows mean prediction accuracies across cortical depth from the pattern classification438

analysis. An independent classification was performed for each cortical depth with features se-439

lected from the mean response across cortical depth. Black lines indicate the mean across partic-440

ipants and sessions with the corresponding 95% bootstrap confidence interval. Red lines depict441

mean prediction accuracies from single sessions. Supplementary Figure 9 further illustrates pre-442

diction accuracies from single participants.443

With all acquisition techniques, the eye-of-origin could be decoded with statistical significance444

at all cortical depths (chance level: 50%, 𝑝-value determined by bootstrapping). Among acquisition445
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GE-BOLD SE-BOLD VASO

A B C

Figure 5. Percent signal changes across cortical depth. Mean percent signal changes (contrast: left eye and right eye > baseline) for GE-BOLD

(A), SE-BOLD (B), and VASO (C) are shown across cortical depth. Red solid and dashed lines show the mean across participants from the first

and second session, respectively. Black lines indicate the mean across participants and scanning sessions. The gray area demarcates the

bootstrap 95% confidence interval (n = 1,000). Only data points (n = 200) were used that were also selected for the decoding analysis. Note that

we inverted the y-axis in C for consistency with A and B. Mean percent signal changes across cortical depth with all V1 data can be found

in Supplementary Figure 7. Percent signal change curves from single participants can be found in Supplementary Figure 8.

GE-BOLD SE-BOLD VASO

A B C

Figure 6. Prediction accuracies across cortical depth. Mean prediction accuracies (prediction of the stimulated eye) for GE-BOLD (A),
SE-BOLD (B), and VASO (C) are shown across cortical depth. Red solid and dashed lines show the mean across participants from the first and

second session, respectively. Black lines indicate the mean across participants and scanning sessions. The gray area demarcates the bootstrap

95% confidence interval (n = 1,000). In A–C, data were significantly different (p < 0.05) from a 50% chance level at each cortical depth. The

p-value was determined by bootstrapping (n = 1,000) and corrected for multiple comparisons of individual layers (FDR correction using the

Benjamini and Hochberg procedure). Prediction accuracy curves from single participants can be found in Supplementary Figure 9.

techniques, GE-BOLD showed the highest prediction accuracies. Furthermore, prediction accu-446

racies increased toward the pial surface, mirroring the increase of univariate responses across447

cortical depth as shown in the previous section (Univariate contrasts across cortical depth). How-448

ever, prediction accuracies did not show a steady increase compared to signal change profiles but449

saturated around mid-cortical depth, more resembling the cortical profile from the repeatability450

analysis (Consistency of ocular dominance maps) A similar behavior could be seen for SE-BOLD451

with an overall reduced level of prediction accuracies.452

Since VASO encodes volumes without blood nulling that are purely BOLD-weighted in addition453

to time points with blood nulling, we also used the not-nulled time points for decoding the eye-of-454

origin, which is shown in Supplementary Figure 10. Overall, a similar profile to Figure 6A can be455

seen with general lower decoding accuracies that is most probably related to the lower temporal456

efficiency of the VASO measurements due to the longer volume TR.457

Fromaneuronal perspective, onewould have expectedhighest eye-of-origin decoding in deeper458
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cortical layers since thalamocortical projections from the LGN primarily enter in layer 4C of V1459

(Nieuwenhuys, Voogd, andHuijzen, 2008), which is located slightly belowmid-cortical depth, see (We-460

ber et al., 2008; Oga, Okamoto, and Fujita, 2016). Despite the anticipated higher laminar speci-461

ficity of VASO, the decoding profile also showed a large resemblence to the profiles obtained with462

GE- and SE-BOLD. This suggests that remaining macrovascular contributions also limit the laminar463

specificity in VASO.464

To better understand the potential impact of the feature selection process, we also conducted465

exploratory analyses by changing the cortical depth at which the feature selection process, which466

is presented in Supplementary Figure 11 and Supplementary Figure 12. In the main analysis, fea-467

tures were selected based on the training data averaged across all cortical depths, with the ra-468

tionale of preserving the columnar organization by applying the same features set across corti-469

cal depth. Interestingly, Supplementary Figure 12 reveals that when feature selection is confined470

to deeper cortical layers, a peak in decoding performance appears to emerge slightly below mid-471

cortical depth as expected for monocular thalamocortical input. This change in decoding pattern472

across cortical depth is more prominent in VASO compared to GE- and SE-BOLD. These findings473

suggest that excluding superficial layers—more susceptible to physiological noise and large drain-474

ing veins—during feature selection may help uncover the enhanced laminar specificity inherent to475

VASO. Nonetheless, these results should be interpreted with caution, and further systematic inves-476

tigations are required to confirm this effect, which lies beyond the scope of the present study.477

Discussion478

In this study, we used high-resolution fMRI at sub-millimeter resolution to map ODCs in human479

V1 and decoded the eye-of-origin from pre-processed fMRI time courses. High-resolution imaging480

has previously characterised the depth profile of ODCs with GE-BOLD (Hollander et al., 2021) and481

VASO (Akbari et al., 2023). Building on this work, we directly compared the laminar specificity of482

eye-of-origin decoding across three contrasts—GE-BOLD, SE-BOLD, and VASO.483

Early MVPA studies showed that eye-of-origin and orientation information could be decoded484

from V1 even with conventional resolution (3 × 3 × 3mm3) (Kamitani and Tong, 2005; Haynes and485

Rees, 2005a; Haynes and Rees, 2005b). Those findings sparked debate about whether the classi-486

fiers exploited columnar signals or coarse-scale biases (Boynton, 2005; Beeck, 2010; Swisher et al.,487

2010; Gardner, 2010; Shmuel et al., 2010; Kriegeskorte, Cusack, and Bandettini, 2010; Chaimow et488

al., 2011; Misaki, Luh, and Bandettini, 2013). Because LGN inputs terminate monocularly in layer489

4C and become increasingly binocular after intracortical processing (Wandell, 1995), the cortical490

depth profile of decoding accuracy can help to disambiguate these sources.491

Our sub-millimeter fMRI acquisitions allowed us to sample the functional signal across cortical492

depth with sufficient resolution to study laminar differences. By tracking decoding performance as493

a function of depth, we assessed how much eye-of-origin information is available at each lamina494

and under each contrast. Finally, since macrovascular draining might act as a spatial-temporal495

filter that redistributes columnar signals to coarser scales (Kriegeskorte, Cusack, and Bandettini,496

2010), depth-dependent decoding also potentially provides a means to distinguish microvascular497

from macrovascular contributions to the patterns exploited by the classifier.498

As a prerequisite, we demonstrated robust in vivomapping of ODCs across all acquisitionmeth-499

ods, as shown in Figure 2 (see Supplementary Figure 1–Supplementary Figure 5 for activation500

maps of all participants). The observed activation patterns were consistent across imaging ses-501

sions and alignedwell with ODC topographies previously reported in postmortemhistological stud-502

ies (Adams, Sincich, and Horton, 2007; Adams and Horton, 2009). In addition to the expected fine-503

scale columnar structures, some activationmaps exhibited larger, coarser clusters thatmay reflect504

vascular contributions, particularly from regions dominated by larger draining veins. However, pin-505

pointing the exact source of these larger clusters is beyond the scope of the present study. Figure 3506

further illustrates the columnar nature of these patterns across cortical depth. Note that the con-507
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sistency of the cortical-depth dependent ODC reponse was also shown in earlier results (Haenelt508

et al., 2019).509

Overall, both SE-BOLD and VASO produced lower signal changes and exhibited increased noise510

levels, consistent with their inherently lower SNR. Despite these limitations, a subset of ODCs could511

be reliably mapped across sessions for all acquisition types. This reduced SNR was reflected in the512

repeatability analysis shown in Figures 4A–C and Table 1. The session-to-session correlations of513

ODC maps were highest for GE-BOLD, followed by SE-BOLD and VASO. Depth-resolved visualiza-514

tions of inter-session correlation (Figures 4D–F) revealed increasing repeatability toward the pial515

surface, likely driven by stronger signal contributions from macrovasculature in upper layers. No-516

tably, for GE-BOLD (Figure 4A), the correlation did not increasemonotonically across cortical depth517

but instead dropped in the outermost layers, likely due to higher signal variability near the CSF518

boundary (Polimeni et al., 2010b).519

TheMVPA analysis revealed that eye-of-origin information could be reliably decoded from fMRI520

time series across cortical depth for all acquisition methods, see Figure 6. Decoding performance521

was highest for GE-BOLD, followed by SE-BOLD and VASO. These decoding profiles closely mir-522

rored the patterns observed in the repeatability analysis, underscoring the critical role of signal-523

to-noise ratio (SNR) in classifier performance. Notably, decoding accuracy peaked around mid-524

cortical depth, in contrast to the monotonic increase in signal amplitude across depth observed525

in univariate analyses shown in Figure 5. As discussed earlier, if the classifier primarily relied on526

laminar-specific information, we would expect a peak in deeper layers, particularly around layer527

4C, where monocular input is most segregated. The absence of such a peak suggests that laminar528

specificity is limited across all acquisition types (but see further below for a discussion on the role529

of feature selection).530

For VASOmeasurements, we initially expected to see increased laminar specificity by enhanced531

responses in deeper layers. A recent ODC mapping study by Akbari et al., 2023 indeed reported a532

peak in deeper layers in univariate response profiles fromdata sampled in V1. Differences between533

studies, including experimental design, acquisition parameters, or analysis choices, may underlie534

these discrepancies but cannot be completely resolved in this study. One possible factor, however,535

might be differences in the definition of regions of interest (ROIs). In our study, ROIs for univariate536

cortical profiles in Figure 5were based on the same feature selection process as for themain decod-537

ing analysis, whichmight have biased voxel selection toward regions with increasedmacrovascular538

contributions and elevated SNR. For example, Supplementary Figure 7 shows univariate profiles539

with all V1 voxels included, where, the VASO response peaks closer to the mid-cortical depth. How-540

ever, including all voxels introduces additional noise, particularly in superficial layers where partial541

volume effects with CSF are more pronounced (Polimeni et al., 2010b; Pfaffenrot et al., 2021).542

Higher spatial resolution is expected to decrease this effect. Interestingly, a recent study by543

Feinberg et al., 2022 employed GE-BOLD and VASO acquisitions with an isotropic voxel size of544

0.4mm, i.e., an 8-times smaller voxel volumes compared to the current study, which showed a545

pronounced peak in deeper cortical layers in V1 for binocular visual stimulation. In addition, a546

second peak was observed in the upper layers. When considering feedforward thalamocortical547

input to V1, the deeper peak likely reflects input to layer 4, while the superficial peak may result548

from cortico-cortical processing or residual contributions from draining veins. Thus, the double-549

peak profile observed by Feinberg et al., 2022 may reflect a combination of neuronal and vascular550

origins.551

In the main decoding analysis, feature selection was based on the mean cortical response. This552

ensured that the same vertices were selected across cortical depth, acknowledging the columnar553

topography of ODCs in V1. However, this approach may bias selection toward regions with higher554

SNR, which are also more likely to contain macrovascular contributions. Feature selection based555

on data further away should decrease these contributions. To address this, we conducted an addi-556

tional analysis where we selected features solely from data sampled at the GM/WM, mid-cortical,557

GM/CSF surface, respectively, and independently for each cortical depth. The resulting univariate558
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and decoding profiles are shown in Supplementary Figure 11 and Supplementary Figure 12, re-559

spectively. These results highlight the influence of feature selection on the observed profiles. For560

instance, univariate reponses in Supplementary Figure 11 show that GE-BOLD shows a steady in-561

crease toward the pial surface irrespective of the feature selection process. However, SE-BOLD562

and VASO only exhibit a steady increase if feature selection is based on the GM/CSF surface. This563

behavior is also mimicked in decoding profiles shown in Supplementary Figure 12. Interestingly,564

VASO shows a peak below mid-cortical depth, which does not coincide with the GM/WM surface,565

when feature selection is based on the GM/WM surface, further away from macrovascular contri-566

butions at the pial surface. Conversely, when feature selection is based on the GM/CSF surface,567

VASO shows a peak above mid-cortical depth. In case of independent feature selection for each568

cortical depth, this sums up to the resemblence of a double-peak (see Supplementary Figure 12M)569

similar to Feinberg et al., 2022. The deeper peak corresponds to the approximate location of layer570

4C (Palomero-Gallagher and Zilles, 2019) (relative cortical depth of 73%). This might hint to in-571

creased laminar specificity inherent in the VASO signal that might be exploited by the classifier,572

but also shows the dependence on the chosen feature selection process. However, due to the low573

sample size, this eploratory analysis prohibits detailed analysis and awaits further study. Future574

studiesmight want to reproduce and locate the exact cortical depth of the peak by combining using575

myelin-sensitive MRI acquisitions (Stüber et al., 2014; Trampel et al., 2019; Weiskopf et al., 2021)576

to locate the stria of Gennari (Trampel, Ott, and Turner, 2011; Fracasso et al., 2016) as a reference577

depth, see e.g. (Koopmans, Barth, and Norris, 2010; Huber et al., 2021).578

Another methodological factor in our study is the arbitrary choice of the number of features579

used for classification. The main decoding analysis was restricted to 200 features (vertices). To580

investigate the effect of feature number on decoding performance, we conducted an additional581

analysis in which prediction accuracies were computed as a function of the number of selected582

vertices [1, 2,… , 500]. Results are shown in Figure 7. It can be seen that only a few voxels were nec-583

essary to decode the eye-of-origin, which was similarly found for orientation decoding (Haynes and584

Rees, 2005a). GE- and SE-BOLD show a consistent trend across number of features with saturation585

at mid-cortical depth for prediction accuracies (Figures 7A–B) and steady increase of univariate re-586

sponses toward the pial surface (Figures 7D–E). In contrast, VASO exhibitedmore variable patterns587

(Figure 7C) and showed a tendency for increased decoding accuracies at deeper layers. Corre-588

sponding univariate responses (Figure 7F) also peaked at mid-depth, which got more pronounced589

with increased number of features (cf. with univariate profile based on all V1 voxels shown in590

Supplementary Figure 7). Additionally, Supplementary Figure 13 illustrates decoding results using591

depth-specific feature selection at varying feature numbers. While GE- and SE-BOLD results re-592

mained stable, an apparant peak emerged at deeper layers for VASO. However, due to the limited593

dataset, these trends require further statistical validation.594

The interpretation of the laminar profile is built on the assumption that the monocular feed-595

forward information is exploited in V1, which is encoded at the fine-grained level of ODCs. Note596

that the larger monocular regions in V1, like the blind spot (Tootell et al., 1998) and the tempo-597

ral monocular crescent (Nasr et al., 2020), were not covered in our experiment due to the limited598

field of view. However, we cannot exclude that other features besides ocularity might have con-599

tributed to the successful eye-of-origin decoding. Therefore, we conducted an additional analysis,600

in which we decoded the stimulated eye from cortical areas outside of V1 that are known not to be601

driven bymonocular input. Figure 8 shows cortical profiles of prediction accuracies from GE-BOLD602

data (200 vertices) sampled in the secondary visual cortex (V2) and the tertiary visual cortex (V3),603

respectively. V2 and V3 were further divided into two halves (𝑎: half closer to V1, 𝑏: half further604

away from V1). The stimulated eye could be decoded in both V2 and V3 across cortical depth, but605

with overall decreased decoding performance compared to Figure 6A. Furthermore, a similar in-606

crease toward the pial surface was visible. Since no information about ocularity is expected from607

extrastriate cortex, the exploited fMRI signal also needs to contain other information that enables608

classification. V2 and V3 were split in half to examine the depedendency on the distance to V1.609
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GE-BOLD SE-BOLD VASO

A B C

D E F

Figure 7. Prediction accuracies and percent signal changes for different number of features. Mean

prediction accuracies (prediction of the stimulated eye) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are
shown for a varying number of features (vertices) across cortical depth. Note that 200 vertices were used for

the principal analysis (see Figure 6). D–F show corresponding percent signal changes (left eye and right eye >

baseline) using the same data points also selected in the decoding analysis. Both prediction accuracies and

percent signal changes appear to peak closer to the GM/WM boundary compared to GE- and SE-BOLD,

respectively. Isolines are shown as black lines. For visualization purposes, images were slightly smoothed

with a Gaussian kernel.

Indeed, Figure 8 shows a gradual performance decrease with larger distances to V1. This could be610

a hint to remaining partial volume contributions with V1 voxels due to the convoluted nature of611

the cerebral cortex.612

To exclude this alternative explanation, we ran an additional analysis, which is illustrated in Fig-613

ure 9. In brief, we computed the Euclidean distances between each vertex in V3 to its nearest vertex614

in V1 on the same surface for all participants. This was done both for GM/WM and GM/CSF sur-615

faces, respectively. Figure 9 shows that partial volume effects are unlikely to contribute to decoding616

accuracies from V3 regarding the used nominal voxel sizes used in fMRI acquisitions. However, it617

should be kept in mind that signal contributions might still leak into data sampled from neighbor-618

ing areas due to the large physiological point-spread function of the BOLD signal (Engel, Glover,619

and Wandell, 1997; Parkes et al., 2005; Shmuel et al., 2007), which should be addressed in further620

studies.621

In VASO measurements, we exploit a CBV-weighted contrast that has a different temporal evo-622

lution compared to the BOLD response (Buxton, Wong, and Frank, 1998; Silva, Koretsky, and Duyn,623

2007). More specifically, the CBV response has no initial dip, a shorter time-to-peak after stimulus624

onset, no poststimulus undershoot after stimulus offset, and needs more time to return to base-625

line. However, for the univariate analysis and the repeatability analysis, we processed data from all626

acquisition types with the same canonical HRF. As a control, we also analyzed the VASO data with627

a modified HRF that more closely resembled the CBV response’s time evolution (data not shown),628
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A B

Figure 8. Prediction accuracies in V2 and V3. Mean prediction accuracies (prediction of the stimulated eye)

for GE-BOLD are shown for V2 (A) and V3 (B) across cortical depth, respectively. Both areas were split in half
based on retinotopy, with V2a and V3a being the half closer to V1. In A–B, data were significantly different
(𝑝 < 0.05) from a 50% chance level at each cortical depth. The 𝑝-value was determined by bootstrapping

(𝑛 = 1, 000) and corrected for multiple comparisons of individual layers (FDR correction using the Benjamini

and Hochberg procedure). Decoding performance in areas V2 and V3 cannot be attributed to responses at

the columnar level and indicate that also decoding performance in V1 may not be exclusively caused by

responses at the columnar level. V2: secondary visual cortex, V3: tertiary visual cortex.

which only resulted in minor differences to the presented results. Note that we did not use an HRF629

model for the multivariate analysis, since analysis was based on the steady-state time points in630

pre-processed fMRI time series.631

One limitation of the experimental setup was that the used stimulus differed in color and lu-632

minance between eyes that was not explicitly accounted for. This might have led to decodable633

information along the parvo- and magnocellular streams inside but also outside of V1 (Tootell and634

Nasr, 2017). For example, Supplementary Figure 1–Supplementary Figure 5 illustrate ODC maps635

from single participants, which generally show higher responses for the left eye, irrespective of eye636

dominance of single participants (eye dominance is stated in corresponding figure captions), which637

might be caused by remaining luminance differences between colors and therefore between eyes.638

Similar observations weremade in an early fMRI decoding study, in which the eye-of-origin was de-639

coded from a binocular rivalry stimulus (Haynes and Rees, 2005b). In binocular rivalry, the left and640

right eye receives incongruent stimuli, which were presented via anaglyph goggles. In that study,641

color filters were swapped between successive fMRI scanning runs in a control experiment. This642

resulted in decreased decoding performance in V1, whereas in extrastriate area V3 it stayed above643

chance level. From these results, it was concluded that performance in V1 was mostly based on644

ocularity information, while extrastriate areas V2 and V3 exploited more the color information in645

the stimulus. While not having the data to confirm these results in our experiment, we hypothesize646

that a similar effect contributed to the decodability in extrastriate areas as seen in Figure 8.647

Another limitation in the analysis is that data was pooled irrespective of visual field location.648

ODCs are known to vary in size and strength at different visual field locations (Adams, Sincich, and649

Horton, 2007), which might have influenced the results to some degree.650

The acquired fMRI signal might therefore be influenced by several biases that are not related651

to ocularity information. These biases will also lead to differences in the expected laminar profile.652

However, we emphasize that, compared to other decoding studies exploiting information encoded653

at the columnar level with a conventional resolution, we could map and visualize ODCs in all single654

participants. That means that fine-grained information at the spatial scale of ODCs was present655

and the dominant pattern in univariate activationmaps (see Figure 2), which potentially could have656

been exploited by the linear classifier.657

Our study analyzed the laminar specificity of MVPA with GE-BOLD, SE-BOLD, and VASO for the658

retrieval of information encoded at the spatial scale of cortical columns. For the first time, we used659

VASO in combination withMVPA to retrieve information from fine-grained cortical structures at the660
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A B

Figure 9. Minimum distances between V1 and sampled V3 data. The distribution of Euclidean distances
between V3 vertices of the GM/WM (A) and the GM/CSF (B) and the closest V1 vertex of the same surface is

shown across subjects and hemispheres. The overall mean is denoted as black vertical line and the nominal

voxel size (0.8mm) of functional acquisition is shown as vertical dashed line for reference. Voxel data sampled

on V3 surfaces show minimal overlap with V1 regarding the used voxel size.

level of cortical layers. GE-BOLD is a very time-efficient acquisition method with larger SNR com-661

pared to SE-BOLD and VASO. This enables GE-BOLD to decode columnar information with high662

accuracy. However, the signal is weighted toward macrovascular signal contributions, limiting its663

capabilities to resolve information at the level of cortical layers. In comparison, VASO encodes664

two volumes at two inversion times, which limits its time efficiency. In addition, the BOLD correc-665

tion in VASO is performed by a division operation, which enhances noise in the time series. This666

manifested itself in overall lower decoding accuracies for VASO.667

In this regard, it might be a viable alternative to exploit the high SNR of GE-BOLD in com-668

bination with post-processing techniques to enhance the spatial specificity of the signal. Over669

the years, several approaches have been suggested that included deconvolution of cortical pro-670

files (Markuerkiaga, Barth, and Norris, 2016; Hollander et al., 2021; Marquardt et al., 2020), mask-671

ing out veins (Shmuel et al., 2007; Koopmans, Barth, and Norris, 2010; Moerel et al., 2018; Kay672

et al., 2019), spatial filtering of lower spatial frequencies of no interest (Sengupta et al., 2017; Man-673

delkow, Zwart, and Duyn, 2017; Hollander et al., 2021; Schmidt et al., 2024) or exploiting temporal674

information in the hemodynamic response (Kay et al., 2020) to remove macrovascular biases from675

GE-BOLD data. An extensive comparison between to these postprocessing steps is out of scope676

of the current study but might be an alternative route for decoding information at the mesoscopic677

scale based on acquisition techniques relying on the BOLD contrast.678

In conclusion, the similar decoding profiles between acquisition techniques suggest thatmacro-679

scopic venous effects are the predominant contributor that is exploited by the classifier in all cases.680

However, an exploratory analysis showed enhanced laminar specificity when using MVPA with681

VASO if the influence of feature selection is carefully considered. Future work is needed to fur-682

ther examine the potential increase in laminar specificity when combining multivariate techniques683

as MVPA with VASO.684
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Supplementary Figure 1. Ocular dominance columns (ODCs) from subject 1. Thresholded activation maps (contrast left eye > right eye) are

shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions,
sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that

were reproducibly activated between scanning sessions. This participant was left eye dominant. Note that VASO has an inverted contrast

compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in Figure 2.

Haenelt et al. 2025 | Cortical depth-resolved analysis of ODCs bioR𝜒 iv | 29 of 41

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2025. ; https://doi.org/10.1101/2023.09.28.560016doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.560016
http://creativecommons.org/licenses/by/4.0/


A B

C D

E F

Left Hemisphere Right Hemisphere

GE-BOLD

SE-BOLD

VASO

z-score

-3 3-1.3 1.3

z-score

-3 3-1.3 1.3

z-score

-2 2-0.5 0.5

z-score

-2 2-0.5 0.5

z-score

-2 2-0.5 0.5

z-score

-2 2-0.5 0.5

*
*

V1
V1

*

*
*

*
V1

V1
V1

V1

Supplementary Figure 2. Ocular dominance columns (ODCs) from subject 2. Thresholded activation maps (contrast left eye > right eye) are

shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions,
sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that

were reproducibly activated between scanning sessions. This participant was right eye dominant. Note that VASO has an inverted contrast

compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in Figure 2.
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Supplementary Figure 3. Ocular dominance columns (ODCs) from subject 3. Thresholded activation maps (contrast left eye > right eye) are

shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions,
sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that

were reproducibly activated between scanning sessions. This participant was left eye dominant. Note that VASO has an inverted contrast

compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in Figure 2.

Haenelt et al. 2025 | Cortical depth-resolved analysis of ODCs bioR𝜒 iv | 31 of 41

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2025. ; https://doi.org/10.1101/2023.09.28.560016doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.560016
http://creativecommons.org/licenses/by/4.0/


A B

C D

E F

Left Hemisphere Right Hemisphere

GE-BOLD

SE-BOLD

VASO

z-score

-4 4-1.3 1.3

z-score

-3 3-1.0 1.0

z-score

-3 3-1.0 1.0

z-score

-2 2-0.7 0.7

z-score

-2 2-0.5 0.5

*
*

*
*

V1

V1

V1

V1

z-score

-2 2-0.5 0.5

*
*V1

V1

Supplementary Figure 4. Ocular dominance columns (ODCs) from subject 4. Thresholded activation maps (contrast left eye > right eye) are

shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions,
sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that

were reproducibly activated between scanning sessions. This participant was right eye dominant. Note that VASO has an inverted contrast

compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in Figure 2.
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Supplementary Figure 5. Ocular dominance columns (ODCs) from subject 5. Thresholded activation maps (contrast left eye > right eye) are

shown for the left and right hemisphere, respectively, for GE-BOLD (A–B), SE-BOLD (C–D), and VASO (E–F). Data were averaged across sessions,
sampled at mid-cortical depth, and shown on flattened surfaces. Similarities between maps are evident. Green arrows point to columns that

were reproducibly activated between scanning sessions. This participant was left eye dominant. Note that VASO has an inverted contrast

compared to BOLD. Black lines in A and B show scale bars (5 mm), respectively—other details as in Figure 2.
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Supplementary Figure 6. Illustration of the GBB method. The method is used to enhance the alignment of cortical boundary surfaces based

on an undistorted whole-brain anatomy to the cortical borders found in distorted functional images. A shows the temporal mean of the

functional time series without task (GE-BOLD, 200 time points, subject 3) in coronal view that was acquired in the first session. B To enhance the

GM/WM border and thereby increase the robustness of the proposed method, we weighted the temporal mean by its phase (see to Data

preprocessing for detailed information) as usually done in susceptibility-weighted imaging methods. In C, the surfaces before (depicted in red)
and after (depicted in green) alignment with the GBB method are presented. This technique is implemented in the GBB package (0.1.6,

https://pypi.org/project/gbb/). The core idea of the method is to locally deform the GM/WM boundary surface iteratively until it reaches the

GM/WM border found in the functional data. Each iteration starts by randomly selecting one vertex. Then, the vertex and its surrounding

neighborhood is moved a small amount along the direction of increased GM/WM contrast scaled by a set step size. The change is evaluated by

using the same cost function proposed in Greve and Fischl, 2009. Before alignment, surfaces are transformed into functional space via a rigid

registration. From resulting vertex displacements of the GM/WM border, a deformation field is estimated that is then applied to the GM/CSF

surface. The method improves spatial correspondence between the surfaces and the GM/WM boundaries observed in the functional images.

GM: gray matter, WM: white matter, CSF: cerebrospinal fluid.
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Supplementary Figure 7. Percent signal changes across cortical depth from whole V1. Mean percent signal changes (contrast: left eye and

right eye > baseline) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are shown across cortical depth. Contrary to Figure 5, all V1 data inside the
field of view across all scanning sessions were used. Compared to Figure 5, lower percent signal changes and lower variability across
participants can be identified. In C, the peak at mid-cortical depth is more pronounced. Note that we inverted the y-axis in C for consistency with
A and B—other details as in Figure 5.
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Supplementary Figure 8. Percent signal changes across cortical depth from single participants. Percent signal changes (contrast: left eye
and right eye > baseline) for GE-BOLD (left column), SE-BOLD (middle column), and VASO (right column) are shown across cortical depth for

single participants (average across two sessions). Only data points (n = 200) were used that were also selected for the decoding analysis. Note

that we inverted the y-axis for VASO (right column) for easier interpretation. The variability of cortical profiles between participants can be

identified.
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Supplementary Figure 9. Prediction accuracies across cortical depth from single participants. Prediction accuracies (prediction of the
stimulated eye) for GE-BOLD (left column), SE-BOLD (middle column), and VASO (column) are shown across cortical depth for single participants

(average across two sessions). The variability of cortical profiles between participants can be identified.
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A B

Supplementary Figure 10. Percent signal changes and prediction accuracies for not-nulled time points in VASO sessions. Mean percent

signal changes (contrast: left eye and right eye > baseline) (A) and mean prediction accuracies (prediction of the stimulated eye) (B) are shown
across cortical depth for not-nulled (BOLD-weighted) time series from VASO sessions. Red solid and dashed lines show the mean across

participants from the first and second session, respectively. Black lines indicate the mean across participants and scanning sessions. The gray

area demarcates the bootstrap 95% confidence interval (n = 1,000). Shapes of cortical profiles are similar to Figure 5A and Figure 6A,
respectively. Overall, lower prediction accuracies compared to Figure 6Amight be attributable to the smaller temporal efficiency due to the

longer TR in VASO acquisitions.
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Supplementary Figure 11. Percent signal changes across cortical depth. Mean percent signal changes (contrast: left eye and right eye >

baseline) for GE-BOLD (left column), SE-BOLD (middle column), and VASO (right column) are shown across cortical depth. In contrast to Figure 5,
features selection was restricted to data points sampled on the GM/WM (A–C), the mid-cortical (D–F), and the GM/CSF (G–J) boundary surfaces,
respectively. In K–M, feature selection was performed for each cortical layer independently—other details as in Figure 5.
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Supplementary Figure 12. Prediction accuracies across cortical depth. Mean prediction accuracies (prediction of the stimulated eye) for

GE-BOLD (left column), SE-BOLD (middle column), and VASO (right column) are shown across cortical depth. In contrast to Figure 6, features
selection was restricted to data points sampled on the GM/WM (A–C), the mid-cortical (D–F), and the GM/CSF (G–J) boundary surfaces,
respectively. In K–M, feature selection was performed for each cortical layer independently—other details as in Figure 6.
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Supplementary Figure 13. Prediction accuracies and percent signal changes for different number of features. Mean prediction

accuracies (prediction of the stimulated eye) for GE-BOLD (A), SE-BOLD (B), and VASO (C) are shown for a varying number of features (vertices)

across cortical depth. D–F show corresponding percent signal changes (left eye and right eye > baseline) using the same data points. In contrast

to Figure 7, feature selection was performed for each cortical layer independently—other details as in Figure 7.
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