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Abstract:  28 

We study the gene MUC19, for which some modern humans carry a Denisovan-like haplotype. 29 

MUC19 is a mucin, a glycoprotein that forms gels with various biological functions. We find 30 

diagnostic variants for the Denisovan-like MUC19 haplotype at high frequencies in admixed Latin 31 

American individuals, and at highest frequency in 23 ancient Indigenous American individuals, all 32 

predating population admixture with Europeans and Africans. We find that the Denisovan-like 33 

MUC19 haplotype is under positive selection and carries a higher copy number of a 30 base-pair 34 

variable number tandem repeat, and that copy numbers of this repeat are exceedingly high in 35 

American populations. Finally, some Neanderthals carry the Denisovan-like MUC19 haplotype, 36 

and that it was likely introgressed into human populations through Neanderthal introgression rather 37 

than Denisovan introgression. 38 
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 1 

One-Sentence Summary: Modern humans and Neanderthals carry a Denisovan variant of the 2 

MUC19 gene, which is under positive selection in populations of Indigenous American ancestry. 3 

Main Text: 4 

Most modern humans of non-African ancestry carry both Neanderthal and Denisovan genomic 5 

variants [1–3]. While most of these variants are putatively neutral, some archaic variants found in 6 

modern humans have been targets of positive natural selection [4–9]. Interbreeding with 7 

Neanderthals and Denisovans may have thereby facilitated adaptation to the myriad novel 8 

environments that modern humans encountered as they populated the globe [10]. Indeed, several 9 

studies have identified signatures of adaptive introgression in Eurasian and Oceanian populations 10 

[11–20]. Indigenous American populations, however, present great potential for studying the 11 

underlying evolutionary processes of local adaptation [21]. In the 25,000 years since the first 12 

individuals populated the American continent, these populations would have encountered 13 

manifold novel environments, far different from the Beringian steppe, to which their ancestral 14 

population was adapted [22]. 15 

 16 

Previous studies identified MUC19—a gene involved in immunity—as a candidate for adaptive 17 

introgression among populations from the 1000 Genomes Project (1KG). These studies found the 18 

region surrounding MUC19 to harbor several Denisovan variants in Mexicans (MXL) [23]; and 19 

reported that this region has one of the largest densities of Denisovan alleles in Mexicans [24]. 20 

MUC19 was also reported to be under positive selection in North American Indigenous 21 

populations using Population Branch Statistic (PBS) and integrated Haplotype Scores (iHS) 22 

methods for detecting positive selection [25]. 23 

 24 

In this study, we confirm and further characterize signatures of both introgression and positive 25 

selection at MUC19 in MXL. We find an archaic haplotype segregating at high frequency in most 26 

populations on the American continent, which is also present in two of the late high-coverage 27 

Neanderthal genomes—Chagyrskaya and Vindija. MXL individuals harbor Denisovan-specific 28 

coding mutations in MUC19 at high frequencies, and exhibit elevated copy number of a tandem 29 

repeat region within MUC19 compared to other worldwide populations. Our results point to a 30 

complex pattern of multiple introgression events, from Denisovans to Neanderthals, and 31 

Neanderthals to modern humans, which may have played a unique role in the evolutionary history 32 

of Indigenous American populations. 33 

 34 

Results 35 

 36 

Signatures of adaptive introgression at MUC19 in admixed populations from the Americas  37 

 38 

We compiled introgressed tracts that overlap the NCBI RefSeq coordinates for MUC19 (hg19, 39 

Chr12:40787196-40964559) by at least one base pair. Figure 1A shows the density of introgressed 40 

tracts for all non-African populations in the region, using introgression maps inferred with hmmix 41 

[26]. All non-African populations harbor introgressed tracts overlapping this region, but at much 42 
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lower frequencies than the American populations (AMR tract frequency: ~0.183, non-AMR tract 1 

frequency: ~0.087; Proportions Z-test, P-value: 5.011e-14; Fisher’s Exact Test, P-value: 2.144e-2 

12; Table S1). Mexicans (MXL)—a population with a large component of Indigenous American 3 

genetic ancestry (~48%; [27])—exhibits the highest frequency of the introgressed tracts (0.305; 4 

Table S2). Given this, we examined a 742kb window containing the longest introgressed tract 5 

found in Mexicans (hg19, Chr12:40272001-41014000; Figure S1). This region contains 135 6 

Denisovan-specific SNPs, classified as such because they are rare or absent in African populations 7 

(<1%), present in MXL (>1%), and shared uniquely with the Altai Denisovan. All 135 of these 8 

SNPs are sequestered within a core 72kb region (hg19, Chr12:40759001-40831000; shaded gray 9 

region in Figure 1A) that has the highest introgressed tract density amongst individuals in the 1KG 10 

(see [51]), making both the 742kb and 72kb region outliers for Denisovan-specific SNP density in 11 

MXL (742kb region P-value: <3.164e-4; 72kb region P-value: <3.389e-5; Figure S2; Table S3-12 

S4). In contrast, there are 80 Neanderthal-specific SNPs in MXL found within the larger 742kb 13 

region (P-value: 0.159; Figure S3; Table S5), with only four located in the 72kb region (P-value: 14 

0.263; Figure S3; Table S6). 15 

 16 

To test if natural selection is acting on this region, we computed three statistics; one developed to 17 

detect adaptive introgression (UA,B,C(w, x, y), A: African super population, B: non-African 18 

populations, C: Altai Denisovan; (w, x, y) are allele frequency thresholds in A, B and C, [24]), and 19 

two for positive selection (PBS, and iHS). For each gene, we computed UAFR,B,Denisovan(w=1%, 20 

x=30%, y=100%), which measures the number of Denisovan alleles found in the homozygous 21 

state (100%) that are almost absent in Africans (<1%) and reach a frequency of at least 30% in a 22 

given non-African population. Figure 1B shows that MUC19 in MXL is an extreme outlier, as no 23 

other gene in any non-African population exhibits such a large value of UAFR,B,Denisovan(1%, 30%, 24 

100%). When we compute the same statistic in windows instead of per gene, the MUC19 region 25 

is an outlier only in MXL and is zero for all other non-African populations (P-value 72kb region: 26 

<3.284e-5; P-value 742kb region: <3.139e-4: Figure S4; Table S7-S8). Furthermore, we compared 27 

the windowed UAFR,B,Denisovan(w=1%, x=30%, y=100%) results with their corresponding 28 

Q95AFR,B,Denisovan(w=1%, y=100%) value, which quantifies the 95th percentile of the Denisovan 29 

allele frequencies found in a given non-African population B for the Denisovan alleles found in 30 

the homozygous state (100%), that are almost absent in Africans (<1%), we find that for both the 31 

72kb and 742kb MUC19 regions that Q95AFR,MXL,Denisovan(w=1%, y=100%) = ~30%, which 32 

suggests that both the 72kb and 742kb MUC19 regions exhibit signals consistent with adaptive 33 

introgression that are not observed in any other 1KG population (Figure S5-S6; Table S9). 34 

 35 

We next computed PBSMXL:CHB:CEU, where the Han Chinese (CHB) and Central European (CEU) 36 

populations were used as control populations, for both the region corresponding to the longest 37 

introgressed tract in MXL—742kb—and the 72kb region in MUC19, and find that both regions 38 

exhibit statistically significant PBSMXL:CHB:CEU values compared to other 742kb (PBSMXL:CHB:CEU: 39 

0.066; P-value: 0.004) and 72kb (PBSMXL:CHB:CEU: 0.127; P-value: 0.002) windows of the genome 40 

respectively (Figure S7; Table S10-S11). We then computed PBSMXL:CHB:CEU for each SNP in the 41 

742kb region. Figure 1C shows that in MXL there are many SNPs with statistically significant 42 

PBS values in that region (417 out of 6144 SNPs), all which present values above the 99.95th 43 

percentile of genome-wide PBSMXL:CHB:CEU values (Benjamini-Hochberg corrected P-values: 44 

<0.01; see Supplemental Section S1 in [51]). We note that some SNPs have a larger 45 

PBSMXL:CHB:CEU value near the SLC2A13 gene than within the 72kb MUC19 region, but this is due 46 
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to changes in the archaic allele frequency in CHB and CEU, as the introgressed tracts in these 1 

populations are more sparse than the introgressed tracts in MXL (see tracts in Figure 1C). When 2 

we partition the MXL population into two demes, consisting of individuals with more than 50% 3 

and those with less than 50% Indigenous American ancestry genome-wide [27], and recompute 4 

PBS, we find that PBS values for archaic variants are elevated among individuals with a higher 5 

proportion of Indigenous American ancestry, suggesting that this region was likely targeted by 6 

selection before admixture with European and African populations (Figure S8; Table S10-S11). 7 

 8 

To exclude the possibility that demographic events such as a founder effect explain the observed 9 

signatures of positive selection, we simulated the best fitting demographic parameters inferred for 10 

the MXL population [28] to obtain the expected null distribution of PBS values. We first showed 11 

that PBS has power to detect adaptive introgression under this demographic model (see 12 

Supplemental Section S1 in [51]). We found that demographic forces alone result in lower PBS 13 

values compared to what is observed at this gene region (see Supplemental Section S1 in [51]), 14 

even when we consider a very conservative null model of heterosis. Furthermore, to also consider 15 

haplotype-based measures of positive selection, we computed the integrated haplotype score (iHS) 16 

for every 1KG population using selscan [29] to provide haplotype-based evidence of natural 17 

selection ([51]). Among all 1KG populations, MXL is the only population with an elevated 18 

proportion of SNPs with normalized |iHS| > 2 in either the 742kb (599 out of 2248 SNPs) or 72kb 19 

region (229 out of 425 SNPs; Table S12-S13). In MXL we find that 130 out of the 135 Denisovan-20 

specific SNPs in the 72kb region have normalized |iHS| > 2, reflective of positive selection (Figure 21 

S9; Table S12-S13, see Supplemental Section S2 in [51]), which supports our previous allele 22 

frequency-based tests of natural selection. 23 

 24 

Admixed individuals exhibit an elevated number of variable number tandem repeats at MUC19 25 

 26 

MUC19 contains a 30 base pair variable number tandem repeat (VNTR; hg19, Chr12:40876395-27 

40885001; Figure S10), located 45.4kb away from the core 72kb haplotype, but within the larger 28 

742kb introgressed region. To test if individuals who harbor an introgressed tract overlapping the 29 

repeat region differ in the number of repeats compared to individuals who do not harbor 30 

introgressed tracts, we calculated the number of repeats of the 30bp motif in the 1KG individuals 31 

(see [51]; Figure S11; Table S14-S15). For each individual, we first report the average number of 32 

repeats between their two chromosomes. The genomes of the four archaic individuals do not harbor 33 

a higher copy number of tandem repeats (Altai Denisovan: 296 copies; Altai Neanderthal: 379 34 

copies; Vindija Neanderthal: 268 copies; and Chagyrskaya Neanderthal: 293 copies). Among all 35 

individuals from the 1KG, we identified outlier individuals with elevated number of repeats above 36 

the 95th percentile (>487 repeats; dashed line in Figure 2). We found that MXL individuals have 37 

on average ~493 repeats and individuals from the admixed American super population have on 38 

average ~417 repeats (Figure 2A; Table S16-S17). In contrast, non-admixed American populations 39 

have an average of ~341 to ~365 repeats (Figure 2A; Table S16). Out of all the outlier individuals 40 

from the 1KG (>487 repeats), a significant proportion of them (~77%) are from admixed American 41 

populations (Proportions Z-test, P-value: 3.971e-17; Table S18-S21; Figure S12). Outlier 42 

individuals from the Americas also carry a significantly higher copy number of tandem repeats 43 

compared to the other outlier individuals from non-admixed American populations (Mann-44 
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Whitney U, P-value: 5.789e-7; Figure S12; Table S18-S21). In MXL, we find that exactly 50% of 1 

individuals exhibit an elevated copy number of tandem repeats (Table S16).  2 

 3 

Within individuals exhibiting an outlier number of repeats (>487), a significant proportion (~86%) 4 

have an  introgressed tract overlapping the repeat region and these individuals harbor an elevated 5 

number of repeats compared to outlying individuals who do not harbor an introgressed tract 6 

overlapping the VNTR region (Proportions Z-test, P-value: 2.127e-29; Mann-Whitney U, P-value: 7 

1.398e-06; Figure S13; Table S18-S21). All outlying MXL individuals carry at least one 8 

introgressed tract that overlaps with the VNTR region (Figure 2). MXL has more individuals 9 

exhibiting an elevated copy number (>487 repeats) than any other 1KG population, and there is a 10 

positive correlation between the number of repeats and the number of introgressed tracts that 11 

overlap with the VNTR present in a MXL individual (Spearman’s 𝜌: 0.885; P-value: 2.839e-22; 12 

Figure 2B; Figure S14; Table S22). We find that among MXL individuals, the number of repeats 13 

and the Indigenous American ancestry proportion at the repeat region is significantly positively 14 

correlated (Spearman’s 𝜌: 0.483; P-value: 2.940e-4; Figure 2C; Figure S15, Table S23-S24), while 15 

the African (Spearman’s 𝜌: -0.289; P-value: 2.072e-2; Figure S15, Table S23-S24) and European 16 

(Spearman’s 𝜌: -0.353; P-value: 4.191e-3; Figure S15, Table S23-S24) ancestry proportions have 17 

a significant negative correlation. Taken together, in MXL, we find that an individual’s VNTR 18 

copy number is highly predicted by the number of introgressed tracts that overlap the VNTR. To 19 

a lesser extent, the VNTR copy number is also predicted by the Indigenous American ancestry 20 

proportion in the repeat region, indicating that individuals with elevated VNTR copy number have 21 

higher proportions of Indigenous American ancestry and harbor the introgressed haplotype. 22 

Individuals who carry an elevated number of the MUC19 VNTR are likely to also carry the archaic 23 

haplotype, especially in admixed American populations where the archaic haplotype of MUC19 is 24 

found at highest frequencies (Mann-Whitney U, P-value: 1.597e-87; Figure S13; Figure 2; Table 25 

S18-S21). 26 

 27 

Given the difficulties of calling numbers of repeats from short-read data, we examined long-read 28 

sequence data from the Human Pangenome Reference Consortium (HPRC) and Human Genome 29 

Structural Variant Consortium (HGSVC) [42]. These corroborated our findings (Figure S10; 30 

Figure S16), revealing an extra 424 copies of the 30bp MUC19 tandem repeat exclusively in 31 

American samples, arranged in four additional segments of 106 repeats (at 3,171 bp each). This 32 

structural variant is exceptionally large; it effectively doubles the size of the ~12kb coding exon 33 

that harbors the tandem repeat (Figures S10).  34 

 35 

Introgression introduced missense variants at MUC19  36 

  37 

Inspecting the 135 Denisovan-specific SNPs and 4 Neanderthal-specific SNPs in the core 72kb 38 

region reveals that some modern humans carry two Denisovan-specific synonymous sites and nine 39 

Denisovan-specific non-synonymous sites (Table S25). We quantified the allele frequencies for 40 

these nine Denisovan-specific missense variants in present-day populations and in 23 ancient 41 

Indigenous American genomes that predate European colonization and the African slave trade 42 

(Figure 3A; Table S26-S33). In the admixed American superpopulation, we find that the 43 

Denisovan-specific missense mutations are segregating at the highest frequencies (frequency range 44 
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in AMR,: ~0.154 - ~0.157) compared to all other 1KG superpopulations (frequency range in non-1 

AMR,: ~0 - ~0.108; Table S27-S28). When we stratify by population instead of by 2 

superpopulation, we find the Denisovan-specific missense mutations are segregating at 3 

frequencies between ~0.069 and ~0.305 amongst admixed American populations, at varying 4 

frequencies between ~0.005 and ~0.157 throughout European, East Asian, and South Asian 5 

populations, and at the highest frequency in MXL where all nine Denisovan-specific missense 6 

mutations are segregating at a frequency of ~0.305 (Figure 3A; Table S29). We find the mean 7 

Denisovan-specific missense mutation frequency to be positively correlated with the introgressed 8 

tract frequency per population (Pearson’s 𝜌: 0.976; P-value: 5.306e-16; Figure S17). 9 

 10 

We then evaluate the frequency of the nine Denisovan-specific missense mutations in 23 ancient 11 

pre-European colonization American individuals, and find that each of the nine Denisovan-specific 12 

missense mutations are segregating at higher frequencies than in any admixed American 13 

population in the 1KG, but at statistically similar frequencies with respect to MXL (see [51]; Figure 14 

3A; Table S29-S32). These ancient individuals were sampled from a wide geographic and 15 

temporal range (Figure S18; Table S26; [51) and do not comprise a single population, yet we detect 16 

the presence of the Denisovan-specific missense mutations in sampled individuals from Alaska, 17 

Montana, California, Ontario, Central Mexico, Peru, and Patagonia (Table S30). When we 18 

quantify the frequency of these mutations in 22 unadmixed Indigenous Americans from the Simons 19 

Genome Diversity Project (SGDP), we find that all nine Denisovan-specific missense variants are 20 

segregating at a frequency of ~0.364, which is statistically similar to the ancient American 21 

frequencies (see [51]; Table S31-S32), and higher than any admixed American population in the 22 

1KG, albeit at statistically similar frequencies with respect to MXL (Table S31-S32). Given that 23 

all nine of the missense mutations are found within a ~17.5kb region, we quantified the frequency 24 

of the Denisovan-specific missense mutation at position Chr12:40808726 in both the ancient 25 

individuals and admixed Americans in the 1KG, as this position has genotype information in 20 26 

out of the 23 ancient American individuals (Table S30). We then assessed the relationship between 27 

Indigenous American ancestry proportion at the 72kb region, and this Denisovan-specific missense 28 

mutation frequency. We find a positive and significant relationship (Pearson’s 𝜌: 0.489; P-value: 29 

1.982e-23; Figure S19) between an individual’s Indigenous American Ancestry proportion and 30 

their respective Denisovan-specific missense mutation frequency, which suggests that recent 31 

admixture in the Americas may have diluted the introgressed ancestry at the 72kb region. We also 32 

quantify the frequency of these variants in 44 African individuals from the SGDP, and find all nine 33 

Denisovan-specific missense variants at a frequency of ~0.011, in a single chromosome from a 34 

Khomani San individual (Table S33). 35 

 36 

To estimate the potential effect of these missense mutations on the MUC19 protein, we relied on 37 

Grantham scores [30]. One of the Denisovan-specific missense mutations found at position 38 

Chr12:40821871 (rs17467284 in Figure 3B) results in an amino acid change with a Grantham 39 

score of 102. This substitution is classified as moderately radical [31] and suggests that the amino 40 

acid introduced through introgression is likely to impact the translated protein's structure or 41 

function. This Denisovan-specific missense mutation falls within an exon that is highly conserved 42 

across vertebrates (PhyloP score: 5.15, P-value: 7.08e-6; Figure 3B) [32], indicating that this 43 

amino acid residue is likely functionally important, and that the amino acid change introduced by 44 

the Denisovan-specific missense mutation may have a significant structural or functional impact. 45 

Furthermore, this missense mutation falls between two Von Willebrand factor D domains, which 46 
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play an important role in the formation of mucin polymers and gel-like matrices [33]. Our results 1 

suggest that this Denisovan-specific missense mutation is a potential candidate for impacting its 2 

translated protein and may affect the polymerization properties of MUC19 and the viscosity of the 3 

mucin matrix.  4 

 5 

Identification of the most likely donor of the introgressed haplotype at MUC19 6 

 7 

To identify the most likely archaic donor, we investigated the patterns of haplotype divergence at 8 

MUC19 by comparing the modern human haplotypes in the 1KG in the 72kb region (see Methods; 9 

shaded region in Figure 1A) to the high-coverage archaic humans. We calculated the sequence 10 

divergence—the number of pairwise differences normalized by the effective sequence length—11 

between all haplotypes in the 1KG and the genotypes for the Altai Denisovan and the three high-12 

coverage Neanderthal individuals (Figure S20-S22; Tables S34-S35). Haplotypes from the 13 

Americas exhibit a bimodal distribution of sequence divergence for affinities to the Altai 14 

Denisovan, which we do not observe for the African haplotypes (Figure 4A), as expected for an 15 

introgressed region. When comparing to all four high-coverage archaic genomes at the 72kb region 16 

(Figure 4B), there is a clear pattern of sequence divergence for the introgressed haplotypes found 17 

in the American super-population of the 1KG (AMR). Interestingly, Figure 4B shows that African 18 

haplotypes are closer in sequence divergence to the Altai Neanderthal than to the Altai Denisovan, 19 

but the value is not statistically significant (Dataset 1 [52]; [51]). The Altai Neanderthal itself is 20 

significantly more distant than expected from the Altai Denisovan (sequence divergence: 21 

0.003782, P-value: 0.002, Figure S23, Table S36), and this larger than expected divergence 22 

explains why African haplotypes appear closer to the Altai Neanderthal in this region. We 23 

corroborate the pattern observed in Figure 4 using PCA to visualize the haplotype structure in this 24 

region (Figure S24). 25 

 26 

Despite our UAFR,MXL,Denisovan(1%, 30%, 100%) and archaic SNP density results demonstrating that 27 

the introgressed haplotype at the 72kb region shares the most alleles with the Altai Denisovan 28 

(Figure 4B), we find that this region is not statistically significantly closer to the Altai Denisovan 29 

individual than expected from the genomic background of sequence divergence (sequence 30 

divergence: 0.00097, P-value: 0.237, Figure S25, Table S37). However, this is not unusual, given 31 

that the Altai Denisovan is not genetically closely related to Denisovan introgressed segments in 32 

modern humans (see Supplemental Section S5 in [51]), which might suggest that the Denisovan 33 

donor population of the 72kb region in MUC19 is not closely related to the Altai Denisovan 34 

individual. Furthermore, the 72kb region is also not statistically significantly closer to 35 

Neanderthals than expected from the genomic background of sequence divergence (sequence 36 

divergence from the Altai Neanderthal: 0.003648, P-value: 0.995; Chagyrskaya Neanderthal: 37 

0.001818, P-value: 0.811; Vindija Neanderthal: 0.001816, P-value: 0.806; Figure S25, Table S37). 38 

 39 

As an additional approach, we used the D+ statistic to assess which archaic human exhibits the 40 

most allele sharing with the introgressed haplotype at the 72kb region in MUC19 [34, 35]. We 41 

performed D+ (P1, P2; P3, Outgroup) tests with the following configurations: the Yoruban 42 

population (YRI) as P1, the focal MXL individual (NA19664) with two copies of the introgressed 43 

haplotype with an affinity to the Altai Denisovan as P2, and one of the four high-coverage archaic 44 
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genomes as P3; we use the EPO ancestral allele call from the six primate alignment as the 1 

Outgroup. We exclusively observe a positive and significant D+ value (D+: 0.743, P-value: 2 

1.386e-5; Figure S26; Table S38) when the Altai Denisovan is used as P3 (the putative donor 3 

population). Conversely, when any of the three Neanderthals are used as P3, we observe non-4 

significant D+ values (P3: Altai Neanderthal, D+: -0.622, P-value: 0.999; P3: Chagyrskaya 5 

Neanderthal, D+: 0.175, P-value: 0.183; P3: Vindija Neanderthal, D+: 0.182, P-value: 0.174; 6 

Figure S26; Table S38). These D+ suggest that the introgressed haplotype at the 72kb MUC19 7 

region shares more alleles with the Altai Denisovan, which is not observed with any of the three 8 

Neanderthals and provides evidence that the introgressed haplotype found in modern humans is 9 

Denisovan-like. 10 

 11 

When we consider the 742kb region in MXL, we find that it is closest to the Chagyrskaya and 12 

Vindija Neanderthals, and significantly closer than expected from the genomic background 13 

(sequence divergence from the Chagyrskaya Neanderthal: 0.000661, P-value: 0.006; from the 14 

Vindija Neanderthal: 0.000656, P-value: 0.007; Figure S27-S30; Table S39-41; Dataset 2 [52]; 15 

[51). We also tested whether this region is statistically significantly closer to the Altai Denisovan 16 

than expected from the genomic background and found that this tract in MXL is also significantly 17 

closer than expected to the Altai Denisovan, albeit not as close when compared to the Chagyrskaya 18 

and Vindija Neanderthals (sequence divergence from the Altai Denisovan: 0.000806, P-value: 19 

0.019; Figure S27-S30; Table S39-S41). We then performed D+ analyses for the 742kb region 20 

with identical configurations as for the 72kb region and observe positive and significant D+ values 21 

when P3 is Chagyrskaya (D+: 0.381, P-value: 7.375e-6; Figure S31; Table S42), and Vindija 22 

Neanderthals (D+: 0.383, P-value: 7.505e-6; Figure S31; Table S42), but not when the Altai 23 

Neanderthal is P3 (D+: 0.091, P-value: 1.442e-1; Figure S31; Table S42). D+ is, however, 24 

significant when the Altai Denisovan is P3 (D+: 0.377, P-value: 9.889e-8; Figure S31; Table S42). 25 

These D+ results are consistent with our sequence divergence results, which indicate that the 26 

introgressed haplotype at the 742kb MUC19 region has a high affinity for the Altai Denisovan and 27 

the two late Neanderthals, but not the Altai Neanderthal (Figures S20-S31; Tables S34-S42). 28 

 29 

Given the high density of Denisovan-specific alleles (Figure S2; Table S4), the sequence 30 

divergence, and D+ results for the 72kb and 742kb region, the most parsimonious explanation is 31 

that a Denisovan population could have introduced this haplotype into non-Africans. However, 32 

our 742kb results also suggest a Neanderthal population could have introduced the introgressed 33 

haplotype. This is further supported by the sequence divergence results at the 72kb region where 34 

late Neanderthals exhibit intermediate distance to the introgressed haplotype (Figure 4B), 35 

suggesting they harbor some of the Denisovan alleles. 36 

 37 

Neanderthals introduce Denisovan-like introgression into non-African modern humans 38 

 39 

Based on sequence divergence, the Chagyrskaya and Vindija Neanderthals carry a 742kb 40 

haplotype that is most similar to the Altai Neanderthal, with the exception of the 72kb region. To 41 

understand why the Chagyrskaya and Vindija Neanderthals exhibit intermediate levels of sequence 42 

divergence with the introgressed haplotype present in MXL at the 72kb region in MUC19 relative 43 

to the Altai Denisovan and Altai Neanderthal (see the 𝛼 ellipse in Figure 4B), we computed the 44 
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number of heterozygous sites for each archaic human. Because the Chagyrskaya and Vindija 1 

Neanderthals present intermediate sequence divergences, we expected these two individuals to 2 

have more heterozygosity than the Altai Neanderthal. At the 72kb region in MUC19, we observe 3 

that the Chagyrskaya and Vindija Neanderthals carry an elevated number of heterozygous sites 4 

(Chagyrskaya heterozygous sites: 168, P-value: 2.307e-4; Vindija heterozygous sites: 171, P-5 

value: 3.282e-4; Figure 5A; Figure S32; Table S43) that is higher than those of the Altai 6 

Neanderthal (heterozygous sites: 1, P-value: 0.679; Figure5A; Figure S32; Table S43) and the 7 

Altai Denisovan (heterozygous sites: 6, P-value: 0.455; Figure5A; Figure S32; Table S43). The 8 

Chagyrskaya and Vindija Neanderthals carry a higher number of heterozygous sites than all 9 

African individuals (~75, P-value: 0.424; Figure 5A; Figure S33; Table S44), and have a more 10 

similar pattern to non-African individuals carrying exactly one Denisovan-like haplotype (~287, 11 

P-value: 3.157e-4; yellow X’s in Figure 5A; Figure S33; Table S44). This observation runs 12 

opposite to the genome-wide expectation for Neanderthals, as archaic humans have much lower 13 

heterozygosity than modern humans (genome-wide heterozygosity is ~0.00014 - ~0.00017 for the 14 

Neanderthals, ~0.00019 for the Denisovan, and ~0.001 for Africans modern humans; Figure S34; 15 

Table S45). 16 

 17 

Within modern humans, we find that individuals carrying exactly one Denisovan-like haplotype at 18 

the 72kb region harbor significantly more heterozygous sites at MUC19 compared to the rest of 19 

their genome (average number of heterozygous sites: ~287, P-value: 3.157e-4; Figure S33; Table 20 

S44), which surpasses the number of heterozygous sites at MUC19 of any African individual 21 

(Figure 5A). Individuals carrying two Denisovan-like haplotypes harbor significantly fewer 22 

heterozygous sites than expected at MUC19 relative to the rest of their genome (average number 23 

of heterozygous sites: ~4, P-value: 6.945e-4; Figure S33; Table S44), while African individuals 24 

harbor the expected number of heterozygous sites (average number of heterozygous sites: ~75, P-25 

value: 0.424; Figure S33; Table S44). Given that the Chagyrskaya and Vindija Neanderthals and 26 

non-African individuals who harbor one copy of the Denisovan-like haplotype exhibit an excess 27 

of heterozygous sites at the 72kb region, we hypothesized that the Chagyrskaya and Vindija 28 

Neanderthals also harbor one Denisovan-like haplotype. This arrangement would explain the 29 

elevated number of heterozygous sites and the intermediary sequence divergences with respect to 30 

the introgressed haplotype. 31 

 32 

To test this hypothesis, we first performed additional tests for gene flow between the archaic 33 

individuals using the D+ statistic within the 72kb MUC19 region that provided evidence that the 34 

Chagyrskaya and Vindija Neanderthals harbor one copy of the Denisovan-like haplotype. For these 35 

comparisons the Altai Neanderthal is P1, either the Chagyrskaya or Vindija Neanderthals are P2, 36 

and the Altai Denisovan is P3, we observe significant and positive D+ values supporting gene 37 

flow between the Denisovan and the Chagyrskaya (D+: 0.783; P-value: 0.029) and Vindija (D+: 38 

0.819; P-value: 0.018) Neanderthals (Figure S35; Table S46). To further investigate whether the 39 

Chagyrskaya and Vindija Neanderthals harbor one Denisovan-like haplotype in the 72kb region, 40 

we used BEAGLE to phase the 72kb region. As no phasing has been done for archaic humans, we 41 

tested the reliability of using the 1KG as a reference panel by constructing a synthetic 72kb region. 42 

We sampled one allele from the Altai Neanderthal and one allele from the Altai Denisovan at 43 

heterozygous sites in either the Chagyrskaya or Vindija Neanderthals. We found that we could 44 

phase the synthetic individual perfectly at this region (see Supplemental Sections S3-S4 in [51]). 45 

Encouraged by these results, we phased the Chagyrskaya and Vindija Neanderthals at the 72kb 46 
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region, and confirmed they carry one haplotype that is similar to the Altai Neanderthal, and one 1 

haplotype that is similar to the Denisovan-like haplotype in MXL. Relative to the Altai 2 

Neanderthal, the Chagyrskaya Neanderthal-like haplotype exhibits 3.5 differences, and the Vindija 3 

exhibits 4 differences (Figure 5B; Table S47). Relative to the Altai Denisovan, the Chagyrskaya 4 

Denisovan-like haplotype exhibits 43 differences, and the Vindija haplotype exhibits 41 5 

differences (Figure 5B; Table S47). As expected, the phased Denisovan-like haplotype in these 6 

two Neanderthals is closest to the Denisovan-like haplotype in MXL; the Chagyrskaya exhibits 5 7 

differences, and the Vindija Neanderthal exhibits 4 differences (Figure 5B; Table S48). We show 8 

that, in the 72kb region, the introgressed haplotype in MXL is statistically significantly closer to 9 

the phased Denisovan-like haplotype present in Chagyrskaya and Vindija Neanderthals (sequence 10 

divergence from Chagyrskaya Neanderthal haplotype: 0.000104, P-value: 0.003; sequence 11 

divergence from Vindija Neanderthal haplotype: 0.000083, P-value: 0.002; Figure S36; Table 12 

S48; Dataset 3 [52]; [51]). Due to the potential introduction of biases when phasing ancient DNA 13 

data, to investigate if the Chagyrskaya and Vindija Neanderthals carry a Denisovan-like haplotype 14 

we developed an approach called Pseudo-Ancestry Painting (PAP, see [51]) to assign the two 15 

alleles at a heterozygous site to two source individuals. We found that using an MXL (NA19664) 16 

and a YRI (NA19190) individual as sources maximizes the number of heterozygous sites in the 17 

Chagyrskaya (PAP Score: 0.94, P-value: 3.683e-4) and Vindija (PAP Score: 0.929, P-value: 18 

8.679e-05) Neanderthals (Figure S37; Table S49). 19 

  20 

In sum, our analyses suggest that some non-Africans carry a mosaic region of archaic ancestry: a 21 

small Denisovan-like haplotype (72kb) embedded in a larger Neanderthal haplotype (742kb), that 22 

was inherited through Neanderthals, who themselves acquired Denisovan ancestry from an earlier 23 

introgression event (Figure S38). This is consistent with the literature, where Denisovan 24 

introgression into Neanderthals is rather common [37, 38]. Thus, we refer to the mosaic haplotype 25 

found in modern humans as the archaic haplotype. 26 

 27 

Discussion 28 

 29 

The study of adaptive archaic introgression has illuminated candidate genomic regions that affect 30 

the health and overall fitness of global populations. In this study, we pinpointed several aspects of 31 

the gene MUC19 that highlight its importance as a candidate to study adaptive introgression: one 32 

of the haplotypes that span this gene in modern humans is of archaic origin; modern humans 33 

inherited this haplotype from Neanderthals, who in turn inherited it from Denisovans; the 34 

haplotype introduced nine missense mutations that are at high frequency in both Indigenous and 35 

Admixed American populations; individuals with the archaic haplotype carry a massive coding 36 

VNTR expansion relative to the non-archaic haplotype, and their functional differences may help 37 

explain how mainland Indigenous Americans adapted to their environments, which remains under-38 

explored. This study adds an example to the growing literature of natural selection acting on 39 

archaic alleles at coding sites, or possibly an example of natural selection acting on human VNTRs, 40 

a developing research frontier [see, 39]. 41 

 42 

A larger implication of our findings is that archaic ancestry could have been a useful source of 43 

standing genetic variation as the early Indigenous American populations adapted to new 44 
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environments, with genes like MUC19 and other mucins possibly mediating important fitness 1 

effects [40]. The variation in the MUC19 coding VNTR in global populations dovetails with this 2 

idea and adds to a growing body of evidence for the important role of structural variants in human 3 

genomics and evolution [41-42]. In American populations, particular haplotypes carrying the most 4 

extreme copy numbers were selected and are now relatively frequent. This VNTR expansion 5 

effectively doubles the functional domain of this mucin, indicating an adaptive role driven by 6 

environmental pressures particular to the Americas. However, we cannot know whether the non-7 

synonymous variants or the VNTR is driving natural selection as they are linked in haplotypes, 8 

and our evidence for positive selection is tied to SNP variation and not to the VNTR itself. 9 

 10 

Another interesting aspect of MUC19 is the evolutionary history of the introgressed region. Our 11 

observation of a 72kb Denisovan haplotype found in Neanderthals and non-African modern 12 

humans that is nested within a larger Neanderthal haplotype, suggests that the smaller Denisovan 13 

haplotype was first introgressed into Neanderthals, who later admixed with modern humans to 14 

introduce the full 742 kb haplotype. While the Altai Neanderthal does not harbor the Denisovan 15 

haplotype at the 72kb region, the other two chronologically younger Neanderthals (Chagyrskaya 16 

and Vindija) do. We phased these younger Neanderthals (see Supplementary Sections S3-S5 in 17 

[51]) and showed that they harbor exactly one Denisovan-like haplotype, which explains why they 18 

exhibit an excess of heterozygosity. The Denisovan-like haplotype in the younger Neanderthals is 19 

also statistically significantly closer to the archaic haplotype present in MXL (Figure S36; Table 20 

S48), providing additional evidence that modern humans obtained this haplotype through an 21 

interbreeding event with Neanderthals. Despite the introgressed archaic haplotype having an 22 

excessive amount of shared alleles with the Altai Denisovan at the 72kb region, the Altai 23 

Denisovan harbors several private mutations—14 and 6 mutations in the homozygous and 24 

heterozygous state respectively—that are absent across all 287 Denisovan-like haplotypes in the 25 

1KG, suggesting that the introgressing Denisovan population may not be closely related to Altai 26 

Denisovan (see Supplemental Section S5; [51]). Indeed, the introgressed haplotype in the 72kb 27 

region is present at low frequencies in other non-African populations including Papuans—where 28 

the genome-wide Denisovan ancestry of Papuans has been estimated to originate from a population 29 

of Denisovans that was not closely related to the Altai Denisovan [33]. Finding two highly 30 

divergent haplotypes maintained in polymorphism in two Neanderthal populations, and finding 31 

the archaic haplotype at high frequencies in American populations but not at fixation may point to 32 

a balanced polymorphism [45]. More generally, the evolutionary history of this region suggests a 33 

complex history that involves recurrent introgression and natural selection, and it parallels 34 

complex introgression patterns from other regions of the genome [46–48].  35 

 36 

Finally, we find a single San individual who carries the nine Denisovan missense variants in 37 

heterozygous form, uniquely among all African individuals considered here. The sequence 38 

divergence between this San haplotype and the archaic MXL haplotype at the 72kb region is high 39 

(0.001342), further supporting the origin of the archaic haplotype in non-Africans as introgressed. 40 

Khoe-San populations are estimated to have diverged from other African groups 120 thousand 41 

years ago [43]. Finding a divergent haplotype in the San is consistent with a previous study [44], 42 

as ~1% of their ancestry can be attributed to lineages diverged from the main human lineage 43 

beyond 1 million years ago. We note that this San individual does not harbor an extended number 44 

of repeat copies of the VNTR (301 copies), which further supports the importance of the VNTR 45 
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expansion in the Americas. Furthermore, we cannot determine if this variant found its way into 1 

the San through modern admixture of non-African ancestry into Sub-Saharan populations. 2 

 3 

Perhaps the largest knowledge gap concerning why the archaic haplotype of MUC19 would be 4 

under positive selection is its underlying function. Mucins are secreted glycoproteins responsible 5 

for the gel-like properties and the viscosity of the mucus [49]. Mucins are characterized by proline, 6 

threonine, and serine (PTS) tandem repeats, which in MUC19 are structured into 30bp tandem 7 

repeats. The massive difference in copy numbers of the 30bp PTS tandem repeat domains carried 8 

by individuals harboring the Human-like and archaic haplotypes strongly suggests MUC19 9 

variants differ in function as a consequence of different molecular binding affinities between 10 

variants. This is the case in other mucins, such as MUC7, where variants carrying different 11 

numbers of PTS repeats exhibit different microbe-binding properties [40]. If the two variants of 12 

MUC19 also have differential binding properties, this would lend support to why positive selection 13 

would increase the frequency of the archaic haplotype in American populations. Yet, there is 14 

limited medical literature associating variation in MUC19 with human fitness. Further 15 

experimental validation of how VNTRs and the Denisovan-specific missense mutations affect 16 

MUC19 function is necessary to understand the effect the archaic haplotype may exert on the 17 

translated MUC19 protein, and how it modifies its function during the formation of mucin 18 

polymers. 19 

  20 

Methods developed in evolutionary biology can be useful for identifying candidate variants 21 

underlying biological functions. Future functional and evolutionary studies of the MUC19 region 22 

will not only provide insight into specific mechanisms of how variation at this gene confers a 23 

selective advantage, but also specific evolutionary events that occurred in the history of humans. 24 

Beyond improving our understanding of how archaic variants facilitated adaptation in novel 25 

environments, our findings also highlight the importance of studying archaic introgression in 26 

understudied populations, such as admixed populations from the Americas [50]. Genetic variation 27 

in American populations is less well-characterized than other global populations; it is difficult to 28 

deconvolve Indigenous ancestries from European, African, and—to a lesser extent—South Asian 29 

ancestries, following 500 years of European colonization [29]. This knowledge gap is exacerbated 30 

by the high cost of performing genomic studies, building infrastructure, and generating scientific 31 

capacity in Latin America—but it is a worthwhile investment—as our study shows that leveraging 32 

these populations can lead to the identification of exciting candidate loci that can expand our 33 

understanding of adaptation from archaic standing variation. 34 

 35 
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 4 

Figure 1. Signals of adaptive introgression at MUC19. 5 

(A) Density of introgressed tracts inferred using hmmix that overlap MUC19 for the 1KG (black 6 

outline) and stratified by superpopulation—Admixed Americans (AMR) in bluish green, South 7 

Asians (SAS) in reddish purple, East Asians (EAS) in blue, and Europeans (EUR) in vermillion. 8 

The gray shaded region corresponds to the focal 72kb region, which is the densest contiguous 9 

region of introgressed tracts longer than 40kb. (B) UAFR,B,Denisovan(1%, 30%, 100%) values for each 10 

non-African population, stratified by superpopulation, per NCBI Refseq gene (gray X’s), where 11 

MUC19 is denoted as a yellow X. (C) Population Branch Statistic (PBS) for the Mexican 12 

population (MXL) in the 1KG using the Han Chinese (CHB) and Central European (CEU) 13 

populations in the 1KG as control populations (PBSMXL:CHB:CEU) for all SNPs in the 742kb region 14 

that corresponds to the longest introgressed tract found in MXL. The orange squares represent 15 

Denisovan-specific SNPs, the sky blue diamonds represent Neanderthal-specific SNPs, and the 16 

reddish purple pentagons represent shared archaic SNPs—note that all of these archaic SNP 17 

partitions are rare or absent in Africa and present in MXL (see [51]). The black triangles represent 18 

SNPs present across both modern human populations and the archaics, while the gray circles 19 

represent SNPs private to modern humans. The black dashed line represents the 99.95th percentile 20 

of PBSMXL:CHB:CEU scores for all SNPs genome-wide, and the gray shaded region corresponds to 21 

the focal 72kb region—the same gray shaded region in panel A. The MUC19 and LRRK2 genes 22 

are fully encompassed within the 742kb region, while ~65% of SLC2A13 overlaps the 742kb 23 

region. Below the PBSMXL:CHB:CEU points are the introgressed tracts for MXL (bluish green), CHB 24 

(blue), and CEU (vermillion) sorted from shortest to longest within each population.  25 

  26 
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Figure 2. Copy number variation of a 30 base pair variable number tandem repeat motif in 1 

the 1KG individuals at MUC19.  2 

(A) Average number of repeat copies between an individual’s two chromosomes for archaic 3 

individuals (black X’s), individuals who do not harbor an introgressed tract (sky blue X’s), 4 

individuals with one introgressed tract (yellow X’s), and individuals with two introgressed tracts 5 

(bluish green X’s) determined by the number of introgressed tracts inferred using hmmix  6 

overlapping the MUC19 VNTR, for each population in the 1KG. The mean number of repeat 7 

copies stratified by population is denoted by a grey diamond and the average number of repeat 8 

copies amongst individuals who carry exactly zero, one, and two introgressed tracts are denoted 9 

by sky blue, yellow, and bluish green circles respectively and are stratified by population. The 10 

black dashed line denotes the outlier threshold, which corresponds to the 95th percentile of the 11 

1KG repeat copies distribution. Repeat copies appeared similar to the reference human genome 12 

(287.5 copies) in the Altai Denisovan (296 copies) and Altai (379 copies), Vindija (268 copies), 13 

and Chagyrskaya (293 copies) Neanderthal genomes. (B) The relationship between the average 14 

number of repeat copies between a MXL individual’s two chromosomes and the number of 15 

introgressed tracts overlapping the MUC19 VNTR region. Note that there is a significant positive 16 

correlation between the number of repeat copies and the number of introgressed tracts present in 17 

an MXL individual (Spearman’s 𝜌: 0.885; P-value: 2.839e-22). (C) The relationship between the 18 

average number of repeat copies between a MXL individual’s two chromosomes and the 19 

proportion of Indigenous American ancestry at the  MUC19 VNTR region. Note that there is a 20 
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significant positive correlation between the number of repeat copies and the proportion of 1 

Indigenous American ancestry in an MXL individual (Spearman’s 𝜌: 0.438; P-value: 2.940e-4). 2 
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Figure 3. Frequency and protein sequence context of the nine Denisovan-specific missense 1 

mutations at the 72kb region in MUC19. 2 

(A) Heatmap depicting the frequency of Denisovan-specific missense mutations (columns) 3 

amongst the four archaic individuals (n = 2; per archaic individual), 23 ancient pre-European 4 

colonization American individuals (n = 46), the entire African superpopulation in the 1KG 5 

(AFR; n = 1008), and admixed American populations in the 1KG—Mexico (MXL; n = 128), 6 

Peru (PEL; n = 170), Colombia (CLM; n = 188), Puerto Rico (PUR; n = 208)—where the “n” 7 

represents the number of chromosomes in each population. The left hand side of each row 8 

denotes one of the nine Denisovan-specific missense mutations where the position and amino 9 

acid substitution (hg19 reference amino acid → Denisovan-specific amino acid). The text in 10 

each cell represents the Denisovan-specific missense mutation frequency, and for the ancient 11 

Americans we also denote the 95% confidence interval. For the archaic individuals, each cell 12 

is denoted with the individual’s amino acid genotype and each AFR cell is denoted by the 13 

homozygous hg19 reference amino acid genotype. (B) Denisovan-specific missense mutations 14 

in the context of the MUC19 protein sequence. The first 2000 residues are depicted as the main 15 

plot, the full protein sequence is displayed in the smaller subplot. Conserved exons are colored as 16 

sky blue and the UniProt domains are colored orange, where the text corresponds to specific 17 

UniProt domain identity—Von Willebrand factor (VFW) D domains, VWFC domain, and C-18 

terminal cystine knot-like (CTCK) domain. Each of the nine Denisovan-specific missense 19 

mutations are denoted by their rsID, plotted with respect to residue index on the x-axis and their 20 

corresponding Grantham score on the y-axis. The color of each Denisovan-specific missense 21 

mutation denotes whether the mutation has a Grantham score less than 100 (black) or a Grantham 22 
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score greater than 100 (vermillion, and the marker denotes whether their respective exon has a 1 

negative PhyloP score (diamonds) or a positive PhyloP score (crosses). 2 
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Figure 4. Haplotype divergence at the 72kb region in MUC19.  1 

(A) Distribution of haplotype divergence—number of pairwise differences between a modern 2 

human haplotype and an archaic genotype normalized by the effective sequence length—with 3 

respect to the Altai Denisovan for all individuals in the Admixed American (AMR, black bars) 4 

and African (AFR, gray bars) superpopulations. (B) Joint distribution of haplotype divergence 5 

from the Altai Denisovan (x-axis) and the Neanderthals (y-axis)—Altai Neanderthal in sky blue, 6 

Chagyrskaya Neanderthal in yellow, and Vindija Neanderthal in reddish purple—for all 7 

individuals in the AMR (circles) and AFR (triangles) superpopulations. The three grey ellipses (𝛼, 8 

𝛽, and 𝛾) represent the three distinct haplotype groups segregating in the 1KG. The 𝛼 ellipse 9 

represents the introgressed haplotypes which exhibit a low sequence divergence from the Altai 10 

Denisovan, a high sequence divergence from the Altai Neanderthal, and an intermediate sequence 11 

divergence—higher compared to the Altai Denisovan but lower compared to the Altai 12 

Neanderthal—with respect to the Chagyrskaya and Vindija Neanderthals. The 𝛽 ellipse represents 13 

the non-introgresssed haplotypes which exhibit a high sequence divergence from the Altai 14 

Denisovan, a low sequence divergence from the Altai Neanderthal, and an intermediate sequence 15 

divergence—lower compared to the Altai Denisovan but higher compared to the Altai 16 

Neanderthal—with respect to the Chagyrskaya and Vindija Neanderthals. Note that the AMR 17 

haplotype within the 𝛾 ellipse is positioned at intermediate sequence divergence values with 18 

respect to the 𝛼 and 𝛽 ellipses, which represents one of seven recombinant haplotypes segregating 19 

in the 1KG (see Figure S44 in [51]). 20 
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Figure 5. The high levels of heterozygosity in the Chagyrskaya and Vindija Neanderthals 1 

are explained by Denisovan-like ancestry at the 72kb region in MUC19.  2 

(A) Number of heterozygous sites at the 72kb region in MUC19 per archaic individual (black X’s), 3 

1KG individuals without the introgressed haplotype (sky blue X’s), 1KG individuals with exactly 4 

one copy of the introgressed haplotype (yellow X’s), 1KG individuals with a recombinant 5 

introgressed haplotype (vermillion X’s), and 1KG individuals with two copies of the introgressed 6 

haplotype (bluish green X’s). The average number of heterozygous sites stratified by population 7 

are denoted by the grey diamonds and the average number of heterozygous sites amongst 8 

individuals who carry exactly zero, one, and two introgressed haplotypes are denoted by sky blue, 9 

yellow, and bluish green circles respectively and are stratified by population. (B) Haplotype matrix 10 

of the 233 segregating sites (columns) amongst the focal MXL individual (NA19664) with two 11 

copies of the introgressed haplotype; the focal YRI individual (NA19190) without the introgressed 12 

haplotype; the Altai Denisovan; the Altai Neanderthal; and the two phased haplotypes for the 13 

Chagyrskaya and Vindija Neanderthals, respectively. Cells shaded blue denote the hg19 reference 14 

allele, cells shaded reddish purple denote the alternative allele, and cells shaded white represent 15 

sites that did not pass quality control in the given archaic individual. Note that the focal MXL and 16 

YRI individuals are homozygous for every position in the 72kb region in MUC19 and that the 17 

heterozygous sites for the Altai Denisovan and Altai Neanderthal—six and one heterozygous sites 18 

respectively—are omitted. 19 
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