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Abstract 11 

Everyday perceptual tasks require sensory stimuli to be dynamically encoded and analyzed 12 
according to changing behavioral goals. For example, when searching for an apple at the 13 
supermarket, one might first find the Granny Smith apples by separating all visible apples into 14 
the categories “green” and “non-green”. However, suddenly remembering that your family 15 
actually likes Fuji apples would necessitate reconfiguring the boundary to separate “red” from 16 
“red-yellow” objects. This flexible processing enables identical sensory stimuli to elicit varied 17 
behaviors based on the current task context. While this phenomenon is ubiquitous in nature, 18 
little is known about the neural mechanisms that underlie such flexible computation. 19 
Traditionally, sensory regions have been viewed as mainly devoted to processing inputs, with 20 
limited involvement in adapting to varying task contexts. However, from the standpoint of 21 
efficient computation, it is plausible that sensory regions integrate inputs with current task goals, 22 
facilitating more effective information relay to higher-level cortical areas. Here we test this 23 
possibility by asking human participants to visually categorize novel shape stimuli based on 24 
different linear and non-linear boundaries. Using fMRI and multivariate analyses of 25 
retinotopically-defined visual areas, we found that shape representations in visual cortex 26 
became more distinct across relevant decision boundaries in a context-dependent manner, with 27 
the largest changes in discriminability observed for stimuli near the decision boundary. 28 
Importantly, these context-driven modulations were associated with improved categorization 29 
performance. Together, these findings demonstrate that codes in visual cortex are adaptively 30 
modulated to optimize object separability based on currently relevant decision boundaries.  31 
 32 
Keywords: context-dependent processing, decision making, human visual cortex, decision 33 
boundaries, task modulations, neural mechanisms 34 
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Introduction 35 

Perceptual categorization is a fundamental cognitive ability that allows us to organize 36 
and understand the myriad stimuli encountered in our sensory environment. By forming 37 
categories, observers are able to generalize existing knowledge to new incoming inputs, 38 
facilitating efficient perception and decision-making (Bruner, 1957; Freedman & Assad, 2016). 39 
Within the visual system, categories can capture divisions within the natural structure of a 40 
stimulus space (Rosch et al., 1976) or can reflect the learning of arbitrary discrete boundaries 41 
along stimulus dimensions that would otherwise be represented continuously (Ashby & Maddox, 42 
2005). At the same time, categorization in the real world is a highly dynamic cognitive process, 43 
in which the category membership of stimuli may change over time. For example, when making 44 
a categorical decision about produce at the farmer’s market, depending on our goals we might 45 
think of carrots in the same category as lettuce (vegetables) or the same category as tangerines 46 
(orange colored items). Perceptual categorization is thus also tightly connected with flexible 47 
prioritization of information based on current task demands (Biederman et al., 1973; McAdams 48 
& Maunsell, 1999; Desimone & Duncan, 1995). Within contexts where task goals change 49 
dynamically over time, the neural mechanisms supporting categorization of sensory stimuli are 50 
not yet understood. 51 

Past work has provided some insight into how category learning impacts representations 52 
of sensory stimuli. Behaviorally, learning to categorize stimuli in a continuous feature space can 53 
lead to perceptual changes such as an increase in sensitivity to changes along a relevant 54 
stimulus dimension, and an increase in perceptual discriminability of stimuli belonging to 55 
different categories (Goldstone, 1994; Livingston et al., 1998; Newell & Bülthoff, 2002). Such 56 
changes are also reflected in the brain – electrophysiology studies in macaques have 57 
demonstrated that after learning of a categorization task, neurons in inferotemporal cortex (ITC) 58 
become more strongly selective for diagnostic dimensions of stimuli (Sigala & Logothetis, 2002), 59 
and neural populations in ITC also contain information encoding the learned category status of 60 
stimuli (Meyers et al., 2008; Tanaka, 1996). In human functional magnetic resonance imaging 61 
(fMRI) studies, learning to discriminate object categories has been shown to increase neural 62 
responses to objects in extrastriate cortex (Gauthier et al., 2000; Op de Beeck et al., 2006) and 63 
lead to sharpening of visual representations as measured with fMRI adaptation (Folstein et al., 64 
2015; Folstein et al., 2013; Jiang et al., 2007). Moreover, recent work has shown that learning a 65 
decision boundary can alter representations of orientation in early visual areas, with 66 
representations becoming biased away from the decision boundary (Ester et al., 2020). At the 67 
same time, other work has suggested that the effects of category status on sensory 68 
representations are more prominent in prefrontal cortex (PFC) than visual areas. This suggests 69 
that the primary role of visual areas may be restricted to perceptual analysis, rather than 70 
decision-related processing  (Freedman et al., 2003; McKee et al., 2014; Meyers et al., 2008). 71 

From an efficient processing perspective, it is plausible that visual areas play a more 72 
active role in decision-making, potentially encoding decision-related variables, task contexts, 73 
choices, or motor outcomes. Such coding would enable visual areas to process sensory inputs 74 
in a manner conducive to downstream readout. Emerging evidence from rodent studies 75 
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supports this view. For instance, activity that was thought to reflect random fluctuations in neural 76 
representations within sensory areas has been linked to choice-related motor activities and 77 
decision outcomes (Musall et al., 2019; Stringer et al., 2019). Furthermore, recent findings 78 
indicate that early sensory areas robustly encode task context variables, such as expectations 79 
and decision rules, during dynamic decision-making tasks (Ebrahimi et al., 2022; Findling et al., 80 
2023). Yet, the extent to which human sensory areas similarly code for task-related variables 81 
and adapt their representations based on contextual changes is unclear.  82 

In addition, the mechanisms by which categorical decision-making flexibly shapes neural 83 
representations, particularly in tasks necessitating the switching between distinct decision rules, 84 
are not well understood. Prior work has demonstrated that neural populations in PFC can 85 
dynamically encode different boundaries depending on the currently relevant task rule (Cromer 86 
et al., 2010; Roy et al., 2010), providing one potential neural mechanism for dynamic decision-87 
making. Similarly, a human neuroimaging study using novel objects suggested that 88 
representations in frontoparietal areas can encode different category distinctions between 89 
objects depending on their task relevance (Jackson et al., 2017). This study also found 90 
evidence for similar (albeit weaker) effects in the lateral occipital complex (LOC), suggesting 91 
that representations in visual areas may also be modified by task-relevance. Thus, it remains an 92 
open question whether and how varying task contexts interact with representations in visual 93 
cortex, as well as how these modulations may contribute to downstream task performance. 94 

Here we address these gaps by investigating how neural responses in human visual 95 
cortex flexibly adapt to dynamic task contexts, as induced by varying categorization rules. We 96 
hypothesized that task context modulates sensory representations such that changes in the 97 
decision boundary are actively integrated during the early analysis of sensory information. To 98 
examine the effects of categorization within an abstract stimulus space, we generated a two-99 
dimensional space of shape stimuli (Op de Beeck et al., 2001; Zahn & Roskies, 1972) that were 100 
viewed by human participants undergoing fMRI scanning. Participants categorized shapes 101 
according to different rules: linear boundaries (Linear-1 and Linear-2 tasks) or a non-linear 102 
boundary (Nonlinear task). These task contexts were interleaved across scanning runs, 103 
necessitating real-time cognitive adaptation to distinct categorization requirements applied to 104 
physically identical stimuli. Each task incorporated both "easy" and "hard" trials drawn from 105 
distinct locations in the shape space, enabling us to concurrently examine the influence of 106 
perceptual difficulty on decision processes. Using multivariate decoding methods in 107 
retinotopically-defined visual areas, we measured shape representations in each categorization 108 
task and examined how representations differed across task contexts. We predicted that shape 109 
representations would be more discriminable across a given decision boundary when that 110 
boundary was relevant for the current task. Findings from our neural data are in line with this 111 
account. Importantly, we further show that an increase in neural discriminability is linked to 112 
improved task performance.  113 
 114 
 115 
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Results 116 

 117 
We trained 10 human participants to perform a shape categorization task while in the 118 

fMRI scanner, with each subject participating in 3 scanning sessions that each lasted 2 hours 119 
(Figure 1A). Shape stimuli varied parametrically along two independent axes, generating a two-120 
dimensional shape space, and each condition of the task required shapes to be categorized 121 
according to either a linear boundary (Linear-1 and Linear-2 tasks) or a nonlinear boundary that 122 
required grouping together of non-adjacent quadrants (Nonlinear task). These different 123 
categorization tasks were performed during different scanning runs within each session, 124 
meaning that participants needed to flexibly apply different decision rules depending on the task 125 
condition for the current run (see Methods). Each task included a mixture of “easy” trials and 126 
“hard” trials. On the “easy” trials, a common set of 16 shapes, making up a 4x4 grid which we 127 
refer to as the main grid (black dots in Figure 1B), were shown in all tasks, while on “hard” trials, 128 
shapes were sampled from portions of the shape space near the active boundary, which made 129 
the current task more challenging (light gray dots in Figure 1B). 130 
 131 

To verify the two-dimensional structure of our shape space, we used an image similarity 132 
analysis based on GIST features (Oliva & Torralba, 2001; see Methods) to assess the 133 
perceptual similarity between shape stimuli. As expected, a principal components analysis 134 
(PCA) performed on the GIST features revealed a two-dimensional grid structure, with the two 135 
shape space axes oriented roughly orthogonal to one another in PC space (Figure 1C). In 136 
addition, measuring the linear separability (based on between-category versus within-category 137 
Euclidean distances; see Methods) of shapes across each category boundary based on GIST 138 
features revealed that shapes were most separable across the Linear-2 boundary, followed by 139 
the Linear-1 boundary, with lowest separability for the Nonlinear boundary (Figure 1D). A similar 140 
pattern was found when computing separability using features from a self-supervised deep 141 
neural network model (SimCLR; T. Chen et al., 2020; see Methods), suggesting that these 142 
relationships held even when considering a broader set of image features. The low separability 143 
of the Nonlinear categories relative to the Linear-1 and Linear-2 categories is consistent with the 144 
Nonlinear boundary being nonlinear in shape space. 145 
 146 
 147 
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 148 
 149 
Figure 1. Stimulus set, task design, and behavioral performance. (A) Two-dimensional shape 150 
space used for categorization tasks in this experiment. Shapes are generated using radial 151 
frequency contours (Op de Beeck et al., 2001; Zahn & Roskies, 1972) that vary along two 152 
independent dimensions, referred to as axis 1 and axis 2. See Methods for more details. (B) 153 
Illustration of the tasks (Linear-1, Linear-2, Nonlinear) performed by participants while in the 154 
fMRI scanner. Points in each plot indicate the positions in shape space that were sampled, and 155 
dotted lines indicate the relevant categorization boundaries for each task. Black dots represent 156 
the 16 positions in the “main grid”, which were sampled on “easy” trials in every task, while light 157 
gray dots represent positions that were sampled on “hard” trials, which differed depending on 158 
the task. Hard trial shape positions were sampled from the region nearest the relevant 159 
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categorization boundary. Different tasks were performed during different scan runs. In each 160 
task, every trial consisted of the presentation of a single shape (1s), and participants were 161 
instructed to respond with a button press indicating which category the presented shape fell 162 
into. See Methods for more details on task design. (C-D) Image similarity analysis: we 163 
computed activations from two computer vision models, GIST (Oliva & Torralba, 2001) and 164 
SimCLR (T. Chen et al., 2020) for each of the 16 main grid shape images. (C) Visualization of a 165 
principal components analysis (PCA) performed on the GIST model features, where each 166 
plotted point represents one shape in PC space, colored according to the coordinate value 167 
along axis 1 (left) or axis 2 (right). (D) Quantification of the separability of shape categories 168 
within each feature space, computed based on the ratio of between-category to within-category 169 
Euclidean distance values. See Methods for more details. (E) Behavioral accuracy (left) and 170 
response time (RT; right) in each task. Dots in different colors represent individual participants; 171 
open circles and error bars represent the mean ± SEM across 10 participants. (F) Accuracy 172 
(left) and RT (right) for each task separated into “easy” and “hard” trials, where easy refers to 173 
trials sampling the 16 shapes in the main grid (black dots in B), and hard refers to trials 174 
sampling more challenging portions of the shape space for each task (light gray dots in B). Gray 175 
lines represent individual participants, open circles and error bars represent the mean ± SEM 176 
across 10 participants. 177 
 178 
 179 

Across participants, behavioral accuracy (Figure 1E) was highest for the Linear-2 task 180 
(0.86 ± 0.02; mean ± SEM across 10 participants), followed by the Linear-1 task (0.83 ± 0.01) 181 
and the Nonlinear task (0.80 ± 0.01). A repeated measures ANOVA revealed a main effect of 182 
task (F(2,18) = 13.22, p < 0.001; p-values obtained using permutation test; see Methods), and 183 
post-hoc tests showed that accuracy was significantly higher for both of the linear tasks versus 184 
the Nonlinear task (Linear-1 vs. Nonlinear: t(9) = 2.19, p = 0.024; Linear-2 vs. Nonlinear: t(9) = 185 
4.98, p = 0.002; paired t-tests with permutation; see Methods), and higher for the Linear-2 task 186 
versus the Linear-1 task (Linear-1 vs. Linear-2: t(9) = -3.00, p = 0.001). This advantage for the 187 
Linear-2 task is consistent with the high relative separability across the Linear-2 boundary 188 
based on image features shown in the previous analysis (Figure 1D). In terms of response times 189 
(RTs), a significant main effect of task was also found (F(2,18) = 3.94, p = 0.036; p-values 190 
obtained using permutation test). No difference in RTs between the Linear-1 and Linear-2 tasks 191 
was observed, but RTs were significantly slower for the Nonlinear task than the Linear-1 task 192 
(t(9) = -3.08, p = 0.012). In addition to these differences across tasks, we also observed a 193 
consistent difference between performance on the easy and hard trials within each task (Figure 194 
1F), which was expected based on the task design. Accuracy was significantly higher on easy 195 
versus hard trials within each task (Linear 1: t(9) = 11.05, p = 0.002; Linear-2: t(9) = 7.88, p = 196 
0.002; Nonlinear: t(9) = 15.37, p = 0.002), and RT was significantly faster on easy versus hard 197 
trials within each task (Linear 1: t(9) = -7.48, p = 0.002; Linear-2: t(9) = -9.38, p = 0.002; Nonlinear: 198 
t(9) = -4.92, p = 0.003).  199 
 200 
 201 
 202 
 203 
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 204 
 205 
Figure 2. Overall classification accuracy for binary and multinomial classifiers. (A-C) A binary 206 
logistic regression classifier was trained to predict the category of the shape shown on each 207 
trial, according to either the Linear-1, Linear-2, or Nonlinear decision rule. (D) A multinomial (16-208 
way) logistic regression classifier was trained to predict the individual shape shown on each 209 
trial. In (A-D), classifiers were trained and tested within each task condition separately, training 210 
using data from the main grid trials only (i.e. black dots in Figure 1B). Different colors indicate 211 
data from different tasks. Plotted values reflect overall prediction accuracy of classifiers for each 212 
task and each ROI, computed using trials from the main grid only. Gray dots represent 213 
individual participants, colored circles and error bars represent the mean ± SEM across 10 214 
participants, horizontal line indicates chance decoding accuracy (1/2 for binary classifier, 1/16 215 
for multinomial). All classification accuracy values were above chance at the participant-216 
averaged level (FDR corrected, q < 0.01); see Methods for more details.  217 
 218 
 219 

Next, we examined the neural representations of shape stimuli in each task, under the 220 
hypothesis that shape representations would differ across task conditions in accordance with 221 
the changing decision boundary. To achieve this we used multivariate classification to analyze 222 
single-trial voxel activation patterns from retinotopically defined ROIs (Figure 2). First, we 223 
trained a series of binary classifiers to predict the category of the shape shown on each trial, 224 
according to each of the three decision boundaries, using data from each task separately 225 
(Figure 2A-C). These binary classifiers provide an estimate of the discriminability of shape 226 
representations in visual cortex across each of the three decision boundaries, within each task 227 
context. Overall, we observed that binary classifier accuracy was highest in early visual areas 228 
V1 and V2, and lower in higher visual areas such as LO2 and IPS, although participant-229 
averaged classification accuracy was significantly above chance for every ROI in every task 230 
(significance evaluated using a permutation test; FDR corrected; all q < 0.01; see Methods). We 231 
also observed that accuracy was highest for the Linear-2 binary classifier (V2 accuracy 232 
averaged across tasks: 0.86 ± 0.02; mean ± SEM across 10 participants), followed closely by 233 
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the Linear-1 classifier (V2 accuracy averaged across tasks: 0.80 ± 0.02), with lowest accuracy 234 
for the Nonlinear classifier (V2 accuracy averaged across tasks: 0.72 ± 0.02). However, the 235 
overall accuracy of these binary classifiers did not differ significantly across tasks: for each 236 
classifier, we performed a two-way repeated measures ANOVA on the classifier values with 237 
factors of ROI and task, and found significant main effects of ROI, but no main effects related to 238 
task (see Supplementary Table 2 for test statistics). 239 

 240 
Given that there was no difference in overall binary classifier accuracy across tasks, we 241 

next performed a more targeted analysis, based on the hypothesis that task-related differences 242 
in category discriminability might be limited to a subset of trials, and therefore would not be 243 
measurable when averaging across all trials. Specifically, we predicted stronger effects for 244 
shapes nearer to the category boundary versus shapes further from the boundary. To test this, 245 
we used the same series of binary classifiers from the previous analysis, but we separated test 246 
trials into two groups based on distance to the boundary: “near” trials consisted of the 8 main 247 
grid shapes that were closest to the classifier boundary, while “far” trials consisted of the 8 248 
shapes further from the boundary (Figure 3, see diagrams on right side). Note that the “near” 249 
group does not include the set of trials that are outside the main grid and closest to the active 250 
boundary in each task (i.e., “hard” trials; light gray dots in Figure 1B), but see Figure 8 for 251 
discussion of this trial group. We then computed accuracy within each of these trial subsets, 252 
using data from the Linear-1 and Linear-2 tasks only. 253 

 254 
 255 
 256 
 257 
 258 
 259 
 260 
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 261 
 262 
Figure 3. Category separability differs across tasks, only for trials near the decision boundary. 263 
Using the binary classifiers that were trained to predict category according to either the Linear-1 264 
or Linear-2 decision rule (see Figure 2A-B), we separately computed accuracy using test set 265 
trials that were either far or near from the classifier boundary. Each panel shows the results for 266 
a different binary classifier (trained to predict either the Linear-1 or Linear-2 category), and 267 
different colors indicate data from different tasks. (A) Accuracy for “far” trials, consisting of the 8 268 
main grid shapes furthest from the classifier boundary (see diagrams on right side of panel for 269 
illustration). (B) Accuracy for “near” trials, consisting of the 8 main grid shapes nearest to the 270 
classifier boundary. In (A-B), the gray dots represent individual participants, colored circles and 271 
error bars represent the mean ± SEM across 10 participants.  272 
 273 
 274 

As predicted, this analysis revealed a difference between near and far trials. Classifier 275 
accuracy was overall higher for far trials versus near trials, which was expected based on the 276 
difference in stimulus discriminability on these trial types. Importantly, we also observed that for 277 
near trials only, there was an interaction between classifier boundary and task, such that the 278 
accuracy of each classifier appeared higher when the classifier matched the boundary that was 279 
currently active in the task. This effect was most pronounced in early areas such as V2. We 280 
examined this pattern by performing a three-way repeated measures ANOVA on the classifier 281 
accuracy values for near trials, which revealed significant main effects of ROI, Task, and 282 
Boundary, as well as a Task x Boundary interaction (ROI: F(7,63) = 65.53, p < 0.001; Task: F(1,9) = 283 
5.37, p = 0.044; Boundary: F(1,9) = 9.33, p = 0.014; Task x Boundary: F(1,9) = 8.99, p = 0.011; p-284 
values obtained using permutation test; see Supplementary Table 3 for complete set of test 285 
statistics). We then examined each classifier boundary separately, which showed that across all 286 
ROIs, the accuracy of the Linear-2 classifier for near trials was higher when using data from the 287 
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Linear-2 task versus the Linear-1 task (two-way repeated measures ANOVA; ROI: F(7,63) = 288 
50.00, p < 0.001; Task: F(1,9) = 10.30, p = 0.011; ROI x Task: F(7,63) = 0.83, p = 0.570). At the 289 
single ROI level, this difference was significant in V2 (t(9) = -3.27, p = 0.009; paired t-test with 290 
permutation; see Methods), and V3 (t(9) = -2.80, p = 0.024). However, when examining the 291 
accuracy of the Linear-1 classifier across tasks, no significant difference was observed (two-way 292 
repeated measures ANOVA; ROI: F(7,63) = 42.38, p < 0.001; Task: F(1,9) = 0.05, p = 0.828; ROI x 293 
Task: F(7,63) = 0.75, p = 0.627). Overall, these results support the idea that on near trials, shape 294 
representations may be modified adaptively to become more separable across the task-relevant 295 
boundary, particularly during the Linear-2 task. Notably, performing the same test on the 296 
classifier accuracy values from far trials showed no significant interaction between task and 297 
classifier boundary (see Supplementary Table 3), suggesting that the modulatory effect of task 298 
on visual representations was limited to trials closer to the decision boundary. 299 

 300 
To evaluate whether a similar interaction between task, boundary and distance was present for 301 
the Nonlinear boundary, we performed a similar analysis for the Nonlinear binary classifier 302 
(Figure 4). Specifically, we computed Nonlinear classifier accuracy, separately for trials that 303 
were near versus far from the Nonlinear decision boundary. In this case, however, we did not 304 
observe any consistent differences in classifier accuracy across tasks, for either near trials (two-305 
way repeated measures ANOVA; ROI: F(7,63) = 45.99, p < 0.001; Task: F(2,18) = 0.19, p = 0.829; 306 
ROI x Task: F(14,126) = 0.77, p = 0.696), or far trials (two-way repeated measures ANOVA; ROI: 307 
F(7,63) = 59.44, p < 0.001; Task: F(2,18) = 1.01, p = 0.380; ROI x Task: F(14,126) = 0.66, p = 0.804).  308 

 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 

 329 
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 330 
 331 
Figure 4. Separability of representations across the Nonlinear boundary does not differ 332 
significantly across tasks. We computed classifier accuracy for the Nonlinear classifier (Figure 333 
2C), separately for trials near versus far from the category boundary. (A) Accuracy computed 334 
using “far” trials, meaning the four points in the main grid that fell furthest from the two category 335 
boundaries (i.e., four corners of the shape space grid). (B) Accuracy computed using “near” 336 
trials, meaning the 12 points in the main grid that fell nearest to either of the two category 337 
boundaries. In (A-B), the gray dots represent individual participants, colored circles and error 338 
bars represent the mean ± SEM across 10 participants. 339 
 340 
 341 
 Next, we investigated visual cortex representations at a finer level of granularity, by 342 
training a 16-way multinomial classifier (Figure 2D). In contrast to the binary classifier analysis, 343 
which reduces all stimuli to two discrete categories, this multinomial classifier treats each of the 344 
individual shapes as a distinct category, and therefore may be able to pick up on more fine-345 
grained changes to the overall representational space that occur across tasks. As before, we 346 
trained and tested this classifier using data from each task separately. We observed that overall 347 
16-way classification accuracy was highest in V2 (16-way accuracy averaged across tasks: 0.34 348 
± 0.04; mean ± SEM across 10 participants), followed by V1 (0.32 ± 0.05) and V3 (0.27 ± 0.03). 349 
Participant-averaged classification accuracy was significantly above chance for every ROI in 350 
every task (significance evaluated using a permutation test; FDR corrected; all q < 0.01; see 351 
Methods).  352 
 353 

To characterize the neural shape space, we used the output of the 16-way classifier to 354 
compute a confusion matrix for each ROI and for each task, which captures how often the 355 
classifier assigned each shape label to each shape in the test dataset (Figure 5; see Methods). 356 
For V1, this confusion matrix revealed that shape confusability was related to distance in shape 357 
space, with the classifier tending to make more errors between shapes that were adjacent in 358 
shape space (off-diagonal structure in Figure 5A). This relationship with distance can also be 359 
seen by plotting the proportion of predictions as a function of the distance between predicted 360 
and actual shape space coordinates (Figure 5B). Importantly, the distances between shape 361 
space points were not specified in the construction of the classifier, where all 16 points were 362 
treated as independent categories. Thus, the emergence of this structure in the classifier 363 
confusion matrix provides evidence for a two-dimensional representation of the shape space 364 
grid in V1. A similar pattern was seen in all other ROIs tested. 365 
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 366 
 367 
Figure 5. Classifier confusion matrices suggest restructuring of shape representations between 368 
the Linear-1 and Linear-2 tasks. (A) Classifier confusion matrices for V1 in each task, where 369 
each row represents the set of trials on which a given shape was actually shown, and the 370 
columns represent the proportion of those trials that the classifier predicted as having each of 371 
the 16 shape labels (each row sums to 1). Confusion matrices were computed using main grid 372 
trials only, and are averaged across 10 participants. (B) A simplified view of the classifier 373 
confusion data for V1: we computed the proportion of trials on which the actual and predicted 374 
shapes were separated by a given distance in shape space. Colored lines and shaded error 375 
bars indicate mean ± SEM across 10 participants. (C) Template matrices for the Linear-1 and 376 
Linear-2 tasks, representing the pattern of confusability expected for a perfect binary 377 
representation of each decision boundary. In A and C, the axis labels are coordinate pairs which 378 
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represent the position of stimuli in shape space: (axis 1 coordinate, axis 2 coordinate). These 379 
are analogous to the x and y coordinates in Figure 1B. The Linear-1 template distinguishes 380 
stimuli based on their axis 1 coordinate (x), while the Linear-2 template distinguishes stimuli 381 
based on their axis 2 coordinate (y).  (D) The similarity (Pearson correlation coefficient, z-382 
transformed) between actual and template confusion matrices for each task and each ROI. Gray 383 
dots represent individual participants, colored circles and error bars represent the mean ± SEM 384 
across 10 participants. See Supplementary Figure 1 for an analogous analysis using a template 385 
for the Nonlinear task.  386 
 387 

 388 
Next, we examined how well the neural shape space measured in each task aligned with 389 

each decision rule. To examine this, we first constructed “template” confusion matrices for the 390 
Linear-1 and Linear-2 boundaries, where each template had 1 for shape pairs that were on the 391 
same side of the category boundary for that task and 0 for shape pairs that were on different 392 
sides (Figure 5C). We then correlated these template matrices with the real confusion matrices 393 
for each task (Figure 5D). This analysis revealed that the similarity of confusion matrices to 394 
each template differed depending on task. A three-way repeated measures ANOVA on the z-395 
transformed template similarity values showed main effects of ROI and Template, as well as a 396 
significant ROI x Template interaction and a significant Task x Template interaction (ROI: F(7,63) 397 
= 46.42, p < 0.001; Task: F(1,9) = 8.06, p = 0.020; Template: F(1,9) = 21.05, p = 0.001; ROI x Task: 398 
F(7,63) = 1.41, p = 0.217; ROI x Template: F(7,63) = 3.25, p = 0.004; Task x Template: F(1,9) = 8.89, 399 
p = 0.015; ROI x Task x Template: F(7,63) = 0.97, p = 0.461; p-values obtained using permutation 400 
test; see Methods). Evaluating the similarity values for each template separately, we found that 401 
across all ROIs, the Linear-2 template was significantly more similar to confusion matrices 402 
computed from the Linear-2 task versus the Linear-1 task (two-way repeated measures 403 
ANOVA; ROI: F(7,63) = 31.99, p < 0.001; Task: F(1,9) = 15.62, p = 0.003; ROI x Task: F(7,63) = 0.97, 404 
p = 0.467). Post-hoc tests showed that the difference in similarity to the Linear-2 template 405 
between the Linear-2 and Linear-1 tasks was significant in LO1 (t(9) = -2.93, p = 0.007; paired t-406 
test with permutation; see Methods). These findings suggest that shape representations in LO1 407 
were more aligned with the Linear-2 template when the Linear-2 boundary was relevant than 408 
when it was irrelevant for the present task. However, the similarity of confusion matrices to the 409 
Linear-1 template did not differ significantly across tasks (two-way repeated measures ANOVA; 410 
ROI: F(7,63) = 32.57, p < 0.001; Task: F(1,9) = 0.49, p = 0.502; ROI x Task: F(7,63) = 1.53, p = 411 
0.175). Additionally, when we constructed a template for the Nonlinear task, we did not observe 412 
a difference in the similarity of confusion matrices to the Nonlinear template across tasks 413 
(Supplementary Figure 1). Together, these results suggest that shape representations in visual 414 
cortex during our task may reorganize in a way that reflects the current decision boundary and 415 
shifting cognitive demands. 416 
 417 
 418 
 419 
 420 
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 421 
Figure 6. Illustration of how classifier “confidence” was computed with respect to each binary 422 
decision boundary. (A) Linear-1 confidence, or confidence with respect to the Linear-1 category 423 
boundary, was computed based on the difference between the total probability assigned by the 424 
16-way classifier to each side of the boundary (see Methods). Left and right panels represent 425 
data from V1 in the Linear-1 and Linear-2 tasks, respectively, averaged across all participants. 426 
In each of the plots, each square represents a bin of shape space positions in the test dataset, 427 
and the color indicates the average confidence assigned to the correct category for that test trial 428 
(red) versus the incorrect category (blue). Arrows labeled “easy” and “hard” indicate the trial 429 
types, as in Figure 1B; the “hard” trial group was only used to generate Figure 8. (B) Same as 430 
A, but showing Linear-2 confidence. An analogous procedure was also used to compute 431 
Nonlinear confidence; see Methods. 432 
 433 
 434 

As in the binary classifier analysis, we then asked whether these representational 435 
changes were more pronounced for shapes nearer to the category boundary than shapes 436 
further from the boundary. We again divided the trials into near and far groups based on 437 
distance to the boundary. To measure the category separability of shapes in each of these 438 
distance bins, we computed a continuous measure we refer to as classifier confidence (Figure 439 
6). Confidence is a single-trial measure, computed with respect to each of the category 440 
boundaries separately, and was computed by taking the output of the 16-way classifier 441 
described above and comparing the total probability assigned by the classifier to points on each 442 
side of each boundary. Larger positive values indicate higher separability of shapes across the 443 
boundary of interest. We refer to these measures, with respect to each boundary, as Linear-1 444 
confidence, Linear-2 confidence, and Nonlinear confidence.  445 
 446 
 447 
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 448 
 449 
Figure 7. Discriminability of Linear-1 and Linear-2 shape categories depends on task and 450 
proximity to category boundaries. To obtain a continuous estimate of shape category 451 
discriminability, we used our 16-way multinomial classifier (see Figure 2D) to compute classifier 452 
confidence toward the correct binary category on each trial (see Figure 6). Confidence was 453 
computed with respect to the Linear-1 categorization boundary (Linear-1 confidence; left) or the 454 
Linear-2 categorization boundary (Linear-2 confidence; right). (A) Confidence computed using 455 
“far” trials, meaning the 8 points in the main grid that fell furthest from the category boundary of 456 
interest. (B) Confidence computed using “near” trials, meaning the 8 points in the main grid that 457 
fell nearest to the boundary of interest. In (A-B), the gray dots represent individual participants, 458 
colored circles and error bars represent the mean ± SEM across 10 participants. For an 459 
analogous version of this analysis based on a binary classifier, see Supplementary Figure 2. 460 
 461 

We then compared Linear-1 confidence and Linear-2 confidence across the Linear-1 462 
and Linear-2 tasks (Figure 7). Overall, both types of confidence were highest for trials furthest 463 
from the boundary (Figure 7A), followed by near trials (Figure 7B). This pattern is expected 464 
given that shapes further from the boundary are more distinctive from one another, while 465 
shapes nearer to the boundary are more ambiguous. In addition, this analysis revealed effects 466 
of task condition that differed for near and far trials. For trials in the far group, a three-way 467 
repeated measures ANOVA showed main effects of ROI and confidence boundary (i.e., Linear-468 
1 confidence versus Linear-2 confidence), but no main effect of task or interaction between task 469 
and boundary (Supplementary Table 4), suggesting that discriminability of shapes across the 470 
Linear-1 and Linear-2 boundaries did not differ across tasks for this group of trials. For the near 471 
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trials, however, there was also a significant interaction between task and boundary 472 
(Supplementary Table 4). When each boundary was examined separately for each of these trial 473 
groups, we found a main effect of task on Linear-2 confidence for the near trials (two-way 474 
repeated measures ANOVA on near trials; ROI: F(7,63) = 30.05, p < 0.001; Task: F(1,9) = 13.65, p 475 
= 0.005; ROI x Task: F(7,63) = 0.36, p = 0.925), with Linear-2 confidence showing higher values 476 
for the Linear-2 task, across all ROIs, than the Linear-1 task. As with the previous analyses, the 477 
effect of task was larger for the Linear-2 boundary than for the Linear-1 boundary – there was 478 
no main effect of task seen for the Linear-1 confidence values for near trials (ROI: F(7,63) = 23.58, 479 
p < 0.001; Task: F(1,9) = 0.10, p = 0.757; ROI x Task: F(7,63) = 0.62, p = 0.751). As a further test, 480 
we also performed a version of this classifier confidence analysis using the output of the simpler 481 
binary classifiers presented earlier (Supplementary Figure 2). This revealed the same pattern of 482 
results, namely an interaction between the classifier boundary and the task, in which Linear-2 483 
confidence values were significantly higher when computed from the Linear-2 task versus the 484 
Linear-1 task. This indicates that the difference in classifier confidence across tasks is not 485 
dependent on the classifier training method used. 486 

 487 
In addition to comparing confidence across the two linear boundaries, we measured 488 

Nonlinear confidence for the far and near trials in each task (Supplementary Figure 3). As 489 
before, confidence values tracked the distance of shapes from the boundary, with highest 490 
overall confidence observed for far trials. In contrast to the results with Linear-2 confidence, 491 
however, Nonlinear confidence did not show any significant differences across tasks. 492 
 493 

Finally, we evaluated whether the discriminability of shape representations across the 494 
relevant category boundary in each task was associated with behavioral performance. To test 495 
this, we compared classifier confidence for correct versus incorrect trials: focusing here on only 496 
the “hard” trials (see light gray points in Figure 1B), because these had the highest rate of 497 
incorrect responses. To ensure a fair comparison across correct and incorrect trials, we used 498 
bootstrap resampling to match the distribution of stimulus positions sampled in each group of 499 
trials; see Methods for details. As shown in Figure 8, this analysis revealed a significant 500 
difference in classifier confidence between correct and incorrect trials in both the Linear-2 and 501 
the Nonlinear tasks, with confidence tending to be higher for correct trials than incorrect trials, 502 
particularly in early areas V1, V2, and V3. A two-way repeated measures ANOVA with factors of 503 
ROI and correctness revealed a significant main effect of correctness for both the Linear-2 and 504 
Nonlinear tasks, and a significant interaction between ROI x correctness for the Nonlinear task 505 
(Linear-2; ROI: F(7,63) = 10.21, p < 0.001; Correctness: F(1,9) = 6.33, p = 0.031; ROI x 506 
Correctness: F(7,63) = 1.81, p = 0.099; Nonlinear; ROI: F(7,63) = 7.55, p < 0.001; Correctness: F(1,9) 507 
= 8.68, p = 0.016; ROI x Correctness: F(7,63) = 2.82, p = 0.011; p-values obtained using 508 
permutation test; see Methods). At the individual ROI level, confidence was significantly higher 509 
for correct versus incorrect trials in V1 during both the Linear-2 and the Nonlinear tasks (Linear-510 
2; t(9) = 3.62, p = 0.007; Nonlinear; t(9) = 3.39, p = 0.008; paired t-test with permutation; see 511 
Methods), and in V2 during the Linear-2 task (t(9) = 2.91, p = 0.022). The Linear-1 task showed 512 
no significant differences in confidence for correct versus incorrect trials (ROI: F(7,63) = 4.90, p < 513 
0.001; Correctness: F(1,9) = 0.40, p = 0.543; ROI x Correctness: F(7,63) = 0.98, p = 0.453). These 514 
results indicate that the separability of shape representations in early visual cortex across the 515 
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task-relevant category boundary was associated with behavioral performance, at least for two 516 
out of three categorization tasks.   517 
 518 
 519 

 520 
 521 
Figure 8. Task-relevant shape categories are more discriminable on correct versus incorrect 522 
trials. In each task, classifier confidence was computed with respect to the relevant category 523 
boundary for that task. Confidence was computed using “hard” trials only (those not on the main 524 
grid, and nearest the relevant boundary), separately for trials with correct and incorrect 525 
behavioral responses. The set of shape space positions sampled on correct and incorrect trials 526 
was matched using resampling to ensure that the effect was not driven by stimulus differences; 527 
see Methods for details. Gray dots represent individual participants, colored circles and error 528 
bars represent the mean ± SEM across 10 participants. 529 
 530 

Discussion 531 

Our goal was to determine whether and how human visual cortex representations of 532 
shape stimuli are adaptively modulated when switching between distinct task contexts. To test 533 
this, we trained participants to perform a categorization task on shape silhouette stimuli within a 534 
two-dimensional shape space (Figure 1). Participants categorized shapes according to different 535 
categorization rules (Linear-1, Linear-2, Nonlinear) on interleaved fMRI scanning runs, and we 536 
used multivariate decoding to explore how neural representations shift based on decision rules 537 
and the relative positions of shapes within the two-dimensional stimulus space. We showed that 538 
the discriminability of shapes across each linear boundary, as measured by classifier accuracy 539 
and classifier confidence, was higher when that boundary was relevant to the current task. 540 
These effects were most pronounced in early areas V1-V3, and were strongest for shapes 541 
located nearest to the active categorization boundary (Figure 3, Figure 7). We also used a 542 
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confusion matrix analysis to show that shape representations became more aligned with the 543 
Linear-2 boundary when participants were performing the Linear-2 task versus the Linear-1 544 
task, with the largest effect observed in LO1 (Figure 5). Finally, we showed that the 545 
discriminability of shapes across relevant category boundaries was higher on correct versus 546 
incorrect trials, indicating a link with behavioral task performance (Figure 8). Together, these 547 
results demonstrate that performance of a categorization task with a dynamically changing task 548 
boundary is accompanied by changes to neural representations in human visual cortex.  549 

The average accuracy of our classifiers, across tasks, was highest in V2 followed by V1 550 
and V3. This high decoding accuracy in early areas is surprising in light of earlier work 551 
suggesting that higher visual areas like ITC and LOC encode shapes similar to ours (i.e., radial 552 
frequency components (RFC)-defined silhouettes) in a way that matches perceptual similarity 553 
(Drucker & Aguirre, 2009; Op de Beeck et al., 2001), and that LOC is critically involved in shape 554 
computations (Vinberg & Grill-Spector, 2008). Work in non-human primates also indicates that 555 
neurons in ITC, as well as in V4, are more strongly tuned for shape and contour than neurons in 556 
V1 (Connor et al., 2007; DiCarlo & Maunsell, 2000; Pasupathy & Connor, 1999; Tanaka, 1993, 557 
1996). One reason for our observation of higher decoding accuracy in early areas is that our 558 
stimuli were silhouettes presented at a fixed size and position, so invariance to size or position 559 
was not required to encode them accurately. As a result, fine-grained retinotopic and orientation 560 
tuning in areas like V1-V3 was likely sufficient to encode the shapes with high accuracy, without 561 
the need for an explicit – or invariant – contour or shape representation. Importantly, the goal of 562 
our experiment was not to measure abstract representations of shape or contour per se but to 563 
measure how visual representations change in accordance with dynamically varying decision 564 
boundaries, and our relatively simple stimulus set was appropriate for this goal. 565 

The effects of task context on classifier accuracy and classifier confidence (Figure 3, 566 
Figure 7), as well as association of classifier confidence with behavioral performance (Figure 8), 567 
also tended to be strongest in early visual areas. This advantage for early areas may be due in 568 
part to the higher signal-to-noise ratio (SNR) of decoding accuracy in V1-V3, but it may also 569 
suggest that representations in these areas are particularly important for performance of our 570 
decision task. The findings of strong task-dependent effects in early retinotopic areas align with 571 
recent rodent studies, which show that representations within sensory areas contain information 572 
pertinent to task goals, motor outcomes, and prior knowledge about sensory environments 573 
(Ebrahimi et al., 2022; Findling et al., 2023; Mimica et al., 2023; Niell & Stryker, 2010; Stringer 574 
et al., 2019). Extending these findings, our study demonstrates that human visual areas are 575 
more actively involved with decision-related computation than previously thought. Our results 576 
demonstrate that human sensory areas not only code for temporally varying task contexts but 577 
also dynamically integrate this information with incoming sensory inputs to optimize decision 578 
processes. This observation challenges the traditional view that sensory areas are primarily 579 
dedicated to basic sensory processing, suggesting a more multifaceted role in cognitive 580 
computation. 581 

A plausible mechanism for guiding dynamic task coding and context-dependent 582 
representation of sensory inputs in humans may involve the deployment of selective attention. 583 
By flexibly prioritizing processing of relevant stimulus features based on current task goals, 584 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2023.09.11.557257doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557257
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

attention may guide the integration of sensory information with shifting task demands. 585 
Specifically, our observed task-dependent effects in early retinotopic areas are consistent with 586 
the literature on feature-based attention, which has shown that directing attention to simple 587 
visual features can modulate representations in early visual cortex (X. Chen et al., 2012; Foster 588 
& Ling, 2022; Gundlach et al., 2023; Jehee et al., 2011; Liu et al., 2003, 2007; Martinez-Trujillo 589 
& Treue, 2004; Mirabella et al., 2007; Saenz & Boynton, 2003; Serences & Boynton, 2007; 590 
Treue & Maunsell, 1996, 1999; Yoo et al., 2022). By modulating neurons coding for perceptual 591 
features that differentiate between categories, feature-based attention could provide a 592 
mechanism for improving the separability of different stimulus categories (Navalpakkam & Itti, 593 
2007; Scolari et al., 2012; Scolari & Serences, 2009). Our result of early modulations is also 594 
consistent with Ester et al. (2020), who found biases in orientation representations that were 595 
related to categorization, although their paradigm used a single category boundary as opposed 596 
to a dynamically updated boundary.  597 

Importantly, however, our experiment differs from typical paradigms for studying feature-598 
based attention (Martinez-Trujillo & Treue, 2004; Saenz & Boynton, 2003; Treue & Maunsell, 599 
1996; Treue & Maunsell, 1999; Desimone & Duncan, 1995) in that participants were not cued 600 
explicitly to a single elementary feature dimension (such as orientation or motion direction), and 601 
instead were required to categorize stimuli along axes in an abstract shape space. Within the 602 
shape space, simple features like a single orientation or retinotopic position are not sufficient to 603 
determine the category of a shape, so information must be integrated over multiple areas of the 604 
image and multiple low-level feature dimensions in order to solve the task. In this light, one 605 
hypothesis for our observed results is that during each task, a subset of the neurons within early 606 
visual cortex are tuned for feature combinations that are diagnostic of the relevant category 607 
distinction. These subpopulations may be tuned for specific retinotopic regions of the image, 608 
features like orientation or curvature, or combinations of these properties. Top-down 609 
modulations may then selectively target these particular subpopulations, leading to an increase 610 
in shape discriminability at the population level. In this respect, our results go beyond existing 611 
knowledge on selective attention, by showing that a mechanism similar to feature-based 612 
attention, perhaps combined with spatial attention, may operate in visual cortex within the 613 
context of a more complex, abstract decision-making task. 614 

Relatedly, other work using more complex stimuli such as three dimensional objects and 615 
human bodies has also shown feature-based attention effects in higher visual areas such as 616 
LOC and the extrastriate body area (EBA), as opposed to early visual cortex (Jackson et al., 617 
2017; Thorat & Peelen, 2022). As discussed earlier, the fact that we saw larger effects in early 618 
visual areas versus higher areas may be due to the fact that our task did not require position-619 
invariant representations of shape or contour. Interestingly, Jackson et al. (2017) also examined 620 
early visual areas in their study of three-dimensional object coding, and found that while LOC 621 
encoded more information about a task-relevant object dimension, no such effect was found in 622 
early visual areas. One possible explanation for this is that our stimuli subtended a large portion 623 
of the visual field, with the most category-diagnostic features distributed across a range of 624 
retinotopic positions, while in the stimuli used by Jackson et al., the task-relevant stimulus 625 
features were localized to a small region of the image. This difference in spatial distribution, and 626 
possibly the allocation of spatial attention, may explain why we observed task-related 627 
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modulations in early retinotopic cortex while Jackson et al. did not. More generally, these 628 
observations may indicate that attentional modulations in V1-V3 are most important for task 629 
performance when stimuli are relatively simple and require fine-grained spatial detail (e.g., 630 
oriented gratings, two-dimensional silhouettes in our task), than when stimuli are more complex 631 
and require position invariance. In keeping with this idea of attention adapting dynamically to the 632 
most informative features for a task, a recent behavioral study demonstrated that feature-based 633 
attention is adaptively allocated according to experience with the variance of feature 634 
distributions (Witkowski & Geng, 2022). Our findings extend these prior studies by 635 
demonstrating feature-based attention as a potential mechanism for effectively integrating 636 
sensory information with changing task requirements within human sensory cortex. 637 

Despite the relatively low classifier accuracy values that were observed in higher areas, 638 
we did observe a significant effect of task-relevance in LO1 based on the confusion matrix 639 
analysis in Figure 5. In this analysis, we demonstrated that classifier confusion matrices from 640 
LO1 were more aligned with the Linear-2 task template during the Linear-2 task versus the 641 
Linear-1 task. The divergence of this finding from our classifier accuracy and confidence 642 
analyses, in which early areas showed larger task effects than LO1, may indicate that the nature 643 
of representational changes in LO1 across categorization tasks differs from the changes in V1-644 
V3. Specifically, the confusion matrix analysis tests the hypothesis that shape representations in 645 
each task become more aligned with a binary, categorical code, and tests this hypothesis using 646 
all trials together. The classifier accuracy and confidence analyses, on the other hand, test for 647 
an increase in category discriminability specifically for trials that are near the boundary. In this 648 
light, one interpretation is that context-related changes in early areas reflect subtle changes in 649 
discriminability that are limited to the area near the category boundary. These subtle changes 650 
allow the overall structure of the representational space to be largely maintained across tasks in 651 
a stable sensory code. On the other hand, changes in LO1 may reflect a more dramatic 652 
restructuring of sensory codes into a format that resembles a binary or categorical code for each 653 
task. Such a difference would be consistent with LO1 being a higher visual area more closely 654 
aligned with decision processes than early areas. In addition to this, the confusion matrix 655 
analysis captures changes to the relationship between all 16 shapes in the main shape space 656 
grid, including pairs on the same side of the boundary, while the classifier accuracy and 657 
confidence analyses only capture the discriminability of shapes across the category boundary. 658 
Based on this, another (non-exclusive) hypothesis is that the changes in LO1 from the Linear-1 659 
task to the Linear-2 task are primarily driven by re-structuring of shape representations within a 660 
given category (i.e. “acquired equivalence”; Goldstone, 1994) as opposed to an increase in 661 
discriminability across the boundary. Further experiments will be needed to evaluate these 662 
possibilities. 663 

When classifier accuracy and confidence values were broken down based on proximity 664 
to the category boundary, we observed the largest effects of categorization task on confidence 665 
for stimuli nearest the boundary, and no effect of task for the furthest stimulus positions. This 666 
scaling of categorization effects with proximity to the boundary is consistent with a previous 667 
fMRI experiment (Ester et al., 2020) as well as past behavioral experiments (Ashby & Maddox, 668 
2005; Goldstone, 1994, 1998; Livingston et al., 1998; Newell & Bülthoff, 2002). These 669 
convergent findings suggest that top-down modulatory effects in early visual cortex are 670 
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strengthened on trials with higher category ambiguity, facilitating perceptual discrimination of 671 
these challenging stimuli. Importantly, our results also build on these past findings by 672 
demonstrating an increase in the discriminability of representations near the decision boundary 673 
during a task that requires flexible switching between multiple decision boundaries.  674 

Task context had more consistent effects on discriminability with respect to the Linear 675 
tasks compared to the Nonlinear task, with no significant difference across tasks observed for 676 
Nonlinear classifier accuracy (Figure 4). This difference may be due to the fact that the 677 
Nonlinear task required using a non-linear decision boundary. The non-linear boundary was 678 
more challenging behaviorally, as demonstrated by the slower RTs and lower accuracy 679 
observed in the Nonlinear task compared to the Linear-1 and Linear-2 tasks, which is also 680 
consistent with a past report showing that a quadrant task with similar stimuli was more 681 
challenging for macaques to learn than a linear rule (Op de Beeck et al., 2001). Notably, our 682 
image similarity analysis (Figure 1D) suggested an even more dramatic difference in difficulty 683 
between the Nonlinear task and the Linear tasks, compared to the modest difference seen 684 
behaviorally. This may suggest that human observers used a more complex strategy to solve 685 
the Nonlinear task, allowing them to do relatively well on the Nonlinear task despite the low 686 
separability of the Nonlinear categories in image space. For example, they might have first 687 
identified the quadrant each shape belonged to, then mapped this quadrant to a category label 688 
using an abstract rule. 689 

In terms of our classifier results, the non-linearity of the boundary may also explain the 690 
lack of a consistent task-related modulation of Nonlinear discriminability in visual cortex. It is 691 
possible that while top-down mechanisms are capable of selectively enhancing representations 692 
along one continuous axis in a perceptual space, such a mechanism does not exist for non-693 
linear boundaries. Interestingly, although we did not observe a task-related modulation of 694 
Nonlinear confidence, we observed a significant within-task association of Nonlinear confidence 695 
with behavioral performance (Figure 8). One explanation for this difference is that a different set 696 
of trials is used for each analysis – the association of confidence with behavioral performance 697 
was computed using hard trials only, while the task-related effect was assessed using easy 698 
trials only. We did not examine task-related effects on classifier confidence for hard trials here, 699 
due to the fact that hard trials sampled different portions of the stimulus space in each task (this 700 
was an intended property of the experimental design; see Figure 1B), which made it challenging 701 
to obtain fair, stable comparisons of confidence across tasks for these trials. However, it is 702 
possible that if sufficient trials had been collected for positions closer to the Nonlinear boundary 703 
in each task, a task-related enhancement of Nonlinear category coding may have been 704 
measurable. At the same time, the difference in outcomes between these analyses may also 705 
indicate that while discriminability of shapes across the Nonlinear boundary does not differ 706 
across task contexts, there is variability in the quality of representations across trials within the 707 
Nonlinear task, and this variability is associated with behavioral performance.  708 

Comparing the two Linear tasks, we observed higher SNR for discriminating stimuli 709 
across the Linear-2 boundary than the Linear-1 boundary (i.e., higher average accuracy of 710 
binary classifier across the Linear-2 boundary, and higher values of similarity to Linear-2 711 
template, across all tasks). We also observed more consistent effects of task relevance on 712 
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Linear-2 accuracy, template similarity, and confidence than the analogous measures with 713 
respect to Linear-1. Finally, we did not observe any association of Linear-1 confidence with 714 
behavioral performance, though such an effect was observed for Linear-2 and Nonlinear 715 
confidence. These findings may be related to the difference in perceptual separability, as 716 
measured by our image similarity analyses, between the Linear-1 and Linear-2 categories 717 
(Figure 1D). The Linear-2 boundary, across which shapes are more perceptually distinctive, 718 
may also be a more effective target of context-dependent processing via selective attention 719 
mechanisms. At the same time, however, we note that several of our analyses also revealed a 720 
significant interaction between task and classifier boundary (Figure 3B, Figure 5D, Figure 7B), 721 
which indicates that there is not simply an increase in signal-to-noise ratio from the Linear-1 to 722 
Linear-2 task that drives the observed effects, but a specific, task-dependent enhancement of 723 
Linear-2 category separability during the Linear-2 task. Taken together, these findings may 724 
indicate an asymmetry in the allocation of attention to different dimensions within our shape 725 
space, in a way that reflects physical properties of the stimuli.  726 

Overall, our findings provide evidence for context-dependent modulations of neural 727 
representations in early visual cortex, and show that these effects differ in accordance with 728 
temporally shifting task demands. Shape representations were modified to support 729 
discrimination of currently-relevant shape categories, with effects that were strongest for stimuli 730 
near the decision boundary. Moreover, these effects were associated with task performance. 731 
These results may indicate that visual cortex plays an active computational role in the flexible 732 
categorization of stimuli, providing new insight into how we organize knowledge about visual 733 
stimuli in the face of changing behavioral requirements.  734 

 735 

 736 

 737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
 748 
 749 
 750 
 751 
 752 
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Materials & Methods 753 

 754 

Human participants 755 

Ten (10) participants were recruited from the UCSD community, and were adults having 756 
normal or corrected-to-normal vision. Participants were between the ages of 24 and 33 (mean = 757 
28.2, std = 3.0), and 7 out of 10 were female. The protocol for this study was approved by the 758 
Institutional Review Board at UCSD, and all participants provided written informed consent. As 759 
part of this experiment, each participant took part in one behavioral training session lasting 760 
approximately 1 hour, for which they were compensated at a rate of $10/hour and three 761 
scanning sessions each lasting approximately 2 hours, for which they were compensated at a 762 
rate of $20/hour. During each scanning session for this experiment, participants also performed 763 
several runs of a n-back (repeat detection) task on the same stimuli used in our main task (see 764 
Main task design). Data from this task are not analyzed here but are included in our full open 765 
dataset (see Data availability). Each participant also participated in a separate retinotopic 766 
mapping scan session; for eight participants this retinotopic mapping session was performed as 767 
part of an earlier experiment and for the remaining two it was performed just prior to the start of 768 
the present experiment.  769 

Acquisition of MRI data 770 

All magnetic resonance imaging (MRI) scanning was performed at the UC San Diego 771 
Keck Center for Functional Magnetic Resonance Imaging. For the first 7 participants, we used a 772 
General Electric (GE) Discovery MR750 3.0T scanner, and for the latter 3 participants, we used 773 
a Siemens MAGNETOM Prisma 3.0T scanner. Given that all manipulations were within-subject, 774 
we combined data across scanners.  775 

We first discuss the protocols that were used for the GE scans: We used a Nova Medical 776 
32-channel head coil (NMSC075-32-3GE-MR750) to acquire all functional echo-planar imaging 777 
(EPI) data, using the Stanford Simultaneous Multislice (SMS) EPI sequence (MUX EPI), with a 778 
multiband factor of 8 and 9 axial slices per band (total slices = 72; 2 mm3 isotropic; 0 mm gap; 779 
matrix = 104 x 104; field of view = 20.8 cm; repetition time/time to echo [TR/TE] = 800/35 ms; 780 
flip angle = 52°; inplane acceleration = 1). To perform image reconstruction and un-aliasing we 781 
used reconstruction code from the Stanford Center for Neural Imaging, on servers hosted by 782 
Amazon Web Services. The initial 16 TRs collected at sequence onset were used as reference 783 
images in order to transform data from k-space to image space.  784 

For the Siemens scans: We used a Siemens 32-channel head coil (Siemens Medical 785 
Solutions, Malvern, PA) to acquire all functional EPI data. Functional runs used a multiband 786 
acceleration factor of 4 (slices = 68; 2.5 mm3 isotropic; 0 mm gap; matrix = 100 x 100; field of 787 
view = 25.0 cm; repetition time/time to echo [TR/TE] = 1300/32.60 ms; flip angle = 50°; phase-788 
encoding direction A>>P).  789 

In addition, for both types of scanners, a set of two “topup” datasets (17s each) were 790 
collected using forward and reverse phase-encoding directions. For the GE scans, we collected 791 
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one set of topups at the halfway point of the session, and for the Siemens scans, we collected 792 
2-3 sets of topups that were evenly distributed through the session. These runs were used to 793 
correct for distortions in the EPI sequences from the same session using topup functionality 794 
(Andersson et al., 2003) in the FMRIB Software Library (FSL; Jenkinson et al., 2012).  795 
 In addition to the functional data, we also collected a high-resolution anatomical scan for 796 
each participant as part of that participant’s retinotopic mapping session. This anatomical T1 797 
image was used for segmentation, flattening, and delineation of the retinotopic mapping data. 798 
For five out of the ten participants, we acquired this anatomical scan using the same 32 channel 799 
head coil used for functional scanning, and for the remaining five participants, we used an in 800 
vivo eight-channel head coil. Anatomical scans were acquired using accelerated parallel 801 
imaging (GE ASSET on a FSPGR T1-weighted sequence; 1 x 1 x 1 mm3; 8136 ms TR; 3172 ms 802 
TE; 8° flip angle; 172 slices; 1 mm slice gap; 256 x 192 cm matrix size). When the 32-channel 803 
head coil was used, anatomical scans were corrected for inhomogeneities in signal intensity 804 
using GE’s ‘phased array uniformity enhancement’ (PURE) method. 805 

Preprocessing of functional MRI data 806 

Preprocessing of functional data was performed using tools from FSL and FreeSurfer 807 
(available at http://www.fmrib.ox.ac.uk/ fsl and https://surfer.nmr.mgh.harvard.edu). We first 808 
performed cortical surface gray-white matter volumetric segmentation of the anatomical T1 809 
scans for each participant, using the recon-all function in FreeSurfer (Dale et al., 1999). The 810 
segmented T1 data were then used to define cortical meshes on which we defined retinotopic 811 
ROIs (see next section for details). We also used the anatomical T1 data in order to align multi-812 
session functional data to a common space for each participant. This was performed by using 813 
the first volume of the first scan for each session as a template, and using this template to align 814 
the entire functional session to the anatomical scan for each participant. We used the manual 815 
and automatic boundary-based registration tools in FreeSurfer to perform co-registration 816 
between functional and anatomical data (Greve & Fischl, 2009), then used the resulting 817 
transformation matrix and FSL FLIRT to transform all functional data into a common space 818 
(Jenkinson et al., 2002; Jenkinson & Smith, 2001). Next, we used FSL MCFLIRT to perform 819 
motion correction (Jenkinson et al., 2002), with no spatial smoothing, with a final sinc 820 
interpolation stage, and 12° of freedom. Finally, we performed de-trending to remove slow drifts 821 
in the data using a high-pass filter (1/40 Hz cutoff).  822 

 823 
Following these initial preprocessing stages, we z-scored the data within each scan run 824 

on a per-voxel basis to correct for differences in mean and variance across runs. This and all 825 
subsequent analyses were performed using Python 3.7.10 (Python Software Foundation, 826 
Wilmington, DE).  Next, we obtained a single estimate for each voxel’s activation on each trial 827 
by averaging the time series over a window spanning from 3.2-5.6s (4-7 TRs) following image 828 
onset (for subjects S01-S07, who were scanned with a 0.8s TR), or from 2.6-6.5s (2-5 TRs) 829 
following image onset (for subjects S08-S10, who were scanned with a 1.3s TR). See Main task 830 
design for more details on task timing and procedure. We then extracted data from voxels within 831 
several regions of interest (ROIs; see next section) that were used for subsequent analyses.  832 
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Retinotopic ROI definitions 833 

We defined several retinotopic visual ROIs: V1, V2, V3, V3AB, hV4, LO1, LO2, and IPS, 834 
following previously identified retinotopic mapping procedures (Engel et al., 1997; Jerde & 835 
Curtis, 2013; Sereno et al., 1995; Swisher et al., 2007; Wandell et al., 2007; Winawer & Witthoft, 836 
2015, Mackey et al., 2017). We combined all intraparietal sulcus (IPS) subregions (IPS0, IPS1, 837 
IPS2, IPS3), into a single combined IPS ROI, as this led to improved classifier accuracy relative 838 
to the individual sub-regions. For 8 out of 10 participants (all except S08 and S09), retinotopic 839 
mapping stimuli consisted of black-and-white contrast reversing checkerboard stimuli that were 840 
configured as a rotating wedge (10 cycles, 36 s/cycle), expanding ring (10 cycles, 32 s/cycle), or 841 
bowtie shape (8 cycles, 40 s/cycle). During the rotating wedge task, a contrast detection task 842 
(detecting dimming events approximately every 7.5 s) was used to encourage covert attention to 843 
the stimulus. Average accuracy on this task was 76.75 ± 4.01% (mean ± SEM across 8 844 
participants). The stimulus had a maximum eccentricity of 9.3°. For the remaining participants 845 
(S08 and S09), retinotopic mapping stimuli were bars composed of randomly generated moving 846 
dots, which participants covertly attended to while performing a motion discrimination task (see 847 
Mackey et al., 2017 for details). 848 

 849 
After defining retinotopic ROIs using these methods, we further thresholded the ROIs 850 

using an independent localizer task to identify voxels that were responsive to the region of 851 
space in which shape stimuli could appear (see Silhouette localizer task for details on this task). 852 
The data from the localizer were analyzed using a general linear model (GLM) implemented in 853 
FSL’s FMRI Expert Analysis Tool (FEAT; version 6.00). This analysis included performing brain 854 
extraction and pre-whitening (Smith, 2002; Woolrich et al., 2001). We generated predicted 855 
BOLD responses by convolving each stimulus onset with a canonical gamma hemodynamic 856 
response (phase = 0s, s.d. = 3s, lag = 6s), and combined individual runs using a standard 857 
weighted fixed effects analysis. We identified voxels that were significantly activated by the 858 
stimulus versus baseline (p < 0.05, false discovery rate (FDR) corrected). This mask of 859 
responsive voxels was then intersected with each ROI definition to obtain the final thresholded 860 
ROI definitions. The exception to this was the IPS ROIs, to which we did not apply any 861 
additional thresholding; this was because the localizer yielded few responsive voxels in IPS for 862 
some participants. See Supplementary Table 1 for the final number of voxels in each ROI, after 863 
thresholding. 864 

Shape stimuli 865 

We used a set of shape silhouette stimuli that varied parametrically along two 866 
continuous dimensions, generating a 2-dimensional shape space (Figure 1A). Each shape in 867 
this space was a closed contour composed of radial frequency components (RFCs; Op de 868 
Beeck et al., 2001; Zahn & Roskies, 1972). Each shape was composed of 7 different RFCs, 869 
where each component has a frequency, amplitude, and phase. We selected these stimuli 870 
because they can be represented in a low-dimensional grid-like coordinate system, but are 871 
more complex and abstract relative to simpler stimuli such as oriented gratings. Importantly, the 872 
changes along each axis in the shape space involve variability in multiple regions of the image, 873 
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so categorizing the shapes correctly required participants to integrate information globally 874 
across the image, rather than focusing on a single part of the shape. To generate the 2-875 
dimensional shape space, we parametrically varied the amplitude of two RFCs, leaving the 876 
others constant. The manipulation of RFC amplitude was used to define an x/y grid in arbitrary 877 
units that spanned positions between 0-5 a.u., with adjacent grid positions spaced by 0.1 a.u. All 878 
shape space positions on all trials were sampled from this grid of shape space positions. We 879 
also defined a coarser grid of 16 points (a 4x4 grid) which was used to generate the 16 stimuli 880 
that were shown on the majority of trials; this grid is referred to as the “main grid”, and included 881 
all x/y combinations of the points [0.1, 1.7, 3.3, 4.9] in shape space coordinates. Stimuli 882 
corresponding to points in shape space that were not part of the main grid were used to make 883 
the tasks more difficult, see Main task design for details. 884 

  885 
We divided the shape space into four quadrants by imposing boundaries at the center 886 

position of the grid (2.5 a.u.) in each dimension. To define the binary categories that were 887 
relevant for each task (see Main task design), we grouped together two quadrants at a time, 888 
with the Linear-1 task and Linear-2 tasks grouping quadrants that were adjacent (creating either 889 
a vertical or horizontal linear boundary in shape space), and the Nonlinear task grouping 890 
quadrants that were non-adjacent (creating a non-linear boundary). During task training as well 891 
as before each scanning run, we utilized a “prototype” image for each shape space quadrant as 892 
a way of reminding participants of the current categorization rule. The prototype for each 893 
quadrant was positioned directly in the middle of the four main grid positions corresponding to 894 
that quadrant (i.e. the x/y coordinates for the prototypes were combinations of [0.9, 4.1] a.u.). 895 
These prototype images were never shown during the categorization task trials, to prevent 896 
participants from simply memorizing the prototypes. Shapes used in the task were also never 897 
positioned exactly on any quadrant boundary in order to prevent any ambiguity about category. 898 
  899 

Display parameters 900 

During all scanning runs, stimuli were presented to participants by projecting onto a 901 
screen that was mounted on the inside of the scanner bore, just above the participant’s chest. 902 
The screen was visible to the participant via a mirror that was attached to the head coil. The 903 
image projected onto the screen was a rectangle with maximum horizontal eccentricity of 13 904 
degrees (center-to-edge distance) and maximum vertical eccentricity of 10 degrees. In the main 905 
task and silhouette localizer task, the region of the screen in which shapes could appear 906 
subtended a maximum eccentricity of 11 degrees in the horizontal direction, and 9 degrees in 907 
the vertical direction. The fixation point in all tasks was a gray square 0.2 degrees in diameter; 908 
participants were instructed to maintain fixation on this point throughout all experimental runs. 909 
  910 

In the main task, shapes were displayed as gray silhouettes on a gray background. For 911 
all participants except for the first participant (S01), the shapes were darker than the 912 
background (shape = 31, background = 50; luminance values are in the range 0-255). For S01, 913 
the shapes were lighter than the background (shape = 230, background = 77). The change in 914 
parameters was made because the brighter stimuli shown to S01 led to display artifacts when 915 
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scanning subsequent participants, and darker stimuli reduced these artifacts. S01 reported no 916 
artifacts and performed well on the task. No gamma correction was performed. 917 
 918 

Main task design 919 

The main experimental task consisted of categorizing shape silhouette stimuli (Figure 1) 920 
into binary categories. There were three task conditions: Linear-1, Linear-2, and Nonlinear, each 921 
of which corresponded to a different binary categorization rule. Shape stimuli were drawn from a 922 
two-dimensional shape space coordinate system (see Shape stimuli). The Linear-1 and Linear-2 923 
tasks used a boundary that was linear in this shape space, while the Nonlinear task used a 924 
boundary that was non-linear in this shape space (requiring participants to group non-adjacent 925 
quadrants into a single category, see Figure 1 for illustration). Each trial consisted of the 926 
presentation of one shape for 1s, and trials were separated by an inter-trial interval (ITI) that 927 
was variable in length, uniformly sampled from the interval 1-5s. Participants responded on 928 
each trial with a button press (right index or middle finger) to indicate which binary category the 929 
currently viewed shape fell into; the mapping between category and response was counter-930 
balanced within each scanning session. Participants were allowed to make a response anytime 931 
within the window of 2s from stimulus onset. Feedback was given at the end of each run, and 932 
included the participant’s overall accuracy, as well as their accuracy broken down into “easy” 933 
and “hard” trials (see next paragraph for description of hard trials), and the number of trials on 934 
which they failed to respond. No feedback was given after individual trials. 935 
  936 

Each run in the task consisted of 48 trials and lasted 261s (327 TRs). Of the 48 trials, 32 937 
of these used shapes that were sampled from a grid of 16 points evenly spaced within shape 938 
space (“main grid”, see Shape stimuli), each repeated twice. These 16 shapes were presented 939 
twice per run regardless of task condition. The remaining 16 trials (referred to as “hard” trials) 940 
used shapes that were variable depending on the current task condition and the difficulty level 941 
set by the experimenter. The purpose of these trials was to allow the difficulty level to be 942 
controlled by the experimenter so that task accuracy could be equalized across all task 943 
conditions, and prevent any single task from being trivially easy for each participant. For each 944 
run of each task, the experimenter selected a difficulty level between 1-13, with each level 945 
corresponding to a particular bin of distances from the active categorization boundary (higher 946 
difficulty denotes closer distance to boundary). These difficulty levels were adjusted on each run 947 
during the session by the experimenter, based on performance on the previous run, with the 948 
goal of keeping the participant accuracy values within a stable range for all tasks (target range 949 
was around 80% accuracy). For the Nonlinear  task, the distance was computed as a linear 950 
distance to the nearest boundary. The “hard” trials were generated by randomly sampling 16 951 
shapes from the specified distance bin, with the constraint that 4 of the shapes had to come 952 
from each of the four quadrants in shape space. This manipulation ensured that responses were 953 
balanced across categories within each run. For many of the analyses presented here, we 954 
excluded these hard trials, focusing only on the “main grid” trials where the same images were 955 
shown across all task conditions. 956 
  957 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2023.09.11.557257doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557257
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

Participants performed 12 runs of the main task within each scanning session, for a total 958 
of 36 runs across all 3 sessions (with the exception of one participant (S06) for whom 3 runs are 959 
missing due to a technical error). The 12 runs in each session were divided into 6 total “parts” 960 
where each part consisted of a pair of 2 runs having the same task condition and the same 961 
response mapping (3 conditions x 2 response mappings = 6 parts). Each part was preceded by 962 
a short training run, which consisted of 5 trials, each trial consisting of a shape drawn from the 963 
main grid. The scanner was not on during these training runs, and the purpose of these was to 964 
remind the participant of both the currently active task and the response mapping before they 965 
began performing the task runs for that part. The order in which the 6 parts were shown was 966 
counter-balanced across sessions. Before each scan run began, the participant was again 967 
reminded of the current task and response mapping via a display that presented four prototype 968 
shapes, one for each shape space quadrant (see Shape stimuli for details on prototype 969 
shapes). The prototypes were arranged with two to the left of fixation and two to the right of 970 
fixation, and the participant was instructed that the two leftmost shapes corresponded to the 971 
index finger button and the two rightmost shapes corresponded to the middle finger button. This 972 
display of prototype shapes was also used during the training runs to provide feedback after 973 
each trial: after each training trial, the four prototype shapes were shown, and the two 974 
prototypes corresponding to the correct category were outlined in green, with accompanying 975 
text that indicated whether the participant’s response was correct or incorrect. This feedback 976 
display was not shown during the actual task runs. 977 
  978 

Before the scan sessions began, participants were trained to perform the shape 979 
categorization tasks in a separate behavioral session (training session took place on average 980 
4.0 days before the first scan session). During this behavioral training session, participants 981 
performed the same task that they performed in the scanner, including 12 main task runs (2 982 
runs for each combination of condition and response mapping; i.e., each of the 6 parts). As in 983 
the scan sessions, each part was preceded by training runs that consisted of 5 trials, each 984 
accompanied by feedback. Participants completed between 1-3 training runs before starting 985 
each part. Average training session accuracy was 0.81 ± 0.02 (mean ± SEM across 10 986 
participants) for the Linear-1 task, 0.81 ± 0.02 for the Linear-2 task, and 0.78 ± 0.02 for the 987 
Nonlinear task. 988 
 989 

Silhouette localizer task 990 

A silhouette localizer task was used to identify voxels that were responsive to all the 991 
regions of retinotopic space where the shape stimuli could appear. For this task, a single 992 
silhouette shape was generated that covered the area spanned by any shape in the main grid.  993 
The silhouette region was rendered with a black-and-white flashing checkerboard (spatial period 994 
= 2 degrees) against a mid-gray background. On each trial, the flashing checkerboard silhouette 995 
stimulus appeared for a total duration of 7s, with trials separated by an ITI that varied between 996 
2-8s (uniformly sampled). During each trial the checkerboard was flashed with a frequency of 5 997 
Hz (1 cycle = on for 100 ms, off for 100 ms). On each cycle, the checkerboard was re-drawn 998 
with a randomized phase. There were 20 trials per run of this task, and participants performed 999 
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between 4 and 7 runs of this task across all sessions. During all runs of this task, participants 1000 
were instructed to monitor for a contrast dimming event and press a button when the dimming 1001 
occurred. Dimming events occurred with a probability of 0.10 on each frame, and were 1002 
separated by a minimum of 4 cycles. There were on average 17 dimming events in each run 1003 
(minimum 10; maximum 25). Average hit rate (proportion of events correctly detected) was 0.69 1004 
± 0.07 (mean ± SEM across 10 participants), and the average number of false alarms per run 1005 
was 3.42 ± 1.41 (mean ± SEM across 10 participants). 1006 
  1007 

Image similarity analysis 1008 

 To estimate the perceptual discriminability of our shape categories, we used two 1009 
computer vision models to extract activations in response to each stimulus image. We first used 1010 
the GIST model (Oliva & Torralba, 2001), which is based on Gabor filters and captures low-level 1011 
spectral image properties. We also extracted features from a pre-trained SimCLR model (T. 1012 
Chen et al., 2020), which is a self-supervised model trained using contrastive learning on a 1013 
large image database. We selected these two models because the GIST model captures clearly 1014 
defined image properties similar to those represented in the early visual system, while the 1015 
SimCLR model can capture a wider set of image features, including mid-level and high-level 1016 
properties. The GIST model was implemented in Matlab, using a 4x4 spatial grid, 4 spatial 1017 
scales, and 4 orientations per spatial scale. The version of SimCLR that we used was 1018 
implemented in PyTorch and used a ResNet-50 backbone (pre-trained model downloaded from 1019 
https://pypi.org/project/simclr/). We extracted activations from blocks [2,6,12,15] and performed 1020 
a max-pooling operation (kernel size = 4, stride = 4) to reduce the size of activations from each 1021 
block. We used principal components analysis (PCA) to further reduce the size of activations, 1022 
retaining a maximum of 500 components per block, and concatenated the resulting features 1023 
across all blocks.  1024 
 1025 

Using these activations, we computed the separability of shape categories across each 1026 
of our boundaries (Linear-1, Linear-2, Nonlinear) by computing all pairwise Euclidean distances 1027 
between main grid shapes in the same category (within-category distances) and main grid 1028 
shapes in different categories (between-category distances). We then computed the average of 1029 
the within-category distances (w) and between-category distances (b). The separability measure 1030 
for each boundary was computed as: (b-w)/(b+w).  1031 

Multivariate classifier analysis 1032 

 We used a multivariate classifier to estimate how well the voxel activation patterns from 1033 
each ROI could be used to discriminate different shape stimuli. We performed three different 1034 
types of binary classification (Linear-1, Linear-2, Nonlinear), as well as 16-way multinomial 1035 
classification, and the following details apply to all classifier types. Classification was performed 1036 
within each participant, each ROI, and each task condition separately. Before training the 1037 
classifier, we mean-centered the activation patterns on each trial, by subtracting the average 1038 
signal across voxels from each trial. We cross-validated the classifier by leaving one run out at a 1039 
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time during training, looping over held-out test runs so that every run served as the test run 1040 
once. During training of the classifier, we used only trials on which main grid shapes were 1041 
shown. For the 16-way classifier, we treated each of the 16 unique shapes as distinct classes. 1042 
For the binary classifiers, we split the 16 shapes into two classes according to either the Linear-1043 
1 category boundary, the Linear-2 category boundary, or the Nonlinear category boundary. 1044 
Using these class labels, we then constructed a logistic regression classifier, implemented using 1045 
scikit-learn (version 1.0.2) in Python 3.6. We used the ‘lbfgs’ solver and L2 regularization. To 1046 
select the L2 regularization parameter (C), we created a grid of 20 candidate C values that were 1047 
logarithmically spaced between 10-9 and 1. We then used nested cross-validation on the training 1048 
data only to select the C resulting in highest accuracy across folds, and re-fit the model for the 1049 
entire training set using the best C parameter. The resulting classifier was then used to predict 1050 
the class (1-2, or 1-16) for all trials in the test dataset (note that this included trials where the 1051 
viewed shape was not in the main grid, and thus was not included in classifier training). In 1052 
addition to a predicted class for each trial, the classifier returned a continuous probability 1053 
estimate for each of the classes, obtained using a softmax function.  1054 
 1055 
 To evaluate whether the accuracy of the classifier was significantly greater than chance, 1056 
we used a permutation test. To do this, we performed 1000 iterations of training and testing the 1057 
classifier, constructed in the same way as described above, using shuffled labels for the data. 1058 
We always performed shuffling within a given scan run, so that the run labels were kept intact, 1059 
and leave-run-out cross-validation was performed as in the original method. To make this 1060 
computationally feasible, we did not perform C selection on every shuffling iteration, instead we 1061 
used a fixed C value of 0.023 (for the 16-way classifier) or 0.007 (for each of the 2-way 1062 
classifiers), which were approximately the median of the C values obtained across all models fit 1063 
to the real data. We obtained a p-value for each individual participant, ROI, and task condition 1064 
by computing the proportion of shuffle iterations on which shuffled classifier accuracy was 1065 
greater than or equal to the real classifier accuracy. To obtain p-values for the participant-1066 
averaged classification accuracy for each ROI and task, we used the same procedure but first 1067 
averaged the values across participants, within each shuffle iteration. All reported p-values were 1068 
false-discovery-rate (FDR) corrected at q = 0.01 (Benjamini & Hochberg, 1995). 1069 

Confusion matrix analysis 1070 

For each participant, ROI, and task, we generated a confusion matrix for the 16-way 1071 
multinomial classifier. This was a 16 x 16 matrix where each row represents the set of trials on 1072 
which a given shape was actually shown, and each column in the row represents the proportion 1073 
of those trials that the classifier assigned into each of the 16 classes, and each row sums to 1. 1074 
To compute confusion matrices we used only trials in the main grid, and only used trials on 1075 
which the participant made a correct behavioral response. To quantify the alignment of 1076 
confusion matrices with the representation needed to solve each task, we generated template 1077 
confusion matrices for the Linear-1 and Linear-2 tasks, where each template matrix had 0 for 1078 
pairs of stimuli that were on different sides of the boundary and 1 for pairs of stimuli that were 1079 
on the same side of the boundary. We then computed the Pearson correlation coefficient 1080 
between each actual confusion matrix and each template confusion matrix. Finally, we applied a 1081 
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Fisher z-transform to these correlation coefficient values, using the inverse hyperbolic tangent 1082 
function (arctanh). 1083 

Classifier confidence   1084 

To obtain a continuous estimate of the discriminability of shapes belonging to different 1085 
binary categories, we computed a measure we term “classifier confidence”, which is based on 1086 
the continuous probability estimates output by each binary or 16-way classifier. For each 1087 
boundary and each individual trial, our measure of classifier confidence was computed as the 1088 
difference between the total probability assigned by the classifier to the “correct” binary category 1089 
for that trial [p(correct)] and the total probability assigned by the classifier to the “incorrect” 1090 
binary category for that trial [p(incorrect)]. For each of the binary classifiers, it is straightforward 1091 
to compute p(correct) and p(incorrect) based on the probability assigned to each binary class. 1092 
For the 16-way classifier, we obtained p(correct) by summing the probability assigned to the 8 1093 
main grid shapes in the same category as the shape on the current trial (based on whichever 1094 
category boundary was currently being considered), and p(incorrect) by summing the probability 1095 
assigned to the 8 main grid shapes in the other category. This allowed us to compute classifier 1096 
confidence from the 16-way classifier, with respect to each of the three category boundaries. 1097 
Note that this measure of confidence can be computed even when the test trial shape is not part 1098 
of the main grid. To interpret this measure, large positive values of confidence indicate high 1099 
discriminability of shapes across a given category boundary, and large negative or zero values 1100 
indicate poor discriminability.  1101 

 1102 
For the analyses where confidence values are broken down by “far” and “near” trials, the 1103 

far and near trials are always restricted to positions in the main grid. For the Linear-1 and 1104 
Linear-2 tasks, there are 8 total positions counted as far and 8 counted as near. For the 1105 
Nonlinear task, we counted the 4 corner positions as far and the 12 other positions as near. 1106 
When average confidence values are reported, they are averaged over behaviorally correct 1107 
trials only (unless otherwise specified).  1108 

Bootstrap resampling procedures 1109 

When comparing classifier confidence values between correct and incorrect trials, we 1110 
used bootstrap resampling to match the distribution of shape positions sampled on correct 1111 
versus incorrect trials. This controls for the possibility that correct and incorrect trials had 1112 
different stimulus properties; for example, harder trials would be more likely to be incorrect. The 1113 
difference in stimulus properties could have, if not corrected, contributed to a difference in 1114 
average confidence between correct and incorrect trials. This analysis was done using only 1115 
“hard” trials (i.e., trials close to the boundary and not on the main grid), because these had the 1116 
highest rate of incorrect responses. To perform resampling, for each boundary we collapsed the 1117 
set of coordinates sampled on the “hard” trials onto a single axis that ran perpendicular to the 1118 
boundary of interest. For the Nonlinear task, instead of collapsing coordinates onto a single 1119 
axis, we computed the distance between each [x,y] coordinate and the nearest linear boundary, 1120 
and multiplied by (+1) for coordinates in nonlinear category 1 or (-1) for coordinates in nonlinear 1121 
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category 2, which results in a single coordinate value that captures distance from the boundary 1122 
as well as category sign. We then binned these coordinates into a set of 12 linearly-spaced bins 1123 
that spanned the portion of shape space nearest the boundary (from 1.8 to 3.2 in shape space 1124 
coordinates; see Shape stimuli). For each participant and task, we then identified a subset of 1125 
these 12 bins that were sampled on both correct and incorrect trials, and were also symmetric 1126 
around the categorization boundary. We then performed 1,000 iterations on which we 1127 
resampled with replacement a set of approximately 100 correct trials and approximately 100 1128 
incorrect trials that each evenly sampled from all bins, and computed the average classifier 1129 
confidence for this resampled set. The final confidence values for each participant reflect the 1130 
average across these 1,000 bootstrapping iterations.  1131 

Statistical analysis 1132 

To perform statistical comparisons of classifier confidence values and template 1133 
correlation coefficient values (see previous sections) across ROIs and categorization tasks, we 1134 
used repeated measures ANOVA tests, implemented using statsmodels in Python 3.6. To 1135 
obtain non-parametric p-values for these tests (which are suitable to ensure that any violations of 1136 
the assumptions of the parametric tests do not bias the results), we performed permutation tests 1137 
where we shuffled the values within each participant 10,000 times, and computed F-statistics for 1138 
each effect on the shuffled data. This resulted in a null distribution of F-values for each effect. 1139 
The final p-values for each effect were based on the proportion of iterations on which the 1140 
shuffled F-statistic was greater than or equal to the real F-statistic. F-statistics reported in the 1141 
text reflect those obtained using the real (unshuffled) data. This procedure for obtaining non-1142 
parametric p-values is similar to previous work (e.g., Sprague & Serences, 2013; Sprague, 1143 
Ester, & Serences, 2014; Ester, Sprague & Serences, 2015; Rademaker, Chunharas & 1144 
Serences, 2019; Henderson et al., 2022); we also observed qualitatively similar results when 1145 
using a parametric significance test as this permutation-based approach is more conservative. 1146 
 1147 

To perform post-hoc tests for differences between tasks in each ROI, we used a paired 1148 
t-test with permutation. For each ROI, we computed a t-statistic for the true difference between 1149 
the conditions across participants, then performed 10,000 iterations where we randomly 1150 
swapped the values within each participant across conditions, with 50% probability. This 1151 
resulted in a null distribution of t-statistics. The final two-tailed p-value was obtained by 1152 
computing the proportion of iterations on which the shuffled t-statistic was greater than or equal 1153 
to the real t-statistic and the proportion of iterations on which the real t-statistic was greater than 1154 
or equal to the shuffled t-statistic, taking the minimum and multiplying by 2.  1155 

Code availability statement 1156 

All code required to reproduce our analyses is available at 1157 
https://github.com/mmhenderson/shapeDim.  1158 
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Data availability 1159 

All data used in the present study will be deposited as MATLAB-formatted data in Open Science 1160 
Framework. 1161 
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Supplementary Material 1424 

 1425 
Supplementary Table 1. Number of voxels in each ROI for each participant. Voxel counts are 1426 
concatenated across hemispheres, and reflect the final number of voxels in each ROI, after 1427 
thresholding each ROI (except for IPS) based on the results of the Silhouette Localizer task; see 1428 
Methods. Note that the size of voxels differed for subjects S01-S07 (2 mm3 isotropic) and 1429 
subjects S08-S10 (2.5 mm3 isotropic), which leads to smaller voxel counts for the last three 1430 
subjects; see Methods for details on acquisition parameters. 1431 
 1432 
 1433 

  S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 

V1 1866 1956 2216 2464 2156 2373 1520 669 476 422 

V2 1236 1834 1866 1584 1424 1570 1098 579 480 334 

V3 1109 1929 1200 1548 1430 1228 1710 487 424 383 

V3AB 1013 1964 517 708 812 1256 1171 376 254 302 

hV4 277 641 484 1080 578 572 636 238 169 199 

LO1 369 331 462 465 352 465 768 307 102 251 

LO2 152 322 492 304 230 320 420 156 76 156 

IPS 3054 2463 2336 2387 3395 2230 2761 1439 1838 1414 
 1434 
 1435 
 1436 
 1437 
 1438 
 1439 
 1440 
 1441 
 1442 
 1443 
 1444 
 1445 
 1446 
 1447 
 1448 
 1449 
 1450 
 1451 
 1452 
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Supplementary Table 2. Results of two-way repeated measures ANOVA tests on the binary 1453 
classifier accuracy values, with factors of ROI x Task, separately for the Linear-1, Linear-2, and 1454 
Nonlinear classifiers (see Figure 2A-C for classifier accuracy values). All p-values were obtained 1455 
using a permutation test, see Methods for details. 1456 
 1457 
 1458 

Linear-1 classifier accuracy   

 F Value Num DF Den DF p 

ROI 70.81 7 63 0.0000 

Task 0.83 2 18 0.4505 

ROI:Task 2.22 14 126 0.0099 

     

Linear-2 classifier accuracy   

 F Value Num DF Den DF p 

ROI 87.64 7 63 0.0000 

Task 3.17 2 18 0.0672 

ROI:Task 0.28 14 126 0.9939 

     

Nonlinear classifier accuracy   

 F Value Num DF Den DF p 

ROI 53.37 7 63 0.0000 

Task 1.65 2 18 0.2180 

ROI:Task 0.63 14 126 0.8417 

 1459 
 1460 
 1461 
 1462 
 1463 
 1464 
 1465 
 1466 
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Supplementary Table 3. Results of three-way repeated-measures ANOVA tests on the binary 1467 
classifier accuracy values for far and near trials, with factors of ROI, task and boundary (i.e., 1468 
comparing Linear-1 classifier versus Linear-2 classifier). Classifier accuracy values are shown in 1469 
Figure 3. All p-values were obtained using a permutation test, see Methods for details. 1470 
 1471 
 1472 
Far trials 

 F Value Num DF Den DF p 

ROI 100.81 7 63 0.0000 

Task 2.91 1 9 0.1217 

Boundary 40.46 1 9 0.0003 

ROI:Task 2.61 7 63 0.0205 

ROI:Boundary 3.70 7 63 0.0016 

Task:Boundary 0.35 1 9 0.5659 

ROI:Task:Boundary 1.54 7 63 0.1727 

     

Near trials 

 F Value Num DF Den DF p 

ROI 65.53 7 63 0.0000 

Task 5.37 1 9 0.0438 

Boundary 9.33 1 9 0.0135 

ROI:Task 0.46 7 63 0.8639 

ROI:Boundary 3.48 7 63 0.0020 

Task:Boundary 8.99 1 9 0.0113 

ROI:Task:Boundary 1.21 7 63 0.3065 
 1473 
 1474 
 1475 
 1476 
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 1477 
 1478 
Supplementary Figure 1. Classifier confusion matrix alignment with the Nonlinear template 1479 
does not differ significantly across task conditions. (A) Template matrix for the Nonlinear task, 1480 
representing the pattern of similarity expected for a perfect binary representation of the 1481 
Nonlinear categorization scheme. (B) The similarity (Pearson correlation coefficient, z-1482 
transformed) between the Nonlinear template and the actual confusion matrix for each task and 1483 
ROI. Gray dots represent individual participants, colored circles and error bars represent the 1484 
mean ± SEM across 10 participants. A two-way repeated measures ANOVA on these similarity 1485 
values revealed a main effect of ROI but no main effect of task or ROI x task interaction (ROI: 1486 
F(7,63) = 63.20, p < 0.001; Task: F(2,18) = 1.19, p = 0.329; ROI x Task: F(14,126) = 1.29, p = 0.222).  1487 
 1488 
 1489 
 1490 
 1491 
 1492 
 1493 
 1494 
 1495 
 1496 
 1497 
 1498 
 1499 
 1500 
 1501 
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 1503 
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 1505 
 1506 
 1507 
 1508 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2023.09.11.557257doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557257
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

Supplementary Table 4. Results of three-way repeated-measures ANOVA tests on the 1509 
multinomial classifier confidence values for far and near trials, with factors of ROI, task and 1510 
confidence boundary (i.e., comparing Linear-1 confidence versus Linear-2 confidence). 1511 
Classifier confidence values are shown in Figure 7. All p-values were obtained using a 1512 
permutation test, see Methods for details. 1513 
 1514 
 1515 
Far trials 

 F Value Num DF Den DF p 

ROI 54.44 7 63 0.0000 

Task 0.22 1 9 0.6569 

Boundary 49.96 1 9 0.0000 

ROI:Task 0.82 7 63 0.5706 

ROI:Boundary 6.58 7 63 0.0000 

Task:Boundary 0.04 1 9 0.8568 

ROI:Task:Boundary 1.15 7 63 0.3475 

     

Near trials 

 F Value Num DF Den DF p 

ROI 30.13 7 63 0.0000 

Task 1.88 1 9 0.1975 

Boundary 17.03 1 9 0.0011 

ROI:Task 0.39 7 63 0.9128 

ROI:Boundary 4.69 7 63 0.0002 

Task:Boundary 11.05 1 9 0.0075 

ROI:Task:Boundary 0.78 7 63 0.6281 

 1516 
 1517 
 1518 
 1519 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2023.09.11.557257doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557257
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 

 1520 
 1521 
Supplementary Figure 2. Task-related differences in classifier confidence are also measurable 1522 
using binary classifiers. We used binary logistic regression classifiers that were trained to 1523 
predict the category of each shape according to either the Linear-1 or Linear-2 decision rule 1524 
(see Figure 2A-B), and computed the confidence of these classifiers for each trial as in Figure 6. 1525 
(A) Confidence computed using “far” trials, meaning the 8 points in the main grid that fell 1526 
furthest from the category boundary of interest. (B) Confidence computed using “near” trials, 1527 
meaning the 8 points in the main grid that fell nearest to the boundary of interest. For the near 1528 
trials only, we observed a main effect of task on Linear-2 confidence (two-way repeated 1529 
measures ANOVA; ROI: F(7,63) = 33.81, p < 0.001; Task: F(1,9) = 30.67, p < 0.001; ROI x Task: 1530 
F(7,63) = 0.96, p = 0.465). In (A-B), the gray dots represent individual participants, colored circles 1531 
and error bars represent the mean ± SEM across 10 participants.  1532 
 1533 
 1534 
 1535 
 1536 
 1537 
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 1538 
 1539 
Supplementary Figure 3. Classifier confidence across the Nonlinear boundary does not differ 1540 
significantly across tasks. Similar to Figure 7, we computed the confidence of the classifier 1541 
toward the correct Nonlinear task category for each trial. (A) Confidence computed using “far” 1542 
trials, meaning the four points in the main grid that fell furthest from the two category boundaries 1543 
(i.e., four corners of the shape space grid). (B) Confidence computed using “near” trials, 1544 
meaning the 12 points in the main grid that fell nearest to either of the two category boundaries. 1545 
In (A-B), the gray dots represent individual participants, colored circles and error bars represent 1546 
the mean ± SEM across 10 participants. A two-way repeated measures ANOVA on these 1547 
similarity values revealed a main effect of ROI but no main effect of task or ROI x task 1548 
interaction (Far trials; ROI: F(7,63) = 41.70, p < 0.001; Task: F(2,18) = 0.50, p = 0.618; ROI x Task: 1549 
F(14,126) = 0.67, p = 0.806; Near trials; ROI: F(7,63) = 23.86, p < 0.001; Task: F(2,18) = 0.51, p = 1550 
0.620; ROI x Task: F(14,126) = 0.58, p = 0.885).  1551 
 1552 
 1553 
 1554 
 1555 
 1556 
 1557 
 1558 
 1559 
 1560 
 1561 
 1562 
 1563 
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