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Abstract

Everyday perceptual tasks require sensory stimuli to be dynamically encoded and analyzed
according to changing behavioral goals. For example, when searching for an apple at the
supermarket, one might first find the Granny Smith apples by separating all visible apples into
the categories “green” and “non-green”. However, suddenly remembering that your family
actually likes Fuji apples would necessitate reconfiguring the boundary to separate “red” from
“red-yellow” objects. This flexible processing enables identical sensory stimuli to elicit varied
behaviors based on the current task context. While this phenomenon is ubiquitous in nature,
little is known about the neural mechanisms that underlie such flexible computation.
Traditionally, sensory regions have been viewed as mainly devoted to processing inputs, with
limited involvement in adapting to varying task contexts. However, from the standpoint of
efficient computation, it is plausible that sensory regions integrate inputs with current task goals,
facilitating more effective information relay to higher-level cortical areas. Here we test this
possibility by asking human participants to visually categorize novel shape stimuli based on
different linear and non-linear boundaries. Using fMRI and multivariate analyses of
retinotopically-defined visual areas, we found that shape representations in visual cortex
became more distinct across relevant decision boundaries in a context-dependent manner, with
the largest changes in discriminability observed for stimuli near the decision boundary.
Importantly, these context-driven modulations were associated with improved categorization
performance. Together, these findings demonstrate that codes in visual cortex are adaptively
modulated to optimize object separability based on currently relevant decision boundaries.

Keywords: context-dependent processing, decision making, human visual cortex, decision
boundaries, task modulations, neural mechanisms
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Introduction

Perceptual categorization is a fundamental cognitive ability that allows us to organize
and understand the myriad stimuli encountered in our sensory environment. By forming
categories, observers are able to generalize existing knowledge to new incoming inputs,
facilitating efficient perception and decision-making (Bruner, 1957; Freedman & Assad, 2016).
Within the visual system, categories can capture divisions within the natural structure of a
stimulus space (Rosch et al., 1976) or can reflect the learning of arbitrary discrete boundaries
along stimulus dimensions that would otherwise be represented continuously (Ashby & Maddox,
2005). At the same time, categorization in the real world is a highly dynamic cognitive process,
in which the category membership of stimuli may change over time. For example, when making
a categorical decision about produce at the farmer’s market, depending on our goals we might
think of carrots in the same category as lettuce (vegetables) or the same category as tangerines
(orange colored items). Perceptual categorization is thus also tightly connected with flexible
prioritization of information based on current task demands (Biederman et al., 1973; McAdams
& Maunsell, 1999; Desimone & Duncan, 1995). Within contexts where task goals change
dynamically over time, the neural mechanisms supporting categorization of sensory stimuli are
not yet understood.

Past work has provided some insight into how category learning impacts representations
of sensory stimuli. Behaviorally, learning to categorize stimuli in a continuous feature space can
lead to perceptual changes such as an increase in sensitivity to changes along a relevant
stimulus dimension, and an increase in perceptual discriminability of stimuli belonging to
different categories (Goldstone, 1994; Livingston et al., 1998; Newell & Bllthoff, 2002). Such
changes are also reflected in the brain — electrophysiology studies in macaques have
demonstrated that after learning of a categorization task, neurons in inferotemporal cortex (ITC)
become more strongly selective for diagnostic dimensions of stimuli (Sigala & Logothetis, 2002),
and neural populations in ITC also contain information encoding the learned category status of
stimuli (Meyers et al., 2008; Tanaka, 1996). In human functional magnetic resonance imaging
(fMRI) studies, learning to discriminate object categories has been shown to increase neural
responses to objects in extrastriate cortex (Gauthier et al., 2000; Op de Beeck et al., 2006) and
lead to sharpening of visual representations as measured with fMRI adaptation (Folstein et al.,
2015; Folstein et al., 2013; Jiang et al., 2007). Moreover, recent work has shown that learning a
decision boundary can alter representations of orientation in early visual areas, with
representations becoming biased away from the decision boundary (Ester et al., 2020). At the
same time, other work has suggested that the effects of category status on sensory
representations are more prominent in prefrontal cortex (PFC) than visual areas. This suggests
that the primary role of visual areas may be restricted to perceptual analysis, rather than
decision-related processing (Freedman et al., 2003; McKee et al., 2014; Meyers et al., 2008).

From an efficient processing perspective, it is plausible that visual areas play a more
active role in decision-making, potentially encoding decision-related variables, task contexts,
choices, or motor outcomes. Such coding would enable visual areas to process sensory inputs
in a manner conducive to downstream readout. Emerging evidence from rodent studies
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76  supports this view. For instance, activity that was thought to reflect random fluctuations in neural
77  representations within sensory areas has been linked to choice-related motor activities and

78  decision outcomes (Musall et al., 2019; Stringer et al., 2019). Furthermore, recent findings

79 indicate that early sensory areas robustly encode task context variables, such as expectations
80  and decision rules, during dynamic decision-making tasks (Ebrahimi et al., 2022; Findling et al.,
81  2023). Yet, the extent to which human sensory areas similarly code for task-related variables

82  and adapt their representations based on contextual changes is unclear.

83 In addition, the mechanisms by which categorical decision-making flexibly shapes neural
84  representations, particularly in tasks necessitating the switching between distinct decision rules,
85  are not well understood. Prior work has demonstrated that neural populations in PFC can

86  dynamically encode different boundaries depending on the currently relevant task rule (Cromer
87 etal, 2010; Roy et al., 2010), providing one potential neural mechanism for dynamic decision-
88  making. Similarly, a human neuroimaging study using novel objects suggested that

89 representations in frontoparietal areas can encode different category distinctions between

90 objects depending on their task relevance (Jackson et al., 2017). This study also found

91  evidence for similar (albeit weaker) effects in the lateral occipital complex (LOC), suggesting

92 that representations in visual areas may also be modified by task-relevance. Thus, it remains an
93  open question whether and how varying task contexts interact with representations in visual

94  cortex, as well as how these modulations may contribute to downstream task performance.

95 Here we address these gaps by investigating how neural responses in human visual
96  cortex flexibly adapt to dynamic task contexts, as induced by varying categorization rules. We
97  hypothesized that task context modulates sensory representations such that changes in the
98 decision boundary are actively integrated during the early analysis of sensory information. To
99 examine the effects of categorization within an abstract stimulus space, we generated a two-
100 dimensional space of shape stimuli (Op de Beeck et al., 2001; Zahn & Roskies, 1972) that were
101  viewed by human participants undergoing fMRI scanning. Participants categorized shapes
102  according to different rules: linear boundaries (Linear-1 and Linear-2 tasks) or a non-linear
103  boundary (Nonlinear task). These task contexts were interleaved across scanning runs,
104  necessitating real-time cognitive adaptation to distinct categorization requirements applied to
105  physically identical stimuli. Each task incorporated both "easy" and "hard" trials drawn from
106 distinct locations in the shape space, enabling us to concurrently examine the influence of
107  perceptual difficulty on decision processes. Using multivariate decoding methods in
108 retinotopically-defined visual areas, we measured shape representations in each categorization
109 task and examined how representations differed across task contexts. We predicted that shape
110  representations would be more discriminable across a given decision boundary when that
111 boundary was relevant for the current task. Findings from our neural data are in line with this
112  account. Importantly, we further show that an increase in neural discriminability is linked to
113  improved task performance.
114
115
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116 Results
117
118 We trained 10 human participants to perform a shape categorization task while in the

119  fMRI scanner, with each subject participating in 3 scanning sessions that each lasted 2 hours
120  (Figure 1A). Shape stimuli varied parametrically along two independent axes, generating a two-
121 dimensional shape space, and each condition of the task required shapes to be categorized
122  according to either a linear boundary (Linear-1 and Linear-2 tasks) or a nonlinear boundary that
123  required grouping together of non-adjacent quadrants (Nonlinear task). These different

124  categorization tasks were performed during different scanning runs within each session,

125  meaning that participants needed to flexibly apply different decision rules depending on the task
126  condition for the current run (see Methods). Each task included a mixture of “easy” trials and
127  “hard” trials. On the “easy” trials, a common set of 16 shapes, making up a 4x4 grid which we
128  refer to as the main grid (black dots in Figure 1B), were shown in all tasks, while on “hard” trials,
129  shapes were sampled from portions of the shape space near the active boundary, which made
130 the current task more challenging (light gray dots in Figure 1B).

131

132 To verify the two-dimensional structure of our shape space, we used an image similarity
133  analysis based on GIST features (Oliva & Torralba, 2001; see Methods) to assess the

134  perceptual similarity between shape stimuli. As expected, a principal components analysis

135 (PCA) performed on the GIST features revealed a two-dimensional grid structure, with the two
136  shape space axes oriented roughly orthogonal to one another in PC space (Figure 1C). In

137  addition, measuring the linear separability (based on between-category versus within-category
138  Euclidean distances; see Methods) of shapes across each category boundary based on GIST
139 features revealed that shapes were most separable across the Linear-2 boundary, followed by
140 the Linear-1 boundary, with lowest separability for the Nonlinear boundary (Figure 1D). A similar
141 pattern was found when computing separability using features from a self-supervised deep

142  neural network model (SIMCLR; T. Chen et al., 2020; see Methods), suggesting that these

143  relationships held even when considering a broader set of image features. The low separability
144  of the Nonlinear categories relative to the Linear-1 and Linear-2 categories is consistent with the
145  Nonlinear boundary being nonlinear in shape space.

146

147
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Figure 1. Stimulus set, task design, and behavioral performance. (A) Two-dimensional shape
space used for categorization tasks in this experiment. Shapes are generated using radial
frequency contours (Op de Beeck et al., 2001; Zahn & Roskies, 1972) that vary along two
independent dimensions, referred to as axis 1 and axis 2. See Methods for more details. (B)
lllustration of the tasks (Linear-1, Linear-2, Nonlinear) performed by participants while in the
fMRI scanner. Points in each plot indicate the positions in shape space that were sampled, and
dotted lines indicate the relevant categorization boundaries for each task. Black dots represent
the 16 positions in the “main grid”, which were sampled on “easy” trials in every task, while light
gray dots represent positions that were sampled on “hard” trials, which differed depending on
the task. Hard trial shape positions were sampled from the region nearest the relevant
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160  categorization boundary. Different tasks were performed during different scan runs. In each

161  task, every trial consisted of the presentation of a single shape (1s), and participants were

162 instructed to respond with a button press indicating which category the presented shape fell
163 into. See Methods for more details on task design. (C-D) Image similarity analysis: we

164  computed activations from two computer vision models, GIST (Oliva & Torralba, 2001) and

165 SimCLR (T. Chen et al., 2020) for each of the 16 main grid shape images. (C) Visualization of a
166  principal components analysis (PCA) performed on the GIST model features, where each

167  plotted point represents one shape in PC space, colored according to the coordinate value

168 along axis 1 (left) or axis 2 (right). (D) Quantification of the separability of shape categories

169  within each feature space, computed based on the ratio of between-category to within-category
170  Euclidean distance values. See Methods for more details. (E) Behavioral accuracy (left) and
171 response time (RT; right) in each task. Dots in different colors represent individual participants;
172  open circles and error bars represent the mean £ SEM across 10 participants. (F) Accuracy
173  (left) and RT (right) for each task separated into “easy” and “hard” trials, where easy refers to
174  trials sampling the 16 shapes in the main grid (black dots in B), and hard refers to trials

175  sampling more challenging portions of the shape space for each task (light gray dots in B). Gray
176  lines represent individual participants, open circles and error bars represent the mean £+ SEM
177  across 10 participants.

178

179

180 Across participants, behavioral accuracy (Figure 1E) was highest for the Linear-2 task
181  (0.86 + 0.02; mean + SEM across 10 participants), followed by the Linear-1 task (0.83 + 0.01)
182  and the Nonlinear task (0.80 £ 0.01). A repeated measures ANOVA revealed a main effect of
183  task (F18 = 13.22, p < 0.001; p-values obtained using permutation test; see Methods), and
184  post-hoc tests showed that accuracy was significantly higher for both of the linear tasks versus
185  the Nonlinear task (Linear-1 vs. Nonlinear: tg) = 2.19, p = 0.024; Linear-2 vs. Nonlinear: t) =
186  4.98, p = 0.002; paired t-tests with permutation; see Methods), and higher for the Linear-2 task
187  versus the Linear-1 task (Linear-1 vs. Linear-2: t9)=-3.00, p = 0.001). This advantage for the
188 Linear-2 task is consistent with the high relative separability across the Linear-2 boundary

189  based on image features shown in the previous analysis (Figure 1D). In terms of response times
190 (RTs), a significant main effect of task was also found (F,1s)= 3.94, p = 0.036; p-values

191  obtained using permutation test). No difference in RTs between the Linear-1 and Linear-2 tasks
192  was observed, but RTs were significantly slower for the Nonlinear task than the Linear-1 task
193  (t9)=-3.08, p = 0.012). In addition to these differences across tasks, we also observed a

194  consistent difference between performance on the easy and hard trials within each task (Figure
195  1F), which was expected based on the task design. Accuracy was significantly higher on easy
196  versus hard trials within each task (Linear 1: tgy= 11.05, p = 0.002; Linear-2: t9)=7.88, p =

197  0.002; Nonlinear: tgy= 15.37, p = 0.002), and RT was significantly faster on easy versus hard
198 trials within each task (Linear 1: tg)=-7.48, p = 0.002; Linear-2: 9= -9.38, p = 0.002; Nonlinear:
199 t(g) =-4.92, p= 0.003).

200

201

202

203
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205

206  Figure 2. Overall classification accuracy for binary and multinomial classifiers. (A-C) A binary
207 logistic regression classifier was trained to predict the category of the shape shown on each
208 trial, according to either the Linear-1, Linear-2, or Nonlinear decision rule. (D) A multinomial (16-
209 way) logistic regression classifier was trained to predict the individual shape shown on each
210 trial. In (A-D), classifiers were trained and tested within each task condition separately, training
211 using data from the main grid trials only (i.e. black dots in Figure 1B). Different colors indicate
212  data from different tasks. Plotted values reflect overall prediction accuracy of classifiers for each
213  task and each ROI, computed using trials from the main grid only. Gray dots represent

214  individual participants, colored circles and error bars represent the mean + SEM across 10

215  participants, horizontal line indicates chance decoding accuracy (1/2 for binary classifier, 1/16
216  for multinomial). All classification accuracy values were above chance at the participant-

217  averaged level (FDR corrected, q < 0.01); see Methods for more details.

218

219

220 Next, we examined the neural representations of shape stimuli in each task, under the
221 hypothesis that shape representations would differ across task conditions in accordance with
222  the changing decision boundary. To achieve this we used multivariate classification to analyze
223  single-trial voxel activation patterns from retinotopically defined ROls (Figure 2). First, we

224  trained a series of binary classifiers to predict the category of the shape shown on each trial,
225 according to each of the three decision boundaries, using data from each task separately

226  (Figure 2A-C). These binary classifiers provide an estimate of the discriminability of shape

227  representations in visual cortex across each of the three decision boundaries, within each task
228  context. Overall, we observed that binary classifier accuracy was highest in early visual areas
229 V1 and V2, and lower in higher visual areas such as LO2 and IPS, although participant-

230 averaged classification accuracy was significantly above chance for every ROl in every task
231  (significance evaluated using a permutation test; FDR corrected; all g < 0.01; see Methods). We
232  also observed that accuracy was highest for the Linear-2 binary classifier (V2 accuracy

233  averaged across tasks: 0.86 + 0.02; mean + SEM across 10 participants), followed closely by
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234  the Linear-1 classifier (V2 accuracy averaged across tasks: 0.80 + 0.02), with lowest accuracy
235  for the Nonlinear classifier (V2 accuracy averaged across tasks: 0.72 + 0.02). However, the
236  overall accuracy of these binary classifiers did not differ significantly across tasks: for each
237  classifier, we performed a two-way repeated measures ANOVA on the classifier values with
238 factors of ROI and task, and found significant main effects of ROI, but no main effects related to
239 task (see Supplementary Table 2 for test statistics).

240

241 Given that there was no difference in overall binary classifier accuracy across tasks, we
242  next performed a more targeted analysis, based on the hypothesis that task-related differences
243 in category discriminability might be limited to a subset of trials, and therefore would not be
244  measurable when averaging across all trials. Specifically, we predicted stronger effects for
245  shapes nearer to the category boundary versus shapes further from the boundary. To test this,
246  we used the same series of binary classifiers from the previous analysis, but we separated test
247  trials into two groups based on distance to the boundary: “near” trials consisted of the 8 main
248  grid shapes that were closest to the classifier boundary, while “far” trials consisted of the 8

249  shapes further from the boundary (Figure 3, see diagrams on right side). Note that the “near”
250 group does not include the set of trials that are outside the main grid and closest to the active
251 boundary in each task (i.e., “hard” trials; light gray dots in Figure 1B), but see Figure 8 for

252  discussion of this trial group. We then computed accuracy within each of these trial subsets,
253  using data from the Linear-1 and Linear-2 tasks only.

254

255

256

257

258

259
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262

263  Figure 3. Category separability differs across tasks, only for trials near the decision boundary.
264  Using the binary classifiers that were trained to predict category according to either the Linear-1
265  or Linear-2 decision rule (see Figure 2A-B), we separately computed accuracy using test set
266 trials that were either far or near from the classifier boundary. Each panel shows the results for
267  adifferent binary classifier (trained to predict either the Linear-1 or Linear-2 category), and

268 different colors indicate data from different tasks. (A) Accuracy for “far” trials, consisting of the 8
269 main grid shapes furthest from the classifier boundary (see diagrams on right side of panel for
270 illustration). (B) Accuracy for “near” trials, consisting of the 8 main grid shapes nearest to the
271  classifier boundary. In (A-B), the gray dots represent individual participants, colored circles and
272  error bars represent the mean + SEM across 10 participants.

273

274

275 As predicted, this analysis revealed a difference between near and far trials. Classifier
276  accuracy was overall higher for far trials versus near trials, which was expected based on the
277  difference in stimulus discriminability on these trial types. Importantly, we also observed that for
278 near trials only, there was an interaction between classifier boundary and task, such that the
279  accuracy of each classifier appeared higher when the classifier matched the boundary that was
280 currently active in the task. This effect was most pronounced in early areas such as V2. We
281  examined this pattern by performing a three-way repeated measures ANOVA on the classifier
282  accuracy values for near trials, which revealed significant main effects of ROI, Task, and

283  Boundary, as well as a Task x Boundary interaction (ROI: F(763y= 65.53, p < 0.001; Task: F1,9) =
284  5.37, p =0.044; Boundary: F1,9=9.33, p = 0.014; Task x Boundary: F1,9y= 8.99, p = 0.011; p-
285  values obtained using permutation test; see Supplementary Table 3 for complete set of test
286  statistics). We then examined each classifier boundary separately, which showed that across all
287  ROIs, the accuracy of the Linear-2 classifier for near trials was higher when using data from the
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288 Linear-2 task versus the Linear-1 task (two-way repeated measures ANOVA; ROI: F7,63) =

289  50.00, p <0.001; Task: F(1,99=10.30, p = 0.011; ROI x Task: F763= 0.83, p = 0.570). At the
290 single ROl level, this difference was significant in V2 (tg) = -3.27, p = 0.009; paired t-test with
291  permutation; see Methods), and V3 (te) = -2.80, p = 0.024). However, when examining the

292  accuracy of the Linear-1 classifier across tasks, no significant difference was observed (two-way
293  repeated measures ANOVA; ROI: F(763y=42.38, p < 0.001; Task: F1,9) = 0.05, p = 0.828; ROI x
294  Task: F763=0.75, p = 0.627). Overall, these results support the idea that on near trials, shape
295 representations may be modified adaptively to become more separable across the task-relevant
296  boundary, particularly during the Linear-2 task. Notably, performing the same test on the

297  classifier accuracy values from far trials showed no significant interaction between task and
298 classifier boundary (see Supplementary Table 3), suggesting that the modulatory effect of task
299  on visual representations was limited to trials closer to the decision boundary.

300

301  To evaluate whether a similar interaction between task, boundary and distance was present for
302 the Nonlinear boundary, we performed a similar analysis for the Nonlinear binary classifier

303  (Figure 4). Specifically, we computed Nonlinear classifier accuracy, separately for trials that
304  were near versus far from the Nonlinear decision boundary. In this case, however, we did not
305 observe any consistent differences in classifier accuracy across tasks, for either near trials (two-
306  way repeated measures ANOVA; ROI: Fze3)= 45.99, p < 0.001; Task: F218y = 0.19, p = 0.829;
307 ROI x Task: F14,126)= 0.77, p = 0.696), or far trials (two-way repeated measures ANOVA; ROI:
308 F763=59.44, p < 0.001; Task: Fi2,18y = 1.01, p = 0.380; ROI x Task: F14,126)= 0.66, p = 0.804).
309

310

311
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332  Figure 4. Separability of representations across the Nonlinear boundary does not differ

333  significantly across tasks. We computed classifier accuracy for the Nonlinear classifier (Figure
334  2C), separately for trials near versus far from the category boundary. (A) Accuracy computed
335 using “far” trials, meaning the four points in the main grid that fell furthest from the two category
336  boundaries (i.e., four corners of the shape space grid). (B) Accuracy computed using “near”
337 trials, meaning the 12 points in the main grid that fell nearest to either of the two category

338 boundaries. In (A-B), the gray dots represent individual participants, colored circles and error
339  bars represent the mean + SEM across 10 participants.

340

341

342 Next, we investigated visual cortex representations at a finer level of granularity, by

343  training a 16-way multinomial classifier (Figure 2D). In contrast to the binary classifier analysis,
344  which reduces all stimuli to two discrete categories, this multinomial classifier treats each of the
345 individual shapes as a distinct category, and therefore may be able to pick up on more fine-
346  grained changes to the overall representational space that occur across tasks. As before, we
347  trained and tested this classifier using data from each task separately. We observed that overall
348  16-way classification accuracy was highest in V2 (16-way accuracy averaged across tasks: 0.34
349  +0.04; mean £ SEM across 10 participants), followed by V1 (0.32 £ 0.05) and V3 (0.27 + 0.03).
350 Participant-averaged classification accuracy was significantly above chance for every ROI in
351  every task (significance evaluated using a permutation test; FDR corrected; all g < 0.01; see
352  Methods).

353

354 To characterize the neural shape space, we used the output of the 16-way classifier to
355  compute a confusion matrix for each ROl and for each task, which captures how often the

356 classifier assigned each shape label to each shape in the test dataset (Figure 5; see Methods).
357  For V1, this confusion matrix revealed that shape confusability was related to distance in shape
358  space, with the classifier tending to make more errors between shapes that were adjacent in
359  shape space (off-diagonal structure in Figure 5A). This relationship with distance can also be
360 seen by plotting the proportion of predictions as a function of the distance between predicted
361  and actual shape space coordinates (Figure 5B). Importantly, the distances between shape
362  space points were not specified in the construction of the classifier, where all 16 points were
363 treated as independent categories. Thus, the emergence of this structure in the classifier

364  confusion matrix provides evidence for a two-dimensional representation of the shape space
365 grid in V1. A similar pattern was seen in all other ROls tested.
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368  Figure 5. Classifier confusion matrices suggest restructuring of shape representations between
369 the Linear-1 and Linear-2 tasks. (A) Classifier confusion matrices for V1 in each task, where
370  each row represents the set of trials on which a given shape was actually shown, and the
371 columns represent the proportion of those trials that the classifier predicted as having each of
372  the 16 shape labels (each row sums to 1). Confusion matrices were computed using main grid
373  trials only, and are averaged across 10 participants. (B) A simplified view of the classifier
374  confusion data for V1: we computed the proportion of trials on which the actual and predicted
375 shapes were separated by a given distance in shape space. Colored lines and shaded error
376  bars indicate mean + SEM across 10 participants. (C) Template matrices for the Linear-1 and
377  Linear-2 tasks, representing the pattern of confusability expected for a perfect binary
378  representation of each decision boundary. In A and C, the axis labels are coordinate pairs which
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379  represent the position of stimuli in shape space: (axis 1 coordinate, axis 2 coordinate). These
380 are analogous to the x and y coordinates in Figure 1B. The Linear-1 template distinguishes

381  stimuli based on their axis 1 coordinate (x), while the Linear-2 template distinguishes stimuli
382  based on their axis 2 coordinate (y). (D) The similarity (Pearson correlation coefficient, z-

383 transformed) between actual and template confusion matrices for each task and each ROI. Gray
384  dots represent individual participants, colored circles and error bars represent the mean + SEM
385  across 10 participants. See Supplementary Figure 1 for an analogous analysis using a template
386  for the Nonlinear task.

387

388

389 Next, we examined how well the neural shape space measured in each task aligned with
390 each decision rule. To examine this, we first constructed “template” confusion matrices for the
391 Linear-1 and Linear-2 boundaries, where each template had 1 for shape pairs that were on the
392 same side of the category boundary for that task and 0 for shape pairs that were on different
393 sides (Figure 5C). We then correlated these template matrices with the real confusion matrices
394  for each task (Figure 5D). This analysis revealed that the similarity of confusion matrices to

395 each template differed depending on task. A three-way repeated measures ANOVA on the z-
396 transformed template similarity values showed main effects of ROl and Template, as well as a
397  significant ROl x Template interaction and a significant Task x Template interaction (ROI: F73)
398 =46.42, p <0.001; Task: F1,9)=8.06, p = 0.020; Template: F1,9)=21.05, p = 0.001; ROI x Task:
399  Fge3=1.41,p=0.217; ROl x Template: F763= 3.25, p = 0.004; Task x Template: F9)= 8.89,
400 p=0.015; ROI x Task x Template: F7e3)= 0.97, p = 0.461; p-values obtained using permutation
401 test; see Methods). Evaluating the similarity values for each template separately, we found that
402 across all ROIls, the Linear-2 template was significantly more similar to confusion matrices

403 computed from the Linear-2 task versus the Linear-1 task (two-way repeated measures

404  ANOVA; ROI: F763= 31.99, p < 0.001; Task: F1,9) = 15.62, p = 0.003; ROI x Task: F(763 = 0.97,
405 p =0.467). Post-hoc tests showed that the difference in similarity to the Linear-2 template

406  between the Linear-2 and Linear-1 tasks was significant in LO1 (t«) = -2.93, p = 0.007; paired t-
407 test with permutation; see Methods). These findings suggest that shape representations in LO1
408 were more aligned with the Linear-2 template when the Linear-2 boundary was relevant than
409 when it was irrelevant for the present task. However, the similarity of confusion matrices to the
410 Linear-1 template did not differ significantly across tasks (two-way repeated measures ANOVA;
411  ROI: F763= 32.57, p < 0.001; Task: F1,9)=0.49, p = 0.502; ROI x Task: Fze3= 1.53, p =

412  0.175). Additionally, when we constructed a template for the Nonlinear task, we did not observe
413  adifference in the similarity of confusion matrices to the Nonlinear template across tasks

414  (Supplementary Figure 1). Together, these results suggest that shape representations in visual
415  cortex during our task may reorganize in a way that reflects the current decision boundary and
416  shifting cognitive demands.

417

418

419

420
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421
422  Figure 6. lllustration of how classifier “confidence” was computed with respect to each binary

423  decision boundary. (A) Linear-1 confidence, or confidence with respect to the Linear-1 category
424  boundary, was computed based on the difference between the total probability assigned by the
425  16-way classifier to each side of the boundary (see Methods). Left and right panels represent
426  data from V1 in the Linear-1 and Linear-2 tasks, respectively, averaged across all participants.
427 In each of the plots, each square represents a bin of shape space positions in the test dataset,
428 and the color indicates the average confidence assigned to the correct category for that test trial
429  (red) versus the incorrect category (blue). Arrows labeled “easy” and “hard” indicate the trial
430 types, as in Figure 1B; the “hard” trial group was only used to generate Figure 8. (B) Same as
431 A, but showing Linear-2 confidence. An analogous procedure was also used to compute

432  Nonlinear confidence; see Methods.

433

434

435 As in the binary classifier analysis, we then asked whether these representational

436  changes were more pronounced for shapes nearer to the category boundary than shapes

437  further from the boundary. We again divided the trials into near and far groups based on

438  distance to the boundary. To measure the category separability of shapes in each of these

439  distance bins, we computed a continuous measure we refer to as classifier confidence (Figure
440 6). Confidence is a single-trial measure, computed with respect to each of the category

441 boundaries separately, and was computed by taking the output of the 16-way classifier

442  described above and comparing the total probability assigned by the classifier to points on each
443  side of each boundary. Larger positive values indicate higher separability of shapes across the
444  boundary of interest. We refer to these measures, with respect to each boundary, as Linear-1
445  confidence, Linear-2 confidence, and Nonlinear confidence.

446

447
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450 Figure 7. Discriminability of Linear-1 and Linear-2 shape categories depends on task and

451 proximity to category boundaries. To obtain a continuous estimate of shape category

452  discriminability, we used our 16-way multinomial classifier (see Figure 2D) to compute classifier
453  confidence toward the correct binary category on each trial (see Figure 6). Confidence was

454  computed with respect to the Linear-1 categorization boundary (Linear-1 confidence; left) or the
455  Linear-2 categorization boundary (Linear-2 confidence; right). (A) Confidence computed using
456  “far” trials, meaning the 8 points in the main grid that fell furthest from the category boundary of
457 interest. (B) Confidence computed using “near” trials, meaning the 8 points in the main grid that
458 fell nearest to the boundary of interest. In (A-B), the gray dots represent individual participants,
459  colored circles and error bars represent the mean + SEM across 10 participants. For an

460 analogous version of this analysis based on a binary classifier, see Supplementary Figure 2.
461

462 We then compared Linear-1 confidence and Linear-2 confidence across the Linear-1
463 and Linear-2 tasks (Figure 7). Overall, both types of confidence were highest for trials furthest
464  from the boundary (Figure 7A), followed by near trials (Figure 7B). This pattern is expected

465  given that shapes further from the boundary are more distinctive from one another, while

466  shapes nearer to the boundary are more ambiguous. In addition, this analysis revealed effects
467  of task condition that differed for near and far trials. For trials in the far group, a three-way

468 repeated measures ANOVA showed main effects of ROl and confidence boundary (i.e., Linear-
469 1 confidence versus Linear-2 confidence), but no main effect of task or interaction between task
470 and boundary (Supplementary Table 4), suggesting that discriminability of shapes across the
471 Linear-1 and Linear-2 boundaries did not differ across tasks for this group of trials. For the near
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472  trials, however, there was also a significant interaction between task and boundary

473  (Supplementary Table 4). When each boundary was examined separately for each of these trial
474  groups, we found a main effect of task on Linear-2 confidence for the near trials (two-way

475 repeated measures ANOVA on near trials; ROI: F(763) = 30.05, p < 0.001; Task: F¢19)= 13.65, p
476 =0.005; ROI x Task: Fze3)= 0.36, p = 0.925), with Linear-2 confidence showing higher values
477  for the Linear-2 task, across all ROls, than the Linear-1 task. As with the previous analyses, the
478  effect of task was larger for the Linear-2 boundary than for the Linear-1 boundary — there was
479  no main effect of task seen for the Linear-1 confidence values for near trials (ROI: F(7 63 = 23.58,
480 p <0.001; Task: F1,99=0.10, p = 0.757; ROI x Task: F763y= 0.62, p = 0.751). As a further test,
481  we also performed a version of this classifier confidence analysis using the output of the simpler
482  binary classifiers presented earlier (Supplementary Figure 2). This revealed the same pattern of
483  results, namely an interaction between the classifier boundary and the task, in which Linear-2
484  confidence values were significantly higher when computed from the Linear-2 task versus the
485 Linear-1 task. This indicates that the difference in classifier confidence across tasks is not

486  dependent on the classifier training method used.

487

488 In addition to comparing confidence across the two linear boundaries, we measured
489  Nonlinear confidence for the far and near trials in each task (Supplementary Figure 3). As

490 before, confidence values tracked the distance of shapes from the boundary, with highest

491 overall confidence observed for far trials. In contrast to the results with Linear-2 confidence,
492  however, Nonlinear confidence did not show any significant differences across tasks.

493

494 Finally, we evaluated whether the discriminability of shape representations across the
495 relevant category boundary in each task was associated with behavioral performance. To test
496 this, we compared classifier confidence for correct versus incorrect trials: focusing here on only
497  the “hard” trials (see light gray points in Figure 1B), because these had the highest rate of

498 incorrect responses. To ensure a fair comparison across correct and incorrect trials, we used
499  bootstrap resampling to match the distribution of stimulus positions sampled in each group of
500 trials; see Methods for details. As shown in Figure 8, this analysis revealed a significant

501 difference in classifier confidence between correct and incorrect trials in both the Linear-2 and
502 the Nonlinear tasks, with confidence tending to be higher for correct trials than incorrect trials,
503 particularly in early areas V1, V2, and V3. A two-way repeated measures ANOVA with factors of
504 ROI and correctness revealed a significant main effect of correctness for both the Linear-2 and
505  Nonlinear tasks, and a significant interaction between ROI x correctness for the Nonlinear task
506 (Linear-2; ROI: F763=10.21, p < 0.001; Correctness: F(19= 6.33, p = 0.031; ROI x

507  Correctness: F763= 1.81, p = 0.099; Nonlinear; ROI: F763 = 7.55, p < 0.001; Correctness: F(1,9)
508 =8.68, p =0.016; ROI x Correctness: F63)=2.82, p = 0.011; p-values obtained using

509 permutation test; see Methods). At the individual ROI level, confidence was significantly higher
510  for correct versus incorrect trials in V1 during both the Linear-2 and the Nonlinear tasks (Linear-
511 2; t9)=3.62, p = 0.007; Nonlinear; tg= 3.39, p = 0.008; paired t-test with permutation; see

512  Methods), and in V2 during the Linear-2 task (t9)= 2.91, p = 0.022). The Linear-1 task showed
513  no significant differences in confidence for correct versus incorrect trials (ROI: F763)=4.90, p <
514  0.001; Correctness: F(1,9)= 0.40, p = 0.543; ROI x Correctness: F763y= 0.98, p = 0.453). These
515 results indicate that the separability of shape representations in early visual cortex across the
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516  task-relevant category boundary was associated with behavioral performance, at least for two
517  out of three categorization tasks.

518
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522  Figure 8. Task-relevant shape categories are more discriminable on correct versus incorrect
523 trials. In each task, classifier confidence was computed with respect to the relevant category
524  boundary for that task. Confidence was computed using “hard” trials only (those not on the main
525  grid, and nearest the relevant boundary), separately for trials with correct and incorrect

526  behavioral responses. The set of shape space positions sampled on correct and incorrect trials
527  was matched using resampling to ensure that the effect was not driven by stimulus differences;
528 see Methods for details. Gray dots represent individual participants, colored circles and error
529  bars represent the mean + SEM across 10 participants.

530

531 DIScussion

532 Our goal was to determine whether and how human visual cortex representations of
533  shape stimuli are adaptively modulated when switching between distinct task contexts. To test
534 this, we trained participants to perform a categorization task on shape silhouette stimuli within a
535 two-dimensional shape space (Figure 1). Participants categorized shapes according to different
536 categorization rules (Linear-1, Linear-2, Nonlinear) on interleaved fMRI scanning runs, and we
537  used multivariate decoding to explore how neural representations shift based on decision rules
538 and the relative positions of shapes within the two-dimensional stimulus space. We showed that
539 the discriminability of shapes across each linear boundary, as measured by classifier accuracy
540 and classifier confidence, was higher when that boundary was relevant to the current task.

541  These effects were most pronounced in early areas V1-V3, and were strongest for shapes

542 located nearest to the active categorization boundary (Figure 3, Figure 7). We also used a
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543  confusion matrix analysis to show that shape representations became more aligned with the
544  Linear-2 boundary when participants were performing the Linear-2 task versus the Linear-1
545  task, with the largest effect observed in LO1 (Figure 5). Finally, we showed that the

546  discriminability of shapes across relevant category boundaries was higher on correct versus
547  incorrect trials, indicating a link with behavioral task performance (Figure 8). Together, these
548  results demonstrate that performance of a categorization task with a dynamically changing task
549  boundary is accompanied by changes to neural representations in human visual cortex.

550 The average accuracy of our classifiers, across tasks, was highest in V2 followed by V1
551  and V3. This high decoding accuracy in early areas is surprising in light of earlier work

552  suggesting that higher visual areas like ITC and LOC encode shapes similar to ours (i.e., radial
553  frequency components (RFC)-defined silhouettes) in a way that matches perceptual similarity
554  (Drucker & Aguirre, 2009; Op de Beeck et al., 2001), and that LOC is critically involved in shape
555  computations (Vinberg & Grill-Spector, 2008). Work in non-human primates also indicates that
556  neuronsin ITC, as well as in V4, are more strongly tuned for shape and contour than neurons in
557 V1 (Connor et al., 2007; DiCarlo & Maunsell, 2000; Pasupathy & Connor, 1999; Tanaka, 1993,
558 1996). One reason for our observation of higher decoding accuracy in early areas is that our
559  stimuli were silhouettes presented at a fixed size and position, so invariance to size or position
560 was not required to encode them accurately. As a result, fine-grained retinotopic and orientation
561  tuning in areas like V1-V3 was likely sufficient to encode the shapes with high accuracy, without
562  the need for an explicit — or invariant — contour or shape representation. Importantly, the goal of
563  our experiment was not to measure abstract representations of shape or contour per se but to
564  measure how visual representations change in accordance with dynamically varying decision
565  boundaries, and our relatively simple stimulus set was appropriate for this goal.

566 The effects of task context on classifier accuracy and classifier confidence (Figure 3,
567  Figure 7), as well as association of classifier confidence with behavioral performance (Figure 8),
568 also tended to be strongest in early visual areas. This advantage for early areas may be due in
569 part to the higher signal-to-noise ratio (SNR) of decoding accuracy in V1-V3, but it may also
570  suggest that representations in these areas are particularly important for performance of our
571 decision task. The findings of strong task-dependent effects in early retinotopic areas align with
572  recent rodent studies, which show that representations within sensory areas contain information
573  pertinent to task goals, motor outcomes, and prior knowledge about sensory environments

574  (Ebrahimi et al., 2022; Findling et al., 2023; Mimica et al., 2023; Niell & Stryker, 2010; Stringer
575 etal., 2019). Extending these findings, our study demonstrates that human visual areas are
576  more actively involved with decision-related computation than previously thought. Our results
577  demonstrate that human sensory areas not only code for temporally varying task contexts but
578  also dynamically integrate this information with incoming sensory inputs to optimize decision
579  processes. This observation challenges the traditional view that sensory areas are primarily
580 dedicated to basic sensory processing, suggesting a more multifaceted role in cognitive

581  computation.

582 A plausible mechanism for guiding dynamic task coding and context-dependent
583  representation of sensory inputs in humans may involve the deployment of selective attention.
584 By flexibly prioritizing processing of relevant stimulus features based on current task goals,
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585  attention may guide the integration of sensory information with shifting task demands.

586  Specifically, our observed task-dependent effects in early retinotopic areas are consistent with
587  the literature on feature-based attention, which has shown that directing attention to simple
588 visual features can modulate representations in early visual cortex (X. Chen et al., 2012; Foster
589 & Ling, 2022; Gundlach et al., 2023; Jehee et al., 2011; Liu et al., 2003, 2007; Martinez-Trujillo
590 & Treue, 2004; Mirabella et al., 2007; Saenz & Boynton, 2003; Serences & Boynton, 2007;

591  Treue & Maunsell, 1996, 1999; Yoo et al., 2022). By modulating neurons coding for perceptual
592 features that differentiate between categories, feature-based attention could provide a

593  mechanism for improving the separability of different stimulus categories (Navalpakkam & ltti,
594  2007; Scolari et al., 2012; Scolari & Serences, 2009). Our result of early modulations is also
595  consistent with Ester et al. (2020), who found biases in orientation representations that were
596 related to categorization, although their paradigm used a single category boundary as opposed
597  to a dynamically updated boundary.

598 Importantly, however, our experiment differs from typical paradigms for studying feature-
599  based attention (Martinez-Trujillo & Treue, 2004; Saenz & Boynton, 2003; Treue & Maunsell,
600 1996; Treue & Maunsell, 1999; Desimone & Duncan, 1995) in that participants were not cued
601  explicitly to a single elementary feature dimension (such as orientation or motion direction), and
602 instead were required to categorize stimuli along axes in an abstract shape space. Within the
603 shape space, simple features like a single orientation or retinotopic position are not sufficient to
604 determine the category of a shape, so information must be integrated over multiple areas of the
605 image and multiple low-level feature dimensions in order to solve the task. In this light, one

606 hypothesis for our observed results is that during each task, a subset of the neurons within early
607  visual cortex are tuned for feature combinations that are diagnostic of the relevant category

608 distinction. These subpopulations may be tuned for specific retinotopic regions of the image,
609 features like orientation or curvature, or combinations of these properties. Top-down

610 modulations may then selectively target these particular subpopulations, leading to an increase
611  in shape discriminability at the population level. In this respect, our results go beyond existing
612  knowledge on selective attention, by showing that a mechanism similar to feature-based

613  attention, perhaps combined with spatial attention, may operate in visual cortex within the

614  context of a more complex, abstract decision-making task.

615 Relatedly, other work using more complex stimuli such as three dimensional objects and
616  human bodies has also shown feature-based attention effects in higher visual areas such as
617  LOC and the extrastriate body area (EBA), as opposed to early visual cortex (Jackson et al.,
618 2017; Thorat & Peelen, 2022). As discussed earlier, the fact that we saw larger effects in early
619  visual areas versus higher areas may be due to the fact that our task did not require position-
620 invariant representations of shape or contour. Interestingly, Jackson et al. (2017) also examined
621  early visual areas in their study of three-dimensional object coding, and found that while LOC
622  encoded more information about a task-relevant object dimension, no such effect was found in
623  early visual areas. One possible explanation for this is that our stimuli subtended a large portion
624  of the visual field, with the most category-diagnostic features distributed across a range of

625 retinotopic positions, while in the stimuli used by Jackson et al., the task-relevant stimulus

626 features were localized to a small region of the image. This difference in spatial distribution, and
627  possibly the allocation of spatial attention, may explain why we observed task-related
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628 modulations in early retinotopic cortex while Jackson et al. did not. More generally, these

629 observations may indicate that attentional modulations in V1-V3 are most important for task

630 performance when stimuli are relatively simple and require fine-grained spatial detail (e.g.,

631 oriented gratings, two-dimensional silhouettes in our task), than when stimuli are more complex
632  and require position invariance. In keeping with this idea of attention adapting dynamically to the
633  most informative features for a task, a recent behavioral study demonstrated that feature-based
634  attention is adaptively allocated according to experience with the variance of feature

635  distributions (Witkowski & Geng, 2022). Our findings extend these prior studies by

636  demonstrating feature-based attention as a potential mechanism for effectively integrating

637  sensory information with changing task requirements within human sensory cortex.

638 Despite the relatively low classifier accuracy values that were observed in higher areas,
639  we did observe a significant effect of task-relevance in LO1 based on the confusion matrix

640 analysis in Figure 5. In this analysis, we demonstrated that classifier confusion matrices from
641 LO1 were more aligned with the Linear-2 task template during the Linear-2 task versus the

642 Linear-1 task. The divergence of this finding from our classifier accuracy and confidence

643 analyses, in which early areas showed larger task effects than LO1, may indicate that the nature
644  of representational changes in LO1 across categorization tasks differs from the changes in V1-
645 V3. Specifically, the confusion matrix analysis tests the hypothesis that shape representations in
646  each task become more aligned with a binary, categorical code, and tests this hypothesis using
647  all trials together. The classifier accuracy and confidence analyses, on the other hand, test for
648 an increase in category discriminability specifically for trials that are near the boundary. In this
649  light, one interpretation is that context-related changes in early areas reflect subtle changes in
650 discriminability that are limited to the area near the category boundary. These subtle changes
651 allow the overall structure of the representational space to be largely maintained across tasks in
652  a stable sensory code. On the other hand, changes in LO1 may reflect a more dramatic

653  restructuring of sensory codes into a format that resembles a binary or categorical code for each
654  task. Such a difference would be consistent with LO1 being a higher visual area more closely
655  aligned with decision processes than early areas. In addition to this, the confusion matrix

656  analysis captures changes to the relationship between all 16 shapes in the main shape space
657  grid, including pairs on the same side of the boundary, while the classifier accuracy and

658 confidence analyses only capture the discriminability of shapes across the category boundary.
659 Based on this, another (non-exclusive) hypothesis is that the changes in LO1 from the Linear-1
660 task to the Linear-2 task are primarily driven by re-structuring of shape representations within a
661  given category (i.e. “acquired equivalence”; Goldstone, 1994) as opposed to an increase in

662  discriminability across the boundary. Further experiments will be needed to evaluate these

663  possibilities.

664 When classifier accuracy and confidence values were broken down based on proximity
665 to the category boundary, we observed the largest effects of categorization task on confidence
666  for stimuli nearest the boundary, and no effect of task for the furthest stimulus positions. This
667  scaling of categorization effects with proximity to the boundary is consistent with a previous
668 fMRI experiment (Ester et al., 2020) as well as past behavioral experiments (Ashby & Maddox,
669  2005; Goldstone, 1994, 1998; Livingston et al., 1998; Newell & Bulthoff, 2002). These

670 convergent findings suggest that top-down modulatory effects in early visual cortex are
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671  strengthened on trials with higher category ambiguity, facilitating perceptual discrimination of
672  these challenging stimuli. Importantly, our results also build on these past findings by

673  demonstrating an increase in the discriminability of representations near the decision boundary
674  during a task that requires flexible switching between multiple decision boundaries.

675 Task context had more consistent effects on discriminability with respect to the Linear
676 tasks compared to the Nonlinear task, with no significant difference across tasks observed for
677  Nonlinear classifier accuracy (Figure 4). This difference may be due to the fact that the

678  Nonlinear task required using a non-linear decision boundary. The non-linear boundary was
679  more challenging behaviorally, as demonstrated by the slower RTs and lower accuracy

680 observed in the Nonlinear task compared to the Linear-1 and Linear-2 tasks, which is also
681 consistent with a past report showing that a quadrant task with similar stimuli was more

682  challenging for macaques to learn than a linear rule (Op de Beeck et al., 2001). Notably, our
683  image similarity analysis (Figure 1D) suggested an even more dramatic difference in difficulty
684  between the Nonlinear task and the Linear tasks, compared to the modest difference seen
685  behaviorally. This may suggest that human observers used a more complex strategy to solve
686 the Nonlinear task, allowing them to do relatively well on the Nonlinear task despite the low
687  separability of the Nonlinear categories in image space. For example, they might have first
688 identified the quadrant each shape belonged to, then mapped this quadrant to a category label
689 using an abstract rule.

690 In terms of our classifier results, the non-linearity of the boundary may also explain the
691 lack of a consistent task-related modulation of Nonlinear discriminability in visual cortex. It is
692  possible that while top-down mechanisms are capable of selectively enhancing representations
693  along one continuous axis in a perceptual space, such a mechanism does not exist for non-
694 linear boundaries. Interestingly, although we did not observe a task-related modulation of

695  Nonlinear confidence, we observed a significant within-task association of Nonlinear confidence
696  with behavioral performance (Figure 8). One explanation for this difference is that a different set
697  of trials is used for each analysis — the association of confidence with behavioral performance
698  was computed using hard trials only, while the task-related effect was assessed using easy

699 trials only. We did not examine task-related effects on classifier confidence for hard trials here,
700 due to the fact that hard trials sampled different portions of the stimulus space in each task (this
701 was an intended property of the experimental design; see Figure 1B), which made it challenging
702  to obtain fair, stable comparisons of confidence across tasks for these trials. However, it is

703  possible that if sufficient trials had been collected for positions closer to the Nonlinear boundary
704  in each task, a task-related enhancement of Nonlinear category coding may have been

705 measurable. At the same time, the difference in outcomes between these analyses may also
706 indicate that while discriminability of shapes across the Nonlinear boundary does not differ

707  across task contexts, there is variability in the quality of representations across trials within the
708  Nonlinear task, and this variability is associated with behavioral performance.

709 Comparing the two Linear tasks, we observed higher SNR for discriminating stimuli
710  across the Linear-2 boundary than the Linear-1 boundary (i.e., higher average accuracy of
711 binary classifier across the Linear-2 boundary, and higher values of similarity to Linear-2

712  template, across all tasks). We also observed more consistent effects of task relevance on
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713  Linear-2 accuracy, template similarity, and confidence than the analogous measures with

714  respect to Linear-1. Finally, we did not observe any association of Linear-1 confidence with
715  behavioral performance, though such an effect was observed for Linear-2 and Nonlinear

716  confidence. These findings may be related to the difference in perceptual separability, as

717  measured by our image similarity analyses, between the Linear-1 and Linear-2 categories
718  (Figure 1D). The Linear-2 boundary, across which shapes are more perceptually distinctive,
719  may also be a more effective target of context-dependent processing via selective attention
720  mechanisms. At the same time, however, we note that several of our analyses also revealed a
721 significant interaction between task and classifier boundary (Figure 3B, Figure 5D, Figure 7B),
722  which indicates that there is not simply an increase in signal-to-noise ratio from the Linear-1 to
723  Linear-2 task that drives the observed effects, but a specific, task-dependent enhancement of
724  Linear-2 category separability during the Linear-2 task. Taken together, these findings may
725 indicate an asymmetry in the allocation of attention to different dimensions within our shape
726  space, in a way that reflects physical properties of the stimuli.

727 Overall, our findings provide evidence for context-dependent modulations of neural

728  representations in early visual cortex, and show that these effects differ in accordance with
729  temporally shifting task demands. Shape representations were modified to support

730  discrimination of currently-relevant shape categories, with effects that were strongest for stimuli
731 near the decision boundary. Moreover, these effects were associated with task performance.
732  These results may indicate that visual cortex plays an active computational role in the flexible
733  categorization of stimuli, providing new insight into how we organize knowledge about visual
734  stimuli in the face of changing behavioral requirements.
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Materials & Methods

Human participants

Ten (10) participants were recruited from the UCSD community, and were adults having
normal or corrected-to-normal vision. Participants were between the ages of 24 and 33 (mean =
28.2, std = 3.0), and 7 out of 10 were female. The protocol for this study was approved by the
Institutional Review Board at UCSD, and all participants provided written informed consent. As
part of this experiment, each participant took part in one behavioral training session lasting
approximately 1 hour, for which they were compensated at a rate of $10/hour and three
scanning sessions each lasting approximately 2 hours, for which they were compensated at a
rate of $20/hour. During each scanning session for this experiment, participants also performed
several runs of a n-back (repeat detection) task on the same stimuli used in our main task (see
Main task design). Data from this task are not analyzed here but are included in our full open
dataset (see Data availability). Each participant also participated in a separate retinotopic
mapping scan session; for eight participants this retinotopic mapping session was performed as
part of an earlier experiment and for the remaining two it was performed just prior to the start of
the present experiment.

Acquisition of MRI data

All magnetic resonance imaging (MRI) scanning was performed at the UC San Diego
Keck Center for Functional Magnetic Resonance Imaging. For the first 7 participants, we used a
General Electric (GE) Discovery MR750 3.0T scanner, and for the latter 3 participants, we used
a Siemens MAGNETOM Prisma 3.0T scanner. Given that all manipulations were within-subject,
we combined data across scanners.

We first discuss the protocols that were used for the GE scans: We used a Nova Medical
32-channel head coil (NMSC075-32-3GE-MR750) to acquire all functional echo-planar imaging
(EPI) data, using the Stanford Simultaneous Multislice (SMS) EPI sequence (MUX EPI), with a
multiband factor of 8 and 9 axial slices per band (total slices = 72; 2 mm?isotropic; 0 mm gap;
matrix = 104 x 104; field of view = 20.8 cm; repetition time/time to echo [TR/TE] = 800/35 ms;
flip angle = 52°; inplane acceleration = 1). To perform image reconstruction and un-aliasing we
used reconstruction code from the Stanford Center for Neural Imaging, on servers hosted by
Amazon Web Services. The initial 16 TRs collected at sequence onset were used as reference
images in order to transform data from k-space to image space.

For the Siemens scans: We used a Siemens 32-channel head coil (Siemens Medical
Solutions, Malvern, PA) to acquire all functional EPI data. Functional runs used a multiband
acceleration factor of 4 (slices = 68; 2.5 mm?isotropic; 0 mm gap; matrix = 100 x 100; field of
view = 25.0 cm; repetition time/time to echo [TR/TE] = 1300/32.60 ms; flip angle = 50°; phase-
encoding direction A>>P).

In addition, for both types of scanners, a set of two “topup” datasets (17s each) were
collected using forward and reverse phase-encoding directions. For the GE scans, we collected
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792  one set of topups at the halfway point of the session, and for the Siemens scans, we collected
793  2-3 sets of topups that were evenly distributed through the session. These runs were used to
794  correct for distortions in the EPI sequences from the same session using topup functionality
795  (Andersson et al., 2003) in the FMRIB Software Library (FSL; Jenkinson et al., 2012).

796 In addition to the functional data, we also collected a high-resolution anatomical scan for
797  each participant as part of that participant’s retinotopic mapping session. This anatomical T1
798 image was used for segmentation, flattening, and delineation of the retinotopic mapping data.
799  For five out of the ten participants, we acquired this anatomical scan using the same 32 channel
800 head coil used for functional scanning, and for the remaining five participants, we used an in
801 vivo eight-channel head coil. Anatomical scans were acquired using accelerated parallel

802 imaging (GE ASSET on a FSPGR T1-weighted sequence; 1 x 1 x 1 mm?; 8136 ms TR; 3172 ms
803 TE; 8° flip angle; 172 slices; 1 mm slice gap; 256 x 192 cm matrix size). When the 32-channel
804  head coil was used, anatomical scans were corrected for inhomogeneities in signal intensity
805 using GE’s ‘phased array uniformity enhancement’ (PURE) method.

goe Preprocessing of functional MRI data

807 Preprocessing of functional data was performed using tools from FSL and FreeSurfer
808 (available at http://www.fmrib.ox.ac.uk/ fsl and https://surfer.nmr.mgh.harvard.edu). We first
809 performed cortical surface gray-white matter volumetric segmentation of the anatomical T1

810  scans for each participant, using the recon-all function in FreeSurfer (Dale et al., 1999). The
811  segmented T1 data were then used to define cortical meshes on which we defined retinotopic
812  ROls (see next section for details). We also used the anatomical T1 data in order to align multi-
813  session functional data to a common space for each participant. This was performed by using
814  the first volume of the first scan for each session as a template, and using this template to align
815 the entire functional session to the anatomical scan for each participant. We used the manual
816  and automatic boundary-based registration tools in FreeSurfer to perform co-registration

817  between functional and anatomical data (Greve & Fischl, 2009), then used the resulting

818 transformation matrix and FSL FLIRT to transform all functional data into a common space

819  (Jenkinson et al., 2002; Jenkinson & Smith, 2001). Next, we used FSL MCFLIRT to perform
820  motion correction (Jenkinson et al., 2002), with no spatial smoothing, with a final sinc

821 interpolation stage, and 12° of freedom. Finally, we performed de-trending to remove slow drifts
822 in the data using a high-pass filter (1/40 Hz cutoff).

823

824 Following these initial preprocessing stages, we z-scored the data within each scan run
825  on a per-voxel basis to correct for differences in mean and variance across runs. This and all
826  subsequent analyses were performed using Python 3.7.10 (Python Software Foundation,

827  Wilmington, DE). Next, we obtained a single estimate for each voxel’s activation on each trial
828 by averaging the time series over a window spanning from 3.2-5.6s (4-7 TRs) following image
829  onset (for subjects S01-S07, who were scanned with a 0.8s TR), or from 2.6-6.5s (2-5 TRs)
830 following image onset (for subjects S08-S10, who were scanned with a 1.3s TR). See Main task
831  design for more details on task timing and procedure. We then extracted data from voxels within
832  several regions of interest (ROIs; see next section) that were used for subsequent analyses.
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833 Retinotopic ROI definitions

834 We defined several retinotopic visual ROls: V1, V2, V3, V3AB, hV4, LO1, LO2, and IPS,
835 following previously identified retinotopic mapping procedures (Engel et al., 1997; Jerde &

836  Curtis, 2013; Sereno et al., 1995; Swisher et al., 2007; Wandell et al., 2007; Winawer & Witthoft,
837 2015, Mackey et al., 2017). We combined all intraparietal sulcus (IPS) subregions (IPSO, IPS1,
838 IPS2, IPS3), into a single combined IPS ROI, as this led to improved classifier accuracy relative
839 to the individual sub-regions. For 8 out of 10 participants (all except S08 and S09), retinotopic
840  mapping stimuli consisted of black-and-white contrast reversing checkerboard stimuli that were
841  configured as a rotating wedge (10 cycles, 36 s/cycle), expanding ring (10 cycles, 32 s/cycle), or
842  bowtie shape (8 cycles, 40 s/cycle). During the rotating wedge task, a contrast detection task
843  (detecting dimming events approximately every 7.5 s) was used to encourage covert attention to
844  the stimulus. Average accuracy on this task was 76.75 + 4.01% (mean + SEM across 8

845  participants). The stimulus had a maximum eccentricity of 9.3°. For the remaining participants
846  (S08 and S09), retinotopic mapping stimuli were bars composed of randomly generated moving
847  dots, which participants covertly attended to while performing a motion discrimination task (see
848  Mackey et al., 2017 for details).

849

850 After defining retinotopic ROIs using these methods, we further thresholded the ROls
851  using an independent localizer task to identify voxels that were responsive to the region of

852  space in which shape stimuli could appear (see Silhouette localizer task for details on this task).
853  The data from the localizer were analyzed using a general linear model (GLM) implemented in
854  FSL’s FMRI Expert Analysis Tool (FEAT; version 6.00). This analysis included performing brain
855  extraction and pre-whitening (Smith, 2002; Woolrich et al., 2001). We generated predicted

856  BOLD responses by convolving each stimulus onset with a canonical gamma hemodynamic
857  response (phase = 0s, s.d. = 3s, lag = 6s), and combined individual runs using a standard

858  weighted fixed effects analysis. We identified voxels that were significantly activated by the

859  stimulus versus baseline (p < 0.05, false discovery rate (FDR) corrected). This mask of

860 responsive voxels was then intersected with each ROI definition to obtain the final thresholded
861 ROI definitions. The exception to this was the IPS ROIs, to which we did not apply any

862  additional thresholding; this was because the localizer yielded few responsive voxels in IPS for
863  some participants. See Supplementary Table 1 for the final number of voxels in each ROI, after
864  thresholding.

865 Shape stimuli

866 We used a set of shape silhouette stimuli that varied parametrically along two

867  continuous dimensions, generating a 2-dimensional shape space (Figure 1A). Each shape in
868 this space was a closed contour composed of radial frequency components (RFCs; Op de

869 Beeck et al., 2001; Zahn & Roskies, 1972). Each shape was composed of 7 different RFCs,
870 where each component has a frequency, amplitude, and phase. We selected these stimuli

871 because they can be represented in a low-dimensional grid-like coordinate system, but are

872  more complex and abstract relative to simpler stimuli such as oriented gratings. Importantly, the
873  changes along each axis in the shape space involve variability in multiple regions of the image,
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874  so categorizing the shapes correctly required participants to integrate information globally

875  across the image, rather than focusing on a single part of the shape. To generate the 2-

876  dimensional shape space, we parametrically varied the amplitude of two RFCs, leaving the

877  others constant. The manipulation of RFC amplitude was used to define an x/y grid in arbitrary
878  units that spanned positions between 0-5 a.u., with adjacent grid positions spaced by 0.1 a.u. All
879  shape space positions on all trials were sampled from this grid of shape space positions. We
880  also defined a coarser grid of 16 points (a 4x4 grid) which was used to generate the 16 stimuli
881  that were shown on the majority of trials; this grid is referred to as the “main grid”, and included
882  all x/y combinations of the points [0.1, 1.7, 3.3, 4.9] in shape space coordinates. Stimuli

883  corresponding to points in shape space that were not part of the main grid were used to make
884  the tasks more difficult, see Main task design for details.

885

886 We divided the shape space into four quadrants by imposing boundaries at the center
887  position of the grid (2.5 a.u.) in each dimension. To define the binary categories that were

888 relevant for each task (see Main task design), we grouped together two quadrants at a time,
889  with the Linear-1 task and Linear-2 tasks grouping quadrants that were adjacent (creating either
890 a vertical or horizontal linear boundary in shape space), and the Nonlinear task grouping

891  quadrants that were non-adjacent (creating a non-linear boundary). During task training as well
892  as before each scanning run, we utilized a “prototype” image for each shape space quadrant as
893 a way of reminding participants of the current categorization rule. The prototype for each

894  quadrant was positioned directly in the middle of the four main grid positions corresponding to
895 that quadrant (i.e. the x/y coordinates for the prototypes were combinations of [0.9, 4.1] a.u.).
896 These prototype images were never shown during the categorization task trials, to prevent

897  participants from simply memorizing the prototypes. Shapes used in the task were also never
898  positioned exactly on any quadrant boundary in order to prevent any ambiguity about category.
899

900 Display parameters

901 During all scanning runs, stimuli were presented to participants by projecting onto a
902 screen that was mounted on the inside of the scanner bore, just above the participant’s chest.
903 The screen was visible to the participant via a mirror that was attached to the head coil. The
904 image projected onto the screen was a rectangle with maximum horizontal eccentricity of 13
905 degrees (center-to-edge distance) and maximum vertical eccentricity of 10 degrees. In the main
906 task and silhouette localizer task, the region of the screen in which shapes could appear

907 subtended a maximum eccentricity of 11 degrees in the horizontal direction, and 9 degrees in
908 the vertical direction. The fixation point in all tasks was a gray square 0.2 degrees in diameter;
909 participants were instructed to maintain fixation on this point throughout all experimental runs.
910

911 In the main task, shapes were displayed as gray silhouettes on a gray background. For
912  all participants except for the first participant (S01), the shapes were darker than the

913  background (shape = 31, background = 50; luminance values are in the range 0-255). For S01,
914  the shapes were lighter than the background (shape = 230, background = 77). The change in
915  parameters was made because the brighter stimuli shown to S01 led to display artifacts when
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916  scanning subsequent participants, and darker stimuli reduced these artifacts. SO1 reported no
917  artifacts and performed well on the task. No gamma correction was performed.
918

919 Main task design

920 The main experimental task consisted of categorizing shape silhouette stimuli (Figure 1)
921 into binary categories. There were three task conditions: Linear-1, Linear-2, and Nonlinear, each
922  of which corresponded to a different binary categorization rule. Shape stimuli were drawn from a
923 two-dimensional shape space coordinate system (see Shape stimuli). The Linear-1 and Linear-2
924  tasks used a boundary that was linear in this shape space, while the Nonlinear task used a

925  boundary that was non-linear in this shape space (requiring participants to group non-adjacent
926 quadrants into a single category, see Figure 1 for illustration). Each trial consisted of the

927  presentation of one shape for 1s, and trials were separated by an inter-trial interval (ITl) that
928  was variable in length, uniformly sampled from the interval 1-5s. Participants responded on

929  each trial with a button press (right index or middle finger) to indicate which binary category the
930 currently viewed shape fell into; the mapping between category and response was counter-

931 balanced within each scanning session. Participants were allowed to make a response anytime
932  within the window of 2s from stimulus onset. Feedback was given at the end of each run, and
933 included the participant’s overall accuracy, as well as their accuracy broken down into “easy”
934  and “hard” trials (see next paragraph for description of hard trials), and the number of trials on
935  which they failed to respond. No feedback was given after individual trials.

936

937 Each run in the task consisted of 48 trials and lasted 261s (327 TRs). Of the 48 trials, 32
938  of these used shapes that were sampled from a grid of 16 points evenly spaced within shape
939 space (“main grid”, see Shape stimuli), each repeated twice. These 16 shapes were presented
940 twice per run regardless of task condition. The remaining 16 trials (referred to as “hard” trials)
941 used shapes that were variable depending on the current task condition and the difficulty level
942  set by the experimenter. The purpose of these trials was to allow the difficulty level to be

943  controlled by the experimenter so that task accuracy could be equalized across all task

944  conditions, and prevent any single task from being trivially easy for each participant. For each
945  run of each task, the experimenter selected a difficulty level between 1-13, with each level

946  corresponding to a particular bin of distances from the active categorization boundary (higher
947  difficulty denotes closer distance to boundary). These difficulty levels were adjusted on each run
948  during the session by the experimenter, based on performance on the previous run, with the
949  goal of keeping the participant accuracy values within a stable range for all tasks (target range
950 was around 80% accuracy). For the Nonlinear task, the distance was computed as a linear

951  distance to the nearest boundary. The “hard” trials were generated by randomly sampling 16
952  shapes from the specified distance bin, with the constraint that 4 of the shapes had to come
953 from each of the four quadrants in shape space. This manipulation ensured that responses were
954  balanced across categories within each run. For many of the analyses presented here, we

955  excluded these hard trials, focusing only on the “main grid” trials where the same images were
956  shown across all task conditions.

957
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958 Participants performed 12 runs of the main task within each scanning session, for a total
959  of 36 runs across all 3 sessions (with the exception of one participant (S06) for whom 3 runs are
960 missing due to a technical error). The 12 runs in each session were divided into 6 total “parts”
961  where each part consisted of a pair of 2 runs having the same task condition and the same
962 response mapping (3 conditions x 2 response mappings = 6 parts). Each part was preceded by
963  a short training run, which consisted of 5 trials, each trial consisting of a shape drawn from the
964 main grid. The scanner was not on during these training runs, and the purpose of these was to
965 remind the participant of both the currently active task and the response mapping before they
966  began performing the task runs for that part. The order in which the 6 parts were shown was
967 counter-balanced across sessions. Before each scan run began, the participant was again

968 reminded of the current task and response mapping via a display that presented four prototype
969 shapes, one for each shape space quadrant (see Shape stimuli for details on prototype

970 shapes). The prototypes were arranged with two to the left of fixation and two to the right of
971 fixation, and the participant was instructed that the two leftmost shapes corresponded to the
972  index finger button and the two rightmost shapes corresponded to the middle finger button. This
973  display of prototype shapes was also used during the training runs to provide feedback after
974  each trial: after each training trial, the four prototype shapes were shown, and the two

975  prototypes corresponding to the correct category were outlined in green, with accompanying
976 text that indicated whether the participant’s response was correct or incorrect. This feedback
977  display was not shown during the actual task runs.

978

979 Before the scan sessions began, participants were trained to perform the shape

980 categorization tasks in a separate behavioral session (training session took place on average
981 4.0 days before the first scan session). During this behavioral training session, participants

982 performed the same task that they performed in the scanner, including 12 main task runs (2
983  runs for each combination of condition and response mapping; i.e., each of the 6 parts). As in
984 the scan sessions, each part was preceded by training runs that consisted of 5 trials, each

985 accompanied by feedback. Participants completed between 1-3 training runs before starting
986  each part. Average training session accuracy was 0.81 + 0.02 (mean + SEM across 10

987  participants) for the Linear-1 task, 0.81 + 0.02 for the Linear-2 task, and 0.78 + 0.02 for the

988  Nonlinear task.

989

990 Silhouette localizer task

991 A silhouette localizer task was used to identify voxels that were responsive to all the

992  regions of retinotopic space where the shape stimuli could appear. For this task, a single

993 silhouette shape was generated that covered the area spanned by any shape in the main grid.
994  The silhouette region was rendered with a black-and-white flashing checkerboard (spatial period
995 =2 degrees) against a mid-gray background. On each trial, the flashing checkerboard silhouette
996  stimulus appeared for a total duration of 7s, with trials separated by an ITI that varied between
997  2-8s (uniformly sampled). During each trial the checkerboard was flashed with a frequency of 5
998 Hz (1 cycle = on for 100 ms, off for 100 ms). On each cycle, the checkerboard was re-drawn
999  with a randomized phase. There were 20 trials per run of this task, and participants performed
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1000 between 4 and 7 runs of this task across all sessions. During all runs of this task, participants
1001  were instructed to monitor for a contrast dimming event and press a button when the dimming
1002  occurred. Dimming events occurred with a probability of 0.10 on each frame, and were

1003  separated by a minimum of 4 cycles. There were on average 17 dimming events in each run
1004  (minimum 10; maximum 25). Average hit rate (proportion of events correctly detected) was 0.69
1005 +0.07 (mean + SEM across 10 participants), and the average number of false alarms per run
1006 was 3.42 £ 1.41 (mean £ SEM across 10 participants).

1007

1008 Image similarity analysis

1009 To estimate the perceptual discriminability of our shape categories, we used two

1010  computer vision models to extract activations in response to each stimulus image. We first used
1011 the GIST model (Oliva & Torralba, 2001), which is based on Gabor filters and captures low-level
1012  spectral image properties. We also extracted features from a pre-trained SimCLR model (T.
1013  Chen et al., 2020), which is a self-supervised model trained using contrastive learning on a
1014  large image database. We selected these two models because the GIST model captures clearly
1015  defined image properties similar to those represented in the early visual system, while the

1016  SimCLR model can capture a wider set of image features, including mid-level and high-level
1017  properties. The GIST model was implemented in Matlab, using a 4x4 spatial grid, 4 spatial

1018 scales, and 4 orientations per spatial scale. The version of SimCLR that we used was

1019  implemented in PyTorch and used a ResNet-50 backbone (pre-trained model downloaded from
1020 https://pypi.org/project/simclr/). We extracted activations from blocks [2,6,12,15] and performed
1021  a max-pooling operation (kernel size = 4, stride = 4) to reduce the size of activations from each
1022  block. We used principal components analysis (PCA) to further reduce the size of activations,
1023  retaining a maximum of 500 components per block, and concatenated the resulting features
1024  across all blocks.

1025

1026 Using these activations, we computed the separability of shape categories across each
1027  of our boundaries (Linear-1, Linear-2, Nonlinear) by computing all pairwise Euclidean distances
1028 between main grid shapes in the same category (within-category distances) and main grid

1029 shapes in different categories (between-category distances). We then computed the average of
1030 the within-category distances (w) and between-category distances (b). The separability measure
1031  for each boundary was computed as: (b-w)/(b+w).

1032 Multivariate classifier analysis

1033 We used a multivariate classifier to estimate how well the voxel activation patterns from
1034  each ROI could be used to discriminate different shape stimuli. We performed three different
1035 types of binary classification (Linear-1, Linear-2, Nonlinear), as well as 16-way multinomial

1036 classification, and the following details apply to all classifier types. Classification was performed
1037  within each participant, each ROI, and each task condition separately. Before training the

1038 classifier, we mean-centered the activation patterns on each trial, by subtracting the average
1039  signal across voxels from each trial. We cross-validated the classifier by leaving one run out at a
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1040 time during training, looping over held-out test runs so that every run served as the test run
1041  once. During training of the classifier, we used only trials on which main grid shapes were

1042  shown. For the 16-way classifier, we treated each of the 16 unique shapes as distinct classes.
1043  For the binary classifiers, we split the 16 shapes into two classes according to either the Linear-
1044 1 category boundary, the Linear-2 category boundary, or the Nonlinear category boundary.
1045  Using these class labels, we then constructed a logistic regression classifier, implemented using
1046  scikit-learn (version 1.0.2) in Python 3.6. We used the ‘Ibfgs’ solver and L2 regularization. To
1047  select the L2 regularization parameter (C), we created a grid of 20 candidate C values that were
1048  logarithmically spaced between 10°and 1. We then used nested cross-validation on the training
1049 data only to select the C resulting in highest accuracy across folds, and re-fit the model for the
1050 entire training set using the best C parameter. The resulting classifier was then used to predict
1051 the class (1-2, or 1-16) for all trials in the test dataset (note that this included trials where the
1052  viewed shape was not in the main grid, and thus was not included in classifier training). In

1053  addition to a predicted class for each trial, the classifier returned a continuous probability

1054 estimate for each of the classes, obtained using a softmax function.

1055

1056 To evaluate whether the accuracy of the classifier was significantly greater than chance,
1057  we used a permutation test. To do this, we performed 1000 iterations of training and testing the
1058 classifier, constructed in the same way as described above, using shuffled labels for the data.
1059  We always performed shuffling within a given scan run, so that the run labels were kept intact,
1060 and leave-run-out cross-validation was performed as in the original method. To make this

1061  computationally feasible, we did not perform C selection on every shuffling iteration, instead we
1062  used a fixed C value of 0.023 (for the 16-way classifier) or 0.007 (for each of the 2-way

1063 classifiers), which were approximately the median of the C values obtained across all models fit
1064 to the real data. We obtained a p-value for each individual participant, ROI, and task condition
1065 by computing the proportion of shuffle iterations on which shuffled classifier accuracy was

1066  greater than or equal to the real classifier accuracy. To obtain p-values for the participant-

1067  averaged classification accuracy for each ROI and task, we used the same procedure but first
1068 averaged the values across participants, within each shuffle iteration. All reported p-values were
1069 false-discovery-rate (FDR) corrected at q = 0.01 (Benjamini & Hochberg, 1995).

1070  Confusion matrix analysis

1071 For each participant, ROI, and task, we generated a confusion matrix for the 16-way
1072  multinomial classifier. This was a 16 x 16 matrix where each row represents the set of trials on
1073  which a given shape was actually shown, and each column in the row represents the proportion
1074  of those trials that the classifier assigned into each of the 16 classes, and each row sums to 1.
1075  To compute confusion matrices we used only trials in the main grid, and only used trials on
1076  which the participant made a correct behavioral response. To quantify the alignment of

1077  confusion matrices with the representation needed to solve each task, we generated template
1078  confusion matrices for the Linear-1 and Linear-2 tasks, where each template matrix had O for
1079  pairs of stimuli that were on different sides of the boundary and 1 for pairs of stimuli that were
1080 on the same side of the boundary. We then computed the Pearson correlation coefficient

1081 between each actual confusion matrix and each template confusion matrix. Finally, we applied a
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1082  Fisher z-transform to these correlation coefficient values, using the inverse hyperbolic tangent
1083  function (arctanh).

1084 Classifier confidence

1085 To obtain a continuous estimate of the discriminability of shapes belonging to different
1086  binary categories, we computed a measure we term “classifier confidence”, which is based on
1087 the continuous probability estimates output by each binary or 16-way classifier. For each

1088  boundary and each individual trial, our measure of classifier confidence was computed as the
1089  difference between the total probability assigned by the classifier to the “correct” binary category
1090 for that trial [p(correct)] and the total probability assigned by the classifier to the “incorrect”

1091  binary category for that trial [p(incorrect)]. For each of the binary classifiers, it is straightforward
1092 to compute p(correct) and p(incorrect) based on the probability assigned to each binary class.
1093  For the 16-way classifier, we obtained p(correct) by summing the probability assigned to the 8
1094  main grid shapes in the same category as the shape on the current trial (based on whichever
1095 category boundary was currently being considered), and p(incorrect) by summing the probability
1096  assigned to the 8 main grid shapes in the other category. This allowed us to compute classifier
1097 confidence from the 16-way classifier, with respect to each of the three category boundaries.
1098 Note that this measure of confidence can be computed even when the test trial shape is not part
1099 of the main grid. To interpret this measure, large positive values of confidence indicate high
1100 discriminability of shapes across a given category boundary, and large negative or zero values
1101 indicate poor discriminability.

1102

1103 For the analyses where confidence values are broken down by “far” and “near” trials, the
1104 far and near trials are always restricted to positions in the main grid. For the Linear-1 and

1105 Linear-2 tasks, there are 8 total positions counted as far and 8 counted as near. For the

1106  Nonlinear task, we counted the 4 corner positions as far and the 12 other positions as near.
1107  When average confidence values are reported, they are averaged over behaviorally correct
1108 ftrials only (unless otherwise specified).

1109 Bootstrap resampling procedures

1110 When comparing classifier confidence values between correct and incorrect trials, we
1111 used bootstrap resampling to match the distribution of shape positions sampled on correct
1112  versus incorrect trials. This controls for the possibility that correct and incorrect trials had

1113  different stimulus properties; for example, harder trials would be more likely to be incorrect. The
1114  difference in stimulus properties could have, if not corrected, contributed to a difference in

1115  average confidence between correct and incorrect trials. This analysis was done using only
1116  “hard” trials (i.e., trials close to the boundary and not on the main grid), because these had the
1117  highest rate of incorrect responses. To perform resampling, for each boundary we collapsed the
1118  set of coordinates sampled on the “hard” trials onto a single axis that ran perpendicular to the
1119  boundary of interest. For the Nonlinear task, instead of collapsing coordinates onto a single
1120  axis, we computed the distance between each [x,y] coordinate and the nearest linear boundary,
1121 and multiplied by (+1) for coordinates in nonlinear category 1 or (-1) for coordinates in nonlinear
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1122  category 2, which results in a single coordinate value that captures distance from the boundary
1123  as well as category sign. We then binned these coordinates into a set of 12 linearly-spaced bins
1124  that spanned the portion of shape space nearest the boundary (from 1.8 to 3.2 in shape space
1125 coordinates; see Shape stimuli). For each participant and task, we then identified a subset of
1126  these 12 bins that were sampled on both correct and incorrect trials, and were also symmetric
1127  around the categorization boundary. We then performed 1,000 iterations on which we

1128  resampled with replacement a set of approximately 100 correct trials and approximately 100
1129 incorrect trials that each evenly sampled from all bins, and computed the average classifier
1130  confidence for this resampled set. The final confidence values for each participant reflect the
1131 average across these 1,000 bootstrapping iterations.

1132 Statistical analysis

1133 To perform statistical comparisons of classifier confidence values and template

1134  correlation coefficient values (see previous sections) across ROIs and categorization tasks, we
1135 used repeated measures ANOVA tests, implemented using statsmodels in Python 3.6. To
1136  obtain non-parametric p-values for these tests (which are suitable to ensure that any violations of
1137  the assumptions of the parametric tests do not bias the results), we performed permutation tests
1138  where we shuffled the values within each participant 10,000 times, and computed F-statistics for
1139  each effect on the shuffled data. This resulted in a null distribution of F-values for each effect.
1140  The final p-values for each effect were based on the proportion of iterations on which the

1141  shuffled F-statistic was greater than or equal to the real F-statistic. F-statistics reported in the
1142  text reflect those obtained using the real (unshuffled) data. This procedure for obtaining non-
1143  parametric p-values is similar to previous work (e.g., Sprague & Serences, 2013; Sprague,
1144  Ester, & Serences, 2014; Ester, Sprague & Serences, 2015; Rademaker, Chunharas &

1145  Serences, 2019; Henderson et al., 2022); we also observed qualitatively similar results when
1146  using a parametric significance test as this permutation-based approach is more conservative.
1147

1148 To perform post-hoc tests for differences between tasks in each ROI, we used a paired
1149  t-test with permutation. For each ROI, we computed a t-statistic for the true difference between
1150 the conditions across participants, then performed 10,000 iterations where we randomly

1151 swapped the values within each participant across conditions, with 50% probability. This

1152  resulted in a null distribution of t-statistics. The final two-tailed p-value was obtained by

1153  computing the proportion of iterations on which the shuffled t-statistic was greater than or equal
1154  to the real t-statistic and the proportion of iterations on which the real t-statistic was greater than
1155  or equal to the shuffled t-statistic, taking the minimum and multiplying by 2.

1156  Code availability statement

1157  All code required to reproduce our analyses is available at
1158  https://github.com/mmhenderson/shapeDim.
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1159  Data availability

1160  All data used in the present study will be deposited as MATLAB-formatted data in Open Science
1161 Framework.
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1224 Supplementary Material

1425

1426  Supplementary Table 1. Number of voxels in each ROI for each participant. Voxel counts are
1427  concatenated across hemispheres, and reflect the final number of voxels in each ROI, after
1428 thresholding each ROI (except for IPS) based on the results of the Silhouette Localizer task; see
1429  Methods. Note that the size of voxels differed for subjects S01-S07 (2 mm? isotropic) and

1430  subjects S08-S10 (2.5 mm? isotropic), which leads to smaller voxel counts for the last three
1431 subjects; see Methods for details on acquisition parameters.

1432

1433

S01 S02 S03 S04 S05 S06 S07 S08 S09 $10

Al 1866 1956 2216 2464 2156 2373 1520 669 476 422
V2 1236 1834 1866 1584 1424 1570 1098 579 480 334
V3 1109 1929 1200 1548 1430 1228 1710 487 424 383
V3AB 1013 1964 517 708 812 1256 1171 376 254 302
hVv4 277 641 484 1080 578 572 636 238 169 199
LO1 369 331 462 465 352 465 768 307 102 251

LO2 152 322 492 304 230 320 420 156 76 156

IPS 3054 2463 2336 2387 3395 2230 2761 1439 1838 1414

1434
1435
1436
1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

43


https://doi.org/10.1101/2023.09.11.557257
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557257; this version posted January 6, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1453  Supplementary Table 2. Results of two-way repeated measures ANOVA tests on the binary
1454  classifier accuracy values, with factors of ROI x Task, separately for the Linear-1, Linear-2, and
1455  Nonlinear classifiers (see Figure 2A-C for classifier accuracy values). All p-values were obtained
1456  using a permutation test, see Methods for details.

1457
1458
Linear-1 classifier accuracy
F Value Num DF Den DF p
ROI 70.81 7 63 0.0000
Task 0.83 2 18 0.4505
ROIl:Task 2.22 14 126 0.0099
Linear-2 classifier accuracy
F Value Num DF Den DF p
ROI 87.64 7 63 0.0000
Task 3.17 2 18 0.0672
ROIl:Task 0.28 14 126 0.9939
Nonlinear classifier accuracy
F Value Num DF Den DF p
ROI 53.37 7 63 0.0000
Task 1.65 2 18 0.2180
ROIl:Task 0.63 14 126 0.8417
1459
1460
1461
1462
1463
1464
1465
1466
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1467 Supplementary Table 3. Results of three-way repeated-measures ANOVA tests on the binary
1468  classifier accuracy values for far and near trials, with factors of ROI, task and boundary (i.e.,
1469 comparing Linear-1 classifier versus Linear-2 classifier). Classifier accuracy values are shown in
1470  Figure 3. All p-values were obtained using a permutation test, see Methods for details.

1471

1472

Far trials
F Value Num DF Den DF p
RO 100.81 7 63  0.0000
Task 2.91 1 9 0.1217
Boundary 40.46 1 9 0.0003
ROI:Task 2.61 7 63  0.0205
ROIl:Boundary 3.70 7 63 0.0016
Task:Boundary 0.35 1 9 0.5659
ROIl:Task:Boundary 1.54 7 63 0.1727
Near trials
F Value Num DF Den DF p

ROI 65.53 7 63 0.0000
Task 5.37 1 9 0.0438
Boundary 9.33 1 9 0.0135
ROIl:Task 0.46 7 63 0.8639
ROI:Boundary 3.48 7 63 0.0020
Task:Boundary 8.99 1 9 0.0113
ROIl:Task:Boundary 1.21 7 63 0.3065
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Supplementary Figure 1. Classifier confusion matrix alignment with the Nonlinear template
does not differ significantly across task conditions. (A) Template matrix for the Nonlinear task,
representing the pattern of similarity expected for a perfect binary representation of the
Nonlinear categorization scheme. (B) The similarity (Pearson correlation coefficient, z-
transformed) between the Nonlinear template and the actual confusion matrix for each task and
ROI. Gray dots represent individual participants, colored circles and error bars represent the
mean + SEM across 10 participants. A two-way repeated measures ANOVA on these similarity
values revealed a main effect of ROl but no main effect of task or ROI x task interaction (ROI:
F763) 63.20, p < 0.001; Task: F(213) =1.19, p = 0.329; ROI x Task: F(14126)— 1.29,p=0. 222)
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1509 Supplementary Table 4. Results of three-way repeated-measures ANOVA tests on the
1510  multinomial classifier confidence values for far and near trials, with factors of ROI, task and
1511  confidence boundary (i.e., comparing Linear-1 confidence versus Linear-2 confidence).
1512  Classifier confidence values are shown in Figure 7. All p-values were obtained using a
1513  permutation test, see Methods for details.

1514

1515
Far trials

F Value Num DF Den DF p
ROI 54.44 7 63 0.0000
Task 0.22 1 9 0.6569
Boundary 49.96 1 9 0.0000
ROl:Task 0.82 7 63 0.5706
ROI:Boundary 6.58 7 63 0.0000
Task:Boundary 0.04 1 9 0.8568
ROIl:Task:Boundary 1.15 7 63 0.3475
Near trials
F Value Num DF Den DF p

ROI 30.13 7 63 0.0000
Task 1.88 1 9 0.1975
Boundary 17.03 1 9 0.0011
ROIl:Task 0.39 7 63 0.9128
ROI:Boundary 4.69 7 63 0.0002
Task:Boundary 11.05 1 9 0.0075
ROIl:Task:Boundary 0.78 7 63 0.6281
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1521

1522  Supplementary Figure 2. Task-related differences in classifier confidence are also measurable
1523  using binary classifiers. We used binary logistic regression classifiers that were trained to

1524  predict the category of each shape according to either the Linear-1 or Linear-2 decision rule
1525 (see Figure 2A-B), and computed the confidence of these classifiers for each trial as in Figure 6.
1526  (A) Confidence computed using “far” trials, meaning the 8 points in the main grid that fell

1527  furthest from the category boundary of interest. (B) Confidence computed using “near” trials,
1528 meaning the 8 points in the main grid that fell nearest to the boundary of interest. For the near
1529 ftrials only, we observed a main effect of task on Linear-2 confidence (two-way repeated

1530 measures ANOVA; ROI: F(763= 33.81, p < 0.001; Task: F(1,9) = 30.67, p < 0.001; ROI x Task:
1531  Fge3=0.96, p = 0.465). In (A-B), the gray dots represent individual participants, colored circles
1532  and error bars represent the mean + SEM across 10 participants.
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1539

1540 Supplementary Figure 3. Classifier confidence across the Nonlinear boundary does not differ
1541  significantly across tasks. Similar to Figure 7, we computed the confidence of the classifier
1542  toward the correct Nonlinear task category for each trial. (A) Confidence computed using “far”
1543 ftrials, meaning the four points in the main grid that fell furthest from the two category boundaries
1544  (i.e., four corners of the shape space grid). (B) Confidence computed using “near” trials,

1545 meaning the 12 points in the main grid that fell nearest to either of the two category boundaries.
1546  In (A-B), the gray dots represent individual participants, colored circles and error bars represent
1547 the mean + SEM across 10 participants. A two-way repeated measures ANOVA on these

1548  similarity values revealed a main effect of ROl but no main effect of task or ROI x task

1549 interaction (Far trials; ROI: F763= 41.70, p < 0.001; Task: F2,18 = 0.50, p = 0.618; ROI x Task:
1550  F4,126)= 0.67, p = 0.806; Near trials; ROI: F763)= 23.86, p < 0.001; Task: F213y=0.51, p =
1551  0.620; ROI x Task: F(14,126)= 0.58, p = 0.885).
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