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Abstract

Humans’ ability for generalisation is outstanding. It is flexible enough to identify cases where
knowledge from prior tasks is relevant, even when many features of the current task are different,
such as the sensory stimuli or the size of the task state space. We have previously shown that in
abstract tasks, humans can generalise knowledge in cases where the only cross-task shared feature
is the statistical rules that govern the task’s state-state relationships. Here, we hypothesized that this
capacity is associated with generalisable representations in the entorhinal cortex (EC). This
hypothesis was based on the EC’s generalisable representations in spatial tasks and recent
discoveries about its role in the representation of abstract tasks. We first develop an analysis
method capable of testing for such representations in fMRI data, explain why other common
methods would have failed for our task, and validate our method through a combination of
electrophysiological data analysis, simulations and fMRI sanity checks. We then show with fMRI that
EC representations generalise across complex non-spatial tasks that share a hexagonal grid
structural form but differ in their size and sensory stimuli, i.e. their only shared feature is the

rules governing their statistical structure. There was no clear evidence for such generalisation in EC
for non-spatial tasks with clustered, as opposed to planar, structure.

Introduction

If you grew up in a small town, arriving in a big city might come as a shock. However, you'll
still be able to make use of your previous experiences, despite the difference in the size of
the environment: When trying to navigate the busy city streets, your knowledge of
navigation in your hometown is crucial. For example, it’s useful to know the constraints that
a 2D topological structure exerted on distances between locations. When trying to make
new friends, it's useful to remember how people in your hometown tended to cluster in
groups, with popular individuals perhaps belonging to several groups. Indeed, the statistical
rules {termed “structural form”, (Kemp and Tenenbaum 2008)) that govern the relationships
between elements (states) in the environment are particularly useful for generalisation to
novel situations, as they do not depend on the size, shape or sensory details of the
environment (Mark et al. 2020). Such generalisable features of environments are proposed
to be part of the “cognitive map” encoding the relationships between their elements
(Tolman 1948; Behrens et al. 2018; Mark et al. 2020).
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The most studied examples of such environments are spatial 2D tasks. In all spatial
environments, regardless of their size or shape, the relations between states (in this case
locations) are subject to the same Euclidean statistical constraints. The spatial example is
particularly useful because neural spatial representations are well-characterised. Indeed,
one of the most celebrated of these - grid cells in the entorhinal cortex (EC) - has been
suggested as (part of) a neural substrate for spatial generalisation (Behrens et al. 2018;
Whittington et al. 2022). This is because (within a grid module) grid cells maintain their
coactivation structure across different spatial environments (Fyhn et al. 2007; Yoon et al.
2013). In other words, the information embedded in grid cells generalises across 2D spatial
environments (including environments of different shapes and sizes). Following a surge of
studies showing that EC spatial coding principles are also used in non-spatial domains
(Constantinescu, O’Reilly and Behrens 2016; Garvert, Dolan and Behrens 2017; Bao et al.
2019; Park et al. 2020), we have recently shown that EC also generalises over non-spatial
environments that share the same statistical structure (Baram et al. 2021). Importantly, in
that work the graphs that described the same-structured environments were isomorphic -
i.e. there was a one-to-one mapping between states across same-structure environments.

What do we mean when we say the EC has “generalisable representations” in spatial tasks?
and how can we probe these representations in complex non-spatial tasks? Between
different spatial environments, each grid cell realigns: its firing fields might rotate and shift
(Fyhn et al. 2007). Crucially, this realignment is synchronized within a grid module
population (Yoon et al. 2013; Gardner et al. 2022), such that the change in the grid angle
and phase of all cells is the same. This means that cells that have neighboring firing fields in
one environment will also have neighboring firing fields in another environment- the
coactivation structure is maintained (Yoon et al. 2013; Gardner et al. 2022). A mathematical
corollary is that grid cells’ activity lies in the same low-dimensional subspace (manifold,
(Yoon et al. 2013; Gardner et al. 2022)) in all spatial environments. This subspace remains
even during sleep, meaning the representation is stably encoded (Burak and Fiete 2009;
Gardner et al. 2019; Trettel SG et al. 2019).

We have recently developed an analysis method, referred to as “subspace generalisation”,
which allows for the quantification of the similarities between linear neural subspaces, and
used it to probe generalisation in cell data (Samborska et al. 2022). Unlike other
representational methods for quantifying the similarity between activity patterns (like RSA,
used in Baram et al. (Kriegeskorte, Mur and Bandettini 2008; Diedrichsen and Kriegeskorte
2017)), this method has the ability to isolate the shared features underlying tasks that do
not necessarily have a straightforward cross-task mapping between states, such as when the
sizes of tasks underlying graphs are different. Here, we use it to quantify generalisation in
such a case, but on fMRI data of humans solving complex abstract tasks rather than on cell
data. We designed an abstract associative-learning task in which visual images were
assigned to nodes on a graph and were presented sequentially, according to their relative
ordering on the graph. The graphs belonged to two different families of graphs, each
governed by a different set of statistical regularity rules (structural forms (Kemp and
Tenenbaum 2008)) — hexagonal (triangular) lattice graphs, and community structure graphs.


https://doi.org/10.1101/2023.08.31.555760
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555760; this version posted September 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

84  There were two graphs of each structural form. Crucially, the graph size and embedded
85 images differed within a pair of graphs with the same structural form (Figure 3b), allowing
86  us to test generalisation due to structural form across both environment size and sensory
87 information.

88  We first validate our approach by showing that subspace generalisation detects the known

89  generalisation properties of entorhinal grid cells and hippocampal place cells when rodents

90 free-forage in two different spatial environments — properties that have inspired our study’s

91  hypothesis. Next, we propose that our method can capture these properties even in low-

92  resolution data such as fMRI. We provide twofold support for this conjecture: through

93  sampling and averaging of the rodent data to create low resolution version of the data, and

94  through simulations of grid cells grouped into simulated voxels to account for the very low

95 resolution of the BOLD signal. We use these simulations to discuss how the sensitivity of our

96 method depends on various characteristics of the signal. Next, we validate the method for

97 real fMRI signals by showing it detects known properties of visual encoding in the visual

98  cortex in our task. Finally, and most importantly, we show that EC generalises its voxelwise

99  covariance patterns over abstract, discrete hexagonal graphs of different size and stimuli,
100  exactly as grid cells do in space. This result, however, did not hold for the community graph
101  structures. We discuss some possible experimental shortcomings that might have led to this
102  null result.

103 Theory — “subspace generalisation”

104  How can we probe the neural correlates of generalisation of abstract tasks in the human
105  brain? Popular representational analysis methods such as Representational Similarity

106  Analysis (RSA) (Kriegeskorte, Mur and Bandettini 2008; Diedrichsen and Kriegeskorte 2017)
107  and Repetition Suppression (Grill-Spector, Henson and Martin 2006; Barron, Garvert and
108  Behrens 2016) have afforded some opportunities in this respect (Baram et al. 2021).

109 However, because these methods rely on similarity measures between task states, they
110 require labeling of a hypothesized similarity between each pair of states across tasks. Such
111 labeling is not possible when we do not know which states in one task align with which
112  states in another task. In the spatial example where states are locations, the mapping of
113 each location in room A to locations in room B doesn’t necessarily exist - particularly when
114  the rooms differ in size or shape. This makes labeling of hypothesized similarity between
115  each pair of locations impossible. How can we look for shared activity patterns in such a
116  case?

117  We have recently proposed this can be achieved by studying the covariance of different

118  neurons across states (Samborska et al. 2022) (as opposed to RSA - which relies on the

119  correlation of different states across neurons). If two tasks contain similar patterns of neural
120  activity (regardless of when these occurred in each task), then the neuron X neuron

121  covariance matrix (across states within-task) will look similar in both tasks. This covariance
122 matrix can be summarised by its principal components {PCs), which are patterns across

123 neurons - akin to “cell assemblies” - and their eigenvalues, which indicate how much each
124  pattern contributes to the overall variance in the data. If representations generalise across
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tasks, then patterns that explain a lot of variance in task 1 will also explain a lot of variance
in task 2. We can compute the task 2 variance explained by each of the PCs of task 1:

v,, = diag(PCTA,ATPC,)

Where PC1 is a matrix with all task 1 PCs as its columns, ordered by their eigenvalues, and Az
is the neurons X states task 2 data. These PCs are ordered according to the variance
explained in task 1. Hence, if the same PCs explain variance across tasks, early PCs will
explain more variance in task 2 than late PCs. The cumulative sum of V;, will be a concave
function and the area under this concave function is a measure of how well neuronal
patterns generalise across tasks (Figure 1a). We refer to this measure as subspace
generalisation.

As validation and demonstration of our method, we first use it to recover differences in
generalisation between grid cells and place cells in the rodent brain that have been shown
previously with other methods. Next, we demonstrate the feasibility of our method in
capturing this difference in generalization properties even after we manipulate the data and
reduce its resolution. To complete the logical bridge from cells to voxels, we address the
limitation of this demonstration: the low number of cells recorded. We simulate voxels from
synthetic grid cells and show how our method’s power depends on various characteristics of
the signal. These analyses show that theoretically (and under reasonable conditions) our
method could still detect medial temporal lobe generalisation properties in fMRI BOLD
signal. Finally, and most importantly, we use our method to analyse fMRI data, testing for
generalisation of the covariance between voxel representations in human EC across
complex non-spatial graphs with common regularities — analogous to the generalisation of
grid cells in physical space. Crucially, in this task other representational methods common in
fMRI analysis such as RSA or repetition suppression would not be applicable (due to lack of
one-to-one mapping between states across graphs), highlighting the usefulness of our
method.

Results
Subspace generalization captures known generalisation properties of grid and place cells

Grid cells and place cells differ in their generalisation property. When an animal moves from
one environment to another, place cells “remap”: they change their correlation structure
such that place cells that are neighbours in environment 1 need not be neighbors in
environment 2. By contrast grid cells do not remap: the correlation structure between grid
cells is preserved across environments, such that pairs of grid cells (within the same module)
that have neighboring fields in environment 1 will also have neighboring fields in
environment 2 (Fyhn et al. 2007). This is true even though each grid cell shifts and rotates
its firing fields across environments - the grid cell population within a module realigns in
unison (Gardner et al. 2022; Waaga et al. 2022). Crucially, the angle and phase of this
realignment can’t be predicted in advance, meaning it is not possible to create hypotheses
to test regarding the similarity between representations at a given location in environment
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1 and a given location in environment 2 - a requirement for fMRI-compatible methods such
as RSA or repetition suppression. In this section we demonstrate how subspace
generalisation - which can also be useful in fMRI - captures the generalisation properties of
grid and place cells that have previously been shown only with traditional analysis methods
that require access to firing maps of single cells.

We computed subspace generalisation for grid and place cells recorded with
electrophysiology in a previous study (Chen et al. 2018), in which mice freely-foraged in two
square environments: a real physical and a virtual reality (VR) {see Methods for more
details). For our purposes, this dataset is useful because large numbers of both place cells
and grid cells were recorded (concurrently within a cell type) in two different environments
- rather than because of the use of a VR environment.

We compared two different situations: one where “task 1” and “task 2” were actually from
the same environment, Figure 1a - solid line, within-environment) and one where “task 1”
and “task 2” were from different environments (Figure 1a - dotted line, across-
environments).

As predicted, across environments grid cells’ subspaces generalised: PCs that were
calculated using activity in one environment explained the activity variance in the other
environment just as well as the within-environment baseline (Figure 1a, compare dotted
and solid black lines, plots show the average of the projections of activity from one
environment on EVs from the other environment and vice versa). The difference between
the area under the curve (AUC) of the two lines was significantly smaller than chance
(p<0.001 using a permutation test, see Methods and supplementary Figure S1). Importantly,
grid cells generalized much better between the environments than place cells; the
difference in AUCs between the solid and dotted lines is significantly smaller for grid cells
compared to place cells (Figure 1b, p<0.001, for both permutation test and 2 sample t-test,
see Methods and supplementary material). Interestingly, the difference in AUCs was also
significantly smaller than chance for place cells (Figure 1a, compare dotted and solid green
lines, p<0.05 using permutation tests, see statistics and further examples in supplementary
material Figure S2), consistent with recent models predicting hippocampal remapping that is
not fully random (Whittington et al. 2020).
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195  Flgure 1. Subspace generalisation across environments in grid and place cells in data from
196  Chen et al. 2018.

197  a. lllustration of the subspace generalization method. The Principal Components (PCs) are

198 calculated using the covariance matrix of the neuronal activity matrix. Then the activity
199 matrix is projected on each PC (recorded when the animal was in the same or different
200 environment/task) and the variance explained along each PC dimension is calculated.
201 We calculate the Area Under the Curve (AUC) of the cumulative sum of the variance

202 explained on each PC’s dimension as our similarity measure. When the similarity in

203 neuronal patterns during the two different tasks is higher the area under the curve is
204 higher (green AUC is added to the blue AUC)

205 b. The cumulative variance explained by the PCs calculated using the activity of grid (black)
206 or place (green) cells, within (solid lines) and across (dotted lines) environments.

207 Subspace generalization is calculated as the difference between the area under the

208 curve (AUC) of two lines. The difference between the black lines is small, indicating

209 generalisation of grid cells across environments. The difference between the green lines

210 is larger, indicating remapping of place cells (p<0.001, permutation test, see Methods).
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211 c¢. The difference between the within and across (solid and dashed lines in a., respectively)

212 environments AUCs of the cumulative variance explained by grid or place cells (black or
213 green lines in a., respectively). Data shown for all mice with enough grid or place cells
214 (>10 recorded cells of the same type, each bar is a mouse and a specific projection (i.e.
215 projecting on environment one or two)). The differences between the grid cells AUCs are
216 significantly smaller than the place cells (p < 0.001 permutation test, see supplementary
217 for more statistical analyses and specific examples).

218 d. Anexample of the cumulative variance explained by the PCs, calculated using the

219 constructed low-resolution version of grid and place cells data. The solid and dotted
220 lines are average over 10 samples and the shaded areas represent the standard error of
221 the mean across samples. Here, as above, the solid lines are projection within

222 environment and the dotted lines are projections between environments.

223  e. Subspace generalization in the low resolution version of the data captures the same

224 generalization properties of grid vs place cells. The distributions were created via
225 bootstrapping over cells from the same animal, averaging their activity, concatenating
226 the samples across all animals and calculating the AUC difference between within and
227 across environments projections (p<<0.001 Kolmogorov-Smirnovtest).

228
229

230 From neurons to voxels

231 So far, we have validated our method when applied to neurons. However, our primary

232 interest in this manuscript is to apply it to fMRI data. To illustrate the efficacy of this

233 approach in revealing generalisable neuronal subspaces within low resolution data like
234  fMRI, we applied our method to such data — both from manipulated electrophysiology and
235  simulations. We first examined our method on low-resolution versions of the Chen et al.
236  rodent MTL data, obtained by grouping and averaging cells. We show that our method can
237  still detect subspace generalization even on the supra-cellular level. However, due to the
238 small number of recorded cells, this analysis does not fully replicate a voxel’s BOLD signal,
239  which corresponds to the average activity of thousands of cells. To address this, we

240  simulated many grid cells and grouped them into voxels, with each voxel’s activity

241  corresponding to the average activity of its cells. We then applied subspace generalisation
242  tothe simulated pseudo-voxels, and examined how the results depend on various signal
243 characteristics.

244  Using Chen et al electrophysiology dataset, we first normalised each cell’s firing rate maps,
245  and then created bootstrapped low-resolution data: for each sampling iteration we sampled
246 7 cells (with repeats) into 2 groups within each animal and averaged the activities of cells
247  within each group. This results in a 2-long vector for each animal. We then concatenate

248  these vectors across animals. Note that for grid cells, this pooling over independent groups
249  of neurons is reminiscent of pooling over different grid modules in a single subject. For each
250 sample we calculated the difference in the area under the curve (AUC) between within and
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across environments projections as above (averaged over the projections on both
environments, Figure 1c). We repeat this bootstrapping step to create a distribution of the
differences in AUC for place cells and grid cells (Figure 1d). The difference in AUC was
smaller for grid cells than for place cells {p<0.001 Kolmogorov-Smirnovtest), as is expected
from the single cells’ analysis above.

The required number of cells to simulate a voxel’s activity (let alone multiple voxels) far
exceeds the number of cells in the Chen et al. dataset. To overcome this limitation and
support our conjecture that our method can detect subspace-generalization even in fMRI
BOLD signal, we next used simulated data. We simulated grid cells {see methods) organized
into four grid modules, each composed of more than 10000 cells. We organized the cells in
each module into four groups (pseudo-voxels) and averaged the activity within each group
(see supplementary info for an example of our analysis using different number of groups
within each module, and how our results are affected by the number of voxels per module,
Figure S3). We concatenated the pseudo-voxels from all modules into one vector and
calculated the difference in subspace-generalization measure (i.e. the AUC of within and
between environments). We explored how two characteristics of the data affect subspace
generalization: whether the grouping into voxels (within each module) was organized
according to grid phase, and the level of noise in the data.

We first grouped the cells into voxels randomly, i.e. without any a-priori assumption on the
relationship between the physical proximity of cells within the cortical layer and their firing
rate maps. Examples of the resulted “pseudo-voxels” activity maps can be seen in Figure 2a.
However, recent work has suggested there is a relationship between grid cells’ physical
proximity and their grid phases (Gu et al. 2018). We therefore also simulated “pseudo
voxels” by grouping grid cells, within each module, according to their grid phase (Figure 2b).
The pseudo-voxel’s signal in the latter case is substantially stronger (compare color bar
scales a between Figure 2a and 2b).

How does the difference between the signal variances affect the subspace generalization
measure? If the BOLD signal had no noise and all the cells within a voxel were indeed grid
cells, the actual variance of the signal would not affect our measure (Figure 2c, the solid and
dashed black lines are similar in both panels; i.e. the PCs that explain the activity variance
while the agent is in environment one explain the activity variance of environment two
similarly well, no matter how the cells are sampled into voxels). However, this is, of course,
unrealistic; the BOLD signal is noisy, and it is likely that voxel activity reflects non-grid cells
activity as well. To address this, we incorporated noise into our simulated voxel’s activity
map. Figure 2c shows that increasing signal variance by grouping according to the grid
phase, leads to higher subspace generalization measure (AUC) compared to random
sampling; random sampling results in small AUC (AUC = 0.5) which is close to the expected
AUC following projections on random vectors (solid and dash blue lines in Figure 2c, left, see
supplementary info Figure S3 for further analysis). Predictably, as the fraction of randomly
sampled grid cells increases the ability to detect subspace generalization in the presence of
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292  noise decreases (Figure 2d, Figure S3). Furthermore, sampling of grid cells according to

293  phase increases the statistical power of the subspace generalization method when the

294  amplitude of the noise increases (Figure 2e, Figure S3). To conclude, this shows under noisy
295  conditions, if nearby grid cells have similar phase tuning, as has been shown (Gu et al. 2018),
296  our method can in principle detect the generalization properties of grid cells, even in a very
297  low-resolution data, akin to the fMRI BOLD signal. It can in principle work to detect

298  generalization properties of any representation where nearby cells have similar tuning (such
299  as orientation tuning in V1).
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a. Examples of simulated voxels activity map in the two environments, without noise. upper:
higher frequency module, lower: lower frequency module. Cells are grouped into voxels
randomly.

b. Same as a. but with cells grouped into voxels according to the grid phase. Note the
different scale of the color-bar between a. and b.

c. Subspace generalization plot for the 16 simulated voxels, where the grouping into voxels
is either random (left) or according to phase (right). Legend as in d, noise amplitude = 0.1.
d. Left: AUCs of the subspace generalisation plots in c. as a function of the ratio of random
vs phase-organised cells in the voxels, with no noise (black) or with high amplitude of noise
(blue, noise amplitude = 0.1). Without noise (black lines), the subspace generalization
measure (AUC) remains high even when the fraction of randomly sampled cells increases.
However, in the presence of noise, the subspace generalization measure decreases with the
fraction of randomly sampled cells. Right: p-value of the effect according to the permutation
distribution (see methods, shaded area: standard error of the mean). In the presence of
noise and when the cells are sampled randomly, AUCwithin-between becomes non-significant,
see supplementary info Figure S3 for the dependency of the permutation distributions on
the presence of noise and sampling.

e. Same as d., except the continuous X-axis variable is the noise amplitude, for either of
phase-organized (black) or randomly organized voxels (red). AUC decreases sharply with
noise amplitude when the cells are sampled randomly, while it decreases more slowly when
the cells are sampled according to phase. The decrease in AUC to chance level (i.e. AUC =
0.5) with the increase in noise amplitude results in insignificant difference in subspace
generalization measure (AUCwithin-between). See supplementary info Figure S3 for the
permutation distributions.

Probing generalisation across abstract tasks with shared statistical rules — task design and
behaviour

In human neuroimaging, the success of multivariate pattern analysis (MVPA, (Haxby et al.
2001)) and RSA (Kriegeskorte, Mur and Bandettini 2008; Diedrichsen and Kriegeskorte
2017)) tells us that, as with cells, the covariance between fMRI voxel activity contains
information about the external world. It is therefore conceivable that we can measure the
generalisation of fMRI patterns across related tasks using the same measure of subspace
generalisation, but now applied to voxels rather than to cells. This will give us a measure of
generlisation in humans that can be used across tasks with no state-to-state mapping —e.g.
when the size of the state space is different across tasks. In this section, we first describe
the experimental paradigm we used to test whether, as in physical space, EC 1) generalises
over abstract tasks governed by the same statistical rules; and 2) does so in a manner that is
flexible to the size of the environment. In the next section we use known properties of visual
encoding as a sanity check for the use of subspace generalisation on fMRI data in this task.
Finally, we describe how the fMRI subspace generalisation results in EC depend on the
statistical rules (structural forms) of tasks.

We designed an associative-learning task (Figure 3A and 3B, similar to the task in (Mark et
al. 2020)) where participants learned pairwise associations between images. The images can
be thought of as nodes in a graph (unseen by participants), where the existence of an edge
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between nodes translates to an association between their corresponding images (Figure
3A). There were two kinds of statistical regularities governing graph structures: a
hexagonal/triangular structural form and a community structure. There were also two
mutually exclusive image sets that could be used as nodes for a graph, meaning that each
structural form had two different graphs with different image sets, resulting in a total of
four graphs per participant. Importantly, two graphs of the same structural form were also
of different sizes (36 and 42 nodes for the hexagonal structure; 35 and 42 nodes for the
community structure - 5 or 6 communities of 7 nodes per community, respectively),
meaning states could not be aligned even between graphs of the same structural form. The
pairs of graphs with the (approximately) same sizes across structural forms used the same
visual stimuli set (Figure 3B). This design allowed us to test for subspace generalisation
between tasks with the same underlying statistical regularities, controlling for the tasks’
stimuli and size.

Participants were trained on the graphs for four days and graph knowledge was assessed in
each of the days using a battery of tests described previously (Mark et al. 2020 and
methods). Some tests probed knowledge of pairwise {(neighboring) associations (Figure 3C-
D) and others probed “a sense of direction” in the graph, beyond the learned pairwise
associations of neighboring nodes (Figure 3 E-F). In all tests, the performance of participants
improved with learning and was significantly better than chance by the end of training
(Figure 3 C-F), suggesting that participants were able to learn the graphs and developed a
sense of direction even though they were never exposed to the graphs beyond pairwise
neighbors. Note that while all participants performed well on tests of neighboring
associations, the variance across participants for tests of non-neighboring nodes was high,
with some participants performing almost perfectly and others close to chance (compare
panels C-D to panels E-F). At the end of the training days, we asked participants whether
they noticed how the images are associated with each other, 26 out of 28 participants
recognized that in two sets, the pictures were grouped.
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377  Figure 3. Experimental design and behavior. A. Example of an associative graph.

378  Participants were never exposed to this top-down view of the graph - they learned the

379  graph by viewing a series of pairs of neighboring images, corresponding to a walk on the
380 graph. To aid memorisation, we asked participants to internally invent stories that connect
381 theimages. B. Each participant learned 4 graphs: two with a hexagonal lattice structure

382  (both learned on days 1 and 2) and two with a community structure (both learned on days 3
383  and 4). For each structural form, there was one larger graph and one smaller graph. The

384  nodes of graphs with approximately the same size were drawn from the same set of images.


https://doi.org/10.1101/2023.08.31.555760
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555760; this version posted September 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

415

416

417
418
419
420
421
422
423

available under aCC-BY-NC-ND 4.0 International license.

C-F. In each day of training we used four tests to probe the knowledge of the graphs, as well
as to promote further learning. In all tests, participants performed above chance level on all
days and improved their performance between the first and second days of learning a
graph. C. Participants were asked whether an image X can appear between images Y and Z
(one sided t-test against chance level (50%): hex dayl t(27) = 31.2, p < 107-22 ; hex day2
t(27) =35.5, p < 101-23 ; comm day3 t(27) = 26.9, p < 10"-20 ; comm day4 t(27)=34.2, p<
107-23 ; paired one sided t-test between first and second day for each structural form: hex
t(27) =4.78, p < 107-5 ; comm t(27) = 3.49, p < 107-3). D. Participants were shown two 3-
long image sequences, and were asked whether a target image can be the fourth image in
the first, second or both of the sequences (one sided t-test against chance level (33.33%):
hex day1 t(27) = 39.9, p < 107-25 ; hex day2 t(27) =42.3, p < 107-25 ; comm day3 t(27) =
44.8, p < 107-26 ; comm day4 t(27) =44.2, p < 107-26 ; paired one sided t-test between
first and second day for each structural form: hex t{(27) = 3.97, p < 10"-3 ; comm t(27) = 2.81
, p < 107-2). E. Participants were asked whether an image X is closer to image Y or image Z, Y
and Z are not neighbors of X on the graph (one sided t-test against chance level (50%): hex
daylt(27)=12.6, p < 107-12 ; hex day2 t(27) = 12.5, p < 10*-12 ; comm day3 t(27) =5.06,
p < 107-4 ; comm day4 t(27) = 7.42, p < 10/*-07; paired one sided t-test between first and
second day for each structural form: hex t(27) = 3.44, p < 107-3 ; comm t(27) = 2.88, p <
10A7-2). F. Participants were asked to navigate from a start image X to a target image Y. In
each step, the participant had to choose between two (randomly selected) neighbors of the
current image. The participant repeatedly made these choices until they arrived at the
target image (paired one sided t-test between number of steps taken to reach the target in
first and second day for each structural form. Left: trials with initial distance of 2 edges
between start and target images: hex t(27) = 2.57, p < 107-2 ; comm t(27) = 2.41, p < 10/-2;
Mlddle: initial distance of 3 edges: hex t(27) = 2.58, p < 10/-2 ; comm t(27) = 4.67 , p < 107-
2; Right: trials with initial distance of 4 edges: hex t(27) =3.02, p < 107*-2 ; comm t(27) = 3.69
, p < 107-3). Note that while feedback was given for the local tests in panels C and D, no
feedback was given for the tests in panels E-F to ensure that participants were not directly
exposed to any non-local relations. The location of different options on the screen was
randomised for all tests. Hex: hexagonal lattice graphs. Comm: community structure graphs.

FMRI task and analysis

On the fifth day participants performed a task in the fMRI scanner. Each block of the scan
included one of the four graphs the participant has learned and started with a self-paced
image-by-image random walk on the graph to allow inference of the currently relevant
graph (Figure 4a, data not used in this manuscript). The second part of the block had two
crucial differences. First, images were arranged into sequences of 3 images that were
presented in rapid succession, corresponding to a walk of length 3 on the graph (Figure 4b
and Figure S5 for the partitioning the graphs into 3 images sequences). The time between
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424  two successive sequences was 800ms (Figure 4c). Second, while the order within each 3-
425 images sequence was dictated by the graph, the order across the sequences was pseudo-
426  random. We needed this second manipulation to ensure coverage of the graph in every

427  block and to eliminate the possibility of spurious temporal correlations between

428 neighboring sequences. However, if we had presented images individually in this random
429  order, graphs with the same stimuli set would have been identical, making it difficult for
430 subjects to maintain a representation of the current graph across the block. Whilst the

431  images were the same across 2 graphs, the sequences of neighboring images uniquely

432 identified each graph, inducing a sensation of “moving” through the graph. To encourage
433  attention to the neighborhood of the sequence in the graph, in 12.5% of trials the sequence

III

434  was followed by a single image (“catch trial” in Figure 4c), and participants had to indicate
435  whether it was associated with the last image in the sequence (Figure 4c). Participants
436  answered these questions significantly better than chance (Figure S6), indicating that they
437 indeed recognize the correct graph and maintain the correct representation during the
438  block (t-test, p<<0.001 for both structures, t[27]hex=11.3, t[27]comm=10.6). At the end of
439  each block participants were asked whether they recognised which images set they

440  currently observed {see Method and supplementary for more details). Participants

441 answered these questions significantly better than chance (t-test, p<0.001 for both

442  structures, t[27]hex= 3.8, t[27]comm = 9.96, see supplementary Figure S6), again indicating

443  that they correctly recognised the current graph in the scanner.

444  To analyze this data, we used the subspace generalisation method as described for the

445  rodent data but replacing the firing of neurons at different spatial locations with the activity
446  of fMRI voxels for different 3-images sequences. To do this, we first performed a voxelwise
447  GLM where each regressor modeled all appearances of a particular 3-images sequence in a
448  given run, together with several nuisance regressors (see Methods). This gave us the activity
449  of each voxel for each sequence. For each voxel, in each run, we extracted the 100 nearest
450  voxels and formed a matrix of sequence X voxels. These are analogous to the data matrices,
451 B, in equation 1. We then computed subspace generalisation using the PCs of the voxel X
452  voxel covariance matrix instead of the cell X cell covariance matrix (Figure 4d).

453  We then employed a leave-one-out cross-validation by repeatedly averaging the activation
454  matrices from three runs of graph X, calculating the PCs from this average representation,
455  and then projecting the activation matrix of the held out run of control graph X (or a test
456  graphY) on these PCs. This ensures that the “PC” and “data” graphs are always from

457  different runs. We then calculated the subspace generalisation between each pair of graphs
458  resulting in a 4x4 matrix at each voxel of the brain (Figure 4d).

459  We refer to the elements of this 4x4 matrix in the following notation: we denote by H/C
460  graphs of either hexagonal or community structure, and by s/l either small or large stimuli
461  sets (matched across graphs of different structures). For example, HsCs denotes the

462  element of the matrix corresponding to activity from the small hexagonal graph projected
463  on PCs calculated from the small (same image-set) community-structure graph.
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466  Figure 4. fMRI experiment and analysis method (subspace generalisation)

467 a. Each fMRI block starts with 70s of random walk on the graph: a pair of pictures

468 appears on the screen, each time a participant presses enter a new picture appears
469 on the screen and the previous picture appears behind (similar to the three pictures
470 sequence, sell below). During this phase participants are instructed to infer which
471 “pictures set” (i.e graph) they are currently playing with. Note that fMRI data from
472 this phase of the task is not included in the current manuscript.

473 b. The three pictures sequence: three pictures appear one after the other, while

474 previous picture/s still appear on the screen.
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c. Each block starts with the random walk (panel a). Following the random walk,
sequences of three pictures appear on the screen. Every few sequences there was a
catch trial in which we ask participants to determine whether the questioned picture
can appear next on the sequence.

d. Subspace generalisation method on fMRI voxels. Each searchlight extracts a beta X
voxels’ coefficients (of 3-images sequences) matrix for each graph in each run
(therefore, there are four such matrices). Then, using cross-validation across runs,
the left out run matrix of one graph is projected on the EVs from the (average of 3
runs of the) other graph. Following the projections, we calculate the cumulative
percentage of variance explained and the area under this curve for each pair of
graphs. This leads to a 4 X 4 subspace generalization matrix that is then being
averaged over the four runs (see main text and methods for more details). The colors
of this matrix indicate our original hypothesis for the study: that in EC, graphs with
the same structure would have larger (brighter) AUCs than graphs with different
structures (darker).

Testing subspace generalisation on visual representations

To verify our analysis approach is indeed valid when used on our fMRI data, we first tested it
on the heavily studied object encoding representations in lateral occipital cortex (LOC,
Malach 1995 PNAS, Grill-Spector). Recall that our stimuli in the scanner were concurrently
presented sequences of three images of objects. We reasoned that these repeated
sequences would induce correlations between object representations that should be
observable in the fMRI data and detectable by our method. This would allow us to identify
visual representations of the objects without ever specifying when the stimuli (i.e. 3-images
sequences) were presented.

To this end we compared subspace generalization computed between different runs that
included the same stimuli (3-images sequences, with different order across sequences
between runs) with subspace generalization computed between runs of different stimuli
while controlling for the graph structure. This led to the contrast [HIHI + CICl + HsHs +CsCs] -
[HIHs + HsHI + CICs + CsCl], which had a significant effect in LOC (Figure 5a, peak MNI [-44,-
86,-8], t(27)_peak = 4.96, P_tfce < 0.05 based on a FWE-corrected nonparametric
permutation test, corrected in bilateral LOC mask (Harvard-Oxford atlas, Desikan 2006,
Neuroimage). In an additional exploratory analysis, we tested the significance of the same
contrast in a whole-brain searchlight. While this analysis did not reach significance once
corrected for multiple comparisons, the strongest effect was found in LOC {Figure 5a). Note
that in this contrast we intentionally ignored the elements of the 4x4 matrix where the data
and the PCs came from graphs with the same images set and a different structure (HICI,
HsCs, CIHI, CsHs), because they did not share the exact same visual stimuli (the 3-images
sequence). In these cases, we did not have a hypothesis about the subspace generalization
in LOC. These results suggest that we can detect the correlation structure induced by stimuli
without specifying when each stimulus was presented.
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516  EC generalizes a low-dimensional representation across hexagonal graphs of different
517  stimuli and sizes

518 Having established that the subspace generalization method can detect meaningful

519  correlations between fMRI voxels, we next aimed to test whether EC will represent the

520  statistical structure of abstract graphs with generalisable low-dimensional representations.
521  We first tested this for discretized 2D (hexagonal) graphs, using the community structure
522  graphs as controls: We tested whether the EC subspaces from hexagonal graphs blocks were
523  better aligned with the PCs of other hexagonal blocks, than with the PCs from community
524  graphs blocks, i.e. {[HIHI + HIHs + HsHI + HsHs] - [HICI + HICs + HsCl + HsCs], Figure 5b). This
525  contrast was significant in the right EC (peak MNI [28, -10, -40], t(27)_peak = 4.2, P_tfce

526  <0.01 based on a FWE-corrected nonparametric permutation test, corrected in a bilateral EC
527  mask (Figure 5b) (Julich atlas, Eickoff 2007). We obtained a null result for the equivalent

528  analysis for community structure graphs ([CICI + CICs + CsCl + CsCs] - [CIHI + CIHs + CsHI +
529  CsHs]). This was particularly due to low subspace generalization across different runs of the
530 same community structure graphs (bottom two diagonal elements in Figure 5b right,

531 compare to our original hypothesis subspace generalization matrix in Figure 4d). See the

532  Discussion for possible interpretations of this null result.

533  To ensure the robustness of the hexagonal graphs result we next tested the same effect in
534  an orthogonal ROl from our previous study. In (Baram et al. 2021) we have shown that EC
535 generalises over different reinforcement learning tasks with the exact same structure. We
536  therefore tested the same effect in that ROI (all voxels in the green cluster in Figure 3d in
537 Baram 2021 et al., peak MNI: [25, -5, -28]), and indeed the [HIHI + HIHs + HsHI + HsHs] - [HICI
538  + HICs + HsCl + HsCs] contrast was significant (one sided t-test, t(27) =3.6, p<0.001, Figure
539  5¢).

540  Taken together, these results suggest that as in physical space, different abstract hexagonal
541  graphs are being represented on the same EC low-dimensional subspace. This is consistent
542  with a view where the same EC cell assembly represents both hexagonal graphs, and that
543  these cells covary together - even when the underlying size of the graph is different.

544

545
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Figure 5: subspace generalisation in visual and structural representations.

a. Subspace generalisation of visual representations in LOC. Left: difference in subspace
generalization was computed between different blocks that included the same stimuli with
subspace generalization computed between blocks of different stimuli while controlling for
the graph structure, i.e [HIHI + CICI + HsHs +CsCs] - [HIHs + HsHI + CICs + CsCl]. t(27)_peak =
4.96, P_tfce < 0.05 over LOC. Right: visualization of the subspace generalisation matrix
(averaged over all LOC voxels with t>2 for the [HIHI + CICI + HsHs +CsCs] - [HIHs + HsHI + CICs
+ CsCl] contrast, i.e. green minus red entries.

b. EC generalises over the structure of hexagonal graphs. Left: the effect for the contrast
[HIHI + HIHs + HsHI + HsHs] - [HICI + HICs + HsCl + HsCs], i.e. the difference between
subspace generalisation of hexagonal graphs data, when projected on PCs calculated from
(cross-validated) hexagonal graphs (green elements in right panel) vs community structure
graphs (red elements). t(27)_peak = 4.2, P_tfce <0.01 over EC. Right: Same as in a. right but
for the [HIHI + HIHs + HsHI + HsHs] - [HICI + HICs + HsCl + HsCs] contrast in EC.

c¢. The average effect in an ROl from Baram et al. (green cluster in figure 3d of Baram et al.)
for each participant. Star denotes the mean, error bars are SEM.
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563 Discussion

564  The contributions of this manuscript are two-fold: first, we show that EC representations
565  generalize over hexagonal abstract graphs of different sizes, highlighting the importance of
566 the statistical properties of the environment to generalization. This expands our previous
567  work (both experimental (Baram et al. 2021) and theoretical (Whittington et al. 2020)),

568  suggesting EC plays an important role in generalization over abstract tasks, to the case

569  where the tasks are governed by the same statistical rules but are not governed by the exact
570 underlying graph (transition structure). This view builds on the known generalization

571  properties of EC in physical space (Fyhn et al. 2007; Gardner et al. 2022) and on recent

572  literature highlighting parallels between medial temporal lobe representations in spatial and
573  non-spatial environments (Behrens et al. 2018; Whittington et al. 2022). Second, we present
574  an fMRI analysis method (“subspace generalization”), adapted from related work in

575 electrophysiology analysis (Samborska et al. 2022), to quantify generalization in cases where
576  a mapping between states across environments is not available (though see (Hahamy and
577  Behrens 2019) for our previous fMRI application of this method in the visual domain).

578  Exploiting previous knowledge while making decisions in new environments is a hard

579 challenge that humans and animals face regularly. To enable generalization from loosely
580 related previous experiences, knowledge should be represented in an abstract and flexible
581  manner that does not depend on the particularities of the current task. Understanding the
582  brain’s solution to this computational problem requires a definition of a “generalisable

583  representation”, and a way of quantifying it. Here, we define generalization as sharing of
584  neuronal manifold across representations of related tasks. The particular assumption here is
585  thatin the EC, such manifolds encode the relevant information about the particular

586  structural form of the task.

587  An example of such generalization has previously been observed in the spatial domain, in
588  grid cells recordings across different physical environments, regardless of shape or size

589  (Fyhnet al. 2007; Gardner et al. 2022). This was usually done through direct comparison of
590 the pairwise activity patterns of cells (Fyhn et al. 2007; Yoon et al. 2013; Gardner et al.

591  2022). However, this is not possible to do in fMRI, rendering the examination of EC

592  generalization in complex abstract tasks difficult. “Subspace generalization” relies on the
593 idea that similarity in activity patterns across tasks implies similarity of the within-task

594  correlations between neurons. These are summarized in the similarity between the (low
595 dimensional) linear subspaces where the activity of the neurons/voxels representing the
596  two tasks lies. For fMRI purposes, this similarity between within-task neuronal correlations
597  should be reflected in the similarity between within-task correlations across voxels, as long
598 as the relevant neurons anatomically reside across a large enough number of voxels.

599 Importantly, comparing similarity in neuronal correlations structures rather than similarity
600 in states representations patterns (as in RSA) allows us to examine flexible knowledge

601 representations when a mapping between states in the two tasks does not exist. We

602  present three validations of this method: in cells, we show it captures all expected

603  properties of grid and place cells, even if we reduce the data resolution by averaging over
604  the activity of group of cells. In simulation, we show that calculating subspace generalization
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using simulated voxels from simulated grid cells results in significant generalization effect
under realistic condition. In fMRI, we show it captures the expected correlations induced by
the visual properties of a task in LOC.

Our main finding of subspace generalization in EC across hexagonal graphs with different
sizes and stimuli significantly strengthens the suggestion that EC flexibly represents all
‘spatial- like’ tasks, such as discretized 2D hexagonal graphs. Recently, we presented a
theoretical framework for this idea: a neural network trained to predict future states, that
when trained on 2D graphs displayed known spatial EC representations {(the Tolman
Eichenbaum Machine (TEM) (Whittington et al. 2020)). However, ‘spatial-like’ structures are
not the only prevalent structures in natural tasks. The relations between task states often
follow other structural forms (such as periodicities, hierarchies or community structures),
inference of which can aid behavior (Mark et al. 2020). Representations of non-Euclidian
task structures have been found in EC (Garvert, Dolan and Behrens 2017; Baram et al. 2021)
and these generalize over different reinforcement learning tasks that are exactly the same
except for their sensory properties (Baram et al. 2021). Indeed, when TEM was trained on
non-Euclidean structures like hierarchical trees, it learned representations that were
generalisable to novel environments with the same structure (Whittington et al. 2020).
Further, we have previously shown that representing each family of graphs of the same
structural form with the relevant stable representation (i.e. basis set) allows flexible transfer
of the graph structure and therefore inference of unobserved transitions (relations between
task’s states) (Mark et al. 2020). Together these studies suggest that flexible representation
of structural knowledge may be encoded in the EC.

Based on these, we hypothesized that EC representations will also generalize over non-
'spatial-like” tasks (here, community-structure) of different sizes. However, we could not
find conclusive evidence for such a representation: the relevant contrast ([CICI + CICs + CsCl
+ CsCs] - [CIHI + CIHs + CsHI + CsHs]) did not yield a statistically significant effect in EC (or
elsewhere, in an exploratory analysis corrected across the whole brain). This is despite clear
behavioral evidence that participants use the community structure of the graph to inform
their behavior: participants have a strong tendency to choose to move to the connecting
nodes (nodes that connect two different communities) over non-connecting nodes ((Mark et
al. 2020), and Figure S4a). Moreover, in the post-experiment debriefing, participants could
verbally describe the community structure of the graphs (26 out of 28 participants). This was
not true for the hexagonal graphs. Why, then, did we not detect any neural generalization
signals for the community structure graphs? There are both technical and psychological
differences between the community structure and the hexagonal graphs that might have
contributed to the difference in the results between the two structures. First, we have
chosen a particular nested structure in which communities are organized on a ring.
Subspace generalisation may not be suitable for the detection of community structure: for
example, a useful generalisable representation of such structure is composed of a binary
‘within-community nodes’ vs ‘connecting nodes’ representation. If this is the representation
used by the brain, it means all “community-encoding” voxels are similarly active in response
to all stimuli (as all 3-images sequences contain at least two non-connecting node images),
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and only “connecting nodes encoding” voxels change their activation during stimuli
presentation. Therefore, there is very little variance to detect.

Though this manuscript has focused on EC, it is worth noting that there is evidence for
structural representations in other brain areas. Perhaps the most prominent of these is
mPFC, where structural representations have been found in many contexts {Klein-Flligge et
al. 2019; Baram et al. 2021; Klein-Flligge, Bongioanni and Rushworth 2022). Indeed, the
strongest grid-like signals in abstract 2D tasks are often found in mPFC {Constantinescu,
O’Reilly and Behrens 2016; Bao et al. 2019; Park et al. 2020; Bongioanni et al. 2021) and task
structure representations have been suggested to reside in mOFC (Wilson et al. 2014;
Schuck et al. 2016; Xie and Padoa-Schioppa 2016). The difference and interaction between
PFC and MTL representations is a very active topic of research. One such suggested
dissociation that might be of relevance here is the preferential contribution of MTL and PFC
to latent and explicit learning, respectively. A related way of discussing this dissociation is to
think of mPFC signals as closer to the deliberate actions subjects are taking. Circumstantial
evidence from previous studies in our lab (tentatively) suggest the existence of such
dissociation also for structural representations: when participants learnt a graph structure
without any awareness of it, this structure was represented in MTL but not mPFC (Garvert,
Dolan and Behrens 2017). On the other hand, when participants had to navigate on a 2D
abstract graph to locations they were able to articulate, we observed much stronger grid-
like signals in mPFC than MTL (though a signal in EC was also observed,(Constantinescu,
O’Reilly and Behrens 2016)). In addition, Baram et al. found that while the abstract structure
of a reinforcement learning task was represented in EC, the structure-informed learning
signals that inform trial-by-trial behavior with generalisable information were found in
mPFC. Taken together, these results suggest that here, it is reasonable to expect
generalisation signals of community structure graphs {of which participants were aware) in
PFC, as well as the signals reported in EC for hexagonal graphs (of which participants were
unaware). Indeed, when we tested for subspace generalisation of community structure
graphs in the same ROl in vmPFC where Baram et al. found generalisable learning signals,
we obtained a significant result (though this is a weak effect, and we hence report it with
caution in the supplementary material, Figure S4b).

To summarize, we have extended the understanding of EC representations and showed that
EC represents hexagonal graph structures of different sizes, similarly to grid cells
representation of spatial environments. We did this by using an analysis method which we
believe will prove useful for the study of generalisable representations in different neural
recording modalities. More work is needed to verify whether this principle of EC
representations extends to other, non-""spatial-like” structural forms.

Methods

Rodent cells analysis

Cells electrophysiology data were taken from (Chen et al. 2018). In short, cells (place cells from CAl
and grid cells from dmEC) were recorded while the animals foraged in two different square arenas;
one real arena and one virtual reality (VR) arena, real arena is 60x60 and the VR arena is 60x60 or
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90x90 cm. The VR system restrained head-movements to horizontal rotations, and included an air-
suspended ball on which the mice could run and turn. A virtual environment reflecting the mouse’s
movements on the ball was projected on screens in all horizontal directions and on the floor. Mice
were implanted with custom-made microdrives (Axona, UK), loaded with 17mm platinum-iridium
tetrodes, and providing buffer amplification. We analyzed grid cells data from three animals; two
animals had only grid cells data and one animal had both place cells and grid cells data. We analyzed
place cells data from three more animals that had only place cells data (mouse 1 had 14 grid cells,
mouse 2 and 3 had 21 grid cells, mouse 1, 4, 5 had 25 place cells). This experimental design results in
two different firing rate maps, one for each arena. After preprocessing (calculate the firing rate map
using on 64X64 bins matrix and smoothing of the firing rate maps with 5 bins boxcar), we calculated
the ‘subspace generalisation’ score, as follows:

a. Calculate the neuron X neuron correlation matrix from the first firing rate map (one
of the environments) and its principal components (PCs).

b. Project the firing rate maps from this environment and the other environment on
these PCs.

c. Calculate the cumulative variance explained as a function of PCs (that are organized
according to their corresponding eigenvalues)

d. Calculate the area under the curve (AUC).

Permutation test 1 (within cell type): Our hypothesis is that the neuron X neuron correlation
structure is preserved while the animals forage in the two different arenas, i.e. that the active cells’
assemblies remain the same. Therefore, the null hypothesis is that the cells’ assemblies are random
and did not remain the same while animals forage in the two arenas. We therefore calculated the
PCs using the firing rate map while the animal foraged in one environment and permuted the cells’
identity of the firing rate maps correspond to the second environment. We then calculated the
difference between the ‘subspace generalisation’ score within and across environments. This creates
our null distribution, which we compare to the subspace generalisation score of the non-permuted
data.

permutation test 2 (between cell types): Our hypothesis is that grid cells generalise better than place
cells, i.e. that the difference between the AUC of within arena projection to across arenas projection
is smaller in grid cells compared to place cells. To this end, we created AUC-differences distribution
using place cells activity as our null distribution; we sample place cells from each animal, such that
the number of grid cells and place cells was equal (mouse 1 had 14 grid cells, mouse 2 and 3 had 21
grid cells, mouse 1, 4, 5 had 25 place cells). Then, for each sample, we calculated the difference in
AUC (same arena - different arenas), as before. We calculated the distribution of these AUC-
differences values from all three animals. We then checked whether the AUC-differences in grid
cells, for all three animals, is significantly smaller than those predicted by the sampled place cells
distribution (Figure S1).

Reducing the resolution of the electrophysiological data

We first normalized all firing rate maps. Then, for each animal we randomly sampled (with repeats)
seven cells into two groups and averaged the cells’ activity within each group, separately for each
environment. We then concatenated the resulted size-2 vectors from all animals into one vector and
used this vector as above to calculate the AUC differences between within and across environments.
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The number of bootstraps was 400, therefore we had 800 repetitions to calculate the distribution
(for each sample we project on both environments therefore getting two AUC - difference values).
The plots in Figure.1d were smoothed with smoothing window of 9, the number of bins to calculate
the distribution was 50.

Simulating pseudo voxels

Grid cells are simulated as a thresholded sum of three 2D cosines (Burgess et al. 2007). Each module
is simulated by shifting the grid cells within a grid that spans the rhombus of the hexagonal grid,
such that the average over all grid cells within a module is a constant across the box (note that due
to numerical issues this is almost constant).

We simulated 13456 cells per module (116*116 in the x-y plane, i.e. covering the grid’s rhombus).
The box is simulated with 50*50 resolution (the size of the “box” is 10*10). We simulated four
different modules that differ in their grid spacing and phases. Each environment was simulated by a
different phase and shift of the grid fields such that the relationships between the cells remain the
same across environments.

Voxels were simulated by averaging cells within a module. Each module was segregated into four
groups of cells (therefore there are 3364 cells within each voxel, see supplementary for different
segregations). Each voxel is an average over the cells’ firing rate map within the group. The
averaging was done in two stages:

a. sampling grid cells randomly - i.e. not related to their grid phase

b. The remaining cells were segregated into four groups according to their phase.

The above process was repeated for different fractions of random/(according to phase) ratio
(ratio_random =[0,1], 0: only segregated according to phase, 1: only segregated randomly). We
further added spatial white noise to each voxel, noise std ranging from 0 to 0.1. When examining the
effect of random sampling, the noise std was 0 or 0.1.

FMRI experiment

Participants: 60 UCL students were originally recruited. As the training is long and hard, for each scan
we recruited two participants for the training sessions, and chose the better performing of the two
to be scanned. Overall, we scanned 34 participants and excluded 6 participants from the analysis
because of severe movement or sleepiness in the scanner.

The study was approved by the University College London Research Ethics Committee (Project ID
11235/001). Participants gave written informed consent before the experiment.

Behavioural training for fMRI training task

To ensure that participants understood the instructions, the first training day was performed in the
lab while the other three training days were performed from the participant’s home.

Graphs. One hexagonal graph consisted of 36 nodes and the other 42 nodes as shown in Figure 3b.
One community structured graph consisted of 5 communities and the other 6 communities, with 7
nodes each. Within a community, each node was connected to all other nodes except for the two
connecting nodes that were not connected to each other but were each connected to a connecting
node of a neighboring community (Figure 3b). Therefore, all nodes had a degree of six, similarly to
the hexagonal graphs (except the nodes on the hexagonal graphs border, which had degree less than
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772 six). Our community structure graph had a hierarchical structure, wherein communities were
773  organized on aring.
774 Training procedures. In each of the training days, participants learned two graphs with the same

775 underlying structure but different stimuli. During the first two days participants learned the

776 hexagonal graphs, while during the third and fourth days participants learned the community

777  structured graphs. We chose to first teach the hexagonal graphs structure for all participants and not
778  randomize the order because learning community structure graph changes participants’ learning
779  strategy (mark et al. 2020). During the fifth day, before the fMRI scan, participants were reminded of
780  all four graphs, with two repetitions of each hexagonal graph and one repetition of each community
781  structured graph. Stimuli were selected randomly, for each participant, from a bank of stimuli (each
782 pair of graphs, one hexagonal and one of a community structured graph shared the same bank).

783  Each graph was learnt during four blocks (Figure. 3b; 4 blocks for graph 1 followed by 4 blocks for
784  graph 2 in each training day). Participants could take short resting breaks during the blocks. They
785  were instructed to take a longer resting break after completing the four blocks of the first graph of
786  each learning day.

787

788  Block structure. Each block during training was made of the following tasks: 1) Learning phase 2)

789 Extending pictures sequences 3) Can it be in the middle 4) Navigation 5) Distance estimation (see
790  Figure 3). Next, we elaborate the various components of each block.

791  Learning phase (Figure 3a): Participants learned associations between graph nodes by observing a

792  sequence of pairs of pictures which were sampled from a random walk on the graph (successive
793 pairs of pictures shared a common picture). Participants were instructed to ‘say something in their
794  head’ in order to remember the associations. Hexagonal graphs included 120 steps of the random
795  walk per block and community-structured graphs included 180 steps per block (we introduced more
796  picturesin the community graph condition as random walks on such graphs result in high sampling
797  of transitions within a certain community and low sampling of transitions between communities).
798  Extending pictures sequences (Figure 3d): Given a target picture, which of two sequences of three

799  pictures can be extended by that picture (a sequence can be extended by a picture only if it is a

800 neighbor of the last picture in the sequence, the correct answer can be sequence 1/sequence 2/both
801  sequences): Sixteen questions per block. (note that a picture could not appear twice in the same

802 sequence, i.e. if the target picture is already in the sequence the correct answer was necessarily the
803  other sequence).

804 Can it be in the middle (Figure 3c): Determine whether a picture can appear between two other

805  pictures, the answer is yes if and only if the picture is a neighbor of the two other pictures. Sixteen
806 questions per block.
807  Navigation (Figure 3e): The aim—navigate to a target picture (appears at the right of the screen).

808  The task was explained as a card game. Participants are informed that they currently have the card
809  of the picture that appears on the left of the screen. They were asked to choose between two

810  pictures that are associated with their current picture. They could also skip and sample again two
811  pictures that are associated with the current picture, if they thought their two current options did
812 not get them closer to the target (skipping was counted as a step). In each step participants were
813 instructed to choose a picture that they thought had a smaller number of steps to the target picture
814  (according to their memory). Following choice, the chosen picture appeared on the left and two new
815  pictures, that correspond to states that are neighbors of the chosen picture, appear as new choices.
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After a participant selected a neighbor of the target picture, that target picture itself could appear as
one of the new options for choice. The game terminated when either the target was reached or 200
steps were taken (without reaching the target). In the latter case a message ‘too many steps’ was
displayed. On the first block, for each step, the number of links from the current picture to the target
picture was shown on the screen. Participants played three games (i.e. navigation until the target
was reached or 200 steps passed) in each block, where the starting distance (number of links)
between the starting picture to the target was 2, 3 and 4.

Distance estimation: Which of two pictures has the smallest number of steps to a target picture: 45

questions per block (none of the 2 pictures was a direct neighbor on the graph, i.e. the minimal
distance was 2 and no feedback was given).

fMRI scanning task

The task consisted of four runs. Each run was divided into five blocks (one block for each graph and
one more repetition for one of the hexagonal graphs; the repetition was not used in the analyses in
this manuscript). On each block participants observed pictures that belong to one of the graphs. A
block started with 70sec in which participants observed, at their own pace, a random walk on the
graph; two neighboring pictures appeared on the screen and when participants pressed ‘enter’ a
new picture appeared on the screen (similar to the training learning phase). The new picture
appeared in the middle of the screen and the old picture appeared on its left. Participants were
instructed to infer which ‘pictures set’ they are currently observing. No information about the graph
was given. This random walk phase was not used in any analyses in this manuscript.

Next, sequences of three pictures appeared on the screen, one after the other (note the first and
second pictures did not disappear from the screen until after the third picture in the sequence was
presented - all three pictures disappeared together, prior to the next trial, Figure 4b). To keep
participants engaged, once in a while (5 out of 45 sequences) a fourth picture appeared and
participants had to indicate whether this picture can appear next on the sequence (‘catch trials’,
Figure 4c). Before starting the fMRI scan participants were asked whether they found any
differences between the picture sets during the first two days (when the hexagonal graphs were
learnt) and the last two days (when the community graphs were learnt). Most participants (26 out of
28) could indicate that there were groups of pictures (i.e. communities) in the last two days, and that
this was not the case during the first two days. At the end of each block in the scanner participants
answered whether or not there are groups in the current picture set (participants that were not
aware of the groups were asked whether this set belongs to the first two training days or not).
Participants were given a bonus for answering correctly, such that 100% correct results in a ten
pounds bonus.

fMRI data acquisition

FMRI data was acquired on a 3T Siemens Prisma scanner using a 32 channels head coil. Functional
scans were collected using a T2*-weighted echo-planar imaging (EPI) sequence with a multi-band
acceleration factor of 4 (TR = 1.450 s, TE = 35ms, flip angle = 70 degrees, voxel resolution of
2x2x2mm). A field map with dual echo-time images (TE1 = 10ms, TE2 = 12.46ms, whole-brain
coverage, voxel size 2x2x2mm) was acquired to correct for geometric distortions due to
susceptibility-induced field inhomogeneities. Structural scans were acquired using a T1l-weighted
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859  MPRAGE sequence with 1x1x1mm voxel resolution. We discarded the first six volumes to allow for
860  scanner equilibration.

861  Pre-processing

862  Pre-processing was performed using tools from the fMRI Expert Analysis Tool (FEAT, Woolrich MW
863 et al. 2001; Woolrich MW et al. 2004), part of FMRIB’s Software Library (FSL, Smith et al. 2004). Data
864  from each of the four scanner runs was preprocessed separately. Each run was aligned to a

865 reference image using the motion correction tool MCFLIRT. Brain extraction was performed using
866  the automated brain extraction tool BET (Smith, 2002). All data were temporally high-pass filtered
867  with a cut-off of 100s. Registration of EPl images to high-resolution structural images and to

868  standard (MNI) space was performed using FMRIB’s Linear Registration Tool (FLIRT (Jenkinson et al.,
869  2002; Jenkinson and Smith, 2001)). No spatial smoothing was performed during pre-processing (see
870  below for different smoothing protocols for each analysis). Because of the notable breathing- and
871  susceptibility-related artifacts in the entorhinal cortex, we cleaned the data with FMRIB's ICA tool,
872  FIX (Griffanti et al. 2014, Salimi-Khorshidi et al. 2014).

873  Univariate analysis

874  Due to incompatibility of FSL with the MATLAB RSA toolbox (Nili et al. 2014) used in subsequent
875  analyses, we estimated all first-level GLMs and univariate group-level analyses using SPM12
876 (Wellcome Trust Centre for Neuroimaging, https://www.fil.ion.ucl.ac. uk/spm).

877  For estimating subspace generalization, we constructed a GLM to estimate the activation as a result
878  of each three images’ sequence (a ‘pile’ of pictures). The GLM includes the following regressors:

879 mean CSF regressor and 6 motion parameters as nuisance regressors, bias term modeling the mean
880  activity in each fMRI run, a regressor for the ‘start’ message (as a delta function), a regressor for the
881  self- paced random walk on each graph (a delta function for each new picture that appears on the
882  screen), aregressor for each pile in each graph (duration of a pile: 1.4sec), regressor for the catch
883  trial onset (delta) and the pile that corresponds to the catch (pile duration). All regressors beside the
884 6 motion regressors and CSF regressor were convolved with the HRF. The GLM was calculated using
885  non-normalized data.

886  Multivariate analysis
887 Quantifying subspace generalization:

888  We calculated noise normalized GLM betas within each searchlight using the RSA toolbox. For each
889  searchlight and each graph, we had a nVoxels (100) by nPiles (10) activation matrix (Byoxeixpite) that
890  describes the activation of a voxel as a result of a particular pile (three pictures’ sequence). We

891  exploited the (voxel x voxel) covariance matrix of this matrix to quantify the manifold alignment

892  within each searchlight.

893  To account for fMRI auto-correlation we used Leave One Out (LOO) approach; For each fMRI scanner
894  run and graph, we calculated the mean activation matrix over the three others scanner runs (B~/).

895  We then calculated the left Principal Component (PCs) of that matrix (ijxemoxel). To quantify the

896 alignment, we projected the excluded scanner run graph activation matrix (B/) of each graph on
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these PCs and calculated the accumulated variance explained as a function of PCs, normalized by the
total variance of each graph within each run. Therefore, for each run and graph we calculated:

ab _ ;~i . pl
PP =U," - By
10 (plky?2
Ma'b _ [:1(Pa,b
k S]

yi = yiTpiTRiyi

Where P%? is the projection matrix of dimensions voxel x pile of graph b’ on the PCs of graph @’,
M*"is the normalized variance explained on the k’ direction, S/ is the summation of the diagonal of
27, the total variance as a result of the graph piles (three images sequence). We then calculated the
cumulative variance explained over all k” PCs directions. As a summary statistic we calculated the
area under this curve. This gives us a 4x4 alignment matrix, for each run, such that each entry (a, b)
in this matrix is a measure of the alignment of voxels patterns as a result of the two graphs a&b
(Figure 4d). We then averaged over the four runs and calculated different contrasts over this matrix.

The above calculations were performed in subject space, we therefore normalized the searchlight
results and then smoothed with a kernel of 6mm FWHM using FSL FLIRT and FNIRT before
performing group level statistics.

For group level we calculated the t-stat over participants of each contrast:

Visual contrast was [HIHI + CICl + HsHs +CsCs] - [HIHs + HsHI + CICs + CsCl], i.e. same exact sequences
controlled by the same structure.

Structural contrast was [HIHI + HIHs + HsHI + HsHs] - [HICI + HICs + HsCl + HsCs], i.e. the difference
between subspace generalisation of hexagonal graphs data, when projected on PCs calculated from
(cross-validated) hexagonal graphs (yellow elements in middle panel) vs community structure graphs
(red elements).

Multiple comparisons correction

Multiple comparison correction was performed using the permutation tests machinery (Nichols and
Holmes 2002) in PALM (Winkler et al. 2014): within the mask we used for multiple comparisons
correction (details in main text), we first measured the TFCE statistic for the current contrast. We
then repeated this procedure for each of the 10000 random sign-flip iterations (each participant’s
contrast sign was randomly flipped and the statistic over participants was calculated). Using these
values we then created a null distribution of TFCE statistics by saving only the voxel with the highest
TFCE in each iteration. Comparing the true TFCE to the resulting null distributions results in FWE-
corrected TFCE P-values.

The code for the analysis and simulation is in:
https://github.com/ShirleyMgit/subspace_generalization_paper_code/tree/main
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