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 10 

Abstract 11 

Humans’ ability for generalisation is outstanding. It is flexible enough to identify cases where 12 

knowledge from prior tasks is relevant, even when many features of the current task are different, 13 

such as the sensory stimuli or the size of the task state space. We have previously shown that in 14 

abstract tasks, humans can generalise knowledge in cases where the only cross-task shared feature 15 

is the statistical rules that govern the task’s state-state relationships. Here, we hypothesized that this 16 

capacity is associated with generalisable representations in the entorhinal cortex (EC). This 17 

hypothesis was based on the EC’s generalisable representations in spatial tasks and recent 18 

discoveries about its role in the representation of abstract tasks. We first develop an analysis 19 

method capable of testing for such representations in fMRI data, explain why other common 20 

methods would have failed for our task, and validate our method through a combination of 21 

electrophysiological data analysis, simulations and fMRI sanity checks. We then show with fMRI that 22 

EC representations generalise across complex non-spatial tasks that share a hexagonal grid 23 

structural form but differ in their size and sensory stimuli, i.e. their only shared feature is the 24 

rules governing their statistical structure. There was no clear evidence for such generalisation in EC 25 

for non-spatial tasks with clustered, as opposed to planar, structure. 26 

 27 

Introduction 28 

If you grew up in a small town, arriving in a big city might come as a shock. However, you’ll 29 

still be able to make use of your previous experiences, despite the difference in the size of 30 

the environment: When trying to navigate the busy city streets, your knowledge of 31 

navigation in your hometown is crucial. For example, it’s useful to know the constraints that 32 

a 2D topological structure exerted on distances between locations. When trying to make 33 

new friends, it’s useful to remember how people in your hometown tended to cluster in 34 

groups, with popular individuals perhaps belonging to several groups. Indeed, the statistical 35 

rules (termed “structural form”, (Kemp and Tenenbaum 2008)) that govern the relationships 36 

between elements (states) in the environment are particularly useful for generalisation to 37 

novel situations, as they do not depend on the size, shape or sensory details of the 38 

environment (Mark et al. 2020). Such generalisable features of environments are proposed 39 

to be part of the “cognitive map” encoding the relationships between their elements 40 

(Tolman 1948; Behrens et al. 2018; Mark et al. 2020). 41 
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The most studied examples of such environments are spatial 2D tasks. In all spatial 42 

environments, regardless of their size or shape, the relations between states (in this case 43 

locations) are subject to the same Euclidean statistical constraints. The spatial example is 44 

particularly useful because neural spatial representations are well-characterised. Indeed, 45 

one of the most celebrated of these - grid cells in the entorhinal cortex (EC) - has been 46 

suggested as (part of) a neural substrate for spatial generalisation (Behrens et al. 2018; 47 

Whittington et al. 2022). This is because (within a grid module) grid cells maintain their 48 

coactivation structure across different spatial environments (Fyhn et al. 2007; Yoon et al. 49 

2013). In other words, the information embedded in grid cells generalises across 2D spatial 50 

environments (including environments of different shapes and sizes). Following a surge of 51 

studies showing that EC spatial coding principles are also used in non-spatial domains 52 

(Constantinescu, O’Reilly and Behrens 2016; Garvert, Dolan and Behrens 2017; Bao et al. 53 

2019; Park et al. 2020), we have recently shown that EC also generalises over non-spatial 54 

environments that share the same statistical structure (Baram et al. 2021). Importantly, in 55 

that work the graphs that described the same-structured environments were isomorphic - 56 

i.e. there was a one-to-one mapping between states across same-structure environments. 57 

What do we mean when we say the EC has “generalisable representations” in spatial tasks? 58 

and how can we probe these representations in complex non-spatial tasks? Between 59 

different spatial environments, each grid cell realigns: its firing fields might rotate and shift 60 

(Fyhn et al. 2007). Crucially, this realignment is synchronized within a grid module 61 

population (Yoon et al. 2013; Gardner et al. 2022), such that the change in the grid angle 62 

and phase of all cells is the same. This means that cells that have neighboring firing fields in 63 

one environment will also have neighboring firing fields in another environment- the 64 

coactivation structure is maintained (Yoon et al. 2013; Gardner et al. 2022). A mathematical 65 

corollary is that grid cells’ activity lies in the same low-dimensional subspace (manifold, 66 

(Yoon et al. 2013; Gardner et al. 2022)) in all spatial environments. This subspace remains 67 

even during sleep, meaning the representation is stably encoded (Burak and Fiete 2009; 68 

Gardner et al. 2019; Trettel SG et al. 2019).  69 

We have recently developed an analysis method, referred to as “subspace generalisation”, 70 

which allows for the quantification of the similarities between linear neural subspaces, and 71 

used it to probe generalisation in cell data (Samborska et al. 2022). Unlike other 72 

representational methods for quantifying the similarity between activity patterns (like RSA, 73 

used in Baram et al. (Kriegeskorte, Mur and Bandettini 2008; Diedrichsen and Kriegeskorte 74 

2017)), this method has the ability to isolate the shared features underlying tasks that do 75 

not necessarily have a straightforward cross-task mapping between states, such as when the 76 

sizes of tasks underlying graphs are different. Here, we use it to quantify generalisation in 77 

such a case, but on fMRI data of humans solving complex abstract tasks rather than on cell 78 

data. We designed an abstract associative-learning task in which visual images were 79 

assigned to nodes on a graph and were presented sequentially, according to their relative 80 

ordering on the graph. The graphs belonged to two different families of graphs, each 81 

governed by a different set of statistical regularity rules (structural forms (Kemp and 82 

Tenenbaum 2008)) – hexagonal (triangular) lattice graphs, and community structure graphs. 83 
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There were two graphs of each structural form. Crucially, the graph size and embedded 84 

images differed within a pair of graphs with the same structural form (Figure 3b), allowing 85 

us to test generalisation due to structural form across both environment size and sensory 86 

information. 87 

We first validate our approach by showing that subspace generalisation detects the known 88 

generalisation properties of entorhinal grid cells and hippocampal place cells when rodents 89 

free-forage in two different spatial environments – properties that have inspired our study’s 90 

hypothesis. Next, we propose that our method can capture these properties even in low-91 

resolution data such as fMRI. We provide twofold support for this conjecture: through 92 

sampling and averaging of the rodent data to create low resolution version of the data, and 93 

through simulations of grid cells grouped into simulated voxels to account for the very low 94 

resolution of the BOLD signal. We use these simulations to discuss how the sensitivity of our 95 

method depends on various characteristics of the signal. Next, we validate the method for 96 

real fMRI signals by showing it detects known properties of visual encoding in the visual 97 

cortex in our task. Finally, and most importantly, we show that EC generalises its voxelwise 98 

covariance patterns over abstract, discrete hexagonal graphs of different size and stimuli, 99 

exactly as grid cells do in space. This result, however, did not hold for the community graph 100 

structures. We discuss some possible experimental shortcomings that might have led to this 101 

null result.  102 

Theory – “subspace generalisation” 103 

How can we probe the neural correlates of generalisation of abstract tasks in the human 104 

brain? Popular representational analysis methods such as Representational Similarity 105 

Analysis (RSA) (Kriegeskorte, Mur and Bandettini 2008; Diedrichsen and Kriegeskorte 2017) 106 

and Repetition Suppression (Grill-Spector, Henson and Martin 2006; Barron, Garvert and 107 

Behrens 2016) have afforded some opportunities in this respect (Baram et al. 2021). 108 

However, because these methods rely on similarity measures between task states, they 109 

require labeling of a hypothesized similarity between each pair of states across tasks. Such 110 

labeling is not possible when we do not know which states in one task align with which 111 

states in another task. In the spatial example where states are locations, the mapping of 112 

each location in room A to locations in room B doesn’t necessarily exist - particularly when 113 

the rooms differ in size or shape. This makes labeling of hypothesized similarity between 114 

each pair of locations impossible. How can we look for shared activity patterns in such a 115 

case? 116 

We have recently proposed this can be achieved by studying the covariance of different 117 

neurons across states (Samborska et al. 2022) (as opposed to RSA - which relies on the 118 

correlation of different states across neurons). If two tasks contain similar patterns of neural 119 

activity (regardless of when these occurred in each task), then the neuron X neuron 120 

covariance matrix (across states within-task) will look similar in both tasks. This covariance 121 

matrix can be summarised by its principal components (PCs), which are patterns across 122 

neurons - akin to “cell assemblies” - and their eigenvalues, which indicate how much each 123 

pattern contributes to the overall variance in the data.  If representations generalise across 124 
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tasks, then patterns that explain a lot of variance in task 1 will also explain a lot of variance 125 

in task 2.  We can compute the task 2 variance explained by each of the PCs of task 1: 126 

��� � ��������
�	�	�

����
 

Where PC1 is a matrix with all task 1 PCs as its columns, ordered by their eigenvalues, and A2 127 

is the neurons X states task 2 data. These PCs are ordered according to the variance 128 

explained in task 1. Hence, if the same PCs explain variance across tasks, early PCs will 129 

explain more variance in task 2 than late PCs. The cumulative sum of ��� will be a concave 130 

function and the area under this concave function is a measure of how well neuronal 131 

patterns generalise across tasks (Figure 1a).  We refer to this measure as subspace 132 

generalisation.  133 

As validation and demonstration of our method, we first use it to recover differences in 134 

generalisation between grid cells and place cells in the rodent brain that have been shown 135 

previously with other methods. Next, we demonstrate the feasibility of our method in 136 

capturing this difference in generalization properties even after we manipulate the data and 137 

reduce its resolution. To complete the logical bridge from cells to voxels, we address the 138 

limitation of this demonstration: the low number of cells recorded. We simulate voxels from 139 

synthetic grid cells and show how our method’s power depends on various characteristics of 140 

the signal. These analyses show that theoretically (and under reasonable conditions) our 141 

method could still detect medial temporal lobe generalisation properties in fMRI BOLD 142 

signal. Finally, and most importantly, we use our method to analyse fMRI data, testing for 143 

generalisation of the covariance between voxel representations in human EC across 144 

complex non-spatial graphs with common regularities – analogous to the generalisation of 145 

grid cells in physical space. Crucially, in this task other representational methods common in 146 

fMRI analysis such as RSA or repetition suppression would not be applicable (due to lack of 147 

one-to-one mapping between states across graphs), highlighting the usefulness of our 148 

method.  149 

 150 

Results 151 

Subspace generalization captures known generalisation properties of grid and place cells 152 

Grid cells and place cells differ in their generalisation property. When an animal moves from 153 

one environment to another, place cells “remap”: they change their correlation structure 154 

such that place cells that are neighbours in environment 1 need not be neighbors in 155 

environment 2.  By contrast grid cells do not remap: the correlation structure between grid 156 

cells is preserved across environments, such that pairs of grid cells (within the same module) 157 

that have neighboring fields in environment 1 will also have neighboring fields in 158 

environment 2 (Fyhn et al. 2007).  This is true even though each grid cell shifts and rotates 159 

its firing fields across environments - the grid cell population within a module realigns in 160 

unison (Gardner et al. 2022; Waaga et al. 2022). Crucially, the angle and phase of this 161 

realignment can’t be predicted in advance, meaning it is not possible to create hypotheses 162 

to test regarding the similarity between representations at a given location in environment 163 
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1 and a given location in environment 2 - a requirement for fMRI-compatible methods such 164 

as RSA or repetition suppression. In this section we demonstrate how subspace 165 

generalisation - which can also be useful in fMRI - captures the generalisation properties of 166 

grid and place cells that have previously been shown only with traditional analysis methods 167 

that require access to firing maps of single cells.  168 

We computed subspace generalisation for grid and place cells recorded with 169 

electrophysiology in a previous study (Chen et al. 2018), in which mice freely-foraged in two 170 

square environments: a real physical and a virtual reality (VR) (see Methods for more 171 

details). For our purposes, this dataset is useful because large numbers of both place cells 172 

and grid cells were recorded (concurrently within a cell type) in two different environments 173 

- rather than because of the use of a VR environment.  174 

We compared two different situations: one where “task 1” and “task 2” were actually from 175 

the same environment, Figure 1a - solid line, within-environment) and one where “task 1” 176 

and “task 2” were from different environments (Figure 1a - dotted line, across-177 

environments).  178 

As predicted, across environments grid cells’ subspaces generalised:  PCs that were 179 

calculated using activity in one environment explained the activity variance in the other 180 

environment just as well as the within-environment baseline (Figure 1a, compare dotted 181 

and solid black lines, plots show the average of the projections of activity from one 182 

environment on EVs from the other environment and vice versa). The difference between 183 

the area under the curve (AUC) of the two lines was significantly smaller than chance 184 

(p<0.001 using a permutation test, see Methods and supplementary Figure S1). Importantly, 185 

grid cells generalized much better between the environments than place cells; the 186 

difference in AUCs between the solid and dotted lines is significantly smaller for grid cells 187 

compared to place cells (Figure 1b, p<0.001, for both permutation test and 2 sample t-test, 188 

see Methods and supplementary material). Interestingly, the difference in AUCs was also 189 

significantly smaller than chance for place cells (Figure 1a, compare dotted and solid green 190 

lines, p<0.05 using permutation tests, see statistics and further examples in supplementary 191 

material Figure S2), consistent with recent models predicting hippocampal remapping that is 192 

not fully random (Whittington et al. 2020). 193 
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 194 

FIgure 1. Subspace generalisation across environments in grid and place cells in data from 195 

Chen et al. 2018. 196 

a. Illustration of the subspace generalization method. The Principal Components (PCs) are 197 

calculated using the covariance matrix of the neuronal activity matrix.  Then the activity 198 

matrix is projected on each PC (recorded when the animal was in the same or different 199 

environment/task) and the variance explained along each PC dimension is calculated. 200 

We calculate the Area Under the Curve (AUC) of the cumulative sum of the variance 201 

explained on each PC’s dimension as our similarity measure. When the similarity in 202 

neuronal patterns during the two different tasks is higher the area under the curve is 203 

higher (green AUC is added to the blue AUC) 204 

b. The cumulative variance explained by the PCs calculated using the activity of grid (black) 205 

or place (green) cells, within (solid lines) and across (dotted lines) environments. 206 

Subspace generalization is calculated as the difference between the area under the 207 

curve (AUC) of two lines. The difference between the black lines is small, indicating 208 

generalisation of grid cells across environments. The difference between the green lines 209 

is larger, indicating remapping of place cells (p<0.001, permutation test, see Methods).  210 
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c. The difference between the within and across (solid and dashed lines in a., respectively) 211 

environments AUCs of the cumulative variance explained by grid or place cells (black or 212 

green lines in a., respectively). Data shown for all mice with enough grid or place cells 213 

(>10 recorded cells of the same type, each bar is a mouse and a specific projection (i.e. 214 

projecting on environment one or two)). The differences between the grid cells AUCs are 215 

significantly smaller than the place cells (p < 0.001 permutation test, see supplementary 216 

for more statistical analyses and specific examples).  217 

d. An example of the cumulative variance explained by the PCs, calculated using the 218 

constructed low-resolution version of grid and place cells data. The solid and dotted 219 

lines are average over 10 samples and the shaded areas represent the standard error of 220 

the mean across samples. Here, as above, the solid lines are projection within 221 

environment and the dotted lines are projections between environments.  222 

e. Subspace generalization in the low resolution version of the data captures the same 223 

generalization properties of grid vs place cells. The distributions were created via 224 

bootstrapping over cells from the same animal, averaging their activity, concatenating 225 

the samples across all animals and calculating the AUC difference between within and 226 

across environments projections (p<<0.001 Kolmogorov-Smirnovtest). 227 

 228 

 229 

From neurons to voxels 230 

So far, we have validated our method when applied to neurons. However, our primary 231 

interest in this manuscript is to apply it to fMRI data. To illustrate the efficacy of this 232 

approach in revealing generalisable neuronal subspaces within low resolution data like 233 

fMRI, we applied our method to such data – both from manipulated electrophysiology and 234 

simulations. We first examined our method on low-resolution versions of the Chen et al. 235 

rodent MTL data, obtained by grouping and averaging cells. We show that our method can 236 

still detect subspace generalization even on the supra-cellular level. However, due to the 237 

small number of recorded cells, this analysis does not fully replicate a voxel’s BOLD signal, 238 

which corresponds to the average activity of thousands of cells. To address this, we 239 

simulated many grid cells and grouped them into voxels, with each voxel’s activity 240 

corresponding to the average activity of its cells. We then applied subspace generalisation 241 

to the simulated pseudo-voxels, and examined how the results depend on various signal 242 

characteristics. 243 

Using Chen et al electrophysiology dataset, we first normalised each cell’s firing rate maps, 244 

and then created bootstrapped low-resolution data: for each sampling iteration we sampled 245 

7 cells (with repeats) into 2 groups within each animal and averaged the activities of cells 246 

within each group. This results in a 2-long vector for each animal. We then concatenate 247 

these vectors across animals. Note that for grid cells, this pooling over independent groups 248 

of neurons is reminiscent of pooling over different grid modules in a single subject. For each 249 

sample we calculated the difference in the area under the curve (AUC) between within and 250 
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across environments projections as above (averaged over the projections on both 251 

environments, Figure 1c). We repeat this bootstrapping step to create a distribution of the 252 

differences in AUC for place cells and grid cells (Figure 1d). The difference in AUC was 253 

smaller for grid cells than for place cells (p<0.001 Kolmogorov-Smirnovtest), as is expected 254 

from the single cells’ analysis above.  255 

 256 

The required number of cells to simulate a voxel’s activity (let alone multiple voxels) far 257 

exceeds the number of cells in the Chen et al. dataset. To overcome this limitation and 258 

support our conjecture that our method can detect subspace-generalization even in fMRI 259 

BOLD signal, we next used simulated data.  We simulated grid cells (see methods) organized 260 

into four grid modules, each composed of more than 10000 cells. We organized the cells in 261 

each module into four groups (pseudo-voxels) and averaged the activity within each group 262 

(see supplementary info for an example of our analysis using different number of groups 263 

within each module, and how our results are affected by the number of voxels per module, 264 

Figure S3). We concatenated the pseudo-voxels from all modules into one vector and 265 

calculated the difference in subspace-generalization measure (i.e. the AUC of within and 266 

between environments). We explored how two characteristics of the data affect subspace 267 

generalization: whether the grouping into voxels (within each module) was organized 268 

according to grid phase, and the level of noise in the data.  269 

We first grouped the cells into voxels randomly, i.e. without any a-priori assumption on the 270 

relationship between the physical proximity of cells within the cortical layer and their firing 271 

rate maps. Examples of the resulted “pseudo-voxels” activity maps can be seen in Figure 2a.  272 

However, recent work has suggested there is a relationship between grid cells’ physical 273 

proximity and their grid phases (Gu et al. 2018). We therefore also simulated “pseudo 274 

voxels” by grouping grid cells, within each module, according to their grid phase (Figure 2b). 275 

The pseudo-voxel’s signal in the latter case is substantially stronger (compare color bar 276 

scales a between Figure 2a and 2b).  277 

How does the difference between the signal variances affect the subspace generalization 278 

measure? If the BOLD signal had no noise and all the cells within a voxel were indeed grid 279 

cells, the actual variance of the signal would not affect our measure (Figure 2c, the solid and 280 

dashed black lines are similar in both panels; i.e. the PCs that explain the activity variance 281 

while the agent is in environment one explain the activity variance of environment two 282 

similarly well, no matter how the cells are sampled into voxels). However, this is, of course, 283 

unrealistic; the BOLD signal is noisy, and it is likely that voxel activity reflects non-grid cells 284 

activity as well. To address this, we incorporated noise into our simulated voxel’s activity 285 

map. Figure 2c shows that increasing signal variance by grouping according to the grid 286 

phase, leads to higher subspace generalization measure (AUC) compared to random 287 

sampling; random sampling results in small AUC (	�� � 0.5) which is close to the expected 288 

AUC following projections on random vectors (solid and dash blue lines in Figure 2c, left, see 289 

supplementary info Figure S3 for further analysis).  Predictably, as the fraction of randomly 290 

sampled grid cells increases the ability to detect subspace generalization in the presence of 291 
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noise decreases (Figure 2d, Figure S3). Furthermore, sampling of grid cells according to 292 

phase increases the statistical power of the subspace generalization method when the 293 

amplitude of the noise increases (Figure 2e, Figure S3). To conclude, this shows under noisy 294 

conditions, if nearby grid cells have similar phase tuning, as has been shown (Gu et al. 2018), 295 

our method can in principle detect the generalization properties of grid cells, even in a very 296 

low-resolution data, akin to the fMRI BOLD signal. It can in principle work to detect 297 

generalization properties of any representation where nearby cells have similar tuning (such 298 

as orientation tuning in V1).   299 
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 300 

Figure 2: simulated voxels from simulated grid modules 301 

 302 
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a. Examples of simulated voxels activity map in the two environments, without noise. upper: 303 

higher frequency module, lower: lower frequency module. Cells are grouped into voxels 304 

randomly. 305 

b. Same as a. but with cells grouped into voxels according to the grid phase. Note the 306 

different scale of the color-bar between a. and b. 307 

c. Subspace generalization plot for the 16 simulated voxels, where the grouping into voxels 308 

is either random (left) or according to phase (right). Legend as in d, noise amplitude = 0.1. 309 

d. Left: AUCs of the subspace generalisation plots in c. as a function of the ratio of random 310 

vs phase-organised cells in the voxels, with no noise (black) or with high amplitude of noise 311 

(blue, noise amplitude = 0.1). Without noise (black lines), the subspace generalization 312 

measure (AUC) remains high even when the fraction of randomly sampled cells increases. 313 

However, in the presence of noise, the subspace generalization measure decreases with the 314 

fraction of randomly sampled cells. Right: p-value of the effect according to the permutation 315 

distribution (see methods, shaded area: standard error of the mean). In the presence of 316 

noise and when the cells are sampled randomly, AUCwithin-between becomes non-significant, 317 

see supplementary info Figure S3 for the dependency of the permutation distributions on 318 

the presence of noise and sampling.  319 

e. Same as d., except the continuous X-axis variable is the noise amplitude, for either of 320 

phase-organized (black) or randomly organized voxels (red). AUC decreases sharply with 321 

noise amplitude when the cells are sampled randomly, while it decreases more slowly when 322 

the cells are sampled according to phase. The decrease in AUC to chance level (i.e. AUC = 323 

0.5) with the increase in noise amplitude results in insignificant difference in subspace 324 

generalization measure (AUCwithin-between). See supplementary info Figure S3 for the 325 

permutation distributions. 326 

 327 

Probing generalisation across abstract tasks with shared statistical rules – task design and 328 

behaviour 329 

In human neuroimaging, the success of multivariate pattern analysis (MVPA, (Haxby et al. 330 

2001)) and RSA (Kriegeskorte, Mur and Bandettini 2008; Diedrichsen and Kriegeskorte 331 

2017)) tells us that, as with cells, the covariance between fMRI voxel activity contains 332 

information about the external world. It is therefore conceivable that we can measure the 333 

generalisation of fMRI patterns across related tasks using the same measure of subspace 334 

generalisation, but now applied to voxels rather than to cells. This will give us a measure of   335 

generlisation in humans that can be used across tasks with no state-to-state mapping – e.g. 336 

when the size of the state space is different across tasks. In this section, we first describe 337 

the experimental paradigm we used to test whether, as in physical space, EC 1) generalises 338 

over abstract tasks governed by the same statistical rules; and 2) does so in a manner that is 339 

flexible to the size of the environment. In the next section we use known properties of visual 340 

encoding as a sanity check for the use of subspace generalisation on fMRI data in this task. 341 

Finally, we describe how the fMRI subspace generalisation results in EC depend on the 342 

statistical rules (structural forms) of tasks.  343 

We designed an associative-learning task (Figure 3A and 3B, similar to the task in (Mark et 344 

al. 2020)) where participants learned pairwise associations between images. The images can 345 

be thought of as nodes in a graph (unseen by participants), where the existence of an edge 346 
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between nodes translates to an association between their corresponding images (Figure 347 

3A). There were two kinds of statistical regularities governing graph structures: a 348 

hexagonal/triangular structural form and a community structure. There were also two 349 

mutually exclusive image sets that could be used as nodes for a graph, meaning that each 350 

structural form had two different graphs with different image sets, resulting in a total of 351 

four graphs per participant. Importantly, two graphs of the same structural form were also 352 

of different sizes (36 and 42 nodes for the hexagonal structure; 35 and 42 nodes for the 353 

community structure - 5 or 6 communities of 7 nodes per community, respectively), 354 

meaning states could not be aligned even between graphs of the same structural form. The 355 

pairs of graphs with the (approximately) same sizes across structural forms used the same 356 

visual stimuli set (Figure 3B). This design allowed us to test for subspace generalisation 357 

between tasks with the same underlying statistical regularities, controlling for the tasks’ 358 

stimuli and size. 359 

Participants were trained on the graphs for four days and graph knowledge was assessed in 360 

each of the days using a battery of tests described previously (Mark et al. 2020 and 361 

methods). Some tests probed knowledge of pairwise (neighboring) associations (Figure 3C-362 

D) and others probed “a sense of direction” in the graph, beyond the learned pairwise 363 

associations of neighboring nodes (Figure 3 E-F). In all tests, the performance of participants 364 

improved with learning and was significantly better than chance by the end of training 365 

(Figure 3 C-F), suggesting that participants were able to learn the graphs and developed a 366 

sense of direction even though they were never exposed to the graphs beyond pairwise 367 

neighbors. Note that while all participants performed well on tests of neighboring 368 

associations, the variance across participants for tests of non-neighboring nodes was high, 369 

with some participants performing almost perfectly and others close to chance (compare 370 

panels C-D to panels E-F). At the end of the training days, we asked participants whether 371 

they noticed how the images are associated with each other, 26 out of 28 participants 372 

recognized that in two sets, the pictures were grouped.   373 

 374 

 375 
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 376 

Figure 3. Experimental design and behavior. A. Example of an associative graph. 377 

Participants were never exposed to this top-down view of the graph - they learned the 378 

graph by viewing a series of pairs of neighboring images, corresponding to a walk on the 379 

graph. To aid memorisation, we asked participants to internally invent stories that connect 380 

the images.  B. Each participant learned 4 graphs: two with a hexagonal lattice structure 381 

(both learned on days 1 and 2) and two with a community structure (both learned on days 3 382 

and 4). For each structural form, there was one larger graph and one smaller graph. The 383 

nodes of graphs with approximately the same size were drawn from the same set of images. 384 
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C-F. In each day of training we used four tests to probe the knowledge of the graphs, as well 385 

as to promote further learning. In all tests, participants performed above chance level on all 386 

days and improved their performance between the first and second days of learning a 387 

graph. C. Participants were asked whether an image X can appear between images Y and Z 388 

(one sided t-test against chance level (50%): hex day1 t(27) = 31.2, p < 10^-22 ; hex day2 389 

t(27) = 35.5 , p < 10^-23  ; comm day3 t(27) = 26.9 , p < 10^-20  ; comm day4 t(27) = 34.2, p < 390 

10^-23  ; paired one sided t-test between first and second day for each structural form: hex 391 

t(27) = 4.78, p < 10^-5 ; comm t(27) = 3.49 , p < 10^-3). D. Participants were shown two 3-392 

long image sequences, and were asked whether a target image can be the fourth image in 393 

the first, second or both of the sequences (one sided t-test against chance level (33.33%):  394 

hex day1 t(27) = 39.9, p < 10^-25 ; hex day2 t(27) = 42.3 , p < 10^-25  ; comm day3 t(27) = 395 

44.8 , p < 10^-26  ; comm day4 t(27) = 44.2, p < 10^-26  ; paired one sided t-test between 396 

first and second day for each structural form: hex t(27) = 3.97, p < 10^-3 ; comm t(27) = 2.81 397 

, p < 10^-2). E. Participants were asked whether an image X is closer to image Y or image Z, Y 398 

and Z are not neighbors of X on the graph (one sided t-test against chance level (50%): hex 399 

day1 t(27) = 12.6, p < 10^-12 ; hex day2 t(27) = 12.5 , p < 10^-12  ; comm day3 t(27) = 5.06 , 400 

p < 10^-4  ; comm day4 t(27) = 7.42, p < 10^-07; paired one sided t-test between first and 401 

second day for each structural form: hex t(27) = 3.44, p < 10^-3 ; comm t(27) = 2.88 , p < 402 

10^-2). F. Participants were asked to navigate from a start image X to a target image Y. In 403 

each step, the participant had to choose between two (randomly selected) neighbors of the 404 

current image. The participant repeatedly made these choices until they arrived at the 405 

target image (paired one sided t-test between number of steps taken to reach the target in 406 

first and second day for each structural form. Left: trials with initial distance of 2 edges 407 

between start and target images: hex t(27) = 2.57, p < 10^-2 ; comm t(27) = 2.41 , p < 10^-2; 408 

MIddle: initial distance of 3 edges: hex t(27) = 2.58, p < 10^-2 ; comm t(27) = 4.67 , p < 10^-409 

2; Right: trials with initial distance of 4 edges: hex t(27) = 3.02, p < 10^-2 ; comm t(27) = 3.69 410 

, p < 10^-3). Note that while feedback was given for the local tests in panels C and D, no 411 

feedback was given for the tests in panels E-F to ensure that participants were not directly 412 

exposed to any non-local relations. The location of different options on the screen was 413 

randomised for all tests. Hex: hexagonal lattice graphs. Comm: community structure graphs.  414 

 415 

FMRI task and analysis 416 

On the fifth day participants performed a task in the fMRI scanner. Each block of the scan 417 

included one of the four graphs the participant has learned and started with a self-paced 418 

image-by-image random walk on the graph to allow inference of the currently relevant 419 

graph (Figure 4a, data not used in this manuscript). The second part of the block had two 420 

crucial differences. First, images were arranged into sequences of 3 images that were 421 

presented in rapid succession, corresponding to a walk of length 3 on the graph (Figure 4b 422 

and Figure S5 for the partitioning the graphs into 3 images sequences). The time between 423 
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two successive sequences was 800ms (Figure 4c). Second, while the order within each 3-424 

images sequence was dictated by the graph, the order across the sequences was pseudo-425 

random. We needed this second manipulation to ensure coverage of the graph in every 426 

block and to eliminate the possibility of spurious temporal correlations between 427 

neighboring sequences. However, if we had presented images individually in this random 428 

order, graphs with the same stimuli set would have been identical, making it difficult for 429 

subjects to maintain a representation of the current graph across the block.  Whilst the 430 

images were the same across 2 graphs, the sequences of neighboring images uniquely 431 

identified each graph, inducing a sensation of “moving” through the graph. To encourage 432 

attention to the neighborhood of the sequence in the graph, in 12.5% of trials the sequence 433 

was followed by a single image (“catch trial” in Figure 4c), and participants had to indicate 434 

whether it was associated with the last image in the sequence (Figure 4c). Participants 435 

answered these questions significantly better than chance (Figure S6), indicating that they 436 

indeed recognize the correct graph and maintain the correct representation during the 437 

block (t-test, p<<0.001 for both structures, t[27]hex=11.3, t[27]comm=10.6). At the end of 438 

each block participants were asked whether they recognised which images set they 439 

currently observed (see Method and supplementary for more details). Participants 440 

answered these questions significantly better than chance (t-test, p<0.001 for both 441 

structures, t[27]hex = 3.8, t[27]comm = 9.96, see supplementary Figure S6), again indicating 442 

that they correctly recognised the current graph in the scanner. 443 

To analyze this data, we used the subspace generalisation method as described for the 444 

rodent data but replacing the firing of neurons at different spatial locations with the activity 445 

of fMRI voxels for different 3-images sequences. To do this, we first performed a voxelwise 446 

GLM where each regressor modeled all appearances of a particular 3-images sequence in a 447 

given run, together with several nuisance regressors (see Methods). This gave us the activity 448 

of each voxel for each sequence. For each voxel, in each run, we extracted the 100 nearest 449 

voxels and formed a matrix of sequence X voxels. These are analogous to the data matrices, 450 

B, in equation 1. We then computed subspace generalisation using the PCs of the voxel X 451 

voxel covariance matrix instead of the cell X cell covariance matrix (Figure 4d).  452 

We then employed a leave-one-out cross-validation by repeatedly averaging the activation 453 

matrices from three runs of graph X, calculating the PCs from this average representation, 454 

and then projecting the activation matrix of the held out run of control graph X (or a test 455 

graph Y) on these PCs. This ensures that the “PC” and “data” graphs are always from 456 

different runs. We then calculated the subspace generalisation between each pair of graphs 457 

resulting in a 4x4 matrix at each voxel of the brain (Figure 4d).  458 

We refer to the elements of this 4x4 matrix in the following notation: we denote by H/C 459 

graphs of either hexagonal or community structure, and by s/l either small or large stimuli 460 

sets (matched across graphs of different structures). For example, HsCs denotes the 461 

element of the matrix corresponding to activity from the small hexagonal graph projected 462 

on PCs calculated from the small (same image-set) community-structure graph.  463 
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 464 

 465 

Figure 4. fMRI experiment and analysis method (subspace generalisation) 466 

a. Each fMRI block starts with 70s of random walk on the graph: a pair of pictures 467 

appears on the screen, each time a participant presses enter a new picture appears 468 

on the screen and the previous picture appears behind (similar to the three pictures 469 

sequence, sell below). During this phase participants are instructed to infer which 470 

“pictures set” (i.e graph) they are currently playing with. Note that fMRI data from 471 

this phase of the task is not included in the current manuscript.  472 

b. The three pictures sequence: three pictures appear one after the other, while 473 

previous picture/s still appear on the screen. 474 
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c. Each block starts with the random walk (panel a). Following the random walk, 475 

sequences of three pictures appear on the screen. Every few sequences there was a 476 

catch trial in which we ask participants to determine whether the questioned picture 477 

can appear next on the sequence. 478 

d. Subspace generalisation method on fMRI voxels. Each searchlight extracts a beta X 479 

voxels’ coefficients (of 3-images sequences) matrix for each graph in each run 480 

(therefore, there are four such matrices). Then, using cross-validation across runs, 481 

the left out run matrix of one graph is projected on the EVs from the (average of 3 482 

runs of the) other graph. Following the projections, we calculate the cumulative 483 

percentage of variance explained and the area under this curve for each pair of 484 

graphs. This leads to a 4 X 4 subspace generalization matrix that is then being 485 

averaged over the four runs (see main text and methods for more details). The colors 486 

of this matrix indicate our original hypothesis for the study: that in EC, graphs with 487 

the same structure would have larger (brighter) AUCs than graphs with different 488 

structures (darker).  489 

 490 

Testing subspace generalisation on visual representations 491 

To verify our analysis approach is indeed valid when used on our fMRI data, we first tested it 492 

on the heavily studied object encoding representations in lateral occipital cortex (LOC, 493 

Malach 1995 PNAS, Grill-Spector). Recall that our stimuli in the scanner were concurrently 494 

presented sequences of three images of objects. We reasoned that these repeated 495 

sequences would induce correlations between object representations that should be 496 

observable in the fMRI data and detectable by our method. This would allow us to identify 497 

visual representations of the objects without ever specifying when the stimuli (i.e. 3-images 498 

sequences) were presented.   499 

To this end we compared subspace generalization computed between different runs that 500 

included the same stimuli (3-images sequences, with different order across sequences 501 

between runs) with subspace generalization computed between runs of different stimuli 502 

while controlling for the graph structure. This led to the contrast [HlHl + ClCl + HsHs +CsCs] - 503 

[HlHs + HsHl + ClCs + CsCl], which had a significant effect in LOC (Figure 5a , peak MNI [-44,-504 

86,-8], t(27)_peak = 4.96, P_tfce < 0.05 based on a FWE-corrected nonparametric 505 

permutation test, corrected in bilateral LOC mask (Harvard-Oxford atlas, Desikan 2006, 506 

Neuroimage). In an additional exploratory analysis, we tested the significance of the same 507 

contrast in a whole-brain searchlight. While this analysis did not reach significance once 508 

corrected for multiple comparisons, the strongest effect was found in LOC (Figure 5a). Note 509 

that in this contrast we intentionally ignored the elements of the 4x4 matrix where the data 510 

and the PCs came from graphs with the same images set and a different structure (HlCl, 511 

HsCs, ClHl, CsHs), because they did not share the exact same visual stimuli (the 3-images 512 

sequence). In these cases, we did not have a hypothesis about the subspace generalization 513 

in LOC. These results suggest that we can detect the correlation structure induced by stimuli 514 

without specifying when each stimulus was presented. 515 
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EC generalizes a low-dimensional representation across hexagonal graphs of different 516 

stimuli and sizes 517 

Having established that the subspace generalization method can detect meaningful 518 

correlations between fMRI voxels, we next aimed to test whether EC will represent the 519 

statistical structure of abstract graphs with generalisable low-dimensional representations. 520 

We first tested this for discretized 2D (hexagonal) graphs, using the community structure 521 

graphs as controls: We tested whether the EC subspaces from hexagonal graphs blocks were 522 

better aligned with the PCs of other hexagonal blocks, than with the PCs from community 523 

graphs blocks, i.e. ([HlHl + HlHs + HsHl + HsHs] - [HlCl + HlCs + HsCl + HsCs], Figure 5b). This 524 

contrast was significant in the right EC (peak MNI [28, -10, -40], t(27)_peak = 4.2, P_tfce 525 

<0.01 based on a FWE-corrected nonparametric permutation test, corrected in a bilateral EC 526 

mask (Figure 5b) (Julich atlas, Eickoff 2007). We obtained a null result for the equivalent 527 

analysis for community structure graphs ([ClCl + ClCs + CsCl + CsCs] - [ClHl + ClHs + CsHl + 528 

CsHs]). This was particularly due to low subspace generalization across different runs of the 529 

same community structure graphs (bottom two diagonal elements in Figure 5b right, 530 

compare to our original hypothesis subspace generalization matrix in Figure 4d). See the 531 

Discussion for possible interpretations of this null result. 532 

To ensure the robustness of the hexagonal graphs result we next tested the same effect in 533 

an orthogonal ROI from our previous study. In (Baram et al. 2021) we have shown that EC 534 

generalises over different reinforcement learning tasks with the exact same structure. We 535 

therefore tested the same effect in that ROI (all voxels in the green cluster in Figure 3d in 536 

Baram 2021 et al., peak MNI: [25, -5, -28]), and indeed the [HlHl + HlHs + HsHl + HsHs] - [HlCl 537 

+ HlCs + HsCl + HsCs] contrast was significant (one sided t-test, t(27) =3.6 , p<0.001, Figure 538 

5c). 539 

Taken together, these results suggest that as in physical space, different abstract hexagonal 540 

graphs are being represented on the same EC low-dimensional subspace. This is consistent 541 

with a view where the same EC cell assembly represents both hexagonal graphs, and that 542 

these cells covary together - even when the underlying size of the graph is different. 543 

 544 

 545 
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 546 

Figure 5: subspace generalisation in visual and structural representations.  547 

a.  Subspace generalisation of visual representations in LOC.  Left: difference in subspace 548 

generalization was computed between different blocks that included the same stimuli with 549 

subspace generalization computed between blocks of different stimuli while controlling for 550 

the graph structure, i.e  [HlHl + ClCl + HsHs +CsCs] - [HlHs + HsHl + ClCs + CsCl]. t(27)_peak = 551 

4.96, P_tfce < 0.05 over LOC. Right:  visualization of the subspace generalisation matrix 552 

(averaged over all LOC voxels with t>2 for the [HlHl + ClCl + HsHs +CsCs] - [HlHs + HsHl + ClCs 553 

+ CsCl] contrast, i.e. green minus red entries. 554 

b. EC generalises over the structure of hexagonal graphs. Left: the effect for the contrast 555 

[HlHl + HlHs + HsHl + HsHs] - [HlCl + HlCs + HsCl + HsCs], i.e. the difference between 556 

subspace generalisation of hexagonal graphs data, when projected on PCs calculated from 557 

(cross-validated) hexagonal graphs (green elements in right panel) vs community structure 558 

graphs (red elements).  t(27)_peak = 4.2, P_tfce <0.01 over EC. Right: Same as in a. right but 559 

for the [HlHl + HlHs + HsHl + HsHs] - [HlCl + HlCs + HsCl + HsCs] contrast in EC.   560 

c. The average effect in an ROI from Baram et al. (green cluster in figure 3d of Baram et al.) 561 

for each participant. Star denotes the mean, error bars are SEM. 562 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2025. ; https://doi.org/10.1101/2023.08.31.555760doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Discussion  563 

The contributions of this manuscript are two-fold: first, we show that EC representations 564 

generalize over hexagonal abstract graphs of different sizes, highlighting the importance of 565 

the statistical properties of the environment to generalization. This expands our previous 566 

work (both experimental (Baram et al. 2021) and theoretical (Whittington et al. 2020)), 567 

suggesting EC plays an important role in generalization over abstract tasks, to the case 568 

where the tasks are governed by the same statistical rules but are not governed by the exact 569 

underlying graph (transition structure). This view builds on the known generalization 570 

properties of EC in physical space (Fyhn et al. 2007; Gardner et al. 2022) and on recent 571 

literature highlighting parallels between medial temporal lobe representations in spatial and 572 

non-spatial environments (Behrens et al. 2018; Whittington et al. 2022). Second, we present 573 

an fMRI analysis method (“subspace generalization”), adapted from related work in 574 

electrophysiology analysis (Samborska et al. 2022), to quantify generalization in cases where 575 

a mapping between states across environments is not available (though see (Hahamy and 576 

Behrens 2019) for our previous fMRI application of this method in the visual domain). 577 

Exploiting previous knowledge while making decisions in new environments is a hard 578 

challenge that humans and animals face regularly. To enable generalization from loosely 579 

related previous experiences, knowledge should be represented in an abstract and flexible 580 

manner that does not depend on the particularities of the current task. Understanding the 581 

brain’s solution to this computational problem requires a definition of a “generalisable 582 

representation”, and a way of quantifying it. Here, we define generalization as sharing of 583 

neuronal manifold across representations of related tasks. The particular assumption here is 584 

that in the EC, such manifolds encode the relevant information about the particular 585 

structural form of the task. 586 

An example of such generalization has previously been observed in the spatial domain, in 587 

grid cells recordings across different physical environments, regardless of shape or size 588 

(Fyhn et al. 2007; Gardner et al. 2022). This was usually done through direct comparison of 589 

the pairwise activity patterns of cells (Fyhn et al. 2007; Yoon et al. 2013; Gardner et al. 590 

2022). However, this is not possible to do in fMRI, rendering the examination of EC 591 

generalization in complex abstract tasks difficult. “Subspace generalization” relies on the 592 

idea that similarity in activity patterns across tasks implies similarity of the within-task 593 

correlations between neurons. These are summarized in the similarity between the (low 594 

dimensional) linear subspaces where the activity of the neurons/voxels representing the 595 

two tasks lies. For fMRI purposes, this similarity between within-task neuronal correlations 596 

should be reflected in the similarity between within-task correlations across voxels, as long 597 

as the relevant neurons anatomically reside across a large enough number of voxels. 598 

Importantly, comparing similarity in neuronal correlations structures rather than similarity 599 

in states representations patterns (as in RSA) allows us to examine flexible knowledge 600 

representations when a mapping between states in the two tasks does not exist. We 601 

present three validations of this method: in cells, we show it captures all expected 602 

properties of grid and place cells, even if we reduce the data resolution by averaging over 603 

the activity of group of cells. In simulation, we show that calculating subspace generalization 604 
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using simulated voxels from simulated grid cells results in significant generalization effect 605 

under realistic condition.  In fMRI, we show it captures the expected correlations induced by 606 

the visual properties of a task in LOC.  607 

Our main finding of subspace generalization in EC across hexagonal graphs with different 608 

sizes and stimuli significantly strengthens the suggestion that EC flexibly represents all 609 

‘spatial- like’ tasks, such as discretized 2D hexagonal graphs. Recently, we presented a 610 

theoretical framework for this idea: a neural network trained to predict future states, that 611 

when trained on 2D graphs displayed known spatial EC representations (the Tolman 612 

Eichenbaum Machine (TEM) (Whittington et al. 2020)). However, ‘spatial-like’ structures are 613 

not the only prevalent structures in natural tasks. The relations between task states often 614 

follow other structural forms (such as periodicities, hierarchies or community structures), 615 

inference of which can aid behavior (Mark et al. 2020). Representations of non-Euclidian 616 

task structures have been found in EC (Garvert, Dolan and Behrens 2017; Baram et al. 2021) 617 

and these generalize over different reinforcement learning tasks that are exactly the same 618 

except for their sensory properties (Baram et al. 2021). Indeed, when TEM was trained on 619 

non-Euclidean structures like hierarchical trees, it learned representations that were 620 

generalisable to novel environments with the same structure (Whittington et al. 2020). 621 

Further, we have previously shown that representing each family of graphs of the same 622 

structural form with the relevant stable representation (i.e. basis set) allows flexible transfer 623 

of the graph structure and therefore inference of unobserved transitions (relations between 624 

task’s states) (Mark et al. 2020). Together these studies suggest that flexible representation 625 

of structural knowledge may be encoded in the EC. 626 

Based on these, we hypothesized that EC representations will also generalize over non-627 

’spatial-like’ tasks (here, community-structure) of different sizes. However, we could not 628 

find conclusive evidence for such a representation: the relevant contrast ([ClCl + ClCs + CsCl 629 

+ CsCs] - [ClHl + ClHs + CsHl + CsHs]) did not yield a statistically significant effect in EC (or 630 

elsewhere, in an exploratory analysis corrected across the whole brain). This is despite clear 631 

behavioral evidence that participants use the community structure of the graph to inform 632 

their behavior: participants have a strong tendency to choose to move to the connecting 633 

nodes (nodes that connect two different communities) over non-connecting nodes ((Mark et 634 

al. 2020), and Figure S4a). Moreover, in the post-experiment debriefing, participants could 635 

verbally describe the community structure of the graphs (26 out of 28 participants). This was 636 

not true for the hexagonal graphs. Why, then, did we not detect any neural generalization 637 

signals for the community structure graphs? There are both technical and psychological 638 

differences between the community structure and the hexagonal graphs that might have 639 

contributed to the difference in the results between the two structures. First, we have 640 

chosen a particular nested structure in which communities are organized on a ring. 641 

Subspace generalisation may not be suitable for the detection of community structure: for 642 

example, a useful generalisable representation of such structure is composed of a binary 643 

‘within-community nodes’ vs ‘connecting nodes’ representation. If this is the representation 644 

used by the brain, it means all “community-encoding” voxels are similarly active in response 645 

to all stimuli (as all 3-images sequences contain at least two non-connecting node images), 646 
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and only “connecting nodes encoding” voxels change their activation during stimuli 647 

presentation. Therefore, there is very little variance to detect.  648 

Though this manuscript has focused on EC, it is worth noting that there is evidence for 649 

structural representations in other brain areas. Perhaps the most prominent of these is 650 

mPFC, where structural representations have been found in many contexts (Klein-Flügge et 651 

al. 2019; Baram et al. 2021; Klein-Flügge, Bongioanni and Rushworth 2022). Indeed, the 652 

strongest grid-like signals in abstract 2D tasks are often found in mPFC (Constantinescu, 653 

O’Reilly and Behrens 2016; Bao et al. 2019; Park et al. 2020; Bongioanni et al. 2021) and task 654 

structure representations have been suggested to reside in mOFC (Wilson et al. 2014; 655 

Schuck et al. 2016; Xie and Padoa-Schioppa 2016). The difference and interaction between 656 

PFC and MTL representations is a very active topic of research. One such suggested 657 

dissociation that might be of relevance here is the preferential contribution of MTL and PFC 658 

to latent and explicit learning, respectively. A related way of discussing this dissociation is to 659 

think of mPFC signals as closer to the deliberate actions subjects are taking. Circumstantial 660 

evidence from previous studies in our lab (tentatively) suggest the existence of such 661 

dissociation also for structural representations: when participants learnt a graph structure 662 

without any awareness of it, this structure was represented in MTL but not mPFC (Garvert, 663 

Dolan and Behrens 2017). On the other hand, when participants had to navigate on a 2D 664 

abstract graph to locations they were able to articulate, we observed much stronger grid-665 

like signals in mPFC than MTL (though a signal in EC was also observed,(Constantinescu, 666 

O’Reilly and Behrens 2016)). In addition, Baram et al. found that while the abstract structure 667 

of a reinforcement learning task was represented in EC, the structure-informed learning 668 

signals that inform trial-by-trial behavior with generalisable information were found in 669 

mPFC. Taken together, these results suggest that here, it is reasonable to expect 670 

generalisation signals of community structure graphs (of which participants were aware) in 671 

PFC, as well as the signals reported in EC for hexagonal graphs (of which participants were 672 

unaware). Indeed, when we tested for subspace generalisation of community structure 673 

graphs in the same ROI in vmPFC where Baram et al. found generalisable learning signals, 674 

we obtained a significant result (though this is a weak effect, and we hence report it with 675 

caution in the supplementary material, Figure S4b). 676 

To summarize, we have extended the understanding of EC representations and showed that 677 

EC represents hexagonal graph structures of different sizes, similarly to grid cells 678 

representation of spatial environments. We did this by using an analysis method which we 679 

believe will prove useful for the study of generalisable representations in different neural 680 

recording modalities. More work is needed to verify whether this principle of EC 681 

representations extends to other, non-’’spatial-like’ structural forms.  682 

Methods 683 

Rodent cells analysis 684 

Cells electrophysiology data were taken from (Chen et al. 2018). In short, cells (place cells from CA1 685 

and grid cells from dmEC) were recorded while the animals foraged in two different square arenas; 686 

one real arena and one virtual reality (VR) arena, real arena is 60x60 and the VR arena is 60x60 or 687 
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90x90 cm. The VR system restrained head-movements to horizontal rotations, and included an air-688 

suspended ball on which the mice could run and turn. A virtual environment reflecting the mouse’s 689 

movements on the ball was projected on screens in all horizontal directions and on the floor. Mice 690 

were implanted with custom-made microdrives (Axona, UK), loaded with 17mm platinum-iridium 691 

tetrodes, and providing buffer amplification.  We analyzed grid cells data from three animals; two 692 

animals had only grid cells data and one animal had both place cells and grid cells data. We analyzed 693 

place cells data from three more animals that had only place cells data (mouse 1 had 14 grid cells, 694 

mouse 2 and 3 had 21 grid cells, mouse 1, 4, 5 had 25 place cells). This experimental design results in 695 

two different firing rate maps, one for each arena. After preprocessing (calculate the firing rate map 696 

using on 64X64 bins matrix and smoothing of the firing rate maps with 5 bins boxcar), we calculated 697 

the ‘subspace generalisation’ score, as follows:  698 

a. Calculate the neuron X neuron correlation matrix from the first firing rate map (one 699 

of the environments) and its principal components (PCs).  700 

b. Project the firing rate maps from this environment and the other environment on 701 

these PCs.  702 

c. Calculate the cumulative variance explained as a function of PCs (that are organized 703 

according to their corresponding eigenvalues) 704 

d. Calculate the area under the curve (AUC).    705 

Permutation test 1 (within cell type): Our hypothesis is that the neuron X neuron correlation 706 

structure is preserved while the animals forage in the two different arenas, i.e. that the active cells’ 707 

assemblies remain the same. Therefore, the null hypothesis is that the cells’ assemblies are random 708 

and did not remain the same while animals forage in the two arenas. We therefore calculated the 709 

PCs using the firing rate map while the animal foraged in one environment and permuted the cells’ 710 

identity of the firing rate maps correspond to the second environment. We then calculated the 711 

difference between the ‘subspace generalisation’ score within and across environments. This creates 712 

our null distribution, which we compare to the subspace generalisation score of the non-permuted 713 

data.  714 

permutation test 2 (between cell types): Our hypothesis is that grid cells generalise better than place 715 

cells, i.e. that the difference between the AUC of within arena projection to across arenas projection 716 

is smaller in grid cells compared to place cells. To this end, we created AUC-differences distribution 717 

using place cells activity as our null distribution; we sample place cells from each animal, such that 718 

the number of grid cells and place cells was equal (mouse 1 had 14 grid cells, mouse 2 and 3 had 21 719 

grid cells, mouse 1, 4, 5 had 25 place cells). Then, for each sample, we calculated the difference in 720 

AUC (same arena - different arenas), as before. We calculated the distribution of these AUC-721 

differences values from all three animals. We then checked whether the AUC-differences in grid 722 

cells, for all three animals, is significantly smaller than those predicted by the sampled place cells 723 

distribution (Figure S1). 724 

Reducing the resolution of the electrophysiological data 725 

We first normalized all firing rate maps. Then, for each animal we randomly sampled (with repeats) 726 

seven cells into two groups and averaged the cells’ activity within each group, separately for each 727 

environment. We then concatenated the resulted size-2 vectors from all animals into one vector and 728 

used this vector as above to calculate the AUC differences between within and across environments. 729 
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The number of bootstraps was 400, therefore we had 800 repetitions to calculate the distribution 730 

(for each sample we project on both environments therefore getting two AUC - difference values). 731 

The plots in Figure.1d were smoothed with smoothing window of 9, the number of bins to calculate 732 

the distribution was 50.  733 

Simulating pseudo voxels 734 

Grid cells are simulated as a thresholded sum of three 2D cosines (Burgess et al. 2007). Each module 735 

is simulated by shifting the grid cells within a grid that spans the rhombus of the hexagonal grid, 736 

such that the average over all grid cells within a module is a constant across the box (note that due 737 

to numerical issues this is almost constant). 738 

We simulated 13456 cells per module (116*116 in the x-y plane, i.e. covering the grid’s rhombus). 739 

The box is simulated with 50*50 resolution (the size of the “box” is 10*10). We simulated four 740 

different modules that differ in their grid spacing and phases. Each environment was simulated by a 741 

different phase and shift of the grid fields such that the relationships between the cells remain the 742 

same across environments. 743 

Voxels were simulated by averaging cells within a module. Each module was segregated into four 744 

groups of cells (therefore there are 3364 cells within each voxel, see supplementary for different 745 

segregations). Each voxel is an average over the cells’ firing rate map within the group. The 746 

averaging was done in two stages: 747 

a. sampling grid cells randomly - i.e. not related to their grid phase 748 

b. The remaining cells were segregated into four groups according to their phase. 749 

The above process was repeated for different fractions of random/(according to phase) ratio 750 

(ratio_random = [0,1], 0: only segregated according to phase, 1: only segregated randomly). We 751 

further added spatial white noise to each voxel, noise std ranging from 0 to 0.1. When examining the 752 

effect of random sampling, the noise std was 0 or 0.1. 753 

 754 

FMRI experiment 755 

Participants: 60 UCL students were originally recruited. As the training is long and hard, for each scan 756 

we recruited two participants for the training sessions, and chose the better performing of the two 757 

to be scanned. Overall, we scanned 34 participants and excluded 6 participants from the analysis 758 

because of severe movement or sleepiness in the scanner. 759 

The study was approved by the University College London Research Ethics Committee (Project ID 760 

11235/001). Participants gave written informed consent before the experiment. 761 

 762 

Behavioural training for fMRI training task 763 

To ensure that participants understood the instructions, the first training day was performed in the 764 

lab while the other three training days were performed from the participant’s home.  765 

Graphs. One hexagonal graph consisted of 36 nodes and the other 42 nodes as shown in Figure 3b. 766 

One community structured graph consisted of 5 communities and the other 6 communities, with 7 767 

nodes each. Within a community, each node was connected to all other nodes except for the two 768 

connecting nodes that were not connected to each other but were each connected to a connecting 769 

node of a neighboring community (Figure 3b). Therefore, all nodes had a degree of six, similarly to 770 

the hexagonal graphs (except the nodes on the hexagonal graphs border, which had degree less than 771 
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six). Our community structure graph had a hierarchical structure, wherein communities were 772 

organized on a ring.  773 

Training procedures.  In each of the training days, participants learned two graphs with the same 774 

underlying structure but different stimuli. During the first two days participants learned the 775 

hexagonal graphs, while during the third and fourth days participants learned the community 776 

structured graphs. We chose to first teach the hexagonal graphs structure for all participants and not 777 

randomize the order because learning community structure graph changes participants’ learning 778 

strategy (mark et al. 2020). During the fifth day, before the fMRI scan, participants were reminded of 779 

all four graphs, with two repetitions of each hexagonal graph and one repetition of each community 780 

structured graph. Stimuli were selected randomly, for each participant, from a bank of stimuli (each 781 

pair of graphs, one hexagonal and one of a community structured graph shared the same bank). 782 

Each graph was learnt during four blocks (Figure. 3b; 4 blocks for graph 1 followed by 4 blocks for 783 

graph 2 in each training day). Participants could take short resting breaks during the blocks. They 784 

were instructed to take a longer resting break after completing the four blocks of the first graph of 785 

each learning day.  786 

 787 

Block structure. Each block during training was made of the following tasks: 1) Learning phase 2) 788 

Extending pictures sequences 3) Can it be in the middle 4) Navigation 5) Distance estimation (see 789 

Figure 3). Next, we elaborate the various components of each block. 790 

Learning phase (Figure 3a): Participants learned associations between graph nodes by observing a 791 

sequence of pairs of pictures which were sampled from a random walk on the graph (successive 792 

pairs of pictures shared a common picture). Participants were instructed to ‘say something in their 793 

head’ in order to remember the associations. Hexagonal graphs included 120 steps of the random 794 

walk per block and community-structured graphs included 180 steps per block (we introduced more 795 

pictures in the community graph condition as random walks on such graphs result in high sampling 796 

of transitions within a certain community and low sampling of transitions between communities). 797 

Extending pictures sequences (Figure 3d): Given a target picture, which of two sequences of three 798 

pictures can be extended by that picture (a sequence can be extended by a picture only if it is a 799 

neighbor of the last picture in the sequence, the correct answer can be sequence 1/sequence 2/both 800 

sequences): Sixteen questions per block. (note that a picture could not appear twice in the same 801 

sequence,  i.e.  if the target picture is already in the sequence the correct answer was necessarily the 802 

other sequence). 803 

Can it be in the middle (Figure 3c): Determine whether a picture can appear between two other 804 

pictures, the answer is yes if and only if the picture is a neighbor of the two other pictures. Sixteen 805 

questions per block. 806 

Navigation (Figure 3e): The aim—navigate to a target picture (appears at the right of the screen). 807 

The task was explained as a card game. Participants are informed that they currently have the card 808 

of the picture that appears on the left of the screen. They were asked to choose between two 809 

pictures that are associated with their current picture.  They could also skip and sample again two 810 

pictures that are associated with the current picture, if they thought their two current options did 811 

not get them closer to the target (skipping was counted as a step). In each step participants were 812 

instructed to choose a picture that they thought had a smaller number of steps to the target picture 813 

(according to their memory). Following choice, the chosen picture appeared on the left and two new 814 

pictures, that correspond to states that are neighbors of the chosen picture, appear as new choices. 815 
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After a participant selected a neighbor of the target picture, that target picture itself could appear as 816 

one of the new options for choice. The game terminated when either the target was reached or 200 817 

steps were taken (without reaching the target). In the latter case a message ‘too many steps’ was 818 

displayed. On the first block, for each step, the number of links from the current picture to the target 819 

picture was shown on the screen. Participants played three games (i.e. navigation until the target 820 

was reached or 200 steps passed) in each block, where the starting distance (number of links) 821 

between the starting picture to the target was 2, 3 and 4. 822 

Distance estimation: Which of two pictures has the smallest number of steps to a target picture: 45 823 

questions per block (none of the 2 pictures was a direct neighbor on the graph, i.e. the minimal 824 

distance was 2 and no feedback was given). 825 

 826 

fMRI scanning task 827 

The task consisted of four runs. Each run was divided into five blocks (one block for each graph and 828 

one more repetition for one of the hexagonal graphs; the repetition was not used in the analyses in 829 

this manuscript). On each block participants observed pictures that belong to one of the graphs. A 830 

block started with 70sec in which participants observed, at their own pace, a random walk on the 831 

graph; two neighboring pictures appeared on the screen and when participants pressed ‘enter’ a 832 

new picture appeared on the screen (similar to the training learning phase). The new picture 833 

appeared in the middle of the screen and the old picture appeared on its left. Participants were 834 

instructed to infer which ‘pictures set’ they are currently observing. No information about the graph 835 

was given. This random walk phase was not used in any analyses in this manuscript.  836 

Next, sequences of three pictures appeared on the screen, one after the other (note the first and 837 

second pictures did not disappear from the screen until after the third picture in the sequence was 838 

presented - all three pictures disappeared together, prior to the next trial, Figure 4b). To keep 839 

participants engaged, once in a while (5 out of 45 sequences) a fourth picture appeared and 840 

participants had to indicate whether this picture can appear next on the sequence (‘catch trials’, 841 

Figure 4c). Before starting the fMRI scan participants were asked whether they found any 842 

differences between the picture sets during the first two days (when the hexagonal graphs were 843 

learnt) and the last two days (when the community graphs were learnt). Most participants (26 out of 844 

28) could indicate that there were groups of pictures (i.e. communities) in the last two days, and that 845 

this was not the case during the first two days. At the end of each block in the scanner participants 846 

answered whether or not there are groups in the current picture set (participants that were not 847 

aware of the groups were asked whether this set belongs to the first two training days or not). 848 

Participants were given a bonus for answering correctly, such that 100% correct results in a ten 849 

pounds bonus. 850 

 851 

fMRI data acquisition 852 

FMRI data was acquired on a 3T Siemens Prisma scanner using a 32 channels head coil. Functional 853 

scans were collected using a T2*-weighted echo-planar imaging (EPI) sequence with a multi-band 854 

acceleration factor of 4 (TR = 1.450 s, TE = 35ms, flip angle = 70 degrees, voxel resolution of 855 

2x2x2mm). A field map with dual echo-time images (TE1 = 10ms, TE2 = 12.46ms, whole-brain 856 

coverage, voxel size 2x2x2mm) was acquired to correct for geometric distortions due to 857 

susceptibility-induced field inhomogeneities. Structural scans were acquired using a T1-weighted 858 
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MPRAGE sequence with 1x1x1mm voxel resolution. We discarded the first six volumes to allow for 859 

scanner equilibration. 860 

Pre-processing 861 

Pre-processing was performed using tools from the fMRI Expert Analysis Tool (FEAT, Woolrich MW 862 

et al. 2001; Woolrich MW et al. 2004), part of FMRIB’s Software Library (FSL, Smith et al. 2004). Data 863 

from each of the four scanner runs was preprocessed separately. Each run was aligned to a 864 

reference image using the motion correction tool MCFLIRT. Brain extraction was performed using 865 

the automated brain extraction tool BET (Smith, 2002). All data were temporally high-pass filtered 866 

with a cut-off of 100s. Registration of EPI images to high-resolution structural images and to 867 

standard (MNI) space was performed using FMRIB’s Linear Registration Tool (FLIRT (Jenkinson et al., 868 

2002; Jenkinson and Smith, 2001)). No spatial smoothing was performed during pre-processing (see 869 

below for different smoothing protocols for each analysis). Because of the notable breathing- and 870 

susceptibility-related artifacts in the entorhinal cortex, we cleaned the data with FMRIB's ICA tool, 871 

FIX (Griffanti et al. 2014; Salimi-Khorshidi et al. 2014). 872 

Univariate analysis 873 

Due to incompatibility of FSL with the MATLAB RSA toolbox (Nili et al. 2014) used in subsequent 874 

analyses, we estimated all first-level GLMs and univariate group-level analyses using SPM12 875 

(Wellcome Trust Centre for Neuroimaging, https://www.fil.ion.ucl.ac. uk/spm).  876 

For estimating subspace generalization, we constructed a GLM to estimate the activation as a result 877 

of each three images’ sequence (a ‘pile’ of pictures). The GLM includes the following regressors: 878 

mean CSF regressor and 6 motion parameters as nuisance regressors, bias term modeling the mean 879 

activity in each fMRI run, a regressor for the ‘start’ message (as a delta function), a regressor for the 880 

self- paced random walk on each graph (a delta function for each new picture that appears on the 881 

screen), a regressor for each pile in each graph (duration of a pile: 1.4sec), regressor for the catch 882 

trial onset (delta) and the pile that corresponds to the catch (pile duration). All regressors beside the 883 

6 motion regressors and CSF regressor were convolved with the HRF. The GLM was calculated using 884 

non-normalized data. 885 

Multivariate analysis 886 

Quantifying subspace generalization: 887 

We calculated noise normalized GLM betas within each searchlight using the RSA toolbox. For each 888 

searchlight and each graph, we had a nVoxels (100) by nPiles (10) activation matrix (�����������) that 889 

describes the activation of a voxel as a result of a particular pile (three pictures’ sequence). We 890 

exploited the (voxel x voxel) covariance matrix of this matrix to quantify the manifold alignment 891 

within each searchlight. 892 

To account for fMRI auto-correlation we used Leave One Out (LOO) approach; For each fMRI scanner 893 

run and graph, we calculated the mean activation matrix over the three others scanner runs (��~
). 894 

We then calculated the left Principal Component (PCs) of that matrix (������������
~


). To quantify the 895 

alignment, we projected the excluded scanner run graph activation matrix (�
 ) of each graph on 896 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2025. ; https://doi.org/10.1101/2023.08.31.555760doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

these PCs and calculated the accumulated variance explained as a function of PCs, normalized by the 897 

total variance of each graph within each run. Therefore, for each run and graph we calculated: 898 

��,
 � ��
~
 · �
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∑ 	��,

�,�


�
��
���

�

 

�
 � �
��
��
�
    899 

Where ��,
 is the projection matrix of dimensions  
���� � ���� of graph ‘b’ on the PCs of graph ‘a’, 900 

��
�,


is the normalized variance explained on the ‘k’ direction, �
  is the summation of the diagonal of 901 

�
, the total variance as a result of the graph piles (three images sequence). We then calculated the 902 

cumulative variance explained over all ‘k’ PCs directions. As a summary statistic we calculated the 903 

area under this curve. This gives us a 4x4 alignment matrix, for each run, such that each entry (a, b) 904 

in this matrix is a measure of the alignment of voxels patterns as a result of the two graphs a&b 905 

(Figure 4d). We then averaged over the four runs and calculated different contrasts over this matrix. 906 

The above calculations were performed in subject space, we therefore normalized the searchlight 907 

results and then smoothed with a kernel of 6mm FWHM using FSL FLIRT and FNIRT before 908 

performing group level statistics. 909 

For group level we calculated the t-stat over participants of each contrast: 910 

Visual contrast was [HlHl + ClCl + HsHs +CsCs] - [HlHs + HsHl + ClCs + CsCl], i.e. same exact sequences 911 

controlled by the same structure. 912 

Structural contrast was [HlHl + HlHs + HsHl + HsHs] - [HlCl + HlCs + HsCl + HsCs], i.e. the difference 913 

between subspace generalisation of hexagonal graphs data, when projected on PCs calculated from 914 

(cross-validated) hexagonal graphs (yellow elements in middle panel) vs community structure graphs 915 

(red elements). 916 

Multiple comparisons correction  917 

Multiple comparison correction was performed using the permutation tests machinery (Nichols and 918 

Holmes 2002) in PALM (Winkler et al. 2014): within the mask we used for multiple comparisons 919 

correction (details in main text), we first measured the TFCE statistic for the current contrast. We 920 

then repeated this procedure for each of the 10000 random sign-flip iterations (each participant’s 921 

contrast sign was randomly flipped and the statistic over participants was calculated). Using these 922 

values we then created a null distribution of TFCE statistics by saving only the voxel with the highest 923 

TFCE in each iteration. Comparing the true TFCE to the resulting null distributions results in FWE-924 

corrected TFCE P-values. 925 

The code for the analysis and simulation is in: 926 

https://github.com/ShirleyMgit/subspace_generalization_paper_code/tree/main 927 

Author contributions 928 
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