

1 **Heterogeneity of radial spokes structural components and associated enzymes in**
2 ***Tetrahymena* cilia.**

3

4

5 **Running title: Heterogeneity of *Tetrahymena* radial spokes**

6

7 Marta Bicka^{1,2#}, Avrin Ghanaeian^{3#}, Corbin Black^{3#}, Ewa Joachimiak¹, Anna Osinka¹, Sumita
8 Majhi¹, Anna Konopka^{4,5}, Ewa Bulska^{2,4*}, Khanh Huy Bui^{3*}, Dorota Wloga^{1*}

9

- 10 1. Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology
11 of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
12 2. Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland.
13 3. Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences,
14 McGill University, Montréal, QC, Canada.
15 4. Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw,
16 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
17 5. Łukasiewicz Research Network - PORT Polish Center for Technology Development, 147
18 Stabłowicka Street, 54-066 Wrocław, Poland

19

20 # equal contribution

21 *corresponding authors

22

23 **In brief**

24 Radial spokes differ in their protein composition and architecture. Studies in a ciliate *Tetrahymena*
25 revealed Rsp3 paralogs-dependent RS1 and RS2 subtypes, Rsp3-less RS3, and diversity of the
26 RSP3 mutants' phenotype. Known RS components and newly identified structural and enzymatic
27 proteins were assigned to particular RSs.

28

29

30 **Keywords:** radial spoke, label-free, TMT, mass spectrometry, cryo-ET, cilia, adenylate kinases,
31 casein kinase, PKA

32

33

34 **Summary**

35 Radial spokes, RS1-RS2-RS3, are T-shaped, multiprotein complexes that transmit regulatory
36 signals from central apparatus to outer doublet dyneins. RSs, especially RS3, differ in morphology,
37 protein composition, and RS base-docked IDAs. Spokes defects alter cilia beating frequency,
38 waveform, and amplitude leading, in humans, to primary ciliary dyskinesia and infertility. In
39 contrast to RS1 and RS2, the protein composition of RS3 is partly resolved. Moreover, the role of
40 particular spokes is unclear. Ciliate *Tetrahymena thermophila* has three Rsp3 paralogs and two or
41 three paralogs of some other RSPs. Using multiple complementary approaches, we showed that
42 *Tetrahymena* forms RS1 and RS2 subtypes having core composed of various Rsp3 paralogs and
43 one type of Rsp3-less RS3. We elucidated proteomes of RS subtypes and identified novel RS-
44 associated proteins, including enzymatic proteins involved in local regulation of the ADP/ATP
45 levels and protein phosphorylation, whose presence further diversifies RSs properties and likely
46 functions.

47

48 **Introduction**

49 Motile cilia and homologous flagella are highly evolutionarily conserved, hair-like cell
50 protrusions, supported by a microtubular skeleton, the axoneme, composed of nine peripheral
51 doublets and two central singlets. The central microtubules, C1 and C2, together with attached
52 complexes, the projections, form the central apparatus (CA), a structure believed to initiate signals
53 required for planar cilia beating. It is proposed that transient interactions between CA projections
54 and outer doublet-docked radial spokes (RSs) enable transmission of regulatory signals to outer
55 doublet complexes, including nexin-dynein regulatory complex (N-DRC) and motor protein-
56 containing outer and inner dynein arms (ODAs and IDAs) ¹⁻⁵.

57 RSs are T-shaped, approximately 40-nm-long complexes with three morphologically
58 distinct regions: (i) an elongated stalk docking the entire RS structure to the outer doublets and
59 having some conformational flexibility enabling RS, especially RS1, to tilt ^{5,6}, (ii) an orthogonal
60 head transiently coming in contact with the CA projections, and (iii) a neck connecting a stalk and
61 a head. Within the 96-nm axonemal repeat unit, RSs are arranged as triplets (RS1, RS2, RS3). The
62 distance between the neighboring spokes is specific to each spoke pair, enabling their identification
63 ^{7,8}.

64 Similar as ODA and IDAf, RSs preassemble within the cells body forming an “L”-shaped,
65 12S complexes composed of RSPs 1-7 and 9-12. The difference between the calculated and
66 estimated molecular weight of the 12S complex suggests a presence of RSP dimers or some

67 additional proteins^{9,10}. Except the very proximal part of the cilium, the transport of 12S precursor
68 within cilia is mediated by IFT and ARMC2 adaptor protein^{11,12}. The 12S complexes are converted
69 in cilium into 20S mature T-shaped complexes^{9,10,13}, but RSPs can also be added onto preexisting
70 spokes to repair them¹⁴.

71 Ultrastructural studies of cilia and flagella from evolutionarily distant species clearly
72 demonstrate that RS1-RS2-RS3 spokes, initially recognized as morphologically similar structures
73 differ in their architecture and protein composition. The most striking example of RSs diversity
74 are spokes in *Chlamydomonas*, where RS1 and RS2 are full length structures while RS3 is short,
75 knob-like^{15–17}, and similar to the base part of the full-length RS3 (¹⁷supplementary Fig 2). Even
76 in species having all full-length RSs¹⁸, the RS3 differs from RS1 and RS2. Moreover, some small
77 differences also exist between RS1 and RS2 architecture^{5,19–27}.

78 Besides differences between spokes within the 96-nm axonemal unit, the architecture of
79 particular spokes varies in different species. In choanoflagellate *S. rosetta*²⁸ and metazoan, sea
80 urchin^{17,29}, *Danio rerio*³⁰, mice, and humans^{23,31}, the RS1 and RS2 heads are symmetrical, H-
81 shaped structures composed of two parallel halves divided by a deep cleft. In contrast, in
82 *Chlamydomonas*, *Tetrahymena*, and *Trypanosoma* the RS1 and RS2 heads are nearly flat, with less
83 pronounced cleft and large lobs extending their area^{15–17,21,29,32}. Also the morphology of RS3 head
84 differs between *Tetrahymena* and metazoans²⁹. Additionally, in *P. rosetta* and studied metazoans,
85 the RS heads are not connected or a thin connection exist between some RS2 and RS3^{23,29–31}, while
86 in *Tetrahymena*, *Chlamydomonas*, and *Trypanosoma* all RS heads are firmly connected^{15–17,21,29}.
87 Finally, in mice and humans, RSs in sperm flagella and cilia of multiciliated cells also diverged. In
88 sperm cell flagellum, RSs are accompanied by additional structures not observed in cilia of
89 multiciliated cells: the barrel-shaped density near RS1, the RS2-RS3 cross-linker, and a density
90 near RS3 base (RS3 scaffolds)³¹. Moreover, while RS head subunits, RspH1 and RspH4a, are
91 expressed in multiciliated cells, in sperm flagellum, the RSs contain RspH6a, a paralog of Rsp4a³³
92 and RspH10^{34–37}.

93 In *Chlamydomonas*, the RSP3 dimer, a core component of RSs³⁸, stretches from the RS
94 base (N-termini) to the RS head (C-termini)² and directly interacts with most of RSPs¹⁹.
95 Pioneering studies using the *Chlamydomonas pf14* mutant carrying a mutation in the *RSP3* gene³⁹
96 and lacking full-length spokes, RS1 and RS2, led to the identification of RS subunits, RSP1-RSP23.
97 Next, cryo-EM studies combined with proteomics, and molecular modeling^{1,19,32,40,41} yielded a
98 recent atomic model of RS1-RS2 protein composition in this green alga and mice^{4,5,20,27}. However,
99 the RS3 composition is still not fully resolved. The knob-like RS3 is maintained in *Chlamydomonas*

100 *pf14* mutant^{15,17} but missing in *fap61* (CaM-IP3) and *fap91* (CaM-IP2) mutants⁴². In *Tetrahymena*,
101 knockout of *CFAP91* affects RS3 and RS2 base²⁵ while deletion of *CFAP61* and *CFAP251* affects
102 part of RS3 stalk or an arch-like structure at the RS3 base, respectively²⁴. More recently, *Lrrc23*
103 was shown to be a component of RS3 head in mice sperm flagellum²². Strikingly, in mice and
104 humans, mutations in *CFAP61*, *CFAP91*, *CFAP251*, and *LRRC23* cause male infertility but not
105 primary ciliary dyskinesia or hydrocephalus, suggesting more differences in the RS3 structure
106 and/or function between sperm flagellum and cilia in multiciliated cells⁴³⁻⁴⁷. To date, *Cfap61*,
107 *Cfap251*, *Lrrc23*, and *Cfap91* are the only known RS3 components. This raises a question about
108 the remaining subunits of RS3 spoke.

109 To address this issue, we took advantage of existing *Tetrahymena* knockout mutants with
110 RS(s) defects (CFAP61-KO²⁴, CFAP206-KO⁴⁸, and CFAP91-KO²⁵, and newly engineered
111 mutants lacking Rsp3 paralogs to compare wild-type and mutant ciliomes using label-free and
112 tandem mass tag (TMT) quantitative mass spectrometry and decipher RSs proteomes. To verify if
113 candidate RSPs (proteins diminished in mutant ciliomes) are indeed present in RSs or their vicinity,
114 we performed co-IP and BioID assays. These proteomic approaches combined with cryo-electron
115 tomography (cryo-ET) studies of ultrastructural alterations in RS mutants and cross-links data⁴⁹
116 allowed us to assign with a high probability the substantial number of known RSPs and newly
117 identified candidate proteins to either RS1, RS2, or RS3. Importantly, among newly identified
118 proteins, we found not only structural proteins but also proteins having predicted enzymatic folds
119 and thus likely having an enzymatic activity (further shortly enzymes), including serine-threonine
120 kinases and adenylate kinases that locally controls ADP/ATP levels. We also observed a
121 destabilization of some single-headed inner dynein arms in the analyzed RS mutants and obtained
122 evidence suggesting interactions of RS with specific central apparatus components.

123 Here, we propose a model of *Tetrahymena* RS protein composition, showing both
124 ubiquitous and RS-specific RSPs, new candidates of RS structural proteins, and RS-associated
125 enzymes. We postulate that *Tetrahymena*, has sub-types of RS1 and RS2 spokes that together with
126 different associated enzymes further increase the heterogeneity of RSs and likely their function.
127 Our data, besides expanding the general knowledge regarding RSs composition, can contribute to
128 a better understanding of the molecular mechanisms regulating cilia motion.

129

130 **Results**

131 **Deletion of *Tetrahymena* Rsp3 paralogs differently affects cilia beating.**

132 In contrast to *Chlamydomonas* and animals, ciliates have more than one RSP3 ortholog.
133 *Tetrahymena* genome encodes three RSP3 orthologs, Rsp3A, Rsp3B, and Rsp3C (Figure S1).
134 Rsp3B is most similar to *Chlamydomonas* and metazoan RSP3 within the axoneme targeting
135 domain⁵⁰ and the radial spoke 3 domain⁵¹ (39% identity and 63% similarity to human RSPH3).
136 Based on the amino acids' conservation, *Tetrahymena* Rsp3 paralogs have an AKAP domain
137 scaffolding the cAMP-dependent protein kinase holoenzyme⁵² and amphipathic helices, AH-R,
138 binding RIIa domains, and AH-D, binding DPY-30 domains⁵³ (Figure S1). Three LC8-interacting
139 TQT-like motifs, common in N-termini of *Chlamydomonas* and vertebrates RSP3⁵⁴, are predicted
140 only in Rsp3B while Rsp3A and Rsp3C have one and two TQT-like motifs, respectively. Based on
141 the consensus of the LC8 recognition motifs^{55,56}, other LC8 binding sites in *Tetrahymena* Rsp3
142 paralogs are unlikely. Interestingly, the Rsp3C is unusual in having predicted N-terminal ARF
143 (ADP-ribosylation factor) domain and a C-terminal tail enriched in glutamic acid residues. In silico,
144 the Rsp3C-like RSP3 orthologs were found only in ciliates closely related to *Tetrahymena* such as
145 *Paramecium*, *Ichthyophthirius*, and *Pseudocohnilembus* but not in *Stentor* or *Stylonychia* species.

146 Ciliary Rsp3A, Rsp3B, and Rsp3C have several isoforms, suggesting their posttranslational
147 modifications, likely including most common, phosphorylation (Figure S2). In human RSPH3, two
148 threonine residues, T243 and T286, are phosphorylated by ERK1/2⁵². In corresponding positions,
149 the RSP3 orthologs have either threonine or serine residues (Figure S1) except *Tetrahymena*
150 Rsp3A, missing first, and Rsp3B, missing a second putative phosphorylation site.

151 *Tetrahymena* Rsp3 paralogs expressed as fusions with a C-terminal 3xHA tag under the
152 control of transcriptional promoter, localize along the entire cilia length except the ciliary tip
153 (Figure 1A-C). When co-expressed, 3xHA and GFP-tagged Rsp3 paralogs were incorporated
154 concurrently into growing cilia (Figure S3) but some minor fluctuation of Rsp3C-GFP signal was
155 noticeable, in growing and full-length cilia (Figure 1 D-E). To explore the significance of Rsp3
156 paralogs, we constructed knockout strains (Figure S4). Deletion of a single *RSP3* gene affected
157 cells swimming and cilia beating parameters (Figure 2) and in the case of RSP3B-KO, reduced
158 cilia length to ~84% of the wild-type cilia (Figure S5A). The loss of Rsp3B had the most profound
159 effect on cell motility and reduced the swimming speed to ~12% of the wild-type, while deletions
160 of either *RSP3A* or *RSP3C* were less damaging (70% and 56% of the wild-type speed, respectively).
161 *Tetrahymena* cells are propelled by the forces generated by cilia beating in metachronal waves. The
162 cilium beating cycle has two phases, the power and recovery strokes that occur in different planes
163 in relation to the cell surface, perpendicular and parallel, respectively. During the power stroke the
164 cilium is basically straight while during the recovery stroke it bends, and the bend position shifts
165 from the cilium base to the tip as the recovery stroke progresses (Figure 2F, Video S1)^{25,57}.

166 Deletion of *RSP3A* or *RSP3C* did not change the ciliary waveform and beat amplitude but slightly
167 affected cilia metachrony and beating frequency (Figure 2F-H, Figure S5B-E and Video S2, Video
168 S4). In contrast, cilia lacking Rsp3B were beating in a less coordinated manner, with significantly
169 lower frequency, inconsistencies in the waveform and amplitude between neighboring cilia and
170 between subsequent beating cycles performed by the same cilium, exhibiting periods of nearly
171 normal and highly modified pattern. Moreover, the distal end of the majority of RSP3B-KO cilia
172 was still bending during the power stroke (Figure 2F, Figure S5B-E Video S3). A delayed
173 straightening of the very distal end was also sometimes observed in cells lacking Rsp3C.

174

175 **RSP3 paralogs and heterogeneity of RS1 and RS2 spoke structure**

176 The differences in the phenotype of *RSP3* knockouts suggest that lack of the particular
177 paralog affects different RS types and/or numbers. The cryo-ET subtomogram averaging of the
178 three RSP3-KO mutants revealed paralog-specific ultrastructural defects (Figure 3, Table S1).
179 Averages of all 96-nm subunits show that overall, RSP3A-KO and RSP3C have only the base part
180 of RS1 and RS2 respectively and RSP3B-KO lacks the complete RS2 and the head part of RS1
181 (Figure 3A). Interestingly, in all *RSP3* mutants, the RS3 was intact, strongly suggesting that none
182 of the Rsp3 paralogs is a RS3 component.

183 Existing densities at the bases of the RS1 and RS2 in the averaged maps suggest that there
184 are heterogeneities in RS distribution in those KO mutants. Therefore, we performed image
185 classification of the base and head of the missing RSs to reveal their patterns (Figure 3B, Figure
186 S6 and S7). Our classification reveals that while RSP3A-KO lacks RS1 in most of the 96-nm, 22%
187 of the RS1 looks intact in RSP3A-KO. In RSP3C-KO mutant, 19% of 96-nm repeating units lack
188 RS2 completely while 17% retain the entire RS2, and 58% still contain a long stump of RS2. In
189 RSP3B-KO, 100% of the 96-nm repeat lack RS2 completely while 22% of them have intact RS1.

190 Thus, Rsp3A is a component of the majority of RS1 spokes and Rsp3C is a component of
191 RS2 spokes. In contrast, Rsp3B is likely a main core protein in the majority of RS1 and all RS2
192 spokes. The absence of Rsp3C affected only a fraction of RS2 spokes. To evaluate the distribution
193 of the intact RS2 along the doublet microtubule (DMT) in RSP3C-KO, we performed a statistical
194 analysis of the classes in which RS2 remains intact in RSP3C-KO subtomograms. We found that
195 there was no significant difference in the distribution of particles between the proximal and medial-
196 distal regions of each doublet within the axoneme (Figure 4).

197 To study the extend of RS defects, we isolated cilia from wild-type and *RSP3-KO* cells and
198 performed comparative proteomic mass spectrometry analyses using label-free (LFQ) and TMT
199 10-plex isobaric mass tagging approaches. The experiments were repeated three times to generate
200 independent sets of data. At least 75% of proteins were present in all three replicas. Approximately
201 one-thousand ciliary proteins from wild-type cells and *RSP* mutants were identified in LFQ
202 experiments, while nearly four times more were detected using the TMT approach. Based on
203 principal component analysis of obtained ciliomes using Ingenuity Pathway Analysis, the *RSP3A-*
204 *KO* ciliome is most similar to that of a wild-type (Figure S8). Changes in the protein levels were
205 analyzed using Perseus software (v. 2.0.3) ⁵⁸. The t-test ($p < 0.05$) was used to identify proteins
206 whose level significantly changed (a ± 1.5 -fold) in mutants' versus that in wild-type cilia. The
207 obtained data are graphically represented as Volcano plots $-\log(P\text{ value})$ vs. $\log_2(\text{fold change of}$
208 mutant/WT, Figure S8) and Venn diagrams (Figure S9A-C). If there were discrepancies between
209 LFQ and TMT data, we interpret changes in the protein level according to the latter analyses.

210 Global mass spectrometry analyses of the *RSP3A-KO*, *RSP3B-KO*, and *RSP3C-KO* cilia
211 confirmed that the protein encoded by the targeted gene was completely eliminated in respective
212 mutants (Table S2). The knockout of *RSP3A* or *RSP3C* did not significantly affect the levels of
213 other Rsp3 paralogs while in *RSP3B-KO* cilia the level of Rsp3A was diminished, suggesting that
214 Rsp3A-Rsp3B could form a heterodimer or that in the absence of RS2, some RS1 are unstable. Of
215 note, in none of the *RSP3* mutants, the level of remaining Rsp3 paralogs was significantly elevated,
216 suggesting that substitution of missing paralog by another one if occurs is a minor phenomenon.

217 The *RSP3* is present in axonemal RS as a dimer ³⁸. Based on cryo-ET and proteomic data
218 we propose that *Tetrahymena* cilia could have up to three RS1 subtypes with a core composed of:
219 (i) Rsp3A dimer (RS1 missing in *RSP3A-KO* but intact in *RSP3B-KO* cilia), (ii) Rsp3B dimer
220 (RS1 missing in *RSP3B-KO* but present in *RSP3A-KO* cilia), and (iii) RS1 containing Rsp3A-
221 Rsp3B heterodimer. The existence of this last class is supported by proteomic data showing that
222 the level of Rsp3A was substantially reduced in *RSP3B* mutant cilia. On the other hand, in
223 *Tetrahymena*, the RSs' heads are connected and therefore the RSs may stabilize one another. Thus,
224 some Rsp3A-containing RS1 spokes could be destabilized (secondary effect) in the *RSP3B-KO*
225 mutant, leading to a moderate reduction of the Rsp3A level. To address this issue, we search data
226 from cross-link experiments of *Tetrahymena* cilia and found a highly confident cross-link between
227 Rsp3A and Rsp3B (*RSP3A* K172 to *RSP3B* K195) suggesting a direct contact ⁴⁹. We also
228 engineered cells expressing Rsp3A-BCCP under the control of the *RSP3A* promoter and analyze
229 BCCP localization using cryo-ET and subtomogram averaging. A comparison of the subtomogram-
230 averaged map from the WT and Rsp3A-BCCP samples revealed an additional density on the IDA-

231 facing side of the RS1 head (Figure 5A, B). Moreover, when the entire RS1 model from
232 *Chlamydomonas* was fitted into our maps (Figure 5C), the extra globular density corresponding to
233 streptavidin was found near the C-terminus of only one copy of the *Chlamydomonas*'s RSP3
234 (Figure 5D). Taken together, the above data suggest that some of RS1 spokes could indeed have a
235 core composed of Rsp3A-Rsp3B heterodimers and thus it is possible that in *Tetrahymena* there are
236 three types of RS1, depending on the Rsp3 dimer composition.

237 The absence of Rsp3C affected the majority of RS2 but only in ~19% of the analyzed
238 subtomograms, the entire RS2 was missing, which is in striking contrast with RSP3B knockout in
239 which all RS2 were eliminated. Thus, a presence of RS2 spokes containing Rsp3C homodimer is
240 unlikely or very infrequent. We propose that Rsp3B is a component of all *Tetrahymena* RS2 spokes
241 and that RS2 affected in RSP3C-KO mutant, could contain either Rsp3B-Rsp3C heterodimer or
242 Rsp3B homodimer additionally stabilized by Rsp3C. The unaltered level of Rsp3B in *RSP3C*
243 knockout suggests that in the absence of Rsp3C, the Rsp3B-containing partly collapsed RS2-
244 remnants were still attached to the axoneme but no longer maintained their T-shape structure
245 (Figure S6, RS2 head masked). Thus, likely, Rsp3C is present in a subset of RS2 spokes.
246 Surprisingly, the level of Rsp3C in RSP3B-KO cilia was also unaltered, suggesting that perhaps
247 Rsp3C docks to the axoneme independently of Rsp3B. We did not find data supporting the cross-
248 link between Rsp3B and Rsp3C, however, such result does not exclude that Rsp3B and Rsp3C can
249 co-assemble. To summarize, in contrast to RSs from other studies species, in *Tetrahymena* there
250 are subtypes of RS1 and RS2 spokes, increasing spokes heterogeneity. Based on the available data,
251 the significance of this phenomenon remains unknown.

252

253 Identification of *Tetrahymena* RSP orthologs and protein composition of RSs

254 The RSP3 dimer interacts with other RSPs, together forming the RS head, neck, and stalk
255 ^{10,15,19,41}. In bioinformatics search of *Tetrahymena* RSP orthologs (Figure S10, Table S3) we found
256 that besides three Rsp3 paralogs, *Tetrahymena* genome encodes three paralogs of Rsp4/6 and two
257 of Rsp7, Rsp12, Rsp16, and Cfap198 while other RS proteins are encoded by a single gene. The
258 majority of *Tetrahymena* RS proteins are well evolutionarily conserved (Table S3) and their
259 identification was straightforward, but finding true orthologs of Rsp1, 5, 7, 10, and 12 required
260 additional data. Therefore, we engineered *Tetrahymena* cells expressing RS proteins in fusion with
261 either C-terminal 3HA or HA-BirA* tags under the control of the transcriptional promoter and
262 performed co-IP or BioID assays, respectively, followed by mass spectrometry analyses to identify
263 ciliary proteins that either directly or indirectly interact with 3HA-tagged Rsp3A, Rsp4A, RSP4B,
264 or Rsp4C (Table S4), or are in the vicinity of Rsp3 or Rsp4 paralogs, Cfap61, Cfap91, or Cfap206

265 (Figure S11, Table S5). The combined in silico and biochemical data together with RS mutant
266 ciliome analyses (see below) enabled identification of the remaining less conserved RS proteins
267 (Table S6).

268 Rsp1 and Rsp10 are MORN-domain containing proteins. *Tetrahymena* genome encodes
269 129 proteins having MORN domain ⁵⁹, numerous with similarity to *Chlamydomonas* RSP1 and
270 RSP10. However, only two of such MORN proteins co-precipitated with Rsp4-3HA and were
271 identified in BioID assays. A search of the predicted *Tetrahymena* proteome with *Chlamydomonas*
272 RSP5 aldo-keto reductase as a query, failed to identify an obvious ortholog. Thirteen proteins
273 annotated in the *Tetrahymena* Genome Database (TGD) as aldo-keto reductases were present in
274 our ciliomes, of which four were significantly reduced in the *RSP3* knockouts. However, neither
275 of these proteins was detected in co-IP or BioID assays (Table S4 and S5). Thus, similar as
276 mammals ⁴¹, *Tetrahymena* seems to lack RSP5 ortholog. Interestingly, search of the NCBI protein
277 database using *Chlamydomonas* RSP5 as a query, identified RSP5 orthologs only in
278 *Chlamydomonas*-related algae. *Chlamydomonas* RSP7 has an RIIa domain (dimerization-
279 anchoring domain of cAMP-dependent PK regulatory subunit) at its N-terminus and several EF
280 hand motifs in the middle and C-terminal regions. A search of the *Tetrahymena* proteome led to
281 the identification of two proteins, Rsp7A and Rsp7B, both with limited similarity to
282 *Chlamydomonas* RSP7 (Figure S10). The Rsp7A is a 39 kDa protein containing N-terminal RIIa
283 and C-terminal IQ calmodulin-binding motif while 66 kDa Rsp7B has predicted AKA28 (A-kinase
284 anchoring protein) domain and two EF hand motifs. RSP12 is a peptidyl-prolyl cis-trans isomerase
285 (PPIase) ⁴¹. Out of 15 *Tetrahymena* genome-encoded PPIases, seven were present in cilia, but only
286 two, named here Rsp12A and Rsp12B, were significantly reduced in RS mutants.

287 To more accurately assign the RS proteins to the particular spokes, we analyzed ciliomes
288 of previously described *Tetrahymena* RS mutants (Figure S9D-E): (i) CFAP206-KO, missing
289 either the entire RS2 or only its base, rarely accompanied by minor RS3 defects ⁴⁸, (ii) CFAP61-
290 KO, lacking a part of the RS3 stalk ²⁴, and (iii) CFAP91-KO, missing RS3 and a part of the RS2
291 base ²⁵. Proteins whose level was reduced in CFAP91-KO cilia were assigned as RS3 subunits if
292 their level was unchanged in RS2 mutants (RSP3B-KO, RSP3C-KO, CFAP206-KO) or as RS2
293 components if were diminished in RS2 mutants. Of note, when only a fraction of spokes is affected
294 in a mutant, the reduction of the protein could not be statistically significant. Furthermore, because
295 in *Tetrahymena* RSs heads are connected, proteins present in the neighboring spokes are likely to
296 be detected in co-IP and BioID assays, all together making the analyses more difficult. Therefore,
297 we identified the RS1, RS2, and RS3-specific components and built a proteomic model of
298 *Tetrahymena* RSs by combining our proteomic and cryo-ET data (Figure 6, Table S7 and S8) with

299 previously published cross-linking data⁴⁹. For a simplicity, here we compared our RS model with
300 that of *Chlamydomonas*^{19,41}.

301 *Components of radial spoke head*

302 In *Chlamydomonas*, the RS head consists of two identical lobes connected by an RSP16
303 dimer, a neck component. Each lobe, besides paralogous RSP4 and RSP6, is composed of RSP1,
304 5, 9, 10, a part of the neck protein, RSP2, and a C-terminus of RSP3^{15,19,41}. *Tetrahymena* has three
305 paralogous of RSP4/6, Rsp4A, Rsp4B, and Rsp4C, and a single ortholog of Rsp1, Rsp2, Rsp9, and
306 Rsp10 but lacks RSP5 ortholog. The levels of all head proteins, except for Rsp4B, were
307 significantly diminished in RSP3B-KO mutant, lacking all RS2 and two-third of RS1 spokes, but
308 not in RSP3A-KO, in which only fraction of RS1 were missing. Based on available data and earlier
309 RS1 models^{4,5,19,20} we propose that *Tetrahymena* RS1 and RS2 heads are composed of the same
310 subunits except Rsp4B, which was almost eliminated in RSP3C-KO cilia (Table S2) suggesting
311 that Rsp4B is present in Rsp3C-containing RS2 spokes.

312 The protein composition of the RS3 head is not fully resolved. It was recently reported that
313 leucine-rich repeat-containing 23 (LRRC23) is a subunit of the RS3 head in human and mouse
314 sperm axoneme²². In *Tetrahymena*, the orthologous Lrrc23A and Lrrc23B were unaltered in
315 mutants affecting only RS1 and/or RS2 but reduced in *CFAP91* mutant²⁵. Both Lrrc23 proteins
316 have a C-termini enriched in glutamic acid residues (especially Lrrc23B) which may increase the
317 negative charge of the RS3 head surface. We propose that in *Tetrahymena*, Lrrc23A and Lrrc23B
318 are RS3 head components.

319 Among proteins biotinylated in cells expressing BirA*-tagged RS head proteins, were also
320 central apparatus components (Table S9), mainly subunits of the C1b, C1d, and C2b projections,
321 suggesting that primary these projections interact with RS head or that contact between RS head
322 and these projections is longer, so their components can be more efficiently biotinylated.
323 Furthermore, C1d components, Cfap46 and Cfap56 are preferentially biotinylated when RS1-RS2
324 head components were expressed as BirA* fusions, while in cilia where RS3 head Lrrc23 were
325 fused with BirA*, besides C1d, also C2b and C1b subunits were biotinylated, suggesting possibility
326 of some preferences in RS-CA projection interactions.

327 *Components of radial spoke neck*

328 In *Chlamydomonas*, the V-shaped neck is composed of RSP2, RSP12, RSP16,
329 RSP23/FAP67, FAP198, and FAP385¹⁹. *Tetrahymena* has a single Rsp2, likely a single ortholog
330 of Rsp23, and paralogous Rsp12A and Rsp12B, Rsp16A and Rsp16B, Cfap198A and Cfap198B.

331 The 70 amino acids long FAP385 is strikingly similar to the very N-terminal fragment of adenylate
332 kinase 8A (Ak8A). *Tetrahymena* and *Chlamydomonas* RSP2 and RSP23 orthologs share similarity
333 only within their N-termini containing predicted DPY-30⁶⁰ and NDK (nucleoside diphosphate
334 kinase)⁶¹ domains, respectively. In *RSP2* knockdown cilia (Table S2), only Rsp12A and Rsp12B
335 were significantly diminished, suggesting that Rsp12 likely directly binds to Rsp2. The genome of
336 *Tetrahymena* encodes two proteins similar to Rsp23, Cfap67A (TTERM_000372529) and
337 Cfap67B (TTERM_00266490). Although neither of them was diminished in analyzed mutants,
338 Cfap67A but not Cfap67B was identified in co-IP and BioID assays, suggesting that Cfap67A is
339 the main if not the only one Rsp23. Interestingly, recent single-particle cryo-EM and molecular
340 modeling studies showed that Cfap67A is a A-tubule MIP protein⁶². Thus, based on previous and
341 here presented data we propose that out of two *Tetrahymena* Cfap67 orthologs, Cfap67A likely
342 dominates and has double role in cilia - as RSP and as MIP.

343 Based on the available data (Table S7) we propose that the neck region of all types of RS1
344 is composed of Rsp2, 12B, 16A, 23/Cfap67A, and Cfap198A. The RS2 lacking Rsp3C likely have
345 a neck composed of the same proteins except that Rsp12B is replaced by Rsp12A, while Rsp2,
346 12A, 16B, 23/Cfap67A, and Cfap198B are subunits of RS2-containing Rsp3C (Figure 6).

347 *Components of radial spoke stalk and base*

348 Rsp3 paralogs form a core of RS1 and RS2 stalk. The moderately diminished levels of
349 Rsp3B and Rsp3C proteins in *CFAP91* mutant (Table S2 and S7) can be due to defect in some RS2
350^{25,48}. In *Chlamydomonas*, several proteins were assigned to RS stalks¹⁹. Similar to
351 *Chlamydomonas*, *Tetrahymena* has two ARM-like (armadillo-like) motif-containing RS proteins
352 (Rsp8 and Rsp14) and LRR-containing, Rsp15. Rsp14 is a subunit of RS1 while Rsp8 and Rsp15
353 are RS2 components, independent upon the Rsp3 paralog forming RS stalk. *Chlamydomonas* RSP7
354 and RSP11 form a heterodimer positioned near RSP8 or RSP14^{19,63}. Out of two RSP7 orthologs,
355 *Tetrahymena* Rsp7A is a component of RS2 and likely of RS1 while Rsp7B is an RS3 subunit.
356 *Tetrahymena* Rsp11, a small (7.9 kDa), basic protein (pI = 9) with a predicted RIIa domain and a
357 limited similarity to *Chlamydomonas* RSP11⁶³, similar as Rsp7A contributes to both, RS1 and RS2
358 structure.

359 *Chlamydomonas* RSP20/CaM and RSP22/LC8 (cytoplasmic dynein light chain 2)^{40,41} are
360 RS1 and RS2-base proteins. CaM binds to FAP253 between RS1 and RS1-docked IDAs while
361 RSP22/LC8 forms multimer, likely, a RS docking site, composed of four homodimers in RS1 and
362 two homodimers in RS2¹⁹.

363 Our proteomic data suggest that in *Tetrahymena* Rsp20/CaM and Rsp22/Lc8 associates
364 with RS2 and perhaps RSP3B-containing RS1. On the other hand, the cryo-ET data showed that
365 the RS1 base is missing only in a minor fraction of 96-nm subunits in RSP3A-KO mutant (Figure
366 3) which coincides with the unaltered levels of RS1 base proteins, Rsp20/CaM1, Rsp22/Lc8,
367 Cfap207, and Cfap253 (Table S2 and S8) and together suggest their presence at the base of Rsp3A-
368 containing RS1.

369 *Chlamydomonas* FAP207, a MORN motif-containing protein, was modelled as a part of the
370 base of both RS1 and RS2, while the IQ motif-containing FAP253, orthologous to *Ciona*
371 CMUB116¹⁸ and murine Iqub²⁰ was shown to be an RS1 adaptor^{19,20}. *Tetrahymena* and
372 *Chlamydomonas* FAP253 are smaller than mammalian orthologs and lack ubiquitin domain
373 predicted in IQUB. In all tested *Tetrahymena* mutants, the level of Cfap253 was unaltered but
374 protein was biotinylated in cells expressing BirA*-tagged Rsp3A or Rsp3B, together indicating
375 that Cfap253 is likely an RS1 adaptor. Similar to Cfap253 and Lc8, the level of Cfap207 was
376 unaltered in *RSP3A* knockout but diminished in cells with RS2 defects except for *RSP3C* mutant
377 suggesting that Cfap207 presence at RS2 base is Rsp3C-independent. To summarize, presence of
378 different Rsp3 paralogs as core components of the RS1 and RS2 spokes diversified the protein
379 composition of RS head and neck but not RS stalk.

380 The RS3 structure was unaltered in all RSP3-KO mutants, indicating that RS3 is a Rsp3-
381 less spoke in *Tetrahymena*. Previous analyses led to identification of Cfap61 and Cfap251 as RS3
382 stalk and base components²⁴ and Cfap91 as a protein playing a role in RS2 base and RS3/RS3 base
383 stability²⁵. Here we showed that RS3 stalk contains also Rsp7B, which has limited similarity to
384 Rsp7A.

385

386 **New radial spoke candidate proteins**

387 We have identified several uncharacterized proteins whose level was diminished in
388 analyzed mutants, suggesting that those are either new RS subunits or proteins positioned in the
389 RS base vicinity (Figure S11, Tables S2, S10, and S11). Based on the identified domains, we
390 divided those proteins into two groups, contributing to the RS or RS-vicinity structure and with
391 putative enzymatic activity (shortly enzymes).

392 The tetratricopeptide repeat-containing (TTHERM_00623040, TtTpr) and Kelch repeat-
393 containing (TTHERM_00760390, TtKelch) proteins (Tables S4, S5, S7, and S10), missing
394 vertebrate or *Chlamydomonas* orthologs, likely locates near the base of Rsp3C-containing RS2 and
395 RS3 base, respectively. Also Lrrc (TTHERM_00046820), Lrrc (TTHERM_01084360), RIIa

396 domain (TTHERM_00537370), and MRNN04 (TTHERM_00324550) could contribute to RS3 or
397 its vicinity. Furthermore, two sperm-tail PG-rich repeat protein (STPG1 and STPG2, the later
398 similar to Stpg2 in mice and *Chlamydomonas* CHLRE_09g415650v5), were reduced in RS1 or
399 RS2 mutants. We propose that Stpg proteins are not RS components but are rather position near
400 the RS base.

401 Cilia beating depends upon a constant supply of ATP and its uniform distribution within
402 the cilium. Ciliary ATP is either delivered from the cell body by diffusion or produced within cilia
403 ⁶⁴. Adenylate kinases (Ak) reversibly catalyze the ATP+AMP↔2 ADP reaction and thus locally
404 control the ATP level and maintain the homeostasis of adenine nucleotides ⁶⁵. Six Ak's (types 1, 7,
405 8, and 9) identified in co-IP and BioID assays were also diminished in different RS mutants (Table
406 S11). Based on these data we propose that Ak8B is a component of Rsp3A-containing RS1, Ak1
407 and Ak8A (whose very N-termini is similar to FAP385) are associated with Rsp3B-containing
408 spokes, while Ak7A, Ak7B, and Ak9 which were reduced in CFAP91-KO cilia but unaltered in
409 *RSP3* mutants, likely associate with RS3 or are located in its vicinity. Interestingly, the Ak8B in
410 *RSP3A* mutant and Ak7B and Ak9 in *CFAP91* knockout cilia were nearly completely eliminated
411 strongly suggesting that Rsp3A-containing RS1 and Cfap91 stabilized RS structures are the main
412 if not the only localization of those enzymes. Interestingly, guanylate kinase GK1 and
413 phosphodiesterase, PDE are likely also RS3-associated enzymes and cGMP could play a role in
414 the signal transduction in RS3 vicinity.

415 The RSP3 has an AKAP domain ⁶⁶ and thus locally regulates PKA localization. PKA
416 functions as a tetramer composed of two regulatory and two catalytic subunits ⁶⁷. We identified
417 two PKA catalytic subunits and one regulatory subunit whose levels were altered in RS mutants
418 (Table S11). Two of these subunits co-precipitated with Rsp3A and or Rsp4. Interestingly, one of
419 the *Tetrahymena* casein kinase 1 (Ck1)-type enzymes, was completely eliminated in CFAP91-KO
420 cilia (Table S2) suggesting its specific association with RS2/RS3 base or their vicinity.

421

422 **RS defect-related instability of inner dynein arms**

423 Single-headed IDAs are docked in pairs at the RSs' bases, dynein a and b at RS1, c and e
424 at RS2, and d and g at RS3. They are composed of IDA type-specific dynein heavy chain (Dyh),
425 actin, and centrin (dyneins b, e, g) or light chain protein, p28 (dyneins a, c, d) ⁶⁸. The RS defects
426 affected some IDAs (Table 12). *Tetrahymena* has three orthologs of the single-headed IDA light
427 chain protein p28: p28A, p28B, and p28C ⁶⁹. The level of p28B diminished in *RSP3B* and *CFAP206*
428 knockouts indicating together with cryo-ET data that p28B is a dynein c subunit. In CFAP91-KO,

429 not only the level of p28B was reduced but also that of p28A²⁵ suggesting its/their presence in RS3
430 docked IDAd.

431 The levels of Dyh10, 12, and 25 diminished in the *RSP3B* and *CFAP206* knockouts, which
432 coincides with lack of dynein c density (Figure 3) and⁴⁸, as well as in CFAP91-KO mutants in
433 which Cfap206 is nearly completely eliminated²⁵. In contrast, dynein e was unaffected in those
434 mutants suggesting differences in dynein c and dynein e docking. As we previously reported, in
435 *CFAP91* knockout, besides Dyh10, 12, and 25, the levels of Dyh16, 22, and 24 are also reduced²⁵
436 suggesting that these dyneins are IDAd or IDAg components.

437

438 Discussion

439 Identification of RSs components and RS-interacting proteins is crucial to understand the
440 mechanism(s) enabling transduction of signal from the central apparatus to dynein arms. Despite
441 the extensive research conducted using diverse ciliated species, including *Chlamydomonas*^{19,40,41},
442 *Tetrahymena*^{24,25,48}, *Ciona intestinalis*^{70–72}, and mice^{5,20,22,27,47,73}, the RS3 protein composition
443 was only recently shown. Here, using bioinformatics, genetic, proteomic, and cryo-ET approaches,
444 we solved RSs protein composition including RS3 in a ciliate *Tetrahymena*, showing spokes'
445 heterogeneity and complexity. Strikingly, we found differences not only between RS1, RS2, and
446 RS3 spokes, but also identified likely existence of the subtypes of RS1 and RS2, generated
447 primarily by the presence of different Rsp3 paralogs. The advantage of having Rsp3 paralogs
448 which, based on our data, do not substitute one another, is not clear. The presence of three (Rsp4)
449 or two (Rsp7, Rsp12, Rsp16, and Cfap198) paralogs further diversifies RSs' structure and perhaps
450 function. The existence of paralogous RS proteins agrees with *Tetrahymena* genome analyses
451 revealing duplication of some genes encoding proteins involved in sensing or structural complexity
452⁷⁴.

453 To the best of our knowledge, besides *Chlamydomonas pf14* mutant, cilia or flagella of
454 other species with either deleted or mutated *RSP3*, were not analyzed using cryo-EM. Thus, this
455 study shows for the first time, that Rsp3 is not a RS3 component. This conclusion agrees with
456 previous studies addressing RS3 protein composition and with AlphaFold2 predicted models^{5,24–}
457²⁶. Strikingly, while damaging mutations in so far studied genes encoding RS1 and RS2
458 components, cause PCD^{23,29,34,51,75–77}, mutations in genes encoding RS3 proteins, *CFAP61*^{45,46},
459 *CFAP91*⁴⁴, *CFAP251*⁴³, and *LRRC23*²² result in male infertility but not PCD. Exception is the
460 RS1 base protein, CFAP253/IQUB whose mutation also cause male infertility but not PCD^{20,27}.

461 Accordingly, in mice, Cfap61, Cfap91, Cfap251, Lrrc23, and Iqub/Cfap253 are highly expressed
462 in testis but not in lung or brain^{20,46,47}. Thus, either RSs (especially RS3) contribute differently to
463 the regulation of sperm flagella and multiciliated cell cilia motion or the protein composition of
464 RS1 base and RS3 is not identical in those organelles²⁶. Based on here presented data and previous
465 *Tetrahymena* mutants' analyses^{24,25}, it seems that *Tetrahymena* cilia, with their complex 3D
466 waveform, are more similar to mammalian flagella than to cilia of multiciliated cell.

467 It seems that *Tetrahymena* Rsp3 paralogs differently contribute to the RS structure and are
468 preferentially recognized by other Rsp and/or RS-interacting/associated proteins. In RSP3A-KO
469 and RSP3B-KO mutants, the RS1 base remains intact and the level of RS1-base protein, Cfap253
470^{19,20} is similar to that in wild-type cilia. Strikingly, deletion of *RSP3B* but not *RSP3A* or *RSR3C*
471 reduces the level of Cfap207 and the RS2-base component, Cfap206. Moreover, deletion of
472 *CFAP206* has a stronger impact on the level of Rsp3C than Rsp3B, together suggesting that Rsp3C
473 could dock to Cfap206 which in turn is perhaps partly stabilized by Rsp3B. In *Tetrahymena*, the
474 RS2 is docked to the A-tubule by front, side, and back prongs and knockout of *CFAP206* in the
475 vast majority of subtomograms (83%) eliminates the entire RS2 and front and back prongs. In
476 remaining 17%, RS2 was nearly unchanged while front prong was missing and back prong reduced
477⁴⁸. Interestingly, the number of RS2 remaining in *CFAP206* and *RSP3C* knockouts is similar. Based
478 on the above data, it is also possible that the side prong maintained in *CFAP206*-KO cilia, could
479 be an Rsp3B dimer-dependent structure.

480 It is proposed that the RS head can transiently interact with CA projections and that such
481 interactions enable transmission of signals from the central apparatus via RSs to dynein arms. These
482 interactions can be mechano-chemical and electrostatic in nature^{1,2,5,19}. Compared to the Rsp3A
483 and Rsp3B, the C-terminal end of Rsp3C is enriched in glutamic acid residues. If the Rsp3C C-
484 terminal end, similar to the *Chlamydomonas* RSP3, is a part of the RS head, its presence increases
485 the negative charge of the head surface and thus might locally modulate the electrostatic
486 interactions with CA projections. Interestingly, the N-terminal part of Rsp3C is also unusual in
487 having an ARF domain, which could play a role in signaling.

488 Our data suggest that heads of the RS1 and RS2 are likely build of the same proteins (except
489 for Rsp4B, likely co-assembling with Rsp3C), while RS3 head contains Lrrc23 paralogs. This data
490 agree with observations in mice and humans carrying mutations in Rsp1/RSPH1 or
491 Rsp4A/RSPH4A showing that in multiciliated cell, only RS1 and R2 spokes are head-less^{23,29}
492 and a recent finding that Lrrc23 mutation results in headless RS3²².

493 Whether heads of all three RS interact with CA projections in a similar way and if all CA
494 projections are involved in such interactions, is still an open question. Based on fitted multi-scale
495 axonemal structure, Meng and co-authors proposed a rigid contact mode between C1d and Rspn4a
496 of DMT8 and elastic contact between C2b-C2d and Rspn1 of DMT4⁵. Our BioID data indicate
497 that during cilia beating the BirA* ligase is close enough to the central apparatus to biotinylate
498 some of the CA components (Table S9). Interestingly, Cfap46 and Cfap54, both the subunits of
499 C1d projection⁷⁸ were biotinylated when BirA* was fused to Rsp3A, Rsp4A or Rsp4C. In contrast,
500 in cells expressing Lrrc23-HA-BirA* fusions, Cfap54 was more prominently biotinylated than
501 Cfap46. Moreover, in Lrrc23-BirA* expressing cells, hydin and Cfap47, the C2b components⁷⁹
502 and Spef2A and androglobin (Adgl), the C1b subunits⁸⁰, were also biotinylated. According to the
503 model of *Chlamydomonas* CA, FAP46 and FAP54 form the outer surface of C1d while
504 CPC1/SPEF2 and FAP42 build the distal part of C1b^{81,82}. We previously showed that Adgl has
505 limited similarity to FAP42⁸⁰ and therefore likely has similar position within C1b projection.
506 Taken together, the above data support existence of the interactions between head of RS1 and RS2
507 and C1d as well as RS3 head and C1d, and long projections, C1b and C2b. The subunits of other
508 projections if biotinylated, were identified by a low number of peptides. This raises a question
509 about the involvement of remaining CA projections in CA-RS interactions calling for further
510 studies.

511 **Differences in IDA docking**

512 Destabilization of RSs affects some IDAs docking. In RSP3B-KO mutant the level of
513 Dyh10, 12, and 25 was significantly reduced which coincided with the lack of dynein c (Figure 3).
514 Dynein c (cryo-ET) and Dyh10, 12, and 25 (proteomic studies) were also missing in *Tetrahymena*
515 cells with knocked out *CFAP206* encoding RS2-base protein⁴⁸ and this work. Strikingly, another
516 RS2 dynein, dynein e, is not affected in RSP3B-KO or CFAP206-KO cilia, suggesting differences
517 in the dynein c and dynein e docking. Indeed, the atomic model of *Chlamydomonas* RS2 shows
518 that IDAc docks to the RS2 through FAP207 and IDAc subunit, p28¹⁹. In *Tetrahymena* RSP3B-
519 KO and CFAP206-KO mutants, the level of Cfap207 is reduced (Table S8) strongly suggesting
520 that also in *Tetrahymna* docking of IDAc depends upon Cfap207.

521 We did not find IDA defects in RSP3A-KO and RSP3C-KO mutants affecting RS1 and
522 RS2, respectively. These observations agree with the atomic models of *Chlamydomonas* RS1 and
523 RS2, suggesting that although FAP207 is present at the base of both RS1 and RS2, the p28 dimer
524 of IDAa interacts with RS1-specific FAP253¹⁹. Accordingly, in *Tetrahymena* the level of Cfap253
525 remains unaltered in all studied RS mutants.

526 In *Tetrahymena*, knockout of *CFAP91* primarily affects the RS3 and the base of RS2 as
527 the levels of Cfap206 and Cfap207 are substantially diminished (25, and this work). In *CFAP91*-
528 KO cilia, besides Dyh10, 12, and 25 (dynein c), the levels of Dyh16, 22, and 24 are moderately
529 reduced (25 and this work), suggesting that these dynein heavy chains are components of IDAd or
530 IDAg. Of note, Dyh22p and Dyh15p co-precipitate with GFP-tagged RS3-base protein, Cfap251
531 (24). Some of the remaining dyneins could be the components of IDAA or IDAb. Of note, in growing
532 *Tetrahymena* cells, Dyh13, 17, 18, and 23 are expressed at a very low level (TGD Gene expression
533 profiles and our proteomic data) and thus are likely minor components of *Tetrahymena* dynein
534 arms or expressed during a specific life-phase.

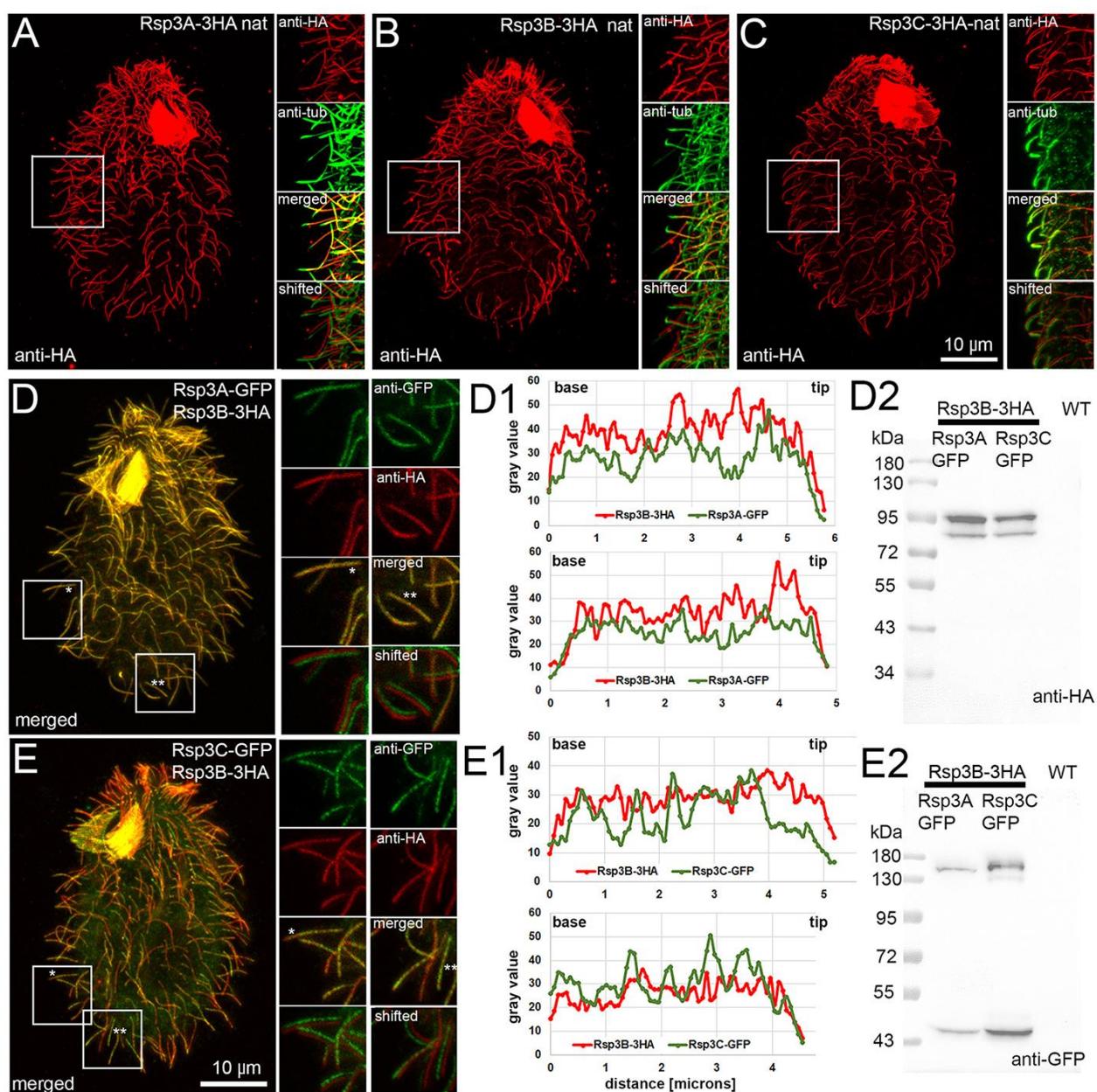
535 Out of three *Tetrahymena* p28 paralogs (69), p28B is likely the main if not the only p28
536 ortholog present in RS2base-docked IDAc. In *CFAP91*-KO cilia, besides p28B, also the level of
537 p28A is reduced (25 and this study). Thus, p28A is likely a subunit of IDAd but it remains to be
538 determined if it forms homo- or heterodimers with p28B.

539 RS-associated proteins containing predicted enzymatic domains

540 The global comparative analyses of wild-type and RS mutant ciliomes led to another
541 interesting discovery – the identification of several enzymes whose level was reduced in RS
542 mutants suggesting that those enzymes likely dock to specific RSs. Among them are (i) adenylate
543 kinases that together with arginine kinase locally regulate ATP homeostasis, and (ii) enzymes
544 playing role in cGMP cycle, and (iii) serine-threonine kinases that could play a role in the
545 control/regulation of RS-mediated signal transduction. Thus, the phenotypic outcome of the
546 deletion of genes encoding RS structural proteins, likely is not a sole consequence of the RS
547 damage and some IDAs-defects, but also changes in protein phosphorylation-mediated signaling,
548 level of guanylate nucleotides, and the accessibility to the ATP-stored energy.

549 Adenylate kinases locally control the ATP levels and maintain the homeostasis of adenine
550 nucleotides (65). We have found that adenylate kinases of specific type likely associate with specific
551 RS. Strikingly, the presence of AK7B, AK8B, and AK9 in cilia nearly completely depend upon the
552 presence of certain class of RS suggesting that RSs are their sole docking sites. Our data are in
553 agreement with recently published molecular modeling also suggesting association of adenylate
554 kinases with radial spokes (26). Interestingly, also Gk1 and PDE enzymes were nearly completely
555 eliminated from *CFAP91*-KO cilia, suggesting their presence near RS3 or its vicinity. GK1, is one
556 of two *Tetrahymena* guanylate kinases. GK catalyzes phosphate transfer from ATP to GMP,
557 producing GDP and ADP. The phosphorylation of GDP to GTP is catalyzed by nucleoside-
558 diphosphate kinases (NDK), and GTP can be converted to cGMP by guanylate cyclase, while 3'-

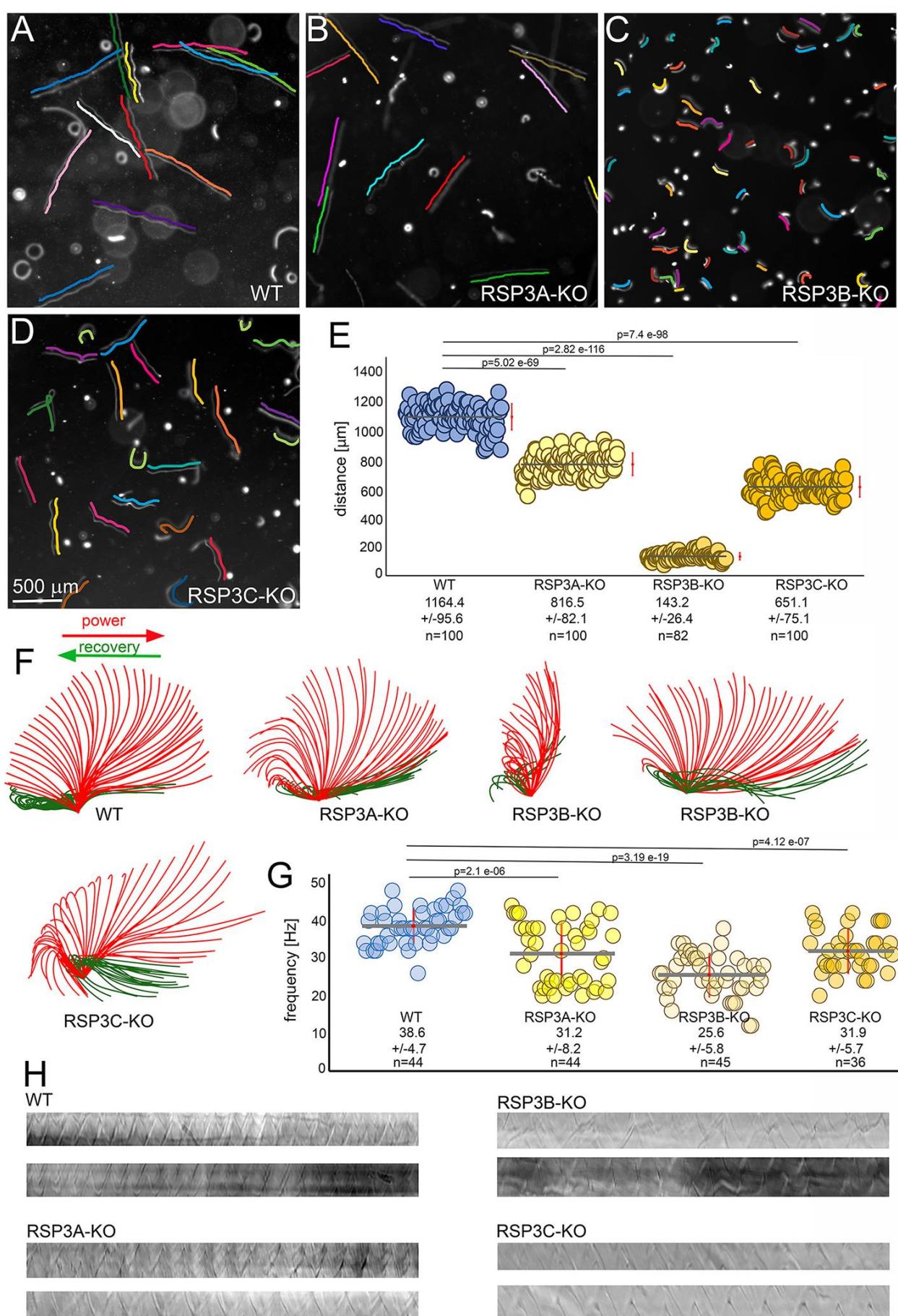
559 cyclic nucleotide phosphodiesterase (PDE) hydrolyzes cGMP^{83–85}. The RSP23 has NDK domains
560⁶¹ however, its level remains unchanged in analyzed mutants. Early analyses of the ciliary beating
561 in Paramecium showed that cyclic nucleotide monophosphates-driven chemical signaling controls
562 ciliary beat^{86–88}. Thus, the immotility of the CFAP91-KO mutants might be caused not only by the
563 lack of RS3 and some IDAs²⁵ but also by the perturbation of the guanidine nucleotide homeostasis.

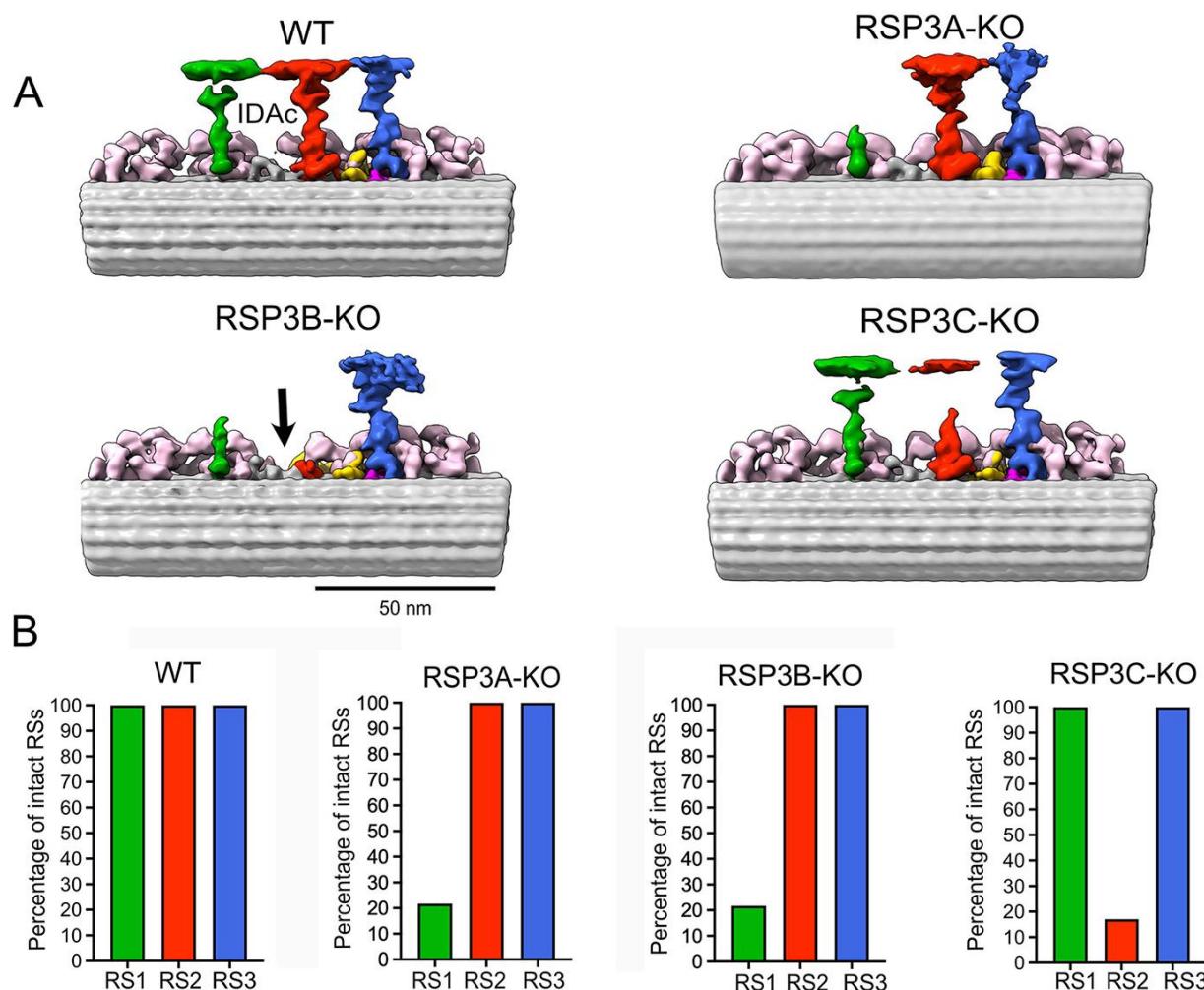

564 It is tempting to speculate that some RSPs undergo phosphorylation and that the
565 phosphorylation status controls RS-mediated transduction of the regulatory signals. We found that
566 the level of one of the casein kinase 1-type enzymes is completely eliminated in *CFAP91* mutant
567 while the levels some cAMP-dependent protein kinase (PKA) subunits, are altered in RS mutants.
568 The presence of Ck1 in the RS3 vicinity was confirmed by co-IP and BioID studies. In
569 *Chlamydomonas*, CK1 docks to outer doublets and regulates the phosphorylation of IC138, the
570 IDAI1/f intermediate chain⁸⁹. In *Tetrahymena*, this role can be played by other Ck1-type enzymes.

571

572

573


574 **Figures and figure legends**


575

576 **Figure 1.** Ciliary localization of Rsp3 paralogs.

577 (A-C) 3HA-tagged Rsp3 paralogs expressed under the control of the transcriptional promoters
578 localize along the entire cilia length except for the ciliary tip. Cells were co-labeled with (A-B)
579 anti-acetylated tubulin antibody, or (C) polyG to visualize ciliary shaft. To the right, the magnified
580 fragments of the cells as indicated by the white insets, stained with anti-HA (red) and anti-tubulin
581 (green) antibodies, and merged images (red and green). Below are images showing both channels
582 but with some shifts to better visualize the presence of the Rsp3 paralogs along the entire cilia.
583 (D-E2) Co-localization of Rsp3B-3HA and (D) GFP-tagged Rsp3A or (E) Rsp3C. To the right, the
584 magnified fragments of the cells as in (A-C). (D1-E1) Plots representing the intensity of the 3HA
585 (red) and GFP (green) fluorescence signal in exemplary cilia marked by stars in (D and E) and
586 enlarged insets. (D2-E2) Western blot analyses of co-expressed Rsp3 paralogs.

589 **Figure 2.** Deletion of each *RSP3* gene differently affects cilia beating.
590 (A-D) WT (A), *RSP3A*-KO (B), *RSP3B*-KO (C), and *RSP3C*-KO (D) trajectories recorded for 3
591 sec using a high-speed video camera. The cell swimming paths are indicated by the parallel colored
592 lines. Bar = 500 μ m.
593 (E) A comparison of the length of trajectories recorded for 3 sec. The red bar position to the right
594 represents the standard deviation. The wild-type cells swam on average 388+/-32 μ m/s (n= 100),
595 and the swimming speeds of the *RSP3A*-KO, *RSP3B*-KO, and *RSP3C*-KO mutants were reduced
596 to 272+/-27 μ m/s (n=100), 48+/-9 μ m/s (n=82), and 217+/-25 μ m/s (n=101), respectively.
597 Statistical significance was calculated using student t-test.
598 (F) Drawings showing examples of the most frequently observed subsequent positions of a cilium
599 of WT, *RSP3A*, and *RSP3C* knockout cells and most extreme difference in cilia beating in *RSP3B*-
600 KO cells. The ciliary waveform and amplitude in the *RSP3B*-KO mutant can vary both in the case
601 of neighboring cilia and during subsequent cycles of the same cilium.
602 (G) Graph showing a range of cilia beating frequencies in wild-type and *RSP3* knockout mutants.
603 The red bar represents the standard deviation. Statistical significance was calculated using student
604 t-test.
605 (H) Examples of the kymographs used to calculate cilia beating frequency.
606

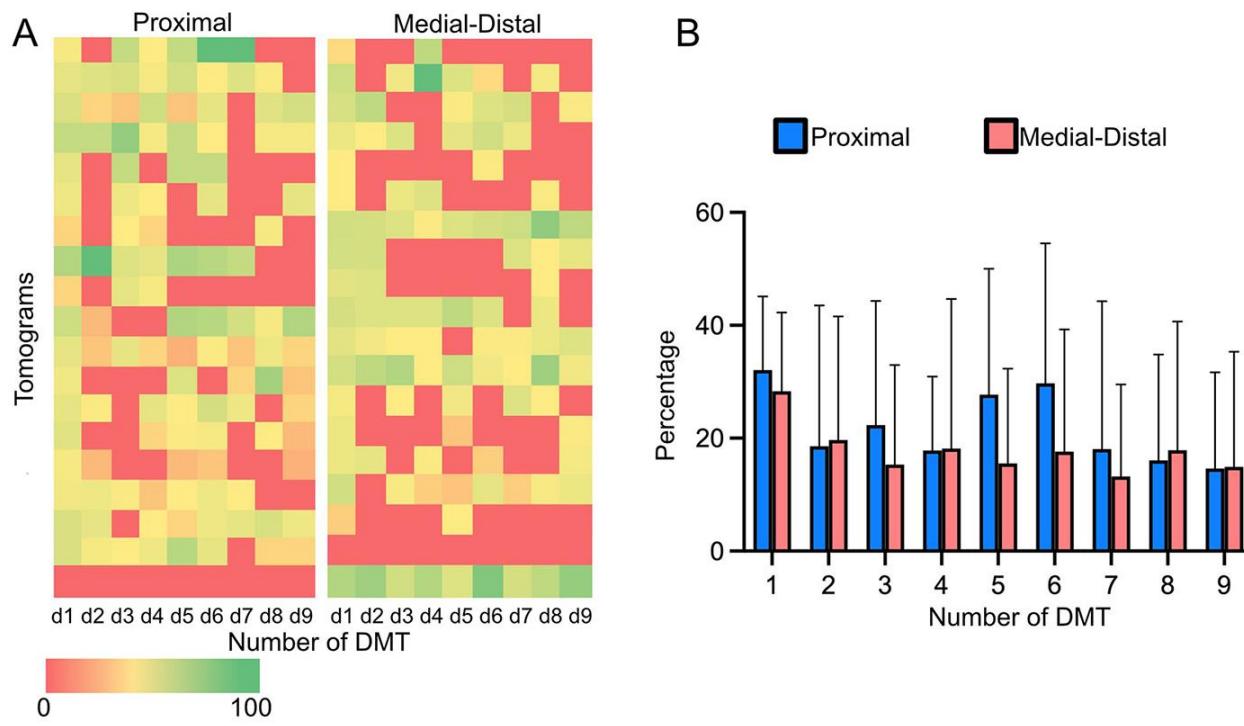
607

608 **Figure 3.** Cryo-ET and subtomogram averaging analyses of the ciliary ultrastructure of wild-type
609 cells and *RSP3* knockout mutants.

610 (A) Subtomogram averages of WT, RSP3A-KO, RSP3B-KO and RSP3C-KO mutants. RS1: green;
611 RS2: red; RS3: blue. Inner dynein arms (IDAs): light pink, N-DRC: yellow, Ccdc96-Cccdc113
612 complex: dark pink. The black arrow in the RSP3B-KO subtomogram points to the place
613 corresponding to the position of IDAc in the WT cilia.

614 (B) Quantification of intact RSs in WT and RSP3 mutant cells. Each graph shows the percentage
615 of intact RSs. The analysis was performed using subtomogram classification, revealing structural
616 differences in RS integrity.

617


618

619

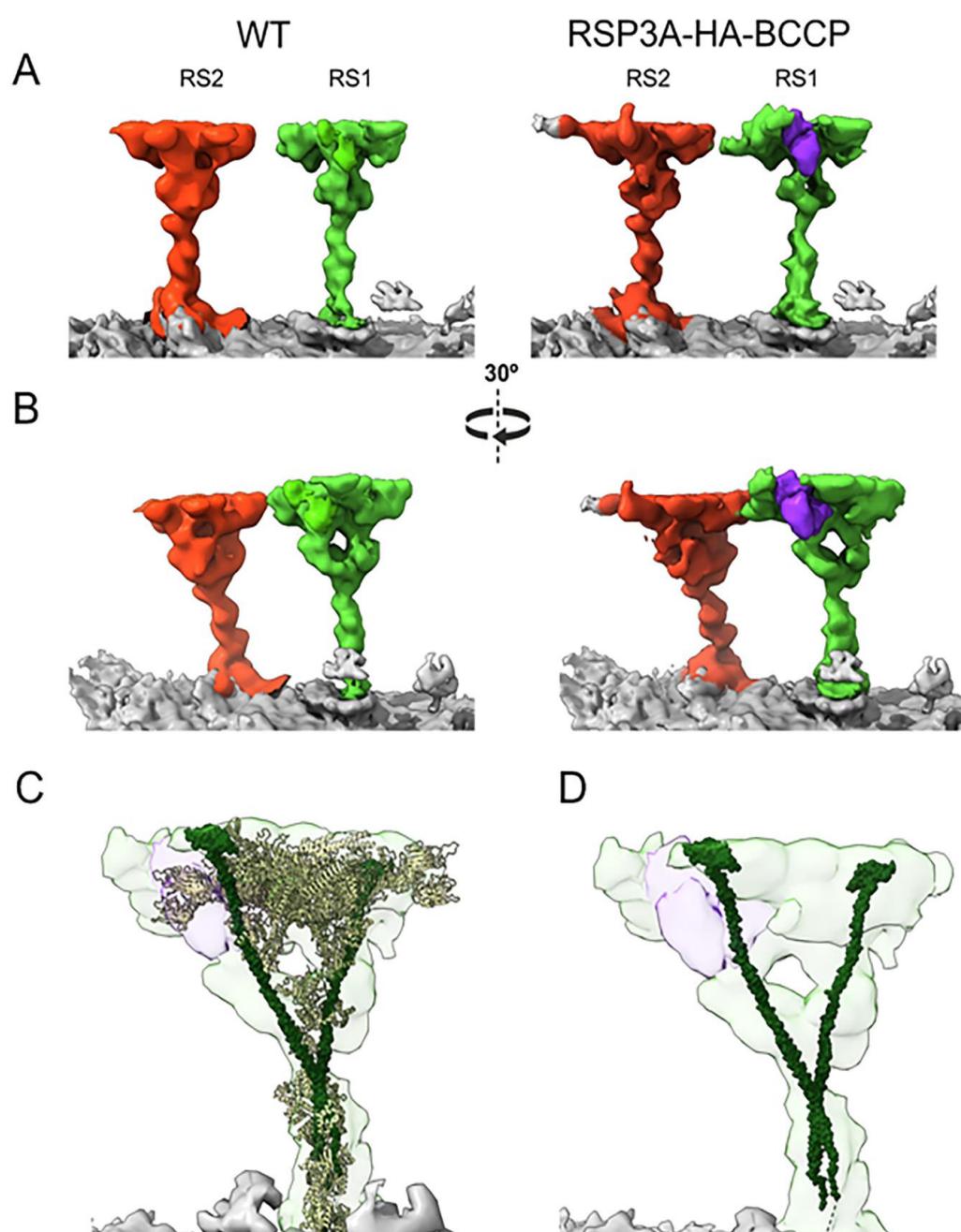
620

621

622

624 **Figure 4.** Ultrastructural analyses of Rsp3C-containing RS.

625 (A-B) Distribution of intact RS2 in the RSP3C-KO axoneme. (A) Heat map showing the
626 distribution of particles within each doublet at the proximal and medial-distal ends of the axoneme.
627 The doublet with the highest particle count is considered as the first doublet in the heat map. To
628 assess the distribution of subtomograms with intact RS2 across the doublets, counts were
629 normalized; "0" indicates that none of the subtomograms have intact RS2, "100" that particular
630 doublet, have all RS2 intact. (B) Graph representing mean percentage of intact RS2 subtomograms
631 for a specific doublet. Tomograms were treated as biological replicates, thereby collecting
632 biological variability within each doublet. Error bars (standard deviation) indicate the variability in
633 the data across tomograms.


634

635

636

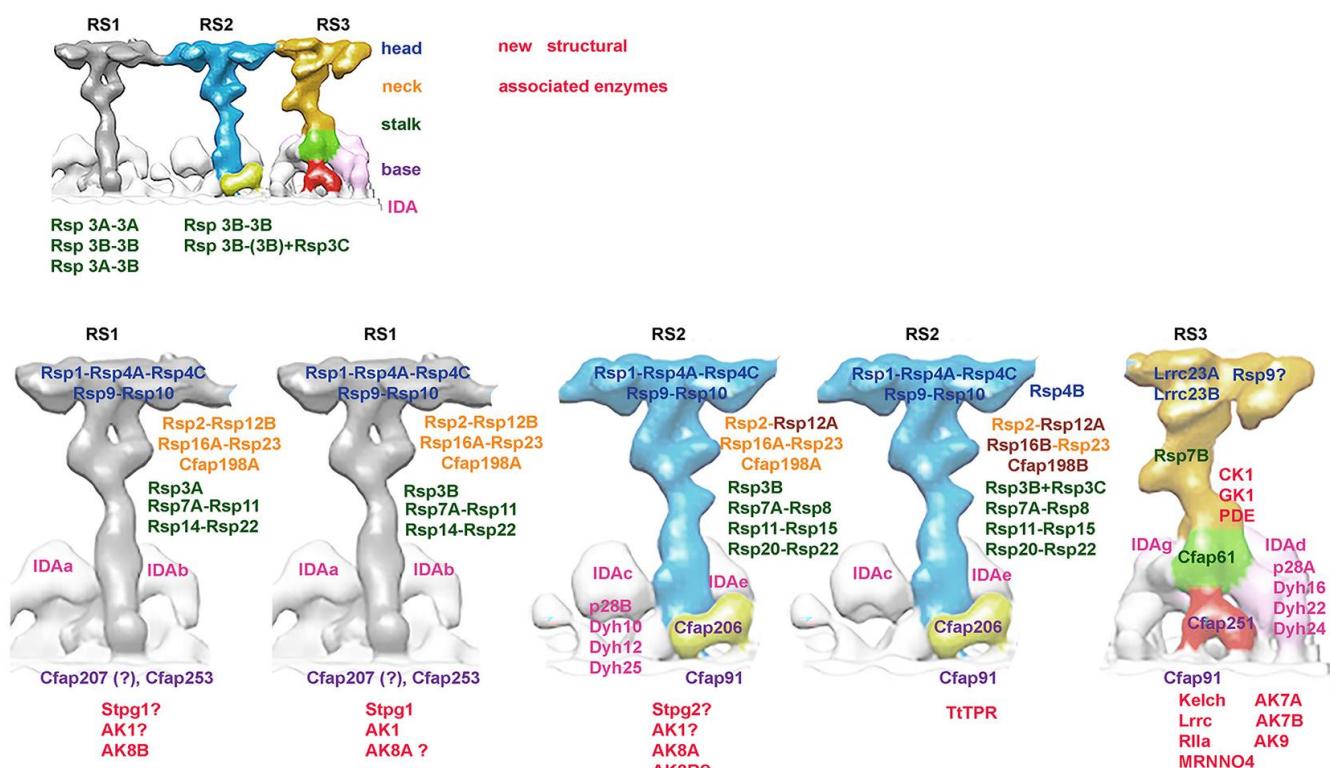
637

638

639

640

641 **Figure 5.** Subtomogram structure of the outer doublet in wild-type and Rsp3A-HA-BCCP
642 expressing cells.


643 (A) Locally refined structures of RS1 and RS2 in the WT and BCCP-tagged axoneme. RS1 is
644 shown in green, RS2 in red, and streptavidin in purple.

645 (B) View of the DMT with a 40-degree rotation.

646 (C) The model of RS1 from *Chlamydomonas reinhardtii*, fitted into the RS1 density from the
647 Rsp3A-HA-BCCP map.

648 (D) The complete RS1 model from *Chlamydomonas reinhardtii*, with all proteins hidden except
649 RSP3 proteins.

650

651

652 **Figure 6.** A schematic summary of the RS protein composition in *Tetrahymena* cilia prepared
653 based on collected ultrastructural and proteomic data. A fragment of the Figure 3B published in
654 our earlier paper²⁴ was used as RSs template.

655

656 Materials and Methods

657

658 RESOURCE AVAILABILITY

659 Lead contact

660 Further information and requests for the resources and reagents should be directed to the lead
661 contacts.

662

663 Materials availability

664 Plasmids, *Tetrahymena* mutants generated during this study are available from the lead contact

665

666 Data and code availability

667 Raw data generated from mass spectrometry analyses (co-IP, BioID, LFQ, and TMT data) are
668 available upon request (will be deposited in the public repository).

669

670

671

672 EXPERIMENTAL MODEL

673

674 Tetrahymena cell culture

675 *Tetrahymena thermophila* (Tetrahymena Stock Center) cells were grown to the mid-log
676 phase (2-4x10⁵ cells/mL) with shaking (80-110 rpm) at 30°C. Wild-type cells and motile mutants
677 were cultured in a standard SPP medium (1% proteose peptone, 0.1% yeast extract, 0.2% glucose)
678 ⁹⁰, while mutants with major ciliary defects were grown in a rich MEPP medium (2% proteose
679 peptone, 2 mM Na-citrate, 1 mM FeCl₃, 30 µM CuSO₄, 1.7 µM CaCl₂) ⁹¹, both supplied with an
680 antibiotic-antimycotic mix (Sigma-Aldrich, St. Louis, MO, USA) at 1:100 (SPP) or 1:50 (MEPP).
681 Before biolistic transformation and BioID assay, cells at mid-log phase were washed in 10 mM
682 Tris pH 7.4 and next grown overnight (14-22 h) in the same buffer.

683

684 METHODS DETAILS

685

686 Generation of Tetrahymena mutants

687 Engineering and phenotypic analyses of *Tetrahymena* mutants with deleted *CFAP61* ²⁴, *CFAP206*
688 ⁴⁸, or *CFAP91* ²⁵ were described before. The *RSP3* genes' fragments used to obtain knock-out and
689 knock-in transgenes were amplified by PCR with the addition of restriction sites using Phusion™
690 Hot Start II DNA high-fidelity polymerase (Thermo Fisher Scientific) and the appropriate primers
691 listed in Table S13.

692 Knock-outs

693 To delete a part of the *RSP3* genes (0.8-1 kb), approximately 1.2-1.5 kb fragments positioned
694 upstream and downstream of the targeted gene fragment were amplified and cloned subsequently
695 on both sites of the neo4 resistance cassette ⁹². Approximately 60 µg of plasmid was digested with
696 ApaI and SacII to separate the transgene from the plasmid backbone and precipitated onto
697 approximately 0.63 mg of 0.5-0.8 nm gold particles (Thermo Fisher Scientific) by mixing with 1
698 M CaCl₂ and 20 mM spermidine (final concentrations). DNA-coated gold particles were washed
699 with ethanol and place on macrocarriers (Bio-Rad) and after drying used to transform conjugating
700 *Tetrahymena* cells (strains CU428 and B2086) at the early stages of meiosis. Transformed cells
701 were selected in SPP medium supplemented with 1.5 µg/mL CdCl₂ and 100 µg/mL paromomycin,
702 followed by selection in 6-methylpurine (15 µg/mL)-supplemented SPP. Double resistant-cells
703 after sexual maturation and validation by crossing to CU427 cells, were crossed to infertile A*III

704 strain to obtain heterokaryons. Next, heterokaryons were crossed to obtain knockout cells ^{93,94}. The
705 deletion of the targeted fragments was confirmed by PCR.

706 To eliminate a fragment of the RSP2 gene, we used a co-deletion approach ⁹⁵ and primers listed in
707 Table S13. The targeting plasmid (~15 µg) was introduced to conjugating CU428 x CU427 cells
708 using biolistic gun as described above. After 14 hours cells were transferred to SPP medium, grown
709 for 6 hours and exposed to paromomycin selection (100 µg/mL) on 96-well plates. To verify *RSP2*
710 gene fragment deletion, the genomic DNA were purified from the wild-type (control) and
711 paromomycin-resistant cells and the extend and completeness was analyzed by PCR using primers
712 listed in Table S13.

713 Knock-ins

714 To express RS proteins as fusions with C-terminal -3HA, -HA-BirA*, or -HA-TtBCCP tag under
715 the control of the transcriptional promoter, approximately 1 kb fragments of the open reading frame
716 immediately upstream of the STOP codon and ~1 kb fragment of the 3'UTR were amplified by
717 PCR as described above (primers used are listed in Table S13) and cloned into pCfap44-3HA-neo4,
718 pCfap44-HA-BirA*-neo4, and pCfap44-TtBCCP-neo4 plasmids, respectively ^{96,97} to replace
719 fragments of *CFAP44* gene. To express Lrrc23 with C-terminal Turbo tag (TurboID) we amplified
720 Turbo coding region from IFT52-Turbo plasmid adding restriction sites and replaced BirA* coding
721 region. To express proteins with C-terminal GFP tag under the control of the transcriptional
722 promoter and pPur cassette enabling selection of transformed *Tetrahymena* cells with puromycin
723 ⁹⁸, the coding sequence of the 2xV5 tag in pCfap44-2V5-pPur plasmid ⁹⁶ was replaced by GFP
724 coding region and fragments of *CFAP44* gene were replaced by the fragments of a coding region
725 and 3'UTR of the gene of interest as described above. Approximately 10-15 µg of plasmid was
726 digested with MluI and XhoI to separate the transgene from the plasmid backbone and precipitated
727 onto approximately 0.20 mg of 0.5-0.8 nm gold particles (Thermo Fisher Scientific) as described
728 above. Approximately 10⁷ CU428 cells were transformed by biolistic transformation and after 2 h
729 recovery in SPP medium supplied with 1.5 µg/mL CdCl₂, cells were transferred to 96-well plates
730 and transformants were selected using 100 µg/mL paromomycin for 3-4 days.

731 To co-express Rsp3B-3HA with Rsp3A-GFP or Rsp3C-GFP, Rsp3B-3HA cells were transformed
732 with appropriate constructs as described above except that after transformation cells were grown
733 for 24 h in a SPP medium supplied with 2.5 µg/mL CdCl₂. Positive transformants were selected on
734 96-well plates using 200 µg/mL puromycin.

735 After selection transformants and double transformants were grown in SPP medium supplied with
736 the growing concentration of paromomycin or/and puromycin and reduced concentration of CdCl₂
737 to promote transgenes assortment ⁹⁹.

738 **Phenotypic analyses**

739 The measurements of the cell swimming rate and the analyses of cilia beating (amplitude,
740 waveform and frequency) were described in detail²⁵. Briefly, for swimming rate analyses, cells at
741 a density of 2-3x10³ cells/mL were viewed and recorded at room temperature using a Zeiss
742 Discovery V8 Stereo microscope (Zeiss, Oberkochen, Germany) equipped with a Zeiss Plans 10_
743 FWD 81 mm objective and an Axiocam 506 camera, and ZEN2 (blue edition) software. The length
744 of the trajectories was measured using ImageJ software and the color lines parallel to trajectories
745 were added in the Adobe Photoshop program. For each strain experiments were done in triplicates
746 and at least 100 trajectories were registered and analyzed in each experiment. Cilia beating was
747 analyzed as described in²⁵. Cells from a mid-log phase were cultured at room temperature for 3
748 hours, centrifuged, placed between two pieces of adhesive tape fixed on the glass slide, covered
749 with a coverslip, and recorded using a Phantom Miro C110 high-speed camera (Vision Research,
750 Wayne, NJ, USA) mounted on an AXIO Imager M2 microscope (Zeiss, Germany) with either a 40
751 x oil immersion lens (analyses of cilia beating frequency) or a 63x oil immersion lens (numerical
752 aperture 1.4, analyses of ciliary waveform). Videos were recorded at 900 frames/s. For each strain
753 at least 10-15 cells were recorded, aligned in ImageJ and analyzed using ImageJ (frequency) or
754 Adobe Photoshop (waveform, amplitude).

755 **Immunofluorescence**

756 To analyze the localization of HA-tagged Rsp proteins, cells from the overnight culture
757 were fixed 1:1 v/v on coverslips with a mix of 1% Triton and 4% PFA/ or 1% NP-40 substitute and
758 4% PFA, both in a PHEM buffer (12 mM PIPES, 5 mM HEPES, 2 mM EGTA, 0.8 mM MgSO₄,
759 pH 6.9). After drying and blocking with 3% BSA in PBS, cells were stained overnight at 4 °C with
760 a mix of primary antibodies, (i) rabbit monoclonal anti-HA antibody (BioLegend, San Diego, CA,
761 USA) 1:300 and mouse monoclonal an anti-acetylated α -tubulin antibody 6-11 B1 (1:2000) or (ii)
762 mouse monoclonal anti-HA (1:200) and rabbit polyclonal polyG (1:2000)¹⁰⁰. To co-localize Rsp3
763 paralogs, cells were stained with a mix of primary antibodies: mouse monoclonal anti-HA 16B12
764 (1:200) (BioLegend, San Diego, CA, USA) and rabbit polyclonal anti-GFP (1:6000) (Abcam).
765 After washing with PBS, samples were stained for 1.5 h at RT with a mix of the secondary
766 antibodies, anti-mouse and anti-rabbit IgG, conjugated with either Alexa-488 or Alexa-555
767 (Invitrogen, Eugene, OR, USA) both diluted 1:300. Coverslips were mounted in Fluoromount-G
768 (Southern Biotech., Birmingham, AL, USA). Cells were recorded using either a Zeiss LSM780
769 (Carl Zeiss Jena, Germany) or a Leica TCS SP8 (Leica Microsystems, Wetzlar, Germany) confocal
770 microscope.

771 **Deciliation of Tetrahymena cells**

772 For immunofluorescence analyses of regenerating cilia, cells co-expressing 3HA and GFP-tagged
773 Rsp3 paralogs were grown overnight to mid-log phase, rinse with 10 mM Tris-HCl, pH 7.4 buffer.
774 Approximately 4x 10⁵ cells were collected, suspended in 100 µL of a 10 mM Tris-HCl, pH 7.4
775 buffer and mixed with 1 mL of 10% Ficoll in 10mM Tris-HCl, pH 7.5 and immediately deciliated
776 by passing 5-6 times through the syringe needle (diameter 0.8 mm). After 60-90 sec cells were
777 transferred to 10 mL of SPP medium for cilia regrowth.

778 For biochemical analyses cilia were purified from 6-8 x 10⁷ cells using a pH shock method ¹⁰¹. In
779 brief, cells were collected, rinsed with Tris-HCl buffer, pH 7.4, resuspended in deciliation buffer
780 (10 mM Tris-HCl, pH 7.4, 10 mM CaCl₂, 50 mM sucrose), and deciliated by addition of acetic acid
781 (10.5 mM final concentration). After 1-1.5 min the pH was raised to physiological level with
782 potassium hydroxide (10.8 mM final concentration). Deciliation was monitored under a
783 microscope. Deciliated cell bodies were separated from cilia-containing supernatant by
784 centrifugation (twice at 1680 x g for 5 min) and cilia were collected by centrifugation at 26,900 x
785 g for 30 min. Next, cilia were resuspended in deciliation buffer supplemented with protease
786 inhibitors (cComplete mini EDTA-free protease inhibitor cocktail, Roche Diagnostics GmbH,
787 Mannheim, Germany) and protein concentration was estimated using PierceTM BCA Protein Assay
788 Kit (Thermo Scientific, Bartlesville, OK, USA). Purified cilia were further analyzed using Western
789 blotting, mass spectrometry (ciliomes), co-immunoprecipitation or BioID assays.

790 **Co-immunoprecipitation and proximity labeling (BioID) assays**

791 All buffers used in biochemical studies were supplemented with protease inhibitors
792 (cComplete mini EDTA-free protease inhibitor cocktail, Roche Diagnostics GmbH, Mannheim,
793 Germany).

794 For co-immunoprecipitation assay, approximately 6 x 10⁷ cells from a mid-log phase
795 culture either wild-type (control) or expressing -3HA tagged Rsp proteins, were spun down and
796 washed with 10 mM Tris-HCl buffer (pH 7.4). After deciliation, collected cilia were re-suspended
797 in deciliation buffer and combined with an equal volume of 2% NP-40 and 1.2 M NaCl in 80 mM
798 Tris-HCl buffer, pH 7.5. After 15 min incubation on ice, axonemes were pelleted at 21,000 x g,
799 4°C, for 15 min and treated with 0.5 M KI, 30 mM NaCl, 5 mM MgSO₄, 0.5 mM EDTA, 1 mM
800 DTT in 10 mM HEPES, pH 7.5. After 30 min on ice, the axonemes were centrifuged (21,000 x g
801 for 15 min at 4 °C). The supernatants were diluted 500x with 50 mM Tris-HCl, pH 7.4 and
802 concentrated on ultracentrifugation columns (Vivaspin[®] Turbo 4, Sartorius, Niemcy). Collected
803 proteins (0.5-1 mg) were incubated overnight with agarose beads-conjugated anti-HA antibody
804 (Thermo Fisher Scientific, Waltham, MA) at 4 °C. The bead-bound proteins were identified by
805 mass spectrometry.

806 The proximity-labeling (BioID) assay¹⁰² was performed as described in detail⁸⁰. Wild-type
807 were used as a control because ~30 kDa BirA* tag can enter cilia by diffusion and randomly
808 biotinylate components of different ciliary complexes. Briefly, approximately 6x10⁷ wild-type or
809 Rsp-HA-BirA fusion expressing cells from mid-log phase, were cultured for 16-18h in 10 mM
810 Tris-HCl buffer (pH 7.4) and next incubated with 50 µm biotin for 4 h at 30°C in the same buffer.
811 After deciliation, cilia were suspended in axoneme stabilization buffer (20 mM potassium acetate,
812 5 mM MgSO₄, 0.5 mM EDTA in 20 mM HEPES, pH 7.5) supplied with 0.2% NP-40 to release
813 unbound biotin. After 5 min, the axonemes were spun down (10 min, 21,000x g, 4 °C), washed,
814 suspended in lysis buffer (50 mM Tris-HCl, pH 7.4, 0.4% SDS, 0.5 M NaCl, 1 mM DTT), and
815 incubated at RT for 1 h. After spinning down (8000x g at 4 °C), the collected supernatant was
816 diluted with 50 mM Tris-HCl, pH 7.4 (1:3) and incubated overnight with streptavidin-coupled
817 Dynabeads (Dynabeads M-280 Streptavidin, Thermo Fisher Scientific, Waltham, MA) at 4 °C. The
818 bead-bound biotinylated proteins were analyzed by Western blot with use of HRP-conjugated
819 streptavidin (1:40 000) (Thermo Fisher Scientific, Rockford, IL, USA) and identified by mass
820 spectrometry.

821 **Protein gel electrophoresis**

822 Approximately 30 µg of ciliary proteins or 10% of bead-bound proteins were loaded on the SDS-
823 PAGE polyacrylamide gel, separated in standard conditions and transferred to nitrocellulose
824 membrane for 1h at 170 mA. Two-dimensional electrophoresis was performed as described²⁵.
825 Approximately 30 µg of ciliary extract purified from cells expressing Rsp-3HA fusion proteins
826 were cleaned with ReadyPrep 2-D cleanup (Bio-Rad) and dissolved in rehydration buffer (7 M
827 urea, 2 M thiourea, 2% CHAPS, 0.1%, Tergitol NP7, 40 mM DTT and 0.2% BioLytex). Protein
828 solution was used to rehydrate ReadyStrip IPG pH 3-10 or 4-10 (Bio-Rad) for at least 12 h. Proteins
829 were separated in Protean IEF Cell (Bio-Rad) for ~80kVh, at 4000V. and next subjected to standard
830 SDS-PAGE and transferred to nitrocellulose membrane.

831 **Western Blot**

832 After transfer to nitrocellulose and blocking for 1h with either 5% skimmed milk in TBST,
833 blots were incubated with mouse monoclonal anti-HA antibody (1:2000) or rabbit polyclonal anti-
834 GFP antibody (1:60,000) both diluted in 5% skimmed milk in TBST (overnight, 4°C). After
835 washing (4 x 10 min, TBST) and 1h incubation at RT with HRP-conjugated secondary antibodies:
836 goat anti-mouse IgG (1: 10 000) (Jackson ImmunoResearch, West Grove, PA, USA) or goat anti-
837 rabbit IgG (1:20,000) (Sigma-Aldrich) and washed as before. To analyze biotinylated proteins
838 nitrocellulose was blocked with 3% BSA in TBST, incubated with HRP-conjugated streptavidine

839 (1:40,000 in 3% BSA in TBST, 3h, RT) (Thermo Fisher Scientific) and washed again (4x10 min
840 TBST). Proteins were visualized using a Westar Supernova kit (Cyanagen, Italy).

841 **Cryo-ET preparation**

842 The axonemes for cryo-ET were cross-linked with glutaraldehyde (final concentration 0.15%) for
843 40 min on ice and quenched with 35 mM Tris pH 7.5. The axoneme solution at 3.6 mg/mL was
844 mixed with 5 (Cytodiagnostics) or 10 (Aurion) nm gold beads in a 1:1 ratio for a final axoneme
845 concentration of 1.8 mg/mL. Inside the Vitrobot Mk IV (Thermo Fisher) chamber, 4 μ l of
846 crosslinked axoneme sample was applied to negatively glow discharged (10 mA, 10 s) C-Flat Holey
847 thick carbon grids (Electron Microscopy Services). The sample was incubated at 23 °C and 100%
848 humidity for 45 seconds on the grid, followed by 8 seconds of blotting with force 0 and plunge
849 frozen in liquid ethane.

850 **Cryo-ET acquisition and reconstruction**

851 Tilt series were collected using the dose-symmetric scheme from -60 to 60 degrees with an
852 increment of 3 degrees at 2.12 Å per pixel using a Titan Krios equipped with Gatan K3 and
853 BioQuantum energy filter. The acquisition was performed using SerialEM ¹⁰³. The defocus for each
854 tilt series ranges from -2.5 to -6 μ m. The total dose for each tilt series is 120 to 160 e- per Å². For
855 each view, a movie of 10-13 frames was collected. Motion correction of each view was performed
856 with Alignframes ¹⁰⁴. Tomograms were reconstructed using IMOD ¹⁰⁵.

857 **Subtomogram Averaging**

858 CTF estimation for each tilt series was performed with WARP ¹⁰⁶. The doublet microtubule for
859 subtomogram averaging was picked using IMOD by tracing the line along the microtubules ¹⁰⁵.
860 Subtomogram averaging of the 4-times binned 96 nm repeating unit of WT and mutant strains was
861 performed using the “axoneme align” program ¹⁰⁷. The subtomogram coordinates and alignment
862 parameters were converted to Relion 4.0 for local refinement and classification ¹⁰⁸. The resolutions
863 for the 96-nm repeating unit of the axoneme of wild type, *RSP3A-KO*, *RSP3B-KO*, and *RSP3C-*
864 *KO* are 18, 20, 22, and 17 Å, respectively. Axonemal repeats from *RSP3A* and *RSP3B* mutants
865 showed strong heterogeneity in the occurrence of RS1 and RS2. To analyze the heterogeneity of
866 the mutant strains, three-dimensional (3D) classification without alignment was performed in
867 Relion by masking RS2 and RS1. The axoneme of the *RSP3C* mutant strain showed heterogeneity
868 in the RS2 head and neck region. Therefore, unsupervised 3D-classification by masking the head
869 and neck region was performed with three classes.

870 The 3D classification of n=2099 axonemal 96-nm repeats with RS1 defects revealed either the lack
871 of the entire RS1 (n=639 units, ~30%) or RS1 except for the RS1 base (n=1417, 67%). The RS1 in
872 the remaining 43 units was not classified due to the low number of particles. The identification of

873 intact RS1 in Relion was unsuccessful, likely due to the structural heterogeneity of intact RS1 in
874 RSP3A-KO compared to WT and/or conformational flexibility enabling RS, especially RS1 to tilt
875 ^{5,6}. However, visual inspection of denoised tomograms revealed the presence of intact RS1 in ~22%
876 of units (n=455). Additionally, the averaged subtomogram map indicates that existing RS1 spokes
877 are thinner in RSP3A-KO than in WT, suggesting potential structural differences associated with
878 the knockout (Figure S6). In contrast, RSP3B-KO mutant lacked RS2 in all analyzed axonemal
879 units (n=2092). Moreover, ~77% of the axonemal repeats (n=1622) showed also RS1 defects; the
880 RS1 structure was either missing (51%, n=1078) or had only a base part (26%, n=544). Among the
881 collected n=2790 axonemal repeats, 173 axonemal repeats (~7%) were unclassified. The analyses
882 of the remaining n=2617 axonemal repeats revealed that ~19% (n=527) lacked the entire RS2. The
883 3D classification of the remaining repeats using the RS2 mask covering an RS2 head and stalk
884 showed that the remaining units grouped into two categories: (i) with an intact RS2 structure
885 (n=469) and (ii) with a well-visible RS2 base (n=1621) (Figure S6).

886 For visualization, tomograms were CTF deconvolved and missing wedge corrected using IsoNet
887 ¹⁰⁹. The UCSF ChimeraX package was used for the visualization of subtomogram averages, surface
888 rendering, segmentation, and fitting ¹¹⁰.

889 **Heat map**

890 Heat maps illustrating the distribution of particles within each doublet were generated using
891 Microsoft Excel. The doublet with the highest particle count was designated as the first doublet.
892 To assess the distribution of subtomograms with intact RS2 across doublets, counts were
893 normalized such that a value of '0' indicates no subtomograms with intact RS2, while '100'
894 represents a doublet where all subtomograms have intact RS2. Tomograms were categorized into
895 proximal and medial-distal regions based on the presence of the CCDC81B MIP signal.
896 Tomograms exhibiting this signal were classified as proximal, while those lacking the signal were
897 designated as medial-distal ¹¹¹. Bar graph visualization and statistical analyses were performed
898 using GraphPad Prism (GraphPad Software, San Diego, CA, USA). Mean percentages of intact
899 RS2 subtomograms for each doublet were calculated in GraphPad Prism, treating tomograms as
900 biological replicates to account for biological variability. Statistical significance was assessed using
901 an unpaired t-test, and error bars represent the standard deviation across tomograms.

902

903 **Differential Quantitative Cilia Proteome Analyses**

904 *Sample Preparation*

905 Cilia purified from 5×10^7 cells from mid-log phase culture were resuspended in 10 mM Tris
906 pH 7.4 and protein concentration was determined with PierceTM BCA Protein Assay Kit (Thermo

907 Scientific, Bartlesville, OK, USA). Three hundred micrograms of protein were precipitated using
908 ReadyPrep 2-D Cleanup Kit (Bio-Rad Laboratories, USA). Protein pellets were dissolved in 0.1%
909 RapiGest in 500 mM Tetraethylammonium bromide (TEAB) and then incubated at 850 rpm for 45
910 min at 37 °C (Eppendorf Comfort Thermomixer, Eppendorf, USA). Proteins were digested by
911 trypsin (Trypsin Gold, Mass Spectrometry Grade, Promega; protein:enzyme (w/w) ratio – 100:1,
912 at 37 °C for 16 h) according to a standard protein digestion protocol including reduction (by 1,4-
913 dithiothreitol) and alkylation (by iodoacetamide). The digestion reaction was stopped by the
914 addition of 55% trifluoroacetic acid (final concentration of 5%), samples were centrifuged at
915 20,000 x g for 30 min at 4 °C to precipitate RapiGest, and pellets were discarded. Supernatants
916 containing the obtained peptides were purified using Pierce™ Peptide Desalting Spin Columns
917 (Thermo Scientific, Bartlesville, OK, USA) according to the manufacturer's protocol, dried in a
918 vacuum concentrator at RT (SpeedVac Concentrator Plus, Eppendorf, USA) and stored at -80 °C
919 for further analysis.

920 *LC-MS/MS analysis of labeled peptides (TMT analysis)*

921 Desalted peptides were dissolved in 100 µl of 100 mM TEAB solution, and peptide
922 concentrations were determined using the Pierce™ Quantitative Fluorescent Peptide Assay
923 (Thermo Scientific, USA). Next, a TMT labeling reaction was performed according to the
924 procedure provided by the manufacturer (Thermo Fisher Scientific). Briefly, a volume of sample
925 containing 30 µg of peptides was labeled with a corresponding tandem mass tag. The labeling
926 reaction was carried out for 1 h at room temperature and quenched with 5% hydroxylamine.
927 Additionally, a test sample was prepared to check the efficiency of labeling. Labeled peptides were
928 purified and fractionated using liquid chromatography at high pH. Separation was carried out for
929 26 minutes at a flow rate of 0.8 ml/min using a UPLC system (Acquity UPLC Class H system,
930 Waters). The mobile phases consisted of water (A), acetonitrile (B) and 100 mM ammonia solution
931 (C). The percentage of phase C was kept constant at 10% throughout the separation. Fractions were
932 collected every 1 minute, starting from the second minute of the run. The peptide elution was
933 monitored spectrophotometrically at 214 nm. Twenty-four fractions were collected and combined
934 to obtain 12 measurement samples. Samples were dried in a vacuum concentrator at room
935 temperature. Peptides were resuspended in 100 µl of 5% acetonitrile and 0.1% formic acid.

936 Peptides were analyzed on the Evosep One system (Evosep Biosystems, Odense, Denmark)
937 coupled to the Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific, USA) according
938 to ¹¹². One µg of peptides was loaded onto Evotips C18 trap columns (Evosep Biosystems, Odense,
939 Denmark) according to the manufacturer's protocol with some modifications. Chromatographic
940 separation of peptides was carried out using a mobile phase flow rate of 500 nl/min in gradient

941 elution mode for 44 min on an EV1106 analytical column (Dr. Maisch C18 AQ, particle size 1.9
942 μm , 150 μm x 150 mm, Evosep Biosystems, Odense, Denmark). The following gradient elution
943 was used: 0 min – 1% B, 120 min – 35% B, 121 min – 95% B, 124 min – 1% B, 127 min – 95%
944 B, 130 min – 1% B. The eluted peptides were ionized in the positive ion mode in the nano-ESI
945 source with a capillary voltage of 2.1 kV and the temperature of transfer capillary 275 °C. Survey
946 scans from 300 m/z to 1700 m/z were acquired by an Orbitrap mass analyzer (Thermo Fisher
947 Scientific, Waltham, MA, USA) at a resolving power of 60 000. The resolving power in the MS2
948 spectrum measurement mode was 30 000 with the TurboTMT function set to TMT Reagents. HCD-
949 MS/MS spectra (normalized collision energy of 30%) were generated for 25 multiply charged
950 precursor ions from each survey scan. A precursor fit filter was applied to reduce peptide co-
951 fragmentation. Dynamic exclusion was set to 20 s, and the precursor ion intensity threshold was
952 set to 5×10^3 .

953 *LC-MS/MS analysis of non-labeled peptides (label-free analysis)*

954 Desalted peptides were resuspended in 100 μl of 5% acetonitrile and 0.1% formic acid and loaded
955 on Evtips C18 trap columns and separated for 88 mins as described above. Positive ionization and
956 DDA (data dependent acquisition) mode were applied to collect data. MS1 parameters were:
957 resolving power 60,000, AGC target 300%, and the m/z range of 300 to 1600. MS2 parameters
958 were: resolving power 15,000, normalized AGC target. Forty of the most abundant precursors ions
959 within an isolation window of 1.6 m/z were fragmented. The intensity threshold was set up at 5×10^3 .
960 The higher energy collisional dissociation mode with a normalized collision energy of 30% was
961 applied for precursor ion fragmentation.

962 *Data analysis*

963 MS data were analyzed with FragPipe (v. 17.1) (Nesvilab, University of Michigan, Ann Arbor,
964 MI), MSFagger (v. 3.4) (Kong et al., 2017) and Philosopher (v. 4.2.1) (da Veiga Leprevost et al.,
965 2020). ProteoWizard's MSConvert (v. 3.0.1908) (Palo Alto, CA) (Chambers et al., 2012) was used
966 to convert the raw MS data to mzML format. The *Tetrahymena thermophila* UniProt database
967 (canonical and isoform sequences; 27,027 entries) was searched using the following search
968 parameters: (i) digestion enzyme-trypsin/P, up to two missed cleavage sites were allowed, (ii)
969 precursor and fragment ion mass tolerance ± 10.0 ppm and ± 20 ppm, respectively, (iii) fixed
970 modifications: carbamidomethyl (C), (iv) variable modifications: oxidation (M), deamidation (N),
971 (Q). For TMT samples, additional fixed modification was used (v) TMT modification of lysine
972 (+229.16293) and variable modification (vi) TMT modification of N-termini of protein and peptide
973 (+229.16293). Proteins and peptides were identified using the target-decoy approach with a
974 reversed database. The peptide mass range was set from 500 Da to 5 000 Da. The results were

975 processed with FDR (false discovery rate) set to 1% at the PSM, peptide and protein levels.
976 Quantitative analysis was performed using IonQuant (label-free quantitation) and TMT Integrator
977 (TMT-based quantitation). Statistical analysis was performed with Perseus (v. 2.0.3) (Max Planck
978 Institute of Biochemistry, Martinsried, Germany). In label-free quantitation, missing values were
979 replaced based on quantile regression imputation of left-censored data (QRILC)¹¹³. Student T-test
980 was used for statistical analysis. Proteins were considered to be differentially expressed if the
981 difference in abundance was statistically significant (FDR adjusted p-value < 0.05) and the fold
982 change was equal to or higher than 1.5.

983

984 **Quantification and Statistical analyses**

985 Data are given as mean+/- SD and were compared via two-tailed distribution Student's t-tests.
986 For statistical analysis t-student test in majority of experiments was used. Perseus (v. 2.0.3)
987 program was used for statistical analysis of TMT proteomic data.

988

989 **Reagent availability.** All plasmids and *Tetrahymena* mutants are available on request. LFQ and
990 TMT mass spectrometry data and list of all protein identified in co-IP and BioID experiments will
991 be submitted to the open repository. Nucleotide sequences of the primers used to amplified PCR
992 fragments are provided in Table S13.

993 **Acknowledgment:** We thank Dr. Jacek Gaertig for critical reading of the initial version of the
994 manuscript. The IFT52-TurboID plasmid was obtained from Dr. Jarema Malicki. Confocal imaging
995 was performed at the Laboratory of Imaging Tissue Structure and Function which serves as an
996 imaging core facility at the Nencki Institute of Experimental Biology and is part of the
997 infrastructure of the Polish Euro-BioImaging Node. Polish Node is supported by the project
998 financed by the Minister of Education and Science based on contract No 2022/WK/05 (Polish Euro-
999 BioImaging Node “Advanced Light Microscopy Node Poland”). We also thank the Facility for
1000 Electron Microscopy Research (FEMR) at McGill University for their support in cryo-electron
1001 tomography data collection. The mass spectrometry analyses were done in cooperation with the
1002 Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
1003 and Institute for Biochemistry and Molecular Biology (IBMB), Medical Faculty, University of
1004 Bonn, Bonn, Germany. The authors have no competing financial interests to declare.

1005

1006

1007

1008 **Funding:** This work was supported by:

- 1009 • the National Science Centre, Poland Grants, OPUS13 2017/25/B/NZ3/01609 to Dorota
1010 Włoga
- 1011 • the National Science Centre, Poland Grants, OPUS15 2018/29/B/NZ3/02443 to Ewa
1012 Joachimiak
- 1013 • Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-04774) and
1014 Canadian Institute of Health Research (PJT-156354) to Khanh Huy Bui
- 1015 • Project No. POWR.03.02.00-00-I007/16-00 implemented under the Operational Program
1016 Knowledge Education Development 2014–2020 co-financed from the European Social
1017 Fund Project NCBiR No. PBS3/A8/36/2015.

1018 The funders had no role in study design, data collection and interpretation, or the decision to
1019 submit the work for publication.

1020

1021 **Competing interest:** The authors declare that no competing interests exist.

1022

1023 **Author contributions:**

1024 Marta Bicka, Investigation, Validation, Formal analysis, Visualization
1025 Avrin Ghanaeian, Formal analysis, Investigation, Writing – review & editing, Visualization
1026 Corbin Black, Investigation,
1027 Ewa Joachimiak, Methodology, Investigation, Validation, Formal analysis, Visualization,
1028 Funding acquisition, Writing—Review and Editing
1029 Anna Osinka, Investigation, Visualization
1030 Sumita Majhi, Investigation,
1031 Anna Konopka, Methodology, Validation, Resources, Supervision
1032 Ewa Bulska, Supervision, Resources , funding acquisition, writing - review & editing
1033 Khanh Huy Bui, Investigation, Supervision, Resources, Funding acquisition, Writing – review &
1034 editing
1035 Dorota Włoga, Conceptualization, Investigation, Validation, Visualization, Resources, Formal
1036 analysis, Supervision, Funding acquisition, Project administration, Writing – original draft,
1037 Writing – review and editing

1038

1039

1040

1041 **References**

1. Grossman-Haham, I., Coudray, N., Yu, Z., Wang, F., Zhang, N., Bhabha, G., and Vale, R.D. (2020). Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating. *Nature Structural & Molecular Biology* 28:1 28, 20–28. <https://doi.org/10.1038/s41594-020-00519-9>.
2. Oda, T., Yanagisawa, H., Yagi, T., and Kikkawa, M. (2014). Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. *Journal of Cell Biology* 204, 807–819. <https://doi.org/10.1083/JCB.201312014/VIDEO-3>.
3. Smith, E.F., and Yang, P. (2004). The radial spokes and central apparatus: Mechano-chemical transducers that regulate flagellar motility. *Cell Motil Cytoskeleton* 57, 8–17. <https://doi.org/10.1002/CM.10155>.
4. Walton, T., Gui, M., Velkova, S., Fassad, M.R., Hirst, R.A., Haarman, E., O'Callaghan, C., Bottier, M., Burgoyne, T., Mitchison, H.M., et al. (2023). Axonemal structures reveal mechanoregulatory and disease mechanisms. *Nature* 618, 625–633. <https://doi.org/10.1038/S41586-023-06140-2>.
5. Meng, X., Xu, C., Li, J., Qiu, B., Luo, J., Hong, Q., Tong, Y., Fang, C., Feng, Y., Ma, R., et al. (2024). Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia. *Nat Commun* 15. <https://doi.org/10.1038/S41467-023-44577-1>.
6. Warner, F.D., and Satir, P. (1974). The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. *J Cell Biol* 63, 35–63. <https://doi.org/10.1083/JCB.63.1.35>.
7. Goodenough, U.W., and Heuser, J.E. (1985). Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. *Journal of Cell Biology* 100, 2008–2018. <https://doi.org/10.1083/JCB.100.6.2008>.
8. Pigino, G., and Ishikawa, T. (2012). Axonemal radial spokes: 3D structure, function and assembly. *Bioarchitecture* 2, 50–58. <https://doi.org/10.4161/BIOA.20394>.
9. Qin, H., Diener, D.R., Geimer, S., Cole, D.G., and Rosenbaum, J.L. (2004). Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. *J Cell Biol* 164, 255–266. <https://doi.org/10.1083/JCB.200308132>.
10. Diener, D.R., Yang, P., Geimer, S., Cole, D.G., Sale, W.S., and Rosenbaum, J.L. (2011). Sequential assembly of flagellar radial spokes. *Cytoskeleton (Hoboken)* 68, 389–400. <https://doi.org/10.1002/CM.20520>.
11. Alford, L.M., Mattheyses, A.L., Hunter, E.L., Lin, H., Dutcher, S.K., and Sale, W.S. (2013). The Chlamydomonas mutant pf27 reveals novel features of ciliary radial spoke assembly. *Cytoskeleton (Hoboken)* 70, 804–818. <https://doi.org/10.1002/CM.21144>.
12. Lechtreck, K.F., Yiliu, Dai, J., Alkhofash, R.A., Butler, J., Alford, L., and Yang, P. (2022). Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. *Elife* 11. <https://doi.org/10.7554/ELIFE.74993>.
13. Lechtreck, K. (2022). Cargo adapters expand the transport range of intraflagellar transport. *J Cell Sci* 135. <https://doi.org/10.1242/JCS.260408>.
14. Lechtreck, K.F., Mengoni, I., Okivie, B., and Hilderhoff, K.B. (2018). In vivo analyses of radial spoke transport, assembly, repair and maintenance. *Cytoskeleton (Hoboken)* 75, 352–362. <https://doi.org/10.1002/CM.21457>.

- 1084 15. Pigino, G., Bui, K.H., Maheshwari, A., Lupetti, P., Diener, D., and Ishikawa, T. (2011).
1085 Cryoelectron tomography of radial spokes in cilia and flagella. *Journal of Cell Biology* 195, 673–
1086 687. <https://doi.org/10.1083/JCB.201106125>.
- 1087 16. Barber, C.F., Heuser, T., Carbajal-González, B.I., Botchkarev, V. V., and Nicastro, D. (2012).
1088 Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with
1089 dyneins in *Chlamydomonas* flagella. *Mol Biol Cell* 23, 111–120.
1090 <https://doi.org/10.1091/MBC.E11-08-0692/ASSET/IMAGES/LARGE/111FIG4.JPG>.
- 1091 17. Lin, J., Heuser, T., Carbajal-González, B.I., Song, K., and Nicastro, D. (2012). The structural
1092 heterogeneity of radial spokes in cilia and flagella is conserved. *Cytoskeleton* 69, 88–100.
1093 <https://doi.org/10.1002/CM.21000>.
- 1094 18. Zhu, X., Liu, Y., and Yang, P. (2017). Radial Spokes—A Snapshot of the Motility Regulation,
1095 Assembly, and Evolution of Cilia and Flagella. *Cold Spring Harb Perspect Biol* 9, a028126.
1096 <https://doi.org/10.1101/CSHPERSPECT.A028126>.
- 1097 19. Gui, M., Ma, M., Sze-Tu, E., Wang, X., Koh, F., Zhong, E.D., Berger, B., Davis, J.H., Dutcher,
1098 S.K., Zhang, R., et al. (2020). Structures of radial spokes and associated complexes important for
1099 ciliary motility. *Nature Structural & Molecular Biology* 2020 28:1 28, 29–37.
1100 <https://doi.org/10.1038/s41594-020-00530-0>.
- 1101 20. Zhang, X., Xiao, Z., Zhang, J., Xu, C., Liu, S., Cheng, L., Zhou, S., Zhao, S., Zhang, Y., Wu, J., et
1102 al. (2022). Differential requirements of IQUB for the assembly of radial spoke 1 and the motility of
1103 mouse cilia and flagella. *Cell Rep* 41, 111683. <https://doi.org/10.1016/J.CELREP.2022.111683>.
- 1104 21. Imhof, S., Zhang, J., Wang, H., Huy Bui, K., Nguyen, H., Atanasov, I., Hui, W.H., Kai Yang, S.,
1105 Zhou, Z.H., and Hill, K.L. (2019). Cryo electron tomography with volta phase plate reveals novel
1106 structural foundations of the 96-nm axonemal repeat in the pathogen *Trypanosoma brucei*. *Elife* 8.
1107 <https://doi.org/10.7554/ELIFE.52058>.
- 1108 22. Hwang, J.Y., Chai, P., Nawaz, S., Choi, J., Lopez-Giraldez, F., Hussain, S., Bilguvar, K., Mane, S.,
1109 Lifton, R.P., Ahmad, W., et al. (2023). LRRC23 truncation impairs radial spoke 3 head assembly
1110 and sperm motility underlying male infertility. *bioRxiv*, 2023.02.25.530050.
1111 <https://doi.org/10.1101/2023.02.25.530050>.
- 1112 23. Zhao, Y., Pinskey, J., Lin, J., Yin, W., Sears, P.R., Daniels, L.A., Zariwala, M.A., Knowles, M.R.,
1113 Ostrowski, L.E., and Nicastro, D. (2021). Structural insights into the cause of human RSPH4A
1114 primary ciliary dyskinesia. *Mol Biol Cell* 32, 1202–1209. <https://doi.org/10.1091/MBC.E20-12-0806>.
- 1116 24. Urbanska, P., Song, K., Joachimiak, E., Krzemien-Ojak, L., Koprowski, P., Hennessey, T., Jerka-
1117 Dziadosz, M., Fabczak, H., Gaertig, J., Nicastro, D., et al. (2015). The CSC proteins FAP61 and
1118 FAP251 build the basal substructures of radial spoke 3 in cilia. *Mol Biol Cell* 26, 1463–1475.
1119 <https://doi.org/10.1091/MBC.E14-11-1545/MC-E14-11-1545-S12.MPG>.
- 1120 25. Bicka, M., Joachimiak, E., Urbanska, P., Osinka, A., Konopka, A., Bulska, E., and Wloga, D.
1121 (2022). Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein
1122 Arms in Tetrahymena Cilia. *Cells* 11, 4048. <https://doi.org/10.3390/CELLS11244048/S1>.
- 1123 26. Leung, M.R., Sun, C., Zeng, J., Anderson, J.R., Niu, Q., Huang, W., Noteborn, W.E.M., Brown,
1124 A., Zeev-Ben-Mordehai, T., and Zhang, R. (2025). Structural diversity of axonemes across
1125 mammalian motile cilia. *Nature* 637. <https://doi.org/10.1038/S41586-024-08337-5>.
- 1126 27. Hu, T., Tang, X., Ruan, T., Long, S., Liu, G., Ma, J., Li, X., Zhang, R., Huang, G., Shen, Y., et al.
1127 (2025). IQUB mutation induces radial spoke 1 deficiency causing asthenozoospermia with normal

- 1128 sperm morphology in humans and mice. *Cell Commun Signal* 23, 41.
1129 <https://doi.org/10.1186/S12964-025-02043-Z>.

1130 28. Pinskey, J.M., Lagisetty, A., Gui, L., Phan, N., Reetz, E., Tavakoli, A., Fu, G., and Nicastro, D.
1131 (2022). Three-dimensional flagella structures from animals' closest unicellular relatives, the
1132 Choanoflagellates. *Elife* 11. <https://doi.org/10.7554/ELIFE.78133>.

1133 29. Lin, J., Yin, W., Smith, M.C., Song, K., Leigh, M.W., Zariwala, M.A., Knowles, M.R., Ostrowski,
1134 L.E., and Nicastro, D. (2014). Cryo-electron tomography reveals ciliary defects underlying human
1135 RSPH1 primary ciliary dyskinesia. *Nature Communications* 2014 5:1 5, 1–10.
1136 <https://doi.org/10.1038/ncomms6727>.

1137 30. Yamaguchi, H., Oda, T., Kikkawa, M., and Takeda, H. (2018). Systematic studies of all PIH
1138 proteins in zebrafish reveal their distinct roles in axonemal dynein assembly. *Elife* 7.
1139 <https://doi.org/10.7554/ELIFE.36979>.

1140 31. Chen, Z., Greenan, G.A., Shiozaki, M., Liu, Y., Skinner, W.M., Zhao, X., Zhao, S., Yan, R., Yu,
1141 Z., Lishko, P. V., et al. (2023). In situ cryo-electron tomography reveals the asymmetric
1142 architecture of mammalian sperm axonemes. *Nature Structural & Molecular Biology* 2023 30:3 30,
1143 360–369. <https://doi.org/10.1038/s41594-022-00861-0>.

1144 32. Poghosyan, E., Iacovache, I., Faltova, L., Leitner, A., Yang, P., Diener, D.R., Aebersold, R., Zuber,
1145 B., and Ishikawa, T. (2020). The structure and symmetry of the radial spoke protein complex in
1146 Chlamydomonas flagella. *J Cell Sci* 133. <https://doi.org/10.1242/JCS.245233>.

1147 33. Curry, A.M., Williams, B.D., and Rosenbaum, J.L. (1992). Sequence analysis reveals homology
1148 between two proteins of the flagellar radial spoke. *Mol Cell Biol* 12, 3967–3977.
1149 <https://doi.org/10.1128/MCB.12.9.3967-3977.1992>.

1150 34. Kott, E., Legendre, M., Copin, B., Papon, J.F., Dastot-Le Moal, F., Montantin, G., Duquesnoy, P.,
1151 Piterboth, W., Amram, D., Bassinet, L., et al. (2013). Loss-of-function mutations in RSPH1 cause
1152 primary ciliary dyskinesia with central-complex and radial-spoke defects. *Am J Hum Genet* 93,
1153 561–570. <https://doi.org/10.1016/J.AJHG.2013.07.013>.

1154 35. Abbasi, F., Miyata, H., Shimada, K., Morohoshi, A., Nozawa, K., Matsumura, T., Xu, Z., Pratiwi,
1155 P., and Ikawa, M. (2018). RSPH6A is required for sperm flagellum formation and male fertility in
1156 mice. *J Cell Sci* 131. <https://doi.org/10.1242/JCS.221648>.

1157 36. Zheng, W., Li, F., Ding, Z., Liu, H., Zhu, L., Xu, C., Li, J., Gao, Q., Wang, Y., Fu, Z., et al. (2021).
1158 Distinct architecture and composition of mouse axonemal radial spoke head revealed by cryo-EM.
1159 *Proc Natl Acad Sci U S A* 118. <https://doi.org/10.1073/PNAS.2021180118/->
1160 /DCSUPPLEMENTAL.

1161 37. Yoke, H., Ueno, H., Narita, A., Sakai, T., Horiuchi, K., Shingyoji, C., Hamada, H., and Shinohara,
1162 K. (2020). Rspn4a is essential for the triplet radial spoke head assembly of the mouse motile cilia.
1163 *PLoS Genet* 16, e1008664. <https://doi.org/10.1371/JOURNAL.PGEN.1008664>.

1164 38. Wirschell, M., Zhao, F., Yang, C., Yang, P., Diener, D., Gaillard, A., Rosenbaum, J.L., and Sale,
1165 W.S. (2008). Building a radial spoke: Flagellar radial spoke protein 3 (RSP3) is a dimer. *Cell Motil
1166 Cytoskeleton* 65, 238–248. <https://doi.org/10.1002/CM.20257>.

1167 39. Williams, B.D., Velleca, M.A., Curry, A.M., and Rosenbaum, J.L. (1989). Molecular cloning and
1168 sequence analysis of the Chlamydomonas gene coding for radial spoke protein 3: flagellar mutation
1169 pf-14 is an ochre allele. *Journal of Cell Biology* 109, 235–245.
1170 <https://doi.org/10.1083/JCB.109.1.235>.

- 1171 40. Yang, P., Diener, D.R., Rosenbaum, J.L., and Sale, W.S. (2001). Localization of Calmodulin and
1172 Dynein Light Chain Lc8 in Flagellar Radial Spokes. *Journal of Cell Biology* *153*, 1315–1326.
1173 <https://doi.org/10.1083/JCB.153.6.1315>.
- 1174 41. Yang, P., Diener, D.R., Yang, C., Kohno, T., Pazour, G.J., Dienes, J.M., Agrin, N.S., King, S.M.,
1175 Sale, W.S., Kamiya, R., et al. (2006). Radial spoke proteins of Chlamydomonas flagella. *J Cell Sci*
1176 *119*, 1165–1174. <https://doi.org/10.1242/JCS.02811>.
- 1177 42. Heuser, T., Dymek, E.E., Lin, J., Smith, E.F., and Nicastro, D. (2012). The CSC connects three
1178 major axonemal complexes involved in dynein regulation. *Mol Biol Cell* *23*, 3143–3155.
1179 <https://doi.org/10.1091/MBC.E12-05-0357>.
- 1180 43. Auguste, Y., Delague, V., Desvignes, J.P., Longepied, G., Gnisci, A., Besnier, P., Levy, N.,
1181 Beroud, C., Megarbane, A., Metzler-Guillemain, C., et al. (2018). Loss of Calmodulin- and Radial-
1182 Spoke-Associated Complex Protein CFAP251 Leads to Immotile Spermatozoa Lacking
1183 Mitochondria and Infertility in Men. *Am J Hum Genet* *103*, 413–420.
1184 <https://doi.org/10.1016/J.AJHG.2018.07.013>.
- 1185 44. Martinez, G., Beurois, J., Dacheux, D., Cazin, C., Bidart, M., Kherraf, Z.E., Robinson, D.R., Satre,
1186 V., Le Gac, G., Ka, C., et al. (2020). Biallelic variants in MAATS1 encoding CFAP91, a
1187 calmodulin-associated and spoke-associated complex protein, cause severe astheno-
1188 teratozoospermia and male infertility. *J Med Genet* *57*, 708–716.
1189 <https://doi.org/10.1136/JMEDGENET-2019-106775>.
- 1190 45. Huang, T., Yin, Y., Liu, C., Li, M., Yu, X., Wang, X., Zhang, H., Muhammad, T., Gao, F., Li, W.,
1191 et al. (2020). Absence of murine CFAP61 causes male infertility due to multiple morphological
1192 abnormalities of the flagella. *Sci Bull (Beijing)* *65*, 854–864.
1193 <https://doi.org/10.1016/J.SCIB.2020.01.023>.
- 1194 46. Liu, S., Zhang, J., Kherraf, Z.E., Sun, S., Zhang, X., Cazin, C., Coutton, C., Zouari, R., Zhao, S.,
1195 Hu, F., et al. (2021). CFAP61 is required for sperm flagellum formation and male fertility in
1196 human and mouse. *Development* *148*. <https://doi.org/10.1242/DEV.199805>.
- 1197 47. Zhang, X., Sun, J., Lu, Y., Zhang, J., Shimada, K., Noda, T., Zhao, S., Koyano, T., Matsuyama,
1198 M., Zhou, S., et al. (2021). LRRC23 is a conserved component of the radial spoke that is necessary
1199 for sperm motility and male fertility in mice. *J Cell Sci* *134*.
1200 <https://doi.org/10.1242/JCS.259381/VIDEO-6>.
- 1201 48. Vasudevan, K.K., Song, K., Alford, L.M., Sale, W.S., Dymek, E.E., Smith, E.F., Hennessey, T.,
1202 Joachimiak, E., Urbanska, P., Wloga, D., et al. (2015). FAP206 is a microtubule-docking adapter
1203 for ciliary radial spoke 2 and dynein c. *Mol Biol Cell* *26*, 696–710.
1204 <https://doi.org/10.1091/MBC.E14-11-1506/MC-E14-11-1506-S09.MPG>.
- 1205 49. McCafferty, C.L., Papoulas, O., Lee, C., Bui, K.H., Taylor, D.W., Marcotte, E.M., and
1206 Wallingford, J.B. (2024). An amino acid-resolution interactome for motile cilia identifies the
1207 structure and function of ciliopathy protein complexes. *Dev Cell* *60*, 965–978.e3.
1208 <https://doi.org/10.1016/J.DEVCEL.2024.11.019>.
- 1209 50. Diener, D.R., Ang, L.H., and Rosenbaum, J.L. (1993). Assembly of flagellar radial spoke proteins
1210 in Chlamydomonas: identification of the axoneme binding domain of radial spoke protein 3. *J Cell*
1211 *Biol* *123*, 183–190. <https://doi.org/10.1083/JCB.123.1.183>.
- 1212 51. Jeanson, L., Copin, B., Papon, J.F., Dastot-Le Moal, F., Duquesnoy, P., Montantin, G., Cadrelan,
1213 J., Corvol, H., Coste, A., Désir, J., et al. (2015). RSPH3 Mutations Cause Primary Ciliary
1214 Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. *Am J Hum Genet*
1215 *97*, 153–162. <https://doi.org/10.1016/J.AJHG.2015.05.004>.

- 1216 52. Jivan, A., Earnest, S., Juang, Y.C., and Cobb, M.H. (2009). Radial spoke protein 3 is a mammalian
1217 protein kinase A-anchoring protein that binds ERK1/2. *J Biol Chem* 284, 29437–29445.
1218 <https://doi.org/10.1074/JBC.M109.048181>.
- 1219 53. Sivadas, P., Dienes, J.M., Maurice, M.S., Meek, W.D., and Yang, P. (2012). A flagellar A-kinase
1220 anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke
1221 complex. *J Cell Biol* 199, 639–651. <https://doi.org/10.1083/JCB.201111042>.
- 1222 54. Gupta, A., Diener, D.R., Sivadas, P., Rosenbaum, J.L., and Yang, P. (2012). The versatile
1223 molecular complex component LC8 promotes several distinct steps of flagellar assembly. *J Cell
1224 Biol* 198, 115–126. <https://doi.org/10.1083/JCB.201111041>.
- 1225 55. Erdős, G., Szaniszló, T., Pajkos, M., Hajdu-Soltész, B., Kiss, B., Pál, G., Nyitrai, L., and
1226 Dosztányi, Z. (2017). Novel linear motif filtering protocol reveals the role of the LC8 dynein light
1227 chain in the Hippo pathway. *PLoS Comput Biol* 13, e1005885.
1228 <https://doi.org/10.1371/JOURNAL.PCBI.1005885>.
- 1229 56. Jespersen, N., Estelle, A., Waugh, N., Davey, N.E., Blikstad, C., Ammon, Y.C., Akhmanova, A.,
1230 Ivarsson, Y., Hendrix, D.A., and Barbar, E. (2019). Systematic identification of recognition motifs
1231 for the hub protein LC8. *Life Sci Alliance* 2. <https://doi.org/10.26508/LSA.201900366>.
- 1232 57. Bazan, R., Schröfel, A., Joachimiak, E., Poprzeczko, M., Pigino, G., and Wloga, D. (2021).
1233 Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to
1234 dynein g and the nexin link. *PLoS Genet* 17, e1009388.
1235 <https://doi.org/10.1371/JOURNAL.PGEN.1009388>.
- 1236 58. Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., and Cox, J.
1237 (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data.
1238 *Nature Methods* 2016 13:9 13, 731–740. <https://doi.org/10.1038/nmeth.3901>.
- 1239 59. Habicht, J., Woehle, C., and Gould, S.B. (2015). Tetrahymena Expresses More than a Hundred
1240 Proteins with Lipid-binding MORN Motifs that can Differ in their Subcellular Localisations.
1241 *Journal of Eukaryotic Microbiology* 62, 694–700. <https://doi.org/10.1111/JEU.12216>.
- 1242 60. Gopal, R., Foster, K.W., and Yang, P. (2012). The DPY-30 domain and its flanking sequence
1243 mediate the assembly and modulation of flagellar radial spoke complexes. *Mol Cell Biol* 32, 4012–
1244 4024. <https://doi.org/10.1128/MCB.06602-11>.
- 1245 61. Patel-King, R.S., Gorbatyuk, O., Takebe, S., and King, S.M. (2004). Flagellar radial spokes contain
1246 a Ca2+-stimulated nucleoside diphosphate kinase. *Mol Biol Cell* 15, 3891–3902.
1247 <https://doi.org/10.1091/MBC.E04-04-0352/ASSET/IMAGES/LARGE/ZMK0080427870009.JPG>.
- 1249 62. Kubo, S., Black, C.S., Joachimiak, E., Yang, S.K., Legal, T., Peri, K., Khalifa, A.A.Z., Ghanaeian,
1250 A., McCafferty, C.L., Valente-Paterno, M., et al. (2023). Native doublet microtubules from
1251 Tetrahymena thermophila reveal the importance of outer junction proteins. *Nature
1252 Communications* 2023 14:1 14, 1–16. <https://doi.org/10.1038/s41467-023-37868-0>.
- 1253 63. Yang, C., and Yang, P. (2006). The flagellar motility of Chlamydomonas pf25 mutant lacking an
1254 AKAP-binding protein is overtly sensitive to medium conditions. *Mol Biol Cell* 17, 227–238.
1255 <https://doi.org/10.1091/MBC.E05-07-0630>.
- 1256 64. Villar, P.S., Delgado, R., Vergara, C., Reyes, J.G., and Bacigalupo, J. (2017). Energy
1257 Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely
1258 on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose. *Journal of
1259 Neuroscience* 37, 5736–5743. <https://doi.org/10.1523/JNEUROSCI.2640-16.2017>.

- 1260 65. Dzeja, P., and Terzic, A. (2009). Adenylate Kinase and AMP Signaling Networks: Metabolic
1261 Monitoring, Signal Communication and Body Energy Sensing. International Journal of Molecular
1262 Sciences 2009, Vol. 10, Pages 1729-1772 10, 1729–1772. <https://doi.org/10.3390/IJMS10041729>.
- 1263 66. Gaillard, A.R., Diener, D.R., Rosenbaum, J.L., and Sale, W.S. (2001). Flagellar Radial Spoke
1264 Protein 3 Is an a-Kinase Anchoring Protein (Akap). Journal of Cell Biology 153, 443–448.
1265 <https://doi.org/10.1083/JCB.153.2.443>.
- 1266 67. Scott, J.D., and Pawson, T. (2009). Cell signaling in space and time: Where proteins come together
1267 and when they're apart. Science (1979) 326, 1220–1224.
1268 https://doi.org/10.1126/SCIENCE.1175668/ASSET/6D29A06C-65BB-4842-A7ED-E7B50C3BE90B/ASSETS/GRAPHIC/326_1220_F4.JPG.
- 1270 68. Yamamoto, R., Hwang, J., Ishikawa, T., Kon, T., and Sale, W.S. (2021). Composition and function
1271 of ciliary inner-dynein-arm subunits studied in *Chlamydomonas reinhardtii*. Cytoskeleton 78, 77–
1272 96. <https://doi.org/10.1002/CM.21662>.
- 1273 69. Subramanian, A., Kabi, A., Gray, S.F., and Pennock, D. (2016). p28 dynein light chains and ciliary
1274 motility in *Tetrahymena thermophila*. Cytoskeleton 73, 197–208.
1275 <https://doi.org/10.1002/CM.21295>.
- 1276 70. Padma, P., Satouh, Y., Wakabayashi, K. ichi, Hozumi, A., Ushimaru, Y., Kamiya, R., and Inaba,
1277 K. (2003). Identification of a novel leucine-rich repeat protein as a component of flagellar radial
1278 spoke in the ascidian *Ciona intestinalis*. Mol Biol Cell 14, 774–785.
1279 <https://doi.org/10.1091/MBC.02-06-0089/ASSET/IMAGES/LARGE/MK0232102009.JPG>.
- 1280 71. Satouh, Y., and Inaba, K. (2009). Proteomic characterization of sperm radial spokes identifies a
1281 novel spoke protein with an ubiquitin domain. FEBS Lett 583, 2201–2207.
1282 <https://doi.org/10.1016/J.FEBSLET.2009.06.016>.
- 1283 72. Satouh, Y., Padma, P., Toda, T., Satoh, N., Ide, H., and Inaba, K. (2005). Molecular
1284 characterization of radial spoke subcomplex containing radial spoke protein 3 and heat shock
1285 protein 40 in sperm flagella of the ascidian *Ciona intestinalis*. Mol Biol Cell 16, 626–636.
1286 <https://doi.org/10.1091/MBC.E04-09-0784/ASSET/IMAGES/LARGE/ZMK0020530090009.JPG>.
- 1288 73. Guan, J., Ekwurtzel, E., Kvist, U., Hultenby, K., and Yuan, L. (2010). DNAJB13 is a Radial Spoke
1289 Protein of Mouse '9+2' Axoneme. Reproduction in Domestic Animals 45, 992–996.
1290 <https://doi.org/10.1111/J.1439-0531.2009.01473.X>.
- 1291 74. Eisen, J.A., Coyne, R.S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J.R., Badger, J.H., Ren, Q.,
1292 Amedeo, P., Jones, K.M., et al. (2006). Macronuclear Genome Sequence of the Ciliate
1293 *Tetrahymena thermophila*, a Model Eukaryote. PLoS Biol 4, e286.
1294 <https://doi.org/10.1371/JOURNAL.PBIO.0040286>.
- 1295 75. El Khouri, E., Thomas, L., Jeanson, L., Bequignon, E., Vallette, B., Duquesnoy, P., Montantin, G.,
1296 Copin, B., Dastot-Le Moal, F., Blanchon, S., et al. (2016). Mutations in DNAJB13, Encoding an
1297 HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. Am J Hum Genet
1298 99, 489–500. <https://doi.org/10.1016/J.AJHG.2016.06.022>.
- 1299 76. Cho, E.H., Huh, H.J., Jeong, I., Lee, N.Y., Koh, W.J., Park, H.C., and Ki, C.S. (2020). A nonsense
1300 variant in NME5 causes human primary ciliary dyskinesia with radial spoke defects. Clin Genet
1301 98, 64–68. <https://doi.org/10.1111/CGE.13742>.
- 1302 77. Castleman, V.H., Romio, L., Chodhari, R., Hirst, R.A., de Castro, S.C.P., Parker, K.A., Ybot-
1303 Gonzalez, P., Emes, R.D., Wilson, S.W., Wallis, C., et al. (2009). Mutations in radial spoke head

- 1304 1305 protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair
1306 78. Brown, J.M., DiPetrillo, C.G., Smith, E.F., and Witman, G.B. (2012). A FAP46 mutant provides
1307 new insights into the function and assembly of the C1d complex of the ciliary central apparatus. *J
1308 Cell Sci* 125, 3904–3913. [https://doi.org/10.1242/JCS.107151/263114/AM/A-FAP46-MUTANT-
PROVIDES-NEW-INSIGHTS-INTO-THE](https://doi.org/10.1242/JCS.107151/263114/AM/A-FAP46-MUTANT-
1309 PROVIDES-NEW-INSIGHTS-INTO-THE).
- 1310 79. Zhao, L., Hou, Y., Picariello, T., Craige, B., and Witman, G.B. (2019). Proteome of the central
1311 apparatus of a ciliary axoneme. *Journal of Cell Biology* 218, 2051–2070.
1312 <https://doi.org/10.1083/JCB.20190217>.
- 1313 80. Joachimiak, E., Osinka, A., Farahat, H., Świderska, B., Sitkiewicz, E., Poprzeczko, M., Fabczak,
1314 H., and Włoga, D. (2021). Composition and function of the C1b/C1f region in the ciliary central
1315 apparatus. *Scientific Reports* 2021 11:1 11, 1–17. <https://doi.org/10.1038/s41598-021-90996-9>.
- 1316 81. Gui, M., Wang, X., Dutcher, S.K., Brown, A., and Zhang, R. (2022). Ciliary central apparatus
1317 structure reveals mechanisms of microtubule patterning. *Nat Struct Mol Biol* 29, 483–492.
1318 <https://doi.org/10.1038/S41594-022-00770-2>.
- 1319 82. Han, L., Rao, Q., Yang, R., Wang, Y., Chai, P., Xiong, Y., and Zhang, K. (2022). Cryo-EM
1320 structure of an active central apparatus. *Nat Struct Mol Biol* 29, 472.
1321 <https://doi.org/10.1038/S41594-022-00769-9>.
- 1322 83. Wyatt, T.A. (2015). Cyclic GMP and Cilia Motility. *Cells* 2015, Vol. 4, Pages 315-330 4, 315–330.
1323 <https://doi.org/10.3390/CELLS4030315>.
- 1324 84. Wyatt, T.A., Spurzem, J.R., May, K., and Sisson, J.H. (1998). Regulation of ciliary beat frequency
1325 by both PKA and PKG in bovine airway epithelial cells. *Am J Physiol Lung Cell Mol Physiol* 275,
1326 827–835.
1327 <https://doi.org/10.1152/AJPLUNG.1998.275.4.L827/ASSET/IMAGES/LARGE/ALUN61023007X.JPEG>.
- 1329 85. Shanmugam, M.M., Bhan, P., Huang, H.-Y., Hsieh, J., Hua, T.-E., Wu, G.-H., Punjabi, H.,
1330 Aplícano, V.D.L., Chen, C.-W., and Wagner, O.I. (2018). Cilium Length and Intraflagellar
1331 Transport Regulation by Kinases PKG-1 and GCK-2 in *Caenorhabditis elegans* Sensory Neurons.
1332 *Mol Cell Biol* 38, 612–629. <https://doi.org/10.1128/MCB.00612-17>.
- 1333 86. Bonini, N.M., and Nelson, D.L. (1988). Differential regulation of *Paramecium* ciliary motility by
1334 cAMP and cGMP. *Journal of Cell Biology* 106, 1615–1623.
1335 <https://doi.org/10.1083/JCB.106.5.1615>.
- 1336 87. Hemmersbach, R., Voormanns, R., Bromeis, B., Schmidt, N., Rabien, H., and Ivanova, K. (1998).
1337 Comparative studies of the graviresponses of *paramecium* and *loxodes*. *Advances in Space
1338 Research* 21, 1285–1289. [https://doi.org/10.1016/S0273-1177\(97\)00400-6](https://doi.org/10.1016/S0273-1177(97)00400-6).
- 1339 88. Noguchi, M., Kurahashi, S., Kamachi, H., and Inoue, H. (2004). Control of the Ciliary Beat by
1340 Cyclic Nucleotides in Intact Cortical Sheets from *Paramecium*. <https://doi.org/10.2108/zsj.21.1167>
1341 21, 1167–1175. <https://doi.org/10.2108/ZSJ.21.1167>.
- 1342 89. Yang, P., and Sale, W.S. (2000). Casein Kinase I Is Anchored on Axonemal Doublet Microtubules
1343 and Regulates Flagellar Dynein Phosphorylation and Activity. *Journal of Biological Chemistry*
1344 275, 18905–18912. <https://doi.org/10.1074/JBC.M002134200>.
- 1345 90. Gorovsky, M.A., Yao, M.C., Keevert, J.B., and Pleger, G.L. (1975). Chapter 16 Isolation of Micro-
1346 and Macronuclei of *Tetrahymena pyriformis*. *Methods Cell Biol* 9, 311–327.
1347 [https://doi.org/10.1016/S0091-679X\(08\)60080-1](https://doi.org/10.1016/S0091-679X(08)60080-1).

- 1348 91. Orias, E., and Rasmussen, L. (1976). Dual capacity for nutrient uptake in *Tetrahymena*: IV.
1349 Growth without food vacuoles and its implications. *Exp Cell Res* *102*, 127–137.
1350 [https://doi.org/10.1016/0014-4827\(76\)90307-4](https://doi.org/10.1016/0014-4827(76)90307-4).
- 1351 92. Mochizuki, K. (2008). High efficiency transformation of *Tetrahymena* using a codon-optimized
1352 neomycin resistance gene. *Gene* *425*, 79–83. <https://doi.org/10.1016/J.GENE.2008.08.007>.
- 1353 93. Cassidy-Hanley, D., Bowen, J., Lee, J.H., Cole, E., VerPlank, L.A., Gaertig, J., Gorovsky, M.A.,
1354 and Bruns, P.J. (1997). Germline and Somatic Transformation of Mating *Tetrahymena thermophila*
1355 by Particle Bombardment. *Genetics* *146*, 135–147. <https://doi.org/10.1093/GENETICS/146.1.135>.
- 1356 94. Dave, D., Wloga, D., and Gaertig, J. (2009). Manipulating Ciliary Protein-Encoding Genes in
1357 *Tetrahymena thermophila*. *Methods Cell Biol* *93*, 1–20. [https://doi.org/10.1016/S0091-679X\(08\)93001-6](https://doi.org/10.1016/S0091-679X(08)93001-6).
- 1359 95. Hayashi, A., and Mochizuki, K. (2015). Targeted gene disruption by ectopic induction of DNA
1360 elimination in *Tetrahymena*. *Genetics* *201*, 55–64.
1361 <https://doi.org/10.1534/GENETICS.115.178525/-/DC1>.
- 1362 96. Urbanska, P., Joachimiak, E., Bazan, R., Fu, G., Poprzeczko, M., Fabczak, H., Nicastro, D., and
1363 Wloga, D. (2018). Ciliary proteins Fap43 and Fap44 interact with each other and are essential for
1364 proper cilia and flagella beating. *Cellular and Molecular Life Sciences* *75*, 4479–4493.
1365 <https://doi.org/10.1007/S00018-018-2819-7/FIGURES/5>.
- 1366 97. Fu, G., Wang, Q., Phan, N., Urbanska, P., Joachimiak, E., Lin, J., Wloga, D., and Nicastro, D.
1367 (2018). The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary
1368 motility. *Mol Biol Cell* *29*, 1048–1059. <https://doi.org/10.1091/MBC.E18-02-0142/ASSET/IMAGES/LARGE/MBC-29-1048-G006.JPG>.
- 1370 98. Iwamoto, M., Mori, C., Hiraoka, Y., and Haraguchi, T. (2014). Puromycin resistance gene as an
1371 effective selection marker for ciliate *Tetrahymena*. *Gene* *534*, 249–255.
1372 <https://doi.org/10.1016/J.GENE.2013.10.049>.
- 1373 99. Gaertig, J., Wloga, D., Vasudevan, K.K., Guha, M., and Dentler, W. (2013). Discovery and
1374 functional evaluation of ciliary proteins in *Tetrahymena thermophila*. *Methods Enzymol* *525*, 265–
1375 284. <https://doi.org/10.1016/B978-0-12-397944-5.00013-4>.
- 1376 100. Duan, J., and Gorovsky, M.A. (2002). Both Carboxy-Terminal Tails of α - and β -Tubulin Are
1377 Essential, but Either One Will Suffice. *Current Biology* *12*, 313–316.
1378 [https://doi.org/10.1016/S0960-9822\(02\)00651-6](https://doi.org/10.1016/S0960-9822(02)00651-6).
- 1379 101. Wloga, D., Rogowski, K., Sharma, N., Van Dijk, J., Janke, C., Eddé, B., Bré, M.H., Levilliers, N.,
1380 Redeker, V., Duan, J., et al. (2008). Glutamylation on α -tubulin is not essential but affects the
1381 assembly and functions of a subset of microtubules in *Tetrahymena thermophila*. *Eukaryot Cell* *7*,
1382 1362–1372. https://doi.org/10.1128/EC.00084-08/SUPPL_FILE/WLOGA_00084SUPPL.PDF.
- 1383 102. Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion protein
1384 identifies proximal and interacting proteins in mammalian cells. *Journal of Cell Biology* *196*, 801–
1385 810. <https://doi.org/10.1083/JCB.201112098>.
- 1386 103. Mastronarde, D.N. (2005). Automated electron microscope tomography using robust prediction of
1387 specimen movements. *J Struct Biol* *152*, 36–51. <https://doi.org/10.1016/J.JSB.2005.07.007>.
- 1388 104. Mastronarde, D.N., and Held, S.R. (2017). Automated tilt series alignment and tomographic
1389 reconstruction in IMOD. *J Struct Biol* *197*, 102–113. <https://doi.org/10.1016/J.JSB.2016.07.011>.

- 1390 105. Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R. (1996). Computer Visualization of Three-
1391 Dimensional Image Data Using IMOD. *J Struct Biol* 116, 71–76.
1392 <https://doi.org/10.1006/JSB.1996.0013>.
- 1393 106. Tegunov, D., and Cramer, P. (2019). Real-time cryo-electron microscopy data preprocessing with
1394 Warp. *Nature Methods* 2019 16:11 16, 1146–1152. <https://doi.org/10.1038/s41592-019-0580-y>.
- 1395 107. Bui, K.H., and Ishikawa, T. (2013). 3D Structural Analysis of Flagella/Cilia by Cryo-Electron
1396 Tomography. *Methods Enzymol* 524, 305–323. <https://doi.org/10.1016/B978-0-12-397945-2.00017-2>.
- 1398 108. Kimanius, D., Dong, L., Sharov, G., Nakane, T., and Scheres, S.H.W. (2021). New tools for
1399 automated cryo-EM single-particle analysis in RELION-4.0. *Biochemical Journal* 478, 4169–4185.
1400 <https://doi.org/10.1042/BCJ20210708>.
- 1401 109. Liu, Y.T., Zhang, H., Wang, H., Tao, C.L., Bi, G.Q., and Zhou, Z.H. (2022). Isotropic
1402 reconstruction for electron tomography with deep learning. *Nature Communications* 2022 13:1 13,
1403 1–17. <https://doi.org/10.1038/s41467-022-33957-8>.
- 1404 110. Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H.,
1405 and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and
1406 developers. *Protein Science* 30, 70–82. <https://doi.org/10.1002/PRO.3943>.
- 1407 111. Gao, J., Tong, M., Lee, C., Gaertig, J., Legal, T., and Bui, K.H. (2024). DomainFit: Identification
1408 of protein domains in cryo-EM maps at intermediate resolution using AlphaFold2-predicted
1409 models. *Structure* 32, 1248–1259.e5. <https://doi.org/10.1016/J.STR.2024.04.017>.
- 1410 112. Bekker-Jensen, D.B., Martínez-Val, A., Steigerwald, S., Rüther, P., Fort, K.L., Arrey, T.N.,
1411 Harder, A., Makarov, A., and Olsen, J. V. (2020). A Compact Quadrupole-Orbitrap Mass
1412 Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients.
1413 *Molecular & Cellular Proteomics* 19, 716–729. <https://doi.org/10.1074/MCP.TIR119.001906>.
- 1414 113. Rudolph, J.D., and Cox, J. (2019). A Network Module for the Perseus Software for Computational
1415 Proteomics Facilitates Proteome Interaction Graph Analysis. *J Proteome Res* 18, 2052–2064.
1416 https://doi.org/10.1021/ACS.JPROTEOME.8B00927/SUPPL_FILE/PR8B00927_SI_004.TXT.
- 1417
- 1418
- 1419
- 1420
- 1421