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Abstract

Disease phenotypes can be described as the consequence of interactions among molecular
processes that are altered beyond resilience. Here, we address the challenge of assessing the
possible alteration of intra- and inter-cellular molecular interactions among gene sets, which
are intended to represent processes and or cellular phenotypes. We present an approach,
designated as “Ulisse”, which complements the existing methods of enrichment analysis and
cell-cell communication analysis. It can be applied to a gene list as well as multiple ranked
gene lists, typically derived in the context of omics or multi-omics studies. The approach
highlights the presence of alterations in those components that control the interactions
between processes or cells. Crosstalk quantification is supported by two null models. Further,
the approach provides an additional way of identifying the genes associated with the
phenotype. As a proof-of-concept, we applied Ulisse to study the alteration of pathway
crosstalks and cell-cell communications in triple negative breast cancer samples, based on
single-cell RNA sequencing. In conclusion, our work supports the usefulness of crosstalk
analysis as an additional instrument in the “toolkit” of biomedical research for translating

complex biological data into actionable insights.
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INTRODUCTION

The understanding of how gene-related molecular alterations translate into pathological
phenotypes is a major challenge in life sciences. The experience gained from reductionist
approaches like genome-wide association studies — where millions of single nucleotide
variations are independently tested for association with a phenotype — strengthen the key
role of molecular interactions!. The term “network medicine” indicates the application of
network science to study diseases, which are viewed as the consequence of molecular
alterations on a complex system of interacting molecular processes?.

At cellular level we can classify molecular interactions into two broad categories: intra-
cellular and inter-cellular, according to whether they take place within a cell or among cells.
Even if our knowledge of intra- and inter-cellular molecular interactions is incomplete,
molecular networks are a crucial tool in biomedical research to translate complex molecular
data from omics and multi-omics studies into actionable results3=>.

Here, we address the challenge of assessing the possible alteration, with respect to a
reference condition, of intra- and inter-cellular molecular interactions among sets of genes,
which are intended to represent intra-cellular or cellular phenotypes. There are several
differences between our approach, designated as Ulisse, and those already proposed in the
field of network medicine (Supplementary Table 1). Ulisse can be applied to analyse gene
list(s) or ranked gene list(s), two general formats that accommodate any score derived from
omics data. We provide a means to screen the alteration of intra-cellular pathway crosstalks
and derive a map of the altered communications among pathways, which complements
pathway enrichment analysis. The availability of computational tools to study pathway
crosstalks is limited, despite their importance in regulatory mechanisms®’, obtaining effective
drug combinations in cancer® and investigating complex diseases phenotype®. Moreover,
Ulisse can be used to reconstruct a cell-cell communication network between cell
types/clusters. These two analyses (intra- and inter-cellular) can be combined to obtain
integrated pathways of interactions that associate cell-cell communications with intracellular
states. Further, we provide a score and a statistical assessment of the altered interactions,
based on multiple empirical null models for networks. Lastly, we extract the key genes that

take part in the altered interactions.
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As a proof-of-concept, we applied our approach to study the alteration of pathway
crosstalks and cell-cell communications in publicly available single-cell RNA expression data
from a recent study that proposed a high-resolution map of cell diversity in normal and

cancerous human breast!%11,

Results

Crosstalk quantification, statistical assessment and key

players

Here we describe how we define a “crosstalk”, that is, intra- and inter-cellular interactions
between two gene sets, the assessment of its statistical significance and, lastly, how we use
the results of crosstalk analysis to score genes based on their contribution (Figure 1, see
Supplementary notes for further details). Note that we adopt a “gene-centric” view of
molecular interactions — like in gene-centric human interactomes*® — where the term “gene-
gene interaction” refers to various types of molecular interactions (protein-protein, protein-
RNA, protein-DNA) that involve the considered gene pair.

Two types of input are needed to calculate the crosstalk between any two gene sets X and
Y:

e alist of gene-gene interactions, which can be derived from publicly available resources

(like STRING'? and Omnipath313);

e oneor more sets of gene-level weights (in the unit interval), which provide a summary

of the gene-level alterations of interest (e.g., differential expression or mutations).

Formally, we quantify the crosstalk score as the sum of weighted products between the
genes of X that interact with those of Y:
Ng Ng
C(X,Y) =ulAuy = Z Z ay; uy (Duy ().
i=1 j=1

where A = (a;;) is the adjacency matrix that specifies the interactions among the N, genes,

while ux and uy are vectors of gene weights with positive values only for the genes of X, Y.
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84 The definition of the quantities involved in the calculation C (X, Y) follows three scenarios,

85 based on whether the crosstalk is between gene sets associated with intra-cellular states,

86 inter-cellular states or both. To quantify the alteration of crosstalk between two intra-cellular

87  pathways (or another type of gene system), we exclude the genes shared between them, that

88 isX NY = @, otherwise we would consider intra-pathway interactions. Further, gene weights

89 uyand uy are defined from the same input source (e.g., same set of alterations), because the

90 focus is on an intra-cellular characteristic, and the two gene sets represent internal states of

91 the same cell. The molecular interactions are collected from “general purpose” database of

92 interactions, like STRING2.

93 Conversely, to quantify the inter-cellular crosstalk between two gene sets that are

94  associated with two cell types, it is expected to have X N'Y # @, because the two cell types,

95 for example, can express a series of genes in common. Moreover, uyx and uy come from

96 different sources, because the alterations are relative to distinct cell types. The molecular

97 interactions are collected from databases that focus on ligand-receptor, like Omnipath®!3, a

98  collection composed by multiple sources (i.e., Ramilowski*4, CellPhoneBD*°)

99 Lastly (third scenario), to quantify the intra-cellular alterations associated with inter-
100 cellularalterations, we consider —for each cell type under analysis —the genes (set X) involved
101 in any of the inter-cellular crosstalks of the cell type, and any altered pathway (set Y) of the
102  cell type. Besides such peculiarity in the definition of X and Y, we have, like in the first
103  scenariothat X NY = @, and uy and uy defined from the same input source, because they

104  are relative to the same cell type.

105 A meaningful quantity that complements C(X,Y) is the crosstalk saturation
oL

110 re = —%
Lxy

106  which captures, in the process under study, the number of altered interactions §Lyxy between
107 X and Y, in relation to all the possible interactions Lyy between X and Y. Indeed, similar
108  values of C(X,Y) can be due to a higher or lower impairment of the links between the two
109 gene sets.

111 To statistically benchmark the magnitude of an observed crosstalk value ¢ we have to
112 consider that it might depend on various features like gene set size, distribution of gene
113 weights and gene degree. We focused on two null models, namely Mpand M,, in both of

114  which we preserve gene set size, degree sequence, and the association between gene weight
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115 and gene degree (within the same bin over the degree sequence), and randomize,
116  respectively, gene-gene interactions and gene weights. Null model M, is designed to test the
117  dependence of ¢ from the network proximity of X and Y, while M, is meant to test the
118 dependence of ¢ from the weights of X and Y genes. This leads to four possible outcomes,
119 determined by the possible significance of ¢ in a single null, in both or in neither of them
120 (Supplementary Figure 1, Supplementary Table 2). As expected by the fact that the two nulls
121  disrupt different features, the analyses performed in our proof-of-concept (see next sections)
122 revealed negligible correlations between the values obtained with the two nulls
123 (Supplementary Figure 2). It is therefore meaningful to combine the two probabilities p, and
124  p, of observing — respectively — a value equal or greater than c in M, and M,, into the
125  probability of observing a product p as small as the one observed

126 p = P(p = papu) = pPaPu — PaPu In(papu),

127  whichis equal to the probability given by means of the so-called Fisher's combined probability
128  test 1017,

129 Lastly, we define a summary score for ranking crosstalks, combining effect size C(X,Y) and
130 its estimated probability p:

131 s(X,Y)=—-C(X,Y) log.o(p)

132 The list of significant crosstalks provides the opportunity to score genes based on their
133  contribution. We consider two gene-level quantities: crosstalk diversity and interaction
134  diversity. The first counts how many gene sets that are part of altered crosstalks contain
135 interactors of a gene g;; therefore, the saturation rx (i) of the crosstalk diversity of g; reaches
136 1 when all the gene sets that contain interactors of g; are part of altered crosstalks. The
137  second counts the interactors of g; that belong to gene sets that are part of crosstalks;
138  analogously to (i), the saturation 1, (i) of the interactor diversity of g; reaches 1 when all

139 theinteractors of g; belong to gene sets that are part of altered crosstalks.

140 Alteration of crosstalks in triple negative breast cancer

141 As a proof-of-concept, we analysed the crosstalks in triple negative breast cancer (TNBC),
142  using single-cell RNA expression data from a recent study that proposed a high-resolution
143  map of cell diversity in normal and cancerous human breast'®!, Our objective is to show what

144  kind of information can be extracted from the analysis of crosstalks using data generated by
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145 means of one the state-of-the-art technologies in transcriptomic analysis. In particular, we
146  focused on cancer cells and analysed the interactions among intra-cellular processes whose
147  alteration could be implied in the dysregulation of the reciprocal control among molecular
148 mechanisms that could contribute to tumour progression. Then, we considered the
149 communication between cancer cells and Cancer Associated Fibroblasts (CAF). Indeed, CAFs
150 represent a peculiar hub of cell-cell communication within the tumour niche by promoting
151  tumoral growth and malignancy by releasing factors targeting cancer cells, repressing
152 immune response by their interactions with immune cells and inducing angiogenesis
153 interacting with endothelial cells'®2°, Lastly, we shed light to cancer cell processes that could

154 be associated with the communication between CAFs and cancer cells.

155 Alteration of intra-cellular crosstalks in cancer cells

156 We screened the impact of 304 (Supplementary Tables 3-4) cancer epithelial cell markers
157  (p < 0.05, log,(FC) > 0.5, Cancer epithelial vs all) on the crosstalk between intra-cellular
158  processes (MSigDB Hallmarks database?!). We found that most of the crosstalks is altered in
159 up to 2 interactions and that the maximum number of altered interactions is 19, among a
160 total of 14 genes belonging to allograft rejection and MYC targets (v1) (Table 1, Figure 2a,
161  Supplementary Table 5). We observed a marked variability of gene weights, degree of
162  statistical significance, and saturation, independently from the number of affected links,
163  which makes such pieces of information useful to differentiate crosstalks (Figure 2a-c). In
164  particular, we observed a total of 59 crosstalks whose score can hardly be obtained (a =
165 0.01) when shuffling interactions or gene weights, and 14 crosstalks that are supported by
166  both nulls (Figure 2b). Among these, we obtained several crosstalks that involves the p53
167  pathway, cholesterol homeostasis and androgen response, which emerge as hubs in the
168 network of altered crosstalks (Figure 2d). In 24 crosstalks, the saturation indicates the
169  alteration of more than half of the links (Figure 2c), like between p53 pathway and KRAS
170  signalling (“KRAS_SIGNALING_DN”), which involves the alterations of 3 out of 4 interactions
171  between a total of 5 genes, and the score is supported by both nulls (Figure 2c,
172 Supplementary Table 5). To compare the outcomes of crosstalk and pathway enrichment
173  analyses, we assessed to which extent the processes exhibiting significant crosstalks are also
174  marked by significant enrichment in DEGs (Figure 2d, Supplementary Table 6). As expected,

175 the two types of analyses provide a complementary view, where several processes involved
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176  with significant crosstalk do not display enrichment and vice versa. Only in a few cases (7
177  pairs) both the processes are enriched (p-value < 0.05) in DEGs, while the majority of altered
178  crosstalks takes place between pairs of processes that are not enriched in DEGs.

179 Significantly altered crosstalks are mediated by a total of 57 genes (Supplementary Table
180 7). Crosstalk diversity and interaction diversity suggest a gene prioritization that is
181 independent from their initial alteration score. In other words, genes that were ranked low
182 by differential expression analysis can emerge as key players as mediators of crosstalks. This
183 is the case of the two cyclin-dependent kinases CDKN2A and CDKN2B, which stand out for
184  their crosstalk diversity, as they mediate 11 and 10 altered crosstalks, respectively (Figure 3a).
185  Among the genes with the highest interactor diversity we obtained a series of genes that code
186  for ribosomal-associated proteins (Figure 3b). We observed a wide range of saturations and
187  an overall correlation between the saturation of crosstalk diversity and that of interaction
188  diversity (Supplementary Table 7). Among the genes with the highest values of both
189  saturations we found the two tumour proteins D52 (TPD52) and D53 (also known as TPD52L1)

190 (Figure 3), which are involved in cancer cells proliferation and more aggressive phenotype?223,

191 Inter-cellular crosstalks (cell-cell communication)

192 We analysed the inter-cellular interactions (Omnipath3) among the 36 pairs of sets defined
193 by the differentially expressed genes (FDR < 0.05, log,(FC) > 0.5) of 9 cell types in relation
194  to the others, in 8 TNBC tumors'® (Supplementary Tables 3-4). Compared to the intracellular
195  crosstalks among processes, here we dealt with larger gene sets and more links among them.
196  Asexpected, this scenario led to a higher number of altered interactions, with a median of 38
197 and a maximum of 162 between CAFs and endothelial cells (Figure 4a, Supplementary Table
198  8). Further, the crosstalks are statistically supported (¢ = 0.01) mostly by their gene weights
199 (21 pairs), rather than interactions, which support 3 crosstalks that are supported by both
200 nulls, namely between B cells and tumour-associated macrophage (TAMs), between dendritic
201  cells (DCs) and TAMs, and between B cells and DCs. Saturation reaches up to one quarter of
202  the possible interactions between CAFs and endothelial cells (Figure 4b). The emerging cell-
203  cell communication network (Figure 4c) highlights a relevant role of those microenvironment
204  cells, which establish several significant interactions. The communication between cancer
205 cells and CAFs is supported (@ = 0.01) by randomization of gene weights, and involves 22

206 interactions between a total of 33 DEGs (Figure 4c, Supplementary Table 9). Among the key
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207  players of this communication, we found MDK and MFGES8 (expressed in cancer cells), which
208 mediate 4 and 3 interactions, respectively, with genes expressed in CAFs, including integrins
209 ITGB1 and ITGB5 (Supplementary Table 9).

210 The cell-cell communication network (a = 0.01) involves 379 genes (Figure 5,
211  Supplementary Table 10). Among the genes that stand out for their ubiquity we observed
212 CXCR4, with a crosstalk diversity of 8 (out of 9 cell-types present), and ICAM1, TGFB1, ITGB2,
213  PTPN6 and some Major Histocompatibility Complex genes (HLA-C, HLA-DRA, HLA-DRB1),
214  which show a crosstalk diversity of 7. Among the 29 DEGs in cancer epithelial cells (out of
215  379), MFGES8, LAMP1, RPSA and AZGP1 are specific (dx = 1, rx = 1) of the communication
216  with CAFs (Figure 5). Conversely, we did not observe DEGs in CAFs that are specific to the
217  signalling with cancer cells. However, there is one gene, namely PLAT, which is only involved
218  in the communication with cancer cells (dx = 1).

219

220 Integrated crosstalks: cancer cell pathways that can be associated with the

221  communication between cancer cell and CAFs.

222 We analysed the crosstalks between the gene set of the 14 cancer cell DEGs that mediate
223 the communication with CAFs, and all the processes (MSigDB Hallmarks) that contain cancer
224 cell DEGs (Figure 6, Supplementary Table 11). We found 15 interactions supported (a =
225 0.01) by at least a null model and two, supported by both nulls. The first involves interactions
226  among RPSA, which mediate the interaction with CAFs, and other ribosomal proteins (RPL18,
227  RPL6, RPLPO, RPS10, RPS2, RPS3, RPS5, RPS6) that are regulated by MYC. The second take
228  place between, on the one hand, APP and PTPRF (mediators of the communication with CAFs),
229 and, on the other hand, CLU and CTNNB1 (cholesterol homeostasis). Almost all the
230 interactions found (13 out of 15) involve processes that establish significant (¢ = 0.01) intra-
231  cellular crosstalks (Supplementary Table 5). The two processes that did not emerge in the
232 screening of intra-cellular crosstalks of cancer cells (namely complement and coagulation) are

233 both mediated by the interaction between APP and CLU.
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232 DISCUSSION

235 We presented a network-based approach to assess the alterations of crosstalks between
236  gene sets, based on gene-centric molecular interactions and one or more lists of gene scores
237  that result from omics data analysis. The approach can be applied to inter-cellular as well as
238 intra-cellular crosstalks, and to the analysis of intra-cellular crosstalks that can be associated
239  with inter-cellular crosstalks. As a proof-of-concept, we applied the approach to analyse the
240  crosstalks affected by the gene expression alterations detected at single-cell resolution in
241  triple negative breast cancer samples.

242 The score of a crosstalk is proportional to the interactions between two gene sets and the
243  weights of the interacting genes. The score is supported by two complementary null models
244  that conserve gene set size, degree sequence, and the association between gene weight and
245  gene degree. These nulls provide a means to assess whether the statistical significance of the
246  score comes from gene weights, interactions or both. In the proof-of-concept, we showed
247  that all three scenarios emerge when using real data.

248 We reported altered crosstalks at various degree of saturation, especially in the analysis of
249  intra-cellular crosstalks. This quantity enabled the identification of pairs of processes where
250 most of the interactions involved gene expression changes or, on the opposite, pairs of
251  processes where only a specific part of their interaction is affected. For example, our analysis
252  identified that the pathway of KRAS is involved in crosstalk dysregulation associated with
253  TNBC, supporting evidence that indicates this pathway as crucial in phenotypical and
254  metabolic features of cancer cells?*.

255 We showed that the analysis of intra-cellular crosstalks complements the typical
256  enrichment analysis. Indeed, we reported a series of gene sets that, despite not showing
257  significant enrichments in DEGs, were part of significantly altered crosstalks. This is the case
258 of one of the top ranked crosstalks (supported by both nulls), which suggests the impairment
259  of regulative mechanisms between androgen response and apoptosis. Notably, the relation
260 between androgen receptor and apoptosis has been implicated in breast cancer
261  metastasis?>?®. Another example is cholesterol homeostasis, which emerged as a hub of the

262  intra-cellular network and is reported to promote cancer cell proliferation in TNBCs?’.

10
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263 The reconstruction of inter-cellular communications based on cell type-associated gene
264  sets provides a means to overcome the heterogeneity at gene expression level and sheds light
265  on the general picture of the active (or altered) communications among the cell types. The
266  analysis of TNBC cell types confirmed the well-known core network of communications
267 between cancer cells and microenvironment. Cancer cells show significant communication
268  with CAFs, supporting the pro-tumoral role of CAFs by activating the signalling associated with
269  proliferation and tumour progression®-20.28,

270 The joint analysis of intra-cellular and inter-cellular cross talks paves the way towards the
271  reconstruction of maps that integrate the communications between different cell types with
272  the pathway crosstalks activated within each one. In the proof-of-concept we analysed the
273  processes that are activated in cancer cells and can be associated with their communication
274  with CAFs. Notably, a mediator of such crosstalk is the extracellular chaperone CLU, which
275  was reported as a key player in cancer?® and an interesting actionable target in TNBC3032,
276 With the aim of providing an additional way of identifying the genes associated with a
277  phenotype, we introduced the crosstalk diversity and interaction diversity. These quantities
278 shedlight on the genes that act as mediators of the signalling between processes or cell types.
279  We showed, as a proof-of concept, that a series of genes with extreme crosstalk diversity and
280 interaction diversity is indeed known to be associated with the process under study. Among
281  them, EEF2 was demonstrated to be upregulated in several cancers and associated with worse
282  prognosis, thus suggesting its potentiality as novel therapeutic target3233. The high interaction
283  diversity of ribosomal-associated proteins sustains the importance of the dysregulation of
284  translation process in tumorigenesis mechanisms and the clinical potential represented by
285  targeting this process in tumour cells34. Interestingly, some of the genes prioritized by
286  crosstalk diversity and interactor diversity have marginal expression changes and, therefore,
287  stand out due to their pattern of interactions with other altered genes. This is the case of
288 CDKNZ2A and CDKN2B, which exert a role in the regulation of cell cycle and proliferation and
289  their association with breast cancer is largely studied3>3®, The analysis of genes that mediate
290 the inter-cellular communications revealed a series of genes shared by multiple
291 communications. These genes are involved in tumour promoting functions supporting tumour
292  growth, chronic inflammation and angiogenesis, by secretion of growth factors and other
293  soluble molecules, vesicles, and mechanic interactions among cells and extracellular

294  matrix?®37739, Concerning the genes that mediate the signalling between CAFs and cancer

11
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295 cells, MDK and MFGES8 (expressed in cancer cells) are known to be associated with the
296  acquisition of various tumour hallmarks*®4!, Studies suggest the involvement of AZGP1 in the
297 differentiation of progenitor cells into CAF to support tumorigenesis*?, while RPSA and LAMP1
298 are implicated in poor prognosis in breast cancer®44 PLAT was reported to regulate the
299  ability of breast cancer CAFs to invade stroma*®, and as an angiogenetic factor of CAF
300 associated with negative prognosis in colon cancer?.

301 Crosstalk diversity and interaction diversity can be relevant for the choice of actionable
302 targets. Genes that affect several crosstalks interacting with multiple cellular functions are
303 interesting targets for therapy, but — at the same time — could be associated with a wide
304 spectrum of negative side effects. The saturations of crosstalk diversity and interaction
305 diversity provide a means to collect more selective targets for therapy, as it prioritizes genes
306 that mediate crosstalks with less but more disease-specific cellular functions.

307 The results presented in this study have to be seen in light of some limitations. The gene-
308 geneinteractions available in the literature are aspecific, and as such, they are a model of the
309 interactions that potentially take place in the biological system under analysis. Moreover, the
310 collections of molecular interactions are known to be affected by the various biases*°. We
311  have used state-of-the art collections and filtered the interactions to ensure an appropriate
312 trade-off between coverage of genes and presence of biases, following the recommendations
313  of previous studies*®. As a proof-of-concept, we studied the intra-cellular crosstalks using
314  gene set definitions from MSigDB hallmarks. There are multiple ways to define intra-cellular
315 processes, e.g. using databases like KEGG and Reactome. Therefore, other analyses of intra-
316  cellular crosstalks in cancer cells of TNBC are possible and could highlight additional
317  mechanisms. To perform the proof-of-principle, we considered scRNA sequencing data from
318 a recent study in breast, which allowed us to analyse intra-cellular as well as inter-cellular
319  crosstalks, and the two of them combined. However, the number of tested genes was limited
320 by the sensitivity and depth of the type of technology used in such study. In turns, the results
321 emerged in the proof-of-principle should be interpreted considering this limited observability
322  of the underlying real processes.

323 In conclusion, the approach presented in this work and the results gained in the proof-of-
324  principle, even in the light of their limitations, support the usefulness of crosstalk analysis as
325 an additional instrument to the “toolkit” of biomedical research for translating complex

326  biological data into actionable insights.
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327 Methods

328 Definition of gene weights from single cell RNA-sequencing

329 data

330 The Seurat data object “SeuratObject_TNBC.rds” containing single-cell RNA expression
331 data of 8 triple negative breast tumors'®!! was downloaded from figshare*’. The associations
332  between the 9 cell clusters and cell types (not available in the Seurat object) were obtained
333  on the basis of the cell association provided by the authors in the figures of the paper,
334  together with “SeuratObject_ TNBCSub.rds” object (Supplementary Figure 3). Differentially
335  expressed genes were obtained by means of MAST algorithm*®, testing each cell type against
336  all the other cells (Seurat* function “FindAllMarkers()”, default parameters). Differential
337  expression statistics were used to define a gene weight vector u; (of size equal to the total
338 number of genes in the considered analysis) for each cell type j combining log fold change x
339  and adjusted p-value (Benjamini-Hochberg method>°); to reduce noise, scores associated with
340  marginal significance were set to zero, that is: y;; = —log,(x) log;o(p), when p < 0.05 A
341 log,(x) = 0.5, while yij = 0 otherwise, where i is the index for genes. Each vector was

342 normalized to have a maximum value of 1: u;; = y;;/max;(y;;).

343 Molecular interactions and gene sets

344 Molecular interactions used for pathway crosstalk analysis were downloaded from
345 STRING'? (v12, https://string-db.org/cgi/download). The combined score was updated
346  excluding “text mining” using a modified version of the script “combine_subscores.v2.py”
347  (https://stringdb-downloads.org/download). Ensembl identifiers were mapped to Entrez
348 Gene identifiers using the mapping available in STRING (https://string-db.org/cgi/download)
349 and Entrez Gene (ftp://ftp.ncbi.nih.gov/gene/DATA, September, 19, 2023). The highest score
350 was considered for each gene pair. Only high-confidence (combined score > 700) interactions
351 and the top 3 (per gene) interactions with medium confidence (STRING score > 400) were
352  considered, obtaining a total of 174’962 interactions involving 17°288 genes. Molecular

353 interactions available in Omnipath!® were obtained through the R package OmnipathR®!
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354  (September, 2024), for a total of 4’312 interactions involving 1’782 genes. The MSigDB
355  Hallmarks gene sets?! were collected through the R package “msigdbr” v7.4.1°2,

356 In each analysis, the initial gene set list was created to ensure that: each gene had at least
357 an interaction; only gene sets with at least 3 elements and a non-null gene weight were
358 considered; to reduce the number of possible gene set pairs, only those such that C(X,Y) >

359 0 were considered.

360 Randomizations and computational aspects

361 A total of 1000 randomizations of gene labels was used to create the null models. Gene
362 degree was preserved splitting the degree sequence in equally sized bins, 9 for intra-cellular
363  crosstalks, 4 to study inter-cellular communications, and 7 to study cancer cell intracellular
364  crosstalks associated with their communication with CAFs). The number of bins was optimized
365 touse the highest number, between 2 and 15, that leads to non-empty intervals. The average
366 computational cost for the analysis of intracellular crosstalks with 203 gene set pairs was

367 approximately 4 minutes over 8 cores with 64GB of RAM per core.

368 Code availability

369 The computational method used in this study (Ulisse v2.0) is available in Zenodo with the
370 identifier 10.5281/zenodo0.15166722. Source code and documentation are freely available in
371 github at the URLs https://github.com/emosca-cnr/Ulisse and https://emosca-
372 cnr.github.io/Ulisse.

;73 Data availability

374 The single-cell RNA sequencing data that support the findings of this study are available in
375  “figshare” with the identifier 10.6084/m?9.figshare.17058077.v1%’.
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Table

Table 1. Top 5 pathway crosstalks mediated by cancer cell DEGs. The genes reported

between parentheses are the DEGs that contribute to the crosstalk. The notation | - | indicates
gene set size, while ||*|| indicates the sum over all gene weights that contribute to the
crosstalk.
X Y X1 {IYI|llux|l{lluy|[{6Lxy|Lxy| € | Tc | PA | Pu p s
MYC TARGETS V1
ALLOGRAFT REJECTION (FBL, MYC, PABPC1, RPL18,
62 |53(0.338|1.334| 19 |101|0.252|0.188(0.001|0.001| 1.48E-05 [1.219
(RPS19, CDKN2A, RPL39) RPL6, RPLPO, RPS10, RPS2,
RPS3, RPS5, RPS6)
ESTROGEN RESPONSE
P53 PATHWAY
EARLY 44 150)0.593|0.404| 5 19 [0.120|0.263|0.001|0.001| 1.48E-05 |0.578
(CDKN2A, CDKN2B, KRT17)
(CCND1, MYC, KRT15)
KRAS SIGNALING DN P53 PATHWAY
14 [53(0.584(0.304| 3 4 (0.110(0.750|0.001{0.001| 1.48E-05 |0.532
(KRT15, KRT5, PKP1) (KRT17, SERPINBS5)
ANDROGEN RESPONSE APOPTOSIS
29 | 560.665|0.395| 4 7 (0.109(0.571|0.001{0.001| 1.48E-05 |0.528
(DBI, KRT19, KRTS) (APP, CLU, KRT18)
MYC TARGETS V1
(MYC, FBL, RPL6, RPLPO, P53 PATHWAY
53 [52(1.155|0.292| 10 | 27 (0.116{0.370|0.002(0.001| 2.82E-05 |0.526
RPS10, RPS2, RPS3, RPS5, (CDKN2A, CDKN2B, RPS12)
RPS6)
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517  Figure 1. Overview of crosstalk analysis. a) Input data. b) Visualization of the molecular interactions
518 among gene sets, at inter-cellular and intra-cellular levels, which lead to altered crosstalks. c¢) The
519 crosstalk value is supported by two null models. d) Crosstalk values can be distinguished based on
520 their saturation; the crosstalk diversity and interaction diversity are two gene-level scores that enable
521 the identification of key crosstalk mediators; these scores can be distinguished based on their
522  saturation. e) Crosstalk analysis identifies networks of intra-cellular processes, cell-cell
523 communication and intra-cellular processes associated with cell-cell communication.
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Figure 2. Intra-cellular crosstalks controlled by expression changes specific of TNBC cells. a)
number of altered links (6L) and average gene weight (||(ux, uy)||) of the crosstalk forming
genes. b) The probabilities p, and p, estimated by the two null models for each crosstalk
value; the vertical and horizontal lines denote @ = 0.01, while the diagonal line denotes p =
0.001. c) Crosstalk score s and its saturation 7.. d) Network of processes that establish
crosstalks supported (@« = 0.01) by at least a null model. e) Over representation analysis p-
values p(X) and p(Y) for each of the processes (X, Y) that establish a crosstalk; the vertical

and horizontal lines denote ¢ = 0.05.
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Figure 4. Inter-cellular crosstalks controlled by expression changes in the 9 cell types of
TNBC samples. a) Number of altered links (6L) and average gene weight (||(uyx, uy)||) of the
crosstalk forming genes. b) Crosstalk score s and its saturation 7;. c) Above: DEGs that mediate
the communication between CAFs and cancer cells; below: the position of cells in the space
of the first two tSNE dimensions (bottom), coloured by cell type whose communications
supported (a = 0.01) by at least a null model are indicated through a link between the two

centroids.
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Figure 5. Crosstalk diversity and interaction diversity of the DEGs that are involved in inter-
cellular crosstalks between CAFs and cancer cells. a-b) Crosstalk diversity dy (a) and
Interactor diversity d, (b) in relation to the number of cell types (n) in which the gene is

differentially expressed.
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560  Figure 6. Intra-cellular processes of cancer cells associated with their signalling with CAFs. T
561 The processes are ranked from top to bottom by decreasing value of s; squares indicate
562  processes that were not found in the analysis of intra-cellular crosstalks; link colour indicates
563  statistical evidence (as in Figures 2, 4), with the exception that, here, the dashed line replaces
564  the white colour in indicating that both null models are above a = 0.01.

565

26


https://doi.org/10.1101/2023.08.10.552776
http://creativecommons.org/licenses/by/4.0/

