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Abstract 10 

Disease phenotypes can be described as the consequence of interactions among molecular 11 

processes that are altered beyond resilience. Here, we address the challenge of assessing the 12 

possible alteration of intra- and inter-cellular molecular interactions among gene sets, which 13 

are intended to represent processes and or cellular phenotypes. We present an approach, 14 

designated as “Ulisse”, which complements the existing methods of enrichment analysis and 15 

cell-cell communication analysis. It can be applied to a gene list as well as multiple ranked 16 

gene lists, typically derived in the context of omics or multi-omics studies. The approach 17 

highlights the presence of alterations in those components that control the interactions 18 

between processes or cells. Crosstalk quantification is supported by two null models. Further, 19 

the approach provides an additional way of identifying the genes associated with the 20 

phenotype. As a proof-of-concept, we applied Ulisse to study the alteration of pathway 21 

crosstalks and cell-cell communications in triple negative breast cancer samples, based on 22 

single-cell RNA sequencing. In conclusion, our work supports the usefulness of crosstalk 23 

analysis as an additional instrument in the “toolkit” of biomedical research for translating 24 

complex biological data into actionable insights. 25 

 26 

 27 
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 INTRODUCTION 29 

The understanding of how gene-related molecular alterations translate into pathological 30 

phenotypes is a major challenge in life sciences. The experience gained from reductionist 31 

approaches like genome-wide association studies – where millions of single nucleotide 32 

variations are independently tested for association with a phenotype – strengthen the key 33 

role of molecular interactions1. The term “network medicine” indicates the application of 34 

network science to study diseases, which are viewed as the consequence of molecular 35 

alterations on a complex system of interacting molecular processes2.   36 

At cellular level we can classify molecular interactions into two broad categories: intra-37 

cellular and inter-cellular, according to whether they take place within a cell or among cells. 38 

Even if our knowledge of intra- and inter-cellular molecular interactions is incomplete, 39 

molecular networks are a crucial tool in biomedical research to translate complex molecular 40 

data from omics and multi-omics studies into actionable results3–5. 41 

Here, we address the challenge of assessing the possible alteration, with respect to a 42 

reference condition, of intra- and inter-cellular molecular interactions among sets of genes, 43 

which are intended to represent intra-cellular or cellular phenotypes. There are several 44 

differences between our approach, designated as Ulisse, and those already proposed in the 45 

field of network medicine (Supplementary Table 1). Ulisse can be applied to analyse gene 46 

list(s) or ranked gene list(s), two general formats that accommodate any score derived from 47 

omics data. We provide a means to screen the alteration of intra-cellular pathway crosstalks 48 

and derive a map of the altered communications among pathways, which complements 49 

pathway enrichment analysis. The availability of computational tools to study pathway 50 

crosstalks is limited, despite their importance in regulatory mechanisms6,7, obtaining effective 51 

drug combinations in cancer8 and investigating complex diseases phenotype9. Moreover, 52 

Ulisse can be used to reconstruct a cell-cell communication network between cell 53 

types/clusters. These two analyses (intra- and inter-cellular) can be combined to obtain 54 

integrated pathways of interactions that associate cell-cell communications with intracellular 55 

states. Further, we provide a score and a statistical assessment of the altered interactions, 56 

based on multiple empirical null models for networks. Lastly, we extract the key genes that 57 

take part in the altered interactions.  58 
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As a proof-of-concept, we applied our approach to study the alteration of pathway 59 

crosstalks and cell-cell communications in publicly available single-cell RNA expression data 60 

from a recent study that proposed a high-resolution map of cell diversity in normal and 61 

cancerous human breast10,11. 62 

Results 63 

Crosstalk quantification, statistical assessment and key 64 

players 65 

Here we describe how we define a “crosstalk”, that is, intra- and inter-cellular interactions 66 

between two gene sets, the assessment of its statistical significance and, lastly, how we use 67 

the results of crosstalk analysis to score genes based on their contribution (Figure 1, see 68 

Supplementary notes for further details). Note that we adopt a “gene-centric” view of 69 

molecular interactions – like in gene-centric human interactomes4,5 – where the term “gene-70 

gene interaction” refers to various types of molecular interactions (protein-protein, protein-71 

RNA, protein-DNA) that involve the considered gene pair. 72 

Two types of input are needed to calculate the crosstalk between any two gene sets 𝑋 and 73 

𝑌: 74 

• a list of gene-gene interactions, which can be derived from publicly available resources 75 

(like STRING12 and Omnipath3,13); 76 

• one or more sets of gene-level weights (in the unit interval), which provide a summary 77 

of the gene-level alterations of interest (e.g., differential expression or mutations). 78 

Formally, we quantify the crosstalk score as the sum of weighted products between the 79 

genes of 𝑋 that interact with those of 𝑌:  80 

𝐶(𝑋, 𝑌) = 𝐮!"	𝐀	𝐮# =++𝑎$% 	𝐮!(𝑖)𝐮#(𝑗).
&!

%'(

&!

$'(

 81 

where	𝐀 = (𝑎$%) is the adjacency matrix that specifies the interactions among the N) genes, 82 

while 𝐮! and 𝐮# are vectors of gene weights with positive values only for the genes of 𝑋, 𝑌. 83 
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The definition of the quantities involved in the calculation 𝐶(𝑋, 𝑌) follows three scenarios, 84 

based on whether the crosstalk is between gene sets associated with intra-cellular states, 85 

inter-cellular states or both. To quantify the alteration of crosstalk between two intra-cellular 86 

pathways (or another type of gene system), we exclude the genes shared between them, that 87 

is 𝑋 ∩ 𝑌 = ∅, otherwise we would consider intra-pathway interactions. Further, gene weights 88 

𝐮! and 𝐮# are defined from the same input source (e.g., same set of alterations), because the 89 

focus is on an intra-cellular characteristic, and the two gene sets represent internal states of 90 

the same cell. The molecular interactions are collected from “general purpose” database of 91 

interactions, like STRING12. 92 

Conversely, to quantify the inter-cellular crosstalk between two gene sets that are 93 

associated with two cell types, it is expected to have 𝑋 ∩ 𝑌 ≠ ∅, because the two cell types, 94 

for example, can express a series of genes in common. Moreover, 𝐮! and 𝐮# come from 95 

different sources, because the alterations are relative to distinct cell types. The molecular 96 

interactions are collected from databases that focus on ligand-receptor, like Omnipath3,13, a 97 

collection composed by multiple sources (i.e., Ramilowski14, CellPhoneBD15) 98 

Lastly (third scenario), to quantify the intra-cellular alterations associated with inter-99 

cellular alterations, we consider – for each cell type under analysis – the genes (set 𝑋) involved 100 

in any of the inter-cellular crosstalks of the cell type, and any altered pathway (set 𝑌) of the 101 

cell type. Besides such peculiarity in the definition of 𝑋 and 𝑌, we have, like in the first 102 

scenario that  𝑋 ∩ 𝑌 = ∅, and 𝐮! and 𝐮# defined from the same input source, because they 103 

are relative to the same cell type. 104 

A meaningful quantity that complements 𝐶(𝑋, 𝑌) is the crosstalk saturation 105 

𝑟* =
𝛿𝐿!#
𝐿!#

, 110 

which captures, in the process under study, the number of altered interactions 𝛿𝐿!# between 106 

𝑋 and 𝑌, in relation to all the possible interactions 𝐿!# between 𝑋 and 𝑌. Indeed, similar 107 

values of 𝐶(𝑋, 𝑌) can be due to a higher or lower impairment of the links between the two 108 

gene sets. 109 

To statistically benchmark the magnitude of an observed crosstalk value 𝑐 we have to 111 

consider that it might depend on various features like gene set size, distribution of gene 112 

weights and gene degree. We focused on two null models, namely	𝑀+and 𝑀,, in both of 113 

which we preserve gene set size, degree sequence, and the association between gene weight 114 
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and gene degree (within the same bin over the degree sequence), and randomize, 115 

respectively, gene-gene interactions and gene weights. Null model 𝑀+	is designed to test the 116 

dependence	 of	𝑐 from the network proximity of 𝑋 and 𝑌, while 𝑀, is meant to test the 117 

dependence	of	𝑐 from the weights of 𝑋 and 𝑌 genes. This leads to four possible outcomes, 118 

determined by the possible significance of 𝑐 in a single null, in both or in neither of them 119 

(Supplementary Figure 1, Supplementary Table 2). As expected by the fact that the two nulls 120 

disrupt different features, the analyses performed in our proof-of-concept (see next sections) 121 

revealed negligible correlations between the values obtained with the two nulls 122 

(Supplementary Figure 2). It is therefore meaningful to combine the two probabilities 𝜌+ and 123 

𝜌, of observing – respectively – a value equal or greater than 𝑐 in 𝑀+ and 𝑀,, into the 124 

probability of observing a product 𝜌> as small as the one observed 125 

𝑝 = 𝑃(𝜌> ≥ 𝜌+𝜌,) = 𝜌+𝜌, − 𝜌+𝜌,	ln(𝜌+𝜌,), 126 

which is equal to the probability given by means of the so-called Fisher's combined probability 127 

test 16,17. 128 

Lastly, we define a summary score for ranking crosstalks, combining effect size 𝐶(𝑋, 𝑌) and 129 

its estimated probability 𝑝: 130 

𝑠(𝑋, 𝑌) = −	𝐶(𝑋, 𝑌)	log(-(𝑝) 131 

The list of significant crosstalks provides the opportunity to score genes based on their 132 

contribution. We consider two gene-level quantities: crosstalk diversity and interaction 133 

diversity. The first counts how many gene sets that are part of altered crosstalks contain 134 

interactors of a gene 𝑔$; therefore, the saturation 𝑟!(𝑖) of the crosstalk diversity of 𝑔$  reaches 135 

1 when all the gene sets that contain interactors of 𝑔$  are part of altered crosstalks. The 136 

second counts the interactors of 𝑔$  that belong to gene sets that are part of crosstalks; 137 

analogously to 𝑟!(𝑖), the saturation 𝑟+(𝑖) of the interactor diversity of 𝑔$  reaches 1 when all 138 

the interactors of 𝑔$  belong to gene sets that are part of altered crosstalks. 139 

Alteration of crosstalks in triple negative breast cancer 140 

As a proof-of-concept, we analysed the crosstalks in triple negative breast cancer (TNBC), 141 

using single-cell RNA expression data from a recent study that proposed a high-resolution 142 

map of cell diversity in normal and cancerous human breast10,11. Our objective is to show what 143 

kind of information can be extracted from the analysis of crosstalks using data generated by 144 
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means of one the state-of-the-art technologies in transcriptomic analysis. In particular, we 145 

focused on cancer cells and analysed the interactions among intra-cellular processes whose 146 

alteration could be implied in the dysregulation of the reciprocal control among molecular 147 

mechanisms that could contribute to tumour progression. Then, we considered the 148 

communication between cancer cells and Cancer Associated Fibroblasts (CAF).  Indeed, CAFs 149 

represent a peculiar hub of cell-cell communication within the tumour niche by promoting 150 

tumoral growth and malignancy by releasing factors targeting cancer cells, repressing 151 

immune response by their interactions with immune cells and inducing angiogenesis 152 

interacting with endothelial cells18–20. Lastly, we shed light to cancer cell processes that could 153 

be associated with the communication between CAFs and cancer cells. 154 

Alteration of intra-cellular crosstalks in cancer cells 155 

We screened the impact of 304 (Supplementary Tables 3-4) cancer epithelial cell markers 156 

(𝑝 < 0.05, log.(FC) > 0.5, Cancer epithelial vs all) on the crosstalk between intra-cellular 157 

processes (MSigDB Hallmarks database21).  We found that most of the crosstalks is altered in 158 

up to 2 interactions and that the maximum number of altered interactions is 19, among a 159 

total of 14 genes belonging to allograft rejection and MYC targets (v1) (Table 1, Figure 2a, 160 

Supplementary Table 5). We observed a marked variability of gene weights, degree of 161 

statistical significance, and saturation, independently from the number of affected links, 162 

which makes such pieces of information useful to differentiate crosstalks (Figure 2a-c). In 163 

particular, we observed a total of 59 crosstalks whose score can hardly be obtained (𝛼 =164 

0.01) when shuffling interactions or gene weights, and 14 crosstalks that are supported by 165 

both nulls (Figure 2b). Among these, we obtained several crosstalks that involves the p53 166 

pathway, cholesterol homeostasis and androgen response, which emerge as hubs in the 167 

network of altered crosstalks (Figure 2d). In 24 crosstalks, the saturation indicates the 168 

alteration of more than half of the links (Figure 2c), like between p53 pathway and KRAS 169 

signalling (“KRAS_SIGNALING_DN”), which involves the alterations of 3 out of 4 interactions 170 

between a total of 5 genes, and the score is supported by both nulls (Figure 2c, 171 

Supplementary Table 5). To compare the outcomes of crosstalk and pathway enrichment 172 

analyses, we assessed to which extent the processes exhibiting significant crosstalks are also 173 

marked by significant enrichment in DEGs (Figure 2d, Supplementary Table 6). As expected, 174 

the two types of analyses provide a complementary view, where several processes involved 175 
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with significant crosstalk do not display enrichment and vice versa. Only in a few cases (7 176 

pairs) both the processes are enriched (p-value < 0.05) in DEGs, while the majority of altered 177 

crosstalks takes place between pairs of processes that are not enriched in DEGs.   178 

Significantly altered crosstalks are mediated by a total of 57 genes (Supplementary Table 179 

7). Crosstalk diversity and interaction diversity suggest a gene prioritization that is 180 

independent from their initial alteration score. In other words, genes that were ranked low 181 

by differential expression analysis can emerge as key players as mediators of crosstalks. This 182 

is the case of the two cyclin-dependent kinases CDKN2A and CDKN2B, which stand out for 183 

their crosstalk diversity, as they mediate 11 and 10 altered crosstalks, respectively (Figure 3a). 184 

Among the genes with the highest interactor diversity we obtained a series of genes that code 185 

for ribosomal-associated proteins (Figure 3b). We observed a wide range of saturations and 186 

an overall correlation between the saturation of crosstalk diversity and that of interaction 187 

diversity (Supplementary Table 7). Among the genes with the highest values of both 188 

saturations we found the two tumour proteins D52 (TPD52) and D53 (also known as TPD52L1) 189 

(Figure 3), which are involved in cancer cells proliferation and more aggressive phenotype22,23.  190 

Inter-cellular crosstalks (cell-cell communication) 191 

We analysed the inter-cellular interactions (Omnipath3) among the 36 pairs of sets defined 192 

by the differentially expressed genes (FDR < 0.05, log.(FC) > 0.5) of 9 cell types in relation 193 

to the others, in 8 TNBC tumors10 (Supplementary Tables 3-4). Compared to the intracellular 194 

crosstalks among processes, here we dealt with larger gene sets and more links among them. 195 

As expected, this scenario led to a higher number of altered interactions, with a median of 38 196 

and a maximum of 162 between CAFs and endothelial cells (Figure 4a, Supplementary Table 197 

8). Further, the crosstalks are statistically supported (𝛼 = 0.01) mostly by their gene weights 198 

(21 pairs), rather than interactions, which support 3 crosstalks that are supported by both 199 

nulls, namely between B cells and tumour-associated macrophage (TAMs), between dendritic 200 

cells (DCs) and TAMs, and between B cells and DCs. Saturation reaches up to one quarter of 201 

the possible interactions between CAFs and endothelial cells (Figure 4b). The emerging cell-202 

cell communication network (Figure 4c) highlights a relevant role of those microenvironment 203 

cells, which establish several significant interactions. The communication between cancer 204 

cells and CAFs is supported (𝛼 = 0.01) by randomization of gene weights, and involves 22 205 

interactions between a total of 33 DEGs (Figure 4c, Supplementary Table 9). Among the key 206 
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players of this communication, we found MDK and MFGE8 (expressed in cancer cells), which 207 

mediate 4 and 3 interactions, respectively, with genes expressed in CAFs, including integrins 208 

ITGB1 and ITGB5 (Supplementary Table 9). 209 

The cell-cell communication network (𝛼 = 0.01) involves 379 genes (Figure 5, 210 

Supplementary Table 10). Among the genes that stand out for their ubiquity we observed 211 

CXCR4, with a crosstalk diversity of 8 (out of 9 cell-types present), and ICAM1, TGFB1, ITGB2, 212 

PTPN6 and some Major Histocompatibility Complex genes (HLA-C, HLA-DRA, HLA-DRB1), 213 

which show a crosstalk diversity of 7. Among the 29 DEGs in cancer epithelial cells (out of 214 

379), MFGE8, LAMP1, RPSA and AZGP1 are specific (𝑑! = 1, 𝑟! = 1) of the communication 215 

with CAFs (Figure 5). Conversely, we did not observe DEGs in CAFs that are specific to the 216 

signalling with cancer cells. However, there is one gene, namely PLAT, which is only involved 217 

in the communication with cancer cells (𝑑! = 1). 218 

 219 

Integrated crosstalks: cancer cell pathways that can be associated with the 220 

communication between cancer cell and CAFs. 221 

We analysed the crosstalks between the gene set of the 14 cancer cell DEGs that mediate 222 

the communication with CAFs, and all the processes (MSigDB Hallmarks) that contain cancer 223 

cell DEGs (Figure 6, Supplementary Table 11). We found 15 interactions supported (𝛼 =224 

0.01) by at least a null model and two, supported by both nulls. The first involves interactions 225 

among RPSA, which mediate the interaction with CAFs, and other ribosomal proteins (RPL18, 226 

RPL6, RPLP0, RPS10, RPS2, RPS3, RPS5, RPS6) that are regulated by MYC. The second take 227 

place between, on the one hand, APP and PTPRF (mediators of the communication with CAFs), 228 

and, on the other hand, CLU and CTNNB1 (cholesterol homeostasis). Almost all the 229 

interactions found (13 out of 15) involve processes that establish significant (𝛼 = 0.01) intra-230 

cellular crosstalks (Supplementary Table 5). The two processes that did not emerge in the 231 

screening of intra-cellular crosstalks of cancer cells (namely complement and coagulation) are 232 

both mediated by the interaction between APP and CLU. 233 
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DISCUSSION 234 

We presented a network-based approach to assess the alterations of crosstalks between 235 

gene sets, based on gene-centric molecular interactions and one or more lists of gene scores 236 

that result from omics data analysis. The approach can be applied to inter-cellular as well as 237 

intra-cellular crosstalks, and to the analysis of intra-cellular crosstalks that can be associated 238 

with inter-cellular crosstalks. As a proof-of-concept, we applied the approach to analyse the 239 

crosstalks affected by the gene expression alterations detected at single-cell resolution in 240 

triple negative breast cancer samples. 241 

The score of a crosstalk is proportional to the interactions between two gene sets and the 242 

weights of the interacting genes. The score is supported by two complementary null models 243 

that conserve gene set size, degree sequence, and the association between gene weight and 244 

gene degree. These nulls provide a means to assess whether the statistical significance of the 245 

score comes from gene weights, interactions or both. In the proof-of-concept, we showed 246 

that all three scenarios emerge when using real data. 247 

We reported altered crosstalks at various degree of saturation, especially in the analysis of 248 

intra-cellular crosstalks. This quantity enabled the identification of pairs of processes where 249 

most of the interactions involved gene expression changes or, on the opposite, pairs of 250 

processes where only a specific part of their interaction is affected. For example, our analysis 251 

identified that the pathway of KRAS is involved in crosstalk dysregulation associated with 252 

TNBC, supporting evidence that indicates this pathway as crucial in phenotypical and 253 

metabolic features of cancer cells24.  254 

We showed that the analysis of intra-cellular crosstalks complements the typical 255 

enrichment analysis. Indeed, we reported a series of gene sets that, despite not showing 256 

significant enrichments in DEGs, were part of significantly altered crosstalks. This is the case 257 

of one of the top ranked crosstalks (supported by both nulls), which suggests the impairment 258 

of regulative mechanisms between androgen response and apoptosis. Notably, the relation 259 

between androgen receptor and apoptosis has been implicated in breast cancer 260 

metastasis25,26. Another example is cholesterol homeostasis, which emerged as a hub of the 261 

intra-cellular network and is reported to promote cancer cell proliferation in TNBCs27. 262 
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The reconstruction of inter-cellular communications based on cell type-associated gene 263 

sets provides a means to overcome the heterogeneity at gene expression level and sheds light 264 

on the general picture of the active (or altered) communications among the cell types. The 265 

analysis of TNBC cell types confirmed the well-known core network of communications 266 

between cancer cells and microenvironment. Cancer cells show significant communication 267 

with CAFs, supporting the pro-tumoral role of CAFs by activating the signalling associated with 268 

proliferation and tumour progression18–20,28. 269 

The joint analysis of intra-cellular and inter-cellular cross talks paves the way towards the 270 

reconstruction of maps that integrate the communications between different cell types with 271 

the pathway crosstalks activated within each one. In the proof-of-concept we analysed the 272 

processes that are activated in cancer cells and can be associated with their communication 273 

with CAFs. Notably, a mediator of such crosstalk is the extracellular chaperone CLU, which 274 

was reported as a key player in cancer29 and an interesting actionable target in TNBC30,31. 275 

With the aim of providing an additional way of identifying the genes associated with a 276 

phenotype, we introduced the crosstalk diversity and interaction diversity. These quantities 277 

shed light on the genes that act as mediators of the signalling between processes or cell types. 278 

We showed, as a proof-of concept, that a series of genes with extreme crosstalk diversity and 279 

interaction diversity is indeed known to be associated with the process under study. Among 280 

them, EEF2 was demonstrated to be upregulated in several cancers and associated with worse 281 

prognosis, thus suggesting its potentiality as novel therapeutic target32,33. The high interaction 282 

diversity of ribosomal-associated proteins sustains the importance of the dysregulation of 283 

translation process in tumorigenesis mechanisms and the clinical potential represented by 284 

targeting this process in tumour cells34. Interestingly, some of the genes prioritized by 285 

crosstalk diversity and interactor diversity have marginal expression changes and, therefore, 286 

stand out due to their pattern of interactions with other altered genes. This is the case of 287 

CDKN2A and CDKN2B, which exert a role in the regulation of cell cycle and proliferation and 288 

their association with breast cancer is largely studied35,36. The analysis of genes that mediate 289 

the inter-cellular communications revealed a series of genes shared by multiple 290 

communications. These genes are involved in tumour promoting functions supporting tumour 291 

growth, chronic inflammation and angiogenesis, by secretion of growth factors and other 292 

soluble molecules, vesicles, and mechanic interactions among cells and extracellular 293 

matrix20,37–39.  Concerning the genes that mediate the signalling between CAFs and cancer 294 
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cells, MDK and MFGE8 (expressed in cancer cells) are known to be associated with the 295 

acquisition of various tumour hallmarks40,41. Studies suggest the involvement of AZGP1 in the 296 

differentiation of progenitor cells into CAF to support tumorigenesis42, while RPSA and LAMP1 297 

are implicated in poor prognosis in breast cancer43,44. PLAT was reported to regulate the 298 

ability of breast cancer CAFs to invade stroma45, and as an angiogenetic factor of CAF 299 

associated with negative prognosis in colon cancer46. 300 

Crosstalk diversity and interaction diversity can be relevant for the choice of actionable 301 

targets. Genes that affect several crosstalks interacting with multiple cellular functions are 302 

interesting targets for therapy, but – at the same time – could be associated with a wide 303 

spectrum of negative side effects. The saturations of crosstalk diversity and interaction 304 

diversity provide a means to collect more selective targets for therapy, as it prioritizes genes 305 

that mediate crosstalks with less but more disease-specific cellular functions. 306 

The results presented in this study have to be seen in light of some limitations. The gene-307 

gene interactions available in the literature are aspecific, and as such, they are a model of the 308 

interactions that potentially take place in the biological system under analysis. Moreover, the 309 

collections of molecular interactions are known to be affected by the various biases4,5. We 310 

have used state-of-the art collections and filtered the interactions to ensure an appropriate 311 

trade-off between coverage of genes and presence of biases, following the recommendations 312 

of previous studies4,5. As a proof-of-concept, we studied the intra-cellular crosstalks using 313 

gene set definitions from MSigDB hallmarks. There are multiple ways to define intra-cellular 314 

processes, e.g. using databases like KEGG and Reactome. Therefore, other analyses of intra-315 

cellular crosstalks in cancer cells of TNBC are possible and could highlight additional 316 

mechanisms. To perform the proof-of-principle, we considered scRNA sequencing data from 317 

a recent study in breast, which allowed us to analyse intra-cellular as well as inter-cellular 318 

crosstalks, and the two of them combined. However, the number of tested genes was limited 319 

by the sensitivity and depth of the type of technology used in such study. In turns, the results 320 

emerged in the proof-of-principle should be interpreted considering this limited observability 321 

of the underlying real processes.  322 

In conclusion, the approach presented in this work and the results gained in the proof-of-323 

principle, even in the light of their limitations, support the usefulness of crosstalk analysis as 324 

an additional instrument to the “toolkit” of biomedical research for translating complex 325 

biological data into actionable insights. 326 
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Methods 327 

Definition of gene weights from single cell RNA-sequencing 328 

data 329 

The Seurat data object “SeuratObject_TNBC.rds” containing single-cell RNA expression 330 

data of 8 triple negative breast tumors10,11 was downloaded from figshare47. The associations 331 

between the 9 cell clusters and cell types (not available in the Seurat object) were obtained 332 

on the basis of the cell association provided by the authors in the figures of the paper, 333 

together with “SeuratObject_TNBCSub.rds” object (Supplementary Figure 3). Differentially 334 

expressed genes were obtained by means of MAST algorithm48, testing each cell type against 335 

all the other cells (Seurat49 function “FindAllMarkers()”, default parameters). Differential 336 

expression statistics were used to define a gene weight vector 𝐮%  (of size equal to the total 337 

number of genes in the considered analysis) for each cell type 𝑗 combining log fold change 𝑥 338 

and adjusted p-value (Benjamini-Hochberg method50); to reduce noise, scores associated with 339 

marginal significance were set to zero, that is: 𝑦$% = −log.(𝑥)		log(-(𝑝), when 𝑝 < 0.05 ∧340 

log.(𝑥) ≥ 0.5, while 𝑦$% = 0 otherwise, where	 𝑖	 is the index for genes. Each vector was 341 

normalized to have a maximum value of 1: 𝑢$% = 𝑦$% max$(𝑦$%)⁄ . 342 

Molecular interactions and gene sets  343 

Molecular interactions used for pathway crosstalk analysis were downloaded from 344 

STRING12 (v12, https://string-db.org/cgi/download). The combined score was updated 345 

excluding “text mining” using a modified version of the script “combine_subscores.v2.py” 346 

(https://stringdb-downloads.org/download). Ensembl identifiers were mapped to Entrez 347 

Gene identifiers using the mapping available in STRING (https://string-db.org/cgi/download) 348 

and Entrez Gene (ftp://ftp.ncbi.nih.gov/gene/DATA, September, 19, 2023). The highest score 349 

was considered for each gene pair. Only high-confidence (combined score ≥ 700) interactions 350 

and the top 3 (per gene) interactions with medium confidence (STRING score ≥ 400) were 351 

considered, obtaining a total of 174’962 interactions involving 17’288 genes. Molecular 352 

interactions available in Omnipath13 were obtained through the R package OmnipathR51 353 
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(September, 2024), for a total of 4’312 interactions involving 1’782 genes. The MSigDB 354 

Hallmarks gene sets21 were collected through the R package “msigdbr” v7.4.152. 355 

In each analysis, the initial gene set list was created to ensure that: each gene had at least 356 

an interaction; only gene sets with at least 3 elements and a non-null gene weight were 357 

considered; to reduce the number of possible gene set pairs, only those such that 𝐶(𝑋, 𝑌) >358 

0 were considered. 359 

Randomizations and computational aspects 360 

A total of 1000 randomizations of gene labels was used to create the null models. Gene 361 

degree was preserved splitting the degree sequence in equally sized bins, 9 for intra-cellular 362 

crosstalks, 4 to study inter-cellular communications, and 7 to study cancer cell intracellular 363 

crosstalks associated with their communication with CAFs). The number of bins was optimized 364 

to use the highest number, between 2 and 15, that leads to non-empty intervals. The average 365 

computational cost for the analysis of intracellular crosstalks with 203 gene set pairs was 366 

approximately 4 minutes over 8 cores with 64GB of RAM per core. 367 

Code availability 368 

The computational method used in this study (Ulisse v2.0) is available in Zenodo with the 369 

identifier 10.5281/zenodo.15166722. Source code and documentation are freely available in 370 

github at the URLs https://github.com/emosca-cnr/Ulisse and https://emosca-371 

cnr.github.io/Ulisse. 372 

Data availability 373 

The single-cell RNA sequencing data that support the findings of this study are available in 374 

“figshare” with the identifier 10.6084/m9.figshare.17058077.v147. 375 
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Table 506 

Table 1. Top 5 pathway crosstalks mediated by cancer cell DEGs. The genes reported 507 

between parentheses are the DEGs that contribute to the crosstalk. The notation | ∙ | indicates 508 

gene set size, while ‖∙‖ indicates the sum over all gene weights that contribute to the 509 

crosstalk. 510 

𝑋 𝑌 |𝑋| |𝑌| ‖𝐮!‖ ‖𝐮"‖ 𝛿𝐿!" 𝐿!" 𝑐 𝑟# 𝜌$ 𝜌% 𝑝 𝑠 

ALLOGRAFT REJECTION 

(RPS19, CDKN2A, RPL39) 

MYC TARGETS V1 

(FBL, MYC, PABPC1, RPL18, 

RPL6, RPLP0, RPS10, RPS2, 

RPS3, RPS5, RPS6) 

62 53 0.338 1.334 19 101 0.252 0.188 0.001 0.001 1.48E-05 1.219 

ESTROGEN RESPONSE 

EARLY 

(CCND1, MYC, KRT15) 

P53 PATHWAY 

(CDKN2A, CDKN2B, KRT17) 
44 50 0.593 0.404 5 19 0.120 0.263 0.001 0.001 1.48E-05 0.578 

KRAS SIGNALING DN 

(KRT15, KRT5, PKP1) 

P53 PATHWAY 

(KRT17, SERPINB5) 
14 53 0.584 0.304 3 4 0.110 0.750 0.001 0.001 1.48E-05 0.532 

ANDROGEN RESPONSE 

(DBI, KRT19, KRT8) 

APOPTOSIS 

(APP, CLU, KRT18) 
29 56 0.665 0.395 4 7 0.109 0.571 0.001 0.001 1.48E-05 0.528 

MYC TARGETS V1 

(MYC, FBL, RPL6, RPLP0, 

RPS10, RPS2, RPS3, RPS5, 

RPS6) 

P53 PATHWAY 

(CDKN2A, CDKN2B, RPS12) 
53 52 1.155 0.292 10 27 0.116 0.370 0.002 0.001 2.82E-05 0.526 

 511 
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Figures 513 

 514 

 515 

 516 

Figure 1. Overview of crosstalk analysis. a) Input data. b) Visualization of the molecular interactions 517 

among gene sets, at inter-cellular and intra-cellular levels, which lead to altered crosstalks. c) The 518 

crosstalk value is supported by two null models. d) Crosstalk values can be distinguished based on 519 

their saturation; the crosstalk diversity and interaction diversity are two gene-level scores that enable 520 

the identification of key crosstalk mediators; these scores can be distinguished based on their 521 

saturation. e) Crosstalk analysis identifies networks of intra-cellular processes, cell-cell 522 

communication and intra-cellular processes associated with cell-cell communication. 523 
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 525 

 526 

Figure 2. Intra-cellular crosstalks controlled by expression changes specific of TNBC cells. a) 527 

number of altered links (𝛿𝐿) and average gene weight (‖(𝐮!, 𝐮#)‖) of the crosstalk forming 528 

genes. b) The probabilities 𝜌/ and 𝜌, estimated by the two null models for each crosstalk 529 

value; the vertical and horizontal lines denote 𝛼 = 0.01, while the diagonal line denotes	𝑝 =530 

0.001. c) Crosstalk score 𝑠 and its saturation 𝑟0. d) Network of processes that establish 531 

crosstalks supported (𝛼 = 0.01)	by at least a null model. e) Over representation analysis p-532 

values 𝑝(𝑋) and 𝑝(𝑌) for each of the processes (𝑋, 𝑌) that establish a crosstalk; the vertical 533 

and horizontal lines denote 𝛼 = 0.05. 534 
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 536 

Figure 3. Crosstalk diversity and interaction diversity of the DEGs that are involved in intra-537 

cellular crosstalks in TNBC cells. a) Crosstalk diversity 𝑑! and its saturation 𝑟!. b) Interactor 538 

diversity 𝑑+	and its saturation 𝑟+. 539 
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 541 

Figure 4. Inter-cellular crosstalks controlled by expression changes in the 9 cell types of 542 

TNBC samples. a) Number of altered links (𝛿𝐿) and average gene weight (‖(𝐮!, 𝐮#)‖) of the 543 

crosstalk forming genes. b) Crosstalk score 𝑠 and its saturation 𝑟0. c) Above: DEGs that mediate 544 

the communication between CAFs and cancer cells; below: the position of cells in the space 545 

of the first two tSNE dimensions (bottom), coloured by cell type whose communications 546 

supported (𝛼 = 0.01)	by at least a null model are indicated through a link between the two 547 

centroids. 548 
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 550 

 551 
 552 

Figure 5. Crosstalk diversity and interaction diversity of the DEGs that are involved in inter-553 

cellular crosstalks between CAFs and cancer cells. a-b) Crosstalk diversity 𝑑! (a) and 554 

Interactor diversity 𝑑+	(b) in relation to the number of cell types (n) in which the gene is 555 

differentially expressed. 556 

 557 
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 559 
Figure 6. Intra-cellular processes of cancer cells associated with their signalling with CAFs. T 560 

The processes are ranked from top to bottom by decreasing value of 𝑠; squares indicate 561 

processes that were not found in the analysis of intra-cellular crosstalks; link colour indicates 562 

statistical evidence (as in Figures 2, 4), with the exception that, here, the dashed line replaces 563 

the white colour in indicating that both null models are above 𝛼 = 0.01.  564 
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