

1 **Social context and the evolution of delayed reproduction in birds**

2 Liam U. Taylor^{1,2*}, Josef C. Uyeda³, and Richard O. Prum¹

3

4 ¹ Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United

5 States

6 ² Biology Department, Bowdoin College, Brunswick, ME, United States

7 ³ Department of Biological Sciences, Virginia Polytechnic Institute and State University,

8 Blacksburg, VA, United States

9

10 *Corresponding author: l.taylor@bowdoin.edu

11

12 **Abstract**

13 One puzzling feature of avian life histories is that individuals in many different lineages delay
14 reproduction for several years after they finish growing. Intraspecific field studies suggest that
15 various complex social contexts—such as cooperative breeding groups, nesting colonies, and
16 display leks—result in delayed reproduction because they require forms of sociosexual
17 development that extend beyond physical maturation. Here, we explicitly propose this hypothesis
18 and use a full suite of phylogenetic comparative methods to test it, analyzing the evolution of age
19 at first reproduction (AFR) in females and males across 963 species of birds. Phylogenetic
20 regressions support increased AFR in colonial females and males, cooperatively breeding males,
21 and lekking males. Continuous Ornstein-Uhlenbeck models support distinct evolutionary
22 regimes with increased AFR for all of cooperative, colonial, and lekking lineages. Discrete
23 hidden state Markov models suggest a net increase in delayed reproduction for social lineages,
24 even when accounting for hidden state heterogeneity and the potential reverse influence of AFR
25 on sociality. Our results support the hypothesis that the evolution of social contexts reshapes the
26 dynamics of life history evolution in birds. Comparative analyses of even the most broadly
27 generalizable characters, such as AFR, must reckon with unique, heterogeneous, historical events
28 in the evolution of individual lineages.

29

30 **Keywords:** *body size, cooperative breeding, colony nesting, deferred breeding, delayed*
31 *maturity, fast-slow continuum, immature, juvenile, lek, life history evolution*

32 **Introduction**

33 In many vertebrates, sexual activity is tightly linked to physical maturity. For example, a
34 House Mouse (*Mus musculus*) reaches full size (~20g) and begins breeding within a month of
35 birth (Vandenbergh et al. 1972). In contrast, an African Bush Elephant (*Loxodonta africana*) can
36 take decades to reach adult size (>2,000 kg) before breeding (Perry 1953).

37 Life history theory invokes somatic growth to explain the evolution of delayed
38 reproduction (Williams 1966:87–88; Stearns 1992). Given the ever-present risk of mortality,
39 selection should favor delayed reproduction only if it provides a future reproductive advantage
40 substantial enough to offset the risk of waiting (Wittenberger 1979; Bell 1980; Taylor and Prum
41 2024). If an increase in body size before maturation contributes to an increase in lifetime
42 fecundity (e.g., a bigger fish can produce more numerous or larger eggs) or a decrease in adult
43 mortality (e.g., a bigger fish is harder to catch and eat), then young organisms may delay
44 reproduction to invest in growth (Roff 1984; Stearns and Koella 1986; Kozłowski 1992).

45 Extrinsic mortality risks can tune the relative lifetime costs and benefits of juvenile
46 growth, contributing to classic macroevolutionary correlations among large body sizes, long
47 lifespans, and delayed reproduction (e.g., Western and Ssemakula 1982; Harvey and Clutton-
48 Brock 1985; Charnov 1993). A long lifespan, however, is not sufficient to explain delayed
49 reproduction. Selection requires a lifetime fitness benefit from development, such as an increased
50 body size, to outweigh the costs of forgoing reproduction when young (Taylor and Prum 2024).

51 Birds complicate this logic, because sexual activity is not tightly linked to physical
52 maturity. Nearly all birds grow to adult size within their first year of life, often within weeks or
53 months after hatching (Bennett and Owens 2002). But individuals in many avian species delay
54 reproduction for several years (Lack 1968). If birds do not grow while they delay reproduction,

55 then we cannot understand the evolution of delayed reproduction in terms of physical growth
56 (Charnov 2000). Therefore, although there are strong, macroevolutionary correlations between
57 large body size and delayed reproduction in birds (Western and Ssemakula 1982; de Magalhães
58 et al. 2007), these correlations explain little about the evolution of delayed reproduction in birds.

59 The alternative hypotheses for avian delayed reproduction highlight behavioral, rather
60 than physical, development. One set of hypotheses is focused on foraging development,
61 suggesting that some birds wait until they develop foraging skills before attempting to rear young
62 (Ashmole 1963; Wunderle 1991). Another explanation—not mutually exclusive with foraging
63 development—is scattered across the literature with regards to avian social behavior (Lack 1968;
64 Orians 1969; Wiley 1974; Gould 1977:345–346; Bradley and Wooller 1990; Zack and
65 Stutchbury 1992; Møller 2006; Hatchwell 2009). Synthesizing these earlier suggestions, we
66 formally propose a hypothesis: some birds have evolved to delay reproduction because they must
67 undergo processes of sociosexual maturation, extending beyond physical maturation, to breed in
68 complex social contexts.

69 For birds, these complex social contexts include cooperative breeding groups, nesting
70 colonies, and display leks. Cooperative birds have breeding territories that include extra-pair
71 individuals or multi-pair groups (Skutch 1961; Cockburn 2006). Colonial birds defend nest sites,
72 rather than foraging resources, in dense association with conspecific breeders (Perrins and
73 Birkhead 1983). Lekking birds defend display sites, rather than nesting or foraging resources,
74 where they perform elaborate sexual displays in close proximity to others (Bradbury 1981).

75 Intraspecific field studies suggest these social contexts give rise to delayed reproduction
76 because they create opportunities, or obligations, for sociosexual development. For example, the
77 cooperatively breeding White-winged Chough (Corcoracidae: *Corcorax melanorhamphos*;

78 ~350g), usually starts breeding around four years old, only after forming a breeding group that
79 assists with incubating and provisioning young (Rowley 1978; Heinsohn and Cockburn 1997).
80 The colonial Snowy Albatross (Diomedeidae: *Diomedea exulans*; ~7 kg) starts breeding at more
81 than eight years old, only after developing central-place foraging skills, territorial social skills,
82 and pair-bonds, all of which are needed to raise offspring at a pelagic breeding colony (Hector et
83 al. 1986; Weimerskirch and Jouventin 1987; Pickering 1989; Riotte-Lambert and Weimerskirch
84 2013). Meanwhile, female Long-tailed Manakins (Pipridae: *Chiroxiphia linearis*; ~20 g) begin
85 breeding in their first or second year, whereas the lekking males spend a minimum of five
86 years—and often more than a decade—navigating the social hierarchies of their cooperative leks
87 and developing coordinated, multi-male sexual displays before they have the chance to copulate
88 (McDonald 1993; Trainer et al. 2002).

89 Here, we use a broad suite of comparative methods to investigate a fundamental question
90 about avian life histories: by setting the stage for sociosexual development, does the evolution of
91 complex social contexts give rise to the evolution of delayed reproduction? First, we use
92 phylogenetic regressions (Grafen 1989; Garland Jr. et al. 1993) to test overall correlations
93 between social context and age at first reproduction (AFR). Second, we use continuous Ornstein-
94 Uhlenbeck models (Butler and King 2004; Beaulieu et al. 2012) to test whether the mode of AFR
95 evolution differs for lineages living in complex social contexts. Third, we use discrete hidden
96 Markov models (Boyko and Beaulieu 2021) to test whether the evolution of social contexts
97 precedes the evolution of delayed reproduction, or vice versa. Our analyses provide evidence that
98 the historical evolution of social contexts restructures the evolutionary dynamics of delayed
99 reproduction across birds.

100

101 **Methods**

102 *Age at first reproduction (AFR)*

103 We coded female and male AFR as an integer value representing the minimum reported
104 breeding age for each species. Our core sources were global and regional encyclopedias,
105 including all full-length articles in Cornell's Birds of the World (Billerman et al. 2022), The
106 Birds of the Western Palearctic (Cramp et al. 1977), Handbook of Australian, New Zealand, and
107 Antarctic Birds (Marchant and Higgins 1990), and The Birds of Africa (Fry et al. 1982),
108 supplemented with literature on target families or species. We coded separate male and female
109 values whenever possible. If no distinction was made, we used the same value for males and
110 females. References for each species are available in the associated data file.

111 Most birds in our dataset exhibit some form of annual seasonality, either from temperate
112 winter-summer cycles or tropical wet-dry cycles (Immellmann 1971; Wingfield and Farner 1980;
113 Wikelski et al. 2000). Thus, we summarized AFR as an integer representing annual reproductive
114 season since hatching. For example, an AFR of three indicated that breeding starts in the third
115 annual breeding season, roughly 36 months after hatching.

116 Criteria for reports of “breeding” differed across taxa, ranging from molecular paternity
117 testing (e.g., male Wire-tailed Manakin *Pipra filicauda*; Ryder et al. 2009), to observations of
118 egg-laying (e.g., female Spanish Eagle *Aquila adalberti*; González et al. 2006), to territory
119 establishment (e.g., male Willow Ptarmigan *Lagopus lagopus*; Hannon and Dobush 1997), to
120 blanket statements about “sexual maturity.” In some cases, information was derived from captive
121 breeding reports (especially for Anseriformes, Galliformes, and Psittaciformes) or plumage
122 maturation timelines for species that breed almost exclusively in definitive plumage (e.g., Regent
123 Bowerbird *Sericulus chrysocephalus*; Frith and Frith 2004). Although varied definitions of

124 “breeding” added interspecific noise to the dataset, most definitions biased AFR downwards (i.e.,
125 an individual often needs to hold a territory to build a nest, to lay an egg, to hatch an egg). Our
126 use of minimum, rather than central, AFR values thus offered a more consistent, albeit
127 conservative, representation of breeding age across species.

128 We did not code intraspecific or intra-annual variation in breeding phenology, which can
129 have important consequences for age-related reproductive outcomes (Becker et al. 2008; López-
130 Calderón et al. 2017; Neate-Clegg and Tingley 2023). One extreme form of intra-annual
131 variation involves birds breeding early in their first year of life, when rapid growth allows for
132 somatic maturity under limited seasonality (e.g., Zebra Finch *Taeniopygia guttata*; Immelmann
133 1971), across subannual environmental cycles (e.g., *Loxia* crossbills; Hahn 1998), or even within
134 season of hatch (e.g., Anna’s Hummingbird *Calypte anna*; Clark and Russell 2020). There were
135 37 species in the dataset with a minimum reported AFR of less than one year (Table S1). Further
136 comparative studies would help unpack the relationships among environmental fluctuations,
137 somatic growth, small size, molt, sociosexual development, and life history evolution in these
138 species. In this study, we simply assigned them an AFR of one.

139 Life history evolution is often more sensitive to changes that occur at younger ages
140 (Hamilton 1966; Williams 1966; Stearns 1992). A shift in younger AFR values (e.g., breeding
141 year two vs. three) may be subject to stronger selection than the same shift in older AFR values
142 (e.g., breeding year eight vs. nine). Therefore, we used \log_2 AFR values for all continuous
143 analyses.

144 *Social context*

145 We assigned each species in our dataset to one of four social contexts: cooperative,
146 colonial, lekking, or “other.” As introduced previously, cooperative breeding was assigned to
147 species in which breeding territories include extra-pair individuals or groups, encompassing both
148 helpers-at-the-nest (e.g., *Malurus cyaneus*; Dunn et al. 1995) and communal breeding (e.g.,
149 *Crotophaga major*; Riehl 2021). Coloniality was assigned to species in which female and male
150 breeding territories exclusively consist of nest sites in close proximity to conspecific breeders
151 (Perrins and Birkhead 1983). Lekking was assigned to species in which one sex has breeding
152 territories that exclusively operate as sexual display sites (Bradbury 1981). This broad definition
153 of lekking (Prum 1994) included species with aggregated “arena” display sites (e.g.,
154 *Centrocercus urophasianus*; Wiley 1974) as well as more solitary display sites (e.g.,
155 *Ptilonorhynchus violaceus*; Borgia 1985). Species that were neither cooperative, colonial, nor
156 lekking were assigned as social context “other.” As discussed later, this “other” category
157 encompassed a wide range of additional breeding systems and social strategies.

158 We made minor updates to the Cockburn (2006) parental care dataset for cooperative
159 breeders by including “group” breeders as cooperative (*Cyphorhinus phaeocephalus*, *Nestor*
160 *meridionalis*, *Nestor notabilis*, *Nymphicus hollandicus*, *Perisoreus canadensis*, *Perisoreus*
161 *infaustus*, *Pyrrholaemus sagittatus*, and *Zanda funerea*) and by reassigning some species based
162 on more recent life history accounts (*Aphelocoma californica*, *Bucorvus abyssinicus*, *Coragyps*
163 *atratus*, and *Icterus galbula* were reassigned as not cooperative; *Curruca nisoria*, *Hypsipetes*
164 *crassirostris*, and *Icterus bullockii* were reassigned as cooperative). We consulted Rolland et al.
165 (1998), Bradbury (1981), and our life history sources for statements about coloniality and
166 lekking. In cases of hierarchically-structured colonies of cooperative breeding groups (e.g.,

167 *Manorina melanophrys*; Smith and Robertson 1978), we assigned species under the more
168 proximate context of cooperative. As an additional model covariate, we used mass data (\log_{10} ,
169 not distinguished by sex) from the AVONET dataset (Tobias et al. 2022).

170

171 *Phylogenetic trees*

172 We used the distribution of 100 phylogenetic trees from McTavish et al. (2024
173 [preprint]), pruned to our final dataset ('random' node age tree set;
174 <https://github.com/McTavishLab/AvesData/commit/1dc8be23491dce4c8f875699ef6ba203cf54a96>). Data and trees were wrangled, pruned, and visualized with the ape, ggtree, and tidyverse
175 packages in R v4.4.1 (Paradis et al. 2004; Yu et al. 2017; Wickham et al. 2019; R Core Team
176 2024). All analyses were conducted on separate female and male datasets.
177

178

179 *Phylogenetic regressions*

180 First, we directly compared AFR (\log_2) values between social contexts using
181 phylogenetic ANOVAs with Brownian correlation structures from R package phytools (Garland
182 Jr et al. 1993; Revell 2012). If social context influences the evolution of delayed reproduction in
183 birds, we predicted that cooperative, colonial, and lekking lineages should have significantly
184 higher AFR than birds living outside of those social contexts. P-values were simulated from
185 1,000 iterations for each of 100 trees with post hoc pairwise t-tests. Given three overlapping
186 comparisons per variable (cooperative vs. "other", colonial vs. "other", lekking vs. "other"), the
187 Bonferroni-corrected P-value threshold for pairwise tests was $\alpha = 0.05/3 = 0.016$.

188 We then tested for overall correlations between AFR (\log_2) and social context (colony,
189 cooperative, lekking, or "other") using phylogenetic generalized least squares (PGLS)

190 regressions (Grafen 1989). If social context influences the evolution of delayed reproduction in
191 birds, we predicted a significant positive effect on AFR from cooperative breeding, coloniality,
192 and lekking. All models used Brownian correlation structures from R package ape. We fit PGLS
193 models with R package nlme (Pinheiro and Bates 2000) across the full distribution of 100 trees.

194 We compared three PGLS models for each dataset: Mass-only, Social + Mass, and Social
195 * Mass (Table 1). All models included mass as a covariate. However, mass is not likely a directly
196 confounding covariate with respect to social context; there is not a clear mechanistic hypothesis
197 by which an increase in mass independently influences the evolution of AFR in birds. Instead,
198 we included mass in our models because (1) it is a well-known correlate of AFR in birds and
199 other vertebrates and (2) it serves as a strong proxy for lifespan (Western and Ssemakula 1982;
200 Harvey and Clutton-Brock 1985; Charnov 1993; de Magalhães et al. 2007), which may tune the
201 expected lifetime reproductive benefits of development more generally (Taylor and Prum 2024),
202 and may thus reflect variation in the influence of development operating outside of specific
203 social contexts (e.g., foraging development; Wunderle 1991). In sum, a model effect of mass on
204 AFR (or a model using only mass) offers minimal direct biological insight into AFR evolution
205 for birds, besides correlating with axes of life history variation that are partially orthogonal to
206 social context.

207

208 *Continuous evolutionary models*

209 We investigated the influence of social context on AFR evolution in a continuous
210 framework using Ornstein-Uhlenbeck (OU) model comparisons (Butler and King 2004; Beaulieu
211 et al. 2012). If social context influences the evolution of delayed reproduction, then we predicted
212 that more complicated models of evolution—those featuring distinct regimes for cooperative,

213 colonial, and lekking lineages with increased AFR—would outperform simpler models that
214 ignore social context.

215 We compared seven continuous models (Table 2). These models separated lineages into
216 different regimes for evolution of AFR. Each regime was allowed a distinct central parameter (θ)
217 for AFR. Lineages were assigned a regime based on ancestral state estimates of social context
218 (cooperative, colonial, lekking, or “other”) generated with R package ape (four-state discrete
219 model, symmetrical transition rates). We fit continuous models with R package OUwie (Beaulieu
220 and O’Meara 2022) and compared AIC scores for each of 100 trees.

221

222 *Discrete evolutionary models*

223 Although AFR resembles a continuous variable, annual seasonality discretizes biological
224 variation to largely integer-scale values. Thus, we also analyzed the evolution of AFR using
225 discrete, hidden state Markov models (Beaulieu et al. 2022). These models investigated not only
226 the correlation between social context and AFR, but also the precedence of these traits in the
227 phylogeny (Pagel 1994) while incorporating background heterogeneity in transition rates (Boyko
228 and Beaulieu 2021). For discrete model comparisons, we predicted that preferred models would
229 show lineages in complex social contexts have elevated transition rates towards increased AFR.

230 We compared 11 discrete models (Table 3). In these models, AFR was binned into two
231 states (relatively fast reproduction = $AFR \leq 2$ vs. relatively slow reproduction = $AFR \geq 3$) and
232 sociality was also binned into two states (cooperative, colonial, or lekking vs. “other”). We fit
233 discrete models with R package corHMM (100 random restarts per run; Beaulieu et al. 2022) and
234 compared AIC scores for each of 100 trees.

235 Discrete model parameters are defined in *Supplementary Material: Discrete model*
236 *descriptions*. Following our hypothesis, a model with elevated transitions towards higher AFR
237 values in the social state should outperform a model in which the evolution of AFR is
238 independent of social state (i.e., model #2 is better than model #1; Table 3). However, this
239 simple comparison neglects two potentially confounding sources of variation. First, a strong
240 association between AFR and sociality may be due to social evolution shifting as a function of
241 AFR, rather than vice versa. We thus included model #3 (in which social transitions depend on
242 AFR state), and model #4 (in which there is a mutual dependence between AFR and social state).

243 Furthermore, there may be underlying heterogeneity in the evolution of AFR that extends
244 beyond our focal covariate, leading to false preference for any model with multiple AFR
245 parameters (Maddison and FitzJohn 2015; Uyeda et al. 2018; Boyko and Beaulieu 2021). We
246 thus included model #5, which set AFR transitions independent of social state but allowed for
247 heterogeneity via two unobserved hidden states (H1 and H2). Model #6 allowed for hidden state
248 variation in social transitions. More complicated models combined multiple forms of
249 heterogeneity. For example, model #7 let transitions in AFR vary based on both social and
250 hidden states, whereas model #9 let transitions in AFR vary based on social state while sociality,
251 in turn, varied by hidden state. The most complicated model (model #11) featured two hidden
252 states and mutual dependence: in each hidden state, a separate set of parameters described AFR
253 transitions that varied by social state, and, in turn, social transitions that varied by AFR state.

254 **Results**

255 *Age at first reproduction (AFR)*

256 We compiled minimum reported values of AFR for 963 species (944 species with female
257 values, 950 species with male values, 931 species with either (A) both female and male values or
258 (B) reports that did not distinguish by sex; Fig. 1) across 36/41 orders and 156/251 families in
259 the Clements v2023b taxonomy (Clements et al. 2023). The five orders with no available data
260 were Musophagiformes, Eurypygiformes, Leptosomiformes, Galbuliformes, and Cariamiformes.
261 Of the 95 families with no available data, 69 were in order Passeriformes. The female dataset
262 included 125 cooperative, 199 colonial, and 27 lekking species. The male dataset included 128
263 cooperative, 200 colonial, and 29 lekking species.

264 Across the dataset, minimum reported AFR values ranged from <1 yr (coded as 1 yr) to 9
265 yr (Fig. 1). Mean (\pm SD) AFR for cooperative species was $1.58 \text{ yr} \pm 1.13$ for females and 1.61 yr
266 ± 1.14 for males. For colonial species, mean AFR was $2.69 \text{ yr} \pm 1.62$ yr for females and 2.74 yr
267 ± 1.64 for males. For lekking species, mean AFR was $1.70 \text{ yr} \pm 1.66$ for females, and $2.93 \text{ yr} \pm$
268 2.00 for males. The remaining species, classified as social context “other,” had mean AFR $1.36 \pm$
269 0.84 for females and 1.4 ± 0.86 for males.

270

271 *Regression analyses*

272 Phylogenetic ANOVAs for AFR across social contexts were overall significant for
273 female, male, and male vs. female difference values (median P [5–95% quantiles], female: 0.003
274 [0.001, 0.006]; male: 0.001 [0.001, 0.003]; male vs. female difference: 0.009 [0.003, 0.017]).
275 Post hoc pairwise t-tests showed colonial birds had significantly increased AFR when compared
276 to “other” species for both females and males (colonial vs. “other”, female: $T = -15.6$, $P = 0.002$
277 [0.001, 0.004]; male: $T = -15.5$, $P = 0.001$ [0.001, 0.004]). AFR was not significantly different

278 between cooperative and “other” species (cooperative vs. “other”, female: $T = -2.2$, $P = 0.43$
279 [0.34, 0.47]; male: $T = -1.9$, $P = 0.48$ [0.43, 0.52]). Lekking birds had increased AFR in males,
280 but not females, although the limited number of lekking birds meant this pairwise comparison
281 was not significant under the conservative Bonferroni-corrected threshold (lekking vs. “other”,
282 female: $T = -1.2$, $P = 0.70$ [0.67, 0.72], male: $T = -6.6$, $P = 0.02$ [0.01, 0.03]). However, lekking
283 birds did show significantly larger sexual differences in AFR (male AFR > female AFR) when
284 compared to “other” species (difference in male vs. female AFR for lekking vs. “other”: $T = -$
285 13.7, $P = 0.001$ [0.001, 0.001]). In contrast, neither cooperative nor colonial birds showed sexual
286 differences in AFR when compared to “other” species (male vs. female difference in AFR for
287 cooperative vs. “other”: $T = -0.2$, $P = 0.96$ [0.94, 0.97]; colonial vs. “other”: $T = -0.7$, $P = 0.90$
288 [0.89, 0.92]).

289 Turning to PGLS models, there was overall preference for the Mass + Social model over
290 the Mass-only or Social * Mass interaction models for both female and male datasets (Table 1).
291 However, variation in relative AIC values across different tree samples for the female dataset
292 (Table 1) suggests that standing phylogenetic uncertainty has substantial consequences on the
293 correlative signals among mass, social context, and female AFR.

294 All PGLS model estimates are provided in Table S2. Results from the overall preferred
295 Social + Mass model are summarized in Table 4. Across trees, there were universally significant
296 positive effects of mass on both female and male AFR. The significance of cooperative breeding
297 varied, with median P-values of 0.02 for males but 0.055 for females, in both cases ranging to
298 insignificant for some trees. Coloniality had significant positive effects for both females and
299 males, whereas lekking had a significant positive effect for males only (Table 4).

300 For a conservative interpretation of model effects, consider a lineage with AFR = 1 yr
301 (2^0). The \log_{10} -transformed mass effect of 0.26 (for females) and 0.34 (for males) indicated that a
302 ten-fold increase in mass is associated with an increased AFR of $1.20 \text{ yr } (2^{0.26})$ for females and
303 $1.27 \text{ yr } (2^{0.34})$ for males (Table 4). In parallel, we can interpret the effects of cooperative
304 breeding with increased AFR of $1.09 \text{ yr } (2^{0.12})$ for females and $1.11 \text{ yr } (2^{0.15})$ for males, only the
305 latter of which was significant across trees. Coloniality was associated with an increased AFR of
306 $1.12 \text{ yr } (2^{0.17})$ for females and $1.15 \text{ yr } (2^{0.20})$ for males. The larger lekking effect for males would
307 correspond to an increased AFR of $1.53 \text{ yr } (2^{0.62})$.

308 Another way to interpret these correlations is to directly compare social and mass effects
309 with one another. A ten-fold increase in mass (i.e., one unit increase in \log_{10} mass = 10^1) had an
310 estimated effect of ~ 0.30 (Table 4). Cooperative and colonial effect sizes were ~ 0.15 , or roughly
311 50% the magnitude of the mass effect (i.e., an effect equivalent to half a unit increase in \log_{10} -
312 transformed mass). In other words, the effects of cooperative breeding and coloniality on AFR
313 were roughly equivalent to a tripling of mass ($10^{0.5} = 3.16$). The male lekking effect (0.62) was
314 roughly twice the size of the male mass effect (0.34), meaning the effect of lekking on male AFR
315 was roughly equivalent to a hundred-fold increase in mass.

316

317 *Continuous evolutionary models*

318 When comparing continuous models of AFR evolution, all OU models outperformed a
319 BM model for both female and male datasets (Table 2). For the male dataset, the OU4-Social
320 model was clearly preferred, with four distinct regimes for each of cooperative, colonial, lekking,
321 and “other” lineages (Table 2). For the female dataset, the OU4-Social model was marginally
322 preferred to the OU2-Colonial model across trees, the latter of which only distinguished colonial

323 species in a separate regime (Table 2). These two models, OU4-Social and OU2-Colonial,
324 outperformed all others for the female dataset (Table 2).

325 All continuous model estimates are provided in Table S3. Results from the clearly
326 preferred (for males) or marginally preferred (for females) OU4-Social model are summarized in
327 Table 5. The \log_2 -transformed median θ values for the “other” regime corresponded to an AFR
328 of 1.3 yr for females and males. Estimated θ values for cooperative regimes were only slightly
329 elevated, at 1.5 yr for female and males, whereas colonial θ values corresponded to 2.4 yr.

330 Estimated θ for the lekking regime was more than twice as high in males than in females,
331 corresponding to 1.9 yr for females and 3.9 yr for males. Estimated α parameters—which were
332 shared across all regimes—indicated a phylogenetic half-life of 8.9 Myr and 8.2 Myr for females
333 and males, respectively, out of a total tree depth ranging 72–133 Myr across the full distribution
334 of 100 trees.

335 Estimated θ values were increased in colonial, lekking, and combined social regimes for
336 every model in which those parameters were estimated (Table S3). In the OU2-Cooperative
337 model, θ for the cooperative regime was lower relative to the regime combining colonial,
338 lekking, and “other” (Table S3). The OU2-Colonial model for females, which rivalled the OU4-
339 Social model in terms of AIC (Table 2), gave \log_2 -transformed θ values corresponding to AFR of
340 2.4 yr for the colonial regime and 1.4 yr for everything else (Table S3).

341

342 *Discrete evolutionary models*

343 All discrete model estimates are provided in *Supplementary material: Discrete model*
344 *descriptions*. The best available model for both female and male datasets was the most complex
345 (model #11), involving hidden state heterogeneity in both sociality and AFR, as well as mutual

346 dependence in those two variables (Table 3). Generally, parameter estimates from model #11
347 supported the hypothesis that evolution from fast breeding (i.e., AFR ≤ 2) to slow breeding (i.e.,
348 AFR ≥ 3) occurred more frequently in lineages living in complex social contexts, even when
349 allowing for mutual dependency and hidden state heterogeneity.

350 Model #11 included two hidden states (H1 and H2) that influenced transitions in both
351 AFR and social context. The values of H1 and H2 are unrelated when comparing male vs. female
352 results. In female H1, transitions from fast to slow breeding occurred at twice the rate in social
353 lineages (0.0504 for social vs. 0.0243 for “other”) and the opposite transition, from slow to fast
354 breeding, also occurred an order of magnitude less in social lineages (0.0188 for social vs.
355 0.3354 for “other”). Surprisingly, in female H2, transitions from fast to slow breeding were less
356 frequent in social lineages (<0.0001 for social vs. 0.0008 for “other”). But this difference was
357 offset by an even greater difference in the opposite direction, from slow to fast breeding (0.0057
358 for social vs. 0.0361 for “other”). Similarly, male H1 had more frequent transitions to slow
359 breeding in social lineages (0.0019 for social vs. <0.0001 for “other”) and less frequent
360 transitions to fast breeding in social lineages (0.0247 for social vs. 0.0305 for “other”). Male H2
361 showed a remarkable decrease in transitions from fast to slow breeding in social lineages (0.0707
362 for social vs. 0.4137 for “other”) but this was again offset by an even greater difference in the
363 opposite direction, from slow to fast breeding (0.0268 for social vs. 11.8766 for “other”).

364 Interpretation of model #11 is complicated by the large number of parameters and their
365 wide estimation intervals. Our overall suite of discrete models, however, supports claims that (1)
366 AFR evolution partially depends on social state while (2) social state is evolving with
367 considerable underlying heterogeneity. When comparing discrete models with no hidden states,
368 there was marginal preference for a model in which social state was dependent on AFR (model

369 #3) versus a model with mutual dependence between sociality and AFR (model #4) for both
370 female and male datasets (Table 3). But both models were far outperformed by the overall
371 second-best model (#9), in which AFR depends on social state, while social state depends on
372 hidden state (Table 3). Thus, performance of model #3 may largely be attributed to underlying
373 heterogeneity in social evolution.

374 In model #9, transitions in social state were binned into one hidden state with rapid
375 transitions (in both directions) and a second hidden state that was nearly static, with wide
376 uncertainty in those parameters across trees (*Supplementary material: Discrete model*
377 *descriptions*). Meanwhile, transitions from fast to slow breeding were higher in social lineages
378 compared to “other” lineages (32.3 times higher for females, 18.3 times higher for males).

379 Transitions from slow to fast breeding were also lower in social lineages compared to “other”
380 lineages (2.8 times lower for females, 2.3 times lower for males; *Supplementary material:*
381 *Discrete model descriptions*). We caution that strong support for model #11 suggests
382 considerably more complexity—potentially arising from context-dependence, confounding
383 factors, or hidden structure in the binary traits examined.

384

385 **Discussion**

386 Overall, our battery of comparative analyses supports the hypothesis that alternative
387 social contexts—cooperative breeding, coloniality, and lekking—give rise to the evolution of
388 delayed reproduction across the avian phylogeny (Fig. 1). Phylogenetic ANOVAs revealed a
389 significant increase in age at first reproduction (AFR) for colonial birds in both male and female
390 datasets. PGLS models, incorporating mass as a proxy for additional covariates, revealed
391 significant increases in AFR for colonial males and females, along with males of cooperative and

392 lekking species (Tables 1, 4). Continuous evolutionary models identified distinct regimes for
393 cooperative, colonial, and lekking lineages, each exhibiting increased AFR in both sexes (Tables
394 2, 5). Discrete evolutionary models suggested that AFR evolution is influenced by social state,
395 with lineages in complex social contexts experiencing a net shift toward delayed reproduction
396 (*Supplementary material: Discrete model descriptions*). These results provide quantitative,
397 comparative support for earlier conjectures that sociality influences life history evolution across
398 birds (Wiley 1974; Gould 1977; Bradley and Wooller 1990; Zack and Stutchbury 1992; Møller
399 2006).

400 Intraspecific field studies reveal the different ways in which social contexts
401 mechanistically influence delayed reproduction through the demands of sociosexual
402 development. For example, colonial seabirds must first gain social experience with nesting
403 territories (Ainley et al. 1983; Taylor 2024) and establish a pair-bond (Pickering 1989) before
404 breeding among conspecifics in dense island colonies. Since most colonial birds are socially
405 monogamous (Lack 1968; Cockburn 2006), these developmental demands apply to young males
406 and young females alike. In contrast, lekking species show a pronounced asymmetry in the
407 demands of sociosexual maturation. Young males, but not young females, must establish display
408 sites, courtship displays, and relationships with other males before they can reproduce (e.g.,
409 McDonald 1989; Collis and Borgia 1993; Prum 2017).

410 The sexual asymmetries of lekking are clear in our results, consistent with previous
411 comparative studies (Wiley 1974; Ancona et al. 2020). The estimated PGLS effect of lekking on
412 \log_2 AFR was much higher for males than females (0.62 in males vs. 0.15 for females; Table 4).
413 The central OU parameters for \log_2 AFR were much higher for the lekking regime in males than
414 females (1.95 in males vs. 0.94 in females; Table 5). Phylogenetic ANOVAs supported a

415 significant elevation in male AFR—relative to female AFR—for lekking lineages, but not
416 colonial or cooperative lineages.

417 Social behavior shapes avian life histories. This principle extends beyond birds. Many
418 studies demonstrate how sociosexual development influences the life histories of mammals and
419 fish (e.g., Robertson 1972; Gould 1977:345–351; Rodd et al. 1997; Holekamp and Strauss 2020;
420 Kralick et al. 2023). Indeed, our opening caricature of AFR-mass relationships in mice and
421 elephants is also a reference to cases where social environment influences sexual maturity. The
422 presence of males speeds maturation in young female House Mice (Vandenbergh et al. 1972) and
423 suppresses maturation in young male African Elephants (Slotow et al. 2000).

424 However, our results also highlight significant heterogeneity in avian life history
425 evolution. PGLS models included a significant relationship between mass and AFR (Tables 1, 5).
426 Since mass itself cannot mechanistically explain variation in AFR across birds (Charnov 2000),
427 the significant effect of mass suggests that hidden covariates underlie additional variation in
428 AFR. Indeed, discrete evolutionary models that allowed for hidden state heterogeneity—whether
429 for sociality, or AFR, or both—outperformed related models that did not include such
430 heterogeneity (e.g., model #7 vs. #2, #11 vs. #4; Table 3).

431 One source of heterogeneity is the fact that variation in avian social complexity is not
432 fully captured by our simple categories of cooperative breeding, coloniality, lekking, and
433 “other.” In particular, our “other” category neglected a huge diversity of alternative avian
434 societies. Examples include complex social networks in parrots (Penndorf et al. 2023) and
435 dominance hierarchies in scavenging raptors (Dwyer and Cockwell 2011). The Black Vulture
436 (*Coragyps atratus*)—one scavenger we coded as social context “other”—has elaborate,
437 communal roosting behavior and does not start breeding until eight years old (Parker et al. 1995).

438 Another limit to our analysis involved intraspecific variation. We relied on minimum
439 reported AFR to help maintain consistency across species, but this approach overlooks variation
440 within species, which itself may be socially mediated. Intraspecific variation is especially
441 pronounced in cooperative breeders, where territory availability and environmental fluctuations
442 (e.g., rainfall) can influence decisions about helping, dispersing, or breeding (Koenig et al. 1992;
443 Rubenstein 2011; Welklin et al. 2023). For instance, the cooperative Mexican Jay (*Aphelocoma*
444 *wollweberi*) has a minimum AFR of two years—the value used in our analysis—but some
445 individuals delay reproduction until 14 years old (McCormack and Brown 2020). Our simple
446 trait categorizations thus neglect well-known variation in the life histories of birds.

447 A further source of variation known to influence avian delayed reproduction is foraging
448 development (Ashmole 1963; Wunderle 1991). There may be no straightforward way to separate
449 the impacts of foraging and social development; foraging is deeply linked to social context in
450 multiple different ways across the avian phylogeny. For example, colonial seabirds must develop
451 central-place foraging skills because they breed at remote island colonies (Coulson 2001; Collet
452 et al. 2020). Snow (1971) proposed that frugivory contributes to the evolution of polygynous leks
453 by making it easier for a single parent to raise offspring. Wiley (1978) proposed that lekking
454 evolves in highly precocial lineages, such as grouse, because one parent can support hatchlings
455 that feed themselves. Thus, for lekking birds, unlike colonial seabirds, it may be the *ease* of
456 foraging that leads to sex-specific delays in reproduction.

457 Ultimately, our study suggests that the ecological and social diversity of birds confounds
458 the search for simple, lawlike generalizations about their life histories (Taylor and Prum 2024).
459 Life history variables might appear universal; every species might have some age at first
460 reproduction, some clutch size, some lifespan, and so on. A mainstream tradition searches for

461 simple, ahistorical correlations among these life history variables, treating phylogenetic history
462 itself as statistical noise along the way (e.g., Western and Ssemakula 1982; Harvey and Clutton-
463 Brock 1985; Adler et al. 2014; Salguero-Gómez et al. 2016; Healy et al. 2019; see Stearns 1983
464 for the roots of an alternative approach).

465 Understanding avian evolution requires more nuance. On one hand, our results support a
466 general pattern: the evolution of social complexity leads to the evolution of delayed
467 reproduction. On the other hand, social complexity itself emerges from individual evolutionary
468 events—the origins of lekking here, the origins of coloniality there—the histories of which fall
469 outside the scope of our general pattern. Thus, even for an apparently universal character such as
470 age at first reproduction, unique events in phylogenetic history remain key to understanding
471 evolution (Uyeda et al. 2018).

472

473 **Acknowledgements**

474 We thank Martha Muñoz, Stephen Stearns, Casey Dunn, and Henry Camarillo for helpful
475 comments on the manuscript. This work was supported by an NSF GRFP (#DGE1752134) for
476 L.U.T. and the W.R. Coe fund from Yale University. We are grateful to the Yale Center for
477 Research Computing (McCleary HPC) and Bowdoin College Information Technology for
478 guidance and access to research computing infrastructure.

479

480 **References**

481 Adler P.B., Salguero-Gómez R., Compagnoni A., Hsu J.S., Ray-Mukherjee J., Mbeau-Ache C.,
482 Franco M. 2014. Functional traits explain variation in plant life history strategies.
483 Proceedings of the National Academy of Sciences. 111:740–745.

484 Ainley D.G., LeResche R.E., Sladen W.J. 1983. Breeding biology of the Adélie Penguin.

485 Berkeley: University of California Press.

486 Ancona S., Liker A., Carmona-Isunza M.C., Székely T. 2020. Sex differences in age-to-

487 maturation relate to sexual selection and adult sex ratios in birds. *Evolution Letters*. 4:44–

488 53.

489 Ashmole N.P. 1963. The regulation of numbers of tropical oceanic birds. *Ibis*. 103:458–473.

490 Beaulieu J.M, O'Meara B., Oliver J., Boyko J. 2022. corHMM: Hidden Markov Models of

491 Character Evolution. R package version 2.8.

492 <https://CRAN.R-project.org/package=corHMM>.

493 Beaulieu J.M., Jhwueng D.-C., Boettiger C., O'Meara B.C. 2012. Modeling stabilizing selection:

494 Expanding the Ornstein–Uhlenbeck model of adaptive evolution. *Evolution*. 66:2369–

495 2383.

496 Beaulieu J.M., O'Meara B. 2022. OUwie: Analysis of evolutionary rates in an OU framework. R

497 package version 2.10. <https://CRAN.R-project.org/package=OUwie>.

498 Becker P.H., Dittmann T., Ludwigs J.-D., Limmer B., Ludwig S.C., Bauch C., Braasch A.,

499 Wendeln H. 2008. Timing of initial arrival at the breeding site predicts age at first

500 reproduction in a long-lived migratory bird. *Proceedings of the National Academy of*

501 *Sciences*. 105:12349–12352.

502 Bell G. 1980. The costs of reproduction and their consequences. *The American Naturalist*.

503 116:45–76.

504 Bennett P.M., Owens I.P. 2002. *Evolutionary ecology of birds: Life histories, mating systems*

505 and extinction

New York: Oxford University Press.

506 Billerman S.M., Keeney B.K., Rodewald P.G., Schulenberg T.S., editors. 2022. Birds of the
507 World. Ithaca: Cornell Lab of Ornithology.

508 Borgia G. 1985. Bower quality, number of decorations and mating success of male Satin
509 Bowerbirds (*Ptilonorhynchus violaceus*): An experimental analysis. *Animal Behaviour*.
510 33:266–271.

511 Boyko J.D., Beaulieu J.M. 2021. Generalized hidden Markov models for phylogenetic
512 comparative datasets. *Methods in Ecology and Evolution*. 12:468–478.

513 Bradbury J.W. 1981. The evolution of leks. In: Alexander R.D., Tinkle D.W., editors. *Natural*
514 *selection and social behavior*. New York: Chiron Press. p. 138–169.

515 Bradley J.S., Wooller R.D. 1990. Philopatry and age of first-breeding in long-lived birds. *Acta*
516 *XX Congressus Internationalis Ornithologici*. 3:1657–1665.

517 Butler M.A., King A.A. 2004. Phylogenetic comparative analysis: A modeling approach for
518 adaptive evolution. *The American Naturalist*. 164:683–695.

519 Charnov E.L. 1993. Life history invariants: Some explorations of symmetry in evolutionary
520 *ecology*. Oxford: Oxford University Press.

521 Charnov E.L. 2000. Evolution of life-history variation among species of altricial birds.
522 *Evolutionary Ecology Research*. 2:375–383.

523 Clark C.J., Russell S.M. 2020. Anna’s Hummingbird (*Calypte anna*). In: Poole A.F., editor.
524 *Birds of the world*. Ithaca: Cornell Lab of Ornithology.

525 Clements J.F., Rasmussen P.C., Schulenberg T.S., Iliff M.J., Fredericks T.A., Gerbracht J.A.,
526 Lepage D., Spencer A., Billerman S.M., Sullivan B.L., Wood C.L. 2023. The
527 eBird/Clements checklist of birds of the world: v2023b. Ithaca: Cornell Lab of
528 Ornithology. <https://www.birds.cornell.edu/clementschecklist/download/>.

529 Cockburn A. 2006. Prevalence of different modes of parental care in birds. Proceedings of the
530 Royal Society B: Biological Sciences. 273:1375–1383.

531 Collet J., Prudor A., Corbeau A., Mendez L., Weimerskirch H. 2020. First explorations:
532 Ontogeny of central place foraging directions in two tropical seabirds. Behavioral
533 Ecology. 31:815–825.

534 Collis K., Borgia G. 1993. The costs of male display and delayed plumage maturation in the
535 Satin Bowerbird (*Ptilonorhynchus violaceus*). Ethology. 94:59–71.

536 Coulson J.C. 2001. Colonial breeding in seabirds. In: Schreiber E.A., Burger J., editors. Biology
537 of marine birds. Boca Raton: CRC Press. p. 100–127.

538 Cramp S., Brooks D., Perrins C. 1977. Handbook of the birds of Europe, the Middle East, and
539 North Africa: The birds of the western palearctic. Oxford: Oxford University Press.

540 Dunn P.O., Cockburn A., Mulder R.A. 1995. Fairy-wren helpers often care for young to which
541 they are unrelated. Proceedings of the Royal Society B: Biological Sciences. 259:339–
542 343.

543 Dwyer J.F., Cockwell S.G. 2011. Social hierarchy of scavenging raptors on the Falkland Islands,
544 Malvinas. Journal of Raptor Research. 45:229–235.

545 Frith C.B., Frith D.W. 2004. Bowerbirds. Oxford: Oxford University Press.

546 Fry C.H., Urban E.K., Keith S., Safford R., Hawkins F. 1982. The birds of Africa. Cambridge:
547 Academic Press.

548 Garland Jr T., Dickerman A.W., Janis C.M., Jones J.A. 1993. Phylogenetic analysis of
549 covariance by computer simulation. Systematic Biology. 42:265–292.

550 González L.M., Oria J., Margalida A., Sánchez R., Prada L., Caldera J., Aranda A., Molina J.I.

551 2006. Effective natal dispersal and age of maturity in the threatened Spanish Imperial

552 Eagle *Aquila adalberti*: Conservation implications. *Bird Study*. 53:285–293.

553 Gould S.J. 1977. Ontogeny and phylogeny. Cambridge: Harvard University Press.

554 Grafen A. 1989. The phylogenetic regression. *Philosophical Transactions of the Royal Society*

555 B: Biological Sciences. 326:119–157.

556 Hahn T.P. 1998. Reproductive seasonality in an opportunistic breeder, the Red Crossbill, *Loxia*

557 *curvirostra*. *Ecology*. 79:2365–2375.

558 Hamilton W.D. 1966. The moulding of senescence by natural selection. *Journal of Theoretical*

559 *Biology*. 12:12–45.

560 Hannon S.J., Dobush G. 1997. Pairing status of male Willow Ptarmigan: Is polygyny costly to

561 males? *Animal Behaviour*. 53:369–380.

562 Harvey P.H., Clutton-Brock T.H. 1985. Life history variation in primates. *Evolution*. 39:559–

563 581.

564 Hatchwell B.J. 2009. The evolution of cooperative breeding in birds: Kinship, dispersal and life

565 history. *Philosophical Transactions of the Royal Society B: Biological Sciences*.

566 364:3217–3227.

567 Healy K., Ezard T.H.G., Jones O.R., Salguero-Gómez R., Buckley Y.M. 2019. Animal life

568 history is shaped by the pace of life and the distribution of age-specific mortality and

569 reproduction. *Nature Ecology & Evolution*. 3:1217–1224.

570 Hector J.A.L., Croxall J.P., Follett B.K. 1986. Reproductive endocrinology of the Wandering

571 Albatross *Diomedea exulans* in relation to biennial breeding and deferred sexual

572 maturity. *Ibis*. 128:9–22.

573 Heinsohn R., Cockburn A. 1997. Helping is costly to young birds in cooperatively breeding

574 White-winged Choughs. *Proceedings of the Royal Society B: Biological Sciences*.

575 256:293–298.

576 Holekamp K.E., Strauss E.D. 2020. Reproduction within a hierarchical society from a female's

577 perspective. *Integrative and Comparative Biology*. 60:753–764.

578 Immelmann K. 1971. Ecological aspects of periodic reproduction. *Avian Biology*. Volume

579 I.:341–398.

580 Koenig W.D., Pitelka F.A., Carmen W.J., Mumme R.L., Stanback M.T. 1992. The evolution of

581 delayed dispersal in cooperative breeders. *The Quarterly Review of Biology*. 67:111–

582 150.

583 Kozłowski J. 1992. Optimal allocation of resources to growth and reproduction: Implications for

584 age and size at maturity. *Trends in Ecology & Evolution*. 7:15–19.

585 Kralick A.E., O'Connell C.A., Bastian M.L., Hoke M.K., Zemel B.S., Schurr T.G., Tocheri

586 M.W. 2023. Beyond dimorphism: Body size variation among adult orangutans is not

587 dichotomous by sex. *Integrative and Comparative Biology*. 67:907–921.

588 Lack D. 1968. Ecological adaptations for breeding in birds. London: Methuen.

589 López-Calderón C., Hobson K.A., Marzal A., Balbontín J., Reviriego M., Magallanes S., García-

590 Longoria L., de Lope F., Møller A.P. 2017. Wintering areas predict age-related breeding

591 phenology in a migratory passerine bird. *Journal of Avian Biology*. 48:631–639.

592 Maddison W.P., FitzJohn R.G. 2015. The unsolved challenge to phylogenetic correlation tests

593 for categorical characters. *Systematic Biology*. 64:127–136.

594 de Magalhães J.P., Costa J., Church G.M. 2007. An analysis of the relationship between

595 metabolism, developmental schedules, and longevity using phylogenetic independent

596 contrasts. *The Journals of Gerontology A: Biological Sciences and Medical Sciences*.
597 62:149–160.

598 Marchant S., Higgins P.J. 1990. *The Handbook of Australian, New Zealand and Antarctic Birds*.
599 Melbourne: Oxford University Press.

600 McCormack J.E., Brown J.L. 2020. Mexican Jay (*Aphelocoma wollweberi*). In: Poole A.F.,
601 editor. *Birds of the world*. Ithaca: Cornell Lab of Ornithology.

602 McDonald D.B. 1989. Cooperation under sexual selection: Age-graded changes in a lekking
603 bird. *The American Naturalist*. 134:709–730.

604 McDonald D.B. 1993. Demographic consequences of sexual selection in the Long-tailed
605 Manakin. *Behavioral Ecology*. 4:297–309.

606 McTavish E.J., Gerbracht J.A., Holder M.T., Iliff M.J., Lepage D., Rasmussen P., Redelings B.,
607 Sanchez Reyes L.L., Miller E.T. 2024. A complete and dynamic tree of birds. bioRxiv.
608 <https://doi.org/10.1101/2024.05.20.595017>.

609 Møller A.P. 2006. Sociality, age at first reproduction and senescence: Comparative analyses of
610 birds. *Journal of Evolutionary Biology*. 19: 682–689.

611 Neate-Clegg M.H.C., Tingley M.W. 2023. Adult male birds advance spring migratory phenology
612 faster than females and juveniles across North America. *Global Change Biology*. 29:341–
613 354.

614 Orians G.H. 1969. On the evolution of mating systems in birds and mammals. *The American
615 Naturalist*. 103:589–603.

616 Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the
617 comparative analysis of discrete characters. *Proceedings of the Royal Society B: Biological Sciences*. 255:37–45.

619 Paradis E., Claude J., Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R
620 language. *Bioinformatics*. 20:289–290.

621 Parker P.G., Waite T.A., Decker M.D. 1995. Kinship and association in communally roosting
622 Black Vultures. *Animal Behaviour*. 49:395–401.

623 Penndorf J., Ewart K.M., Klump B.C., Martin J.M., Aplin L.M. 2023. Social network analysis
624 reveals context-dependent kin relationships in wild Sulphur-crested Cockatoos *Cacatua*
625 *galerita*. *Journal of Animal Ecology*. 92:171–182.

626 Perrins C.M., Birkhead T.R. 1983. Social systems: Territoriality and coloniality. In: *Avian*
627 *Ecology*. Glasgow: Blackie. p. 7–32.

628 Perry J.S. 1953. The reproduction of the African Elephant, *Loxodonta africana*. *Philosophical*
629 *Transactions of the Royal Society B: Biological Sciences*. 643:93–149.

630 Pickering S.P.C. 1989. Attendance patterns and behaviour in relation to experience and pair-
631 bond formation in the Wandering Albatross *Diomedea exulans* at South Georgia. *Ibis*.
632 131:183–195.

633 Pinheiro J.S., Bates D.M. 2000. Mixed-effects models in S and S-PLUS. New York: Springer-
634 Verlag.

635 Prum R.O. 1994. Phylogenetic analysis of the evolution of alternative social behavior in the
636 manakins (Aves: Pipridae). *Evolution*. 48:1657–1675.

637 Prum R.O. 2017. The evolution of beauty. New York: Anchor.

638 R Core Team. 2024. R: A language and environment for statistical computing.

639 Revell L.J. 2012. phytools: An R package for phylogenetic comparative biology (and other
640 things). *Methods in Ecology and Evolution*. 3:217–223.

641 Riehl C. 2021. Evolutionary origins of cooperative and communal breeding: Lessons from the
642 crotrophagine cuckoos. *Ethology*. 127:827–836.

643 Riotte-Lambert L., Weimerskirch H. 2013. Do naive juvenile seabirds forage differently from
644 adults? *Proceedings of the Royal Society B: Biological Sciences*. 280:20131434.

645 Robertson D.R. 1972. Social control of sex reversal in a coral-reef fish. *Science*. 177:1007–1009.

646 Rodd F.H., Reznick D.N., Sokolowski M.B. 1997. Phenotypic plasticity in the life history traits
647 of guppies: Responses to social environment. *Ecology*. 78:419–433.

648 Roff D.A. 1984. The evolution of life history parameters in teleosts. *Canadian Journal of
649 Fisheries and Aquatic Sciences*. 41:989–1000.

650 Rolland C., Danchin E., Fraipont M. de. 1998. The evolution of coloniality in birds in relation to
651 food, habitat, predation, and life-history traits: A comparative analysis. *The American
652 Naturalist*. 151:514–529.

653 Rowley I. 1978. Communal activities among White-winged Choughs *Corcorax
654 melanorhamphus*. *Ibis*. 120:178–197.

655 Rubenstein D.R. 2011. Spatiotemporal environmental variation, risk aversion, and the evolution
656 of cooperative breeding as a bet-hedging strategy. *Proceedings of the National Academy
657 of Sciences*. 108:10816–10822.

658 Ryder T.B., Parker P.G., Blake J.G., Loiselle B.A. 2009. It takes two to tango: Reproductive
659 skew and social correlates of male mating success in a lek-breeding bird. *Proceedings of
660 the Royal Society B: Biological Sciences*. 276:2377–2384.

661 Salguero-Gómez R., Jones O.R., Jongejans E., Blomberg S.P., Hodgson D.J., Mbeau-Ache C.,
662 Zuidema P.A., De Kroon H., Buckley Y.M. 2016. Fast–slow continuum and reproductive

663 strategies structure plant life-history variation worldwide. *Proceedings of the National*
664 *Academy of Sciences*. 113:230–235.

665 Skutch A.F. 1961. Helpers among birds. *The Condor*. 63:198–226.

666 Slotow R., van Dyk G., Poole J., Page B., Klocke A. 2000. Older bull elephants control young
667 males. *Nature*. 408:425–426.

668 Smith A.J., Robertson B.I. 1978. Social organization of Bell Miners. *Emu*. 78:169–178.

669 Snow D.W. 1971. Evolutionary aspects of fruit-eating by birds. *Ibis*. 113:194–202.

670 Stearns S.C. 1983. The influence of size and phylogeny on patterns of covariation among life-
671 history traits in the mammals. *Oikos*. 41:173–187.

672 Stearns S.C. 1992. *The evolution of life histories*. New York: Oxford University Press.

673 Stearns S.C., Koella J.C. 1986. The evolution of phenotypic plasticity in life-history traits:
674 predictions of reaction norms for age and size at maturity. *Evolution*. 40:893–913.

675 Taylor L.U. 2024. Young American Herring Gulls (*Larus argentatus* subsp. *smithsonianus*) have
676 the opportunity for social development at the breeding colony. *Waterbirds*. 47:1–12.

677 Taylor L.U., Prum R.O. 2024. Developmental axioms in life history evolution. *Biological*
678 *Theory*. 19:237–245.

679 Tobias J.A., Sheard C., Pigot A.L., Devenish A.J., Yang J., Sayol F., Neate-Clegg M.H.,
680 Alioravainen N., Weeks T.L., Barber R.A. 2022. AVONET: Morphological, ecological
681 and geographical data for all birds. *Ecology Letters*. 25:581–597.

682 Trainer J.M., McDonald D.B., Learn W.A. 2002. The development of coordinated singing in
683 cooperatively displaying long-tailed manakins. *Behavioral Ecology*. 13:65–69.

684 Uyeda J.C., Zenil-Ferguson R., Pennell M.W. 2018. Rethinking phylogenetic comparative
685 methods. *Systematic Biology*. 67:1091–1109.

686 Vandenberg J.G., Drickamer L.C., Colby D.R. 1972. Social and dietary factors in the sexual
687 maturation of female mice. *Reproduction*. 28:397–405.

688 Weimerskirch H., Jouventin P. 1987. Population dynamics of the Wandering Albatross,
689 *Diomedea exulans*, of the Crozet Islands: Causes and consequences of the population
690 decline. *Oikos*. 49:315–322.

691 Welklin J.F., Lantz S.M., Khalil S., Moody N.M., Karubian J., Webster M.S. 2023. Photoperiod
692 and rainfall are associated with seasonal shifts in social structure in a songbird.
693 *Behavioral Ecology*. 34:136–149.

694 Western D., Ssemakula J. 1982. Life history patterns in birds and mammals and their
695 evolutionary interpretation. *Oecologia*. 54:281–290.

696 Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., Grolemund G., Hayes
697 A., Henry L., Hester J. 2019. Welcome to the tidyverse. *Journal of Open Source
698 Software*. 4:1686.

699 Wikelski M., Hau M., Wingfield J.C. 2000. Seasonality of reproduction in a neotropical rain
700 forest bird. *Ecology*. 81:2458–2472.

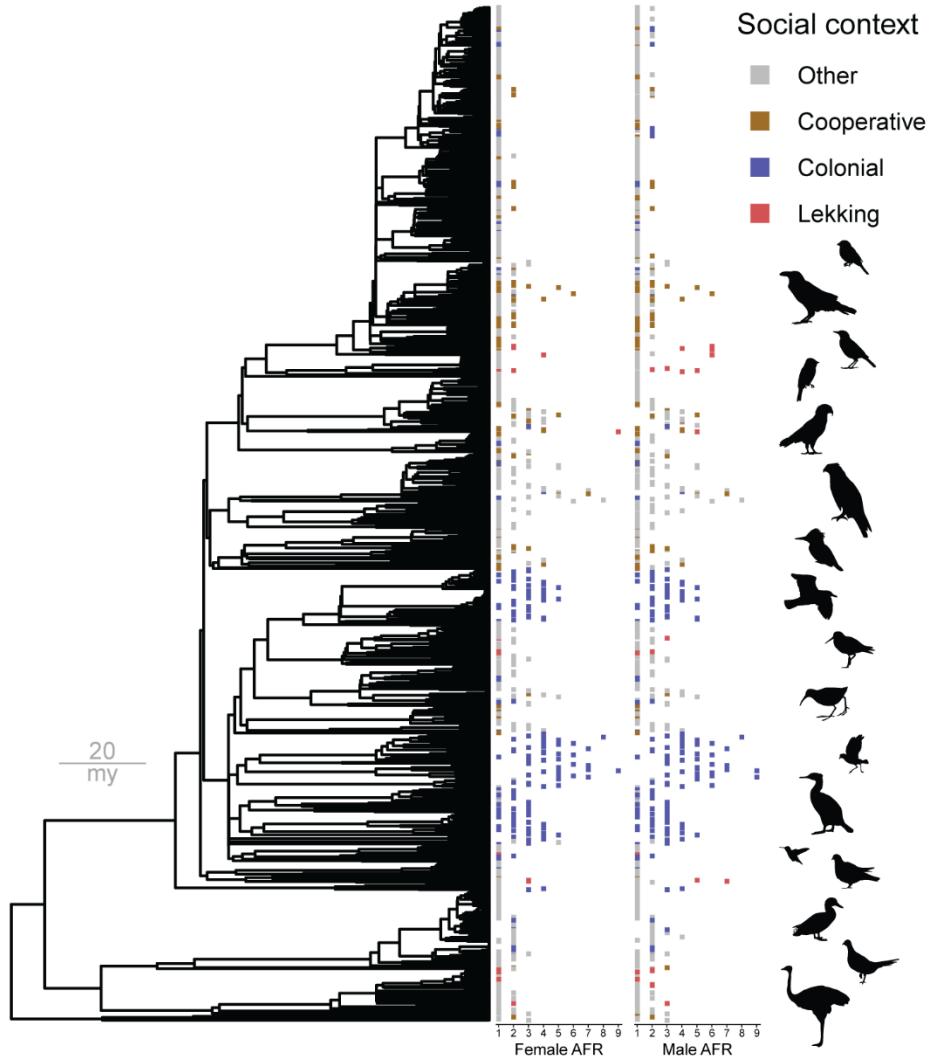
701 Wiley R.H. 1974. Evolution of social organization and life-history patterns among grouse. *The
702 Quarterly Review of Biology*. 49:201–227.

703 Wiley R.H. 1978. The lek mating system of the Sage Grouse. *Scientific American*. 238:114–125.

704 Williams G.C. 1966. *Adaptation and natural selection*. Princeton: Princeton University Press.

705 Wingfield J.C., Farner D.S. 1980. Control of seasonal reproduction in temperate-zone birds. In:
706 Reiter R.J., Follett B.K., editors. *Seasonal reproduction in higher vertebrates*. Basel: S.
707 Karger. p. 62–101.

708 Wittenberger J.F. 1979. A model for delayed reproduction in iteroparous animals. *The American*
709 *Naturalist*. 114:439–446.


710 Wunderle J. Joseph. 1991. Age-specific foraging proficiency in birds. *Current Ornithology*.
711 8:273–324.

712 Yu G., Smith D.K., Zhu H., Guan Y., Lam T.T.-Y. 2017. *ggtree: An R package for visualization*
713 *and annotation of phylogenetic trees with their covariates and other associated data*.

714 *Methods in Ecology and Evolution*. 8:28–36.

715 Zack S., Stutchbury B.J. 1992. Delayed breeding in avian social systems: The role of territory
716 quality and “floater” tactics. *Behaviour*. 123:194–219.

717 **TABLES AND FIGURES**

722 **Table 1.** Phylogenetic regression models for age at first reproduction (AFR) in birds
 723

Model ^b	Dataset, ΔAIC^a	
	Female	Male
AFR ~ Mass	31 (0, 62)	47 (2, 78)
AFR ~ Mass + Social	1 (0, 13)	0 (0, 0)
AFR ~ Mass * Social	11 (1, 26)	10 (4, 12)

724
 725 ^a Median values across 100 trees, with 5–95% quantiles in parentheses. All values rounded.
 726

727 ^b All AFR values \log_2 . All mass values \log_{10} .

728 **Table 2.** Continuous models of age at first reproduction (AFR) evolution in birds, including Brownian motion (BM) and Ornstein-
 729 Uhlenbeck (OU) models
 730

Model	Regime 1 ^b	Regime 2	Regime 3	Regime 4	Dataset, ΔAIC^a		731
					Female	Male	
BM	-	-	-	-	325 (100, 386)	365 (162, 416)	
OU1	All	-	-	-	47 (18, 63)	75 (51, 93)	
OU2-Cooperative	Cooperative	Everything else	-	-	49 (20, 65)	76 (52, 94)	
OU2-Colonial	Colonial	Everything else	-	-	1 (0, 4)	36 (30, 44)	
OU2-Lekking	Lekking	Everything else	-	-	47 (16, 63)	51 (23, 68)	
OU2-Social	Cooperative, colonial, and lekking	“Other”	-	-	15 (2, 24)	33 (24, 41)	
OU4-Social	Cooperative	Colonial	Lekking	“Other”	0 (0, 1)	0 (0, 0)	

732
 733 ^aMedian values across 100 trees, with 5–95% quantiles in parentheses. All values rounded.
 734

735 ^bModels with multiple regimes were assigned distinct central (θ) AFR parameters for each regime

736 **Table 3.** Discrete models of age at first reproduction (AFR ≤ 2 vs. AFR ≥ 3) and social context (cooperative, colonial, or lekking vs.
 737 “other”) evolution in birds
 738

Model	Hidden states (HS)	Dependencies ^b	Dataset, ΔAIC^a	
			Female	Male
1	1	Independent	98 (89, 113)	123 (114, 136)
2	1	AFR Social	83 (75, 94)	103 (95, 113)
3	1	Social AFR	60 (52, 71)	77 (69, 87)
4	1	AFR Social & Social AFR	62 (54, 72)	79 (71, 89)
5	2	AFR HS	65 (54, 77)	91 (78, 102)
6	2	Social HS	35 (25, 47)	62 (49, 72)
7	2	AFR Social, HS	60 (52, 72)	72 (61, 80)
8	2	Social AFR, HS	24 (13, 39)	40 (26, 53)
9	2	AFR Social & Social HS	14 (4, 25)	38 (24, 47)
10	2	Social AFR & AFR HS	27 (20, 40)	46 (35, 54)
11	2	AFR Social, HS & Social AFR, HS	0 (0, 0)	0 (0, 0)

739
 740 ^aMedian values across 100 trees, with 5–95% quantiles in parentheses. All values rounded.
 741

742 ^bDependencies defined how transition rates for one character differed based on the state of another character.

743 **Table 4.** Phylogenetic regression estimates for age at first reproduction (AFR, \log_2) in birds (Mass + Social model)
 744

Model term	Dataset^a	
	Female	Male
Intercept	-0.20 (-0.52, 0.09)	-0.42 (-0.94, -0.10)
<i>P</i>	0.80 (0.39, 0.98)	0.57 (0.15, 0.90)
Mass (\log_{10})	0.26 (0.18, 0.37)	0.34 (0.24, 0.51)
<i>P</i>	<0.001 (<0.001, 0.006)	<0.001 (<0.001, <0.001)
Cooperative	0.12 (0.06, 0.16)	0.15 (0.12, 0.17)
<i>P</i>	0.055 (0.004, 0.25)	0.03 (0.004, 0.08)
Colonial	0.17 (0.02, 0.27)	0.20 (0.07, 0.31)
<i>P</i>	<0.001 (<0.001, 0.46)	<0.001 (<0.001, 0.02)
Lekking	0.15 (0.09, 0.22)	0.62 (0.52, 0.73)
<i>P</i>	0.53 (0.40, 0.69)	0.02 (0.002, 0.04)

745
 746 ^aMedian values across 100 trees, with 5–95% quantiles in parentheses.

747 **Table 5.** Continuous evolutionary model estimates for age at first reproduction (AFR, \log_2) in birds (OU4-Separate model)
 748

Parameter	Dataset ^a	
	Female	Male
α	0.078 (0.030, 0.095)	0.085 (0.039, 0.102)
σ^2	0.079 (0.031, 0.096)	0.092 (0.041, 0.109)
θ , Cooperative	0.563 (0.486, 0.772)	0.543 (0.493, 0.698)
θ , Colonial	1.257 (1.186, 1.380)	1.284 (1.224, 1.358)
θ , Lekking	0.940 (0.780, 1.663)	1.953 (1.739, 2.992)
θ , “Other”	0.414 (0.379, 0.482)	0.431 (0.395, 0.481)

749
 750 ^a Median values across 100 trees, with 5–95% quantiles in parentheses.