

1 **Disease exacerbation by fibroblast inclusion in Duchenne Muscular Dystrophy MYOrganoids**
2 **reveals limitations of microdystrophin therapeutic efficacy**

3 Laura Palmieri ^{1,2}, Louna Pili^{1,2}, Abbass Jaber, ^{1,2} Ai Vu Hong ^{1,2}, Matteo Marcello^{1,2}, Riyad El-Khoury
4 ^{1,2,3}, Guy Brochier ^{3,4}, Anne Bigot ⁵, David Israeli ^{1,2}, Isabelle Richard ^{1,2}, Sonia Albini ^{1,2*}

5

6 ¹Genethon, 91100 Evry, France; ²Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare
7 research unit UMR_S951, 91000, Evry, France. ³Institut de Myologie, Neuromuscular Morphology
8 Unit, Groupe Hospitalier Pitié-Salpêtrière, Paris, France. ⁴AP-HP, Centre de Référence de Pathologie
9 Neuromusculaire Nord/Est/Ile de France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France. ⁵Sorbonne
10 Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.

11

12 *Corresponding author. Email: salbini@genethon.fr, ORCID: 0000-0001-9502-1004

13 SUMMARY

14 Current gene therapy approaches for Duchenne muscular dystrophy (DMD) using AAV-mediated
15 delivery of microdystrophin (μ Dys) have shown limited efficacy in patients, contrasting with the
16 favorable outcomes observed in animal models. This discrepancy is partly due to the lack of models that
17 replicate key pathogenic features associated with the severity of the human disease, such as fibrosis and
18 muscle dysfunction. To tackle the translational gap, we develop a human disease model that recapitulates
19 these critical hallmarks of DMD for a more predictive therapeutic investigation. Using a muscle
20 engineering approach, we generate MYOrganoids from iPSC-derived muscle cells co-cultured with
21 fibroblasts that enable functional maturation for muscle force analysis upon contractions. Incorporation
22 of DMD fibroblasts within DMD iPSC-derived muscle cells allows phenotypic exacerbation by
23 unraveling of fibrotic signature and fatigability through cell-contact-dependent communication.
24 Although μ Dys gene transfer partially restores muscle resistance, it fails to fully restore membrane
25 stability and reduce profibrotic signaling. These findings highlight the persistence of fibrotic activity
26 post-gene therapy in our human DMD system, an unparalleled aspect in existing DMD models, and
27 provide the opportunity to explore the underlying mechanisms of dysregulated cellular communication
28 to identify anti-fibrotic strategies empowering gene therapy efficacy.

29 **Keywords:** iPSC, DMD, fibroblasts, fibrotic, MYOrganoids, AAV, microdystrophin

30 Introduction

31 Duchenne muscular dystrophy (DMD; OMIM: #310200) is an X-linked disorder that affects one in every
32 5000 male births ¹ with no resolute cure up to date. It is characterized by progressive muscle wasting
33 affecting skeletal muscles primarily and cardiac and respiratory muscles later, thereby causing premature
34 death ². DMD is caused by genetic mutations in the *DMD* gene, leading to the absence of Dystrophin,
35 an essential protein that provides physical support to myofibers by linking them to the extracellular
36 matrix through the Dystrophin Glycoprotein Complex (DGC) ³⁻⁶. The lack of Dystrophin results in a
37 series of muscle membrane breakdowns and repairs, leading to subsequent secondary issues like chronic
38 inflammation and fibrosis ⁷⁻¹⁰. Fibrosis is an excessive deposition of extracellular matrix components
39 like fibronectin and collagen, triggered by overactivation of Transforming Growth Factor beta (TGF- β)
40 and leading to loss of muscle functionality ¹²⁻¹³. Besides being a critical driver of DMD progression,
41 fibrosis also hampers gene therapy efficacy and is therefore paramount to counteract this process that is
42 well-established in patients.

43 Gene therapy using adeno-associated virus (AAV) is currently the most promising treatment for
44 Duchenne muscular dystrophy. Ongoing clinical trials use AAV to deliver short forms of Dystrophin,
45 known as microdystrophin (μ Dys), which encodes a truncated but functional protein ¹³⁻¹⁹. However,
46 while the therapeutic effects were unequivocally achieved in DMD animal models ²⁰, the results from
47 clinical trials revealed only partial therapeutic efficacy in terms of gain of muscle function and rarely
48 addressed whether fibrotic activity and signaling were reduced by gene transfer ^{21,22}. These observations
49 confirm the limited translatability of results obtained in animal models to human patients. It appears
50 therefore crucial to develop time and cost-effective high throughput models, mimicking the severity of
51 human DMD pathology, suitable for research investigation and therapeutic screening.

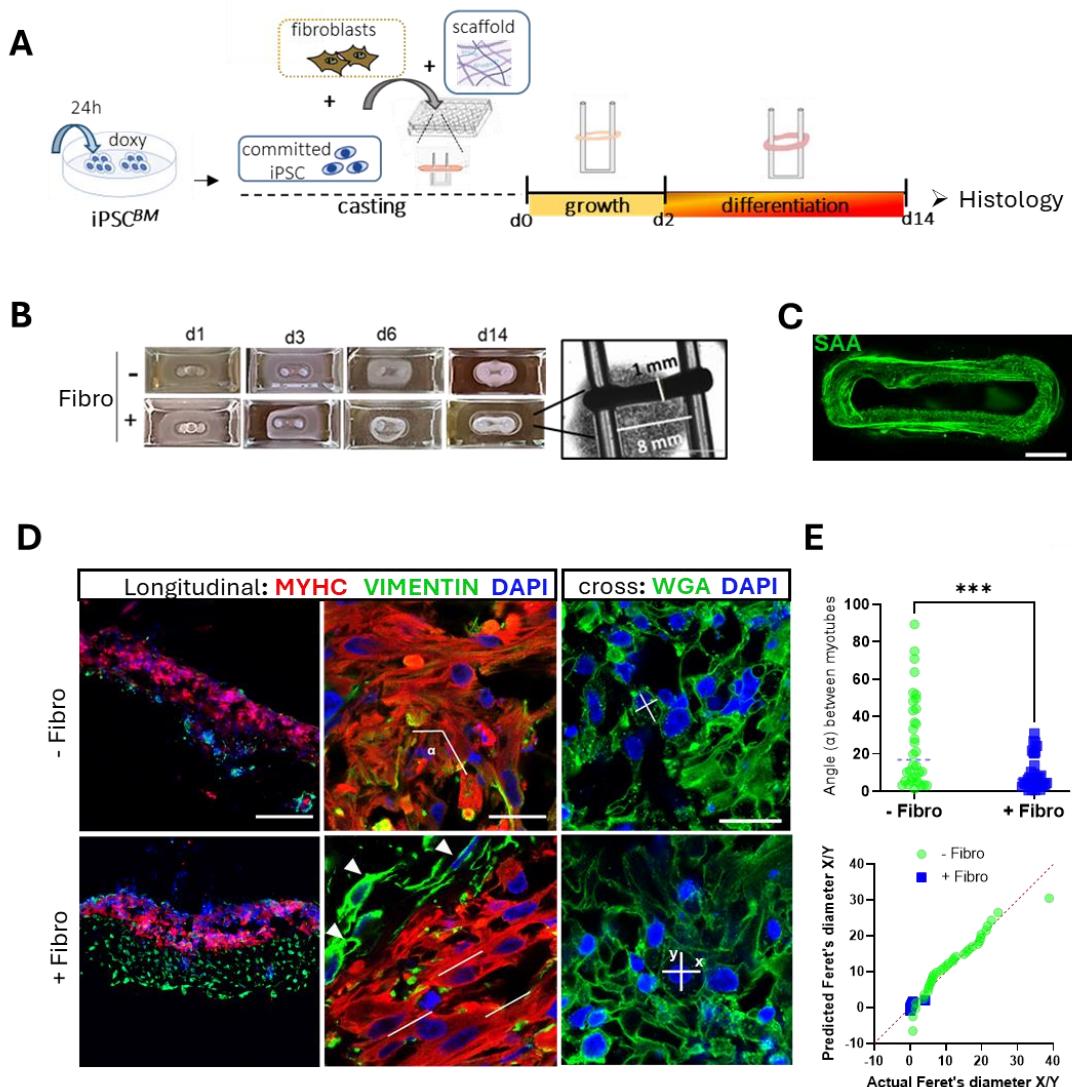
52 In this context, *in vitro* modeling based on human cells is a valuable option. In particular, the induced
53 pluripotent stem cells (iPSC) technology offers the opportunity to derive an unlimited number of
54 specialized cells from patients for disease modeling and drug screening ^{23,24}. Among the *in vitro* cellular

55 models, organoid-like structures are becoming invaluable for disease modeling as the use of 3D cultures
56 and biomaterials allows the reconstitution of tissue architecture and microenvironment that are
57 instrumental for pathophysiological evaluations ^{25,26}. Tissue engineering applications for AAV gene
58 therapy have been exploited mostly in the context of retinopathies ^{24,27-29} while only limitedly explored
59 for muscular disorders. Hence, having human DMD models is of utmost importance to advance gene
60 therapy and provide a platform for predictive screening. Although several *in vitro* 3D systems are
61 accessible for modeling Duchenne muscular dystrophy ³⁰⁻³³, their throughput use is limited by the long
62 duration, variability, related to the complexity of cellular composition achieved, and lack of disease-
63 specific readouts for muscle function.

64 Here, we report on the generation of iPSC-derived muscle organoid structure, named hereafter
65 MYOrganoids. We employ and adapt an engineered muscle platform to generate MYOrganoids using a
66 previously reported method for direct iPSC conversion into 2D skeletal muscle cells ³⁴⁻³⁶. As a strategy
67 to increase the structural and functional maturation required for pathophysiological studies, we use
68 fibroblasts as they are a major source of connective tissue which is a key regulator of differentiation and
69 muscle structure. Moreover, fibroblasts act as a source of microenvironment cues exerted by their
70 secretory activity and they are therefore regulators of the muscle niche that undergoes pathological
71 remodeling during disease ^{37,38}. Here we show that fibroblast inclusion enhances the structural and
72 functional maturation of the muscle cells. In a DMD context, fibroblasts allow exacerbation of
73 phenotypic traits by direct interaction with muscle cells and reveal key hallmarks of DMD such as
74 fibrosis and muscle weakness over repeated contractions.

75 Our study also evaluates for the first time the therapeutic efficacy of AAV-mediated μ Dys gene transfer,
76 in engineering muscle tissues, as proof of concept of their suitability for studying disease mechanisms
77 and evaluating potential therapeutics. By using different doses of μ Dys in DMD MYOrganoids, we
78 observed a dose-dependent response in restoring muscle function while only a partial effect at the level
79 of membrane stability and fibrotic signature in DMD muscles. Our findings indicate that patient-derived

80 MYOrganoids, whose pathogenic traits are exacerbated, are suitable for studying the fibrotic process
81 orchestrated by either muscle or fibroblast population and its interplay with gene transfer approaches.
82 Our system has therefore the potential to identify molecular mechanisms driving the dystrophic process
83 and accelerate the identification of effective therapeutics for DMD.


84

85 **Results**

86 **Generation of structurally organized 3D human MYOrganoids by direct conversion of iPSC and**
87 **inclusion of fibroblasts**

88 MYOrganoids were generated from human iPSC committed to differentiating into the myogenic lineage
89 by inducible expression of MyoD and BAF60C ³⁴ (referred to as iPSC^{BM}) that can directly generate
90 myotubes. MYOrganoids were prepared starting from iPSC^{BM} after one day from the induction of
91 myogenic genes. The casting procedure was performed through adaptation of an engineered muscle
92 system ^{33,39} which results in the growth of the tissue in a ring format supported by two flexible silicon
93 stretchers. The 3D cultures were kept for 2 days in growth medium, afterwards medium was replaced
94 for differentiation for another 12 days (**Figure 1A**). The differentiation protocol was optimized from the
95 conditions previously reported ^{35,36,40} using myogenic commercial media that ensured the highest
96 expression of myogenic markers and myogenic differentiation in monolayer conditions (**Figure S1A-**
97 **B**). Since cellular heterogeneity, especially of mesenchymal origin, is important for muscle formation
98 ^{33,37,38,41}, we included human fibroblasts during the casting procedure, to assess whether this would affect
99 muscle organization. For this aim, casting was performed using iPSC^{BM} cells in the presence or absence
100 of human fibroblasts. Achieving alignment and differentiation simultaneously necessitates a delicate
101 balance between fibroblasts and muscle cells (as noted by N. Rao et al., 2013). To replicate physiological
102 conditions accurately, we incorporated a fibroblast concentration that mirrors the stromal population
103 detectable through single cell and single nuclei-RNA seq analysis of muscles ⁴²⁻⁴⁵. We found that
104 including 10% fibroblasts, accelerated the condensation and growth over time of the muscle rings into a
105 compact structure 0.8 mm long and 1 mm thick at day 14 (**Figure 1B**). By performing
106 immunofluorescence in whole-mount tissues for sarcomeric α -actinin (SAA), we could detect an
107 enrichment of SAA-positive myotubes throughout the ring-shaped micro-tissue (**Figure 1C**). We then
108 aimed to assess the impact of fibroblast inclusion on muscle structure. Since the organization of muscle
109 cells within the ECM plays a key role in fusion and maturation ⁴⁶, both alignment of myotube and

110 circularity, a consequence of their parallelism, were evaluated. Staining for myosin heavy chain (MyHC,
111 myotube marker) and vimentin (fibroblasts marker) on longitudinal sections showed fibroblast
112 recruitment near muscle fibers (**Figure 1D**). Myotubes alignment was determined by measuring the
113 angles in between myotubes ⁴⁷ and showed a significant decrease towards 0 degrees upon fibroblast
114 inclusion, which indicates parallelism while, in the MYOrganoids without fibroblasts, we detected a
115 disordered pattern of muscular cells (**Figure 1E**). Additionally, the circularity of myofibers was
116 measured from transversal sections stained for the membrane marker wheat germ agglutinin (WGA),
117 using the ratio between X and Y Feret diameters (**Figure 1D**). MYOrganoids including fibroblasts had
118 an improved circularity (ratio closer to 1) when compared to control (**Figure 1E**). Improved myotube
119 circularity and alignment as shown, indicate that fibroblast incorporation during the casting procedure
120 guides skeletal cell orientation providing structural support for MYOrganoids, a prerequisite for
121 maturation.

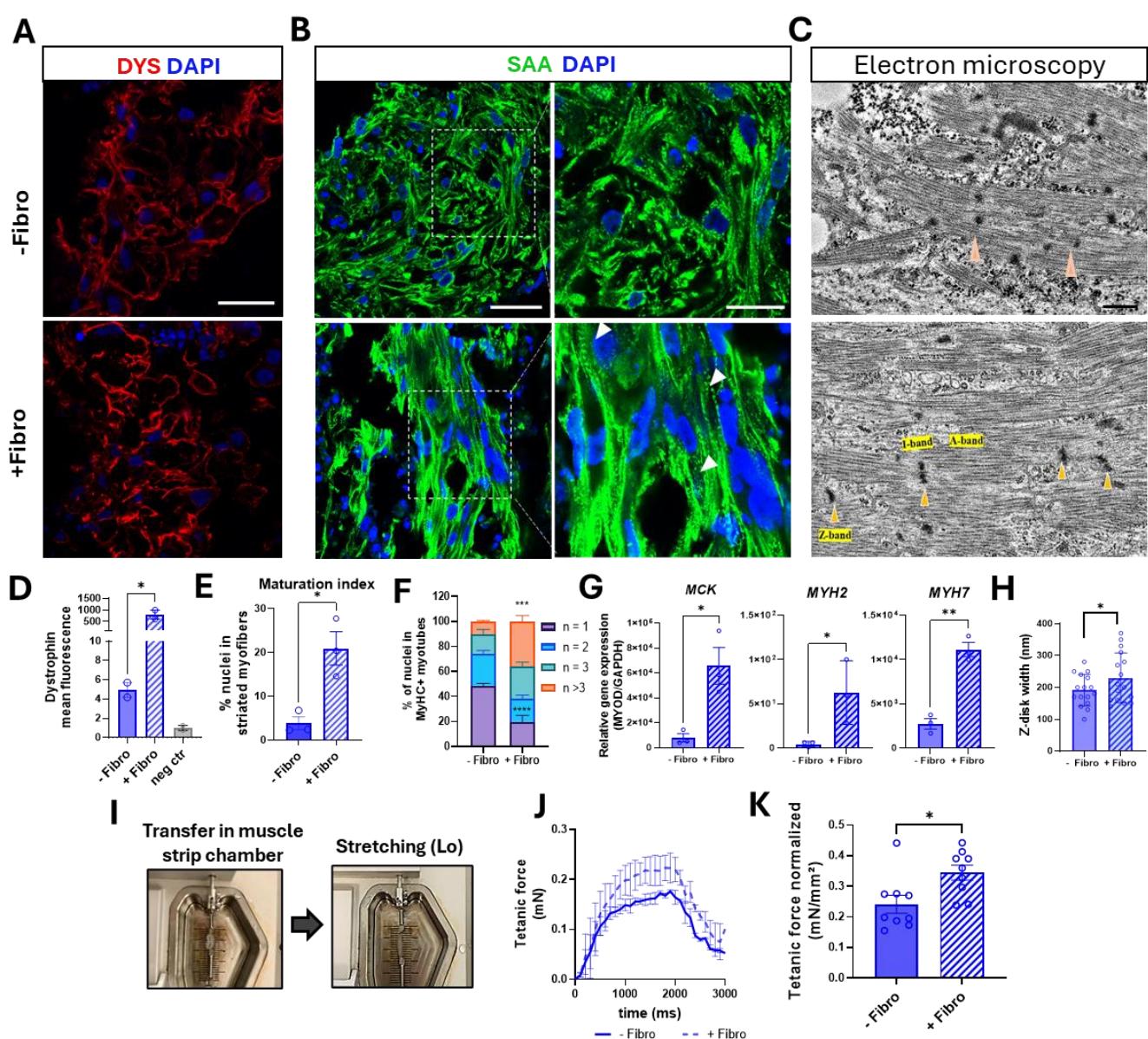


Figure 1. Generation of iPSC-derived MYOrganoids and impact of fibroblast inclusion on muscle organization. (A) Scheme of the protocol used to generate muscle artificial tissues (MYOrganoids) from iPSC committed towards the myogenic lineage by 24h treatment with doxycycline for inducible expression of Myod and BAF60C transgenes (iPSC^{BM}). The casting procedure included: committed iPSC, fibroblasts when indicated (+/-fibro) and a collagen-based scaffold, within a 48-well plate equipped with silicon pillars. After 2 days in growth medium, the 3D structures were shifted to differentiation medium until day 14 for histological analysis. (B) Condensation kinetics of MYOrganoids +/-fibro. (C) Whole-mount staining of MYOrganoids with SARCOMERIC α -ACTININ (SAA) and 3D reconstruction of the ring-shaped constructs using confocal imaging. Scale bar: 1 mm. (D) Representative longitudinal and cross sections of MYOrganoids +/- fibroblasts, immunostained for Myosin Heavy Chain (MYHC) and VIMENTIN or for wheat germ agglutinin (WGA). Nuclei were visualized with DAPI. Scale bars 200 μ m (left panel) and 10 μ m (middle and right panel). Arrows indicate fibroblasts recruited adjacently to the muscle fibers; α is the angle formed between myotubes; lines indicate aligned myotubes, crosses represent X/Y myotubes diameters. (E) The alignment was calculated based on the angle (α) formed between myotubes (α close to 0 corresponds to aligned myotubes, while far from 0 corresponds to not aligned myotubes), while circularity from X/Y myotubes diameters ratio (ratio 1 circular, far from 1 not circular). Ratio X/Y diameter is represented by a QQ normality plot. Data were collected from 3 independent experiments with $n=3$. Unpaired two-tailed t-test was used (**p \leq 0.001).

122 **Increased structural and functional maturation of fibroblast-including MYOrganoids**

123 Since muscle maturation is strictly dependent on the internal myofiber organization, we evaluated the
124 differentiation of our 3D MYOrganoids by looking at the sarcomere structure. Transversal and
125 longitudinal sections were used to monitor dystrophin (DYS) expression at the sarcolemma (**Figure 2A**)
126 and sarcomeric α -actinin (SAA) localization for assessment of the striation pattern typical of mature
127 myotubes (**Figure 2B**). Dystrophin was properly localized to the muscle membrane of myotubes from
128 MYOrganoids including fibroblasts and was significantly more expressed than MYOrganoids without
129 fibroblasts (**Figure 2D**). Remarkably, the maturation index, reported as a percentage of the number of
130 nuclei included in striated myotubes, was significantly superior in MYOrganoids including fibroblasts
131 as compared to MYOrganoids without fibroblasts which appear very disorganized with a rare appearance
132 of striations (**Figure 2E**). Increased maturation of myotubes within MYOrganoids including fibroblast
133 was also supported by analysis of the fusion index, indicating a significantly higher percentage of
134 multinucleated myotubes (>3 nuclei) and a lower percentage of mononucleated ones (**Figure 2F**). This
135 evidence highlights the positive role of fibroblasts in the maturation process through fusion and
136 multinucleation. The proper sarcomeric organization was also confirmed by electron microscopy where
137 we could detect longer, properly formed Z patterning and the presence of I and A bands along with an
138 overall increase of sarcomeric density and alignment (**Figure 2C**). Consistently, MYOrganoids
139 containing fibroblasts showed wider Z-line (**Figure 2H**), index of higher maturation of sarcomeres ⁴⁸.
140 We further performed gene expression analysis for terminal differentiation markers such as muscle
141 creatine kinase (*MCK*), myosin heavy chain (*MYH*) isoforms, such as *MYH2*, representative of fast adult
142 fiber type, and *MYH7*, as a slow fibers marker (**Figure 2G**). Higher expression of all genes in
143 MYOrganoids containing fibroblasts confirms the acquisition of a more mature state, compared to
144 MYOrganoids without fibroblasts.
145 We then assessed whether our MYOrganoids were functional by evaluating their physiological response
146 to contraction stimulations, using a muscle organ bath system based on electrical pacing ⁴⁹. To evaluate

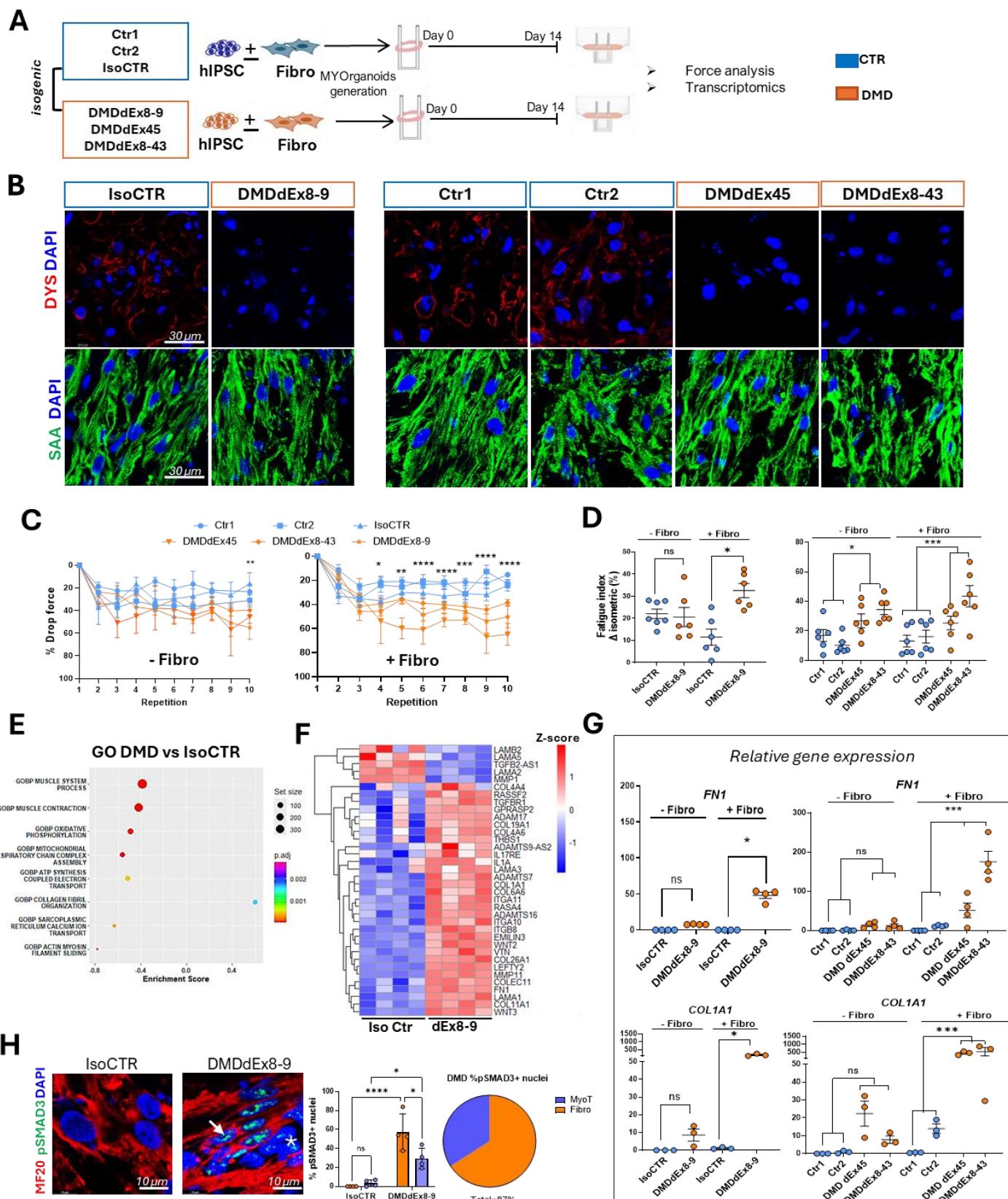
147 muscle force, MYOrganoids were transferred to the muscle strip chamber and stretched until the optimal
148 length (Lo) for functional analysis (**Figure 2I**). Isometric force analysis revealed significantly higher
149 tetanic force in MYOrganoids containing fibroblasts compared to the control (**Figure 2J**). Values were
150 then normalized for the cross-sectional area (CSA) using the weight and optimal length of contraction
151 established for each MYOrganoid^{50,51} and expressed as specific tetanic force (mN/mm²) (**Figure 2K**).
152 In particular, the highest force with fibroblasts had peak values ranging from 0.3 to 0.5 mN versus 0.1
153 to 0.2 mN in MYOrganoids without fibroblasts after normalization (**Figure 2K**). These data
154 demonstrated that MYOrganoids plus fibroblasts have an improved structural organization and
155 functional maturation that enables force contraction studies by electrical pacing.

156

Figure 2. Structural and functional maturation in fibroblast-including MYOrganoids. (A) Representative transversal sections stained for Dystrophin (DYS). Scale bar: 40 μ m. Nuclei were visualized with DAPI. (B) Representative longitudinal sections of MYOrganoids +/- fibroblasts (fibro), immunostained for Sarcomeric α -Actinin (SAA) and nuclei visualized with DAPI. Scale bars: 40 μ m, enlargement 10 μ m. (C) Transmission electron microscopy images showing sarcomeric structures. Orange arrows: Z-lines. Scale bar: 500 nm. (D) DYSTROPHIN staining quantification represented as mean intensity fluorescence and expressed as fold change to the negative control (sections stained without first antibody). N=2 (E) Quantification of maturation index was performed by calculating the nuclei inside striated myofibers visualized by SAA staining as a percentage of the total number of myofibers. N=3 (F) Quantification of fusion index calculated as % Myosin Heavy Chain positive (MYHC+) myotubes containing different numbers of nuclei (n) as depicted. N=3 (G) Gene expression analysis of MCK, MYH2 and MYH7, reported as gene expression relative to MYOD expressing population. N=3 (H) Width of Z-line visualized by Electron microscopy, in MYOrganoids with and without inclusion of fibroblasts. N=16 (I) Contractile muscle force analysis of MYOrganoids using a muscle-strip-based organ bath system. Lo, the optimal length used for normalization of force data (see methods). (J) Representative tetanic traces of MYOrganoids with and without the inclusion of fibroblasts. N=3 (K) Normalized tetanic force peak in MYOrganoids +/- fibroblasts. N=9. Data are presented as mean +/- SEM. Unpaired t-test was applied for statistical analysis (*p \leq 0.05, **p \leq 0.01).

157 **Inclusion of fibroblasts in DMD iPSC-derived MYOrganoids leads to increased muscle fatigue**
158 **and pro-fibrotic signature**

159 The improved muscle organization and functional maturation shown by MYOrganoids including
160 fibroblasts, prompted us to exploit fibroblast features in disease modeling for DMD, where their role in
161 disease progression is well known^{11,12}. We incorporated DMD fibroblasts to recapitulate the pathogenic
162 microenvironment arising from their profibrotic activity exerted by tissue remodeling and matrix
163 deposition^{12,52}. For that purpose, we used three DMD iPSC with different *DMD* mutations, a deletion of
164 exon 45 (DMDdEx45), a deletion of exons 8-43 (DMDdEx8-43) and a deletion of exons 8-9
165 (DMDdEx8-9) with their isogenic control, the DMD dEx6-9 iPSC corrected to restore dystrophin
166 expression⁵³ (hereafter called IsoCTR). We additionally used two control iPSC lines derived from
167 healthy patients (CTR1, CTR2). Control and DMD MYOrganoids were generated from control and
168 DMD iPSC with healthy or DMD human immortalized fibroblasts for functional and transcriptomic
169 analysis (**Figure 3A**). The myogenic differentiation ability of both CTR and DMD iPSC lines was first
170 evaluated in 2D cultures. All cell lines showed comparable myogenic potential, as expected using a
171 direct myogenic conversion protocol bypassing any defective developmental steps (**Figure S2A**).
172 Histological characterization in MYOrganoids showed the absence of dystrophin protein in DMD
173 MYOrganoids and efficient myogenic differentiation and maturation in CTR and DMD MYOrganoids,
174 as shown by the striated pattern visualized by SAA-stained sections, confirming the positive role of
175 fibroblasts in enhancing maturation also in a DMD context (**Figure 3B**).


176 To assess whether DMD MYOrganoids display hallmarks of DMD pathophysiology, we evaluated
177 muscle function, which represents one of the most difficult challenges in establishing therapeutic
178 readouts with *in vitro* systems. To identify reliable force parameters reflecting the defective DMD
179 muscle performance, MYOrganoids were subjected to isometric contractions to measure tetanic force,
180 and to eccentric contractions, which play a critical role in the disease progression of DMD⁵⁴ by triggering
181 the membrane degeneration/regeneration cycles⁵⁵ to assess muscle strength and fatigability. No

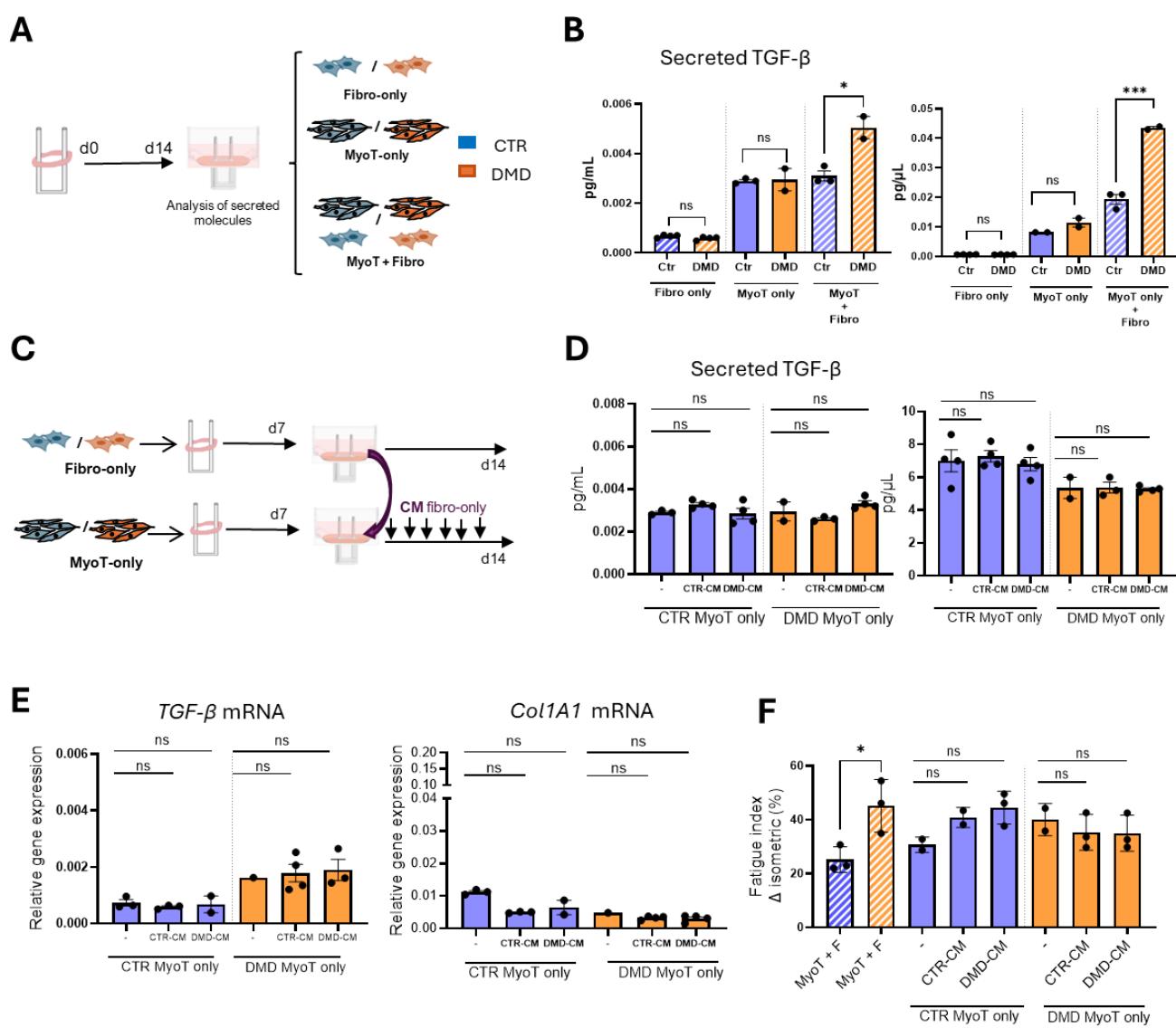
182 significant changes were observed in the tetanic isometric force between CTR and DMD MYOrganoids
183 (**Figure S2B**), as expected for muscles never been challenged by contractions and with the same
184 myogenic potential, while DMD MYOrganoids showed higher drop force in the eccentric contraction
185 repetitions exclusively when including DMD fibroblasts starting from the 4th eccentric repetition (**Figure**
186 **3C**). On the other side, CTR and DMD MYOrganoids not including fibroblasts, show significant
187 differences in drop force just at the tenth repetition (**Figure 3C**). To accurately quantify muscle fatigue,
188 we calculated the fatigue index as the drop of force between the isometric contractions performed before
189 and after the 10 repetitions of eccentric exercise. The analysis showed a significantly higher fatigue
190 index in DMD MYOrganoids as compared to CTR MYOrganoids and remarkably, this phenomenon
191 was highly accentuated by the presence of fibroblasts. (**Figure 3D**). To check whether the impact on
192 disease exacerbation and increase of difference in fatigability between CTR and DMD MYTissue was
193 affected by the different genetic backgrounds of the fibroblast source, we employed three additional
194 fibroblast cell lines from either healthy and DMD individuals to generate CTR and DMD MYOrganoids.
195 Muscle force analysis confirmed that the fatigue index in DMD MYOrganoids was significantly higher
196 than CTR MYOrganoids, regardless of the genetic source of either control or DMD fibroblasts. This
197 analysis also confirmed the display of higher and significant muscle fatigability in fibroblasts-including
198 MYOrganoids (**Figure S2C**). Collectively, these data indicate that DMD MYOrganoids including DMD
199 fibroblasts, through their pro-fibrotic activity, display exacerbated loss of muscle resistance and increase
200 in fatigability (**Figure 3A-D**). The finding also demonstrates that eccentric-based drop force evaluation
201 is a meaningful and reliable therapeutic readout, as significant differences were detected between CTR
202 and DMD MYOrganoids including fibroblasts.
203 We then performed transcriptomic analysis in the isogenic iPSC lines (IsoCTR and DMDdEx8-9) to
204 better characterize the pathogenic hallmarks introduced by fibroblast incorporation within the organoids.
205 Analysis of significant ($p.\text{adj} < 0.05$) and relevantly different transcripts ($\text{abs log2FoldChange} > 1$)
206 revealed 4610 differentially expressed genes (DEGs) between DMDdEx8-9 and IsoCTR MYOrganoids,

207 of which 2181 upregulated and 2429 downregulated (**Figure S3A-B**). Of those, we identified genes
208 involved in decreased muscular contraction (e.g. muscle system process, muscle contraction,
209 sarcoplasmic reticulum calcium ion transport and actin-myosin filament sliding) as well as reduced
210 energetic molecular process (e.g. oxidative phosphorylation, mitochondrial respiratory chain complex
211 assembly, ATP synthesis coupled electron transport), as depicted by gene ontology biological process
212 (GOBP) enrichment analysis (**Figure 3E, table S1**). Remarkably, between the upregulated pathways in
213 DMD MYOrganoids, we identified higher collagen fibril organization with an enrichment score of +0.6
214 (**Figure 3E**). This GO analysis was also confirmed by Kyoto encyclopedia of genes and genome
215 (KEGG) enrichment analysis, which showed a downregulation of oxidative phosphorylation and an
216 upregulation of ECM receptor interaction, such as Integrin alpha and beta (**Figure S3C**). Interestingly,
217 the analysis of genes involved in the ECM remodeling revealed an upregulation of genes coding for
218 collagens, laminins, metalloproteases and TGF- β related genes such as TGF-B receptor (TGFBR1) and
219 the ncRNA inhibitor of TGF- β (TGFB2-AS1) in DMD MYOrganoids compared to isogenic control
220 (**Figure 3F**). Additionally, we found increased levels of latent TGF- β binding proteins (LTBP 2 and 4)
221 in dystrophic MYOrganoids, indicating that TGF- β is activated in the DMD context and contributes to
222 ECM remodeling (**Table S1**).

223 The increased profibrotic signature in DMD iPSC-derived MYOrganoids was then confirmed in all CTR
224 and DMD iPSC-derived MYOrganoids, by evaluation of the expression of two key fibrotic markers,
225 Fibronectin-1 (*FN1*) and Collagen-1 (*COL1A1*). Importantly, the differences in the expression of fibrotic
226 markers between CTR and DMD MYOrganoids were significant only when including fibroblasts
227 (**Figure 3G**). We further examined, at histological level, the presence of activated TGF- β signaling in
228 DMD organoids by looking at phosphorylated SMAD3 (pSMAD3), the transcriptional effector of the
229 canonical TGF- β pathway. Notably, DMDdEx8-9-derived MYOrganoids showed increased pSMAD3
230 positive nuclei both in myotubes (MyHC positive staining) and fibroblasts (MyHC negative cells)
231 (**Figure 3H**). This observation indicates a crosstalk between fibroblasts and myofibers and supports the

232 potential of using fibroblasts in tissue engineering as a source of ECM and pro-fibrotic cues under
 233 pathological conditions.

Figure 3. Fibroblast inclusion in DMD iPSC-MYOrganoids induces exacerbation of profibrotic signature and fatiguability. (A) Overview of MYOrganoids generation from control iPSC (CTR1 and CTR2), DMD iPSC (DMDdEx45, DMDdEx8-43) and isogenic iPSC (IsoCTR and DMDdEx8-9) including control or dystrophic fibroblasts respectively for histological characterization, force and transcriptomic analysis. (B) Immunostaining of MYOrganoids cross sections for Dystrophin (Dys), Sarcomeric α -actinin (SAA), and DAPI for nuclei. Scale bar: 30 μ m (C) Drop force over 10 repetitions of eccentric (ECC) contractions in all CTR and all DMD MYOrganoids without (-) or with (+) fibroblasts N=5. (D) Fatigue index calculated as % of drop force between two isometric contractions (ISO) performed before and after 10 repetitions of ECC in all CTR and all DMD MYOrganoids +/- respective fibroblasts. N=6. (E) Gene Ontology enrichment analysis (GO TERM) from RNA-seq data in isogenic iPSC-derived CTR (IsoCTR) and DMD (DMDdEx8-9). The scale of color is representative of the p adjusted (p.adj) N=4 (F) Clustered heatmap of fibrotic Differentially Expressed Genes (DEG) relative to DMD vs IsoCTR (left). Color scale represents the Z-score (red is higher, blue lower) (G) Relative gene expression of Fibronectin (FN1) and Collagen (COL1A1) in all iPSC CTR and DMD-derived MYOrganoids with or without fibroblasts. For FN1, N=4 and for COL1A1 N=3 (H) Representative images showing activation of TGF- β signaling by immunostaining for pSMAD3+ cells in MyHC+ myotubes (arrows), and in fibroblasts (asterisk), considered as MyHC- cells, and relative quantification. Scale bar: 10 μ m, N=4 For all panel, data are presented as mean \pm SEM. For panel A-G, unpaired one-tailed t-test was performed for statistical purposes. For panel H, a 2-way ANOVA test was performed (F=1,12, degree of freedom=12) (*p \leq 0.05, **p \leq 0.01, ***p \leq 0.001, ****p \leq 0.0001, ns= not significant).


Juxtracrine role of fibroblasts in the modeling of DMD phenotype

234 We then sought to gain insights into the contribution of fibroblasts in the recapitulation of key
235 pathogenic hallmarks of DMD. Given that fibroblasts are known to primarily act through their secreted
236 molecules⁵⁶⁻⁵⁸ we analyzed the secretome of both control (CTR) and DMD MYOrganoids (MyoT +
237 Fibro) and compared it to that of single-cell 3D cultures (Fibro-only and MyoT-only) (**Figure 4A**).
238 Analysis of culture media on day 14 showed elevated levels of secreted TGF- β and Collagen 4 (COL4)
239 in DMD MYOrganoids cocultured with fibroblasts compared to control conditions. No significant
240 differences were observed between control and DMD in Fibro-only and MyoT-only 3D cultures
241 (**Figure 4B**). These data indicate that DMD MYOrganoids in coculture with fibroblast exhibit an
242 increased release of fibrotic factors.

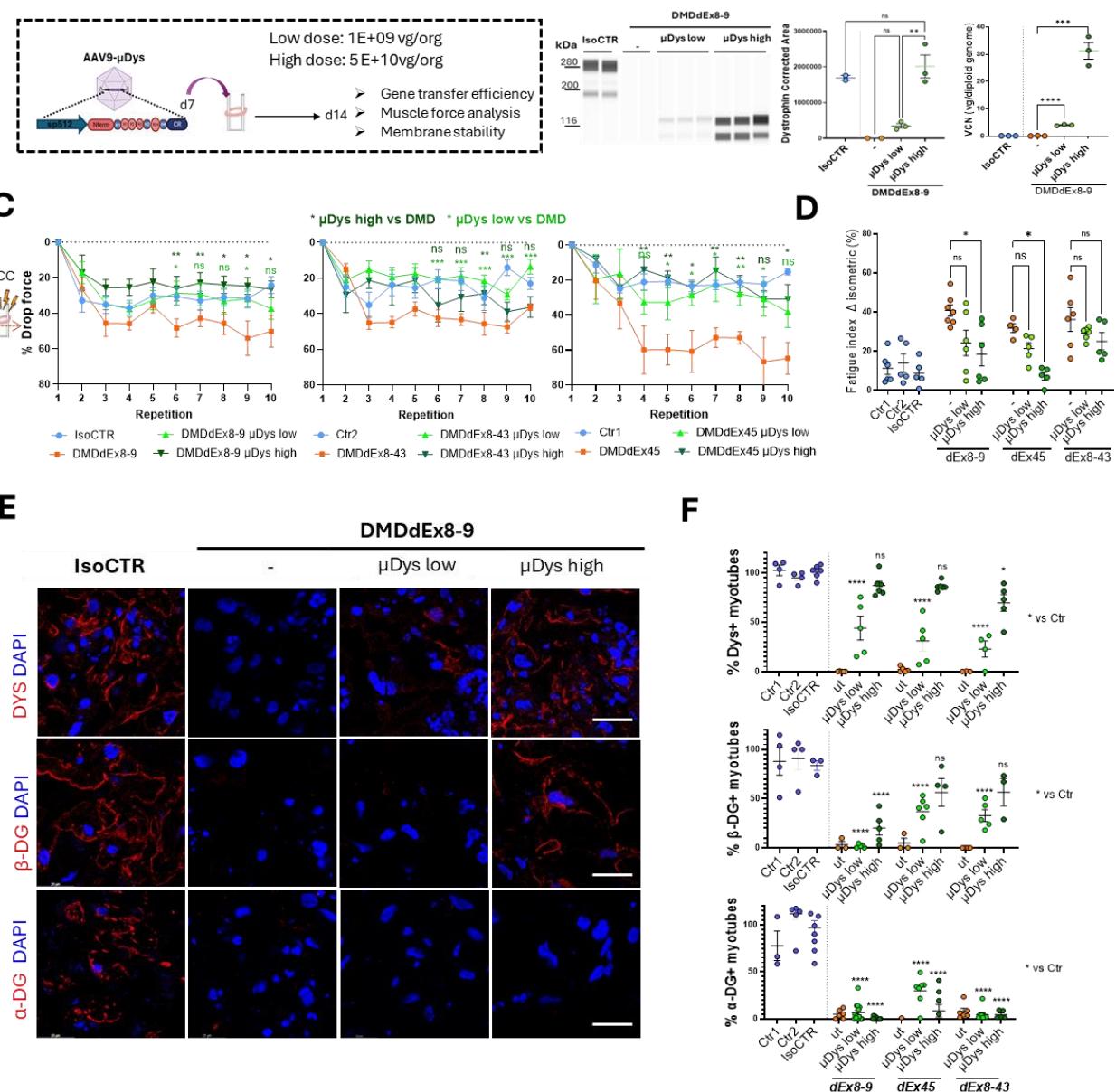
To determine whether fibroblasts amplify the fibrotic phenotype through their secretory activity, we collected conditioned media (CM) from control (CTR) and DMD Fibro-only 3D cultures on day 7 of *in vitro* growth. We then applied this CM to treat CTR and DMD MyoT-only tissues for additional 7 days, assessing the secretion of fibrotic factors, gene expression, and muscle force (**Figure 4C**). ELISA assay on secreted TGF- β and fibronectin 1 (FN1) revealed no difference in MyoT-only 3D cultures treated with the CM from either CTR or DMD Fibro-only tissues (**Figure 4D**). Congruently, gene expression

levels of TGF- β and Col1A1 were similar in CTR and DMD MyoT-only cultures, regardless of the treatment with the CM (**Figure 4E**), while those were higher just in DMD cocultures (MyoT + Fibro) compared to control conditions (**Figure S4A**). The lack of effect of the CM indicates that the profibrotic increase seen in DMD MYOrganoids in coculture with fibroblasts occurs by a juxtracrine effect, as it comes from contacts between the two cell types.

We further evaluated the requirement of fibroblasts-myotubes coculture in disease exacerbation by assessing muscle force analysis following CM treatment, which confirmed no difference in fatiguability in myotube-only 3D cultures treated with control or DMD Fibro-derived CM, unlike higher fatigue index in DMD organoids containing both fibroblasts and myotubes in coculture (**Figure 4F**). Interestingly, MYOrganoids including fibroblasts displayed a higher tetanic force compared to myotubes-only cultures treated or not with fibroblasts CM, also supporting their cell contact-dependent role for enhanced functional maturation (**Figure S4B**). Collectively, analysis of secreted protein and force under CM experiments showed that the dystrophic fatiguability and fibrosis traits emerged only when fibroblasts and muscle cells were cocultured, indicating that contact-dependent cellular communication between muscle and fibroblasts is required to reveal the DMD traits of profibrotic secretion and fatiguability.

243

Figure 4. Fibroblast role in the modeling of DMD phenotype requires direct contact with DMD iPSC-derived muscle cells. **A)** Scheme of engineered 3D cultures created using either iPSC-derived myotubes (MyoT), fibroblasts (Fibro), or a combination of both (MyoT + Fibro=MYOrganoids) from CTR or DMD cells. **B)** TGF- β and COL1A1 ELISA performed in Fibro only, MyoT only or combination (Fibro+MyoT). $N=3$ **C)** Scheme of conditioned medium (CM) exchange. From day 7, (CM) was collected daily from 3D cultures with fibroblasts (Fibro) alone and used daily in MyoT 3D cultures compared to untreated MyoT only or MyoT+Fibro co-cultured MYOrganoids. $N=3$ **D)** TGF- β and Fibronectin 1 (FN1) levels detected by ELISA in CTR or DMD only MyoT only organoids after 7 days of treatment with CM from either wild-type fibroblasts (CTR-CM) or DMD fibroblasts (DMD-CM) and analyzed at day 14. $N=3$ **E)** TGF- β and COL1A1 gene expression in in CTR or DMD only MyoT only organoids after 7 days of treatment with CM from either wild-type fibroblasts (CTR-CM) or DMD fibroblasts (DMD-CM) and analyzed at day 14. $N=3$ **F)** Fatigue index in MyoT + Fibro organoids, and in MyoT only tissues treated or not with CTR-CM and DMD-CM. CTR conditions are indicated in blue and DMD organoids in orange. $N=3$. For all panels, data are represented as average \pm SEM. * $p < 0.05$; *** $p < 0.0001$; ns = not significant (unpaired one-tailed Student's t test).


244

245 **AAV-microdystrophin gene transfer rescues muscle resistance while partially restoring**
246 **Dystrophin Glycoprotein Complex components in DMD MYOrganoids**

247 As proof of concept that MYOrganoids were suitable as a screening platform for gene therapy, we used
248 AAV-mediated delivery of microdystrophin (μ Dys) and assessed its therapeutic efficacy in the DMD
249 context. We used AAV9 capsid for this aim, as this viral serotype was used in recent clinical trials and
250 showed a high transduction rate in patients' myofibers ^{59,60}. We infected the organoids with a codon-
251 optimized μ Dys gene (dR4-23, same protein product used in clinical trials ⁶¹) under the control of the
252 muscle-specific spc512 promoter ¹⁶ for gene transfer using AAV9 (AAV9- μ Dys) in all DMD
253 MYOrganoids iPSC (dEx45, dEx8-43 and dEx8-9 with isogenic control, IsoCTR) and assessed gene
254 transfer efficiency, muscle force analysis and membrane stability assessment (**Figure 5A**). We first
255 optimized the infection conditions using the reporter AAV9-CMV-GFP in CTR MYOrganoids including
256 fibroblasts. Infection was performed on day 7 of the differentiation protocol, diluting AAV particles
257 directly in the medium, and maintained for an additional 7 days (**Figures S5A-C**). Optimal low and high
258 AAV9- μ Dys doses were established based on previous dosing studies to have intermediate transduction
259 levels at low doses (1E+09 vg/MYOrganoid), and high transduction levels at high doses (5E+10
260 vg/MYOrganoid) (**Figure S5D**). Gene transfer efficiency was evaluated by quantification of viral copy
261 number (VCN) on genomic DNA and by the expression level of the transgene and the encoded protein,
262 showing a clear dose-dependent entry and expression of μ Dys in DMD MYOrganoids (**Figure 5B, S6A-**
263 **B**). As expected by using a muscle-specific promoter, only the muscle cells (MyoT) but not the
264 fibroblasts expressed the transgene after infection of AAV9- μ Dys in the single populations (**Figure**
265 **S6C**). We then tested whether μ Dys affected the contractility and fatigue resistance of the infected
266 organoids. Isometric tetanic force analysis did not reveal any significant changes in DMD MYOrganoids
267 following μ Dys delivery compared to not-infected conditions (**Figure S6D**), as expected by first-time
268 contracting muscle tissues. We then challenged the muscles with repeated eccentric repetitions, and we
269 observed a dose-dependent attenuation of the drop force in DMD MYOrganoids after μ Dys infection

270 (Figure 5C). Consistently, the fatigue index was greatly reduced in a dose-dependent manner in all
271 DMD MYOrganoids treated with a high dose of μ Dys, although reaching significance only for
272 DMDdEx45 and DMDdEx8-9 MYOrganoids (Figure 5D). To confirm that the observed effects were
273 specifically due to μ Dys expression rather than AAV infection alone, we infected DMD MYOrganoids
274 with a control vector containing a dystrophin fragment lacking a promoter (hereafter called empty
275 vector), which infection did not result in protein expression (Figure S6E-G). Particularly, the
276 MYOrganoids infected with the empty vector did not show any differences in the fatigue index analysis,
277 at both low and high dose, while we observed a decreased fatigue index in DMD MYOrganoids infected
278 with an AAV containing μ Dys (Figure S6H). Overall, the muscle force data confirmed that ectopic
279 μ Dys expression rescues muscle endurance and fatigability.

280 Because dystrophin exerts its biomechanical support by holding the Dystrophin Glycoprotein Complex
281 (DGC) at the membrane, we monitored key components of this complex, such as the transmembrane β -
282 Dystroglycan (β -DG), directly binding Dystrophin, and the extra-cellular α -Dystroglycan (α -DG), whose
283 proper expression and localization are impaired in the absence of dystrophin ⁶². To this aim, DMD
284 MYOrganoids infected with low and high dose of μ Dys, were subjected to histological analysis.
285 Quantification of μ Dys showed around 25-30% of dystrophin-positive myotubes at low dose compared
286 to 85% in the high dose condition in DMD dEx8-9 (Figure 5E-F) and dEx45 and 65% in the DMD
287 dEx8-43 MYOrganoids (Figure S7A-B). Immunostaining on transversal MYOrganoids showed a dose-
288 dependent yet not complete restoration of β -DG in all DMD iPSC-derived MYOrganoids. Interestingly,
289 even high doses ensuring nearly total Dystrophin transduction in all the DMD MYOrganoids did not
290 significantly restore α -DG (around 10% in DMDdEx8-9 and DMDdEx8-43 and around 30% in
291 DMDdEx45) suggesting a potential therapeutic limitation of μ Dys (Figure 5E-F). Importantly, these
292 data demonstrate the limited restoration of Dystrophin-associated components to the sarcolemma after
293 successful μ Dys gene transfer.

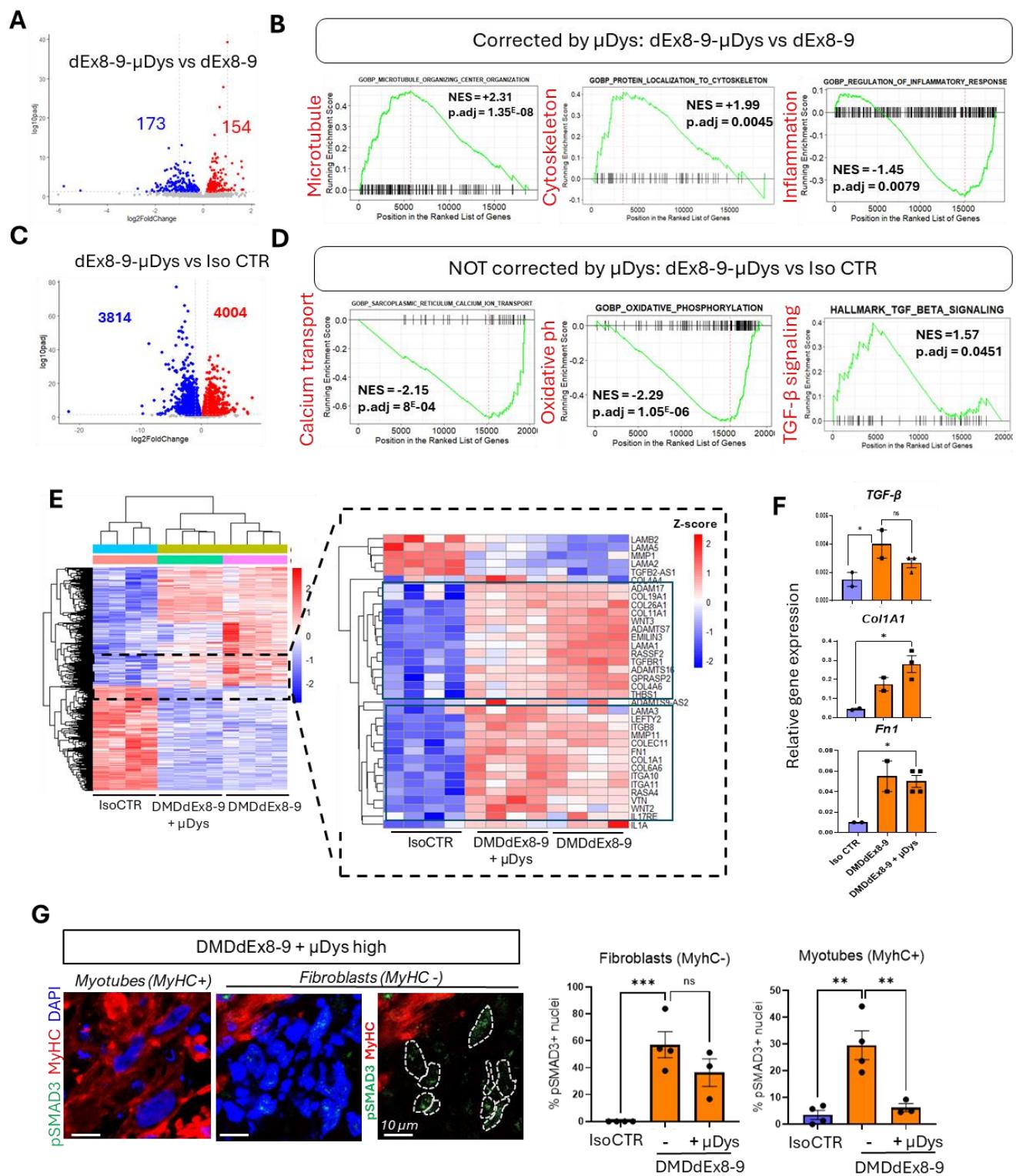
294

Figure 5. μ Dys gene transfer-mediated improvement of muscle resistance and partial rescue of DGC complex. (A) Scheme of AAV9- μ Dys infection and doses used in DMD iPSC-derived MYOrganoids. (B) Evaluation of gene transfer efficiency by viral copy number (VCN) analysis ($N=3$) and protein expression analysis by capillary western blot in isogenic iPSC DMD dEx8-9-derived MYOrganoids infected with low and high dose of μ Dys versus non-infected (-) IsoCTR ($N=3$). (C) Drop force over 10 repetitions of eccentric (ECC) contractions in isogenic cell lines and CTR1, CTR2 and DMDdEx45, DMDdEx8-43-derived MYOrganoids receiving low and high doses of μ Dys. $N=6$ (D) Fatigue index in all CTR and DMD MYOrganoids treated or not with m-Dystrophin at low and high dose. $N=5$. (E) Histological evaluation of Dystrophin Glycoprotein Complex (DGC) upon infection, by immunostaining for Dystrophin (DYS), α -Dystroglycan (α -DG) and β -Dystroglycan (β -DG) in cross sections of Isogenic CTR and DMD-iPSC-derived MYOrganoids. Scale bar: 40 μ m and (F) relative quantification in all control and iPSC-derived MYOrganoids $N=4$. Data are presented as means +/- SEM. Statistical analysis was performed with an ordinary one-way ANOVA test (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$, ns = not significant) with multiple comparisons corrected with Dunnett's test ($F=3,24$ and degree of freedom = 24)

Optimal microdystrophin gene transfer partially corrects the transcriptomic profile of DMD

MYOrganoids and does not rescue the profibrotic signature

295 To examine the effect of microdystrophin (μ Dys) on the signaling pathways and molecular processes
296 characteristics of dystrophic pathology, we performed bulk RNA-seq analysis comparing the corrected
297 DMD dEx8-9 (IsoCTR) and DMDdEx8-9 MYOrganoids untreated and treated with a high dose of
298 AAV9- μ Dys (n=4).


299 Principal component analysis (PCA) of the top 10000 genes with the highest variance showed a distinct
300 transcriptomic profile of DMD organoids treated with μ Dys (dEx8-9 + μ Dys high) and untreated (dEx8-
301 9) compared to isogenic controls (IsoCTR) (**Figure S8A**). To evaluate the effect of μ Dys in restoring
302 key pathways involved in DMD, we firstly compared the transcriptomic profile of μ Dys-treated DMD
303 organoids to untreated DMD organoids (dEx8-9 μ Dys vs dEx8-9), and then to the isogenic control
304 (dEx8-9 μ Dys vs IsoCTR). Particularly, μ Dys-treated DMD organoids showed a total of 327 DEGs, of
305 which 154 upregulated and 173 downregulated, compared to untreated organoids (**Figure 6A, Table**
306 **S2**). Of those 327 DEGs, 52% (170/327) are in common with the DEGs that were found dysregulated in
307 DMD organoids when compared to the isogenic control (**Figure S8B**). Therefore, we performed the
308 gene ontology enrichment analysis of the common category to see the effect of μ Dys on the DMD-
309 dysregulated pathways. This analysis revealed increased expression of genes involved in the microtubule
310 organization (GOBP: Microtubule organizing center organization NES = +2.31), cytoskeleton
311 organization (GOBP: Protein localization to cytoskeleton NES=+1.99), and a decreased expression of
312 genes involved in the inflammation (GOBP: Regulation of inflammatory response, NES = -1.45) (**Figure**
313 **6B**).

314 We then analyzed the DEGs between the treated organoids and the isogenic control to check the
315 transcriptomic signature not restored by μ Dys (dEx8-9- μ Dys vs IsoCTR). Particularly, μ Dys-treated
316 organoids present 7818 DEGs (4004 upregulated and 3814 downregulated) when compared to the
317 corrected isogenic organoids (**Figure 6C**). Gene ontology analysis of the DEGs between μ Dys-treated

318 DMD organoids and IsoCTR organoids revealed the pathways that are not restored by the gene transfer.
319 Particularly, treated organoids showed persistent downregulation of genes involved in calcium transport
320 (GOBP: Sarcoplasmic reticulum calcium ion transport, NES = -2.15), oxidative phosphorylation
321 (GOBP: Oxidative phosphorylation, NES = -2.29) and upregulation of TGF β signaling (Hallmark TGF β
322 signaling, NES = +1.57), when compared to isogenic controls (**Figure 6D, Table S3**). Consistently, a
323 clustered heatmap of all 1716 most significant differentially expressed genes (DEGs) further highlighted
324 the transcriptomic differences between control and DMD organoids (**Figure 6E**).
325 Analysis of Z-score of fibrotic genes among the three conditions (IsoCTR, DMDdEx8-9 and DMDdEx8-
326 9 treated with μ Dys) revealed a persistent but variegated profibrotic signature. In particular, we revealed
327 a slight decrease in the expression of ADAMs (i.e. ADAM17, ADAMTS7, ADAMTS16), collagen
328 genes (e.g. COL11A1, COL4A6) and the TGF- β receptor 1 gene (TGFBR1) in μ Dys-treated DMD
329 organoids, when compared to the untreated condition, although still significantly different from isogenic
330 control (**Figure 6E, right panel**). Additionally, other fibrotic genes, like *FN1* and *COL1A1*, Integrins or
331 cytokines (e.g. IL1A), showed no expression changes compared to untreated control (**Figure 6E, right**
332 **panel**). Further validation of the expression of *COL1A1*, *FN1*, not decreased by the μ Dys treatment, and
333 of *TGF- β* , partially downregulated, confirmed the persistent expression of those genes in DMD-treated
334 MYOrganoids (**Figure 6F**). To understand the mechanisms behind the unresolved fibrotic process, we
335 evaluated the reduction in TGF- β pathway activation within both cell subpopulations in DMD
336 MYOrganoids following μ Dys treatment. Histological staining revealed a significant decrease in
337 pSMAD3-positive nuclei within the skeletal muscle subpopulation of μ Dys-treated organoids, whereas
338 no difference was observed in fibroblasts after μ Dys treatment (**Figure 6G**). This result suggests a cell-
339 autonomous correction of this signaling within the muscle population receiving μ Dys, but no paracrine
340 effect on fibroblast activity. The persistence of activated TGF- β signaling in the fibroblast subpopulation
341 after μ Dys gene transfer (**Figures 3H and 6G**) can therefore explain the uncorrected profibrotic

342 signature and poses the basis for future investigation aimed at improving or driving beneficial cell-cell
343 communication.

344

347 **Figure 6: Persistent fibrotic activity in μ Dys-treated isogenic DMD MYOrganoids.** (A,C) Volcano plot showing the
348 differential gene expression in treated (*dEx8-9- μ Dys*) versus untreated (*dEx8-9*) DMD MYOrganoids(A) or DMD
349 *dEx8-9- μ Dys* vs isogenic control (*IsoCTR* (C). Upregulated genes are shown in red, while downregulated genes are
350 shown in blue. Numbers indicate the amount of downregulated and upregulated genes. (B,D) Gene ontology
351 enrichment analysis of treated (*dEx8-9- μ Dys*) versus untreated (*dEx8-9*) DMD MYOrganoids (B) or *dEx8-9- μ Dys* vs
352 *IsoCTR* (D). Normalized enrichment score (NES) and adjusted p-value (p.adj) are indicated for each subcategory.
353 (E) Clustered Heat map and enlargement depicting relative transcript levels of differentially expressed genes in
354 corrected DMD (*IsoCTR*) and DMD MYOrganoids transcriptomics treated or not with μ Dystrophin (*dEx8-9* and
355 *dEx8-9 μ Dys* high). Lower and higher expressions are depicted in blue and red, respectively. The data points above
356 the significance threshold (p adjusted < 0.05 , fold2change > 2) are marked in blue (downregulated) and red
357 (upregulated), and others are marked in gray (not significant). (F) Relative gene expression of TGF- β , ColA1 and
358 FN1 in Isogenic control, DMD *dEx8-9* untreated or treated with μ Dys. (G) Histological staining of phospho-SMAD3
359 (*pSMAD3*) staining in green, myosin heavy chain (MyHC) in red and nuclei with DAPI in μ Dys-treated DMD
360 MYOrganoids, and relative quantification of *pSMAD3* positive nuclei in percentage. Scale bar = 10 μ m. For panel
361 F-G, data are presented as means +/- SEM. For panel F, statistical analysis was performed with an ordinary one-
362 way ANOVA test (* $p \leq 0.05$, ns = not significant), while for panel G, unpaired one-tailed Student's t test was
363 performed (** $p < 0.005$; *** $p < 0.001$; ns = not significant).

364

365

366

367 **Discussion**

368 Here, we present a novel human-relevant model that simulates key traits of advanced stages, enabling
369 the interrogation of gene replacement effect on muscle function and fibrosis, and facilitating the
370 identification of new therapeutic avenues.

371 We report the generation of 3D-engineered muscles called MYOrganoids, composed of a
372 homogeneous population of iPSC-derived skeletal muscle cells^{35,40} and fibroblasts, major players in
373 muscle tissue organization and microenvironment regulation^{37,38,63}. We proved that fibroblast inclusion
374 in the MYOrganoids results in improved structural maturation that allows high functional performance
375 under muscle force evaluation, while also eliciting a fibrotic signature in a DMD context.

376 Importantly, fibroblast incorporation was pivotal in exacerbating DMD phenotype and revealing
377 fatiguability, which is a top hallmark for DMD muscle function, thereby enabling its unprecedented
378 use as therapeutic readouts *in vitro*. This is important considering that the capacity to evaluate muscle
379 function in a high throughput manner remains limited, further hindering progress in testing or
380 developing effective treatments. As such, while several remarkable studies reported on muscle force
381 in 3D models^{32,33,53,64,65}, evaluating muscle function still presents challenges due to the complexity of
382 identifying disease-specific force parameters and the variability of *in vitro* models.

383 Furthermore, our study sheds new light on the mechanism underlying the contribution of fibroblasts to
384 the modeling of DMD phenotype. We showed that direct interaction of DMD fibroblast with muscle
385 cells is essential to reproducing key pathogenic hallmarks, such as a profibrotic signature and increased
386 muscle fatigue in DMD MYOrganoids. Interestingly, fibroblast role in the recapitulation of DMD
387 hallmarks was not exerted by their profibrotic secretory activity *per se* but required direct interaction
388 with iPSC-derived muscle cells. As such, fibroblasts in a DMD context showed higher secretion of
389 fibrotic factors like TGF- β , fibronectin, and collagen through cell-contact signaling, suggesting that
390 cell communications between the two cell populations, fibroblasts and muscle fibers, is crucial to reveal
391 pathogenic traits. One possible hypothesis is that fibroblasts secretory activity is enhanced by

392 alterations in cell communications with dystrophin-deficient muscle cells whose membrane stability is
393 impaired, thereby causing increased matrix deposition and susceptibility to contraction-induced
394 damage and fatigue.

395 Overall, the exacerbated severity of DMD MYOrganoids enabled the evaluation of the therapeutic
396 potential of μ Dys, currently employed in clinical trials. Consistently with the partial efficacy in the
397 clinics, μ Dys^{16,17} delivery in DMD MYOrganoids did not fully rescue DMD phenotype as it led to
398 incomplete restoration of the components of the dystroglycan complex and no reduction in fibrotic
399 genes transcriptome. Notably, we observed a reduction in the TGF- β pathway activation exclusively
400 on muscle cells, while no effect was observed in fibroblasts. This can explain the persistence of ECM
401 protein production and secretion in μ Dys treated DMD MYOrganoids, while we observed an effect in
402 the restoration of muscle strength.

403 Our findings align with previous results showing that μ Dys exhibits limited effectiveness in reducing
404 fibrosis in advanced disease stages⁶⁶ and in more severe models and muscles affected by the disease,
405 such as the diaphragm in the Dba2 *mdx* model⁶⁷. We can speculate that the partial restoration of DAG
406 complex after gene transfer causes mechanical alterations of the membrane that are translated as
407 profibrotic signals. In advanced disease stages, the stiffened ECM perpetuates fibrosis through
408 mechanotransduction, activating fibroblasts to deposit ECM proteins and increasing rigidity. This
409 feedback loop hinders microdystrophin's ability to reverse fibrosis.

410 Up to now, no other work revealed the impact of μ Dys on the fibroblast population of the muscle,
411 revealing the potential of our system in highlighting specific cell-cell communications in response to
412 treatment. Further work is needed to fully understand the role of fibroblasts in the dystrophic process.
413 For example, how the absence of dystrophin in the myotubes is influencing fibroblast activity, and how
414 the reintroduction of μ Dys is affecting the composition of the ECM, still needs to be elucidated.

415 Overall, pro-fibrotic DMD MYOrganoids provide a valuable tool either for the investigation of
416 mechanisms driving dystrophic process and as a human *in vitro* counterpart to animal *in vivo* preclinical

417 studies, with the potential to unravel therapeutic limitations of current DMD treatments and accelerate
418 the identifications of new treatments.

419

420 **Acknowledgments**

421 We express our gratitude to Rene Hummel (Danish MyoTechnology), Guillaume Tanniou, and Nicolas
422 Guerchet for their technical support in muscle force evaluation. We thank Guillaume Corre for the aid
423 with RNA-seq analysis. We thank the service of bioproduction of Genethon, for preparing the AAV
424 particles used in this study. We also extend our appreciation to Jérémie Cosette for the assistance in
425 imaging and to the histology team for their technical expertise. Finally, we would like to thank
426 Frederique Magdinier for generously providing the DMD iPSC dEx45 and CTR1 iPSC.

427 **Fundings**

428 This study was financially supported by the Institut National de la Sante et de la Recherche Medicale
429 (INSERM) and by the “Association Française contre les Myopathies” (AFM).

430 **Author contributions**

431 SA and LPa designed the experiments. LPa performed most of the experiments, including iPSC culture,
432 organoid generation, imaging, and muscle force analysis. LPi performed force assays and gene and
433 protein expression analysis. AJ performed secretome analysis. MM contributed to muscle force analysis.
434 AVH analyzed RNA-seq data. RE and GB performed electron microscopy analysis. AB generated and
435 provided the immortalized human fibroblasts. SA and LPa performed data analysis and figure
436 preparation. SA conceived, supervised the project, and wrote the manuscript. All authors discussed the
437 results. SA, LPa, DI and IR reviewed and edited the manuscript.

438 **Declaration of interests**

439 All authors declare they have no competing interests.

440 **RESOURCE AVAILABILITY**

441 **Lead contact**

442 Further information and requests for resources and reagents should be directed to and will be
443 fulfilled by the lead contact, Sonia Albini (salbini@genethon.fr).

444

445 **Material availability**

446 CTR2, IsoCTR, DMDdEx8-9 and DMDdEx8-43 hIPS cell lines used in this study are restricted
447 due to MTAs (Ref: MTA 2022 GENETHON - AIM _DMD, MMTA202109-0107, 2021-
448 0296_MTA_CECS). This study did not generate new unique reagents.

449 **Data and code availability**

450 The data supporting the findings of this study are available within the article and its supplemental
451 information. The RNA sequencing datasets generated in this study can be found in the NCBI
452 Bioproject database (<https://www.ncbi.nlm.nih.gov/bioproject>) using the access number
453 PRJNA1208956.

454 **METHODS**

455 **Cell culture**

456 Human iPSCs used in the study were as follows: CTR1 and CTR2 from healthy individuals,
457 DMDdEx45, DMDdEx8-43 from DMD patients. The isogenic iPSC DMDdEx8-9 and corrected
458 control (CRISPR-mediated skipping of mutated exons dEx6-9, isogenic control) were obtained
459 from Olson lab. The CTR1 and DMDdEx45 hiPSC lines were generated from skin fibroblasts from
460 Coriell and were obtained from Marseille Stem Cells platform in Marseille Medical Genetics
461 laboratory ⁶⁸. iPSCs were maintained using mTeSRplus medium (Stem Cell Technologies) and
462 passaged using ReleSR (STEMCELL Technologies) on Matrigel-coated wells (Corning). iPSC
463 engineering and muscle differentiation were performed by adapting a transgene-based method
464 previously described ^{35,36}. All iPSC lines are engineered for transgene-based myotubes
465 differentiation. Briefly, cells were nucleofected (4D Nucleofector, Lonza) with two enhanced
466 versions of piggyBAC (ePB) containing respectively MyoD and BAF60c genes under tetracycline
467 responsive promoter ^{35,36}. Additionally, iPSCs were regularly selected for the presence of the two
468 ePBs with puromycin (10 µg/ml) and blasticidin (20 µg/ml) at the same time (Sigma-Aldrich).

469 Human immortalized fibroblasts from control and DMD patient were generated and obtained from
470 Myobank-AFM of Myology Institute from muscle biopsies. Control and DMD human
471 immortalized fibroblasts, used in co-culture with hiPSC in 3D MYOrganoids, were maintained in
472 culture in DMEM High Glucose Lglut supplemented with 20% fetal bovine serum (FBS) and
473 passaged using TrypleE (Gibco). Human primary fibroblasts from control DMD patients were
474 obtained from DNA bank of Genethon Fibroblasts were maintained in DMEM high glucose
475 (Gibco) supplemented with 20 ng/ml recombinant human fibroblast growth factor (h-FGF)
476 (Peprotech) and 20% fetal bovine serum (Gibco). Primary fibroblasts were passaged using TrypleE
477 (Gibco). All cell lines are listed in **table S4**.

478 **Generation of MYOrganoids**

479 MYOrganoids from iPSCs were generated adapting the protocol described for engineered heart
480 tissue⁶⁹. First, iPSC were induced with doxycycline 200 ng/μl for 24 hours to induce the expression
481 of MyoD and Baf60c. The day after, 1.25 x 10⁶ iPSC-committed were resuspended in 77 μl of
482 growth media (SKM02, AMSbiokit) supplemented with hES cell Recovery (Stemgent) and
483 molded in hydrogel composed by 40 μl of Bovine Collagen solution 6mg/ml (Sigma-Aldrich),
484 17.8 μl of Matrigel Growth Factor reduced (GFR, Corning) 10% v/v 3), 40μl 2X DMEM (Gibco)
485 4) and 5.2 μl of NaOH 0.05 N). For the generation of MYOrganoids including fibroblasts, 1.25 x
486 10⁵ (ratio 1:10) fibroblasts were included in the iPSC-committed mix during hydrogel preparation.
487 180μl of hydrogel was cast into 48-well plate TM5 MyrPlate (Myriamed), containing in each well
488 a pair of flexible poles (static stretchers) that support the growth of the engineered tissue in a ring
489 shape. After 1 hour of polymerization at 37°C, growth media (SKM02, AMSbiokit) was added for
490 24 hours. On day 2 of the 3D, growth media (SKM02, AMSbiokit) was replaced by differentiation
491 media (SKM03plus, AMSbiokit) and changed every day until day 14. For Condition Media (CM)
492 experiments, single cell-population organoid-like structures were made using the same protocol
493 described above. CM was collected from CTR or DMD fibroblasts-only 3D structure and diluted

494 1:10 in fresh differentiation media (SKM03plus, AMSbiokit). The diluted media was then used to
495 culture CTR or DMD myotubes-only organoids. CM was collected and used to treat 3D cultures
496 from day 7 until day 13.

497 **Muscle force analysis**

498 Functional analyses were carried out on day 14 after 3D casting. Contraction experiments were
499 performed using the MyoDynamics Muscle Strip System 840 MD (Danish Myo Technology A/S)
500 and CS4 stimulator (Danish Myo Technology A/S). All functional analysis were performed at
501 37°C, 5% CO₂ 95% O₂, in Tyrode's solution supplemented with 25 mM NaHCO₃. Optimal muscle
502 length was determined by gradually stretching the muscle until 1.0 mN of passive tension
503 registered. Functional tests were performed under isometric and eccentric conditions.
504 MYOrganoids were electrically stimulated with 250 pulses of 30V, 4 ms width at the 125 Hz of
505 frequency for both isometric and eccentric contractions. For eccentric analysis, MYOrganoids
506 were 1 mm stretched at the 6.5 mm/s speed during the muscular contraction. Data collection and
507 analysis was done by PowerLab device and LabChart software (ADInstruments, New Zealand)
508 respectively. Each artificial tissue was subjected to 1 isometric contraction, 10 eccentric
509 contractions and 1 isometric contraction. Fatigue is represented as percentage drop force between
510 the first and the last isometric contraction. Where indicated, force is indirectly normalized for the
511 CSA (Cross Section Area) calculated as muscle force (mN) x Lo (mm) x density (mg/mm³)/weight
512 (mg) and expressed as mN/mm². Engineered muscle density is experimentally determined as
513 2.089 mg/mm³.

514 **Immunofluorescence**

515 MYOrganoids that did not undergo functional analysis have been analyzed for
516 immunohistochemistry. Briefly, the artificial tissues were fixed in 4% methanol-free
517 paraformaldehyde (PFA) overnight on day 14. For whole-mount staining, fixed MYOrganoids

518 were permeabilized, stained and cleared with the MACS clearing kit (Miltenyi) according to
519 manufacturer's instructions. Whole mount-stained organoids are then imaged with confocal
520 microscopy (LEICA STED SP8) at 10X magnification. For staining on transversal or longitudinal
521 sections, fixed MYOrganoids were dehydrated with a gradient of sucrose (7.5%-30%) over day
522 and embedded in OCT matrix in plastic molds. After 24 hours, embedded MYOrganoids were
523 processed with the cryostat (LEICA) with 14 μ m thick sections. Slices were then dried and fixed
524 again with 4% methanol-free PFA (Invitrogen). Fixed sections were then blocked with serum
525 cocktail (5% Goat serum and 5% Fetal bovine serum), before being stained overnight at +4°C with
526 primary antibody. After that, slices were washed three times in PBS and hybridized with
527 AlexaFluor secondary antibody according to the host species of the first antibody. Stained slides
528 were then covered with Fluoromont + Dapi (SouthernBiotech) and glass slide 1.5H. For imaging,
529 sections were scanned with AxioScan microscope and confocal Leica SP8. For 2D staining, cells
530 were grown on μ -Dish 35 mm (Ibidi) and then fixed in 4% methanol-free PFA for 7 minutes. For
531 membrane and cytoplasmatic staining, cells were permeabilized with 0.15% Triton X-100 for 10
532 minutes and then washed with PBS for 5 minutes. For nuclear staining, cells were permeabilized
533 with 0.25% Triton X-100 for 15 minutes. Permeabilized cells were then blocked with serum
534 cocktail (5% Goat serum and 5% Fetal bovine serum), before being stained overnight at +4°C with
535 primary antibody. Cells are then washed three times with PBS and then hybridized with AlexaFluor
536 secondary antibody according to the host species of the first antibody. After three PBS washing,
537 nuclei were stained with Hoechst 33342 (Invitrogen) at the final dilution of 2 μ g/ml. For imaging,
538 sections are scanned confocal Leica SP8. All antibodies used for staining are listed in **table S5**.

539 **Electron Microscopy**

540 Electron microscopy analysis was prospectively performed on MYOtissue specimens that were
541 fixed with glutaraldehyde (2.5%, pH 7.4), post fixed with osmium tetroxide (2%), dehydrated in a
542 graded series of ethanol ranging from 30% to absolute solution and embedded in resin (EMBed-

543 812, Electron Microscopy Sciences, USA). 80 nm thick sections from at least four blocks from
544 CTR iPSC-derived MYOrganoids in presence or absence of CTR fibroblasts were stained with
545 uranyl acetate and lead citrate. The grids were observed using a “JEOL 1400 Flash” electron
546 microscope (120 kV) and were photo documented using a Xarosa camera (Soft Imaging System,
547 France). Images covering whole longitudinal sections were assessed and representative images
548 were used.

549 **Images analysis**

550 **Myotubes alignment:** FIJI and CellPose were used for image analysis. Myotube alignment was
551 determined by angle measurement and by myotube circularity from cross-section cuts of
552 MYOrganoids. Angles between two myotubes were measured with the “angle tool” function in
553 FIJI, by drawing two lines perpendicular to two adjacent myotubes membrane. Myotubes
554 circularity was determined by custom FIJI script. Briefly, myotubes cross section area was first
555 segmented by pre-trained Cellpose2 cyto2 model ⁷⁰ and then converted into Regions of Interest
556 (ROIs) by Labels_To_Rois.py plugin (Waisman et al. 2021) for subsequent quantification on FIJI
557 (Ferret diameters X and Y). After that, the ratio between Feret’s diameter on axis X and axis Y was
558 assessed. At least 4 frames for 3 biological replicates have been analyzed. **Maturation and fusion**
559 **index:** Maturation index was assessed by counting nuclei contained in striated myotubes identified
560 by sarcomeric alpha actinin SAA staining in FIJI software and normalized for the total number of
561 nuclei contained in myotubes. Fusion index has been calculated counting myotubes myosin heavy
562 chain (MyHC) positive containing 1, 2, 3 or more than 3 nuclei as a percentage of the total number
563 of nuclei. At least 4 frames for 3 biological replicates have been analyzed. **Z-disk length analysis:**
564 Z-disk length has been assessed by drawing straight lines in FIJI and by measuring the length in
565 at least 10 mature myotubes per condition. **Phospho-SMAD3 quantification:** Phospho-SMAD3
566 (pSMAD3) has been measured as a percentage of positive nuclei of myosin heavy chain positive
567 cells (MyHC+, i.e. myotubes) or myosin heavy chain negative cells (MyHC-, i.e. fibroblasts). At

568 least 4 frames for 3 biological replicates have been analyzed. **Dystrophin, α -Dystroglycan and**
569 **β -Dystroglycan quantification:** MYO tissue cross sections were stained sarcomeric alpha-actinin
570 (SAA) for myotubes cytosol labeling. The Cellpose2 cyto2 model 10 was fine-tuned on manually
571 myofiber-labeled images based on SAA staining (hyperparameters: n_epochs=200,
572 learning_rate=0.05, weight_decay=0.0001). The labeled dataset used in fine-tuning was prepared
573 in such a way that the model can simultaneously segment myotubes and ignore low-quality
574 staining areas. Fine-tuned models were then used to extract myotubes masks. Reconstruction of
575 myotubes masks was done using the cellpose package (Stringer et al. 2021). Reconstructed masks
576 were then converted into Regions of Interest (ROIs) for subsequent quantification (each ROI
577 corresponds to an individual myofiber) using the Labels_To_Rois.py FIJI plugin⁷¹. The generated
578 ROIs were used for subsequent quantification using FIJI macro. Positive ROIs for dystrophin /
579 alpha-dystroglycan / beta-dystroglycan signal were counted and represented as a percentage of the
580 total ROIs of one image.

581 **Gene expression analysis**

582 For gene expression analysis, bulk RNA was isolated from MYOrganoids by RNeasy micro kit
583 (QIAGEN) according to manufacturer's instructions, controlled and quantified by Nanodrop.
584 Around 0.5-1 μ g of RNA was retro-transcribed to cDNA thanks to the RevertAid H Minus First
585 Strand cDNA Synthesis Kit (Invitrogen). Droplet digital PCR was performed to assess the
586 expression of myogenic factors (MYOGENIN, MYH2, MYH7, MCK), of fibrotic markers
587 (COL1A1, FN1, TGF- β 1) and μ Dystrophin, thanks to the QX200TM ddPCRTM EvaGreen
588 Supermix (Biorad). Gene expression results in copy/ μ l (cp/ μ l) are represented as fold change to
589 the expression of GAPDH gene. Primers used are listed in **table S6**.

590

591

592 **ELISA assay**

593 Media was collected before muscle functional analysis after being in culture for 24 hours. Secreted
594 human Fibronectin 1 (FN1), TGF- β and Collagen IV were assessed by ELISA kit (**table S7**) from
595 MYOrganoids supernatant.

596 **AAV production and MYOrganoids infection**

597 Recombinant AAVs were produced as previously described (Bourg et al. 2022) using AAV9
598 serotype. Purification was performed using affinity chromatography and titration was done by
599 ddPCR using transgene-specific primers. For optimization of infection, an AAV9-CMV-GFP
600 construct was used. The micro-dystrophin transgene used in the study, under the control of spc512
601 promoter, was an optimized version of the construct used for GENETHON's preclinical
602 investigation and clinical trial ¹⁷, with deletion from spectrin-like repeats 4 to 23 and full C-
603 terminal truncation, here referred as μ Dys. Infection in MYOrganoids was performed by delivering
604 the AAV9 particles diluted into the differentiation media at day 7, at two different doses: 1E+9
605 vg/MYOtissue (low dose) and 5E+10 vg/MYOtissue (high dose). Media was replaced after 24
606 hours from the infection and changed daily until day 14.

607 **Viral copy number analysis**

608 Viral DNA was extracted from mature MYOrganoids by NucleoMag Pathogen kit (Macherey
609 Nagel) using Kingfisher instrument (Thermofisher). DNA yield and purity was assessed by
610 Nanodrop; viral copy number (VCN) was identified by droplet digital PCR using supermix for
611 probe (Biorad). Results are shown as copy number variation using P0 as reference DNA. Primers
612 used are listed in **table S6**.

613

614

615 Capillary western blot analysis

616 MYOrganoids proteins were extracted in RIPA buffer supplemented with Protease Inhibitor
617 Cocktail EDTA-free (Roche) and Benzonase by homogenization. Total proteins were then
618 quantified by BCA method, thanks to the Pierce 660 protein assay kit (Invitrogen) according to
619 manufacturer's instructions. Protein detection has been performed by capillary western blot, thanks
620 to the JESS protein simple (Bio-technne), according to manufacturer's directions. Dystrophin
621 detection (both full-length and μ Dystrophin) has been performed by the antibody DysB (**table S5**)
622 and its expression has been quantified by total protein normalization.

623 RNA sequencing and transcriptomic analysis

624 The RNA quality of samples was verified using the Bioanalyzer 2100 (Agilent) and Qubit
625 fluorometric quantification (ThermoFisher Scientific). The samples that had an RNA integrity
626 number higher than 9 were used for RNA sequencing (Genewiz). The Stranded Total RNA Library
627 Prep Kit (Illumina) was used to create sequencing libraries, which were sequenced following the
628 Illumina protocol on the NovaSeq instrument (Illumina), resulting in approximately 20 million
629 paired-end reads per library. The paired-end reads were filtered and subjected to quality control
630 using fastp (Chen et al. 2018). They were then mapped to the GRCh38/hg38 genome using
631 HISAT2⁷² count tables were generated using htseq-count⁷³. Differentially expressed genes (DEGs)
632 were identified using the DESeq2 R package with p value adjusted by Benjamin-Hochberg
633 procedure less than 0.05. Pathway analysis was carried out in R-Studio (version 4.0.3) using
634 functional class scoring with Gene Set Enrichment Analysis^{74,75}.

635 Statistical analysis

636 All data were analyzed by GraphPad Prism v10.2.2 software. Parametric tests such as t-tests and
637 ANOVA were used for statistical comparison. To compare two groups, unpaired one-tail t-test was
638 used; to compare multiple groups, we used one-way ANOVA with Tukey's correction for multiple

639 comparison tests, with the assumption of Gaussian distribution of residuals. Results were
640 considered significantly different at $p < 0.05$. Graphs were generated using Graphpad Prism
641 v10.2.2 or R version 4.0.3, The figures display the mean \pm standard error of the mean (SEM) as
642 described in the figure legend.

643 **REFERENCES**

1. Mendell, J. R. *et al.* Evidence-based path to newborn screening for Duchenne muscular dystrophy. *Ann Neurol* **71**, 304–313 (2012).
2. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. *Cell* **51**, 919–928 (1987).
3. Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. *J Cell Biol* **122**, 809–823 (1993).
4. Petrof, B. J., Shrager, J. B., Stedman, H. H., Kelly, A. M. & Sweeney, H. L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. *Proc Natl Acad Sci U S A* **90**, 3710–3714 (1993).
5. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. *Cell* **51**, 919–928 (1987).
6. Hoffman, E. P. The discovery of dystrophin, the protein product of the Duchenne muscular dystrophy gene. *FEBS Journal* **287**, 3879–3887 (2020).
7. Davies, K. E. & Nowak, K. J. Molecular mechanisms of muscular dystrophies: old and new players. *Nat Rev Mol Cell Biol* **7**, 762–773 (2006).
8. Ennen, J. P., Verma, M. & Asakura, A. Vascular-targeted therapies for Duchenne muscular dystrophy. *Skelet Muscle* **3**, (2013).
9. Porter, J. D. *et al.* A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. *Hum Mol Genet* **11**, 263–272 (2002).
10. Amor, F. *et al.* Cholesterol metabolism is a potential therapeutic target in Duchenne muscular dystrophy. *J Cachexia Sarcopenia Muscle* **12**, 677–693 (2021).
11. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. *Journal of Pathology* **214**, 199–210 (2008).
12. Kharraz, Y., Guerra, J., Pessina, P., Serrano, A. L. & Muñoz-Cánores, P. Understanding the process of fibrosis in Duchenne muscular dystrophy. *Biomed Res Int* **2014**, 965631 (2014).
13. Mendell, J. R. *et al.* duan. *Mol Ther* **29**, 464–488 (2021).
14. Aguti, S., Malerba, A. & Zhou, H. The progress of AAV-mediated gene therapy in neuromuscular disorders. *Expert Opin Biol Ther* **18**, 681–693 (2018).
15. Duan, D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. *Molecular Therapy* **26**, 2337–2356 (2018).
16. Le Guiner, C. *et al.* Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. *Nat Commun* **8**, (2017).
17. Elangovan, N. & Dickson, G. Gene Therapy for Duchenne Muscular Dystrophy. *J Neuromuscul Dis* **8**, S303–S316 (2021).
18. Harper, S. Q. *et al.* Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. *Nat Med* **8**, 253–261 (2002).
19. Wang, B., Li, J. & Xiao, X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. *Proc Natl Acad Sci U S A* **97**, 13714–13719 (2000).
20. Fabb, S. A., Wells, D. J., Serpente, P. & Dickson, G. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. *Hum Mol Genet* **11**, 733–741 (2002).
21. Duan, D. Duchenne Muscular Dystrophy Gene Therapy in 2023: Status, Perspective, and Beyond. *Hum Gene Ther* **34**, 345–349 (2023).
22. Elangovan, N. & Dickson, G. Gene Therapy for Duchenne Muscular Dystrophy. *J Neuromuscul Dis* **8**, S303–S316 (2021).
23. Takahashi, K. *et al.* Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. *Cell* **131**, 861–872 (2007).

692 24. Tornabene, P. *et al.* Intein-mediated protein trans-splicing expands adeno-associated virus transfer
693 capacity in the retina. *Sci Transl Med* **11**, (2019).

694 25. Clevers, H. Modeling Development and Disease with Organoids. *Cell* **165**, 1586–1597 (2016).

695 26. Hofer, M. & Lutolf, M. P. Engineering organoids. *Nat Rev Mater* **6**, 402–420 (2021).

696 27. Garita-Hernandez, M. *et al.* AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human
697 Induced Pluripotent Stem Cells. *Int J Mol Sci* **21**, (2020).

698 28. Kruczak, K. *et al.* Gene Therapy of Dominant CRX-Leber Congenital Amaurosis using Patient Stem Cell-
699 Derived Retinal Organoids. *Stem Cell Reports* **16**, 252–263 (2021).

700 29. Khabou, H. *et al.* Noninvasive gene delivery to foveal cones for vision restoration. *JCI Insight* **3**, (2018).

701 30. Shin, M. K. *et al.* Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model
702 Myogenesis and Muscle Regeneration. *Int J Mol Sci* **23**, (2022).

703 31. Pinton, L. *et al.* 3D human induced pluripotent stem cell-derived bioengineered skeletal muscles for tissue,
704 disease and therapy modeling. *Nat Protoc* **18**, (2023).

705 32. Rao, L., Qian, Y., Khodabukus, A., Ribar, T. & Bursac, N. Engineering human pluripotent stem cells into
706 a functional skeletal muscle tissue. *Nat Commun* **9**, (2018).

707 33. Shahriyari, M. *et al.* Engineered skeletal muscle recapitulates human muscle development, regeneration
708 and dystrophy. *J Cachexia Sarcopenia Muscle* **13**, 3106–3121 (2022).

709 34. Caputo, L. *et al.* Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes
710 reveals constitutive and inducible over-activation of TGF β -dependent pro-fibrotic signaling. *Skelet Muscle*
711 **10**, (2020).

712 35. Albini, S. *et al.* Epigenetic Reprogramming of Human Embryonic Stem Cells into Skeletal Muscle Cells
713 and Generation of Contractile Myospheres. *Cell Rep* **3**, 661–670 (2013).

714 36. Albini, S. & Puri, P. L. Generation of Myospheres From hESCs by Epigenetic Reprogramming. *Journal of
715 Visualized Experiments* (2014) doi:10.3791/51243.

716 37. Mathew, S. J. *et al.* Connective tissue fibroblasts and Tcf4 regulate myogenesis. *Development* **138**, 371–
717 384 (2011).

718 38. Bersini, S. *et al.* Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with
719 Endothelium Specificity and Endomysium. *Cell Rep* **25**, 3858–3868.e4 (2018).

720 39. Tiburcy, M., Meyer, T., Soong, P. L. & Zimmermann, W. H. Collagen-based engineered heart muscle.
721 *Methods Mol Biol* **1181**, 167–176 (2014).

722 40. Caputo, L. *et al.* Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes
723 reveals constitutive and inducible over-activation of TGF β -dependent pro-fibrotic signaling. *Skelet Muscle*
724 **10**, (2020).

725 41. Rao, N. *et al.* Fibroblasts influence muscle progenitor differentiation and alignment in contact independent
726 and dependent manners in organized co-culture devices. *Biomed Microdevices* **15**, 161 (2013).

727 42. Saleh, K. K. *et al.* Single cell sequencing maps skeletal muscle cellular diversity as disease severity
728 increases in dystrophic mouse models. *iScience* **25**, (2022).

729 43. Giordani, L. *et al.* High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident
730 Cell Populations. *Mol Cell* **74**, 609–621.e6 (2019).

731 44. Petrany, M. J. *et al.* Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated
732 skeletal myofibers. *Nat Commun* **11**, (2020).

733 45. Karlsen, A. *et al.* Distinct myofibre domains of the human myotendinous junction revealed by single-
734 nucleus RNA sequencing. *J Cell Sci* **136**, (2023).

735 46. Thorsteinsdottir, S., Deries, M., Cachapo, A. S. & Bajanca, F. The extracellular matrix dimension of
736 skeletal muscle development. *Dev Biol* **354**, 191–207 (2011).

737 47. Costantini, M. *et al.* Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss
738 restoration. *EMBO Mol Med* **13**, (2021).

739 48. Al Tanoury, Z. *et al.* Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent
740 stem cell-derived skeletal muscle in vitro. *Proc Natl Acad Sci U S A* **118**, (2021).

741 49. Minato, K. *et al.* Measurement of Lateral Transmission of Force in the Extensor Digitorum Longus
742 Muscle of Young and Old Mice. *Int J Mol Sci* **22**, (2021).

743 50. Erdogan, B. R. *et al.* Normalization of organ bath contraction data for tissue specimen size: does one
744 approach fit all? *Naunyn Schmiedebergs Arch Pharmacol* **393**, 243–251 (2020).

745 51. Santos, G. L. *et al.* Fibroblast Derived Human Engineered Connective Tissue for Screening Applications.
746 *J Vis Exp* **2021**, (2021).

747 52. Mann, C. J. *et al.* Aberrant repair and fibrosis development in skeletal muscle. *Skelet Muscle* **1**, 21 (2011).

748 53. Kyrychenko, V. *et al.* Functional correction of dystrophin actin binding domain mutations by genome
749 editing. *JCI Insight* **2**, (2017).

750 54. Childers, M. K. *et al.* Eccentric contraction injury in dystrophic canine muscle. *Arch Phys Med Rehabil*
751 **83**, 1572–1578 (2002).

752 55. Elangkovan, N. & Dickson, G. Gene Therapy for Duchenne Muscular Dystrophy. *J Neuromuscul Dis* **8**,
753 S303 (2021).

754 56. Zanotti, S., Gibertini, S. & Mora, M. Altered production of extra-cellular matrix components by muscle-
755 derived Duchenne muscular dystrophy fibroblasts before and after TGF-beta1 treatment. *Cell Tissue Res*
756 **339**, 397–410 (2010).

757 57. Weber, K. T., Sun, Y., Bhattacharya, S. K., Ahokas, R. A. & Gerling, I. C. Myofibroblast-mediated
758 mechanisms of pathological remodelling of the heart. *Nat Rev Cardiol* **10**, 15–26 (2013).

759 58. Giuliani, G., Rosina, M. & Reggio, A. Signaling pathways regulating the fate of fibro/adipogenic
760 progenitors (FAPs) in skeletal muscle regeneration and disease. *FEBS J* **289**, 6484–6517 (2022).

761 59. Manini, A., Abati, E., Nuredini, A., Corti, S. & Comi, G. Pietro. Adeno-Associated Virus (AAV)-
762 Mediated Gene Therapy for Duchenne Muscular Dystrophy: The Issue of Transgene Persistence. *Front
763 Neurol* **12**, 814174 (2021).

764 60. Aguti, S., Malerba, A. & Zhou, H. The progress of AAV-mediated gene therapy in neuromuscular
765 disorders. *Expert Opin Biol Ther* **18**, 681–693 (2018).

766 61. Elangkovan, N. & Dickson, G. Gene Therapy for Duchenne Muscular Dystrophy. *J Neuromuscul Dis* **8**,
767 S303 (2021).

768 62. Lapidos, K. A., Kakkar, R. & McNally, E. M. The dystrophin glycoprotein complex: signaling strength
769 and integrity for the sarcolemma. *Circ Res* **94**, 1023–1031 (2004).

770 63. Li, M., Dickinson, C. E., Finkelstein, E. B., Neville, C. M. & Sundback, C. A. The role of fibroblasts in
771 self-assembled skeletal muscle. *Tissue Eng Part A* **17**, 2641–2650 (2011).

772 64. Madden, L., Juhas, M., Kraus, W. E., Truskey, G. A. & Bursac, N. Bioengineered human myobundles
773 mimic clinical responses of skeletal muscle to drugs. *Elife* **4**, (2015).

774 65. Khodabukus, A. *et al.* Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered
775 human skeletal muscle. *Biomaterials* (2018) doi:10.1016/j.biomaterials.2018.08.058.

776 66. Heller, K. N., Mendell, J. T., Mendell, J. R. & Rodino-Klapac, L. R. MicroRNA-29 overexpression by
777 adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-
778 dystrophin. *JCI Insight* **2**, (2017).

779 67. Hart, C. C. *et al.* Potential limitations of microdystrophin gene therapy for Duchenne muscular dystrophy.
780 *JCI Insight* **9**, (2024).

781 68. Badja, C. *et al.* Efficient and Cost-Effective Generation of Mature Neurons From Human Induced
782 Pluripotent Stem Cells. *Stem Cells Transl Med* **3**, 1467–1472 (2014).

783 69. Tiburcy, M., Meyer, T., Liaw, N. Y. & Zimmerman, W. H. Generation of Engineered Human
784 Myocardium in a Multi-well Format. *STAR Protoc* **1**, (2020).

785 70. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular
786 segmentation. *Nat Methods* **18**, 100–106 (2021).

787 71. Waisman, A., Norris, A. M., Elías Costa, M. & Kopinke, D. Automatic and unbiased segmentation and
788 quantification of myofibers in skeletal muscle. *Sci Rep* **11**, (2021).

789 72. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements.
790 *Nat Methods* **12**, 357–360 (2015).

791 73. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq
792 data with DESeq2. *Genome Biol* **15**, (2014).

793 74. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting
794 genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545–15550 (2005).

795 75. Mootha, V. K. *et al.* PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately
796 downregulated in human diabetes. *Nat Genet* **34**, 267–273 (2003).

797