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Abstract 
The brain needs to perform a diverse set of cognitive functions essential for survival, but it is 

unknown how it is organized to ensure that each of these functions is fulfilled within a 

reasonable period. One way in which this requirement can be met is if each of these 

cognitive functions occur as part of a repeated cycle. Here, we studied the temporal 

evolution of canonical large-scale cortical networks, and show that while network dynamics 

are stochastic, the overall ordering of their activity forms a robust cyclical pattern. This 

cyclical structure groups states with similar function and spectral content at specific phases 

of the cycle and occurs at timescales of (300-1000 ms). These results are reproduced in five 

large magnetoencephalography (MEG) datasets. Moreover, we show that metrics that 

characterize the cycle strength and speed are heritable, and relate to age, cognition, and 

behavioural performance. These results reveal for the first time that the activations of a 

canonical set of large-scale cortical networks are organised in an inherently cyclical manner, 

ensuring periodic activation of essential cognitive functions. 
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Introduction 
 

The human brain fulfils many cognitive and homeostatic functions in a flexible and adaptive 

manner, which is essential for survival. Yet, it is unclear how it is organised to ensure that 

each of these are fulfilled within a certain time frame when the brain is in a non-structured 

temporal environment. One way in which this requirement can be met is if each of the 

cognitive functions occur as part of a repeating cycle. Since large-scale cortical networks, as 

studied through functional brain imaging, are thought to underlie specialised cognitive 

functions 
1–10

, we can examine the dynamics of these cortical networks to see if cyclical 

patterns exist. 
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Research into spontaneous brain activity recorded in wakeful rest using magneto- and 

electroencephalography (M/EEG)
1,11–13

 and functional MRI (fMRI)
14–16

 has shown that 

transitions between cortical networks in wakeful rest, or resting state networks, are non-

random, and different levels of organisation have been observed. For example, multimodal 

evidence from MEG
11,17

 and fMRI
5,18

 suggests that the default mode network (DMN) and 

dorsal attention network (DAN), associated with an inward versus outward orientation of 

attention respectively, are anti-correlated and are unlikely to transition into each other 

directly. Moreover, recent results from fMRI show that the non-random transitions between 

resting state networks contain a hierarchical component, with clusters of brain states that 

are more likely to transition into each other within but not across clusters
14

. These 

asymmetries in transition probabilities between brain networks have further been shown to 

be more directional in states of higher awareness and in more physically and cognitively 

demanding tasks in both electrophysiology
 21,23

 and fMRI. However, the existence of cyclical 

patterns between a full set of canonical large-scale cortical networks has not previously 

been shown. 

 

Here, we investigated the temporal dynamics of large-scale cortical networks in multiple 

MEG datasets obtained during wakeful rest. We developed a new method for quantifying 

the transition asymmetries of these networks at a range of time scales, which showed that 

asymmetric transitions are ubiquitous in human brain activity. Moreover, while individual 

transitions were stochastic, together they produced a robust cyclical pattern of cortical 

network activations on 300-1000 ms timescales, an order of magnitude longer than the 

average lifetime of a single network. These patterns were reproduced in five independent 

datasets and robustly show a preferred position of each brain network in the cycle. 

Furthermore, we show that cyclical summary metrics are heritable, and relate to age, 

cognition, and behavioural performance. Together, these results are the first to show an 

overarching flow of cortical networks and suggest that cortical network activations are 

inherently cyclical, ensuring periodic activation of essential cognitive functions. 

 

Functional brain networks activate in structured cyclical 
patterns 
 

To explore the temporal dynamics of large-scale functional brain networks in resting state 

MEG, we first conducted a secondary analysis of previously published results 
24

. This new 

analysis considered the longer-term patterns of resting state network (RSN) activity in the 

Nottingham MEG UK dataset (55 subjects) 
25

. Using hidden Markov modelling (HMM), the 

analysis (see methods) identified � � 12 states reflecting distinct brain networks with 

unique spatial configurations of power and coherence that reoccur at different points in 

time. States are inferred that best explain the multivariate distribution of activity across the 

entire brain whenever that state is active; states do not model any single spatial region in 

isolation, although spatially confined activity may nonetheless be characteristic of a 

particular state. The state descriptions of all network states are shown in Figure S1. 

 

States are inferred that best explain the multivariate distribution of activity across the entire 
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brain whenever that state is active; states do not model any single spatial region in isolation, 

although spatially confined activity may nonetheless be characteristic of a particular state.  

 
We characterised the tendency of network states to follow or precede each other using a 

novel method called Temporal Interval Network Density Analysis (TINDA; Figure 1). This 

method focusses on the variable-length intervals between network state occurrences, which 

relaxes more common assumptions of fixed-length timing patterns, an approach that we 

show is crucial to its success (see Figure S4). For each reference state , TINDA takes all 

intervals between reoccurrences of the same state (i.e., state- -to-  intervals) and 

partitions them evenly in half. It then defines the Fractional Occupancy (FO) Asymmetry as 

the difference between the probability of another network state  occurring in the first half 

versus the second half of those intervals. This measure captures if there is a tendency for a 

network state to follow, or precede, another state over variable timescales (Methods and 

Figure 1D-E).  

 

We used this method to investigate whether an overarching pattern emerged when every 

state’s tendency to follow or precede every other state was analysed. To illustrate its use 

more clearly, we first used this method on the intervals defined by subsequent visits to state 

 (Figure 1). This revealed that certain network states (states 5, t(54) = 5.1, p=4.1*10
-6

; 

and 9,  t(54) = 6.4,  p=3.7*10
-8

) tend to occur after the state 1, while other states (states 2,  

t(54) = -4.6, p=2.3*10
-5

; and 8,  t(54) = -6.1, p=9.9*10
-8

) tend to occur before the state 1. All 

other states (3, 6, 7, 10, 11, and 12) did not exhibit significant asymmetric activation 

probability after Bonferroni correction for multiple comparisons. In the interest of 

reproducibility, we repeated the same analysis for the equivalent state in two other large 

datasets (Cam-CAN (N=612) 
26,27

 and HCP (N=79) 
28

, and found consistent results (see Figure 

S2). 

 

-

 
Figure 1. Schematic of Temporal Interval Network Density Analysis (TINDA), with state 1 as 

an example reference state; note that each state gets used in turn as the reference state, 

with the outputs then combined within the TINDA procedure. A) A segment of the (1 to 

NROI) multi-region, resting state MEG data (top), and the inferred HMM state activations 
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(bottom). Segment � is the period between reactivations of network state 1, which is further 

subdivided into two interval halves (1
st

 half: yellow; 2
nd

 half: blue). B) The fractional 

occupancy (FO, i.e., relative time spent) for each network state in both intervals in A (left), 

and the FO distributions over all state 1-to-state 1 intervals (right). C) The FO Asymmetry 

matrix shows the mean FO difference over intervals between the two interval halves with 

respect to a reference state (in this example state 1). This procedure is repeated for all 

reference states � to create the full FO asymmetry matrix, which is used in the results going 

forward. Asterisks denote significant (Bonferroni-corrected) FO asymmetries. 

 

We next investigated whether asymmetries in activation probabilities also exist for other 

network states. Using TINDA on all pairs of network states, we confirmed that this was 

indeed the case, and moreover, that these pathways were unique to each state (Figure 1C, 

and Figure S2). All results that follow rely on the full FO asymmetry matrix (Figure 1C), i.e., 

where TINDA is applied to state-�-to-� intervals for � 	 1: �. 

 

We then explored the possibility that the asymmetries in network activation probabilities 

are unified by an overarching structure. In particular, visual inspection of these networks 

raised the possibility they were unified by a globally cyclical structure (Figure 2D), an 

emergent dynamic that could not arise trivially from the first-order state asymmetries 

(p<0.01, see Supplement II). We defined the cycle strength (�) to test the potential cyclical 

structure statistically (see methods for details). Cycle strength is +1 for graphs where all 

transitions are perfectly clockwise, zero for completely stochastic graphs, and negative for 

overall counterclockwise transitions (note that when states are ordered to maximise �, 

negative cycle strength can only be true for individual subjects, not for the group average; 

and vice versa when � is minimised). We confirmed that the cyclical pattern as a result of all 

FO asymmetries together could not have arisen by chance by permuting network state 

labels within each subject. In each of 1000 permutations, the order of states was shuffled 

independently for each subject and cycle strength was computed using the optimal cycle 

order for that permutation); the observed cycle strength was significantly greater than in 

permutations (mean (standard deviation): � = 0.066 (0.041); p<0.001). Moreover, in 

additional control analyses, we ruled out the possibility that the cyclical pattern could arise 

from common (rhythmic) physiological artefacts, see Supplement VI. 

 

In the interests of reproducibility, we replicated these analyses in the two other datasets, 

confirming both the presence of cyclical dynamics and the consistency of individual state 

ordering within the cyclical configuration across all datasets. HMMs were independently 

trained on each dataset, after which states were reordered to match the ordering in the 

MEG UK dataset (see Methods); state numbers across the three datasets thus refer to 

equivalent network states. We confirmed that cycle strength was higher than permutations 

in both Cam-CAN (� = 0.049 (0.033); p<0.001; Figure 2B/E), and HCP (� = 0.048 (0.035); 

p<0.001; Figure 2C/F). This confirmed the presence of a cyclical structure in all three 

datasets, but it remained plausible that these were different cyclical structures. Because we 

identified equivalent states in all three datasets, we could test whether the order of states 

in the cycle was the comparable between datasets. We computed the cycle phase 

difference between equivalent states in each dataset and compared this with a random 

placement of states across the cycle (i.e., permuting state positions 10000 times). This 

analysis confirmed that the order of states in the Cam-CAN cycle matched the order in MEG 
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UK: the mean phase difference (Δθ) between equivalent states was smaller than expected 

by chance (Δθ = 0.645 rad, p = 0.0038; also see Supplement III). Despite the use of an 

entirely different parcellation in HCP, the same was true in this dataset (Δθ = 0.472 rad, p = 

0.0001). These analyses thus show that the same cyclical dynamics can be observed across 

three independent datasets. 

 

 
Figure 2. Reordering the states to optimise the flow of pairwise FO asymmetries reveals an 

overarching cyclical activation structure of functional brain networks in three large MEG 

datasets (MEG UK: left, Cam-CAN: middle, HCP: right) A-C) The group-average Fractional 

Occupancy (FO) Asymmetry describes the activation probability of one network state (y-

axis) relative to another (x-axis). Asterisks denote statistically significant elements, shown in 

D-F) as edges in a directed graph. The colours of nodes in the different datasets are distinct 

to indicate that network state descriptions are inferred independently from each dataset. 

State numbers in Cam-CAN/HCP are matched to the MEG UK dataset (see Methods), which 

is numbered in order of decreasing coherence. 

 

Cyclical structure is strongest over timescales of seconds 
 
Given the strength of this cyclical activation pattern, we considered why it had not been 

characterised previously in the literature. TINDA differs from other methods of 

characterising dynamics in that it measures dynamics over inter-state intervals of variable 

length. These intervals have a highly dispersive distribution with a very long tail 
11,24,29

. 

Common means of modelling temporal dynamics typically assume either a Markovian 
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structure, as in our work, (i.e., that the state at one timepoint is conditionally dependent on 

only the immediately prior state
11

) or a structure of temporal dependency with fixed length 

time-lags
30

. Simulations from either of these models trained on the existing dataset 

illustrates why such a cyclical activation pattern would not have been detected in previous 

work without an additional post-hoc analysis such as TINDA to capture dependencies that 

are not reflected explicitly in the model parameters. These simulations capture only a small 

part of this inherent cyclical structure, most of which is lost due to the variability of ISI 

durations (Figure S4). The fact that other models capture only a small part of this inherent 

cyclical structure underlines the significance of our novel approach.  

 

This also suggests two key temporal features of the cyclical patterns we have characterised; 

firstly, that these cyclical patterns are instantiated over longer time scales; and secondly 

that they do not have a regular cyclical period (see Supplement VI). To verify this 

quantitatively, we looked at the dependency of the FO asymmetry and cycle strength on the 

interval duration (i.e.,  with  in figure 1, the interval time between subsequent 

visits to the network state of interest ( )). We expected that if cyclical patterns are 

instantiated over longer timescales, then the FO asymmetries and the characteristic cycle 

would only be apparent at longer interval times.  

 

To do this we partitioned the distribution of interval times (Figure 3A) into five equally sized 

bins. We did this separately for each state to ensure there was no state bias in each bin. This 

procedure resulted in each bin containing an average (standard deviation) of 885 (111) 

intervals for each subject. We then reran the TINDA procedure separately on (the intervals 

from) each bin. Figure 3B shows that group mean cycle strength is close to zero for the bins 

with the shortest duration intervals and increases for bins with higher interval durations. 

Cycle strength is significantly higher than in permutations (see Methods) in bins 2-5, and 

strongest in the bin containing the longest interval durations (with a mean interval time of 3 

seconds). This was replicated in the Cam-CAN and HCP datasets (Fig S5), and together these 

results prove that the cyclic activation of network states is occurring at timescales on the 

order of seconds.    

 
-

 
Figure 3. The observed cyclical organisation of network state activations is driven by longer 

interval times in the MEG UK dataset. For each subject and state, intervals were binned by 
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interval times into five percentile bins. A) The mean duration of interval times over all states  

within each percentile bin. B) The cycle strength resulting from running TINDA on each 

percentile bin in A. Circles are individual subjects; boxplots display the median, mean (+), 

25
th

 and 75
th

 percentile, and whiskers indicate the minimal and maximal value. The line and 

error bar around zero cycle strength are the mean and standard deviation of the empirical 

permutation distribution. Significant cycle strength is denoted by asterisks: * p<0.05, ** 

p<0.01, *** p<0.001, and “n.s.” denotes not significant. C) Graphs similar to Figure 2D for 

binned interval times with increasing duration from top to bottom. Note that arrows are 

only shown for significant FO asymmetries, i.e., Bin 1 does not contain any significant 

asymmetries and is therefore empty. 

 

Cyclical structure groups networks with similar spectral 
properties and function 
 

Having established that resting state networks tend to activate in a cyclical progression, we 

next characterised what a complete traversal of a single cycle might look like. We did this by 

mapping the spatial/spectral network state descriptions provided by the HMM onto the 

cycle. The result of this is shown in Figures 4 for the MEG UK dataset with power maps, and 

S7 for the other datasets and coherence maps. We emphasise that each network state 

comprises a spatially defined pattern of power and coherence. To display these high 

dimensional representations more succinctly, Figure 4A only shows the single dominant 

spatio-spectral mode in each state (see Methods and Fig S1); this information is further 

condensed and summarised in figures 4B-C. Quantitative comparisons of the MEG HMM 

states and the Yeo7 atlas
31

 have been made in Supplement XII.  

 

The first major mode of differentiation between network states emerges on the North-

South axis of the clock face. States in the upper quadrant have a higher overall power and 

inter-area coherence (i.e., phase locking). States 1 and 3 in particular show strong overlap 

with areas overlapping the DMN (including bilateral inferior parietal lobe, medial prefrontal 

cortex, and medial temporal lobe, also see Supplement XII). This is not a mere broadband 

power increase, but rather reflects different combinations of oscillatory activity in distinct or 

overlapping frequency bands 
29

. On the lower quadrant, states have lower overall power 

and inter-area coherence, particularly in sensorimotor and parietal areas. These states are 

associated with sensorimotor processing (state 9, 12) and the dorsal attention network 

(DAN), see Supplement XII.  

 

A second mode of differentiation emerges on the East-West axis of the clock face. In terms 

of spectral activity, network states on the left of the quadrant display activity in higher 

frequency bands; for instance, state 6 is associated with beta band (14-30 Hz) activity, and 

state 2 with alpha band (7-13 Hz) activity. On the other hand, states on the right-hand side 

show activity in lower frequency bands, particularly the delta (1-4 Hz) and theta (4-7 Hz) 

band. Spatially, states on the left-hand side show increased low frequency activity in 

sensorimotor and parietal areas, which are associated with sensorimotor inhibition. 

Meanwhile, states on the right-hand side show activity mostly in fronto-temporal and 

language areas 
2,29,32

.   
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The differentiation in spatio-spectral activity suggests different types of brain function and 

processes are localised to particular phases of the cycle. For example, these results suggest 

that network states going into the DMN are linked to sensorimotor inhibition through 

increased alpha/beta power. In contrast, networks going away from the DMN comprise of 

slower frequency content in higher order fronto-temporal areas, which is followed in turn 

by low power sensorimotor states, and, in particular state 7, characterised by a decrease in 

oscillatory power in the parietal regions overlapping the DAN.  

 

In the interest of reproducibility, this plot has been replicated on the Cam-CAN and HCP 

datasets. The main findings summarised in figure 4B and 4C were reliably reproduced 

(Figure S7), despite some moderate differences in network state definitions. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2023.07.25.550338doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550338
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 4. The cyclical structure groups together network states that have similar spectral 

properties and cognitive function in the MEG UK dataset. A) The spatio-spectral 
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characteristics of functional brain networks are embedded in their cyclical progression (see 

main text). Each brain map shows the percentage increase in power (for visualisation 

purposes, shown relative to the mean over states), projected onto the left hemisphere (see 

Fig. S7 for the coherence maps and replication in Cam-CAN and HCP, and Fig S1. for detailed 

spectral characteristics for each network state). To the right of each brain map is the spatial 

average PSD (solid line) and coherence (dotted line) as a function of frequency, relative to 

the average over states (horizontal dotted red line). B-C) Qualitatively summarising the 

spectral (B) and spatial (C) modes seen in A (also see Supplement XII) . 

 

 

Cycle statistics relate to cognition and demographics 
 

Inspired by this qualitative segmentation of cycles into four “meta states” of distinct spatio-

spectral characteristics, we defined a full cycle traversal as the sequential activation of these  

(See Methods and Supplement VIII for details). This allowed us to define cycle duration as a 

metric to summarise the time scale of these dynamics. Cycle duration was on average on 

the time scale of 300-1000 ms (MEG UK mean (μ) ± standard deviation (SD) = 549 (154) ms; 

Supplement VIII, Cam-CAN μ (SD) = 355 (62.4) ms; Figure 5D, HCP μ (SD) = 528 (104) ms). 

We could then relate cycle duration, or in fact its more normally distributed inverse (i.e., 

cycle rate), to individual traits, together with the previously defined cycle strength.  

 

We first made sure that these cycle strength and cycle rate are consistent within individuals. 

We computed the intraclass correlation coefficient (ICC) on the metrics for the three 

sessions per subject available in the HCP dataset. This confirmed that both metrics are 

consistent across sessions, (cycle strength:  r = 0.43 (95% CI: 0.29-0.56), F(78,158) = 3.2, p = 

1.9 * 10
-10

; and cycle rate: r = 0.80 (95% CI: 0.72-0.86), F(78,158) = 12.9, p = 0). We also 

found that these metrics are robust to the number of network states fitted in the first level 

HMM (Supplement IX). We then took advantage of the large and equally distributed age 

range (18-86 years) and sex in the Cam-CAN dataset and asked whether either could be 

predicted by cycle strength or cycle rate (Figure 5). Because both age and sex are known to 

affect heart rate, and the heartbeat has a strong effect on the MEG signal, we first regressed 

out heart rate. Next, we fitted a General Linear Model (GLM) which revealed that cycle 

strength reliably predicted age (beta = 2.49, SE = 0.75, t(605) = 3.30, p = 0.0010; post-hoc 

Pearson correlation R = 0.16), but not sex (beta = -0.052, SE = 0.085, t(605) = -0.61, p = 0.54; 

Cohen’s d = -0.10), and cycle rate predicted age (beta = -2.04, SE = 0.75, t(605) = -2.71, p = 

0.0070; post-hoc Pearson correlation R = -0.15), and sex (beta = 0.24, SE = 0.086, t(605) = 

2.81, p = 0.0050; Cohen’s d = 0.27). These findings are robust to minor changes in the way 

that metrics are defined (see Supplement IX). We replicated these correlations in the other 

datasets and confirmed the correlations between age and cycle rate and strength but found 

no statistical difference between males and females (Supplement X). A post-hoc analysis 

revealed that the correlation between age and cycle strength can be explained by a 

combination of 1) stronger pairwise asymmetries between network states on average, and 

2) fewer deviations from the cycle structure (i.e., fewer backwards or random transitions) 

(Supplemental Figure 11).  

 

The correlations between cycle metrics and age suggest that older people have slower, and 

stronger cycle dynamics. Given cognitive slowing and inflexibility is often observed in older 
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people 
14,33

, we wondered whether these were related. We first regressed out age, sex, and 

heart rate from all variables, and then used a canonical correlation analysis (CCA) to find a 

relationship between cycle metrics and cognitive scores, resulting in two, orthogonal 

canonical correlation variates. This confirmed a statistically significant relationship between 

cognitive scores and cycle metrics for the second (R = 0.17, F(12, 597) = 1.51, p = 0.0087 

versus permutations; Figure 5G), but not the first (R = 0.19, F(26, 1192) = 1.54, p = 0.19; 

Figure S15) variate. Notably, the canonical weights of cycle metrics for the significant 

relationship with cognitive scores were in the opposite direction, and so was the correlation 

between these metrics and age. This could suggest a relationship between cycle dynamics 

and age-related cognitive decline. Replication of this finding was not assessed in other 

datasets because comparable cognitive scores were not available. 

 

We next wondered whether cycle metrics could be genetically determined. The Cam-CAN 

dataset did not allow us to test this for the lack of twin data, so we turned to the HCP 

dataset, which contains data of mono- and dizygotic twins, and unrelated pairs of subjects 

using an ACE model of heritability 
34,35

. The ACE aims to partition the phenotypic variance 

into three components: additive genetic variance (A), shared environmental factors (C), and 

nonshared environmental factors (E). Despite the relatively small cohort of twin data, we 

found strong evidence that cycle rate, but not cycle strength, is heritable (Figure 5C/F). In 

fact, 73% of the variance in cycle rate in the population could be explained by genetic 

factors (h
2
 = 0.73, 95% CI = 0.29-0.98, p = 0.0039). We did not find such an effect for cycle 

strength (h
2
 = 0.32, 95% CI = 0.01-0.67, p = 0.12), nor did we find evidence that 

environmental factors affected cycle metrics (cycle strength: c
2
 = 0.18, 95% CI = 0-0.41; cycle 

rate: c
2
 = 0, 95% CI = 0-0.43). To make sure demographic or morphometrics factors did not 

bias these results, we systematically regressed out potentially confounds (e.g., age, sex, 

brain volume, etc.; see Methods and Figure S10). The heritability estimate of cycle rate 

remained high (h
2
 = 0.68) and significant even with the most stringent confound modelling.   
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Figure 5. Cyclical activation statistics relate to individual traits and are heritable. A) Cycle 

strength as a function of age. The histogram on the right shows the distribution of cycle 

strength, and the group mean in red. B) Cycle strength as a function of sex. C) The absolute 

difference in cycle strength between monozygotic (MZ; “identical”) twins, Dizygotic (DZ; 

“non-identical”) twins or unrelated subject pairs. Circles correspond to individual subjects 

(A/B/D/E), or pairs of subjects (C/F); boxplots display the median, 25
th

 and 75
th

 percentile, 

and whiskers indicate the minimal and maximal value not considered outliers. n.s. denotes 

not significant, * p<0.05, ** p<0.01, *** p<0.001. D-F) As in A-C but for cycle rate (i.e., the 

inverse of cycle duration). G) Canonical weights from the second (significant) pair of 

canonical variates; cycle metrics (left) and cognitive scores (right). See Supplement IX for 

evidence these results are robust to minor changes in metric definitions, and Supplement 

XIII for the other canonical variate variables and post-hoc Pearson correlations between 

individual variables. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2023.07.25.550338doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preserved cycle structure in task data is behaviourally relevant 
Having established that cortical networks activate in cycles across multiple datasets in a 

manner predictive of individual traits, it remained possible that they nonetheless reflect 

some neurophysiological feature of little or no relevance to cognitive processes. We 

therefore first asked whether the cyclical patterns observed during rest were related to 

spontaneous memory replay. Secondly, we tested whether cyclical patterns persisted in task 

data. and whether variance in cyclical metrics over task epochs related to variance in task 

performance. 

In the memory replay 
36

 dataset, participants learned sequence structures between 

different visual images. The representations of these have been shown to replay 

spontaneously during a subsequent rest period 
36

, and recent work shows that states 1 to 4 

in particular co-activated with memory replay
24

, while most other network states were less 

likely to be active. Here, we found cycle structure to persist in this dataset (figure 6A; cycle 

strength, mean (standard deviation): � = 0.017 (0.017), p < 0.001 versus permutations), and 

interestingly, that those network states that have previously been shown be positively 

correlated with memory replay are clustered in the North face of the circle, while the 

strongest negatively correlated states are on the opposite phase (Figure 6A, polar 

histogram).  

 

These results suggest that these internally generated memory replay events might be 

precisely timed with respect to the phase of the cyclical activity. However, memory replay 

does not involve any exogenously prompted behaviour. In particular, it is possible that 

external events or active behaviour dictate network state activations such that cyclical 

activity disappears. To answer this question, we applied TINDA to a visual task dataset 
37

. 

 

In the Wakeman-Henson faces dataset 
37

, 19 participants saw a series of famous, unfamiliar, 

or scrambled faces in six sessions and had to report their asymmetry with a button press. 

This dataset has previously been shown to elicit task-dependent network dynamics 
38

. 

Despite the trial structure, we again confirmed the presence of an overall cyclical structure 

in network state activation (� = 0.058 (0.031), p < 0.001 versus permutations), and we also 

observed that the ordering of states along the cycle replicated that of the MEG UK dataset 

(Δθ = 0.84 rad, p = 0.027; Figure 6B). We then correlated the state time courses time locked 

to button press with the reaction times for each trial. Network probability at 500 ms prior to 

button onset in each individual was significantly positively correlated with their reaction 

times in state 3 (R = 0.069, 95% CI = 0.031-0.11, t(18) = 3.8, p=0.0014; t-test against zero), 

and state 9 (R = 0.11, 95% CI = 0.051-0.17, t(18) = 3.9, p = 0.0009), and negatively correlated 

with state 2 (R = -0.058, 95% CI = - (0.034-0.083), t(18) = -5.0, p = 0.0001), state 4 (R = -

0.094, 95% CI = - (0.056-0.13), t(18) = -5.2, p = 0.0001), and state 6 (R = -0.051, 95% CI = - 

(0.023-0.078), t(18) = -3.9, p = 0.001). Notably, as in the replay dataset, the positive and 

negative correlations respectively clustered on opposite sides of the cycle (Figure 6B, polar 

histogram). In particular, if there was a high probability that a low power state was active 

500 ms before the button press, responses were slower, and vice versa for high power 

visual/attentional states. Furthermore, when we estimated cycle strength on a trial-by-trial 

basis (i.e., by running TINDA on the three second segment before a button press), we found 

a small, but significant Pearson correlation between the cycle strength and reaction times 
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over trials (R = -0.025, 95% CI = - (0.011-0.040), t(18) = -3.8, p = 0.0014), such that higher 

cycle strength was associated with faster responses. Together, these results indicate that 

cycle dynamics on a moment-to-moment basis are relevant for cognition. 

 

 
Figure 6. Cycle phase is predictive of cognitive function. Cycle dynamics in a memory replay 

dataset
24,36

 (A) and a visuo-motor task dataset
37

 (B). Positive/negative associations of 

network state probability with memory replay (A; ranging from 0-7% increased (red) or 

decreased (blue) probability) and reaction times (B; correlations ranging from minus (blue) 

to plus 0.11 (red)) are indicated by polar histogram insets. 
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Discussion 
 

We show for the first time that the activations of a canonical set of large-scale cortical 

networks are organised in an inherently cyclical manner, where networks are activated at a 

preferred phase in a periodic cycle. Furthermore, we show that the cycle’s period, and 

integrity, relate to age and cognition, while cycle phase is predictive of behaviour on a 

moment-to-moment basis. Together, these results suggest that cyclical activation of 

functional brain networks might ensure a periodic activation of essential cognitive functions. 

 

Organisational structures in functional brain networks 

Previous research in fMRI has shown a dissociation of resting state networks (RSNs) into 

cognitive and perceptual clusters or “meta states” 
14,39–41

. In particular, states within the 

perceptual/cognitive clusters were highly correlated in terms of temporal occurrence 
14,39

 

and connectivity profile 
41

, but not in states between clusters. While fMRI and MEG have 

different biophysical origins and temporal sensitivity, the spatial extent of RSNs is 

remarkably similar 
11,17,38

. Our results indeed suggest a dissociation of perceptual and 

cognitive network states, by positioning them on opposite phases of the cycle, most clearly 

observed for the default mode network (DMN) and dorsal attention network (DAN), see 

figure 3. Moreover, it suggests a preferred pathway of state transitions between these 

extrema.  

 

Broken detailed balance in brain activity 
Network state transition asymmetries like these have further been linked to macroscopic 

broken detailed balance. This deviation from thermodynamic equilibrium is a hallmark of 

living systems and can be directly linked to energy consumption and system complexity
42

. 

Previous research in this field has shown that the level of broken detailed balance correlates 

with the level of consciousness
20,21

 and cognitive exertion
19,22

 , and to show potential as a 

biomarker for progressive brain disorders
43

. Here, we add novel insights into the fast 

transient networks of oscillatory power and synchronization underlying macroscale broken 

detailed balance and reveal the time scale at which these cognitively relevant networks 

cycle. Furthermore, we found that macroscale broken detailed balance increases with age 

and is stronger on longer time scales, though it is unknown how different methodological 

approaches interrelate and provide insights into the temporal sensitivity of broken detailed 

balance. 

 

Motifs in brain networks 

While prior research has established that transitions between brain network states are not 

random, identifying phenomena like "asymmetric transitions", "repeated motifs," or 

potentially localized “cyclical motifs” 
44,45

,  these findings differ significantly from the 

"cyclical pattern" investigated in this paper. Previous work typically highlighted specific, 

often localized, aspects of network dynamics: asymmetric transitions show a preferred 

direction between two states (A→B is more likely than B→A), and repeated or cyclical 

motifs might reveal recurring short sequences or small loops involving a subset of networks. 

For example, Sporns and Kötter showed that some motifs are more prevalent in anatomical 

connectomes than in random networks, some of which are cyclical
44

. However, none of 

these necessarily imply the existence of a global, overarching cycle that incorporates a full 

set of canonical networks in a specific, repeatable order. For example, strong asymmetry 
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between a few states or the existence of a small recurring motif, like A→B→C→A (e.g.  

VP�V3�V2�VP in the macaque visual cortex
46

), does not guarantee that the system tends 

to progress through all other major network states, e.g. D, E, F, etc., in a consistent 

sequence before returning. The current study's “cyclical pattern” posits this more 

comprehensive, large-scale temporal organization, suggesting that the brain tends to flow 

through the full set of recognisable, canonical large-scale cortical networks over hundreds of 

milliseconds, a distinct concept from previously described local transition biases or mini-

sequences. 

 

Time scales of structured brain dynamics 
Previous studies investigating the asymmetry in functional brain networks have either 

focused on Markovian state transitions
11,22

, or the (time-lagged) correlation between 

network activation patterns 
2,5,14,19

. TINDA differs from these by considering the general 

pattern in network transitions beyond the direct (i.e., Markovian) transitions. This revealed 

that asymmetric network transitions occur to a different extent at different time scales, with 

strongest asymmetries on >2 second time scales (figure 3). These asymmetries described an 

overall cyclical activation pattern, which, due to the stochasticity of individual cycles, had 

lower typical durations of 300-1000 ms (figure 5 and Supplement VIII), an order of 

magnitude larger than the typical lifetime of a cortical network state
11

. These timescales 

have previously been shown to be a lower limit for scale-free global brain dynamics
1
 and the 

most relevant timescale for global brain processing
47,48

. While we have shown that cycle 

dynamics at these temporal scales are relevant for behaviour on a moment-to-moment 

basis (see Relevance for cognition), future work should further explore their role in different 

cognitive tasks and at difference temporal scales.  

 

Cycle dynamics and age 
Interestingly, we found these time scales to lengthen with age, concurrent to an increase in 

cycle strength. This is in line with age-related cognitive decline and slowing
49

, though 

correlations with cognitive performance indicated a more complex relationship. Other age-

dependent changes in brain activity are ubiquitous and include a slowing in the power 

spectrum
50–52

 and a decrease in network connectivity, which has been related to a decrease 

in the segregation of functional networks
53–57

.  

 

Heritability of cycle metrics 
Another observation that argues for cyclical dynamics to be rooted in our biology is its 

strong genetic component of cycle rate. Other heritable components to large-scale brain 

networks have been shown in the past, including connectivity in specific functional 

networks 
14,58–61

, and frequency bands 
62

, and static connectivity 
63

. In particular, Vidaurre et 

al. found that the degree to which an individual spent more time in either perceptual or 

cognitive fMRI resting states was heritable
14

 . How these and other fMRI dynamics are 

related to the cyclical dynamics described here is a topic for future research. 

 

Relevance for cognition 
While most datasets that we explored here involved wakeful rest, the cyclical dynamics also 

persisted in task data. Moreover, the phase within the cycle and cycle strength were 

predictive of cognitive function. While the HMM framework has successfully shown large-

scale cortical network associations with cognitive function before
24,38

, here we add that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2023.07.25.550338doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550338
http://creativecommons.org/licenses/by-nc-nd/4.0/


positive and negative associations with memory replay, or response speed, were predicted 

by network states on oppositive phases of the cycle. One question that arises is whether 

cycle dynamics like speed and phase can be (consciously) controlled or disrupted by a 

cognitive task, which is expected from the stochasticity of state transitions within the cycle. 

On the other hand, the persistence of the ordering of network states within the cycle and 

the detrimental effect of cycle phase on certain cognitive functions suggests it could reflect 

a homeostatic process. In fact, homeostatic cyclical rhythms are omnipresent in biological 

systems
64

, with the sleep cycle as one of the most well-known examples
65

. In sleep, cycling 

through each of the five functional stages allows the body to experience the benefits of 

each stage multiple times throughout the night, ensuring each function is carried out even if 

sleep is disrupted. Similarly, cycles in large-scale brain networks could ensure periodic 

activation of essential cognitive functions, with stochasticity enabling cognitive flexibility. 

 

 

Limitations and Future Directions 
The current study comes with a number of limitations. Firstly, the TINDA method is a post-

hoc analysis tool that is used on binarised state time courses (i.e., brain networks are either 

“on” or “off”), and furthermore, it does not incorporate an explicit model of long-term 

(variable time) state transitions. In future work, we hope to deploy non-Markovian models 

like neural networks for inferring brain networks (such as DyNeMo
66

), but it remains an 

open question how to adapt TINDA to state time courses that are not mutually exclusive.  

While we have reproduced our main results in multiple datasets, some results could not be 

reproduced, i.e., the heritability of cycle metrics and the association of cycle metrics with 

cognitive scores. Replicating these analyses in independent datasets is essential but rely on 

the availability of the relevant data. This would also clarify the role of cycle dynamics for 

cognition across individuals and their potential as biomarkers for disease. 

Another limitation of the current study and the field of functional brain networks more 

generally, is a lack of taxonomy with respect to the macro scale functional brain networks. 

This can lead to ambiguity or overinterpretation of the functional network, and it is unclear 

in what capacity they are rooted in the underlying physiology 
67

. Moreover, there is no 

consensus in electrophysiology about which features constitute a brain network, be it 

coherence, power, spectral shape, et cetera, and how to relate these to brain networks 

observed in fMRI. Regarding the first point, we argue that a principled definition of a brain 

network is one where networks can be distinguished, not by a single arbitrarily chosen 

feature, but instead by multiple network features. We therefore use the time-delay 

embedded (TDE) HMM 
29

, in which brain networks are characterised by distinct auto- and 

cross spectral properties as part of a generative model that is capable of explaining the full 

signal content. Previous work has also shown that TDE-HMM results in identifiable networks 

that are high reproducible across different data, sites, and task/rest designs, which validates 

this approach. Secondly, there is growing effort of comparing functional brain networks 

across studies 
29,68,69

, and modalities 
70–76

. We have made quantitative comparisons of MEG 

state topographies with the widely used fMRI based Yeo7 parcellation 
31

 (see Supplement 

XII), from which we tentatively concluded that the cycle separates the default mode 

network (top of the cycle) and the dorsal attention network (bottom of the cycle). However, 

we do note that the existence and presence of cycles shown here in five independent 

datasets do not rely on the physiological interpretation of individual networks. More efforts 
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need to be made in quantitatively comparing functional brain networks inferred from 

electrophysiology and hemodynamic responses, particularly in simultaneous recordings.   
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Methods 
All analyses were carried out in MATLAB 

77
 and Python, using in-house developed software 

packages OHBA Software Library 
78–80

, HMM-MAR
81

, OSL-dynamics 
69

, and MNE-Python
82,83

. 

The TINDA package is available for MATLAB 
84

, and Python 
85

. 

 

Data 
We used data from five MEG datasets: Nottingham MEG UK (N = 55), Cam-CAN (N = 612), 

HCP (N = 79), Replay (N=43), and Wakeman-Henson (N=19). MEG UK, Cam-CAN, HCP, and 

replay contain MEG resting state data, Replay and Wakeman-Henson MEG task data, and all 

but the replay dataset include T1 weighted MRI brain scans. Datasets include demographic 

data and in the case of HCP, heritability data. Ethics and consent details are outlined 

separately for each of these datasets below.  

MEG UK 
The UK MEG Partnership data comprised 77 healthy participants recruited at the University 

of Nottingham, of which 55 were used after discarding 22 subjects because of excessive 

head movements or artefacts. The dataset contains structural MRI scans and MEG data 

from a CTF MEG system containing 275 axial gradiometers with a sampling frequency of 

1200 Hz. The participant group had a mean age of 26.5 years (range 18-48). 20 of them 

were female, and 35 of them were male. All participants gave written informed consent, 

and ethical approval was granted by the University of Nottingham Medical School Research 

Ethics Committee. The MEG data comprised roughly 5 to 6 minutes eyes-open resting state 

and has previously been used to characterise MEG resting state network dynamics 
24,29,86

.  

Cam-CAN 
The Cambridge Centre for Aging Neuroscience (Cam-CAN) dataset comprised data of 700 

healthy participants recruited at the University of Cambridge, of which 612 were used here.  

The dataset contains structural MRI scans and MEG data from an Elekta Neuromag 

Vectorview system containing 102 magnetometers and 204 orthogonal planar 

gradiometers, with a sampling rate of 1 kHz. The participants were aged 18-88, with 83-95 

participants per age decile (except in the 18-28 decile, which counts 45), 310 were male and 

302 were female, equally distributed across the age deciles. All participants gave written 

informed consent, and ethical approval was granted by the Cambridgeshire Research Ethics 

Committee. The MEG data comprised of approximately 9 minutes eyes-closed resting state.  

HCP 
The MEG component of the Human Connectome Project (HCP) comprised 100 healthy 

participants recruited at the Saint Louis University, of which 79 were used after discarding 

subjects with excessive variance. The dataset contains structural MRI scans and MEG data 

from a 4D Neuroimaging MAGNES 3600 MEG system containing 248 magnetometers 

sampled at 2 kHz. The participant group had a mean age of 29 (range 22-35) of which 37 

females and 42 males and contained data of 13 monozygotic twin pairs and 11 dizygotic 

twin pairs. All participants gave written informed consent, and ethical approval was granted 

by the local ethics committee. The MEG data comprised of three times 6 minutes of eyes-

open resting state. 

Replay 
The Replay data

36
 contained a primary dataset (dataset 1), and a replication dataset 

(dataset 2). For both datasets, participants were scanned on a 275 channel CTF MEG system 

while engaged in a localiser task, a sequence learning task, and periods of rest. Activations 
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corresponding to images in the localiser task were found to replay during rest, in the 

sequence that corresponded to the learned sequences. The top 1% replay probabilities were 

here defined as the memory replay events, as in Higgins et al
24

. Replay dataset 1, was 

acquired from 25 participants with a mean age of 24.9 (range 19-34) of which 11 males and 

14 females. Four subjects were excluded due to large motion artifacts or missing trigger 

information. All participants signed written consent in advance; ethical approval for the 

experiment was obtained from the Research Ethics Committee at University College London 

under ethics number 9929/002. Replay dataset 2 was acquired from 26 participants with a 

mean age of 25.5 (range 19-34) of which 10 males and 16 females. Four participants were 

later excluded due to motion artifacts or failure to complete the task. All participants signed 

written consent in advance; ethical approval for the experiment was obtained from the 

Research Ethics Committee at University College London under ethics number 9929/002. In 

the current study, replay datasets 1 and 2 were analysed jointly.  

Wakeman-Henson 
The Wakeman-Henson faces dataset

37
 comprised MEG data acquired on an Elekta 

Neuromag Vectorview system of 19 participants. Of these, 8 were female, and 11 were 

male, and the sage range was 23-37 years. All participants gave written informed consent, 

and ethical approval was obtained from the Cambridge University Psychological Ethics 

Committee. Each participant completed six sessions of a perceptual task in which they 

would see a famous, familiar, or scrambled face, to which they had to respond based on the 

symmetry of the image. Each trial begins with a fixation cross onset between 400 and 600 

ms before a target stimulus appears. The target is either the face or scrambled face stimulus 

and remains onscreen for between 800 and 1000 ms. Further details can be found in 
37

. 

 

Preprocessing 
MEG data were co-registered to the MRI structural scans, or to fiducial markers in the 

Replay data where MRI structural scans were not available. The MEG UK and Cam-CAN data 

were downsampled to 250 Hz, filtered in the 1-45 Hz range (using zero-phase digital filtering 

so that effects are symmetrical across time), and source-reconstructed using an LCMV 

beamformer to 3559 dipoles. The dipoles were then combined into 38 parcels spanning the 

entire cortex by taking the first principal component of all dipoles in a parcel. This 

parcellation was used previously to estimate large-scale static functional connectivity 

networks in MEG 
50

. The HCP data were downsampled to 240 Hz, filtered in the 1-80 Hz 

range, and source-reconstructed using an LCMV beamformer to 5798 dipoles.  The dipoles 

were then combined into 78 parcels of the AAL parcellation
87

 spanning the entire cortex by 

taking the first principal component of all dipoles in a parcel.  Bad segments were removed 

manually and correction for spatial leakage was applied using symmetric multivariate 

leakage correction 
88

. Finally, the potential inconsistency over subjects of ambiguous source 

polarity was removed using sign-flipping based on lagged partial correlations 
38

. 

 

Hidden Markov modelling 
To find large scale brain networks in a data driven way, we applied a time delay embedded 

hidden Markov model (TDE-HMM) with 12 states and 15 embeddings, corresponding to lags 

of -28 to +28 ms (-29 to +29 ms for HCP). Note that we refer to the HMM states as “network 

states” to reflect that the method is designed, and has been shown, to find states that 

represent distinct cortical networks of oscillatory brain activity in MEG/EEG data
29

 . The 

HMM framework is a generative model that assumes there exist a finite number (�) of 
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recurring, transient, and mutually exclusive hidden states that generate the observed data. 

Here, each state is characterised by a spatio-spectral profile (i.e., in terms of PSD and 

connectivity in/across regions). Thus, every time point in the data is associated with one of 

the states 
�, : �, …  ��, and the sequence of states is assumed to be Markovian. This means 

that the state active at time point � only depends on the state active at � � �, captured by 

the transition probability between all states. We used a multivariate Gaussian observation 

model with zero mean. Models were inferred separately for the MEG UK, Cam-CAN, and 

HCP datasets. For the Replay datasets, we kept the model from the MEG UK dataset fixed, 

and subsequently fitted it to the replay data, as in Higgins et al
24

.  

 

Spectral analysis 
We estimated the spectral information (PSD and coherence) for each state by fitting a 

multitaper to the original, parcellated data, condition on the active functional brain 

network, as in Vidaurre et al.
29

 The multitaper used a taper window length of 2 s, a 

frequency range of 1 to 45 Hz with a 0.5 Hz resolution (i.e., applying 7 Slepian tapers). This 

reflects the full multivariate model parameter space (an array that is frequencies x channels 

x channels x states), however the high model dimensionality necessitates further 

dimensionality reduction methods if this information is to be visualised. We reduce the 

spectral dimensionality using spectral mode decomposition, resulting in spatial power and 

coherence maps for a data-driven set of frequency band modes. This decomposition is 

implemented by non-negative matrix factorization
29,38

. We fitted this with two modes to 

separate wideband activity from high frequency noise (Figure S1). We then used the 

wideband mode to weight the frequencies of the individual states when producing 

topographies.  

 

Ordering the HMM states 
We ordered the HMM states based on state coherence using the MEG UK dataset. States 

inferred from the MEGUK dataset were reordered based on the mean coherence in that 

state, from high (state 1) to low (state 12) coherence. The orderings in the other datasets 

(Cam-CAN/HCP/Wakeman-Henson) were then matched to the MEG UK ordering as follows. 

First, the correlation was computed between the coherence of each pair of states (where a 

“pair of states” consisted of one state from MEGUK and one state from (e.g.) Cam-CAN. The 

correlations were then used as a cost function to solve the linear assignment problem using 

the matchpairs function in MATLAB
89

, matching every state in the (e.g.) Cam-CAN dataset to 

a state in the MEG UK dataset. Due to the different parcellation used in the HCP dataset, 

here we used the correlation between power maps in MNI volume space as cost function. In 

figures throughout the manuscript, state numbers thus indicate equivalent (i.e., “best 

matching”) states, whereas state colours were different between datasets, to stress that 

state descriptions were inferred independently for each dataset.   

 

Temporal Interval Network Density Analysis (TINDA) 
We developed the TINDA method to analyse inter-state dynamics in the context of 

dispersive inter-state intervals (ISI’s). We first partition all observed interstate intervals, 

defining ��
�,�  to be the set of timepoints that fall within the first half of ISI’s for state �; 

and ��
�,� to be the set of all timepoints that fall within the second half of these ISI’s. We 
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then compute the � � � fractional occupancy asymmetry matrix (�), defined as the matrix 

whose (m,n)-th entry is: 

 

��,� �� ����
� � ���

�

� �� 

 

Where � � ��  denotes the average FO difference for state � over state � ISI’s (Figure 1). 

These Fractional Occupancy Asymmetry matrices are computed for each subject.  

 

Cycle detection and Cycle Strength 
TINDA establishes whether there is a general flow of states into and out of a particular state. 

We investigated whether this pattern is embedded in a larger, hierarchical structure, 

specifically a cycle. We interpret the fractional occupancy asymmetry matrix, A, as a 

weighted, directed graph of � nodes (i.e., number of states) and �� � � edges (i.e., from 

every node to every other node). The fractional occupancy asymmetry thus defines the 

weight and direction of each edge.  

 

To investigate how these edges relate to specifically cyclical dynamics, we define a metric of 

cycle strength for each configuration of the � nodes around the unit circle. Each node is 

associated with a phase � , positioned on the unit circle in 
�	



 intervals, spanning 
0, 2!�. We 

can then represent each directed transition, from state n to state m, by a vector in the 

complex plane defined by the phase difference between the relative position of nodes m 

and n: 

 ��,� � ���������  [5] 

 

The magnitude of the imaginary component of this vector represents a geometric projection 

of each state transition onto the plane tangential to the unit circle at node n. Trivially, the 

cumulative sum of these vectors for all � and "  is zero. However, if these vectors are 

weighted by the strength (and direction) of the corresponding FO asymmetry, then the sum 

of their imaginary components represents the cumulative strength (i.e., of the asymmetry) 

and the polarity represents the net direction (i.e., clockwise (+) vs. counterclockwise (-)) of 

transitions tangential to the unit circle. Hence, we define the cycle strength, S, is defined as: 

 � � �� � ∑ ∑ 
�,�
�
� � sin��� � ����  [6] 

 

Where # is a normalisation factor based on the theoretical maximum cycle strength for � 

states, such that � is constrained to be [-1, 1]. The theoretical maximum cycle strength is 

computed for K states by assuming a perfect asymmetry of +1 for all possible clockwise 

connections, and -1 for all possible negative connections. 

We permuted the position of each state on the unit circle (i.e., the node identity) to 

maximise �. This reveals the sequence of states for which the overall directionality is 

maximal in the clockwise direction. Note that we could have chosen to maximise negative � 

instead. This would have only resulted in all circle plots going in a counterclockwise 

direction; it would not have changed any of our results.  
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Circle plots 
The circle plots all show the network states in the sequence which maximises the cycle 

strength (in clockwise direction). The edges $ that are shown are those where the fractional 

occupancy asymmetry is statistically significant (see Statistics), where the direction of the 

arrow depends on the sign of the corresponding edge asymmetry, where % is the 

(corrected) statistical threshold (see Statistics): 

 

��,� � � 0,   ��,� � �                   �1,   ��,� � � � 
�,� � 0�1,   ��,� � � � 
�,� � 0�
 [7] 

Cycle rate 
To quantify cycle rate, we applied a post-hoc analysis to the state time course parameters 

already learned. Specifically, we derived a feature from the state time courses defined as 

the number of state visits in a sliding window equal to the average state lifetime (64-68 ms, 

depending on the dataset). We then fit a second level HMM to this feature time course, 

where this HMM used a Poisson observation model and sequential Markov dynamics 
90

. We 

selected a model with � � & states, where we initialised the state probabilities as the 

distance (i.e., in circle space) to the centroid of each of the four modes in figure 4B-C. We 

also enforced a sequence of state 1 > state 2 > state 3 > state 4 > state 1, etc. such that a 

single cycle was defined as sequentially activation each of the four modes in Figure 4B-C. 

Using this initialised model, we inferred the state time courses from the data without 

training the model to convergence. This was done to not deviate from our definition of a 

“cycle”, and to subsequently quantify cycle duration as the time it takes to cycle through a 

full 1 > 2 > 3 > 4 sequence of the second level HMM. For correlations with individual traits, 

the inverse (i.e., cycle rate) was used, as this was more normally distributed. 

 

Statistics 
FO asymmetry and Circle Plots 
Circle plots show the edges where the FO asymmetry is strongest (and significant). In order 

to test for significance, the FO Asymmetry was tested on the group level with a two-tailed 

dependent samples T-test for each of the connections ", �, where the alpha threshold of 

0.05 was Bonferroni corrected for 132 tests (i.e., �� � �), resulting in a corrected alpha 

threshold of 0.00038. Due to the large subject numbers in HCP and Cam-CAN, more 

stringent thresholds were applied in these datasets. For Cam-CAN, the edges with absolute 

t-values larger than 11 are shown (corresponding to a p-value smaller than 3.8*10
-24

), and 

for the HCP dataset the edges with absolute t-values larger than 4.3 (corresponding to p-

values smaller than 3.8*10
-5

).  

 

Cycle strength 
We report the results for the sequence of network states that results in the strongest, 

clockwise cycles. A claim of nonzero cycle strength could be a trivial consequence of this 

optimisation. For this reason, we compared the observed cycle strength with that from 

permutations, where for each permutation we permuted each subjects’ state labels and 

recomputed the FO asymmetry and optimised state ordering. This was done 1000 times. 

The observed cycle strength was compared with the permuted versions at alpha=0.05.  
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Within-subject consistency of cycle metrics 
The individual consistency of cycle metrics was directly estimated using the intraclass 

correlation efficient (ICC) in MATLAB, with type ‘1-1’ as implemented in Salarian (2024)
91

.  

 

Correlation with individual traits 
For the correlation of cycle rate and cycle strength with individual traits, we first regressed 

out heart rate. Outliers more than three standard deviations from the mean value were 

removed, and cycle metrics were normalised, prior to the general linear model (GLM). We 

fitted a mean term, and the cycle rate and cycle strength to age and sex separately, using a 

Gaussian and binomial distribution, respectively. Beta terms for each were significant if the 

corresponding p-value was lower than the alpha threshold of 0.0125 (i.e., 0.05 corrected for 

4 tests). 

 

Heritability  
In order to test whether variance in cycle metric could be explained by genetic factors, we 

used an ACE model, as implemented in the Accelerated Permutation Inference for the ACE 

Model (APACE) framework 
92

. APACE was run on all subjects’ cycle metrics for the three 

resting state sessions, separately for cycle rate, and cycle strength, using 10000 

permutations. Alpha thresholds of 0.05 were Bonferroni corrected for two tests. To ensure 

estimated heritability effect were not caused by common demographic and morphometric 

measures, we repeated the analysis after regressing out the following confounds in 

stepwise fashion (See Supplement IX): age, the square of age, sex, an age and sex 

interaction, an interaction between sex and the square of age, the cube root of intra-cranial 

volume and of cortical volume (both estimated with FreeSurfer
93

). 

 

Correlation with cognitive scores 
A canonical correlation analysis (CCA) was executed on the Cam-CAN dataset, between the 

cyclical summary metrics (cycle rate and strength) on the one hand, and thirteen cognitive 

scores on the other hand. For all metrics, we first regressed out age, and sex, and heart rate, 

and then z-transformed the data. The CCA resulted in two CCA components, which were 

tested for significance by comparing against a permutation distribution of 10000 

permutations, where for each permutation, the cognitive scores were shuffled over 

subjects.  

 

Correlations with reaction times in Wakeman-Henson 
We time locked the state probability time courses to the button presses in the Wakeman-

Henson data and correlated state probability at 500 ms prior to the button press with the 

reaction time on that trial. This was done separately for each session and state, after which 

we averaged the correlations over sessions for each subject. We tested whether the 

correlation was significantly different from zero for each state with a paired t-test, using a 

Bonferroni corrected alpha level of 0.05/K. Similarly, we correlated reaction times with an 

instantaneous estimate of cycle strength, computed by running TINDA on 3 second 

segments prior to the button press, and calculating the cycle strength. Correlations were 

tested against zero on the group-level using a paired t-test.  
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Data and Code Availability 
The code for all analysis code described here is publicly available and can be accessed at 

https://github.com/OHBA-analysis/Tinda. The MEG UK Partnership data is held by the MEG 

UK Partnership, for which access can be requested at https://meguk.ac.uk/database/. The 

Cam-CAN dataset is available upon request to https://camcan-archive.mrc-

cbu.cam.ac.uk/dataaccess/datarequest.php. The HCP dataset is freely available at 

https://db.humanconnectome.org/app/template/Login.vm but will require an application 

for sensitive data (see 

https://www.humanconnectome.org/storage/app/media/documentation/LS2.0/LS_Release

_2.0_Access_Instructions_June2022.pdf). The Replay dataset will be freely available upon 

request (subject to participant consent) to yunzhe.liu.16@ucl.ac.uk. The Wakeman-Henson 

dataset is publicly available at OpenNeuro 

(https://openneuro.org/datasets/ds000117/versions/1.0.5). 
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