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Abstract

Copy Number Variation (CNV) is a prevalent type of variation affecting large genomic regions which
contributes to both genetic diversity and ecological adaptation in plants. The target genes involved in
adaptation through CNV in tomato and its wild relatives remain unexplored at the population level.
Therefore, we characterized the CNV landscape of Solanum chilense, a wild tomato species adapted to
dry habitats, using whole-genome short-read data of 35 individuals from seven populations. We identified
212,207 CNVs, including 160,926 deletions and 51,281 duplications. We found a higher number of CNVs
in diverging populations occupying stressful habitats. CNVs and single nucleotide polymorphisms
analyses concordantly revealed the known species’ population structure, underscoring the impact of
historical demographic and recent colonization events shaping genome-wide CNVs. Furthermore, we
identified 3,539 candidate genes with highly divergent CNV profiles across populations. Interestingly,
these genes are functionally associated with response to abiotic stress and linked to multiple pathways of
flowering time regulation. Gene CNVs in S. chilense exhibit two evolutionary trends: gene loss in ancestral
lineages distributed in central and southern coast populations and gene gain in the most recent diverged
lineage from the southern highland region. Environmental association of the CNVs ultimately linked the
dynamics of gene copy number to six climatic variables. It suggests that natural selection has likely shaped
CNV patterns in stress-response genes promoting the colonization of contrasting habitats. Our findings

provide insights into the role of CNV underlying adaptation during recent range expansion.
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Introduction

Copy number variation (CNV) is the primary type of structural variation (SV) caused by genomic
rearrangements, which mainly includes deletion (DEL) and duplication (DUP) events resulting from the
loss and gain of DNA segments (Feuk, et al. 2006; Zmienko, et al. 2014). It is expected that CNV has a
more significant impact on gene function than single-nucleotide polymorphisms (SNPs) because it covers
more base-pairs (Shaikh, et al. 2009; Hamala, et al. 2021) and has a higher per-locus mutation rate than
SNPs (Lupski 2007). CNV is recognized as an essential driver of genomic divergence and local adaptation
(Rinker, et al. 2019; Hamala, et al. 2021; Marszalek-Zenczak, et al. 2023). Genome-wide studies confirm
the importance of CNV in stress response and yield improvement in multiple plants, such as maize
(Springer, et al. 2009), rice (Fuentes, et al. 2019; Qin, et al. 2021), and Arabidopsis thaliana (Zmienko, et
al. 2020; Marszalek-Zenczak, et al. 2023). However, such studies have been conducted, so far, in selfing
species and/or crops characterized by small effective population size (Ne) and domestication bottlenecks
(Alonso-Blanco, et al. 2016; Beissinger, et al. 2016; Brumlop, et al. 2019). Therefore, it is difficult in such
species to disentangle the genome-wide effect of random evolutionary processes (genetic drift,
chromosomal rearrangements, and demographic history) generating fast and extensive CNVs between
populations from that of adaptive processes at specific loci (here positive selection underpinning
environmental adaptation (Johri, et al. 2022). The dynamics of gene copy number indeed results from the
population history and multiple events, including selection, migration and recombination (Sudmant, et al.
2015; Zhou, et al. 2019; Otto, et al. 2022; Antinucci, et al. 2023; Otto and Wiehe 2023). Indeed, the Ne of
populations determines the amount of genetic diversity (SNPs or CNVs) available, the efficiency of positive
and negative selection against genetic drift, and the effect of linked selection around sites under selection,
thus being a major determinant of the genome architecture (Lynch and Walsh 2007). It is therefore more
difficult to disentangle the effect of neutral processes from that of selection in small populations and/or
populations with strong past demographic changes, for example following range expansions with strong
bottlenecks (Johri, et al. 2022).

The tomato wild relative species Solanum chilense is an excellent model species to study the
genetic basis of adaptive evolution when colonizing novel habitats (Béndel, et al. 2015; Stam, et al. 2019b;
Wei, et al. 2023). Features such as outcrossing, gene flow, seed banks, and relatively mild bottlenecks
during the colonization of new habitats result in high Ne, as reflected by high nucleotide diversity and high

recombination rates, meaning that this species has a high adaptive potential (Arunyawat, et al. 2007;
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Stam, et al. 2019b; Wei, et al. 2023). S. chilense occurs in southern Peru and northern Chile, from mesic
to very arid habitats around the Atacama Desert, and is the southernmost distributed species in the tomato
clade (Nakazato, et al. 2010). Moreover, within S. chilense, two lineages expanded southward during two
independent colonization events (Bondel, et al. 2015; Stam, et al. 2019b; Raduski and Igi¢ 2021; Wei, et
al. 2023): one, early divergent towards the coastal part of northern Chile (hereafter the southern coast
group, SC), and the other with a recent post-glacial divergence towards the high altitudes of the Chilean
Andes (hereafter the southern highland group, SH) (Fig. 1A). The populations currently occurring in the
southern coast and southern highland habitats have been shown to exhibit signatures of past positive
selection for adaptation to cold, drought, light (photoperiod), heat and biotic stress (Xia, et al. 2010; Fischer,
et al. 2011; Nosenko, et al. 2016; Bondel, et al. 2018; Stam, et al. 2019b; Wei, et al. 2023). These
signatures of past adaptive selection suggest a genetic basis for the adaptation to novel habitats during
the southward expansion of S. chilense populations towards arid areas around the Atacama desert (Wei,
et al. 2024). Furthermore, these studies show that it is possible, to some extent, to disentangle in S.
chilense the local footprints of strong positive selection (due to local adaptation) from the noise and
variation in genome-wide polymorphism patterns due to neutral past demographic events. As advocated
in (Johri, et al. 2022), we rely on providing orthogonal evidence from demographic inference and
simulations guiding selective sweeps scans and correlation with climatic data. However, these studies
revealed adaptive signatures based on scans for positive selection using solely SNP data: whether CNV
can also contribute to adaptation to novel habitats in S. chilense is still unknown.

Reference genomes of several species of the tomato clade, including numerous cultivated tomato
varieties, have been sequenced and assembled (Ranjan, et al. 2012; Sato, et al. 2012; Bolger, et al. 2014;
Stam, et al. 2019a). Three tomato SV sets have recently been constructed based on a tomato-clade
pangenome analysis to investigate the impact of genome rearrangements on gene expression and
genomic diversity and provide new genomic resources for the improvement of tomato (Alonge, et al. 2020;
Zhou, et al. 2022; Li, et al. 2023). These three studies compared cultivated tomato genomes with that of
several wild tomato species, including an individual of the S. chilense population LA1969 (belonging to
the central group; Fig. 1A). Interestingly, these studies showed that S. chilense exhibited the highest
number of SV among all wild and cultivated tomato species, while the closely related wild tomato species
S. peruvianum and S. corneliomulleri show only up to half of the number of SVs found in S. chilense (Li,

et al. 2023). All these three species exhibit a similar recent proliferation of transposable elements (Li, et
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al. 2023). As S. chilense occurs in a wide range of environments, this species is of key importance for
understanding the role of CNV in speciation and intraspecific diversification processes in the tomato clade.
However, the studies mentioned above focused on the pangenome level across species (wild and
cultivated), and an understanding of the role of CNV in local (ecological) adaptation is still lacking,
especially for the adaptation to new arid habitats in southern populations in S. chilense.

In this work, we identified genome-wild CNVs and generated copy number (CN) for each gene
based on genome-wide short-read sequencing data for 35 S. chilense individuals from seven populations
(five diploid individuals per population) representing three different geographic habitats: three central (C)
populations, two southern highland (SH) populations and two southern coast (SC) populations (Fig. 1A;
Dataset S1). Based on these data, we first identified “candidate genes with highly differentiated CN” (CN-
differentiated genes) across populations that are likely candidates associated with the inter-population
differentiation in S. chilense. We then measured the evolutionary trend of expansion and contraction of
gene CN based on candidate genes for a specified phylogenetic tree. Finally, we associated the dynamics
of gene CN with climatic variables to provide evidence for environmental stresses driving CNV dynamics
across populations. Our results suggest that CNV contributes to population adaptation to novel habitats
in an outcrossing species with a large Ne and genetic diversity. We shed light on the importance of

including an analysis of CNVs to complement genomic scans of recent positive selection based on SNPs.

Results

Summary of CNVs in the genome of S.chilense and validation of the pipeline

We identified a total of 212,207 CNVs (160,926 deletions and 51,281 duplications) using the combination
of four CNV callers and the alignment of each of the 35 whole-genome sequencing datasets (Dataset S1)
to the chromosome-level S. chilense reference genome (Silva-Arias, et al. 2025) (Fig. S1; Dataset S2).
We found 73,014 to 94,621 CNVs per population (Fig. 1B; Table S1) and 31,923 to 46,579 CNVs per
individual (Table S2). Although the number of deletions in all individuals and populations is much larger
than the number of duplications (Fig. 1B; Fig. S1), the mean size of duplications (39,140 bp +/- 104,577)
is larger than that of deletions (14,052 bp +/- 59,930) and exhibits a skewed distribution (Fig. 1C;
Kolmogorov-Smirnov test, P=2.2e-16). We found 37% to 43% of the CNVs to be private to one individual
in the three central populations. In comparison, only 12% to 14% of all CNVs are fixed in each of the three

central populations (Fig. S2), i.e., CNVs were observed in all five individuals of a given population.
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Southern populations (southern coast and southern highland) exhibited more fixed CNVs than the central
populations, especially the two southern coast populations (25% in SC_LA2932 and 31% in SC_LA4107;
Fig. S2).

Deletions and duplications were enriched at both ends of the chromosomes (Fig. 1D), consistent
with previous studies (Alonge, et al. 2020; Hamala, et al. 2021; Li, et al. 2023). Although most CNVs (76%
to 79% per population) cover intergenic regions (Fig. 1E), about 35% to 38% of CNVs impacted coding
sequences annotated in the S. chilense reference (some large CNVs were counted repeatedly due to
covering multiple genes and intergenic regions). In addition, 45% and 50% of CNVs across populations
overlapped with putative regulatory elements 5 kb upstream and 5 kb downstream of genes, respectively.
As expected, 68% of deletions and 82% of duplications matched at least one transposable element
annotated in the S. chilense genome, supporting that CNVs are predominately shaped by transposable

elements (Fuentes, et al. 2019; Alonge, et al. 2020).

To confirm the validity of our pipeline, which assembled CNV detection from four tools specialized
for short-read datasets, we simulated 1,000 deletions and 1,000 duplications with lengths ranging from
50 bp to 1 Mb based on 150 bp short reads (see methods). Our pipeline successfully detected
approximately 90% of the simulated CNVs, and the false-positive rate was much lower than based on a
single caller (Table S3). Our results, as well as previous claims, indicated that combining multiple callers
can effectively improve the detection of CNVs based on short-read data (Kosugi, et al. 2019; Mahmoud,

et al. 2019; Coutelier, et al. 2022).

CNVs effectively capture the known species population structure

We compared the results of population structure analyses based on genome-wide SNPs and CNVs. The
principal component analysis (PCA) based on the genotyped CNV dataset agreed with the clustering
patterns from the genome-wide SNP dataset (Fig. 2A; Fig. S3A). Both analyses suggested a division of
our samples into four genetic clusters that aligned with the geographic structure of the populations (best
K = 4). The first principal component (PC1) separated the southern coast populations from inland (central
and southern highland) populations, PC2 separated the southern coast subgroup into two genetic clusters
(SC_LA2932 and SC_LA4107), and PC3 separated the inland populations into central and southern
highland clusters (Fig. 2A; Fig. S3A). The ADMIXTURE analysis confirmed this result (Fig. 2B; Fig. S3B,

with K = 4 exhibiting the lowest cross-validation error) and was consistent with the results from the SNP
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dataset (Fig. S3C).

We further explored the population differentiation using the Vsr statistics. This statistic is analogous
to the classically used Fstand Dyy statistics, but using CN values instead of allele frequencies (Redon, et
al. 2006). The Vsr statistic ranges between 0 and 1, where 1 indicates that the populations are fully
differentiated. We first computed the pairwise Vst values along the whole genome in 1 kb windows using
two CN quantitative measurements: Control-FREEC (Vst(CN)) and read depth (Vst(RD)) (Table S4). We
found a highly significant positive correlation between these two estimators of the pairwise Vst statistic
(Pearson’s test, P=1.06e-07; Fig. S4A). In addition, all duplicated and lost fragments detected by Control-
FREEC can be found in the CNV dataset obtained using the pipeline based on the four SV detection tools.
Based on the pairwise Vst statistics, we found similar structure patterns as in previous studies based on
SNPs (Bondel, et al. 2015; Stam, et al. 2019b; Raduski and Igi¢ 2021; Wei, et al. 2023), namely the high
differentiation between southern coast and inland populations, especially between southern coast and
southern highland populations (average Vst(RD)= 0.257 + 0.039, average Vst(CN)=0.198 + 0.027; Table
S4). As expected, both Vst statistics (Vst(CN) and Vst(RD)) showed a highly significant positive

correlation with Fst and Dxy based on SNPs (Pearson’s test, P values see Fig. 2C; Fig. S4B to D).

Differentiation of gene CN in different populations

To explore the role of natural selection in shaping CNV frequencies and distribution across populations,
we also calculated global Vst statistics (also with two methods, Vst(CN) and Vst(RD)) for each gene
(39,245 genes in total). We aimed to capture candidate genes under divergent selective pressures by
identifying genes with strong CN differentiation across all populations (Fig. S5). In total, we identified 3,539
candidate genes that present outlier CN differentiation across the seven populations (i.e., genes with
global Vst greater than the top 95" percentile of the 1,000 permuted Vst values; Fig. S5; Table S5; Dataset
S3) and 2,192 strongly CN-differentiated genes of these belong to the top 99" percentile of the 1,000
permuted Vst values (Fig. S5; Table S5). In Fig. S6, we show the distribution of deletions and duplications
for these 3,539 candidate genes. Southern highland populations exhibited a comparatively large increase
in gene gains (duplications) and a reduction in gene loss (deletions) relative to the other populations. In
contrast, southern coast populations showed a comparatively high number of deletions relative to the
high-altitude populations. In addition, southern highland and southern coast populations showed
comparatively higher duplications than central populations (except C_LA3111). This may indicate that

duplications play an important role during southward colonization.


https://doi.org/10.1101/2023.07.21.549819
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.549819; this version posted June 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

We performed four PCA analyses based on the Control-FREEC-based CN values of 1) all annotated
23,911 genes with the mapped reads (Fig. S7A); 2) the 12,392 genes with Vst(CN)>0 (Fig. S7B); 3) the
3,539 differentiated gene set (observed Vsr values > 95% confidence interval cutoff in both gene CN
estimate methods; Fig. 3A); and 4) the 2,192 strongly differentiated gene set (observed Vst values > 99%
confidence interval cutoff; Fig. S7C). In the PCA based on the 23,911 genes (Fig. S7A), all samples
exhibited a cohesive grouping, except those from SC_LA4107. In the PCA based on the 12,392 genes
with global Vst(CN) > 0 (Fig. S7B), two southern coast populations separated from the five inland
populations (central and southern highland populations), suggesting a large difference in the CN range
and composition between southern coast and inland populations. In the PCA based on the differentiated
gene set (Fig. 3A; Fig. S7C), PC3 separated the southern highland populations from the central
populations, consistent with the PCA based on the genotyped CNVs and SNPs (Fig. 2A; Fig. S2A). To
rule out the effect of few outlier individuals on the PCA (Fig. S7A and B), we removed two outliers and
found that the PCA results remain consistent (Fig. S8). Notably, however, that southern highland
populations still showed ca. 20% of admixed ancestry coefficients with the central populations (Fig. 2B).
These admixture signatures can reflect gene flow post-colonization of the southern habitats (between
southern highland and central populations) or a very short divergence time. Consequently, similar
polymorphisms in some parts of the genome were maintained between southern highland and central
populations (Wei, et al. 2023). These results may indicate that the past demographic history of habitat
colonization (and the resulting genetic drift) and gene flow are important evolutionary processes shaping

both SNP and CNV frequencies within and between populations of S. chilense.

Copy number variation illuminates enriched abiotic stress response pathways in S. chilense

We performed functional enrichment analysis on the 3,539 CN-differentiated genes according to GO
biological process categories (Dataset S4). We classified the significantly enriched GO categories (P <
0.05) into nine groups (Fig. S9A) enriched for 82 genes (cell wall organization) up to 580 genes (cellular
metabolic process). Interestingly, 400 (11.30%) CN-differentiated genes were enriched for a response to
stimulus/stress that can be linked to multiple environmental factors (Fig. S9A), for example response to
drought (water deprivation; 14.35% with 60 genes), cold (17.62% with 37 genes), heat (26.43% with 39
genes), red/far red light (15.82% with 65 genes), or ultraviolet light (UV; 19.03% with 47 genes) (Fig. 3B).
The enrichment for these stress responses supported multiple sources of evidence for adaptation at genes

associated with responses to arid conditions along a steep altitudinal gradient in S. chilense (Fischer, et
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al. 2011; Nosenko, et al. 2016; Bondel, et al. 2018; Blanchard-Gros, et al. 2021; Wei, et al. 2023). For
instance, multiple drought- (HSF and DREB3), cold- (FAD7), and light/cold-responsive genes (FT, G/, and
FLD) were found to be involved in flowering regulatory processes (Dataset S5). These findings are
consistent with previous studies suggesting that selection pressures may occur at point mutations as well

as at CNVs (Ofria, et al. 2003; Tan, et al. 2017; Lye and Purugganan 2019).

We found 227 CN-differentiated genes associated with flowering (Fig. S9A and B), an important
fitness trait underlying local adaptation in plant species (Srikanth and Schmid 2011). As a critical part of
the transition from vegetative to reproductive growth, flowering is influenced by multiple environmental
conditions. Therefore, divergent flowering times related to local adaptation processes along the ecological
gradient may be driven by CN-differentiated genes (Fig. S9C). We found 31 and 36 CN-differentiated
genes linked to response to light and cold among the genes involved in flowering regulation (Fig. S9C),
of which 25 and 20 genes were linked to photoperiod and vernalization pathways (Fig. S9B). The latter
represent two regulatory flowering time pathways sensitive to the relative lengths of light-dark periods and
low temperatures, respectively (Srikanth and Schmid 2011; Gaudinier and Blackman 2020). These genes
showed a comparatively high overlap with duplications in southern highland populations (Fig. 3C and D;
Fig. S10; Table S6). These genes included the potential homologs of floral integrator genes FT and FD
(Liu, et al. 2008; Srikanth and Schmid 2011; Putterill and Varkonyi-Gasic 2016), putative homologs of
CRY2, GI, and ELF3 in the photoperiod pathway (Srikanth and Schmid 2011; Makita, et al. 2021), and a
putative homolog of AGL74 in the vernalization pathway (Hecht, et al. 2005; Pérez-Ruiz, et al. 2015).
These candidate genes are well-known flowering time regulators in A. thaliana (Dataset S5). Note that
these potential candidate genes related to flowering regulation were duplicated only in southern highland
populations and exhibited either no CNVs or copy loss in central and southern coast populations (Fig. 3C
and D; Table S6; t-test, P < 0.05). These findings indicate that genes with CN gains may promote
colonization and adaptation in the southern highland habitats by regulating flowering time via the
photoperiod and vernalization pathways (Wei, et al. 2023). Previous studies on several plant species have
shown that a duplication of these positively regulated genes determining flowering time increases their
expression level thereby promoting flowering (Blackman, et al. 2010; Diaz, et al. 2012; Panchy, et al.
2016). This genomic finding was consistent with the phenology observed in glasshouse conditions, in
which southern highland individuals consistently flower 5-10 days earlier than those from central

populations. In addition, other potential flowering regulatory genes in the differentiated gene set were likely
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involved in flowering regulation via different pathways (Dataset S5), namely the putative homologs of the
genes FY and FLD (Srikanth and Schmid 2011; Cheng, et al. 2017; Bao, et al. 2020). The FLD gene

showed an increased copy number in all populations (Dataset S5).

We identified 60 drought-responsive CN-differentiated genes associated with direct responses to
water deprivation (Fig. 3B), encompassing duplicated homologs of ABI4 and AFP1 in the abscisic acid
(ABA) pathway, along with a putative WRKY33 transcription factor homolog with varying CN across
populations (Dataset S5). These genes were validated as drought stress-responsive in A. thaliana and
crops (Xiao, et al. 2021; Liu, et al. 2022; Luo, et al. 2022), including WRKY33, which is linked to
temperature stress in tomato (Guo, et al. 2022). Furthermore, eleven CN-differentiated genes also belong
to the drought-response metabolism co-expression network we previously found to be over-expressed
under drought compared to well-watered conditions (Fig. S11; t-test, P = 2.68e-05) (Wei, et al. 2024),
which corroborates their role in adaptive responses. Interestingly, we found similar numbers of deletion
and duplication genes associated with water deprivation response across all populations (Fig. S9D; Table
S6), suggesting a species-wide adaptation process in S. chilense through alterations in a metabolic gene
network.

Our previous SNP study linked root development genes to putative local adaptation processes
(primarily in response to extreme drought) in three low-altitude populations, including SC_LA2932,
SC_LA4107 and C_LA1963 (Wei, et al. 2023). Accordingly, we also found 73 CN-differentiated genes
involved in root development. These genes showed more CNVs in these three low-altitude populations
(SC_LA2932, SC_LA4107, C_LA1963) than in high-altitude populations (C_LA2931, C_LA3111,
SH_LA4117A, SH_LA4330) (Fig. 3E; Table S6; t-test, P < 0.05). This further indicated that root

development may be an important strategy for adaptation to low-altitude environments.

Gene expansion and contraction patterns show differences along altitudinal gradients

Our findings indicate that many CN-differentiated genes may be involved in adaptation to local habitats.
To investigate the CN evolutionary trends of the 3,539 differentiated genes across populations, we
performed an analysis of gene CN expansion (due to gene gain) and contraction (due to gene loss) across
populations based on a phylogenetic tree derived from the inferred population genealogy (Fig. 4A). The
CN of the differentiated genes was expanded (meaning there have been genes with CN gain) in the inland

group with an expansion rate of 1.788 (Table 1). On the other hand, we found a gene reduction (meaning

10
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gene with CN loss) in the southern coast group with a contraction rate of -0.818. Within the inland group,
the southern highland group exhibited CN gain (expansion rate of 0.416). In contrast, the central group
showed CN losses (contraction rate of -0.767) three times higher than CN gains (Table 1). This likely
indicates that gene CN of inland populations presents different evolutionary trends along the two
evolutionary lineages. The two southern highland populations showed distinct CN expansion rates of
1.663 (SH_LA4117A) and 1.375 (SH_LA4330). In the central group, although the C_LA1963 and
C_LA2931 displayed a trend of CN contraction, the C_LA3111 exhibited a similar rate of CN expansion
(1.037) as the two southern highland populations (Table 1). The comparable CN expansion observed in
the high-altitude populations (specifically, C_LA3111, SH_LA4330, and SH_LA4117A) may be attributed
to three factors: the recent divergence of the southern highland group from the central group, the recent
(re-)colonization of highland habitats following the glacial maximum (Wei, et al. 2023), and the ecological
similarity of the habitats (Fig. 1A) which may also result in the duplication of a similar set of genes for
C_LA3111 and the southern highland populations.

Interestingly, opposite results were observed between the two southern coast populations. Gene
CN appeared to have contracted in SC_LA2932 (contraction rate of -0.935), while expansion occurred in
SC_LA4107 (expansion rate of 0.534; Table 1) for the 3,539 differentiated genes. This follows our previous
observation that the two southern coast populations showed a high degree of differentiation, possibly
resulting from a long time of evolution in isolation and environmental differentiation. These results are also
consistent with the population structure (Fig. 2) and may reflect the old southernmost colonization of the
coastal habitats and the recent colonization of the highlands (Stam, et al. 2019b; Wei, et al. 2023).

Overall, the copy numbers of these potentially adaptively differentiated genes show an expansion
(CN gain) in the two previously elucidated southward colonization events (Fig. 4B). Considering that the
reference genome was assembled from population C_LA3111, which probably does not represent the
ancestral state of the species. We also performed the same CN-expansion and contraction analysis using
gene CN data calculated from the reference genome of S. pennellii (Table S7), a drought-adapted wild
tomato species. We found consistent results, except for a slight decrease in the proportion of CN gains
using the reference genome of S. pennellii in C_LA3111 (Fig. S12) compared to using the S. chilense
reference (Fig. 4B).

We identified 155 “rapidly evolving genes” that exhibited higher CN expansion or contraction (see

Methods) across the different groups/populations from 3,539 differentiated genes based on the reference
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genome of S. chilense (Table 1; Dataset S6). The 155 rapidly evolving genes also supported the
population clusters in the PCA (Fig. S13), but C_LA3111 appeared closer to the southern highland
populations than the other central populations. The highest number of such rapidly evolving genes were
found in the southern highland populations (91 genes), including 71 significant CN expanded genes with
GO enriched for photosynthesis (light reaction), long-day photoperiodism (flowering), and response to UV
light and cold. We also observed 20 rapidly evolving genes primarily associated with developmental and
metabolic processes. We also found 56 genes with rapidly evolving CN in the central populations (Table

1; Dataset S6), 75% of which exhibited a significant trend of CN contraction.

Among the 51 rapidly evolving genes in the two southern coast populations, 16 genes showed
opposite CN trends in the phylogeny: a significant contraction in SC_LA2932 versus an expansion in
SC_LA4107 (Fig. 4C). These genes included few homologs of photosystem subunits (i.e., psbB and petD)
mainly involved in photosynthesis (Dataset S5) and may underpin the high genetic differentiation at the
CNV level between the two southern coast populations. In addition, the same CN rapidly evolving genes
enriched for photosynthesis (light reaction) GO categories were also found in central and southern
highland groups (Fig. 4D; Table S8). These potentially photosynthetic gene families appeared to have
been contracting (CN loss) in the central group and SC_LA2932 but expanding (CN gain) in the southern
highland group and SC_LA4107 (Fig. 4D; Table S8), suggesting that changes in the photosynthetic

pathway may also be an important adaptive strategy across the different habitats in S. chilense.

CN-differentiated genes are associated with climatic variation along the altitudinal gradient

To further explore CNV as the potential genetic basis of an adaptive response to abiotic factors, we
conducted two genome-environment associations (GEA) analyses between the gene CN and 37 climate
variables (Dataset S7).

We first implemented a redundancy analysis (RDA) to identify climate variables significantly
associated with CN-differentiated genes across the seven populations. Three climatic variables (Bio7,
Bio8 and Bio19) were observed to correlate with CN changes in the RDA based on 12,391 genes with
global Vst(CN) > 0 (Fig. 14A). The first three RDA axes retained only 22.62% of the putative adaptive
gene CNV and only weakly distinguished between inland and southern coast populations (Permutation
test, P < 0.001; Fig. S14A to C). In the RDA based on the 3,539 CN-differentiated genes, 52.11% of the

variance in CN can be explained by six climate variables (explanatory variables; sum of proportions in Fig.
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5C) from five significant RDA axes (Permutation test, P < 0.001; Fig. 5A and 5C; Fig. S14D). These climatic
variables were significantly correlated with the different populations (Mantel test, P < 0.05; Fig. 5B). In
concordance with the PCA (Fig. 2A), the two main ordination axes did cluster the seven populations into
four groups corresponding to the main geographical habitats (central, southern highland and two southern
coast habitats). RDA axis 1 (RDA1) was correlated with the annual temperature range (Bio7) and potential
evapotranspiration during the driest period (PETDriestQuarter). This axis represented the differentiation
between the southern coast and inland populations (Fig. 5A and B). RDA axis 2 (RDA2) reflected the
differentiation between two southern coast populations by mean temperature of the wettest quarter (Bio8).
RDA2 also summarized a climatic gradient differentiating the low altitude (C_LA1963) and highland
populations, which was mainly driven by solar radiation (ann_Rmean) and potential evapotranspiration
(annualPET and PETColdestQuarter) (Fig. 5A and B). These six climatic variables were primarily
associated with the colonization of southern highland and southern coast populations (Fig. 5B). The
proportions of gene CN differentiation explained by these six climatic variables ranged from 0.02
(annualPET) to 0.136 (PETColdestQuarter) (Fig. 5C), in which PETColdestQuarter and PETDriestQuarter
(0.121) exhibited the highest importance and correlated with inland and southern coast populations,
respectively (Fig. 5A to C). Moreover, temperature changes (Bio7 and Bio8) also explained about 20.8%
of the gene CN differentiation (Fig. 5C). Solar radiation (ann_Rmean) was a specific variable correlated
with high altitude populations and explained 3.6% of gene CN differentiation (Fig. 5A to C). A consistent
RDA model was obtained using the 2,192 strongly CN-differentiated genes (Fig. S14E to G). Finally, no
significantly associated climate variables and RDA axes (Permutation test, P < 0.001) were obtained in
the RDA applied on the 20,372 non-CN differentiated genes (Fig. S14H). This may corroborate that the
CN-differentiated genes respond to external environmental stimuli in S. chilense.

We subsequently searched for candidate genes that may be associated with the six
overrepresented climate variables using latent factor mixed models (LFMM) (Fig. S15A) (Frichot, et al.
2013; Caye, et al. 2019). Here, we performed an association analysis between the climatic variables and
3,539 highly CN-differentiated genes (not all genes). We identified 312 CN-differentiated genes
significantly associated with the six climatic variables (z-test; calibrated P < 0.01; Fig. S15 B; Dataset S8).
The PCA based on the CN of these 312 candidate genes displayed population clustering consistent with
the one found in the RDA model (Fig. S16A; Fig. 5A), supporting that the six climate variables reflected

gene CN changes across the species distribution. Among these 312 candidates, we found 217 genes to
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be significantly associated with three Potential Evapotranspiration (PET) climate variables (annualPET,
PETDriestQuarter, and PETColdestQuarter), of which 98 genes were shared in at least two PET variables
(Fig. S15B). Indeed, PET was the primary variable reflecting the drought status of the habitat. We noted
that these PET-associated CN-differentiated genes were found across all populations (Fig. S16B and
S16C), and were mainly GO-enriched in metabolic and root development processes. This is consistent
with previous genomic and transcriptomic analyses showing that metabolic pathways and root
development are important responses to drought stress (Wei, et al. 2023; Wei, et al. 2024). This result
confirmed that drought tolerance is likely the main environmental pressure driving CN evolution across
the population distribution of S. chilense. Furthermore, 69% (34 out of 49) of the genes associated with
Bio7 were also observed to be correlated with ann_Rmean (Fig. S15B), which is likely a consequence of
the correlation between Bio7 and ann_Rmean (Fig. 5B; Pearson’s correlation = 0.50). These genes were
mainly duplicated in the southern highland populations and lost in the southern coast populations (Fig.
5D; Table S9). This result likely reflects that cold and high solar radiation are challenging conditions in
southern highland populations (Dataset S7). Multiple duplicated genes associated with solar radiation
(ann_Rmean) were enriched for a response to UV light in high-altitude populations, such as (likely)
homologs of UV-B receptor ARI12, and DNA repair gene REV1 (Dataset S5) (Tossi, et al. 2019; Thompson
and Cortez 2020). In addition, we also found a few CN-differentiated genes, such as putative homologs
of CPD (Dataset S5), which are related to pigment (anthocyanins) accumulation and were statistically
associated with solar radiation variables.

We finally observed that the number of duplicated genes associated with the six climatic variables
in the southern coast and especially southern highland populations was much higher than in the central
populations (Fig. S16B). The analysis of GO enrichment above showed that these duplicated genes are
involved in response to environments, including light, drought, cold, UV, and photosynthesis, such as the
likely homologs of the genes FT, FD, and ABI4 and genes involved in the formation of photosystem
subunits (Dataset S5). The number of candidate genes found as deletions was highly consistent with the
RDA results (Fig. S16C; Fig. 5A). For example, a large number of deletions in genes significantly
associated with Bio8 occurred in SC_LA2932 (27 genes; Fig. S16C), far more than in other populations.
Consistently the RDA results showed that CNVs in SC_LA2932 were also predominantly associated with
Bio8 (Fig. 5A). The analysis of GO enrichment showed that most lost genes are related to plant growth

and development. The GEA analyses confirmed the adaptive relevance of gene CN expansion and
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contraction: (i) the CN-differentiated genes in the central group appeared mainly as contraction genes
(deletions) while these appeared as expansion genes (duplications) in the southern highland populations;
(i) the gene CN changes were linked to the climatic variables and associated with colonization of novel
habitats at the southern edge of the species distribution; and (iii) the expansion/contraction of gene CN in

different populations and RDA model also matched the population structure.

Discussion

In this study, we explored the role of genomic CNV in the ecological adaptations of S. chilense. A set of
key genomic CNVs in S. chilense populations were found to be highly correlated with the species
colonization process and environmental variables and thus were likely implicated in the adaptive
differentiation between populations, probably because of their major impact on gene expression (Fuentes,
et al. 2019; Rinker, et al. 2019; Alonge, et al. 2020; Hamala, et al. 2021; Li, et al. 2023). This confirms that
CNV has ubiquitous roles in adaptive processes in ecology and evolution (Zmienko, et al. 2014;
Castagnone-Sereno, et al. 2019; Lauer and Gresham 2019; Mérot, et al. 2020). To better understand the
genetic basis behind the fitness effect of CNV in natural populations, we analyzed whole-genome (short
read) data for 35 S. chilense individuals from seven populations, which allowed us to identify genome-
wide CNVs. Our CNV calling pipeline resolved hundreds of thousands of CNVs in S. chilense. The number
of CNV for each population of S. chilense was similar to numbers found in the previous tomato clade CNV
based on a pan-genome study that included a single sample of S. chilense (Li, et al. 2023). CNVs were
abundant across all chromosomes and frequently resided within, or in close proximity to, genes in the S.
chilense genome (Fig. 1). Widespread CNVs in S. chilense genome exhibited similar performance as
SNPs for the inference of population structure and differentiation between populations (Fig. 2; Fig. S3).
Based on the demographic model we developed previously (Wei, et al. 2023) as a neutral null model and
the dynamic changes of gene CN in two southward colonization events, our results supported that most
CNV is likely shaped by neutral processes (Silva-Arias, et al. 2025). However, a genome-wide perspective
allowed us to identify CNV likely related to the adaptive divergence in recently colonized regions in

response to abiotic stress.

We conservatively identified patterns of gene CN differentiation that are likely to represent

footprints of adaptive divergence. CN differences of these genes across different populations reflected the
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neutral and divergent selection process between populations, demonstrating that CNV must be
considered to fully understand how selection shapes genomic structural diversity and local adaptation.
Overall, the evolutionary processes generating CNV diversity and divergence were dominated by the
demographic history of S. chilense, namely two southward independent colonization events. Gene CN
appears expanded in the southernmost SC_LA4107 and southern highland populations, which underwent
recent colonization events and exhibited lower population sizes (Stam, et al. 2019b; Wei, et al. 2023),
while gene CN revealed a trend of contraction in the central and SC_LA2932 populations (close to the
species' center of origin). Therefore, we estimated that CN expansion and contraction likely reflect and
underpin selective events during the two southward colonization events. Conversely, some plant species
exhibit adaptive evolution by gene loss, for example, adaptive gene loss has been associated with
changes in pollinators in Petunia axillaris (Hoballah, et al. 2007), Ipomoea quamoclit (Zufall and Rausher
2004) and A. thaliana (Shimizu, et al. 2008). Our study suggests that adaptive gene loss may also occur
in genes involved in plant growth and development in central populations, and genes involved in
photosynthesis in central and SC_LA2932 populations (Fig. 4D). These findings confirm the critical role
of gene loss in adaptive evolution. Changes in CN at photosynthetic genes underpin population
differentiation between SC_LA2932 (gene loss) and SC_LA4107 (gene gain), two populations in two
different habitats on the southern coast. CN differentiated genes were also enriched in response to
multiple abiotic stresses, such as red/far red light, cold, UV, or drought. These response processes can
directly affect plant reproduction and growth and regulate flowering regulatory processes (Fig. S9). These
findings agree with our results based on SNPs showing that the reproductive cycle, namely the regulation

of flowering time, may play a key role in adaptation to abiotic stress in S. chilense (Wei, et al. 2023).

The regulation of flowering time involved in response to light (photoperiod) and cold (vernalization)
appear as key adaptive pathways for S. chilense populations to colonize southern habitats as suggested
by the analysis of genome-wide SNPs (Wei, et al. 2023). Here, we obtained further candidate genes based
on CNVs enriched for flowering regulatory pathways and response to changes in photoperiod and cold.
These genes (putative FT, FD, FLD homologs) are duplicated in the southern highland populations (Fig.
S10). Solar radiation is also a challenging condition for plants at high altitudes. Many CN-differentiated
genes were enriched for a function in response to UV light (Fig. 3B; Dataset S4), including homologs of
genes involved in the anthocyanin accumulation in response to UV light. In plants, anthocyanin

accumulation can improve the tolerance for drought, cold, salt and biotic stresses (Kaur, et al. 2023),
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especially anthocyanins act as potent antioxidants which help in eliminating Reactive Oxygen Species
(ROS) molecules and protect the DNA damage under UV radiations (Catola, etal. 2017; Fang, et al. 2019).
This may indicate that the gene CNVs in anthocyanin accumulation pathway are important for adaptation
in high altitude populations of S. chilense. This follows a previous ecological niche study which suggested
that S. chilense populations are expanding to the habitats of high altitude (Wei, et al. 2023). More generally,
the large number of gene losses in response to environmental stresses may indicate that the reduction of
the genome size is a powerful evolutionary driver of adaptation (Albalat and Cafiestro 2016; Helsen, et al.
2020; Monroe, et al. 2021). Further functional validation will help understand the molecular mechanisms

through which copy number variation drives adaptive evolution in natural populations.

To provide further evidence for selection (versus the footprints of past demography), our RDA
analysis ultimately linked the dynamics of gene CN across populations to six climatic variables (Fig. 5A
and B), of which five climatic variables were consistent with previous RDA results based on SNPs (Wei,
et al. 2023). Similar CNV-environmental interactions have been observed in A. thaliana (DeBolt 2010;
Zmienko, et al. 2020), S. lycopersicum (Alonge, et al. 2020), Theobroma cacao (Hamala, et al. 2021), and
Oryza sativa (Fuentes, et al. 2019; Qin, et al. 2021). Our results also highlight that CNV likely plays an
essential role in response to the environments and in the southward colonization in S. chilense. CNVs,
especially duplications in southern highland populations exposed to typical high-altitude stresses, were
enriched in genes with functions related to cold, change of photoperiod and solar radiation. The CN
changes of differentiated genes in southern coast populations mainly correlated with drought stress, such
as root development, cell homeostasis, or cell wall maintenance. Interestingly, gene CN differentiation
related to photosynthesis provided evidence for the genetic underpinning of the adaptive differentiation
between SC_LA2932 and SC_LA4107, representing two different coastal habitats (Fig. 1Aand 4C). These
differentiated genes revealed opposite CN evolutionary trends between the two southern coast
populations. Indeed, we saw different habitats as SC_LA2932 grows in dry ravines (quebrada) in Lomas
formations, whereas SC_LA4107 grows in extremely fine alluvial soil (with even some running water).
Moreover, these chloroplast genes were detected in the nuclear genome, consistent with widespread
events of organellar gene transfers to the nuclear genome in tomatoes (Pesaresi, et al. 2014; Lichtenstein,
et al. 2016; Kim and Lee 2018). Since the chloroplast genome is much more conserved than the nuclear
genome in plants, the transfer of chloroplast genes to the nuclear genome with CNVs likely facilitates the

increase in genetic diversity at nuclear copies of chloroplast genes, influencing the ecological adaptability
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of S. chilense (Daniell, et al. 2016). These putative adaptive signatures related to photosynthesis were
not found in previous studies based on genome scans of SNPs (Wei, et al. 2023). The three central
populations showed mainly a trend towards gene loss and low correlation with climatic variables (Fig. 5A
and B). This trend is consistent with the fact that GEA analyses based on current climatic data have limited
statistical power to detect old adaptive selection signals, whether based on SNPs or CNVs, due to the
occurrence of multiple historical confounding events such as genetic drift, migration, and recombination
(De Mita, et al. 2013; Manel, et al. 2016). The two central populations (C_LA2931 and C_LA3111) found
at high altitudes exhibit few adaptive duplication signatures, but some as possible responses to cold and
solar radiation, similar to those observed for the southern highland populations (Stam, et al. 2019b; Wei,

et al. 2023).

Finally, we would like to stress that our study likely underestimates the amount and importance of
CNV in S. chilense as we do not possess long-read data for all populations and our measure of outlier
CNVs using global Vst are likely conservatives. First, the tests with simulations based on the short-read
data showed that our pipeline based on four tools to recover CNVs was likely conservative, which means
that we probably missed some CNVs. Second, there may be bias in finding footprints of selection when
using seeds from accessions maintained and propagated at the Tomato Genetics Resource Center
(TGRC; UC Davis, USA), as we discussed previously (Wei, et al. 2023). Third, we also point out that the
detection of CN-differentiated genes by the global Vst statistics might be inflated because it is hard to
correct for multiple testing (especially without a neutral demographic model of CNV evolution). We refrain
from using the pairwise Vst values to search for CNVs under selection because the sample size per
population remained rather low (five diploids), but with higher sample sizes, such comparison of global
versus pairwise Vst would pinpoint more precisely to the population in which CNVs may have been
selected. The availability of a new reference genome (Silva-Arias, et al. 2025) and a small number of
populations sequenced with long-read (Li, et al. 2023) do open the path to sequence wild populations with
long-read sequencing and a complete assessment of the importance of CNV at abiotic stress genes in S.
chilense. We highlight here that contrary to common practice in SNP analyses (Wei, et al. 2023 and
recommendation in Johri, et al. 2022) there is no standard procedure for detecting CNVs under selection,
and we used here a permutation method based on Vst (see also Rinker, et al. (2019). Nonetheless, the
Vst measure, despite our randomization procedure, may be biased by low-frequency CNVs (as is known

for Fst), and thus we used RDA to provide orthogonal evidence. Therefore, there is a need to develop
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new simulation and inference methods to study, infer and disentangle the neutral and selective processes
driving gene duplication and deletion (Otto, et al. 2022; Otto and Wiehe 2023). These are much needed
options to quantify/infer the neutral rates of gene duplication/deletion during the species southward
expansion and local adaptation, and, thereby, develop robust statistical selection tests for CNVs. Fourth,
instead of using the CN dataset of all genes to perform association analyses with climate variables, we
used genes with high CN differentiation. The reason for this is that in the RDA analysis we did not obtain
any associated climate variables when using CN dataset for all genes, indicating that the large number of
genes with weak CN changes greatly reduced the resolution of the analysis (while low-frequency CNV
are not picked up by the RDA analysis). This may confirm that the RDA complements our Vst analysis
and supports the footprints of selection (versus that of neutral processes) at our high CN-differentiated

genes.

Despite being conservative regarding the importance of positive selection shaping the CNV
diversity in S. chilense, our results reinforced the observation that CNV is an important contributor to
adaptation across different ecological habitats (Zmienko, et al. 2014; Rinker, et al. 2019; Hamal4, et al.
2021; Monroe, et al. 2021). The strong selective pressure imposed by the range expansion of S. chilense
and the need to adapt to novel stressful habitats has shaped the genetic diversity at SNPs and CNVs. In
agreement with previous studies, we suggest that natural selection acting on CNVs can reshape the
genomic composition of populations and might form a basis for local adaptation (Iskow, et al. 2012;

Zmienko, et al. 2014; Rinker, et al. 2019; Hamal3, et al. 2021).

Materials and Methods

Sample collection and sequence read processing

The 35 S. chilense plants were grown in standard glasshouse conditions from seeds obtained from the
Tomato Genetics Resource Center (TGRC, University of California, Davis, CA, USA). We sampled five
diploid plants from accessions representing the three main geographic groups. We retrieved whole-
genome short-read sequencing data from 35 specimens from seven populations of S. chilense (accession:
C_LA1963, C_LA3111, C_LA2931, SH_LA4330, SH_LA4117A, SC_LA2932 and SC_LA4107; five diploid
plants for each population) representing three main geographic groups and environments (Fig. 1A). The

data are available on the European Nucleotide Achieve (ENA; BioProject accession no. PRJIEB47577).
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We executed the same pipeline of read processing procedure as in our previous study (Wei, et al. 2023b),
including quality trimming, mapping and SNP calling based on the reference genome of S. chilense (Silva-

Arias, et al. 2025). The results of the sequencing and read mapping were documented in Dataset S1.

Identification and genotyping of CNVs

To obtain high-confidence CNVs including deletions and duplications, we chose four software tools for SV
detection based on an evaluation of SV detection tools by Kosugi et al. (2019). This study found that
combining SV detection tools tends to give higher precision and that LUMPY (Layer, et al. 2014), Manta
(Chen, et al. 2016), Wham (Kronenberg, et al. 2015) and DELLY (Rausch, et al. 2012) showed the best
overall performance. These tools implement different calling algorithms that jointly draw information from

patterns of read pairs, split reads, read depth, and de novo assembly.

For LUMPY v0.3.1, we first extracted the discordant paired-end reads with abnormal insertion size
from mapped results using ‘view’ function of Samtools v1.7 (Wysoker, et al. 2009), and then we extracted
the split-read alignments using the ‘extractSplitReads_BwaMem’ script. We used the ‘sort’ function of
Samtools to sort the resulting BAM files. Next, we ran LUMPY using the mapped reads, discordant paired-
end reads and split reads as inputs to detect CNVs. For CNV calling with DELLY v0.7.6, we chose the
default parameters and converted the output file from bcf to vcf format using bcftools v1.9 (Danecek, et
al. 2011; Danecek, et al. 2021). We also ran Manta v1.6 and Wham v1.8 using default parameters. For
each individual, we merged the CNV sets obtained with these four tools using SURVIVOR v1.0.7 (Jeffares,
et al. 2017). We set the minimum CNV length to 50 bp and the maximum CNV length to 1 Mb. Only CNVs
of the same type (deletion or duplication) and same DNA strand (sense strand or antisense strand)
detected by different tools were integrated. We retained CNVs that were called by at least two of the four

tools.

We finally used the merged CNV set as input for SVTyper v0.7.0 to call breakpoint genotypes of the
structural variants (Chiang, et al. 2015). The script we used for CNV calling, merging, and breakpoint
estimation is available from our Gitlab repository:

https://gitlab.lrz.de/population _genetics/s chilense cnv/-

/blob/main/pipeline_of CNV_calling genotyping.
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To assess the sensitivity and accuracy of our pipeline for CNV calling, we simulated short-read data
with CNV using CNV-Sim v0.9.2 (https://github.com/NabaviLab/CNVSim). We simulated 1,000 duplication
and 1,000 deletion regions ranging from 50 bp to 1 Mb based on 150 bp paired-reads. We then used our
same pipeline to call CNVs based on this simulated short-read dataset (Table S5). The script
implementing these CNV simulations is available from

https://gitlab.Irz.de/population _genetics/s chilense cnv/-/blob/main/CNVs_simulation.

Population structure analysis

We inferred the population structure using the whole-genome SNPs and genotyped CNVs. We performed
the principal component analysis (PCA) to seek a summary of the clustering pattern among sampled
genomes using GCTA v1.91.4 (Yang, et al. 2011). We first converted vcf format to plink format using
VCFtools v1.17 (Danecek, et al. 2011), then converted plink format to a binary format using PLINK v1.9
(Purcell, et al. 2007) with parameters ‘--noweb --make-bed’ to generate input of GCTA. We next performed
the analysis of admixture using the program ADMIXTURE v1.3.0 (Alexander, et al. 2009). We assessed

six scenarios (ranging from K = 2 to K = 7) for genetic clustering using the same input as the PCA analysis.

Quantification of gene copy number

We employed two strategies to quantify gene copy number (CN). First, we used the read-depth based
method implemented in Control-FREEC v11.6 to estimate the CN in 1 kb sliding windows across the entire
genome (Boeva, et al. 2012). We used the following parameters in Control-FREEC: ploidy = 2,
breakPointThreshold = 0.8, degree = 3, minExpectedGC = 0.3, maxExpectedGC = 0.55, and
telocentromeric = 0. We then obtained gene CN from the Control-FREEC outputs and gene coordinates
in the genome. However, some genes had more than one CN estimate. These events may be due to
imperfect estimation of breakpoints using our window size. So, we calculated the average CN if one gene

corresponded to multiple CN values.

We also employed an alternative strategy. We first extracted read depth using Mosdepth v0.3.2
(Pedersen and Quinlan 2018) in 1 kb sliding windows from BAM files, and then we calculated the read
depth for each gene from gene coordinates. We used median read-depth values of all windows and genes

as a normalizing factor to obtain the final window and gene CN estimate, respectively, and the formula

21


https://gitlab.lrz.de/population_genetics/s_chilense_cnv/-/blob/main/CNVs_simulation
https://doi.org/10.1101/2023.07.21.549819
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.549819; this version posted June 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

reads as: CN = (read depth / median value) x 2. A factor of 2 stands for the species diploidy (Rinker, et al.

2019).
Estimation of the population differentiation by CNVs

We calculated Vst to estimate the population differentiation. The Vst measurement, analogous to Fsr, is
applied to identify loci that differentiate by CN between populations (Redon, et al. 2006; Zhao and Gibbons
2018; Rinker, et al. 2019). Vst is calculated by defining (V1 - Vs)/Vr, where Vr denotes the total variance
and Vs denotes the average variance within each population, weighted by the sample size (five for all
populations in this study). We first calculated, using a sliding window-based approach, pairwise Fst and
pairwise Vst to compare the of measures of population differentiation by SNPs and CNVs. We calculated
for each pair of populations the Fsr statistics using VCFtools over 1 kb sliding windows and Vst based on
CN of 1kb sliding window across the reference genome. Note that we calculated pairwise Vst based on

two different CN estimation strategies: using control-FREEC (Vst(CN)) and read depth (Vs1(RD)).
Identification of CNV candidate genes associated with the population differentiation

We identified candidate genes with significant CN differences between populations, the so-called CN-
differentiated genes, using a global Vst per each gene based on the gene CN (Zhao and Gibbons 2018;
Rinker, et al. 2019). The per gene global Vs calculation follows:

VST — VT—S(VCLA1963+VCLA2931+VCLA3111+V5CLA2932+V5CLA4107+V5HLA4330+V5HLA4117A)/35
Vr

where Vr is the CN variance over all 35 individuals, Vpop_x is the CN variance for each respective
population, five is the sample size for each respective (pop_x) population and 35 is the total sample size.
An R script with the pipeline of gene Vst calculations and identification of candidate genes is found on:

https://gitlab.Irz.de/population_genetics/s_chilense_cnv/-/blob/main/VST.R. We performed permutation

tests on the CN counts to identify which genes displayed the greatest degree of observed inter-population
CN differentiation while controlling for sampling bias. Here, we randomly permuted gene CN of each gene
for 35 individuals and calculated a new global Vst for every permutation and every gene, respectively. We
repeated 1,000 times the permutations to generate a random distribution of global Vst values for each
gene. We then selected candidate genes for which the observed global Vst fell above the 951" and 99t

percentile of the permuted global Vst distribution. These candidate genes displayed strong intra-
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population CN homogeneity and high degrees of inter-population differentiation. Finally, genes were
considered significant when observed Vst values were above the maximum 95% (differentiated) or 99%
(strongly differentiated) confidence interval cutoff in both gene CN estimation methods control-FREEC

(VsT(CN)) and read depth (Vst(RD)) (the Vst cutoff see Table S5).

Gene ontology (GO) analysis

We first performed a BLAST (Camacho, et al. 2009) of our CN differentiated genes to the A. thaliana
dataset TAIR10 (e-value cutoff was10®). We selected the best matching entry (lowest e-value) as the
target homologue for enrichment analysis. We performed a GO enrichment analysis using the A. thaliana
annotation database as the background using the R package clusterProfiler (Yu, et al. 2012). When we
determined the enriched GO terms, we used the Benjamini-Hochberg method (Benjamini and Hochberg

1995) to control the false discovery rate fixed at 0.05.

Expansion and contraction of gene copy number

To gain insights into the changes of the gene CN size across populations in a way that accounts for
phylogenetic history, we performed an analysis of gene CN expansion and contraction with the set of
3,359 differentiated genes using CAFE v4.2.1 (Han, et al. 2013). This program can estimate the evolution
of the gene CN size based on a stochastic birth and death model. For a specified phylogenetic tree, and
given the gene CN sizes in each individual, CAFE can calculate the global birth and death rate of gene
CN. Then it infers the most likely gene CN sizes at all nodes in the tree and detects genes that have
accelerated rates of CN gains and losses. It finally computes a p-value associated with each gene CN

and identifies significant rapidly evolving genes with smallest p-values.

We first calculated the mean CN for 3,539 CN-differentiated genes for each population, respectively.
We then constructed a population-based phylogenetic tree using SNPs by TreeMix v1.13 (Pickrell and
Pritchard 2012), and then the ultrametric tree (Figure 4A) was generated based on ‘force.ultrametric’
function of phytools R package (Revell 2012). Finally, we analysed gene CN expansion and contraction
in different groups. We first ran CAFE for genes with CN less than 100 to calculate an accurate lambda
value (A=0.00207 in this study), because genes with large CN can lead to non-informative parameter

estimates. We then ran CAFE for genes with CN (gene copies) larger than 100 using the same lambda
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value calculated from genes with CN less than 100. We chose a significance threshold of 0.05 (p-value)
when identifying rapidly evolving genes with an excess rate of evolution (expansion or contraction) in
different groups/populations. The code we used to analyse CN expansion and contraction can be found

on: https://qgitlab.Irz.de/population _genetics/s chilense cnv/-/blob/main/run_cafe.sh.

Association analysis between gene copy nhumber and climatic variables

We obtained the environmental data, including 37 climatic variables, from two public databases,
WorldClim2 (Fick and Hijmans 2017) and ENVIREM (Title and Bemmels 2018) (Dataset S7). To evaluate
the relative contribution of the abiotic environment to explaining patterns of genetic variation, we first
performed a redundancy analysis (RDA) to associate CN of 3,539 differentiated genes with climatic
variables. We performed the RDA analysis using the rda function from the R package vegan (Forester, et
al. 2018), modelling CN as a function of predictor variables and producing constrained axes and
representative predictors (climatic variables). We assessed the multi-collinearity between representative
predictors (climatic variables) using the variance inflation factor (VIF) and excluded all climatic variables
with a VIF of 10 or above. We then calculated the significance of the RDA ordination axes using the
anova.cca function (P < 0.001). The R script for the RDA analysis, including all steps and parameters, can

be obtained at https://qgitlab.lrz.de/population _genetics/s chilense cnv/-/blob/main/RDA.R.

We obtained six climatic variables significantly correlated with the changes of gene CN across
populations from the RDA (Fig. 5A). To identify candidate genes associated with the climatic variables, we
used LFMM2 (latent factor mixed models) to build a model between each gene and climatic variable based
on the univariate test (Caye, et al. 2019). We used the Ifmm_ridge function in the R package LFMM to
obtain an object that contains the latent variable score matrix under the assumption of K = 4 latent factors
(as evaluated from analysis of population structure) based on the CN of 3,539 differentiated genes and
six representative climate variables (as obtained from RDA), respectively. Then, we performed association
testing using the Ifmm_test function. We finally used the method of Benjamini-Hochberg to calibrate p-
values and set conservatively 0.01 as the significance threshold to obtain candidate genes associated
with the climatic variables. The R script of LFMM we used is available on our Gitlab repository

https://gitlab.lrz.de/population _genetics/s chilense cnv/-/blob/main/lfmm.R.
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Supplementary data are available online at Molecular Biology and Evolution.

Data Availability

Raw sequence data are available at the European Nucleotide Achieve (ENA) BioProject PRIEB47577.
The resource of copy number variation identified in this study and custom scripts for conducting the
analyses are available at our Gitlab at the following link:

https://gitlab.lrz.de/population _genetics/s chilense cnv.
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Table1. The summary of gene expansion and contraction in different groups/populations based on an

ultrametric tree.

Number of Number of bRate of

aGroups / genes with genes with yfug}\lloer Number average :;\lt{zwlber 0]; in
Populations CN CN ained of CN lost  expansion / pidly evolving
expansion contraction 9 contraction genes
inland 40 26 167 49 1.788 15 (+13/-2)
C 163 695 355 1,013 -0.767 20 (+5/-15)
SH 527 525 1,143 705 0.416 37 (+32/-5)
SC 48 359 106 439 -0.818 9 (+2/-7)
C_LA1963 137 416 445 728 -0.512 10 (+3/-7)
C_LA2931 212 458 815 878 -0.094 15 (+3/-12)
C_LA3111 364 266 1,068 444 1.037 23 (+6/-15)
SH_LA4117A 813 342 2,574 653 1.663 52 (+38/-14)
SH_LA4330 446 328 1,766 702 1.375 31 (+22/-9)
SC_LA2932 268 846 427 1,514 -0.935 29 (+7/-22)
SC_LA4107 595 640 1,758 1,098 0.534 35 (+25/-10)

The table shows the expansion and contraction of CN-differentiated genes in different groups / populations
based on an ultrametric tree (Fig. 4A). C: central; SH: southern highland; SC: southern coast. Expanded
genes and contracted genes indicates that genes show an increase or decrease in the number of gene
CN predicted by the birth and death models. CN to be gained or lost indicate that the number of CN

increases or decreases for expanded and contracted genes, respectively.
aGroups and populations denote the branches in the ultrametric tree (Fig. 4A).

bRate of average expansion / contraction = (Number of CN gained - Number of CN lost) / (Number of CN
expanded genes + Number of CN contracted genes). Positive values indicate CN expansion and negative

values indicate CN contraction.

°The rapidly evolving genes indicate significantly higher CN expansion or contraction (P < 0.05) across
the different groups/populations. Values outside parentheses represent the total number of the rapidly
evolving genes. Positive values in parentheses denote the number of significantly expanded genes and
negative values denote the number of significantly contracted genes (see also Dataset S6).
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Fig. 1. Overview of copy number variation detected in 35 S. chilense individuals. (A) The map with the
distribution of all S. chilense populations at the Tomato Genetics Resource Center (TGRC), the seven S.
chilense populations in this study (black circles), and the four population groups (circles with other colours).
The two reconstructed southward colonization events, first to the southern coast and second to the
southern highland (orange arrows). C: central; SH: southern highland; SC: southern coast. (B) The
number of CNVs pooled across five individuals within each population. DEL: deletion; DUP: duplication.
(C) The distribution of CNV size. (D) The CNV density along the genome is expressed as a count per 1Mb

window. (E) The number of CNVs overlapping various genomic features for each population.
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Fig. 2. Population structure and differentiation analyses based on the genotyped CNVs. (A) Principal
component analysis (PCA) based on the genotyped CNVs from 35 individuals from seven S. chilense
populations. (B) Structure analysis based on genotyped CNVs and assuming between K=2 and K=7
subgroups (The best K value determined from the cross-validation error was 4; Fig. S3B). C: central; SH:
southern highland; SC: southern coast. (C) The correlation between pairwise Fst/Dxy and pairwise Vst

indicates that CNVs support the known population differentiation.
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Fig. 3. The CN-differentiated genes among seven populations are linked to response to multiple
environmental stimuli. (A) A PCA based on the CN of 3,539 differentiated genes. C: central; SH: southern
highland; SC: southern coast. (B) The proportions of CN-differentiated genes enriched in response to
external stimuli/stresses (significantly enriched P < 0.05). The proportion of gene enrichment is defined
as the number of genes enriched in one GO category divided by the number of background genes in this
category. The number on each bar represents the number of genes enriched in that GO category. (C) The
proportions of 25 CN-differentiated genes involved in the photoperiod pathway to regulate flowering time
overlapping with deletion, duplication or absence of CNV in the seven populations. (D) The proportions of
20 CN-differentiated genes involved in the vernalization pathway to regulate flowering time overlapping
with deletion (DEL), duplication (DUP) or absence of CNV (no CNV) in the seven populations. (E) The
proportions of 73 CN-differentiated genes involved in the root developmental process overlap with deletion,
duplication, or absence of CNV in the seven populations. The pie charts in C, D and E denote the
proportions of CN-differentiated genes overlapping with deletion, duplication or absence of CNV (see also
Table S6). The numbers in the pie chart indicate the number of genes overlapping with deletion,

duplication or absence of CNV.
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Fig. 4. The expansion and contraction of CN-differentiated genes in different populations relative to the S.
chilense reference genome. (A) The ultrametric phylogenetic tree used in gene expansion and contraction
analysis (see Table 1). C: central; SH: southern highland; SC: southern coast. (B) The map and pie charts
show the trends of gene CN loss and gain in the processes of two southward colonization events, first to
the southern coast and second to the southern highland (orange arrows). The proportion of CN gains or
losses for each population is defined as the number of CN gains or losses divided by the sum of the
number of CN gains and losses. (C) The number of CN gains (positive values) or losses (negative values)
for 16 rapidly evolving genes in two southern coast populations. (D) The number of CN gains and CN
losses for rapidly evolving genes related to photosynthesis in four subgroups representing four different

habitats (see also Table S8).
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Fig. 5. Genome-Environment Association (GEA) analysis between the gene CN and the climatic data of
the different habitats. (A) Redundancy analysis (RDA) ordination biplot illustrating the association between
the climatic variables (Dataset S7), individuals, and 3,539 differentiated gene CN. In the RDA, arrows
indicate the direction of the climatic variables associated with the different populations, and the projection
of arrows onto an ordination axis shows the correlation with that axis. The grey points denote the CN-
differentiated genes. C: central; SH: southern highland; SC: southern coast. (B) The correlations between
six overrepresented climate variables and populations, respectively. The bubble chart shows correlations
between six climate variables. The asterisks (*) indicate the levels of significance of the climate variables
for the RDA model (Permutation test; * P < 0.05, ** P < 0.01, *** P < 0.0001). The grey boxes to the right
of the climatic variables show the populations significantly associated with that climatic variable (Mantel
test, P < 0.05). (C) The proportion of variance explained by six overrepresented climate variables in the
RDA model. (D) 34 CN-differentiated genes associated with both temperature annual range (Bio7) and

solar radiation (ann_Rmean) in seven populations. The pie charts denote the proportions of CN-

differentiated genes with deletion (DEL), duplication (DUP) or absence of CNV (see also Table S9).
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