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Abstract

The brain continuously anticipates the energetic needs of the body and prepares to meet those needs
before they arise, called allostasis. In support of allostasis, the brain continually models the sensory state
of the body, called interoception. We replicated and extended a large-scale system supporting allostasis
and interoception in the human brain using ultra-high precision 7 Tesla functional magnetic resonance
imaging (fMRI) (N = 90), improving the precision of subgenual and pregenual anterior cingulate
topography combined with extensive brainstem nuclei mapping. We observed over 90% of the anatomical
connections published in tract-tracing studies in non-human animals. The system also included regions of
dense intrinsic connectivity broadly throughout the system, some of which were identified previously as
part of the backbone of neural communication across the brain. These results strengthen previous

evidence for a whole-brain system supporting the modeling and regulation of the internal milieu of the
body.
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Introduction

A brain efficiently regulates and coordinates the systems of the body as it continually interfaces
with an ever-changing and only partly predictable world. Various lines of research, including tract-tracing
studies of non-human animals (e.g., 1, 2), discussions of predictive processing (3—6), and research on the
central control of autonomic nervous system function (7—11), all suggest the existence of a unified,
distributed brain system that anticipates the metabolic needs of the body and prepares to meet those needs
before they arise, a process called allostasis (10; for recent reviews, see 11, 12). Allostasis is not a
condition or state of the body — it is the process by which the brain efficiently coordinates and regulates
the various systems of the body (12). Just as somatosensory and other exteroceptive sensory signals are
processed in the service of skeletomotor control, the brain is thought to model the internal sensory
conditions of the body (i.e., the internal milieu) in the service of allostasis, a process known as
interoception (15-18).

Using resting state functional magnetic resonance imaging (fMRI) in three samples totalling
almost 700 human subjects scanned at 3 Tesla (19), we previously identified a distributed allostatic-
interoceptive system consisting of two well-known intrinsic networks, the default mode network and
salience networks, overlapping in many key cortical visceromotor allostatic regions that also serve as
‘rich club’ hubs that have been implicated as the “backbone” for neural communication throughout the
brain (Figure 1A). Our investigation was guided by the anatomical tracts identified in published studies
of macaques and other non-human mammals (see Table 2 in (19)). This first study was more cortically
focused, examining the functional connectivity of primary interoceptive cortex spanning the dorsal mid
and dorsal posterior insula (dmlIns/dpIns), as well as key allostatic regions in the cerebral cortex that are
directly connected to the brainstem regions that are known to be responsible for controlling the motor
changes in the viscera (i.e., visceromotor cortical regions), such as the anterior midcingulate cortex
(aMCC), pregenual anterior cingulate cortex (pACC), subgenual anterior cingulate cortex (sgACC), and
agranular insular cortex (also known as ventral anterior insula, or valns, which is also posterior
orbitofrontal cortex), as well as the dorsal sector of the amygdala (dAmy) containing the intercalated
bodies and the central nucleus (Figure 1A). Our 3T analysis yielded a replicable, integrated system
consisting of two well-known intrinsic networks, in addition to primary interoceptive cortex. We did
explore some aspects of the system’s subcortical extent, including the thalamus, hypothalamus,
hippocampus, ventral striatum, periaqueductal gray (PAG), parabrachial nucleus (PBN) and nucleus
tractus solitarius (NTS), all regions known to play a role in control of the autonomic nervous system, the
immune system, and the endocrine system (e.g., 18-24), but our ability to more extensively map the
midbrain and brainstem extents of the system were limited by our use of 3T imaging.

In the present study, we replicated and extended evidence for the allostatic-interoceptive system
(Figure 1B) using ultra-high field (7 Tesla) MRI, which allows data acquisition with higher spatial
resolution (1.1 mm isotropic), better signal-to-noise-ratio (SNR; (27-29)), and increased sensitivity in
mapping functional connectivity of brainstem nuclei involved in arousal, motor and other vital processes
(e.g., autonomic, nociceptive, sensory; (30, 31)). This is a particularly important effort given the
increasing importance of the allostatic-interoceptive system as a tool for investigating interoception and
allostasis in basic brain function both in neurotypical samples and in specific populations (e.g., (32-35)).
In addition, research indicates that regions in this system are also important for a wide range of
psychological domains, including cognition, emotion, pain, decision-making and perception (see Figure 5
in (19); also see (36-38)), suggesting the hypothesis that allostatic and interoceptive signals may play a
more fundamental role in shaping basic brain dynamics (for discussion see (5, 39—41)).

We tested within-system functional connectivity in 90 human participants (age range = 18-40
years, mean = 26.9 years, s.d. = 6.2 years; 40 females) using a fast low-angle excitation echo-planar
technique (FLEET) sequence shown to reduce artifacts and improve temporal SNR (24, 42). This
approach allowed a more precise mapping of connectivity for regions with known signal issues at 3 Tesla,
such as the sgACC (low SNR), amygdala (noise from adjacent veins; (43)), columns within the PAG


https://doi.org/10.1101/2023.07.20.548178
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.548178; this version posted January 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7 Tesla Allostatic-Interoceptive System

(noise from adjacent aqueduct), and other small structures that could be particularly influenced by partial
volume effects. We took advantage of recently developed, much improved and validated in-vivo
brainstem and diencephalic nuclei atlases (44—48) to guide our analysis. This was crucial because our
hypotheses were specifically derived from published tract-tracing studies of macaques and other non-
human mammals that establish structural pathways carrying ascending interoceptive signals from the
periphery, for example via the vagus nerve, to subcortical and cortical regions of the allostatic-
interoceptive system (Supplementary Table 1). Extending (19), we more extensively examined the
intrinsic connectivity of subcortical nuclei such as mediodorsal thalamus (mdThal), hypothalamus, dorsal
amygdala, hippocampus, ventral striatum, PAG, PBN and the NTS (in the medullary viscero-sensory-
motor nuclei complex; VSM), in addition to considering the connectivity of dorsal raphe (DR), substantia
nigra (SN), ventral tegmental area (VTA), locus coeruleus (LC), superior colliculus (SC), and lateral
geniculate nucleus (LGN). The DR, SN, VTA and LC are midbrain and pontine monoamine-producing
nuclei that contribute to relaying the body’s metabolic status to the cortex (49). The SC and LGN are not
traditionally considered to be directly involved in interoception and allostasis, but they share anatomical
connections with key visceromotor regulation regions in the system (see Supplementary Table 1; (50—
55)). For example, neurons in the intermediate and deep layers of the SC are connected to aMCC (56),
hypothalamus (57, 58) and PAG (59), and have been directly implicated in skeletomotor (60, 61) and
visceromotor (62, 63) actions that facilitate approach or avoidance behaviors. The SC is also thought to be
a major point of sensory-motor integration and is associated with affective feelings (64, 65). The LGN
receives interoceptive inputs from the PAG (52) and PBN (55, 66, 67), and shares monosynaptic
connections with the hypothalamus (68) and pACC (69). We also examined connectivity patterns for
subregions of the PAG, hippocampus and SC rather than as a single ROI as in (19) given their functional
heterogeneity (70, 71) and differential involvement in allostasis (e.g., (72—74)).

Results

We used a bootstrapping strategy to identify weak but reliable signals that are important when examining
cortico-subcortical connections in brain-wide analyses. For each of 1000 iterations, we randomly
resampled 80% of the subjects (N = 72) and identified, for each seed region, BOLD correlations for all
voxels in the brain that survived a voxel-wise threshold of p <.05. We calculated discovery maps for each
seed region that included both cortical and subcortical connections. We calculated the similarities in the
spatial topography among all the maps and subjected each resulting similarity matrix to k&~-means
clustering analysis to characterize the allostatic-interoceptive network. We expected stronger connectivity
among cortical seeds compared to among subcortical seeds due to the latter’s noisier time courses and
potential partial volume effects, which would result in lower correlations for smaller regions.

Cortico-cortical intrinsic connectivity. We first examined the hypothesized functional connectivity
according to published anatomical connections. As expected, we successfully replicated all of the cortico-
cortical connections we previously observed with 3 Tesla imaging (Figure 2, Supplementary Table 1)
(19). We additionally observed reciprocal intrinsic connectivity (i.e., connectivity map of one region
includes a cluster in the other region and vice versa) between the IvAlns and pACC, between the sgACC
and aMCC, and between the dmlns and portions of cingulate cortex (sgACC, pACC) (Figure 2A; see
Supplementary Figure 1 for #-value map based on full group), extending the allostatic-interoceptive
system to include more of the anatomical connections documented in tract-tracing studies in non-human
mammals (75-78). All of these observations were confirmed by seed-to-seed connectivity strength
calculation (Figure 2B). Using evidence from the cortical maps and the seed-to-seed connectivity
matrices, we confirmed 100% of the monosynaptic cortico-cortical connections documented in published
tract-tracing studies in non-human animals.

Next, we binarized the cortical connectivity maps for all cortical seeds (p < 0.05) and computed
their conjunction to identify connecting cortical regions (Figure 2C). A k-means clustering analysis
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(optimal k£ = 2 based on the Calinski-Harabasz Criterion (79)) on the cortical maps replicated (19), such
that the system included two subsystems, one corresponding to the default mode network (i.e., the
dorsomedial prefrontal cortex, posterior cingulate cortex (PCC), and dorsolateral prefrontal cortex) and
the other corresponding to the salience (i.e., anterior to MCC, anterior insula, supramarginal gyrus,
supplementary motor area) and somatomotor networks (i.e., M1, S1, superior temporal gyrus; see details
in Supplementary Figure 2). This procedure also allowed us to discover any regions that might be
reliably included in the intrinsic connectivity of the system. We replicated all the connecting ‘hub’
regions reported at 3 Tesla in (19) (i.e., portions of anterior/posterior midcingulate cortex, inferior frontal
gyrus, ventral anterior insula, dorsal posterior insula, temporal pole, inferior temporal gyrus, superior
temporal sulcus, parahippocampal gyrus, and cuneus) with the exception of medial postcentral gyrus. We
also newly identified as allostatic-interoceptive system ‘hubs’ the entire anterior cingulate cortex
(including subgenual and pregenual extents), PCC, a greater extent of the insula (including mid insula;
mlns), as well as some portions of medial superior frontal gyrus (SFG) and middle frontal gyrus (MFG).
A majority of the allostatic-interoceptive system’s connecting hubs have been identified as members of
the ‘rich club’ in the connectomics literature, defined as high-degree nodes showing denser
interconnections among themselves than are lower degree nodes (80). The rich club hubs play a key role
in global information integration across the brain and therefore may serve as the backbone for global
communication in the brain (81), suggesting that allostatic and interoceptive processes may be at the core
of the brain’s computational architecture.

Subcortico-cortical intrinsic connectivity. In a new analysis enabled by newly delineated subcortical
seeds (45, 48, 82) that was not possible at 3 Tesla (19), we assessed subcortico-cortical connectivity by
visually inspecting cortical discovery maps of the subcortical seeds to confirm topography (Figure 3A;
see Supplementary Figure 3 for t-value map based on full group) and calculating seed-to-seed
connectivity to quantify strength of connection (Figure 3B). Combining evidence from the cortical maps
and seed-to-seed connectivity matrix, we confirmed 94% of the monosynaptic subcortico-cortical
connections predicted from non-human tract-tracing studies (Supplementary Table 1). There were three
exceptions: we did not observe significant, positive functional connectivity between PAG and
dmlns/dplns, hypothalamus and dmlIns/dpIns, or PBN and sgACC, despite known anatomical connections
(see Supplementary Table 1; (83, 84)). In some instances, averaged time courses between seeds did not
correlate significantly (i.e., gray squares in Figure 3B, e.g., DR-sgACC), but connectivity clusters could
nonetheless be observed in the maps (e.g., sgACC cluster in DR-seeded map). Such discrepancies can
result from noisy signals within an ROI or specific sub-portions of an ROI showing significant
connectivity. We tested specificity of the allostatic-interoceptive network using a region of superior
parietal lobule not known for visceromotor function (19). This region only showed consistent functional
connectivity to the SC (85), VSM, the hippocampus and the amygdala (Supplementary Table 2).

As with the cortico-cortical analyses, we conjoined the binarized discovery subcortico-cortical
maps (p < 0.05) to identify the overlapping cortical connectivity between subcortical seeds (Figure 3C).
Subcortically seeded maps showed connecting regions in hypothesized cingulate and insular regions as
well as some parts of the MFG and cuneus. We examined a range of & values that showed similarly
optimal Calinski-Harabasz Criterion (k = 2 to 9) (see Supplementary Methods). We retained & = 3 for its
interpretability. All three clusters included cortical nodes from the default mode and salience networks.
Cluster 1 included discovery maps from seeds in the lower brainstem (LC, PBN, VSM), and primarily
showed connectivity to the posterior cingulate cortex, supramarginal gyrus and some medial and lateral
occipital regions (Supplementary Figure 4). Cluster 2 included discovery maps from seeds in the upper
brainstem (PAG, DR) and the hypothalamus, and showed connectivity to the aMCC and parahippocampal
gyrus. Cluster 3 included discovery maps from larger seeds in the mdThal, LGN, hippocampus, dAmy,
NAcc, SC, SN and VTA, and showed widespread connectivity to the dorsomedial prefrontal cortex,
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cingulate cortices (sgACC, pgACC, aMCC, isthmus), supplementary motor area, cuneus, insula (anterior,
mid and posterior), superior frontal gyrus, central sulcus, and angular gyrus.

Subcortico-subcortical intrinsic connectivity. With our newly delineated subcortical seeds (45, 48, 82),
we also assessed subcortico-subcortical connectivity by visually inspecting subcortical maps of the
subcortical seeds to confirm topography (Figure 4A) and by calculating functional connectivity between
all subcortical seeds to quantify strength of connection (Figure 4B). Again, this analysis was not possible
with 3 Tesla scanning as in (19). We confirmed 96% of the monosynaptic subcortico-subcortical
connections that were identified in published, tract-tracing studies on non-human animals
(Supplementary Table 1). There were three exceptions: we did not observe significant, positive
functional connectivity between hypothalamus and PBN, hypothalamus and LC, or hypothalamus and
VSM (including NTS), despite known anatomical connections (see Supplementary Table 1). In one
case, averaged timecourses between the VSM and NAcc seeds did not correlate significantly (Figure 4B;
see gray square in matrix), but bilateral NAcc clusters could nonetheless be observed in the VSM-seeded
map. As in the subcortico-cortical maps, such discrepancies can result from noisy signals within an ROI
or specific sub-portions of an ROI showing significant connectivity. Seed-to-seed connectivity strength
between PAG subregions and other subcortical ROIs is displayed in Supplementary Figure 5. Seed-to-
seed connectivity strength between hippocampal subregions and other subcortical ROIs is displayed in
Supplementary Figure 6. Seed-to-seed connectivity strength between layers of the SC and other
subcortical ROIs is displayed in Supplementary Figure 7. Conjoined binarized subcortical discovery
maps (p < 0.05) indicated that all but four subcortical seeds showed overlapping connectivity: connecting
regions were identified in the mdThal, LGN, hippocampus, dAmy, NAcc, PAG, DR, SC, SN and VTA
but hypothalamus, PBN, LC and VSM showed less widespread and dense connectivity throughout
subcortical seeds (Supplementary Table 3). K-means clustering analysis (k = 3) on the subcortical
discovery maps from subcortical seeds yielded an almost identical solution as their cortical connectivity
maps.

The allostatic-interoceptive system. We observed dense interconnectivity between all the cortical and
subcortical seeds included in our analysis (Figure SA). Conjoined binarized discovery maps (p < 0.05)
across both cortical and subcortical extents converged in the hypothesized allostatic-interoceptive system
(Figure SB).

Discussion

Ultra-high field 7 Tesla fMRI with 1.1-mm isotropic voxel resolution combined with newly delineated 7
Tesla brainstem and diencephalic parcellations (44—48) revealed both cortical and subcortical components
of an integrated allostatic-interoceptive system in humans consisting of two overlapping subsystems.

Our original study using 3 Tesla fMRI (19) used 10-minute resting state scans in two subsamples of 270-
280 participants each, plus a third sample of N = 41, whereas the present study involved a greater
duration of resting state scan time (30 minutes total) in a sample of 90 participants. Using functional
connectivity among seven cortical ROIs and 14 subcortical ROIs in humans, we verified over 90% of the
anatomical connections identified in published tract-tracing studies of macaques and other non-human
mammals. Our current 7 Tesla findings revealed reciprocal connectivity between sgACC/pACC and
dmlns/dplns regions previously unreported in 3 Tesla functional connectivity studies of the ACC (86-90)
and the insula (91-94). The improvement in sgACC connectivity, in particular, was expected at 7 Tesla,
as this region is part of the medial/orbital surface that is typically susceptible to low SNR, partial volume
effects and physiological aliasing. In the current study, these effects were mitigated by higher resolution
image acquisition at 7 Tesla, minimal smoothing, and more precise nuisance regression using signals
from individual ventricles. We also expanded observations of the subcortical extents of the system.
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Several subcortical nodes (i.e., mdThal, LGN, hippocampus, dAmy, NAcc, SC, SN and VTA) showed
robust connectivity with all cortical nodes whereas the smaller brainstem nuclei (i.e., PAG, DR, PBN, LC
and VSM (including the NTS)) showed weaker but reliable connectivity to these nodes, consistent with
other studies that examined a subset of the nodes as seeds at 3 Tesla (e.g., (49)) and 7 Tesla (e.g., (30, 95,
96)). We also observed reliable connectivity between regions that have not yet been documented as
having monosynaptic connections in previous tract-tracing studies. For example, the LGN has virtually no
monosynaptic connectivity with cortical nodes of the allostatic-interoceptive system according to tract-
tracing studies (except for modest projections to the pACC (97)), yet we observed reliable functional
connectivity between the LGN and the aMCC, mvAlns, and pACC. The LGN receives interoceptive input
(67) and there is some evidence that interoceptive signals gate visual sensory sampling (98), suggesting
that LGN functional connectivity with other nodes of the allostatic-interoceptive system might reflect
polysynaptic connections that are functionally meaningful. In our study, the observation of a broad
allostatic-interoceptive system is consistent with the confirmed monosynaptic connections between the a
priori ROIs and the understanding that functional connectivity may reflect both monosynaptic and
polysynaptic connections (99).

The connecting ‘hub’ regions of the allostatic-interoceptive system observed at 7 Tesla covered
all hypothesized cortical regions of interest, including the full extent of primary interoceptive cortex
(dplIns, dmlns; (15)) and the primary visceromotor regions (vAlns, sgACC, pACC and aMCC; (100)).
Several other connecting ‘hub’ regions (MCC, PCC, IFG, PHG, STG) were also observed and we
confirmed their anatomical connections to documented allostatic regions in non-human animals. The
remaining connecting regions (i.e., MFG, SFG, isthmus of the cingulate, cuneus) have not been
documented as having monosynaptic anatomical connections to our subcortical and cortical seed regions
— their functional connectivity may reflect polysynaptic connections or novel connections in humans.
Importantly, most of the additional connecting regions observed at 7 Tesla (i.e., pACC, PCC, isthmus
cingulate, SFG, MFG and mlns; except the sgACC) belong to the ‘rich club’ (the most densely
interconnected regions in the cortex and thought to serve as the “backbone” that synchronizes neural
communication throughout the brain; (105)), consistent with the hypothesized central role of the
allostatic-interoceptive system as a high-capacity “backbone” for integrating information across the entire
brain (106).

The results of this study have several important functional implications. First, a number of brain
regions within the allostatic-interoceptive network most likely play an important role in coordinating and
regulating the systems of the body even though they are involved in other psychological phenomena. For
example, the SC is typically studied for visuomotor functioning in humans but has been shown to be
important for approach and avoidance behavior as well as the accompanying changes in visceromotor
activity in non-human mammals (e.g., 62, 63, 107) via anatomical connections to ACC (50) and
hypothalamus (51). Similarly, the hippocampus is usually considered central to memory function, but
evidence from non-human animals indicates that the hippocampus also plays a role in the regulation of
feeding behaviors and in interoception-related reward signals (108—113). There is also circumstantial
evidence that interoceptive signals, relayed from the vagus nerve to the hippocampus via the NTS and
septal nuclei, may play a role in event segmentation (114, 115). Furthermore, the LGN is usually
considered part of the visual pathway that relays visual information from the retina and the cerebral
cortex. However, the current functional connectivity findings are consistent with tract-tracing evidence
showing LGN’s monosynaptic connections with cortical (e.g., pACC (69)) and subcortical visceromotor
structures (e.g., hypothalamus (68), PAG (52), and PBN (116)), suggesting a role for facilitating
communication among brain structures implicated in bodily regulation, in addition to its role in
integrating interoceptive and visual signals (39). The broad functional connectivity profile of the LGN is
also consistent with evidence of tracts between the LGN and other hypothesized regions of the allostatic-
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interoceptive network such as the hippocampus, amygdala, DR, SC, SN, and LC (Supplementary Table
1).

Second, both the default mode and salience networks have been functionally implicated in
cardiovascular regulation as well as other aspects of allostasis (9, 117, 118), and they have also been
implicated in mental and physical illness and their comorbidities (e.g., (119, 120)). Not surprisingly,
psychiatric illnesses (e.g., depression (121, 122), schizophrenia (123, 124)), neurodevelopmental illnesses
(e.g., sensory processing disorder/autism spectrum disorder (125, 126)), neurodegenerative illnesses (e.g.,
dementia/Alzheimer’s disease (127, 128), Parkinson’s disease (129, 130)) and physical illnesses (e.g.,
heart disease (131), chronic pain (132)) present with symptoms related to altered interoception or
visceromotor control, and some of these symptoms are transdiagnostic (133—135). Moreover,
interoceptive and visceromotor symptomatology is often accompanied by altered neurobiology (e.g.,
volume, structural connectivity, functional connectivity, evoked potential, task activation) in the
allostatic-interoceptive system (e.g., depression: (136, 137); autism: (138); dementia: (33, 127, 128);
chronic pain: (139); transdiagnostic: (140—-143)). In addition, there is evidence showing that psychological
therapies targeting interoceptive processes (144) and neuromodulations targeting distributed regions
within the allostatic-interoceptive system (145, 146) may be effective transdiagnostic interventions.
Taken together, these findings suggest that altered function of the allostatic-interoceptive system may be a
transdiagnostic feature of mental and physical illness that holds promising clinical utility. More
fundamentally, the system identified in this paper provides a scientific tool for integrating studies across
psychological and illness domains in a manner that will speed discovery, the accumulation of knowledge
and, potentially, strategies for more effective treatments and prevention.

Finally, the findings reported here are consistent with the growing body of evidence that a
number of subcortical and cortical brain regions are important during both the regulation of bodily
functions and during cognitive phenomena, calling into question their functional segregation (147—-149).
Our findings suggest that the default mode and salience networks may be concurrently coordinating,
regulating and representing organs and tissues of the internal milieu at the same time that they are
engaged in a wide range of tasks spanning cognitive, perceptual, emotion and action domains (see Figure
51in (19)) (38, 150—154). Therefore, our results, when situated in the broader published literature, suggest
that the default mode and salience networks create a highly connected functional ensemble for integrating
information across the brain, with interoceptive and allostatic signaling at the core. Regulation of the
body has been largely ignored in the neuroscientific study of the mind, in part because much of
interoceptive modeling occurs outside of human awareness (18, 134).

Several limitations within the current study should be addressed in future studies. First, we did
not validate the connectivity strength within the allostatic-interoceptive network against signal-based
measures of interoception (e.g., heart-beat evoked potentials), although there is growing evidence that
even at rest, limbic regions of the brain continually issue allostatic control signals and there should be
synchronous relationships between resting state BOLD signals and electrical signals from visceromotor
movements (155). Second, we did not fully monitor participants’ wakefulness (e.g., via video recording)
during the three ten-minute resting state scans. The default mode and salience networks are present during
sleep (156), although the strength of within-network functional connectivity has been shown to vary (with
evidence of both stronger and weaker connectivity) as a function of wakefulness (157—-160). Third, we did
not map every relevant subcortical area that may be involved in allostasis or interoception. For example,
opportunities for further research include septal nuclei (with direct projections to limbic regions such as
the hippocampus and implicated in temporal control of neurons that make up the allostatic-interoceptive
network; (161, 162)), circumventricular organs (e.g., area postrema with unique access to peripheral
signaling molecules via its permeable blood-brain barrier; (163, 164)), and motor brainstem nuclei (e.g.,
dorsal motor nucleus of the vagus and nucleus ambiguus whose neurons give rise to the efferent vagus
nerve; (165, 166)). As several of the known anatomical connections of the hypothalamus were not
observed, further investigation of hypothalamic functional connectivity is warranted. Further investigation
should use different hypothalamic nuclei or subregions as seeds may given functional heterogeneity in


https://doi.org/10.1101/2023.07.20.548178
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.548178; this version posted January 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7 Tesla Allostatic-Interoceptive System

relation to allostatic processes (167, 168) . The cerebellum is also likely involved in allostasis and
interoception (169, 170).

Online Methods

Participants and MRI acquisition. We recruited 140 native English-speaking adults, with normal or
corrected-to-normal vision, and no history of neurological or psychiatric conditions. All participants
provided written informed consent in accordance with the guidelines set by the institutional review board
of Massachusetts General Hospital. Forty-nine participants were excluded from the current analysis (19
withdrew prior to the MRI session, three withdrew during MRI acquisition due to discomfort, six did not
complete scans due to online scan reconstruction failure, three did not complete scans due to time
constraint, four were excluded due to other technical issues during acquisition, 10 were excluded due to
scanner sequence error, four were excluded due to corrupted MRI data that could not be processed and
one was excluded due to excessive artifacts in the structural scan). This resulted in a final sample of 90
participants (26.9 = 6.2 years old; 40 females, 50 males). MRI data were acquired using a 7 Tesla scanner
(Magnetom, Siemens Healthineers, Erlangen, Germany) with a 32-channel phased-array head coil and
personalized padding to achieve a tight fit. Participants completed a structural scan, three resting state
scans of 10 minutes each, three diffusion-weighted scans, as well as other tasks unrelated to the current
analysis. At the beginning of each resting state scan, participants were instructed to keep their eyes open
and indicated their readiness to start the scan via button press. MRI parameters are detailed in SI.

Preprocessing of fMRI data. The preprocessing pipeline began with reorientation, slice timing correction,
concatenation of all three resting state runs, coregistration to the structural T;-weighted image, and
motion correction (framewise displacement mean = 0.17, s.d. = 0.14, with 98.7% of frames showing sub-
voxel motion; (171)). We then conducted nuisance regression to remove physiological noise due to
motion (six parameters measuring rotation and translation), as well as due to non-BOLD effects evaluated
in the white matter, ventricular cerebrospinal fluid, and the cerebral aqueduct. We then conducted
temporal filtering and normalization. Finally, we performed conversion to Freesurfer
orientation/dimensions, detrending, spatial smoothing (1.25mm), and resampling to cortical surfaces.
Preprocessing details are provided in SI.

Functional Connectivity Analysis. Seven cortical seeds (4mm-radius spheres) were defined based on
previous fMRI studies of interoception using the procedure outlined in (172). The 14 subcortical seeds
were defined based on the Brainstem Navigator toolkit (https://www.nitrc.org/projects/brainstemnavig/)
(e.g., (95)), CANLAB Combined Atlas 2018 (github.com/canlab), and Freesurfer segmentation (e.g.,
(173)). See Supplementary Methods for details about seed definition. We randomly resampled 80% of
the sample (N = 72) 1000 times. In each iteration, for each seed, we estimated cortical connectivity using
Freesurfer-based analysis procedure as outlined in (19). This yielded final group maps that showed
regions whose fluctuations significantly correlated with the seed’s fMRI time series, which were
binarized to retain positive connectivity surviving the threshold of p < .05 and summed across 1000
iterations to obtain ‘bootstrapped connectivity’ maps. We also quantified seed-to-seed functional
connectivity by computing Pearson’s correlation coefficient between all pairs of ROIs and applying the
Fisher’s r-to-z transform. Significance at the group level was assessed with a two-tailed one-sample t test.

Connecting Regions and K-Means Cluster Analysis. To visualize the connecting ‘hub’ regions, we
conjoined binarized functional connectivity maps (p < 0.05) for all seeds. To replicate the previously
discovered two-subsystem distinction within the allostatic-interoceptive network (19), we first computed
a similarity matrix capturing pairwise #° (174) between the un-thresholded bootstrapped group maps of
cortical seeds and then applied k-means clustering algorithm (kmeans, MATLAB) with a range of &
between 2-10 (for each &, we tested 10 initializations with new centroid positions, each with a maximum
of 1000 iterations to find the lowest local minimum for sum of distances). We evaluated the optimal &
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using the Calinski-Harabasz Criterion (79). To visualize each subsystem, we binarized the group
connectivity maps (p < 0.05) and calculated the conjunction between maps within the same cluster.

Data and Code Accessibility. Raw and preprocessed data can be found at:
https://openneuro.org/datasets/ds005747. Analysis outputs and codes can be found at:
https://github.com/jiahez/7-Tesla-Allostatic-Interoceptive-System.
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Figure 1. Key cortical and subcortical regions involved in interoception and allostasis. (A) Using 3 Tesla
fMRI resting state connectivity, we showed a unified system consisting of the default mode network (in
red) and salience network (in blue), which overlapped in many key cortical visceromotor allostatic
regions (in purple) that also serve as ‘rich club’ hubs, in addition to a portion of primary interoceptive
cortex (dplns) (left panel) (19). We reported the system’s connectivity to some subcortical regions known
to play a role in control of the autonomic nervous system, the immune system, and the endocrine system
such as the thalamus, hypothalamus, hippocampus, ventral striatum, PAG, PBN and NTS (e.g., 20-26)
(right panel) (19). Figures are reproduced with permission from (19). (B) Expanded set of seed regions
used in the present analysis. Abbreviations: aMCC: anterior midcingulate cortex; Amy: amygdala; dmIns:
dorsal mid insula; dplns: dorsal posterior insula; DR: dorsal raphe; Hippo: hippocampus; Hypothal:
hypothalamus; LC: locus coeruleus; LGN: lateral geniculate nucleus; NAcc: nucleus accumbens; NTS: nucleus
of the solitary tract; pACC: pregenual anterior cingulate cortex; PAG: periaqueductal gray; PBN: parabrachial
nucleus; SC: superior colliculus; sgACC: subgenual anterior cingulate cortex; SN: substantia nigra; Thal:
thalamus; valns: ventral anterior insula; VTA: ventral tegmental area.
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Figure 2. Cortico-cortical functional connectivity within the allostatic-interoceptive system. (A) Left column shows
cortical seed locations and right column shows bootstrapped functional connectivity maps depicting all voxels
whose time course was correlated (p < .05) with that of the seed in more than 950 iterations (out of 1000) by
resampling 80% of the sample in each iteration (N = 72). (B) Seed-to-seed functional connectivity matrix shows
connectivity strength between each pair of the cortical seeds (p < .05, uncorrected; white color indicates correlation
=1; N =90). (C) The allostatic-interoceptive system showed connecting regions in all the a priori interoceptive and
visceromotor control regions. Connecting regions belonging to the ‘rich club’ are labeled in yellow. ‘Rich club’
hubs figure adapted with permission from (105). To avoid Type II errors, which are enhanced with the use of
stringent statistical thresholds (175), we opted to separate signal from random noise using replication, according to
the mathematics of classical measurement theory (176). Abbreviations: aMCC: anterior mid cingulate cortex; dplns:
dorsal posterior insula; IFG: inferior frontal gyrus; MFG: middle frontal gyrus; mlns: mid insula; pACC: pregenual
anterior cingulate cortex; PHG: parahippocampal gyrus; pMCC: posterior mid cingulate cortex; PCC: posterior

cingulate cortex; sgACC: subgenual anterior cingulate cortex; STS: superior temporal sulcus; valns: ventral anterior
insula.
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Figure 3. Subcortico-cortical intrinsic connectivity within the allostatic-interoceptive system. (A) Left column shows subcortical seed locations and right column
shows bootstrapped functional connectivity discovery maps depicting all cortical voxels whose time course was correlated (p < .05) with that of the seed in more
than 950 iterations (out of 1000) by resampling 80% of the sample in each iteration (N = 72). (B) Seed-to-seed functional connectivity matrix shows connectivity
strength between pairs of subcortical and cortical seeds (p < .05, uncorrected; gray color indicates subthreshold correlations; N = 90). (C) Conjunction map
shows the number of binarized maps (p < .05) with shared connecting regions (ranging from 9 to 14). Abbreviations: dAmy: dorsal amygdala; mdThal:
mediodorsal thalamus; LGN: lateral geniculate nucleus; Hypothal: hypothalamus; Hippo: hippocampus; NAcc: nucleus accumbens; PAG: periaqueductal gray;
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DR: dorsal raphe; SC: superior colliculus; SN: substantia nigra; VTA: ventral tegmental area; PBN: parabrachial nucleus; LC: locus coeruleus; VSM: medullary
viscero-sensory-motor nuclei complex corresponding to the nucleus tractus solitarius.
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Figure 4. Subcortico-subcortical intrinsic connectivity within the allostatic-interoceptive system. (A) Left column
shows subcortical seed locations and right column shows bootstrapped functional connectivity discovery maps
depicting all subcortical voxels whose time course was correlated (p <.05) with that of the seed in more than 950
iterations (out of 1000) by resampling 80% of the sample in each iteration (N = 72). (B) Seed-to-seed functional
connectivity matrix showed connectivity strength between each pair of the subcortical seeds (p < .05, uncorrected;
white color indicates correlation =1 and gray color indicates subthreshold correlations; N = 90). Several seeds had
functional connectivity with a subset of voxels within target ROIs, as shown by binarized maps at p <.05 (target
ROI outline is shown in blue).
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Figure 5. Summary of the allostatic-interoceptive system based on 7 Tesla fMRI functional connectivity. (A) Circuit
diagram indicates dense within-system connectivity between the 21 cortical and subcortical seeds. All seeds are
shown as spherical nodes located at their respective centers of gravity. Pairwise connectivity strengths between
ROIs are shown as edges between nodes (ranging from p < .05 in red to p < 1071 in yellow, uncorrected; N = 90).
Nodes and edges in the glass brain were visualized using BrainNet Viewer (177) (B) Conjunction map shows the
number of binarized maps (p < .05) that shared overlapping regions (ranging from 15 to 21, total number of cortical
and subcortical seeds = 21).
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