

Migration and standing variation in vaginal and rectal yeast populations in recurrent vulvovaginal candidiasis

Abdul-Rahman Adamu Bukari^a, Rebekah J. Kukurudz-Gorowski^a, Alexia de Graaf^{a*}, Devin Habon^{a*}, Beamlak Manyaz^{a*}, Yana Syvolos^a, Aruni Sumanarathne^a, Vanessa Poliquin^b, Aleeza Gerstein^{a,b,#}

^aDepartment of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada

^bObstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada

^cDepartment of Statistics, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada

Running head: Diversity in recurrent vulvovaginal candidiasis

* Alexia de Graaf, Devin Habon, and Beamlak Manyaz contributed equally to this work and are listed alphabetically

Author Correspondence to Aleeza Gerstein, aleeza.gerstein@umanitoba.ca

1 **Abstract**

2 Vulvovaginal candidiasis is one of the most common fungal infections. Most are successfully
3 treated with antifungal drugs, yet ~8% lead to recurrent vulvovaginal candidiasis ("RVVC").
4 Previous research found closely-related isolates within vaginal and rectal populations. However,
5 their methods preclude assessing fine-scale relationships among closely related isolates and
6 measuring genetic variation, a fundamental property with evolutionary potential implications. To
7 address this gap, we isolated 12 vaginal and 12 rectal yeast isolates during symptomatic
8 relapse from four individuals with a history of RVVC. Three had *Candida albicans* infections,
9 while the fourth had *Nakaseomyces glabratus*. All isolates were whole-genome sequenced and
10 phenotyped. The isolates were placed into global phylogenies built from short-read WGS data,
11 including an updated *N. glabratus* tree with over 500 isolates. Genotypic and phenotypic
12 analyses were consistent with migration between sites. There was little phenotypic diversity for
13 drug response and no consistent difference between isolates from different sites for invasive
14 growth. Although there are few comparables, *C. albicans* nucleotide diversity was similar to
15 most commensal oral and rectal populations, while *N. glabratus* was similar to some
16 bloodstream infections (though higher than others). Single nucleotide changes drove diversity;
17 no aneuploidies were found, and only a single loss-of-heterozygosity tract on chr1L varied
18 among isolates from one participant. This study provides baseline measurements and describes
19 techniques to quantify within-population diversity in fungal microbes. We highlight a need for
20 comparable studies that use the same sampling effort and analysis methods to understand the
21 interplay in shaping fungal microbial communities in important contexts.

22 **Author Summary**

23 Recurrent vaginal yeast infections are relatively common, and we do not understand why some
24 people experience these chronic infections when many others have a single infection that is
25 successfully treated and cleared. Many open questions remain about the basic biology of the
26 yeast populations involved. We quantified diversity using modern sequencing technology within
27 vaginal and rectal yeast populations from four individuals with a history of recurrent yeast
28 infections experiencing symptoms. Three participants had a *Candida albicans* infection (the
29 most common causative species), while the fourth had a *Nakaseomyces glabratus* infection (the
30 second most common and increasingly implicated). We found that vaginal and rectal isolates
31 were closely related, indicating the same population is present at the two sites. Surprisingly, we
32 found that diversity was similar to the yeast populations found at other body sites in healthy
33 people. Our study highlights a critical need for additional studies following the same methods in
34 different contexts to better understand the fungal microbial populations in our bodies.

35 **Introduction**

36 Vulvovaginal candidiasis (VVC, colloquially "yeast infection") is a lower female reproductive tract
37 mucosal infection. It is very common, affecting approximately 75% of people defined female at
38 birth at least once in their lives (1–3). The disease burden of VVC results in global annual
39 treatment costs of ~ 1.8 billion USD (4, 5), with a loss in productivity in high-income countries of
40 ~ 14 billion USD (4). Treatment involves topical or oral antifungal medication, which is effective
41 at symptom abatement in most cases. However, ~ 8% of individuals with VVC experience
42 recurrence (RVVC), defined as three or more symptomatic episodes a year (4, 5).
43 Approximately half of all people with RVVC have no identifiable risk factors (6), signifying the
44 need for additional studies on the biological basis of this chronic condition.

45 *Candida albicans* is responsible for 50-90% of VVC and RVVC cases (collectively,
46 R/VVC) (7–11). *Nakaseomyces glabratus* (formerly *Candida glabrata*) is the second most
47 prevalent cause, globally attributed to ~ 8% of cases (12–14). Here, we collectively refer to
48 these species using the colloquial term "yeast," which reflects a shared morphology while
49 acknowledging our current understanding of their phylogenetic relationships and the recent
50 official renaming of *N. glabratus* (15, 16). To be consistent with clinical practice, we continue to
51 use the R/VVC abbreviations while noting that "candidiasis" does not reflect the updated genera
52 names. Treatment recommendation for R/VVC differs by species, as many isolates from *N.*
53 *glabratus* (and other non-*albicans* pathogenic yeast species) have intrinsic resistance to the
54 azole antifungal fluconazole that is commonly used to treat RVVC (17).

55 Understanding the etiology of R/VVC is complicated in part since yeast can exist as a
56 common commensal member of the vaginal microbiota without causing symptomatic VVC.
57 Identification of vaginal yeast in the absence of symptoms does not warrant treatment, and self-
58 diagnosis due to symptoms has also been shown to be problematic, as other gynecological
59 infections and dermatologic conditions have overlapping symptoms (18). Approximately 70% of
60 healthy women were found to have vaginal yeast at a single time point through an amplicon-
61 based study (19). Genetic typing and phylogenetic strain analyses in *C. albicans* have
62 repeatedly found no strict phylogenetic differentiation between commensal and pathogenic
63 strains. However, some phylogenetic clades are potentially over-represented by commensal
64 strains and those causing superficial disease (20, 21).

65 Relapse in RVVC, i.e., return of symptoms, could theoretically be due to either
66 incomplete eradication of the vaginal yeast population or complete vaginal eradication followed
67 by re-colonization (22). There are decades of studies that have sought to understand the
68 etiology of RVVC, as the answer has potential implications for improving treatment and reducing

69 or eliminating symptom recurrence. The GI tract has been suggested as a possible endogenous
70 source population. A study in 1979 that treated RVVC patients with oral nystatin to reduce the
71 resident GI population found that it did not decrease the time to recurrence (23). Furthermore,
72 studies examining yeast colonization of the GI tract through feces or rectal swabs during
73 symptomatic recurrence find that not all participants are culture-positive (23–29). However, this
74 does not necessarily preclude that a small GI population is present in all individuals (below the
75 culture detection limit in some), which could act as an endogenous reintroduction source under
76 the right host conditions. Examining the diversity of strains at different body sites and among
77 recurrent infections can potentially differentiate between relapse scenarios. If vaginal isolates
78 are closely related to GI tract/rectal isolates but less diverse, that would be consistent with
79 reintroduction. If vaginal isolates sampled at different time points consistently have the same
80 genotype that is not present in the GI tract/rectal isolates, this would be consistent with
81 incomplete eradication. Looking at the level of diversity and relationships among isolates
82 acquired within a single time point ("standing variation") at different body sites can also help us
83 understand the adaptive potential and migration dynamics of yeast populations within the body.

84 Recent studies that seek to map phylogenetic relationships among isolates typically use
85 multilocus sequence typing (MLST) (11, 30, 31). The overarching results are consistent with a
86 role for the maintenance of genotypes (i.e., the same or very similar genotype is recovered from
87 different body sites and within the vagina between successive symptomatic episodes),
88 alongside an occasional opportunity for novel genotypes to arise (i.e., through reinfection,
89 sometimes referred to as strain turnover). However, previous studies do not necessarily rule out
90 a role for standing genetic variation to have been consistently present yet undetected, i.e.,
91 relapse masquerading as reinfection, as typically only one or a small number of isolates were
92 examined at a given time. Only a single study sequenced two vaginal isolates from different
93 time points through short-read whole genome sequencing (WGS) (32) , and no previous studies
94 have used WGS to compare multiple isolates from the same time point. WGS is required to
95 accurately assess relatedness, diversity, and the potential source of genetic novelty. WGS
96 removes the need to rely on a single or small number of markers, which could over or
97 underinflate the actual level of diversity. For example, Sitterlé et al. showed that while MLST
98 revealed occasional differences among *C. albicans* oral isolates collected from three healthy
99 individuals, whole-genome sequencing revealed that the three examined isolates were closely
100 related in each case (33).

101 Standing genetic variation of yeast populations has only been quantified in a handful of
102 contexts. Two studies in *C. albicans* that whole genome sequenced 3-6 oral and rectal isolates

103 from six healthy individuals found that although isolates were closely related in most cases, they
104 differed by numerous single nucleotide polymorphisms, primarily resulting from short-range
105 loss-of-heterozygosity tracts (21, 33). Two individuals were, however, simultaneously colonized
106 with oral isolates from different clades (21). A single *N. glabratus* study sequenced up to ten
107 isolates from nine patients with bloodstream candidemia (34); a pairwise SNP analysis was also
108 consistent with closely related isolates. Variation in RVVC has yet to be quantified through
109 WGS; hence, whether it is similar to commensal populations is unknown. It also needs to be
110 determined how many isolates must be sequenced to capture population diversity accurately.
111 Past studies in other contexts have shown that population genetic analysis can be conducted
112 with data from four to six individuals when including many variants (as found in data from short-
113 read WGS data, (35–37). These studies were conducted in sexually reproducing organisms;
114 however, how many yeast isolates are required to accurately access the population level of
115 diversity remains unexplored.

116 Here we build on previous work by using short-read WGS paired with high-throughput
117 phenotyping to quantify vaginal and rectal standing variation in participants with a history of
118 RVVC when high vaginal and rectal yeast population sizes were observed. We compared our
119 results to the few comparable studies that conducted short-read WGS of contemporaneous
120 yeast isolates from other contexts and statistically evaluated the minimum number of isolates
121 required to measure genetic variation accurately. We obtained isolates from the same time point
122 from four individuals with a history of RVVC in Winnipeg, Canada. Three participants had *C.*
123 *albicans* infections, and one had *N. glabratus*. We collectively refer to these isolates as the
124 "THRIVE-yeast" isolates, following the name of our local umbrella research program that studies
125 The Host-microbial Relationships and Immune function in different Vaginal Environments
126 ("THRIVE," <http://www.mthrive.ca>). From all individuals, we found a complete phylogenetic
127 overlap of vaginal and rectal isolates and no consistent difference in phenotypes, consistent
128 with high levels of migration. We found no evidence that diversity in populations from the two
129 sites was different; levels of standing genetic variation were generally similar to what has been
130 observed among commensal oral and rectal populations in *C. albicans* and some bloodstream
131 infections in *N. glabratus*. This suggests that despite frequent population bottlenecks caused by
132 drug treatment, vaginal yeast diversity is maintained or rapidly restored.

133
134

135 **Materials and Methods**

136 **Clinical isolates**

137 Clinical samples were collected from a single time point from four non-pregnant female
138 participants aged 18-50 years. Seventeen consenting female participants who attended a clinic
139 for individuals with a history of recurrent vulvovaginal candidiasis (RVVC) in Winnipeg, Canada,
140 were sampled at the clinic for possible inclusion in this study. Vaginal and rectal swabs were
141 acquired from all participants. Swabs were kept at -4 °C and on ice during transport and
142 processed within 5 h of acquisition. Swabs were then agitated for ~30 s in 1 mL PBS, and a
143 dilution series (1, 1:10, 1:100) was conducted. 100 µL from each of the three dilutions was
144 spread onto SDA and chromogenic *Candida* agar plates. Plates were incubated for 48 h at 30
145 °C. Of the seventeen participants, vaginal colonies were acquired from ten. Of those, six were
146 also positive for rectal isolates. Our goal in this study was to compare standing genetic and
147 phenotypic variation among vaginal and rectal populations, as well as to statistically determine
148 the number of isolates required to infer within-population diversity at a single time point
149 accurately. To meet these goals, we focused our efforts on the four participants who had high
150 vaginal and rectal populations ($> 1 \times 10^3$ CFU/mL of swab elute). Twelve vaginal and 12 rectal
151 isolates were haphazardly isolated from each participant from dilution plates that had clear
152 margins between colonies. Colonies were suspended in 1 mL of 20% glycerol and kept at -70
153 °C. We collectively refer to the 96 isolates collected for this study as "THRIVE-yeast" isolates.
154 This study has been approved by the University of Manitoba Biomedical Research Ethics Board
155 (HS24769 (B2021:026)) and Shared Health (SH2021:038).

156 **DNA extraction and sequencing**

157 Genomic DNA was extracted from 24 single colonies (12 each from the vagina and
158 rectum) from one individual with an *N. glabratus* yeast population (YST6) and three individuals
159 with a *C. albicans* population (YST7, TVY4, TVY10). We followed a standard phenol-chloroform
160 protocol as previously described (38). DNA quality and concentration were assessed on a
161 Thermo Scientific™ NanoDrop 2000 and Qubit® 2.0 Fluorometer. Genomic DNA was sent to
162 either Microbial Genome Sequencing Center ("MIGS," Pittsburgh, USA; YST6 and YST7) or
163 SeqCoast Genomics (New Hampshire Ave., USA; TVY4 and TVY10) for sequencing. At MIGS,
164 sample libraries were prepared using the Illumina DNA Prep kit and IDT 10bp UDI indices and
165 sequenced on NextSeq 2000 using a 300-cycle flow cell kit, producing 2x151bp reads. The bcl-
166 convert v3.9.3 software was used to assess read quality, demultiplex and trim adapter
167 sequences. At SeqCoast Genomics, samples were prepared using an Illumina DNA Prep

168 fragmentation kit and unique dual indexes. Sequencing was performed on the Illumina
169 NextSeq2000 platform using a 300-cycle flow cell kit to produce 2x150bp paired reads.
170 DRAGEN v3.10.11 was used to assess read quality, demultiplex and trim adapter sequences.
171 Three isolates (TVY10R13, TVY4R4 and YST7R13) had extremely low coverage (< 20x) and
172 were not included in genomic analysis. The average coverage from the remaining 93 isolates
173 was 50x. The fastq files from all THRIVE-yeast have been deposited at the National Center for
174 Biotechnology Information (NCBI) Sequence Read Archive under BioProject ID PRJNA991137.

175 In addition to the 93 genomes we sequenced, we downloaded an additional 182 *C.
176 albicans* FASTQ files from the NCBI Sequence Read Archive database (39) from BioProject
177 Accession PRJNA432884 (20) and 526 *N. glabratu*s FASTQ files from 19 different projects on
178 the SRA database (assessed on February 05, 2022), including 99 *N. glabratu*s FASTQ files
179 from SRA PRJNA361477 (40) and PRJNA669061 (41) (see Table S1 and Table S2).

180

181 **Variant calling**

182 The sequence reads were trimmed with Trimmomatic (v0.39) (42) with standard
183 parameters (LEADING: 10, TRAILING: 3, SLIDINGWINDOW:4:15, MINLEN: 31, TOPHRED33,
184 following 43). Quality was assessed with FASTQC

185 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and MultiQC (44). *C. albicans*
186 trimmed paired-end reads were mapped using bwa-mem (45) to the SC5314 haplotype A
187 reference genome (A22-s07-m01-r160) downloaded from the Candida Genome Database (46).
188 The resulting SAM file was coordinate-sorted and converted to a Binary Alignment Map (BAM)
189 file using samtools v1.9 (47). *N. glabratu*s isolates were mapped to the CBS 138 reference
190 genome (GCA000002545v2) downloaded from the Ensembl Genome Database (48). Alignment
191 quality was assessed with CollectAlignmentSummaryMetrics from Picard v2.26.3

192 (<http://broadinstitute.github.io/picard>) and consolidated across all samples with MultiQC (44). All
193 files had a >95% mapping quality. BAM files were further processed with Picard by adding a
194 read group annotation so that samples with the same Bioproject ID had the same read group,
195 removing duplicate PCR amplicons and fixing mate pairs. Base quality scores for the *C. albicans*
196 aligned reads were recalibrated with known single-nucleotide polymorphisms obtained from the
197 Candida Genome Database website

198 (http://www.candidagenome.org/download/gff/C_albicans_SC5314/Assembly22/A22_Jones_PM_ID_15123810_Polymorphisms.vcf; downloaded on July 29, 2020) (49) using the
199 BaseRecalibrator and ApplyBQSR from the Genome Analysis Toolkit 4.2.4.0. The average
200 coverage for each isolate was estimated using samtools v1.9 (47).

202 The GATK Best Practices were adapted for variant calling. In sequence,
203 HaplotypeCaller, CombineGVCFs, GenotypeVCFs, VariantFiltration, and SelectVariants (50–
204 52) were used to identify single nucleotide variants (SNPs) among all sequenced isolates in
205 diploid and haploid mode for *C. albicans* and *N. glabratus* respectively. The results SNP table
206 was hard filtered using the suggested parameters and to match (20) (QualByDepth < 2.0 ,
207 FisherStrand > 60.0 , root mean square mapping quality < 30.0 ,
208 MappingQualityRankSumTest < -12.5 , ReadPosRankSumTest < -8.0). We excluded variants
209 that were called in known repetitive regions of the genome, as these are likely to reflect
210 sequencing misalignments rather than true variants, i.e., the subtelomeric regions (15kb from
211 the start and end of each chromosome), the centromeres, and the major repeat sequence
212 regions, (Table S3, start and stop positions from candidagenome.org).

213

214 **Phylogeny construction**

215 Phylogenetic trees were constructed for *C. albicans* and *N. glabratus* isolates. For each
216 species, the multi-sample VCF file consisting of only genomic DNA SNPs was converted to a
217 FASTA alignment using a publicly available Python script that creates an alignment matrix for
218 phylogenetic analysis (vcf2phylip.py v2.8, downloaded from
219 <https://github.com/edgardomortiz/vcf2phylip>) (53). For heterozygous SNPs in *C. albicans*, the
220 consensus sequence is preferentially made based on the reference (haplotype A) base.
221 Ambiguous bases are written following IUPAC nucleotide ambiguity codes in the matrix. Ploidy
222 is not specified, as the most parsimonious ploidy is detected by the script. The FASTA
223 alignment was parsed in FastTree (2.1.11) (54) in the double precision mode to construct an
224 approximate maximum-likelihood phylogenetic tree using the general time reversible model and
225 the -gamma option to rescale the branch lengths. Compared to the time-consuming ML-based
226 phylogeny predictors such as RAxML (55), FastTree has been found to produce large dataset
227 trees with similar accuracy within a significantly shorter amount of time (56). The phylogeny was
228 visualized and annotated with the Interactive Tree Of Life (iTOL, v5) (57). Isolates from *C.*
229 *albicans* clade 13, a closely related but different species termed *C. africana* (58–60), were used
230 to root the phylogeny. The *N. glabratus* phylogeny was rooted at the midpoint. While
231 constructing the phylogeny with FastTree with this large data set yielded a phylogeny
232 comparable to *C. albicans* whole-genome phylogenies previously generated by other groups
233 using RAxML (20, 61), an attempt to use FastTree to resolve the relatedness of the THRIVE-
234 yeast isolates yielded poor resolution, as most of the SNP sites were ignored during the tree
235 construction. Hence, to generate a more refined phylogeny depicting the relatedness among the

236 isolates from each participant, we constructed a maximum likelihood phylogeny with RAxML
237 v8.2.12 (55) following standard practice using the GTR+G model with 20ML inferences on the
238 alignment, inferring bootstrap replicate trees, applying MRE-based bootstrapping test, and
239 drawing support values using TBE (Transfer Bootstrap Expectation) on the best-scoring tree.

240

241 **Pairwise SNP differences between isolates from the same site in a participant**

242 We also looked at the variation in SNPs among isolates from the same participant within
243 a site. Using RTG tools with the vcfsplit option (62), the VCF files for each isolate were
244 extracted from the multi-sample VCF file. Using “bcftools query -f,” the VCF files were converted
245 to bed files. A custom R script was used to do a pairwise comparison of the isolates from a site
246 to determine differences in SNP positions. An ANOVA test was performed to compare pairwise
247 SNP differences in rectal and vaginal isolates from each participant.

248

249 ***In silico* MLST typing**

250 As clades in *N. glabratus* are commonly identified and named through MLST analysis
251 ((40, 41)), we conducted *in silico* MLST analyses of the YST6 isolates as well as the cluster in
252 which the YST6 isolated are associated with using stringMLST (63) which uses a predefined
253 MLST *N. glabratus* allele library (FKS, LEU2, NMT1, TRP1, UGP1, URA3) in the PubMLST
254 database (64). The diploid sequence types (DSTs) of the global *C. albicans* isolates were
255 determined in a previous study using a PCR-based method (20). *In silico*, the identification of
256 DST from the WGS data was error-prone, and known DSTs could not be replicated (data not
257 shown).

258

259 **Determining segregating genomic blocks within isolates from the same participant**

260 We conducted a principal component analysis of windows of genomic regions that
261 differed among isolates from the same participant. Briefly, we used the “templated script” from
262 the R package lostruct (local PCA/population structure, v.0.0.0.9, (65) with run parameters -t
263 (window type): bp, -s (window size): 5000, -npc (number of pcs): 2 and -m (number of MDS
264 coordinates): 2. To check for possible segregation of vaginal and rectal isolates, principal
265 component analysis plots were generated based on the extreme heterogeneous genomic
266 windows across the entire genome.

267

268

269

270 **Relationship between average nucleotide diversity (π) and number of samples**

271 We assessed the potential limitation of the sample size using average pairwise diversity
272 differences between all possible isolate pair estimates from Pixy (v1.2.6.beta1, (66). Briefly,
273 variants were called using GenotypeGVCFs with --all-sites option activated. Vcftools (v0.1.16)
274 (67) was used to filter the variants (with --max-meanDP 500, --min-meanDP 20, --max-missing
275 0.8). Indels and mitochondrial DNA were excluded (--remove-indels, --not-chr). We compared
276 the calculated nucleotide diversity (π) from the total number of isolates per participant (*i.e.*, n =
277 23 for TVY10, TV4, YST7 and n = 24 for YST6) against π estimated from a smaller number of
278 samples (n = 2, 3, 4, 6, 10) from the same population. For each, we randomly selected without
279 replacement n vaginal isolates 50 times, and estimated π for each sample. The mean and
280 standard deviation were then calculated. We generated data for n = 12 by randomly selecting
281 six vaginal and six rectal. We plotted π against the number of isolates included to assess the
282 value of n where an asymptote for π was observed.

283

284 **Nucleotide diversity from published isolates from other studies**

285 We compared our nucleotide diversities to instances where multiple isolates have been
286 retrieved in either commensal or disease settings. For *C. albicans*, 3-4 isolates from 6 and 3
287 individuals respectively from Andersen *et al.* (21) and Sitterlé *et al.* (33) were assessed. All the
288 isolates are from commensal settings in oral and rectal sites. For *N. glabratus*, nine to ten
289 isolates from blood cultures in each of the nine patients (34) were compared to the 12 YST6
290 isolates.

291

292 ***In silico* mating-type locus detection**

293 To determine mating type-like locus in the *C. albicans* isolates (YST7, TVY4 and
294 TVY10), the reads were aligned to both haplotypes and consensus sequences of the MAT locus
295 on chromosome 5 (MAT α 1 and MAT α 2 for hapA and MAT α 1 and MAT α 2) were extracted. A
296 BLAST search was then conducted to confirm the locus. Similarly, the mating type-like locus of
297 *N. glabratus* (YST6) isolates was determined by determining the consensus sequence for MTL1
298 (MTL α 1 and MTL α 2) and MTL3 on chromosome B, and MTL2 on chromosome E and
299 confirming the MTL by a BLAST search.

300

301 **Loss of heterozygosity and copy number analyses**

302 We conducted genome-wide loss of heterozygosity (LOH) and copy number variant
303 (CNV) analyses using the web-based yeast analysis pipeline (Y_{MAP}) (68). Mitochondrial DNA is

304 by default excluded from the pipeline. Paired-end reads of the *N. glabratus* isolates were
305 uploaded and analyzed to the CBS138 reference genome (CGD: s05-m01-r09). As *N. glabratus*
306 is haploid, the ploidy was set as 1, which by default excludes LOH analyses. For the *C. albicans*
307 isolates, paired-end read data for each isolate was uploaded and analyzed against the SC5314
308 A22-s02-m09-r10 reference genome. Ploidy was left at the default value (two, i.e. diploid), and
309 correction was enabled for GC-content bias and chromosome-end bias. THRIVE-yeast isolates
310 were compared against the SC5314 haplotype map to distinguish between ancestral and newly
311 evolved LOH signatures and determine which allele was retained. CNV profiles were compared
312 to the reference SC5134 isolate as well as closely related isolates in the phylogeny. The
313 genomic elements within observed CNV regions were identified using the "gene/sequence
314 resources" section of the Candida Genome Database (CGD, <https://candidagenome.org>).
315

316 **Growth Rate Assay**

317 Two separate growth rate assays were conducted to measure growth in RPMI (10.4 %
318 w/v RPMI powder, 1.5 % w/v dextrose, 1.73 % w/v 3-(N-morpholino) propanesulfonic acid
319 (MOPS), adjusted to pH 7 with NaOH tablets) and vaginal simulative medium ("VSM", following
320 (20): 1.16 % v/v 5 mM NaCl, 3.6 % v/v 0.5 M KOH, 0.0128 % v/v 99% glycerol, 20 % v/v 0.01 M
321 Ca(OH)₂, 1.34 % v/v 0.5 M Urea, 6.6 % v/v 0.5 M glucose, 0.67% w/v solid YNB, 0.85 % v/v 2 M
322 acetic acid, 0.192 % v/v lactic acid, adjusted to pH 4.2 with NaOH tablets). For each experiment,
323 5 µL of frozen glycerol stock from all THRIVE-yeast isolates was inoculated in duplicate into 500
324 µL of RPMI or VSM and incubated for 48 h at 37 °C with agitation at 250 rpm. Cultures were
325 then standardized to an optical density (OD) of 0.01 A600 in RPMI or VSM, and 200 µL was
326 transferred into a 96-well round bottom plate and sealed with a Breathe-Easier sealing
327 membrane (Electron Microscopy Sciences, PA, United States). OD₆₀₀ readings were taken by
328 the Epoch plate reader (Biotek) every 15 minutes, with continuous shaking at 37 °C for 48 h.
329 From each well, the maximal growth rate was calculated as the spline with the highest slope
330 using a custom R script written by Dr. Richard Fitzjohn (https://github.com/acgerstein/THRIVE-variation/scripts_real/growthrate_generic.R). The average growth rate between two technical
331 replicates for each isolate in each growth medium was used for visualization and statistical
332 analysis. Statistical outliers were determined through Rosner's test of outliers available through
333 the rosterTest function in the EnvStats R package (69). For each population, we started with a k
334 value of one (i.e., testing for a single outlier). If that was significant, we increased k by one until
335 no additional outliers were identified.
336

337

338

339 **Drug resistance and tolerance**

340 Disk diffusion assays were carried out to measure resistance and tolerance. A pilot
341 experiment was done on 24 isolates from YST7 in five different drugs (FLC: fluconazole, CLT:
342 clotrimazole, MCZ: miconazole, NYT: nystatin, BA: boric acid). Subsequently, disk diffusion
343 assays were conducted on all isolates to fluconazole and boric acid at pH 4.2. We chose to
344 focus our efforts on fluconazole and boric acid as these are drugs in different classes that are
345 both treatment options for induction and maintenance therapy of recurrent VVC and boric acid is
346 used in treatment of non-albicans VVC (van Schalkwyk et al. 2015). Standard CLSI M44
347 guidelines for antifungal disk diffusion susceptibility testing (70) were generally followed except
348 for pH adjustment as appropriate. To initiate each experiment, frozen stock of all THRIVE-yeast
349 was streaked onto Sabouraud dextrose agar (SDA) plates and incubated for 72 h at room
350 temperature. Isolates were then subcultured by streaking one colony onto a fresh SDA plate
351 and incubating at 37 °C for 24 h. Colonies from each isolate were then suspended in 200 µL of
352 0.85% saline solution and standardized to an OD₆₀₀ of 0.01 in 1 mL of saline solution. Within 15
353 minutes of standardization, 100 µL of the culture was spread evenly using autoclaved glass
354 beads on Mueller-Hinton (MH) plates that had been adjusted to a pH of 4.2. Plates were left to
355 dry for 20 minutes before placing a single 5 mg boric acid or 25 mg fluconazole disk in the
356 center of the plate. Plates were incubated upside down at 37 °C. After 48 h, photographs of
357 each plate were taken on a lightbox. Previous work demonstrated consistent drug resistance
358 values at 24 h and 48 h. The entire experiment was conducted twice for each isolate × drug ×
359 pH combination, with two technical replicates for each of the two biological replicates.

360 The 48 h images were processed in ImageJ as previously described (71). They were
361 cropped to a uniform size, the colours were inverted, and brightness and contrast were adjusted
362 to maximize the contrast between the white disk and the black background. The adjusted
363 images were run through the diskImageR package (72) for drug resistance (RAD₂₀) and
364 tolerance (FOG₂₀) quantification. Briefly, diskImageR calculates resistance as RAD₂₀, as the
365 radius of the zone of inhibition where growth is reduced by 20% relative to growth on the
366 margins of the plate where there is no drug, and tolerance as FoG₂₀, the fraction of realized
367 growth between RAD₂₀ and the disk.

368 A Welch two-sample t-test that did not assume equal variance was used for each
369 participant × drug combination to compare vaginal and rectal isolates. Statistical outliers were
370 determined through Rosner's test of outliers for growth rates. All statistical analysis was done at
371 a type I error rate of 0.05.

372

373 **Invasive growth assay**

374 To examine invasive growth, we revised the methods from (73). Freezer stock from
375 THRIVE-yeast isolates were streaked onto 20 mL yeast peptone dextrose (YPD) plates (2% w/v
376 peptone, 2% w/v yeast extract, 1.8% w/v agar, 1% w/v glucose, 0.00016% w/v adenine
377 sulphate, 0.00008% w/v uridine, 0.1% v/v of chloramphenicol and ampicillin) and grown for 72 h
378 at room temperature. A single colony was then randomly chosen from each isolate and
379 inoculated into 200 μ L YPD. If no single colonies were available, a similar amount of culture
380 from the colony lawn was used. Cultures were standardized to OD₆₀₀ 0.01 in 1 mL of liquid YPD
381 media, then 2 μ L of standardized culture was spotted onto the surface of a 20 mL solid YPD
382 plate in a hexagonal pattern for a total of 7 spots per plate (i.e., spotted at each vertex and in
383 the center). Plates were incubated for 96 h at 37 °C. The surface growth was washed off using
384 distilled water and a photograph was taken in a dark room on a lightbox. Two biological
385 replicates were performed for each isolate.

386 The qualitative amount of invasive growth for each isolate was determined by visual
387 examination of the post-wash photographs. To develop a five-point scale, two different people
388 independently went through the post-wash pictures from YST6 and YST7 and selected two to
389 six representative pictures that fit into five levels of invasive growth (scored as 1-5). The
390 independent selections were then compared, and one image from each person was chosen as
391 the most representative for each level of the scale. Using these as a reference, each isolate was
392 then categorized into the five levels of the scale (0 - no growth/pipette tip indent, 0.25 - pinprick
393 growth, 0.5 - circular growth evident, 0.75 - circular growth with pinprick, 1 - dense growth
394 throughout). The maximum score between the two bio-replicates of each isolate was used for
395 statistical analysis, though the same statistical conclusions were obtained if the mean score was
396 used instead. For each participant, a Wilcoxon rank sum test was used to compare vaginal and
397 rectal isolates.

398

399 **Results**

400 **THRIVE-yeast isolates in the global species phylogenies**

401 Participants with a history of RVVC were recruited from a specialty yeast clinic in
402 Winnipeg, Canada. Vaginal and rectal isolates were collected from swabs plated onto SDA and
403 chromogenic *Candida* agar from seventeen participants who were enrolled and screened
404 intermittently between January 2020 and November 2022. As the goal was to quantify standing
405 genetic variation from single time point vaginal and rectal populations, we haphazardly isolated
406 vaginal and rectal yeast isolates from each of the four participants where we had at minimum 12
407 isolates from each site on our selective medium plates, for a total of 96 isolates which we refer
408 to collectively as the “THRIVE-yeast” isolates. Isolates from one participant were *N. glabratus*
409 (YST6), while *C. albicans* was isolated from the other three (TVY4, TVY10, and YST7). Three
410 isolates (TVY10R13, TVY4R4 and YST7R13) had low depth of coverage (< 20x) and were
411 excluded from the genomic (but not phenotypic) analyses. All *C. albicans* isolates were MAT-
412 heterozygous diploids (a/α), while the *N. glabratus* isolates were all MTL1a.

413 The phylogenetic relationship of the THRIVE-yeast isolates was evaluated in the context
414 of available short-read whole-genome sequenced (WGS) isolates from each species. We
415 exhaustively searched NCBI for available *N. glabratus* sequences, finding and downloading
416 fastq data from 526 isolates (Table S1). There was an over-representation of blood isolates (n =
417 430, > 80%), and 53 isolates did not have a listed isolation site. Notably, we only found a single
418 vaginal isolate and twelve stool isolates. Additional isolation sites (e.g., abdomen, peritoneal
419 fluid, mouth, catheter, bronchioalveolar lavage, urinary tract) were similarly represented by very
420 few isolates. This distribution precludes an opportunity to determine whether or how *N.*
421 *glabratus* site of isolation contributes to isolate relatedness. We added the fastq data from the
422 YST6 isolates to the 526 global isolates and used this data to construct the largest *N. glabratus*
423 phylogenetic tree to date.

424 The YST6 isolates are monophyletic and cluster with 68 bloodstream isolates and three
425 isolates of unknown provenance from the United States, Canada, and Australia (Fig. 1A).
426 Unfortunately, over 80% of the sequenced isolates are bloodstream infection isolates, with only
427 one previous isolate annotated as originating from the vagina, rectum, or stool (Table S1),
428 precluding further analysis. The globally published *C. albicans* phylogeny comprises 182
429 isolates from a wide breadth of geographic and anatomical sites (20). Isolates from TVY4,
430 TVY10 and YST7 all form monophyletic groups and fall within a subgroup that contains twenty-
431 three additional isolates in clade 1, the most common clade (Fig. 1B). TVY4 and TVY10 isolates
432 are beside each other and shared a common ancestry with M40 which is also a vaginal isolate

433 from Morocco. The YST7 isolates are most closely related to three vaginal isolates (one each
434 from Brazil, Morocco, and China) and one oral isolate from Niger. Seven of the remaining
435 eighteen isolates in the clade 1 subgroup were also isolated from the vagina. This is a statistical
436 enrichment for vaginal isolates compared to the rest of the isolates in clade 1 (THRIVE-yeast
437 isolates from each participant were counted as a single isolate; Fisher exact test comparing 14
438 vaginal isolates out of 26 in the subgroup to 3 vaginal isolates out of 17 in the rest of clade 1, p
439 = 0.026). If we discount the 35 predominantly vaginal isolates in clade 13, which is now
440 recognized as likely a separate species (*C. africana*) (58, 60), clade 1 as a whole is also
441 statistically overrepresented for vaginal isolates compared to the *C. albicans* tree in general (17
442 vaginal isolates in clade 1 out of 43 total isolates, compared to 18 vaginal isolates out of 107
443 total isolates; Fisher exact test, p = 0.005). Thus, although the sequenced vaginal isolates are
444 located in six different clades, they are over-represented in clade 1 relative to a neutral
445 expectation that vaginal isolates are equally likely to be found anywhere in the existing tree.

446 The *N. glabratus* phylogeny is composed of long internal branches with only a small
447 amount of variation within the clades; clades defined through MLST are mainly consistent with
448 WGS (40, 41). An *in silico* MLST analysis of our WGS data found that the YST6 isolates cluster
449 with 71 isolates: 67 ST16, two ST60, and two ST187. ST60 is distinguished by a single
450 polymorphism at position 298 in *LEU2*, while ST60 is distinguished by a single polymorphism at
451 position 250 in *NMT1*. *C. albicans* diploid sequence types (DST) do not map as well to WGS
452 clades. Each of the clade 1 subgroup isolates has a different DST (20), and the differences are
453 mainly registered in 39 positions across the genes.

454

455 **Vaginal and rectal isolates are closely related and phylogenetically overlapping.**

456 Following the observed monophyly among isolates from the same participant, we next
457 assessed the relatedness of vaginal and rectal isolates. We first generated phylogenies for each
458 individual using RAxML (55), as previously done for closely related bacteria strains (74). The
459 vaginal and rectal isolates from all four participants are phylogenetically overlapping (Fig. 2A).
460 Few branches within the four phylogenies had bootstrap support exceeding 80%, yet well-
461 supported clusters in all participants included isolates from both body sites. For each population,
462 we also conducted a local principal component analysis (PCA) that examines the regions of
463 high genomic heterogeneity within populations. From all participants, the regions of high
464 differences were generally distributed throughout the genome, and the PCA failed to segregate
465 vaginal and rectal isolates (Fig. S1).

466

467 **Pairwise differences in single nucleotide polymorphisms among isolates per participant**

468 Although isolates were closely related, WGS data picked up SNP variation among all
469 pairs of participant isolates. To test whether within-population vaginal diversity was lower than
470 within-population rectal diversity, we compared pairwise SNP differences among vaginal
471 isolates to the pairwise SNP differences among rectal isolates. To test whether there was a
472 signal of divergence between sites, we also compared single-site differences to pairwise
473 differences between isolates across sites. The average pairwise SNP differences between
474 vaginal isolates were very similar to average pairwise SNP differences between rectal isolates
475 and between isolates from different sites (Fig. 2B). The only significant difference was in TVY4,
476 where the average SNP differences among rectal isolates were significantly lower than the
477 vaginal isolates (ANOVA test, YST7: $F_{2,250} = 2.164$, $P = 0.117$; YST6: $F_{2,250} = 0.785$, $P = 0.457$;
478 TVY4: $F_{2,250} = 8.599$, $p = 0.000244$; TVY10: $F_{2,250} = 1.66$, $P = 0.192$; Tukey's HSD Test for
479 multiple comparisons; $p = 0.0001$). The distributions were fairly normal, as expected for isolates
480 with low population structure, except that TVY10 isolates showed a bimodal distribution of
481 pairwise SNP differences in both the vaginal and rectal sites.

482

483 **Minimum number of isolates for estimating standing genetic variation within participants**

484 A major goal of our work was to compare diversity within RVVC populations to diversity
485 observed in other contexts to make inferences about the evolutionary process based on the
486 observed degree of standing genetic variation. However, the small number of comparable
487 studies all sequenced different numbers of isolates, and nucleotide diversity (π) will decrease
488 with an increased number of samples taken from a population. To quantify the scale of this
489 effect of changing the number of isolates, we conducted a bootstrap analysis using our 12
490 vaginal isolates from each individual. We repeatedly resampled 3-10 isolates and recalculated
491 diversity. There was subtle variation in nucleotide diversity among the three participants with *C.*
492 *albicans* populations. In all cases, the shape of the diversity curve with the number of isolates
493 was very similar---an elbow was observed around $n = 6$ (Fig. 3). Nucleotide Diversity in YST6
494 (*N. glabratus*) was two orders of magnitude lower, and there was not a consistent change in
495 diversity with the number of isolates.

496

497

498

499

500 **THRIVE-yeast isolates share similar diversity as isolates from commensal and other
501 disease settings**

502 We downloaded the fastq files from two previous *C. albicans* studies on commensal
503 populations (21, 33) and used our pipeline to calculate the average nucleotide diversity for each.
504 For all populations, including our own, where necessary we down-sampled the number of
505 isolates to three, consistent with the lowest number of isolates sampled from the commensal
506 populations. The average nucleotide diversity was very similar across most populations (Fig.
507 4A). The exception was populations from two participants previously shown to have isolates
508 from different phylogenetic clades. The YST6 vaginal isolate population was compared to
509 reanalyzed fastq data from nine different BSI populations from Badrane et al., which all had
510 between 9-10 isolates (34). The average nucleotide diversity from our population was similar to
511 the diversity from four participants yet much higher than the average nucleotide diversity from
512 the other five (Fig. 4B).

513
514

515 **Little variation in copy number or loss of heterozygosity within populations**

516 We examined copy number variation (CNV) and loss-of-heterozygosity (LOH) events
517 among THRIVE-yeast isolates and their closest relatives using Y_{MAP} (68). No CNVs were
518 identified in any YST6 isolates (Fig. 5A). A single ~50 kb CNV on the right arm of chr3 was
519 identified in all YST7 isolates (Fig. 5B). This CNV is also present in the closest relative to the
520 YST7 isolates, vaginal strain 9518, but is absent in the next two closely related strains that are
521 also vaginal in origin (B116 and M17). As Y_{MAP} visualizations are based on averages across
522 5000 bp sliding windows, we examined the region in finer detail. Coverage was measured from
523 the BAM files to compute the depth at each position in that region. Mapped coverage was
524 inconsistent with the profile of a typical CNV; the majority of the region had only a slightly
525 elevated copy number relative to the rest of the genome (Fig. 5C). Two small (< 200 bp) regions
526 spiked up to ~6-fold and ~14-fold coverage, the first internal to *ALS6* and the second to *ALS7*
527 (Fig. 5C). A third region comprised of elevated coverage maps to another gene with close
528 homology to other genes in the genome, *CYP5*, a putative peptidyl-prolyl cis-trans isomerase
529 (75). The region identified in Y_{MAP} is thus likely to primarily reflect an error in mapping rather
530 than a true CNV with potential biological effects. No other CNVs or aneuploidies were identified
531 in the other THRIVE-yeast isolates.

532
533

534 LOH analysis was consistent with the phylogenetic analysis and diversity metrics.
535 Generally, all isolates from the same participant shared an LOH profile. Among the THRIVE-
536 yeast *C. albicans* isolates compared to the SC5314 reference, nearly all chromosomes had at
537 least one LOH event extending to the telomere (Fig. 5B, Fig. S2). No large interstitial LOH
538 events were identified. TVY4 isolates share a complicated LOH region on the left arm of chr2
539 that flips back and forth from the two haplotypes, as well as small LOH regions on both the left
540 and right arms of chr4. Both TVY4 and TVY10 isolates have unique LOH regions in common
541 with their closely related isolate (M40) which is also a vaginal. However their LOH regions on
542 M40 are of varying sizes compared to their counterpart regions in TVY4 or TVY10. YST7
543 shares LOH blocks on the right arm of chr2 from the centromere to the telomere, on the left arm
544 of chr5, and on the left arm of chrR with the vaginal isolates it is most closely related to (i.e.,
545 9518, B116, M17) but not Niger8, an oral isolate. The exception of wholly shared LOH blocks
546 among participant isolates was in TVY10, where a single LOH event on the left arm of chr1 was
547 present in twelve TVY10 isolates that cluster together on the phylogeny.

548 In addition to the characteristic LOH regions within populations, some LOH regions were
549 also shared between isolates from different participants. All isolates have an LOH block on the
550 left arm of chr3 and the right arm of chr6. TVY10 and TVY4 isolates share a ~300 kb region on
551 the right arm of chr1. A LOH region on chr7 beside the ancestral chr7 right arm LOH block is
552 also present in both TVY10 and TVY4, though it is larger in TVY10. TVY10 and YST7 (but not
553 TVY4) both have LOH blocks on the left arm of chr5, though the allelic profile between them is
554 different.

555

556 **Phenotypic variation**

557 We quantified within-population phenotypic variation in parallel to genotypic variation.
558 The average growth rate for YST6 *N. glabratus* isolates was higher than the *C. albicans*
559 populations in both Roswell Park Memorial Institute (RPMI) medium (Fig. 6A) and vaginal
560 simulative medium (VSM, Fig. 6B). Growth rates were either the same between vaginal and
561 rectal isolates or the rectal isolates were higher when grown in either medium (Welch Two
562 Sample t-test, Table S4, rectal isolates higher in TVY4 grown in RPMI: $t = 2.50$, $df = 16.1$, $p-$
563 value = 0.023; TVY4 grown in VSM: $t = -2.36$, $df = 18.1$, p -value = 0.030; YST7 grown in VSM: t
564 = -3.63 , $df = 18.8$, p -value = 0.002). Consistent with a visual inspection, single statistical rectal
565 outliers with increased growth rate relative to other isolates were seen in YST7 and TVY4 grown
566 in RPMI, and YST6 and TVY10 grown in VSM (Fig. 6, Rosner's test for outliers). No additional
567 outliers were identified in the other populations.

568 We then compared drug resistance and drug tolerance from vaginal and rectal isolates.
569 We conducted a pilot experiment on 24 isolates from participant YST7 to quantify variation in
570 drug resistance for five different drugs that are indicated as treatment options by the Society of
571 Obstetricians and Gynaecologists of Canada for uncomplicated, recurrent and non-albicans
572 VVC (van Schalkwyk et al. 2015). We also examined drug tolerance, the ability of drug-
573 susceptible populations to grow slowly in the presence of high levels of fungistatic drugs, which
574 also emerged as a trait that varies among different fungal species and isolates [25,26].
575 Tolerance may be implicated in the propensity to cause fungal disease in other contexts [27] but
576 has not previously been examined in the context of R/VVC. We found very little variation among
577 the isolates for either phenotype in any drug (Figure S3). Given that, we proceeded with
578 quantifying drug responses for just fluconazole and boric acid at pH 4.2, as these are drugs
579 from different classes that are commonly prescribed in our local clinic. The site of isolation was
580 only significant for YST6 BA resistance (vaginal isolates were slightly more tolerant than rectal
581 isolates; t-test, $t = 2.77$, $df = 18.2$, $p\text{-value} = 0.012$, Table S4, Fig. 7). A visual examination of the
582 data also indicated that the majority of isolates were very similar to each other. Formal outlier
583 statistical tests that grouped vaginal and rectal isolates were broadly consistent with the
584 qualitative visual assessment, identifying only two outlier isolates for tolerance (both rectal
585 isolates in BA, one from YST6, one from YST).

586 There was considerable variation among participants and isolates for invasive growth
587 (Fig. 8, Table S4). However, there was no difference between YST6 or TVY10 vaginal and
588 rectal isolates. In contrast, YST7 vaginal isolates had higher invasive growth than rectal isolates
589 ($W = 115.5$, $P = 0.0002$), and TVY4 rectal isolates exhibited higher invasive growth than vaginal
590 isolates ($W = 372$, $p\text{-value} = 0.032$). The overall picture is thus that invasive growth seems to
591 vary more between participants than between sites of isolation and that statistical differences
592 between sites are likely due to neutral processes rather than selection for invasive growth in the
593 vaginal environment.

594
595
596

597 **Discussion**

598 The biological basis of RVVC needs to be better understood. To study the vaginal yeast
599 populations implicated in the disease, we quantified the diversity of 12 vaginal and 12 rectal
600 isolates from four people with a history of RVVC who had large yeast populations at both sites
601 at the time of sampling. In each case, the isolates formed monophyletic groups, and the vaginal
602 and rectal isolates were phylogenetically overlapping, consistent with a common ancestral
603 source and frequent migration between the two sites. This is in concordance with previous
604 genetic studies that used more coarse sequencing methods, which found high genetic similarity
605 between vaginal and rectal isolates in women with R/VVC (76–78). Our phenotypic analyses are
606 also consistent with the genetic results; there was minimal diversity in drug responses or growth
607 ability in clinically relevant medium and no consistent difference between isolates from different
608 isolation sites for invasive growth. Previous studies have also found that virulence factor
609 phenotypes have similar expression among vaginal and rectal isolates in the context of R/VVC
610 (79) and among oral and rectal isolates from healthy individuals (21). We thus found no
611 evidence for selection acting differently at the two sites at either the genotypic or phenotypic
612 levels.

613 Multiple potential evolutionary explanations are consistent with our results. It could be
614 that the selective pressures that most influence adaptation are similar in both environments,
615 leading to selection for the same traits. However, it could also be that selection cannot
616 overcome either (or both) migration or genetic drift due to a low effective population size. The
617 isolates come from individuals with a long history of repeatedly taking antifungal drugs, and the
618 yeast population sizes likely undergo many bottleneck cycles over time, functionally reducing
619 the efficacy of selection. Nevertheless, we did observe 100s of SNP differences between all
620 isolate pairs, indicating the presence of what has been termed microvariation, and could be of
621 the magnitude sufficient for adaptation. These results underscore the need for further
622 investigations to understand the relationship between populations at different body sites and
623 over time in individuals with RVVC.

624 The observed average nucleotide diversity among populations for the RVVC isolates
625 was higher than anticipated. *A priori*, we had predicted that genetic diversity would be highest in
626 commensal populations from healthy individuals at sites that do not have obviously strong
627 selective pressures acting on them (i.e., they are from common commensal sites from
628 individuals that are not regularly taking drugs) and lowest in bloodstream infections which are
629 known to have a small population of circulating yeast cells. However, genetic diversity within the
630 three RVVC *C. albicans* populations was similar to what we calculated from oral and rectal

631 isolates from seven healthy individuals (though lower than two commensal oral populations
632 previously known to have isolates from different clades, (21, 33). The only appropriate *N.*
633 *glabratu*s study we could find involved nine individuals with bloodstream infections. The RVVC
634 *N. glabratu*s population had similar diversity as the four BSI populations from an ST group (ST3)
635 that is closely related to ST16, the cluster YST6 isolates are in, yet was much higher than the
636 other five patient isolate populations from more distantly related clades (34). Future work in *N.*
637 *glabratu*s will more deeply explore whether there is a consistent relationship between clade and
638 within-population genetic diversity. Given the limited sample size available for different contexts,
639 it is difficult to make inferences about the evolutionary dynamics occurring in these different
640 contexts. There may be selection in the commensal oral (80) and rectal environments, involving
641 the fixation of alleles and reducing genetic diversity. It could also be that the population
642 bottlenecks in RVVC (and in at least some bloodstream infections) are not as strong as
643 anticipated. Teasing apart these explanations will require data on many more yeast populations.
644 As whole genome sequencing becomes ever more routine, we hope additional studies will
645 examine intra-population diversity, as we lack sufficient benchmarks to properly contextualize
646 whether diversity is truly “high” or “low” relative to other contexts.

647 Importantly, we chose isolates for sequencing blind to phenotypic data, to provide an
648 unbiased estimate of genetic diversity. Although it is tempting to pick the most diverse isolates
649 for in-depth genomic characterization, this makes it more difficult to compare results among
650 studies (37). The level of genetic diversity we uncovered in the vaginal yeast populations
651 suggests a relatively high level of standing genetic variation, particularly since the available
652 comparable WGS studies in other contexts purposefully selected isolates that maximized
653 phenotypical differences (i.e., (21, 34). Interestingly, the presence of vaginal genetic diversity is
654 consistent with one of the earliest genetic studies, which used DNA fingerprinting to examine
655 diversity at a single time point in up to 14 vaginal isolates from six RVVC populations (81).

656 Our work establishes the importance of sample size in comparing among studies. To our
657 knowledge, our intra-population WGS characterization of up to 12 isolates at two body sites is
658 the largest number of isolates examined to date in any context for *C. albicans* or *N. glabratu*s.
659 Previous work in other taxonomic groups suggested that a sample size of four to eight isolates
660 is sufficient to accurately estimate population genetics parameters such as expected
661 heterozygosity, observed heterozygosity and pairwise genetic differentiation (i.e., F_{ST}) (35–37).
662 Our bootstrap results suggest that others interested in calculating diversity should sequence six
663 isolates per population, given the tradeoff between cost and precision; more isolates will always
664 be better, yet we found diminishing returns. Our results also highlight that if the goal is to

665 compare among studies, it is vital to ensure the same number of isolates are used for diversity
666 calculations. We hope that this work will act as a launching point for studies comparing genetic
667 diversity among different body sites and research aims.

668 All three *C. albicans* RVVC populations were in a subgroup in the global phylogeny in
669 clade 1. This subgroup is enriched for vaginal isolates compared to the entire tree and even
670 compared to the other part of clade 1. Compared to different clades, a greater proportion of
671 clade 1 isolates have previously been noted to be significantly associated with superficial
672 infections (82), including in the context of R/VVC (11, 30, 31, 83). Although vaginal isolates can
673 be found throughout the phylogenetic tree, there may be something unique to the common
674 ancestor of the clade 1 subgroup that makes them more amenable to colonizing and invading
675 epithelial surfaces in general and hence able to cause vaginal diseases (84, 85). Most
676 phenotypes of potential clinical interest have previously been found to vary among isolates
677 within the same clade, precluding clear phenotype × clade associations (e.g., (86, 87)).
678 However, it may be that more fine-scale phylogenetic resolution is required to tease apart
679 relationships; if only a subgroup of clade 1 isolates is enriched for a particular phenotype, that
680 might not be seen if all clade 1 isolates are grouped together. Sala *et al.* recently found that
681 VVC isolates induced greater fungal shedding from epithelial cells and differently stimulated
682 epithelial signaling pathways compared to isolates from healthy women (88). This is the clearest
683 *in vitro* assay able to differentiate VVC and healthy isolates phenotypically, and hence, a strong
684 target for a GWAS analysis to potentially pinpoint the genetic basis of this seemingly important
685 trait. It will be of great interest in the future to determine whether there is a genotypic association
686 between common variants in the subgroup of clade 1 isolates (including isolates from other
687 body sites) and their interaction with vaginal epithelial cells.

688 Significantly less work has been done to examine *N. glabratu*s in the context of R/VVC
689 compared to *C. albicans*, despite the increasing incidence of *N. glabratu*s globally as an
690 etiological agent of R/VVC (12, 89). We found only a single vaginal isolate out of 526 total
691 isolates with WGS data on NCBI. This sharply contrasts with *C. albicans*, where 35 % of all
692 sequenced isolates in the current phylogeny have been annotated as vaginal origin (20).
693 Surprisingly, vaginal isolates form over 10% of the isolates in the *N. glabratu*s MLST database
694 (90). Those isolates are widely distributed among ST groups. This highlights a gap in inclusion
695 of vaginal isolates in *N. glabratu*s studies that use WGS.

696
697

698 **Conclusion**

699 We have conducted the most extensive study to date that employed whole genome
700 sequencing, modern methods for calculating and comparing diversity, and high throughput
701 phenotypic analyses to compare vaginal and rectal isolates from participants with a history of
702 symptomatic RVVC. We find no evidence that rectal isolates are different than vaginal isolates,
703 which is inconsistent with the hypothesis that the GI tract is a source population for vaginal
704 reinfection. We observed a near-identical average nucleotide diversity between our populations
705 and some populations from commensal (*C. albicans*) and BSI (*N. glabratus*) settings. It remains
706 unanswered how the nucleotide diversity is kept at such elevated levels despite repeated use of
707 antifungals by individuals with RVVC. Combined, this study provides relevant information on the
708 baseline diversity of RVVC vaginal and rectal populations. It emphasizes the need to investigate
709 the role of other body sites in shaping fungal microbial communities across various contexts.

710

711

712 **Data availability**

713 FASTQ files generated for this project have been deposited at the National Center for
714 Biotechnology Information (NCBI) Sequence Read Archive under BioProject ID PRJNA991137.
715 All phenotypic data and code required to reproduce figures, and statistical analyses are
716 available at https://github.com/acgerstein/THRIVE_yeast-VR. Large files (e.g., BAM, VCF) are
717 available upon request.

718 **Acknowledgements & funding**

719 We are extremely thankful to the THRIVE-yeast participants. We are grateful to Dr. Alicia
720 Berard, Dr. Adam Burgener, Kenzie Birse and other THRIVE investigators for sharing their
721 knowledge and resources, which were integral in the initiation of this study and thank other
722 members of the THRIVE-yeast research team including study clinicians, laboratory and
723 administrative staff for their many contributions. The study was funded through the Manitoba
724 Medical Service Foundation, a University of Manitoba Faculty of Science Collaborative grant,
725 the Canadian Institute for Advanced Research (CIFAR), and the National Science and
726 Engineering Research Council of Canada. ACG acknowledges the support of the CIFAR Azrieli
727 Global Scholars Program and start-up funding from the University of Manitoba. A-RAB and AS
728 were supported by EvoFunPath (NSERC CREATE) fellowships. DAH was funded by a
729 University of Manitoba Research Award and the University of Manitoba Department of
730 Microbiology Fellowship for Education Purposes. AdG was supported by a University of
731 Manitoba Science Students' Association and the Faculty of Science Undergraduate Student
732 Research Award (USRA). BM was supported by a Faculty of Science USRA. Some swabs and
733 Amies buffer tubes were donated by COPAN Italia.

734 **Figures**

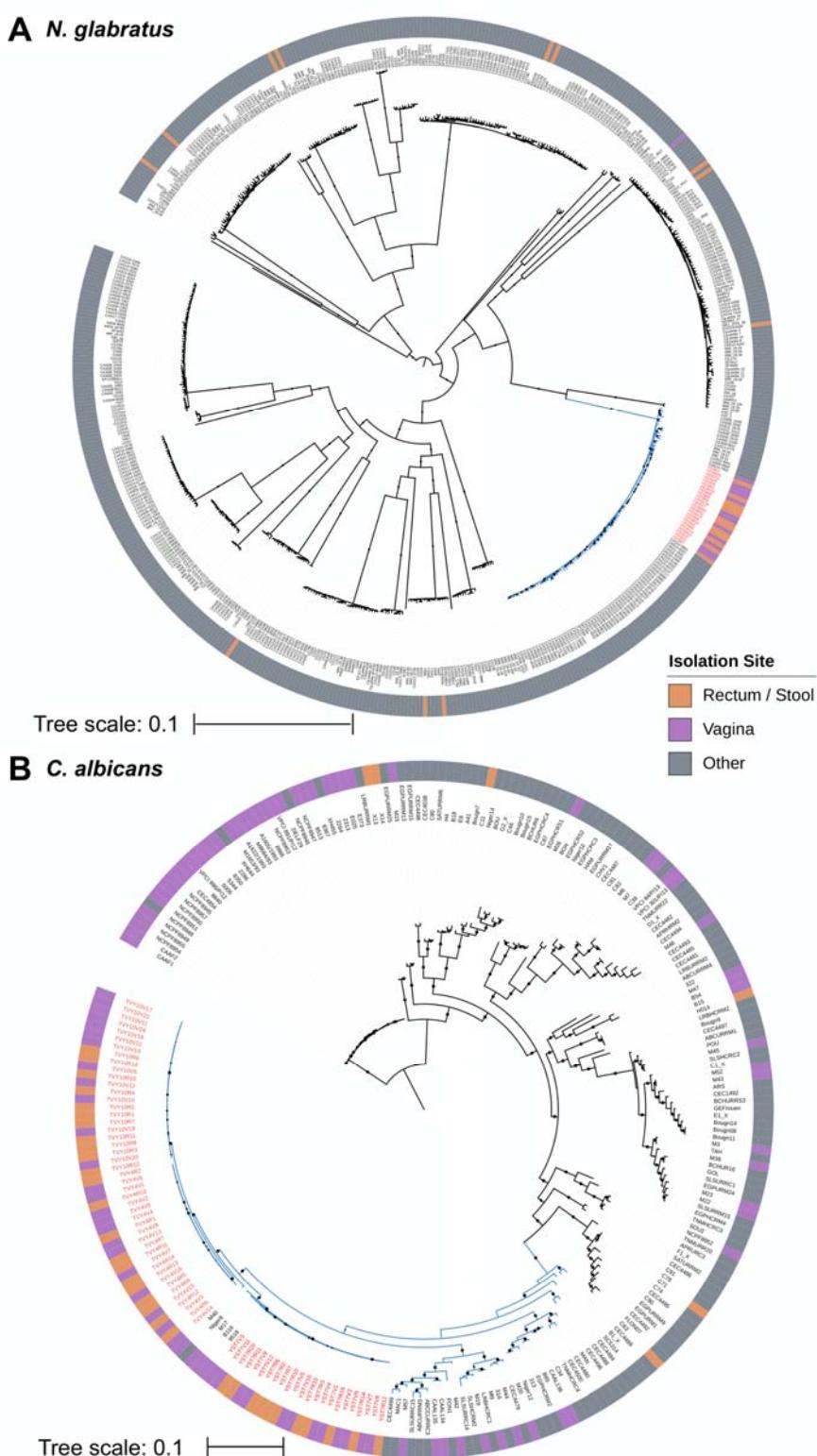
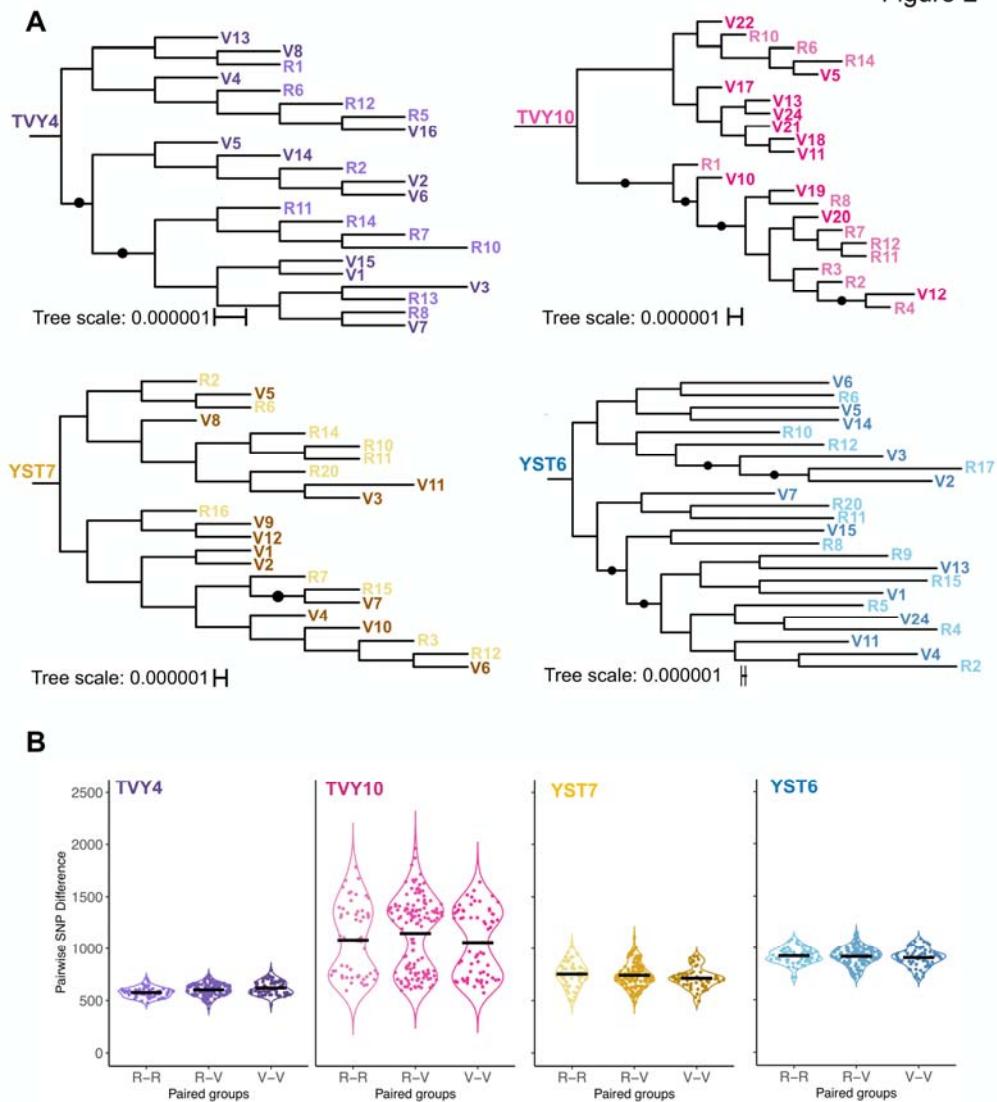


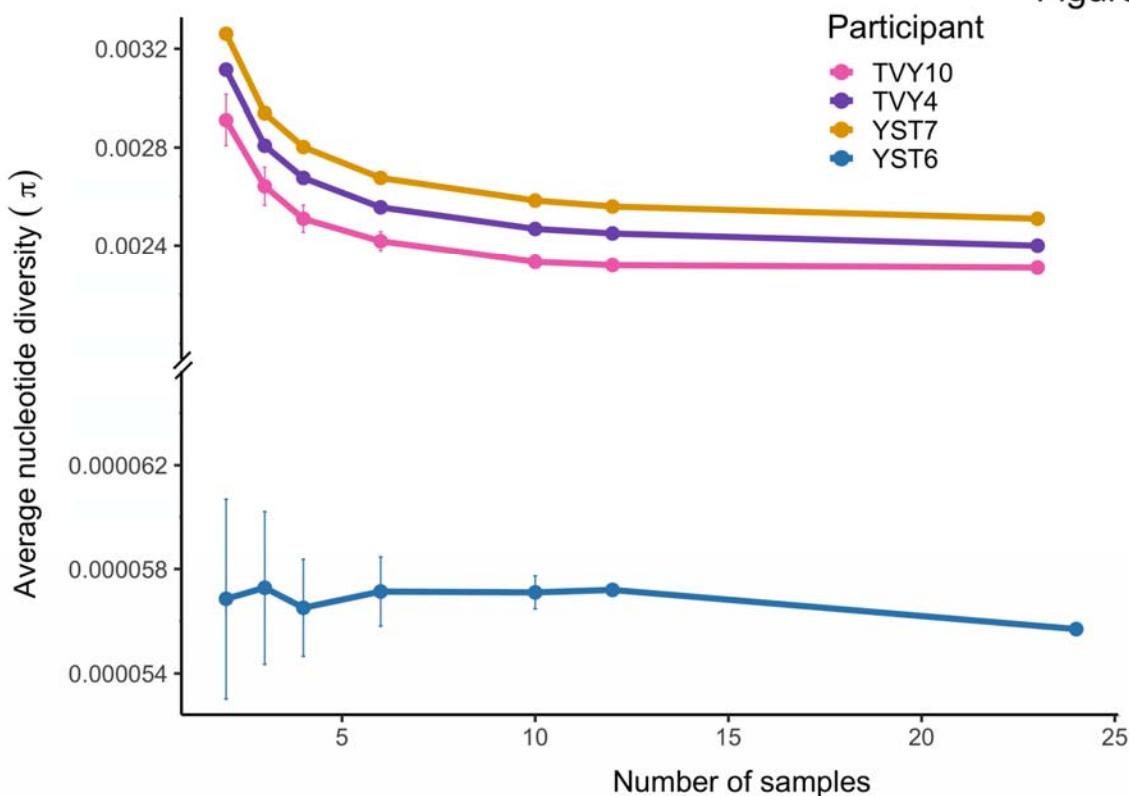
Figure 1

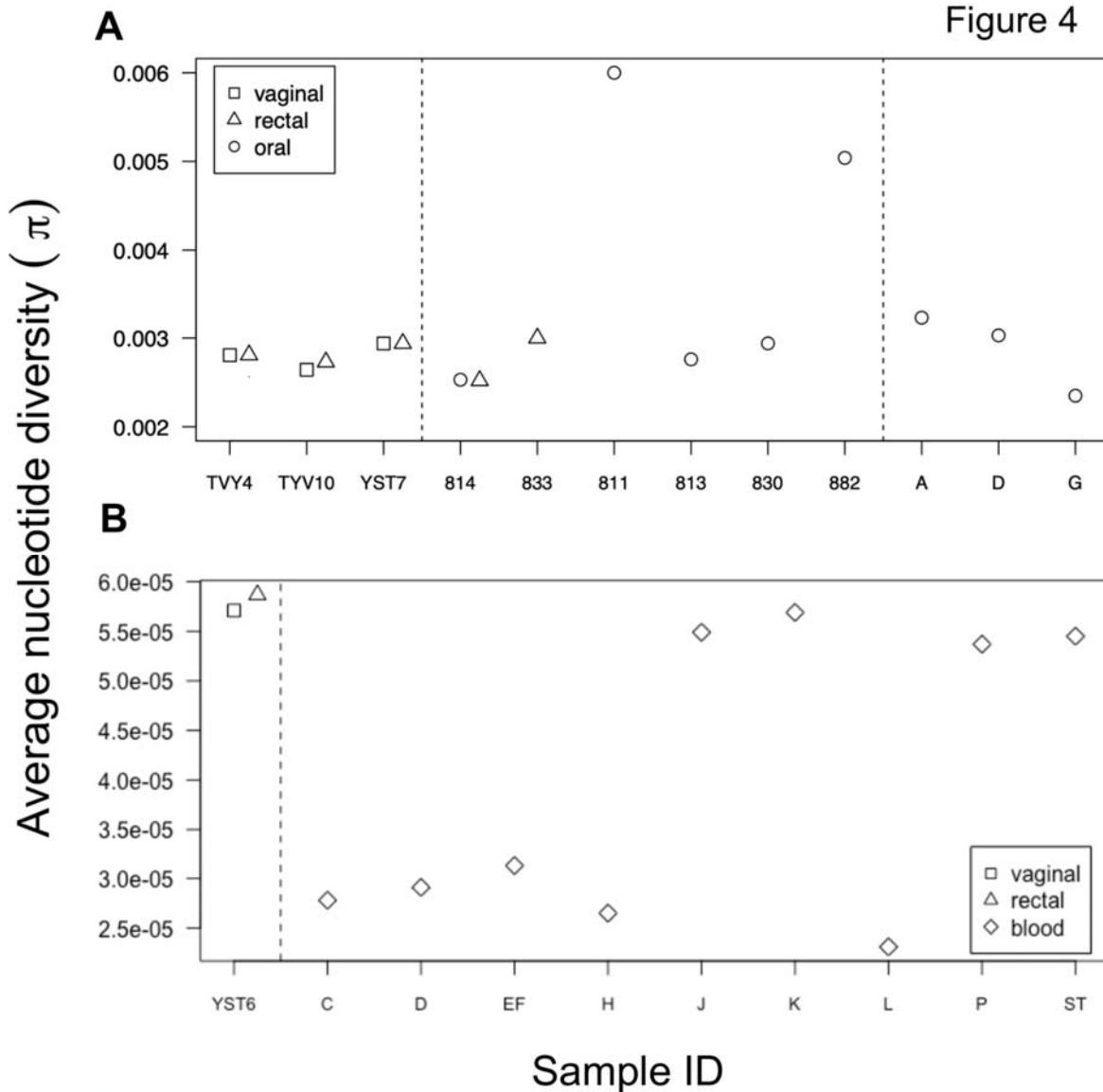

735
736
737

738 **Fig. 1** Approximate maximum likelihood phylogenies of (A) *N. glabratu*s, including 526 global
739 isolates, and YST6 vaginal and rectal isolates, and (B) *C. albicans*, including 182 isolates from
740 Ropars et al. 2018 and vaginal and rectal isolates from TVY4, TVY10 and YST7. THRIVE-yeast
741 isolates are indicated with red labels. The YST6 *N. glabratu*s isolates are in a cluster of ST16
742 isolates, while the TVY4, TVY10, and YST7 *C. albicans* isolates are in clade 1 (blue branches
743 indicate A) ST16 and B) clade 1 isolates). The *N. glabratu*s phylogeny was rooted at the
744 midpoint, and the *C. albicans* tree was rooted by *C. africana* isolates (grey labels).

745

746

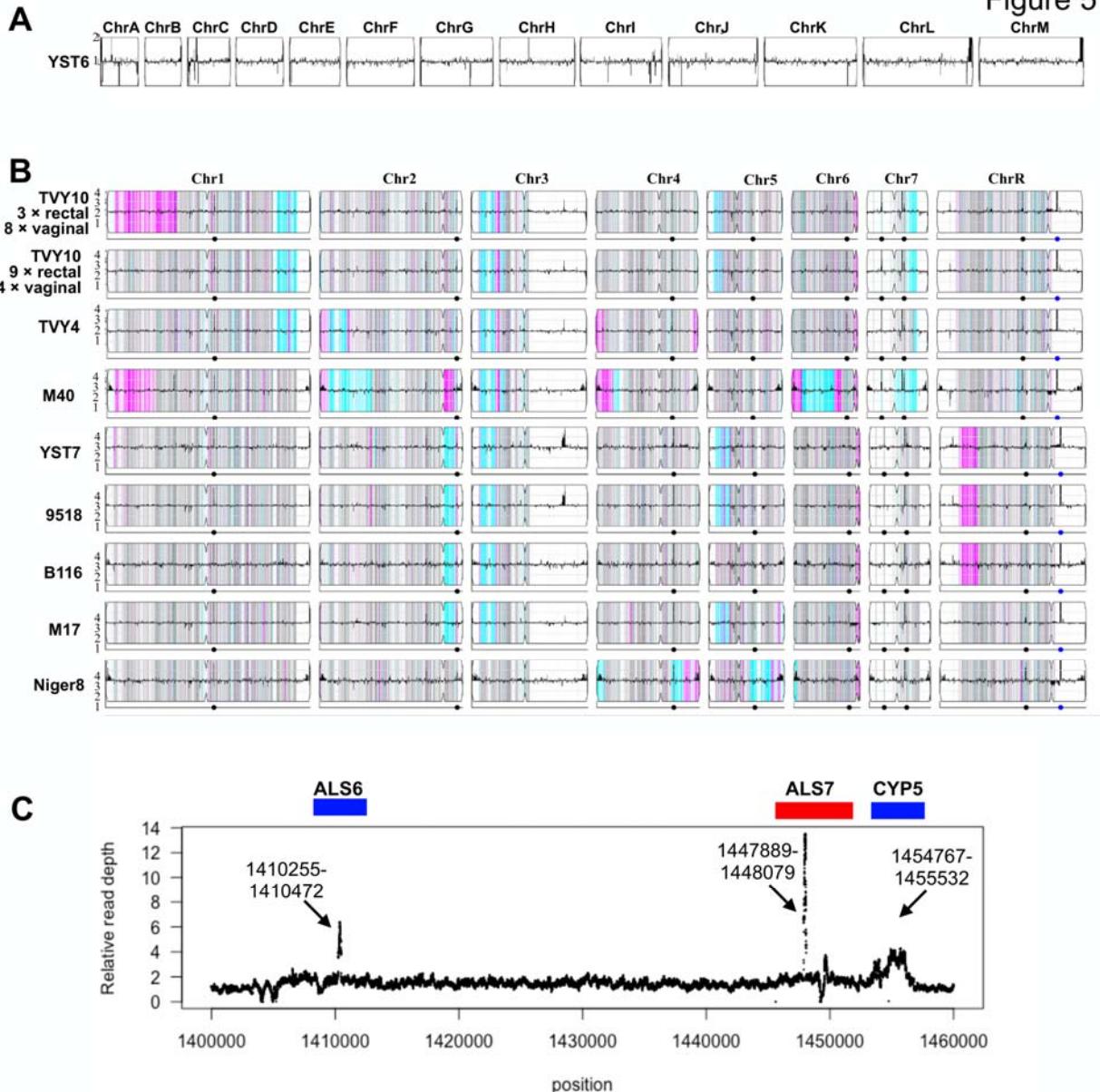

Figure 2


747

748 **Fig. 2** Within participant phylogenetic and single nucleotide position (SNP) analyses. (A) The
 749 fine-scale phylogenetic structure among THRIVE-yeast isolates. Vaginal (V) and rectal (R)
 750 isolates were acquired from four participants with a history of RVVC (YST6: *N. glabratus*; TVY4,
 751 TVY10, YST7: *C. albicans*). The isolate numbers are arbitrary based on the order they were
 752 collected off culture plates. Reads were aligned to their respective reference genomes (SC5314
 753 and CBS 138), and variants were called using a custom variant calling pipeline adopted from
 754 the GATK best practices. Mitochondrial variants, as well as variants in repeat regions, were
 755 excluded. Phylogenetic trees were generated with RAxML; black circles indicate branches with
 756 bootstrap support ≥ 0.8 . (B) Within-participant pairwise comparison of single nucleotide
 757 positions between isolates from the indicated sites (V-V: vaginal-vaginal, R-V: rectal-vaginal, R-
 758 R: rectal-rectal).

Figure 3

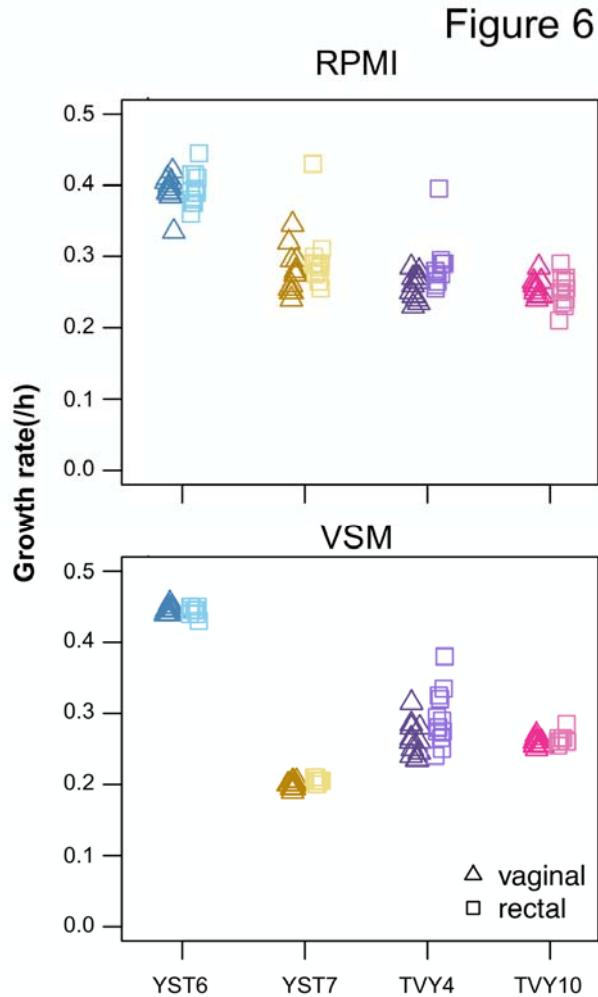
759
760 **Fig. 3** Relationship between sample size and average nucleotide diversity. π was calculated for
761 different numbers of samples from each individual. For $n= 2, 3, 4, 6$, or 10, the given number of
762 samples was randomly selected from the vaginal isolate set. For $n = 12$, the datasets were
763 generated by randomly choosing 6 samples from each of the rectal and vaginal isolates sets.
764 The bootstrap analysis was done 50 times for each sample size, and the mean and standard
765 deviation among data sets were calculated. For $n = 23$ (*C. albicans*, TVY10, TVY4, YST7) or 24
766 (*N. glabratu*s, YST6), the nucleotide diversity of all samples was calculated.
767
768



769

770 **Fig. 4** Comparison of the average nucleotide diversity between our samples and isolates from
771 other studies. (A) Comparison of π in THRIVE *C. albicans* isolates from TVY4, TVY10, and
772 YST7 to commensal isolates from two previously published studies. For accurate comparison,
773 three randomly chosen samples were subsampled from each site in the THRIVE-yeast isolates.
774 (B) Comparison of π in THRIVE *N. glabratus* (YST6) isolates to bloodstream infection isolates
775 from 10 individuals in a previous study.

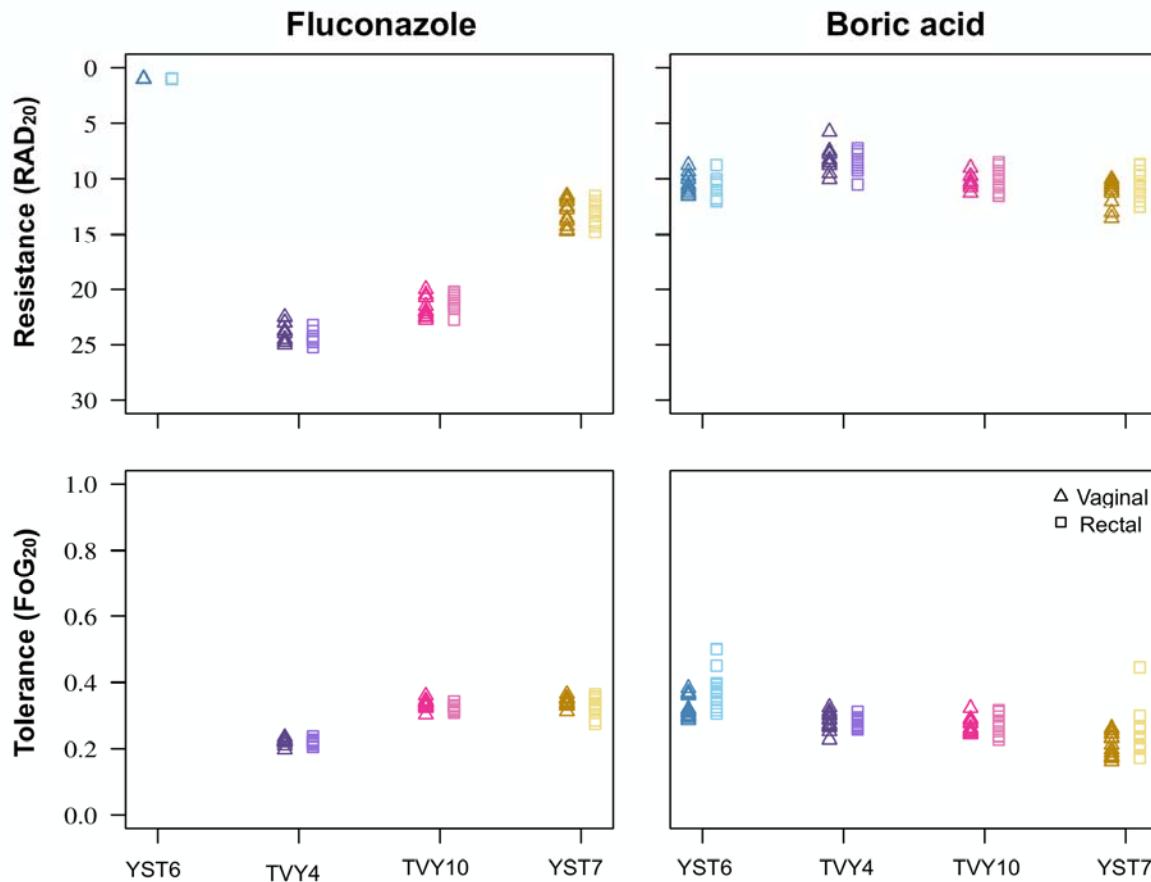
776


Figure 5

777

778 **Fig. 5** CNV and LOH profiles of THRIVE-yeast. (A) Representative trace of a YST6 isolate (*N.*
 779 *glabratus*) and (B) TTVY10 isolates, representative traces of TTVY4 and YST7 isolates with the
 780 closely related M40 isolates to them, and the four isolates that are closely related to YST7
 781 (three vaginal isolates and Niger8, oral isolate). The relative copy number compared to the
 782 reference genomes is shown as the horizontal black line with the scale on the y-axis. For C.
 783 *albicans* isolates, the density of heterozygous SNPs is shown as the vertical lines spanning the
 784 height of each chromosome box, with the intensity representing the number of SNPs in 5 kb
 785 bins. Heterozygous SNPs are gray, homozygous SNPs are colored based on the retained
 786 SC5314 homolog: cyan for "AA" and magenta for "BB." White indicates an ancestral LOH in

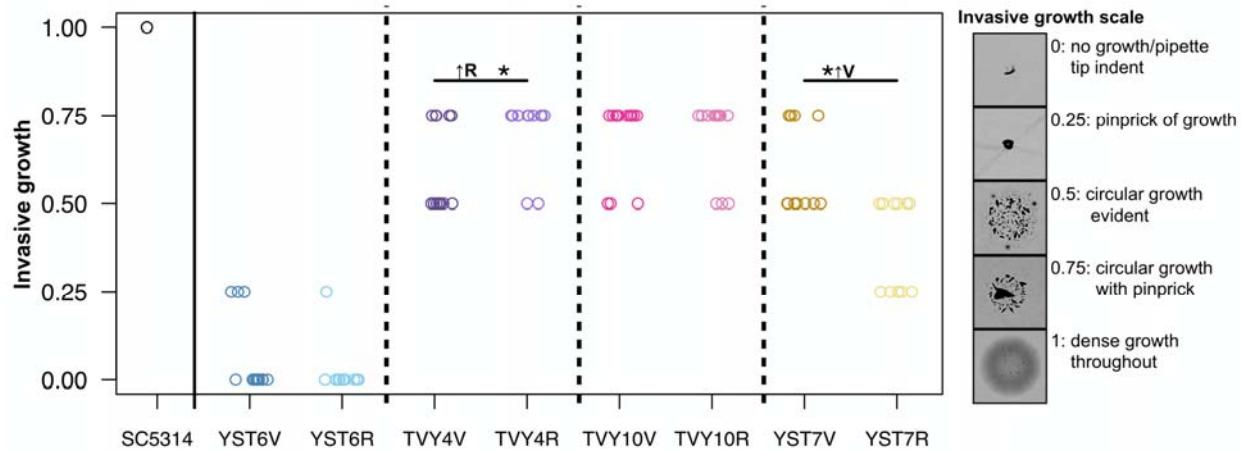
787 SC5314. For each chromosome, the centromere is indicated by an indentation in the box. The
788 dots on the bottom line below each box indicate the positions of major repeat sequences. (C)
789 Fine-scale coverage mapping of the putative CNV on chr3. Shown is one representative trace
790 from YST7 R2, all isolates have a similar pattern. Gene positions above the figure are
791 approximated.
792
793



794

795 **Fig. 6** Growth rate was measured from 12 vaginal and 12 rectal isolates from each population.
796 Optical density was recorded every 15 minutes in a plate reader with constant shaking and
797 incubation at 37 °C. Each point represents the mean of two technical replicates for each of the
798 two biological isolates, 24 isolates were measured for each group. The growth rate was
799 calculated as the spline with the highest slope using a custom R script.

800
801


Figure 7

802
803 **Fig. 7** Drug response phenotypes from disk diffusion assays. Drug resistance (top panels) and
804 drug tolerance (bottom panels) were measured from disk diffusion assays for fluconazole (FLC)
805 and boric acid (BA). Drug response was measured on pH 4 Mueller-Hinton plates using the R
806 package *diskImageR* (72), which computationally measures response parameters from images
807 of disk diffusion assays. Each point represents the mean of four replicates (two technical
808 replicates for two biological replicates).

809
810

Figure 8

811
812
813 **Fig. 8** Invasive growth was qualitatively scored after growth on YPD plates for 96 h. Each point
814 indicates the maximum score between two bio-replicates for each isolate.

815
816
817
818 **References:**

819 1. Benedict K, Singleton AL, Jackson BR, Molinari NAM. 2022. Survey of incidence, lifetime
820 prevalence, and treatment of self-reported vulvovaginal candidiasis, United States, 2020.
821 BMC Womens Health 22:147.

822 2. Yano J, Sobel JD, Nyirjesy P, Sobel R, Williams VL, Yu Q, Noverr MC, Fidel PL Jr. 2019.
823 Current patient perspectives of vulvovaginal candidiasis: incidence, symptoms,
824 management and post-treatment outcomes. BMC Womens Health 19:48.

825 3. Rathod SD, Buffler PA. 2014. Highly-cited estimates of the cumulative incidence and
826 recurrence of vulvovaginal candidiasis are inadequately documented. BMC Womens Health
827 14:43.

828 4. Denning DW, Kneale M, Sobel JD, Rautemaa-Richardson R. 2018. Global burden of
829 recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis 18:e339–e347.

830 5. Foxman B, Barlow R, D'Arcy H, Gillespie B, Sobel JD. 2000. Candida vaginitis: self-
831 reported incidence and associated costs. Sex Transm Dis 27:230–235.

832 6. Sobel JD. 2003. Management of patients with recurrent vulvovaginal candidiasis. Drugs
833 63:1059–1066.

834 7. Zhang J-Y, Liu J-H, Liu F-D, Xia Y-H, Wang J, Liu X, Zhang Z-Q, Zhu N, Yan-Yan, Ying Y,
835 Huang X-T. 2014. Vulvovaginal candidiasis: species distribution, fluconazole resistance and
836 drug efflux pump gene overexpression. *Mycoses* 57:584–591.

837 8. Shi X-Y, Yang Y-P, Zhang Y, Li W, Wang J-D, Huang W-M, Fan Y-M. 2015. Molecular
838 identification and antifungal susceptibility of 186 *Candida* isolates from vulvovaginal
839 candidiasis in southern China. *J Med Microbiol* 64:390–393.

840 9. Guzel AB, Ilkit M, Akar T, Burgut R, Demir SC. 2011. Evaluation of risk factors in patients
841 with vulvovaginal candidiasis and the value of chromID *Candida* agar versus CHROMagar
842 *Candida* for recovery and presumptive identification of vaginal yeast species. *Med Mycol*
843 49:16–25.

844 10. van Schalkwyk J, Yudin MH, INFECTIOUS DISEASE COMMITTEE. 2015. Vulvovaginitis:
845 screening for and management of trichomoniasis, vulvovaginal candidiasis, and bacterial
846 vaginosis. *J Obstet Gynaecol Can* 37:266–274.

847 11. Song N, Kan S, Pang Q, Mei H, Zheng H, Li D, Cui F, Lv G, An R, Li P, Xiong Z, Fan S,
848 Zhang M, Chen Y, Qiao Q, Liang X, Cui M, Li D, Liao Q, Li X, Liu W. 2022. A prospective
849 study on vulvovaginal candidiasis: multicentre molecular epidemiology of pathogenic yeasts
850 in China. *J Eur Acad Dermatol Venereol* 36:566–572.

851 12. Kennedy MA, Sobel JD. 2010. Vulvovaginal candidiasis caused by non-albicans *Candida*
852 species: New insights. *Curr Infect Dis Rep* 12:465–470.

853 13. Parazzini F, Di Cintio E, Chiantera V, Guaschino S. 2000. Determinants of different
854 *Candida* species infections of the genital tract in women. *Eur J Obstet Gynecol Reprod Biol*
855 93:141–145.

856 14. Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. 2005. Antifungal
857 susceptibilities of *Candida* species causing vulvovaginitis and epidemiology of recurrent
858 cases. *J Clin Microbiol* 43:2155–2162.

859 15. Borman AM, Johnson EM. 2021. Name changes for fungi of medical importance, 2018 to
860 2019. *J Clin Microbiol* 59:e01811-20.

861 16. Kidd SE, Abdolrasouli A, Hagen F. 2023. Fungal nomenclature: Managing change is the
862 name of the game. *Open Forum Infect Dis* 10:ofac559.

863 17. Pfaller MA, Rhomberg PR, Messer SA, Jones RN, Castanheira M. 2015. Isavuconazole,
864 micafungin, and 8 comparator antifungal agents' susceptibility profiles for common and
865 uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug
866 resistance using CLSI species-specific clinical breakpoints and proposed epidemiological
867 cutoff values. *Diagn Microbiol Infect Dis* 82:303–313.

868 18. Bullarbo M, Andersch B, Samuelson E, Lindgren A, Kondori N, Baltzer IM. 2017. Self-
869 diagnosis of vulvovaginal candidiasis is poor - A comparison of diagnostic methods
870 introducing β -glucan as a complement. *Bioenergetics* 6:2.

871 19. Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspöllu A, Väin E, Saarma I, Salumets A,
872 Donders GGG, Metsis M. 2013. Characterization of the vaginal micro- and mycobiome in
873 asymptomatic reproductive-age Estonian women. *PLoS One* 8:e54379.

874 20. Ropars J, Maufrais C, Diogo D, Marcet-Houben M, Perin A, Sertour N, Mosca K, Permal E,
875 Laval G, Bouchier C, Ma L, Schwartz K, Voelz K, May RC, Poulain J, Battail C, Wincker P,
876 Borman AM, Chowdhary A, Fan S, Kim SH, Le Pape P, Romeo O, Shin JH, Gabaldon T,
877 Sherlock G, Bougnoux M-E, d'Enfert C. 2018. Gene flow contributes to diversification of the
878 major fungal pathogen *Candida albicans*. *Nat Commun* 9:2253.

879 21. Anderson FM, Visser ND, Amses KR, Hodgins-Davis A, Weber AM, Metzner KM,
880 McFadden MJ, Mills RE, O'Meara MJ, James TY, O'Meara TR. 2023. *Candida albicans*
881 selection for human commensalism results in substantial within-host diversity without
882 decreasing fitness for invasive disease. *PLoS Biol* 21:e3001822.

883 22. Tasić S, Tasić N, Tasić A, Mitrović S. 2002. Recurrent genital candidosis of women;
884 consequence of reinfection or relapse. *Med Biol* 9:217-222.

885 23. Milne JD, Warnock DW. 1979. Effect of simultaneous oral and vaginal treatment on the rate
886 of cure and relapse in vaginal candidosis. *Br J Vener Dis* 55:362–365.

887 24. El-Din SS, Reynolds MT, Ashbee HR, Barton RC, Evans EG. 2001. An investigation into
888 the pathogenesis of vulvo-vaginal candidosis. *Sex Transm Infect* 77:179–183.

889 25. Fong IW. 1994. The rectal carriage of yeast in patients with vaginal candidiasis. *Clin Invest*
890 *Med* 17:426–431.

891 26. Sobel JD. 1986. Recurrent vulvovaginal candidiasis. *N Engl J Med* 315:1455–1458.

892 27. Mårdh P-A, Novikova N, Stukalova E. 2003. Colonisation of extragenital sites by Candida
893 women with recurrent vulvovaginal candidosis. *BJOG* 110:934–937.

894 28. Spinillo A, Nicola S, Colonna L, Marangoni E, Cavanna C, Michelone G. 1994. Frequency
895 and significance of drug resistance in vulvovaginal candidiasis. *Gynecol Obstet Invest*
896 38:130–133.

897 29. O'Connor MI, Sobel JD. 1986. Epidemiology of recurrent vulvovaginal candidiasis:
898 identification and strain differentiation of *Candida albicans*. *J Infect Dis* 154:358–363.

899 30. Tian J-Y, Yang Y-G, Chen S, Teng Y, Li X-Z. 2021. Genetic diversity and molecular
900 epidemiology of *Candida albicans* from vulvovaginal candidiasis patients. *Infect Genet Evol*
901 92:104893.

902 31. Zhu Y, Fang C, Shi Y, Shan Y, Liu X, Liang Y, Huang L, Liu X, Liu C, Zhao Y, Fan S, Zhang
903 X. 2022. *Candida albicans* multilocus sequence typing clade I contributes to the clinical
904 phenotype of vulvovaginal candidiasis patients. *Front Med* 9:837536.

905 32. Bradford LL, Chibucos MC, Ma B, Bruno V, Ravel J. 2017. Vaginal *Candida* spp. genomes
906 from women with vulvovaginal candidiasis. *Pathog Dis* 75:ftx061.

907 33. Sitterlé E, Maufrais C, Sertour N, Palayret M, d'Enfert C, Bougnoux M-E. 2019. Within-host
908 genomic diversity of *Candida albicans* in healthy carriers. *Sci Rep* 9:2563.

909 34. Badrane H, Cheng S, Dupont CL, Hao B, Driscoll E, Morder K, Liu G, Newbrough A, Fleres
910 G, Kaul D, Espinoza JL, Clancy CJ, Nguyen MH. 2023. Genotypic diversity and
911 unrecognized antifungal resistance among populations of *Candida glabrata* from positive
912 blood cultures. *Nat Commun* 14:5918.

913 35. Willing E-M, Dreyer C, van Oosterhout C. 2012. Estimates of genetic differentiation
914 measured by F(ST) do not necessarily require large sample sizes when using many SNP
915 markers. *PLoS One* 7:e42649.

916 36. Nazareno AG, Bemmels JB, Dick CW, Lohmann LG. 2017. Minimum sample sizes for
917 population genomics: an empirical study from an Amazonian plant species. *Mol Ecol*
918 *Resour* 17:1136–1147.

919 37. Qu W-M, Liang N, Wu Z-K, Zhao Y-G, Chu D. 2020. Minimum sample sizes for invasion

920 genomics: Empirical investigation in an invasive whitefly. *Ecol Evol* 10:38–49.

921 38. Kukurudz RJ, Chapel M, Wonitowy Q, Adamu Bukari A-R, Sidney B, Sierhuis R, Gerstein
922 AC. 2022. Acquisition of cross-azole tolerance and aneuploidy in *Candida albicans* strains
923 evolved to posaconazole. *G3* 12:jkac156.

924 39. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K,
925 Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen
926 F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD,
927 Sherry ST. 2022. Database resources of the national center for biotechnology information.
928 *Nucleic Acids Res* 50:D20–D26.

929 40. Carreté L, Ksiezopolska E, Pegueroles C, Gómez-Molero E, Saus E, Iraola-Guzmán S,
930 Loska D, Bader O, Fairhead C, Gabaldón T. 2018. Patterns of genomic variation in the
931 opportunistic pathogen *Candida glabrata* suggest the existence of mating and a secondary
932 association with humans. *Curr Biol* 28:15-27.e7.

933 41. Helmstetter N, Chybowska AD, Delaney C, Da Silva Dantas A, Gifford H, Wacker T, Munro
934 C, Warris A, Jones B, Cuomo CA, Wilson D, Ramage G, Farrer RA. 2022. Population
935 genetics and microevolution of clinical *Candida glabrata* reveals recombinant sequence
936 types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets.
937 *Genetics* 221:iyac031.

938 42. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
939 sequence data. *Bioinformatics* 30:2114–2120.

940 43. Todd RT, Wikoff TD, Forche A, Selmecki A. 2019. Genome plasticity in *Candida albicans* is
941 driven by long repeat sequences. *Elife* 8: e45954.

942 44. Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis results for
943 multiple tools and samples in a single report. *Bioinformatics* 32:3047–3048.

944 45. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
945 MEM. *arXiv*: 1303.3997v2 [q-bioGN].

946 46. Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. 2017. The
947 Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers
948 and visualization of high throughput sequencing data. *Nucleic Acids Res* 45:D592–D596.

949 47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
950 R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map
951 format and SAMtools. *Bioinformatics* 25:2078–2079.

952 48. Yates AD, Allen J, Amode RM, Azov AG, Barba M, Becerra A, Bhai J, Campbell LI, Carbajo
953 Martinez M, Chakiachvili M, Chougule K, Christensen M, Contreras-Moreira B, Cuzick A,
954 Da Rin Fioretto L, Davis P, De Silva NH, Diamantakis S, Dyer S, Elser J, Filippi CV, Gall A,
955 Grigoriadis D, Guijarro-Clarke C, Gupta P, Hammond-Kosack KE, Howe KL, Jaiswal P,
956 Kaikala V, Kumar V, Kumari S, Langridge N, Le T, Luypaert M, Maslen GL, Maurel T,
957 Moore B, Muffato M, Mushtaq A, Naamati G, Naithani S, Olson A, Parker A, Paulini M,
958 Pedro H, Perry E, Preece J, Quinton-Tulloch M, Rodgers F, Rosello M, Ruffier M, Seager J,
959 Sitnik V, Szpak M, Tate J, Tello-Ruiz MK, Trevanion SJ, Urban M, Ware D, Wei S, Williams
960 G, Winterbottom A, Zarowiecki M, Finn RD, Flicek P. 2022. Ensembl Genomes 2022: an
961 expanding genome resource for non-vertebrates. *Nucleic Acids Res* 50:D996–D1003.

962 49. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G,
963 Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S. 2004. The diploid genome
964 sequence of *Candida albicans*. *Proc Natl Acad Sci U S A* 101:7329–7334.

965 50. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del
966 Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY,
967 Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery
968 and genotyping using next-generation DNA sequencing data. *Nat Genet* 43:491–498.

969 51. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A,
970 Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S,
971 DePristo MA. 2013. From FastQ data to high confidence variant calls: the Genome Analysis
972 Toolkit best practices pipeline. *Curr Protoc Bioinformatics* 43:11.10.1-11.10.33.

973 52. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA,
974 Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, Shakir K, Thibault J, Chandran S,
975 Whelan C, Lek M, Gabriel S, Daly MJ, Neale B, MacArthur DG, Banks E. 2018. Scaling
976 accurate genetic variant discovery to tens of thousands of samples. *bioRxiv*.
977 <https://doi.org/10.1101/201178>

978 53. Ortiz EM. 2019. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for
979 phylogenetic analysis. <https://zenodo.org/record/2540861>.

980 54. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees
981 for large alignments. PLoS One 5:e9490.

982 55. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
983 large phylogenies. Bioinformatics 30:1312–1313.

984 56. Liu K, Linder CR, Warnow T. 2011. RAxML and FastTree: comparing two methods for
985 large-scale maximum likelihood phylogeny estimation. PLoS One 6:e27731.

986 57. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
987 tree display and annotation. Nucleic Acids Res 49:W293–W296.

988 58. Romeo O, Tietz H-J, Criseo G. 2013. *Candida africana*: Is it a fungal pathogen? Curr
989 Fungal Infect Rep 7:192–197.

990 59. Mixão V, Gabaldón T. 2020. Genomic evidence for a hybrid origin of the yeast opportunistic
991 pathogen *Candida albicans*. BMC Biol 18:48.

992 60. Mixão V, Saus E, Boekhout T, Gabaldón T. 2021. Extreme diversification driven by parallel
993 events of massive loss of heterozygosity in the hybrid lineage of *Candida albicans*.
994 Genetics 217: iyaa004.

995 61. Szarvas J, Rebelo AR, Bortolaia V, Leekitcharoenphon P, Schrøder Hansen D, Nielsen HL,
996 Nørskov-Lauritsen N, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE,
997 Østergaard C, Westh H, Aarestrup FM. 2021. Danish whole-genome-sequenced *Candida*
998 *albicans* and *Candida glabrata* samples fit into globally prevalent clades. J Fungi (Basel) 7:
999 962.

1000 62. Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S, Irvine SA, Jackson A, Littin R,
1001 Rathod M, Ware D, Zook JM, Trigg L, De La Vega FM. 2015. Comparing variant call files
1002 for performance benchmarking of next-generation sequencing variant calling pipelines.
1003 bioRxiv, doi: <https://doi.org/10.1101/023754>

1004 63. Gupta A, Jordan IK, Rishishwar L. 2017. stringMLST: a fast k-mer based tool for multilocus
1005 sequence typing. Bioinformatics 33:119–121.

1006 64. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics:
1007 BIGSdb software, the Pubmlst.org website and their applications. Wellcome Open Res

1008 3:124.

1009 65. Li H, Ralph P. 2019. Local PCA shows how the effect of population structure differs along
1010 the genome. *Genetics* 211:289–304.

1011 66. Korunes KL, Samuk K. 2021. pixy: Unbiased estimation of nucleotide diversity and
1012 divergence in the presence of missing data. *Mol Ecol Resour* 21:1359–1368.

1013 67. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE,
1014 Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis
1015 Group. 2011. The variant call format and VCFtools. *Bioinformatics* 27:2156–2158.

1016 68. Abbey DA, Funt J, Lurie-Weinberger MN, Thompson DA, Regev A, Myers CL, Berman J.
1017 2014. YMAP: a pipeline for visualization of copy number variation and loss of
1018 heterozygosity in eukaryotic pathogens. *Genome Med* 6:100.

1019 69. Millard SP. 2013. EnvStats: An R Package for environmental statistics. Springer New York.

1020 70. NCCLS. Reference method for antifungal disk diffusion susceptibility testing of yeasts;
1021 approved guideline. NCCLS document M44-A National Committee for Clinical Laboratory
1022 Standards Wayne.

1023 71. Salama OE, Gerstein AC. 2022. Differential response of *Candida* species morphologies
1024 and isolates to fluconazole and boric acid. *Antimicrob Agents Chemother* 66:e0240621.

1025 72. Gerstein AC, Rosenberg A, Hecht I, Berman J. 2016. diskImageR: quantification of
1026 resistance and tolerance to antimicrobial drugs using disk diffusion assays. *Microbiology*
1027 162:1059–1068.

1028 73. Zupan J, Raspor P. 2008. Quantitative agar-invasion assay. *J Microbiol Methods* 73:100–
1029 104.

1030 74. Matsutani M, Wakinaka T, Watanabe J, Tokuoka M, Ohnishi A. 2021. Comparative
1031 genomics of closely related *Tetragenococcus halophilus* strains elucidate the diversity and
1032 microevolution of CRISPR elements. *Front Microbiol* 12:687985.

1033 75. Pemberton TJ. 2006. Identification and comparative analysis of sixteen fungal peptidyl-
1034 prolyl cis/trans isomerase repertoires. *BMC Genomics* 7:244.

1035 76. Araújo Paulo de Medeiros M, Vieira de Melo AP, Gonçalves SS, Milan EP, Chaves GM.
1036 2014. Genetic relatedness among vaginal and anal isolates of *Candida albicans* from
1037 women with vulvovaginal candidiasis in north-east Brazil. *J Med Microbiol* 63:1436–1445.

1038 77. Sampaio P, Gusmão L, Alves C, Pina-Vaz C, Amorim A, Pais C. 2003. Highly polymorphic
1039 microsatellite for identification of *Candida albicans* strains. *J Clin Microbiol* 41:552–557.

1040 78. Shi W-M, Mei X-Y, Gao F, Huo K-K, Shen L-L, Qin H-H, Wu Z-W, Zheng J. 2007. Analysis
1041 of genital *Candida albicans* infection by rapid microsatellite markers genotyping. *Chin Med*
1042 *J* 120:975.

1043 79. Araújo Paulo de Medeiros M, Vieira de Melo AP, Maia de Sousa AM, Silva-Rocha WP,
1044 Pipolo Milan E, Maranhão Chaves G. 2017. Characterization of virulence factors of vaginal
1045 and anal isolates of *Candida albicans* sequentially obtained from patients with vulvovaginal
1046 candidiasis in north-east Brazil. *J Mycol Med* 27:567–572.

1047 80. Lemberg C, Martinez de San Vicente K, Fróis-Martins R, Altmeier S, Tran VDT, Mertens S,
1048 Amorim-Vaz S, Rai LS, d'Enfert C, Pagni M, Sanglard D, LeibundGut-Landmann S. 2022.
1049 *Candida albicans* commensalism in the oral mucosa is favoured by limited virulence and
1050 metabolic adaptation. *PLoS Pathog* 18:e1010012.

1051 81. Lockhart SR, Fritch JJ, Meier AS, Schröppel K, Srikantha T, Galask R, Soll DR. 1995.
1052 Colonizing populations of *Candida albicans* are clonal in origin but undergo microevolution
1053 through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1
1054 sequencing. *J Clin Microbiol* 33:1501–1509.

1055 82. Odds FC, Bougnoux M-E, Shaw DJ, Bain JM, Davidson AD, Diogo D, Jacobsen MD,
1056 Lecomte M, Li S-Y, Tavanti A, Maiden MCJ, Gow NAR, d'Enfert C. 2007. Molecular
1057 phylogenetics of *Candida albicans*. *Eukaryot Cell* 6:1041–1052.

1058 83. Ge S-H, Xie J, Xu J, Li J, Li D-M, Zong L-L, Zheng Y-C, Bai F-Y. 2012. Prevalence of
1059 specific and phylogenetically closely related genotypes in the population of *Candida*
1060 *albicans* associated with genital candidiasis in China. *Fungal Genet Biol* 49:86–93.

1061 84. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MSM, Samad S, Carr M, Parr D,
1062 McKinney W, Schousboe M, Harris B, Ikram R, Harris M, Restrepo A, Hoyos G, Singh KP.
1063 1999. Evidence for a general-purpose genotype in *Candida albicans*, highly prevalent in

1064 multiple geographical regions, patient types and types of infection. *Microbiology* 145:2405–
1065 2413.

1066 85. Giblin L, Edelmann A, Zhang N, von Maltzahn NB, Cleland SB, Sullivan PA, Schmid J.
1067 2001. A DNA polymorphism specific to *Candida albicans* strains exceptionally successful
1068 as human pathogens. *Gene* 272:157–164.

1069 86. Cravener MV, Do E, May G, Zarnowski R, Andes DR, McManus CJ, Mitchell AP. 2023.
1070 Reinforcement amid genetic diversity in the *Candida albicans* biofilm regulatory network.
1071 PLoS Pathog 19:e1011109.

1072 87. MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJP, Gow NAR, Odds FC. 2009.
1073 Property differences among the four major *Candida albicans* strain clades. *Eukaryot Cell*
1074 8:373–387.

1075 88. Sala A, Ardizzone A, Spaggiari L, Vaidya N, van der Schaaf J, Rizzato C, Cermelli C,
1076 Mogavero S, Krüger T, Himmel M, Kniemeyer O, Brakhage AA, King BL, Lupetti A, Comar
1077 M, de Seta F, Tavanti A, Blasi E, Wheeler RT, Pericolini E. 2023. A new phenotype in
1078 Candida-epithelial cell interaction distinguishes colonization- versus vulvovaginal
1079 Candidiasis-associated strains. *MBio* 14: e0010723.

1080 89. Makanjuola O, Bongomin F, Fayemiwo SA. 2018. An update on the roles of non-albicans
1081 Candida species in vulvovaginitis. *J Fungi (Basel)* 4: 121.

1082 90. Dodgson AR, Pujol C, Denning DW, Soll DR, Fox AJ. 2003. Multilocus sequence typing of
1083 *Candida glabrata* reveals geographically enriched clades. *J Clin Microbiol* 41:5709–5717.