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Abstract 

Contemporary models of perceptual awareness lack tractable neurobiological 

constraints. Inspired by recent cellular recordings in a mouse model of tactile threshold 

detection, we constructed a biophysical model of perceptual awareness that 

incorporated essential features of thalamocortical anatomy and cellular physiology. 

Our model reproduced, and mechanistically explains, the key in vivo neural and 

behavioural signatures of perceptual awareness in the mouse model, as well as the 

response to a set of causal perturbations. We generalised the same model (with 

identical parameters) to a more complex task – visual rivalry – and found that the 

same thalamic-mediated mechanism of perceptual awareness determined perceptual 

dominance. This led to the generation of a set of novel, and directly testable, 

electrophysiological predictions. Analyses of the model based on dynamical systems 

theory show that perceptual awareness in simulations of both threshold detection and 

visual rivalry arises from the emergent systems-level dynamics of thalamocortical 

loops.  
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Introduction 
The study of perceptual awareness – the process of gaining conscious access to 

perceptual content – in human participants (e.g. Overgaard, 2015; Pitts et al., 2014; 

Sergent et al., 2005) and animal models (e.g. Ciceri et al., 2024; Gale et al., 2024; Oude 

Lohuis et al., 2022; Palagina et al., 2017) have opposing but complementary 

limitations. Human participants can rapidly learn complex tasks that isolate and 

control for key psychological constructs, however the high-resolution (i.e., cell specific) 

recordings and precise causal manipulations (e.g., optogenetic and pharmacological) 

that are needed to make effective inferences about the neural basis of behaviour are 

exceedingly difficult and often impossible to obtain. At the same time, animal models, 

and transgenic mouse models in particular, allow for an astonishing degree of 

experimental precision in the recording and causal manipulation of neural activity. 

Animal models are, however, highly limited in the range and complexity of the tasks 

they can perform, restricting the type of psychological inferences that can be drawn. 

Both fields contain crucial pieces of the puzzle for understanding perceptual awareness, 

however the links between the two are limited at best. Effective progress, therefore, 

hinges on our ability to create empirically tractable tethers between the behavioural 

signatures of perceptual awareness studied in humans and the fine-grained 

neurobiological mechanisms studied in animal models (He, 2023). 

 

Recent work in a mouse model of perception has identified a key thalamocortical circuit 

connecting thick-tufted layer 5 pyramidal-tract (L5PT) neurons and matrix thalamic 

cells as playing a causal role in the threshold for perceptual awareness (Aru et al., 

2019, 2020; Bachmann et al., 2020; Takahashi et al., 2016, 2020). Specifically, based 

on a range of cellular recordings and causal perturbations, it has been shown that 

matrix-thalamus-mediated coupling of apical dendrite and somatic compartments in 

L5PT cells leads to a burst-firing state that is a reliable signature of perceptual 

awareness of a near-threshold tactile stimulus (Takahashi et al., 2016, 2020). However, 

the simplicity of the threshold detection task and species-specific differences in neural 

architecture means that it is not clear whether the mechanisms of perceptual awareness 

characterised in the mouse model will generalise beyond the whisker detection task to 

the more complex paradigms typically studied in human participants. 
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Here, we use biophysical modelling to bridge the gap between the thalamocortical 

circuit identified in the mouse model of perception (Aru et al., 2020; Takahashi et al., 

2016a, 2020) and the behavioural signatures of perceptual awareness studied in human 

psychophysics. Specifically, we built a thalamocortical spiking neural network model 

that explains the full suite of behavioural and neural findings in the mouse model of 

tactile threshold detection. Given the ubiquity of the thalamocortical circuit 

architecture across sensory modalities, we (Aru et al., 2020; Bachmann et al., 2020; 

Whyte et al., 2024), along with others (Marvan et al., 2021; Phillips et al., 2016), have 

proposed that reverberant bursting activity in L5PT – matrix thalamus loops may be 

a necessary component part in a domain general mechanism of perceptual awareness. 

A key test of this hypothesis is whether this same circuit architecture can explain 

psychophysical principles known to govern perceptual awareness in more complex 

paradigms and in other sensory modalities. 

 

To test this hypothesis in silico, we leveraged the same model with identical parameters 

to simulate both tactile threshold detection and visual rivalry (which we use as a catch 

all term for binocular rivalry and related bistable perception paradigms). Visual rivalry 

is a complex but highly psychophysically-constrained phenomenon whereby visual 

perception stochastically switches between stimulus percepts that differ only in terms 

of their perceptual content (Alais & Blake, 2005; Blake & Tong, 2008; Carmel et al., 

2010; Tong et al., 2006). Visual rivalry provides a means to dissociate the neural 

mechanisms of subjective perception from the correlates of physical stimulation. 

Crucially, variants of visual rivalry (i.e., plaid rivalry; Hupé & Rubin, 2003) can now 

be studied in mouse models (Bogatova et al., 2022; Palagina et al., 2017) as well in 

human and non-human primates, allowing us to test our model against existing 

psychophysical findings in primates and to make predictions for what should be 

observed in the mouse model before data has been collected – a central component in 

the evolving dialogue between theory and experiment. In addition, although our model 

is consistent with the psychophysical predictions of previous models of visual rivalry 

(e.g., Grossberg et al., 2008; Laing et al., 2010; Laing & Chow, 2002; Safavi & Dayan, 

2022; Shpiro et al., 2007, 2009; Wilson, 2003, 2007, 2017), our approach has an unique 
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level of neurobiological specificity that allows us to generate cellular level predictions 

about the neural underpinnings of perceptual awareness in a language that is applicable 

to the causal methods used by modern systems neuroscientists. 

 

Results 
A spiking corticothalamic model recreates key features of cellular physiology 

The dynamical elements of the model were inspired by recent empirical observations, 

and consist of three classes of neurons (Fig 1 A-B) – L5PT cells (blue), fast spiking 

interneurons (basket cells, gold), and diffuse projecting matrix thalamocortical cells 

(purple) – each of which are modelled using biophysically plausible spiking neurons 

(Izhikevich, 2003, 2004, 2006; Naud & Sprekeler, 2018) that were coupled through 

conductance-based synapses. By building the model from these circuit elements, we 

ensured that the emergent dynamics of the population recapitulate known signatures 

of cell-type-specific firing patterns, thus retaining the capacity to translate insights 

between computational modellers and cellular physiologists. 

 
Fig 1. Thalamocortical model of perceptual awareness. A) Idealised anatomy of the model 

thalamocortical loop connecting higher-order matrix thalamus and L5PT neurons. B) Single neuron 

dynamics of example neurons in the thalamocortical network for each class of cell when driven with 600 

[Hz] of independent background drive to the somatic compartment of every neuron and 50 [Hz] to apical 

compartment of L5PT cells. C) Bifurcation diagram of the L5PT apical compartment. IB1 denotes a saddle 

node bifurcation generating a stable plateau potential which coexists with the resting state of the apical 

compartment until the model passes through a second saddle node bifurcation at IB2 at which point the 

resting state vanishes and the stable plateau potential becomes globally attracting. D) Somatic firing 

rate of the novel dual compartment L5PT model as a function of basal (i.e. somatic compartment) drive 

and apical drive (measured in terms of the distance to IB1). In line with empirical data (Larkum, 2004), 
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apical drive increases the gain of the somatic compartment. E) Model thalamocortical ring architecture. 

L5PT cells and basket cells were placed on a cortical ring at evenly space intervals. 

 

To model the non-linear bursting behaviour of L5PT cells (which has been linked to 

perceptual awareness; Larkum, 2004, 2022; Larkum et al., 2009), we created a novel 

dual-compartment model with active apical dendrites that captures the essential 

features of the cells’ physiology. Empirical recordings have shown that L5PT cells 

switch from regular spiking to bursting when they receive near-simultaneous input to 

both their apical (top) and basal (bottom) dendrites (Larkum, 2004, 2022; Fig 1B). 

As such, our model includes a somatic compartment, described by an Izhikevich 

adaptive quadratic integrate and fire neuron (Izhikevich, 2006; Munn, Müller, Aru, et 

al., 2023; Munn, Müller, Medel, et al., 2023) and an apical compartment, described by 

a non-linear model of the Ca2+ plateau potential (Naud et al., 2014; Naud & Sprekeler, 

2018). To recapitulate known physiology, we coupled the compartments such that 

sodium spikes in the somatic compartment back propagate to the apical compartment; 

in turn if a Ca2+ plateau potential is triggered in the apical compartment the somatic 

compartment's behaviour (probabilistically) switches from regular spiking to bursting 

(implemented by switching the reset conditions of the somatic compartment). The 

amount of current entering the apical compartment controls this switching process. 

With sufficiently high current the apical compartment passes through a saddle node 

bifurcation (IB1; Fig 1C) and a stable Ca2+ plateau potential coexists with the resting 

state of the compartment. Further increases in current cause the cell's resting state to 

disappear (by passing the cell through a second saddle node bifurcation at IB2; Fig 

1C), making the plateau potential globally attracting (supplementary materials S1A-

D). 

 

Based on the finding that communication between the soma and apical dendrites of 

L5PT cells depends upon depolarising input from the matrix thalamus to the “apical 

coupling zone” of L5PT cells (Suzuki & Larkum, 2020), we made the probability of 

successful propagation between compartments proportional to the amplitude of 

thalamic conductances. In line with empirical findings and previous modelling 

(Larkum, 2004; Shai et al., 2015), Ca2+ plateau potentials in the apical compartment 
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controlled the gain of the somatic compartment’s firing rate curve by increasing the 

amount of time the somatic compartment spent in a bursting rather than a regular 

spiking parameter regime (Fig 1D). 

 

In line with previous spiking neural network models of early sensory cortex (Laing et 

al., 2010; Laing & Chow, 2002; Wang et al., 2020; Zerlaut et al., 2018), we embedded 

the cortical neurons in a one-dimensional ring architecture (90 pairs of L5PT excitatory 

and fast-spiking inhibitory interneurons; Fig 1E). Each point on the ring represents 

an orientation preference, with one full rotation around the ring corresponding to a 

180° visual rotation – this provides each neuron with a 2° difference in orientation 

preference, relative to its neighbours. The cortical ring was coupled to a thalamic ring 

with a 9:1 ratio (to approximately reflect the cortico-thalamic ratio in mammals), 

which then projected back up to the apical dendrites of the same 9 cortical neurons, 

representing the diffuse projections of higher-order thalamus onto the apical dendrites 

of L5PT neurons in layer 1 (Mease & Gonzalez, 2021; Shepherd & Yamawaki, 2021). 

Cortical coupling was modelled with a spatial decay, with long range inhibitory 

coupling and comparatively local excitatory coupling (i.e., centre-surround ‘Mexican-

hat’ connectivity). 

 

When driven solely by baseline input, the model emitted irregular spikes interspersed 

with sparse spatially localised bursts mediated by depolarising input from the thalamus 

which allowed L5PT somatic spikes to back-propagate initiating Ca2+ plateau 

potentials in the apical dendrites which in turn initiated transient burst spiking in the 

somatic compartment (Fig 1C). Cortical spiking activity was highly irregular (mean 

inter-spike interval coefficient of variation 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑚𝑒𝑎𝑛  = 2.4) characteristic of a 

waking state (Destexhe, 2009). For more details on the model architecture and analysis 

of the dynamics see materials and methods. 

 

The thalamocortical model reproduces empirical signatures of threshold detection 

We first set out to reproduce the results of the whisker-based tactile detection 

paradigm employed by Takahashi and colleagues (2016, 2020), who trained mice to 

report a mechanical deflection of a whisker over a range of deflection intensities (Fig 
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2A) whilst recording L5PT activity in barrel cortex from the apical dendrites via fast 

scanning two-photon Ca2+ imaging, and somatic activity via juxtacellular electrodes. 

The original study found that bursting activity in the soma of L5PT cells, generated by 

Ca2+ plateau potentials in the apical dendrites, distinguished hits and false alarms 

from misses and correct rejections. Importantly, they were able to establish causality 

through a series of perturbation experiments (Fig 2B). Optogenetic excitation of the 

apical dendrites reduced the animal’s threshold for awareness increasing both hits and 

false-alarms (Fig 2C). In turn, pharmocological inhibition of the apical dendites and 

POm (a matrix-rich higher-order thalamic nucleus with closed loop connections to 

barrel cortex; Mease & Gonzalez, 2021) increased the animals perceptual threshold 

(Fig 2D-E).  

 

 
Fig 2. Apical compartment distance to bifurcation and thalamic-gating explains shifts in perceptual 

threshold. A) Whisker deflection paradigm modified from Takahashi et al, (2020). B) Representation 

of causal perturbations to L5PT thalamocortical circuit including optogenetic excitation of the apical 

dendrites (light blue), pharmacological inhibition of the apical dendrites (pink), and pharmacological 

inhibition of POm (orange). C-D) Psychometric function of animals performing a whisker deflection 
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task for the control condition (grey), optogenetic excitation of apical dendrites (blue), and 

pharmacological inhibition of apical dendrites (pink). Modified from Takahashi et al, (2016) and 

Takahashi et al, (2020). E) Response probability as a function of whisker deflection intensity for control 

(grey) and pharmacological inhibition of POm (orange). Modified from Takahashi et al., (2020). F-H) 

Model response probability as a function of stimulus intensity across simulated causal perturbations. 

Colours same as above. I) Apical compartment bifurcation diagram showing the average distance to B1 

in post stimulus period averaged across stimulus intensities. J) Average distance to B1 across stimulus 

intensities and simulated causal perturbations in the post stimulus period. K) Proportion of population 

in bursting regime across stimulus intensities and simulated causal perturbations in the post stimulus 

period. L) Average inter-compartment coupling probability across stimulus intensities and simulated 

causal perturbations in the post stimulus period. M) Average spike count across stimulus intensities 

and simulated causal perturbations in the post stimulus period. 

 

To model the perceptual discrimination process underlying threshold detection –

discriminating the presence of a weak stimulus against a noisy background – all 

neurons received a constant background drive consisting of independent Poisson spike 

trains whilst an arbitrary cortical neuron was pulsed by a current of constant width 

and variable amplitude that we weighted by a spatial Gaussian to mimic the selectivity 

of neurons in early sensory cortex. We operationalised perceptual awareness in the 

threshold detection simulations in terms of what an upstream ideal observer could 

readout from the population by computing whether trial-by-trial spike counts in the 

1000 ms post stimulus window exceeded an optimal criterion (i.e. the criterion that 

best minimises misses and false alarms across stimulus intensities). We counted the 

model as having made a response whenever the spike count exceeded the optimal 

criterion. Psychometric functions were then fit to the model’ responses (for details see 

materials and methods). Qualitatively identical results were obtained using 

neurometric functions which summed over all criterion values (see supplementary 

material S2; Britten et al., 1992).  

 

The model responses to simulated whisker deflections recapitulated the empirically 

observed sigmoid-like relationship between the intensity of the simulation and the 

model’s response probability (Fig 2F-H). In addition, perturbations to the model 

designed to replicate optogenetic excitation and pharmacological inhibition (Fig 2A) 

qualitatively reproduced the empirically observed shifts in response probability across 
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perturbation types (Fig 2C-H). For each type of perturbation we ran the simulation 

over a range of perturbation magnitudes to ensure the reliability of the effect see 

supplementary material S2. For brevity, we only show the results for 300 [pA] 

perturbations in the main text. In addition, we note that the saturating detection 

probability values in the model are due to an absense of behavioural stochasticity 

resulting from extranious factors such as decision noise which are inherent to empirical 

data.  

 

A key benefit of biophysical modelling is the capacity to mechanistically probe the 

model and determine how the empirical observations may have emerged from the 

underlying circuit dynamics. To this end, we used tools from dynamical systems theory 

to interrogate the cell-type-specific dynamics underlying the behaviour of the model 

including the distance to bifurcation (IB1) in the apical compartment, the parameter 

regime of the somatic compartment (i.e. regular spiking or bursting), and the inter-

compartment coupling probability. Excitation of the apical dendrites (blue) reduced 

the average distance to bifurcation (here defined as the distance to IB1) in the apical 

compartment across the network in the 1000 [ms] period post stimulus onset (Fig 2I-

J). This increased the proportion of time each somatic compartment spent in the 

bursting regime (Fig 2K), which in turn increased the average spike count of L5PT 

cells across stimulus intensities resulting in reduction of the model’s perceptual 

threshold (Fig 2F & 2M). Conversely, inhibition of the apical dendrites (pink) and the 

thalamus (orange) both resulted in an increase in the perceptual threshold (Fig 2G-

H).  

 

Importantly, however, the mechanisms underlying the increase in the perceptual 

threshold differed across apical dendrite and thalamic inhibitory perturbations. 

Inhibition of the apical dendrites increased the average distance to bifurcation at B1 

in the apical compartment across the network (Fig 2I-J). In contrast, inhibition of the 

thalamus resulted in a comparatively minor reduction in the distance to bifurcation in 

the apical dendrites (Fig 2I-J) but reduced the thalamus mediated inter-compartment 

coupling (Fig 2L) thereby reducing the probability that a back propagating action 

potential could reach the apical compartment, and the probability with which a 
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plateau potential could switch the regime of the somatic compartment from regular 

spiking to bursting. Together this resulted in a similar reduction in the proportion of 

cells in the bursting regime for both thalamic and apical dendrite inhibition, and 

likewise, a similar reduction in the average stimulus evoked spike count explaining the 

comparable increase in perceptual thresholds (Fig 2M).  

 

Thalamocortical spiking model generalises to visual rivalry  

We next sought to generalise our thalamocortical model of perceptual awareness to 

visual rivalry formalising and interrogating the hypothesis that the role played by 

pulvinar – L5PT loops in visual cortex is analogous to the role played by POm – L5PT 

loops in barrel cortex. To simulate visual rivalry we drove the model with input 

representing orthogonal gratings presented to each eye, typical of standard binocular 

rivalry experiments (Logothetis & Leopold, 1996; Tong et al., 2006), targeting the 

soma (i.e., basal dendrites) of L5PT cells on opposite sides of the ring with orthogonal 

orientation preferences (Fig 3A).  
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Fig 3. A thalamocortical cascade underlies perceptual switches. A) Thalamocortical ring architecture 

driven by input representing orthogonal gratings. B) Raster plots of L5PT soma (blue) and matrix 

thalamus population (purple) during rivalry. C) Example single neuron spiking activity around a 

perceptual switch – dotted lines denote the crossing in the population averaged time series. D) 

Population averaged neuronal variables centred on a perceptual switch. E) Histogram of dominance 

durations, black line shows the fit of a Gamma distribution with parameters estimated via MLE (𝛼 = 

4.85, 𝜃 = 0.56). F) Simulation confirming Levelt’s second proposition. Dashed line shows the dominance 

duration of the population receiving the decreasing external drive, solid line shows dominance duration 

of population receiving a fixed drive. G) Simulation of Levelt’s fourth proposition. Notably, for low 

stimulus strengths our model, along with a number of meanfield models of visual rivalry (Shpiro et al., 

2007), predicts a deviation from Levelt’s fourth proposition.  

 

Due to the fact that inhibitory connectivity is broader than excitatory connectivity, 

delivering external drive to opposite sides of the ring shifts the model into a winner-

take-all regime with burst-dependent persistent states on either side of the ring 

competing to inhibit one another. Importantly, through the accumulation of slow a 

hyperpolarising adaptation current in the somatic compartment of each L5PT cell 

(representing slow Ca2+ mediated K+ currents; McCormick & Williamson, 1989; 

Wilson & Cowan, 2021), burst-dependent persistent states are only transiently stable 

leading to stochastic switches between persistent states characteristic of binocular 

rivalry (Fig 3B-C). We operationalised perceptual dominance (i.e., awareness of a 

percept at the exclusion of the other) in terms of the difference in average firing rate 

between the persistent ‘bumps’ of L5PT cell activity on opposite sides of the ring. In 

line with common practice (e.g. Li et al., 2017) in models of rivalry a population was 

counted as dominant when it had a firing rate 5 [Hz] > than its competitor and lasted 

for longer than 250 [ms] (results were robust across a large range of threshold values). 

The initial competition for perceptual dominance was determined by which population 

of L5PT cells first established a recurrent loop with matrix-thalamus. This interaction 

allowed the recurrently connected population of cells to enter a bursting regime, at 

which point the population had sufficient activity to maintain a persistent state and 

inhibit the competing population into silence. In previous work we have argued that 

this emergent property of corticothalamic loops is a good candidate for a cellular-level 

correlate of perceptual awareness (Aru et al., 2020; Whyte et al., 2024). 
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Crucially, our model provides a cellular-level explanation of spontaneous rivalry-

induced perceptual switches in terms of these same mechanisms. As the reliable 

initiation of Ca2+ plateau potentials in the model depends upon back-propagating 

action potentials, perceptual switches are always preceded by regular spikes in the 

suppressed population. Preceding each switch, the accumulation of adaptation reduces 

the firing rate of the dominant population to a sufficient level that the suppressed 

population can escape from inhibition and emit a brief series of regular spikes that 

transition into bursts as thalamus is recruited and Ca2+ plateau potentials are initiated 

(Fig 3C), eventually gaining sufficient excitatory activity to inhibit the previously 

dominant population into silence via recurrent interactions with the basket cell 

population. At the population level (Fig 3D), this cascade of neuronal events is 

characterised by an initial ramping in the somatic firing rate of the suppressed 

population, followed by the inter-compartment coupling probability, the proportion of 

the population bursting, and finally by the average distance to bifurcation in the apical 

compartment. Once dominant, approximately half the population is in a bursting 

regime at each point in time (0.5424 mean ± 0.058 standard deviation), and the 

average distance to bifurcation in the apical compartment fluctuates around zero (-

11.0185 ± 48.067 [pA]), with approximately a third (0.3669 ± 0.097) of the population 

located above the critical boundary (IB1) at each point in time. In addition, the average 

inter-compartment coupling probability is (0.8845 ± 0.102) allowing reliable 

communication between compartments. Once silenced, adaptation in the previously 

dominant population decays back to baseline levels and accumulates in the previously 

suppressed, now dominant, population. In this way, the competitive organisation of 

the cortico-cortical and corticothalamic loop provides a natural “flip-flop” switch that 

stochastically alternates between dominant percepts. 

 

As cortical pyramidal cells are known to display considerable differences in spiking 

behaviour across species (Kalmbach et al., 2021) we swept the parameters of our model 

L5PT cell responsible for the bursting behaviour to ensure that visual rivalry (quantified 

by average dominance duration) is stable across a wide range of parameters. In favour 

of the robustness of the model, dominance durations in an empirically plausible range 
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(i.e. with a period on the order of seconds) occurred across a wide range of parameter 

values (supplementary material S3).  

 

In close agreement with psychophysical data, switches between dominance and 

suppression had a right-skewed distribution of dominance durations (Brascamp et al., 

2015; Levelt, 1967; Logothetis & Leopold, 1996; Fig 3E). Across stimulus drive 

conditions (1300 – 1500 [Hz]), comparison of negative log likelihoods showed that the 

distribution of dominance durations was best fit by a Gamma distribution 

(ℓ = 2.81 × 10−3), compared to lognormal (ℓ = 2.88 × 10−3) or normal distributions 

(ℓ = 2.88 × 10−3). Because of the large size of the network and the discontinuity in the 

somatic compartment we could not use analytic methods to interrogate the structure 

of the dynamical system underlying the stochastic oscillations. Instead we used a 

heuristic line of argument (see Strogatz, 2018, Ch.8) combined with simulations in the 

absence of noise to confirm that the dynamical regime underlying these stochastic 

oscillations likely consists of noisy excursions around a stable closed orbit (i.e. a stable 

limit cycle; supplementary material S4).  

 

Thalamocortical spiking model conforms to Levelt’s propositions 

To further test the psychophysical validity of our neurobiologically detailed model, we 

simulated the experimental conditions described by Levelt’s modified propositions 

(Brascamp et al., 2015) – a set of four statements that compactly summarise the 

relationship between stimulus strength (e.g., luminance contrast, colour contrast, 

stimulus motion) and the average dominance duration of each stimulus percept. Here, 

we focus on the modified second and fourth propositions, as they constitute the “core 

laws” of rivalry and incorporate recent psychophysical findings (propositions one and 

three are consequences of proposition two; Brascamp et al., 2015).  

 

Levelt’s modified second proposition states that increasing the difference in stimulus 

strength between the two eyes will principally increase the average dominance duration 

of the percept associated with the stronger stimulus (Brascamp et al., 2015; Leopold 

& Logothetis, 1996; Logothetis & Leopold, 1996). To simulate Levelt’s second 

proposition, we decreased the spike rate entering one side of the ring from 1350 to 1200 
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[Hz] in steps of 50 [Hz] across simulations. In line with predictions (Fig 3F), the average 

dominance duration of the percept corresponding to the stronger stimulus showed a 

steep increase from ~3.25 [s] with matched input, to ~ 6 [s] with maximally different 

input whilst the average dominance duration on the side of the weakened stimulus 

decreased comparatively gradually to ~1.9 [s] with maximally different inputs.  

 

According to Levelt’s modified fourth proposition, increasing the strength of the 

stimulus delivered to both eyes will increase the average perceptual reversal rate (i.e., 

decrease dominance durations; Brascamp et al., 2015), a finding that has been 

replicated across a wide array of experimental settings (Bonneh et al., 2014; Brascamp 

et al., 2006; Buckthought et al., 2008; Meng & Tong, 2004). To simulate Levelt’s fourth 

proposition, we ran a series of simulations in which we increased the spike rate of the 

external drive in steps from 1300 to 1500 [Hz] in steps of 50 [Hz] across simulations. 

Again in line with predictions (Fig 3G), the perceptual alternation rate increased with 

input strength, starting at ~7.75 alternations per minute at the second weakest 

stimulus strength (1350 [Hz]) and increasing to ~15 alternations per minute for the 

strongest stimulus (1500 [Hz]). Interestingly, along with a number of meanfield models 

of rivalry (Shpiro et al., 2007), our model predicts a deviation from Levelt’s fourth 

proposition for very low stimulus values with an uptick in alternation rate occurring 

at the lowest external dive value (1300 [Hz]). Encouragingly, there is some initial 

evidence that deviations from Levelt’s fourth law may be present in human 

psychophysical data (Brascamp et al., 2015). 

 

To help ensure that the simulation results were not biased by finite size effects or other 

simplifying assumptions such as the all-to-all connectivity of the cortical ring, or the 

50/50 excitatory/inhibitory neuron ratio, we show in supplementary material S5 that 

a scaled-up version model consisting of 2000 cortical neurons with sparse connectivity, 

and an 80/20 excitatory/inhibitory neuron ratio (i.e. consistent with Dale’s law), also 

produces a Gamma distribution of dominance durations, and is consistent with Levelt’s 

second and fourth propositions.   
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We thus confirmed that our neurobiologically detailed model of the matrix thalamus - 

L5PT loop is capable of reproducing Levelt’s propositions, which together with the 

right-skewed distribution of dominance durations, show the consistency of our model 

with the psychophysical “laws” known to govern visual rivalry. 

 

Generating testable predictions through in silico electrophysiology  

Binocular rivalry is thought to depend in part on the substantial degree of binocular 

overlap in humans (~120o), however the lateral position of the eyes in mice leaves only 

~40 o of binocular overlap (Poort & Meyer, 2021). For this reason, there are no current 

mouse models of binocular rivalry, however there are monocular variants of visual 

rivalry, namely plaid perception, that can be studied the mouse model (Bogatova et 

al., 2024; Palagina et al., 2017). Crucially, plaid perception, like binocular rivalry, 

conforms to Levelt’s laws (Brascamp et al., 2015; Hupé et al., 2019) and also has a 

right skewed distribution of dominance durations that is well fit by a Gamma 

distribution (Bogatova et al., 2024). We hypothesise, therefore, that the principles 

underlying the simulation of binocular rivalry in our model will also describe other 

forms of visual rivalry (such as plaid perception), offering a plausible means to test 

cellular level predictions derived through simulation. To this end, we next ran a series 

of perturbation experiments, with the aim of interrogating the novel burst-dependent 

mechanism of perceptual dominance by mimicking the optogenetic and 

pharmacological experiments carried out in threshold-detection studies (Takahashi et 

al, 2016; 2020), in the context visual rivalry. As perceptual dominance depends on the 

formation and maintenance of a burst-dependent persistent state, we hypothesised that 

artificially exciting the apical dendrites would result in an increase in the average 

dominance duration of the excited population, and artificially inhibiting the apical 

dendrites and thalamus would result in a decrease in the dominance durations for the 

inhibited populations.  

 

Due to the fact that the distance to bifurcation of the dominant population fluctuates 

around zero, we predicted that exciting the apical dendrites would increase the 

proportion of the population above the bifurcation at B1, thereby reducing the 

probability with which a fluctuation in somatic drive would lead to a sizable enough 
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drop in the proportion of the population below B1 to release the competing population 

from inhibition. This should, therefore, result in an increase in the frequency of long 

dominance duration events, thereby increasing the mean and the spread of the 

distribution. Equivalently, we predicted that inhibiting the apical dendrites would 

reduce the proportion of the population above B1, making it more likely that transient 

fluctuations in somatic drive would allow the competing population to escape from 

inhibition, reducing the occurrence of long dominance duration events, thereby 

reducing both the mean and the spread of the distribution of dominance durations. 

Finally, based on the results of the threshold detection simulations we predicted that 

thalamic inhibition would have an analogous effect on dominance durations to apical 

dendrite inhibition but would be mediated by a reduction in the coupling probability. 

To test these hypotheses, we conducted two in silico experiments analogous to the 

conditions described by Levelt’s modified propositions but instead of manipulating the 

external drive entering the somatic compartment of L5PT cells we manipulated the 

amplitude of simulated causal perturbations to the L5PT apical compartment and 

thalamus (Fig 4A & 5A). 

 
Fig 4. In silico electrophysiology reveals degenerate mechanisms of perceptual dominance 

(asymmetric perturbations). A) Causal perturbations to one half of the thalamocortical circuit 

underlying visual rivalry consisting of optogenetic excitation of the apical compartment (blue), 

pharmacological inhibition of the apical compartment (pink), and pharmacological inhibition of the 

thalamus (orange). B-D) Average dominance duration of perturbed (solid), and unperturbed (dashed) 
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populations. Error bars show SEM. E) Average distance to bifurcation point at B1 shown on bifurcation 

diagram for perturbed (solid) and unperturbed (dashed) populations during periods of perceptual 

dominance with 400 [pA] perturbation strength. F) Average distance to bifurcation point at B1 for 

perturbed (solid) and unperturbed (dashed) populations during periods of perceptual dominance. G) 

Proportion of population above bifurcation point at B1 during periods of perceptual dominance. H) 

Proportion of population in bursting regime during periods of perceptual dominance.  

 

In the first set of experiments, we simulated optogenetic excitation and 

pharmacological inhibition of one of the two competing populations by adding a 

constant current (± 200, 400 [pA]) to all of the target variables (i.e. apical 

compartment or thalamic neurons) on one side of the ring (Fig 4A). In line with 

predictions, we found that the average dominance duration of the excited population 

(Fig 4B) increased, the distance to bifurcation decreased (Fig 4E-F), the proportion 

of the population above the critical point at B1 increased (Fig 4G), and the proportion 

of the population in the bursting regime increased (Fig 4H). The dominance durations 

and neuronal dynamics of the unexcited population remained relatively unchanged.  

 

Similarly, inhibition of both the apical dendrites and thalamus reduced the average 

dominance duration of the inhibited population whilst the uninhibited population was 

again relatively unchanged (Fig 4C-D). As in the threshold detection simulations, 

inhibition of the apical dendrites led to a large increase in the distance to B1 compared 

to thalamic inhibition (Fig 4E-F) which primarily affected the inter-compartment 

coupling probability (supplementary material S6A). Both apical dendrite and 

thalamic inhibition led to almost identical reductions in the proportion of the 

population above the critical point at B1 (Fig 4G), and the proportion of the 

population in the bursting regime (Fig 4H). The uninhibited population again 

remained relatively constant across all of the neuronal measures (the small drop in 

dominance durations of the uninhibited population for the 400 [pA] inhibitory 

perturbations is due to the adaptation variable having less time to recover). As 

predicted the spread of the distribution of dominance durations increased with the 

amplitude of excitatory perturbation and decreased under inhibition (supplementary 

material S6B). 
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Fig 5. In silico electrophysiology reveals degenerate mechanisms of perceptual dominance 

(symmetric perturbations). A) Causal perturbations to full thalamocortical circuit underlying visual 

rivalry. Colours same as above. B-D) Perceptual alternations per minute of simulation time across 

perturbation types. Error bars show SEM. E) Average distance to bifurcation point at B1 shown on 

bifurcation diagram for perturbed (blue, orange, pink) and unperturbed (grey) simulations during 

periods of perceptual dominance at 400 [pA]. F) Average distance to bifurcation point at B1 for full 

network perturbations during periods of perceptual dominance. G) Average proportion of population 

above bifurcation point at B1 for full network perturbations during periods of perceptual dominance. 

H) Average proportion of population in bursting regime for full network perturbations during periods 

of perceptual dominance. 

 

In the second set of experiments, we simulated optogenetic excitation and 

pharmacological inhibition of both competing neuronal populations simultaneously by 

adding a constant current (± 200, 400 [pA]) to all of the target variables on the ring 

(Fig 5A). Again, in line with predictions, the speed of rivalry (i.e., the number of 

perceptual alternations per minute of simulation time) decreased as a function of apical 

dendrite excitation (Fig 5B). Excitation also decreased the average distance to B1 (Fig 

5E-F), increased the proportion of the population above the critical point at B1 (Fig 

5G), and increased the proportion of the population in the bursting regime (Fig 5H).  

 

In contrast, inhibition of the apical dendrites and thalamus both increased the speed 

of rivalry (Fig 5C-D). Inhibition of the apical dendrites led to a large increase in the 
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distance to the critical point at B1 compared to thalamic inhibition (Fig 5E-F), but 

both apical dendrite inhibition and thalamic inhibition reduced the proportion of the 

population above the critical point at B1 (Fig 5G), and the proportion of the 

population in a bursting regime (Fig 5H) through reductions in the thalamus mediated 

inter-compartment coupling probability (supplementary material S6C). As with the 

asymmetric perturbation simulations, inhibition exerted a much larger effect on the 

speed of rivalry than excitation. Finally, again in line with our predictions, the spread 

of the distribution of dominance durations increased under excitatory perturbation of 

the apical dendrites and decreased under inhibition of the apical dendrites and 

thalamus (supplementary material S6D).  

 

Together, these in silico electrophysiological experiments provide important testable 

(and explainable) hypotheses for future experiments that although not testable in any 

existing data sets are well within the purview of modern systems neuroscience 

providing an opportunity to conduct precise theory-driven tests of the model. 

 

Discussion 

The study of perceptual awareness in human participants and animal models has so 

far proceeded largely in parallel – the former exploring the largescale neural dynamics 

and behavioural signatures of perceptual awareness across a rich array of experimental 

settings, and the latter characterising the cellular circuitry of perception in exquisite 

detail, and with precise causal control, but with only limited links to higher level 

perceptual phenomena (He, 2023). Leveraging a neurobiologically detailed model of 

the matrix thalamus – L5PT loop, we have shown that a potential circuit-level 

mechanism of tactile perceptual awareness discovered in a mouse model of tactile 

awareness (Aru et al., 2019, 2019; Takahashi et al., 2016, 2020) generalises to visual 

rivalry, thus providing a roadmap for the linking circuit level mechanisms studied in 

animal models to the behavioural signatures of perceptual awareness studied in human 

participants.  

 

The balance of neurobiological detail and interpretability offered by our model allowed 

us to reproduce the threshold-detection results of Takahashi et al (2016, 2020) and 
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interrogate the mechanisms underlying the experiments in a manner that would be 

impossible in vivo. In particular, examination of the model’s dynamics under simulated 

causal perturbations to the circuit revealed a degenerate dynamical mechanism for 

controlling the threshold for perceptual awareness. Excitation of the apical 

compartment reduced the distance to bifurcation in the apical compartment, thus 

increasing the probability that each cell could generate a Ca2+ plateau potential 

switching the soma into a bursting regime. This resulted in an increase in the baseline 

and stimulus-evoked spike count, and correspondingly, led to a reduction in the 

model’s perceptual threshold. Inhibition of the apical compartment and thalamus 

resulted in comparable downward shifts in the baseline and stimulus-evoked spike 

count, leading to increases in the model’s perceptual threshold. Importantly, however, 

the neural mechanisms underlying the increases in perceptual threshold were distinct: 

inhibiting the apical compartment increased the distance to bifurcation, thus reducing 

the probability with which each cell would generate a Ca2+ plateau potential, whereas 

inhibiting the thalamus reduced the inter-compartment coupling. Both mechanisms, 

however, led to comparable reductions in the proportion of cells in the bursting regime 

explaining the comparable increase in perceptual thresholds, suggesting that it is the 

emergent action of the corticothalamic circuit as a whole, rather than single cells within 

the circuit, that are responsible for perceptual awareness. 

 

The degenerate mechanisms underlying the threshold for perceptual awareness 

combined with the operational definition of perceptual awareness in the threshold 

detection task (in terms of psychometric functions) points to a conceptually important 

point about the role of bursts in the model, and potentially, the empirical data itself. 

Specifically, controlling the ease with which a cell can burst through optogenetic and 

pharmacological perturbation is simply a means for controlling how easily a stimulus 

can evoke reverberant activity in corticocortical and thalamocortical loops which, in 

the simple case of threshold detection, constrains the extent to which stimulus evoked 

activity can stand out against a background of noise driven fluctuations. 

 

We next showed that the same thalamus-gated burst-dependent mechanism underlying 

perceptual awareness in simulations of the tactile threshold detection task also 
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determines perceptual dominance in simulations of visual rivalry. Specifically, 

perceptual dominance is initiated by a succession of regular spikes and maintained 

through the formation of a transiently stable burst-dependent persistent state 

characterised by reliable coupling between apical and somatic compartments. This 

allows the apical compartment to generate temporally extended plateau potentials in 

a large subset of the dominant population reliably switching the L5PT soma from a 

regular spiking to a bursting regime. Perceptual dominance is then maintained until 

the slow hyperpolarising adaptation current accumulates to a sufficiently high level 

that the dominant population is no longer able to maintain inhibit the competing and 

a perceptual switch ensues. 

 

Importantly, the model conforms to Levelt’s modified propositions. Originally proposed 

in 1965 (Levelt, 1965), “Levelt’s laws” have proven to be remarkably robust needing 

only minor modification and contextualisation (Brascamp et al., 2015) and have, 

therefore, served as a benchmark for computational models of visual rivalry (e.g., 

Grossberg et al., 2008; Laing & Chow, 2002; Shpiro et al., 2007; Wilson, 2007). 

Together with the right-skewed (Gamma) distribution of dominance durations the 

consistency of our model with Levelt’s propositions provides an in silico conformation 

of the hypothesis that pulvinar – L5PT loops in visual cortex may play an analogous 

role to POm – L5PT loops in barrel cortex. This is a minimal but necessary first step 

in testing the hypothesis that reverberant activity in matrix thalamus – L5PT loops is 

a necessary component part in a domain general mechanism of perceptual awareness. 

 

Having validated our model against psychophysical benchmarks, we next sought to 

interrogate the novel thalamus-gated burst-dependent mechanism of perceptual 

dominance by emulating the optogenetic and pharmacological experiments carried out 

by Takahashi et al (2016, 2020) in the context of visual rivalry. Under conditions of 

visual rivalry, the simulated causal perturbations are similar to the conditions 

described by Levelt’s propositions, but instead of manipulating the strength of the 

external stimulus we manipulated the strength apical compartment 

excitation/inhibition, or thalamic inhibition, highlighting the unique contribution of 

these neurobiological components to visual rivalry. Across asymmetric and symmetric 
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perturbations excitation of the apical compartment slowed perceptual alternations 

(i.e., increased dominance durations) by increasing the proportion of the population 

able to sustain temporally extended Ca2+ plateau potentials and remain in a 

transiently-stable bursting regime, whereas inhibition of both the apical dendrites and 

thalamus had the opposite effect. Although technically difficult, these simulated 

experimental manipulations are well within the purview of modern experimental 

techniques and therefore represent a means of causally testing the predictions of our 

model. Importantly, the simulation of these experimental perturbations would not be 

possible in any existing models of rivalry, even those at the spiking level (e.g. Laing & 

Chow, 2002; Wang et al., 2020; Wilson, 2003), as they focus on the minimal conditions 

for rivalry in point-neuron models of cortical interaction. The inclusion of a dual 

compartment model of L5PT cells, and an explicit thalamic population, was, therefore, 

required in order to make contact with the results of Takahashi et al (2016, 2020).  

 

In addition to the predicted effect of causal perturbations on visual rivalry, our model 

generates a number of more straightforward correlational predictions. Specifically, 

matrix-rich higher-order thalamic nuclei with recurrent connections to sensory cortex, 

such as the pulvinar, should be selective for perceptual awareness rather than physical 

stimulation, a prediction supported by both human neuroimaging (Qian et al., 2023; 

Seo et al., 2022) and non-human primate electrophysiology (Wilke et al., 2009). 

Similarly, synchronous bursting activity in deep layers of cortex, specifically layer 5b 

which contain the soma of ttL5PT cells, should likewise be selective for perceptual 

awareness rather than physical stimulation a prediction that, with the advent of 

primate Neuropixels (Trautmann et al., 2023), is also readily testable. Finally, in the 

context of visual rivalry, perceptual dominance should be characterised by elongated 

Ca2+ plateau potentials in the apical dendrites of L5PT cells (located in L1) in cells 

selective for the dominant percept, a prediction testable in mouse models of visual 

rivalry (e.g. Bogatova et al., 2024).  

 

We anticipate that the cellular conditions for awareness explored in this paper are 

likely to have consequences for the largescale correlates of awareness. Indeed, we 

venture that at the level of large scale brain networks diffuse matrix-thalamus gated 
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bursting may play a key role in the formation of a quasi-critical regime (Müller et al., 

2020, 2023) allowing single nodes in a network to transiently escape from a tight E/I 

balanced state. This permits stimulus information to rapidly propagate across the 

cortical sheet whilst also maintaining stability at the level of the whole network (Müller 

et al., 2020) effectively modulating the gain of interareal connectivity in line with 

previous computational models of pulvinar-cortical interactions in cognitive tasks 

(Jaramillo et al., 2019). Indeed, efforts to test the largescale consequences of the 

cellular level mechanisms interrogated in this paper are already very much underway. 

Biophysical modelling of source-localised MEG data showed that auditory awareness 

evoked activity was best fit by increased input to superficial layers of the cortical 

column consistent with the projections of matrix-type higher-order thalamus (Pujol et 

al., 2023). 

 

As has been noted elsewhere (c.f. Aru et al., 2020; Storm et al., 2024), the circuit level 

conditions for awareness explored here fit well with many of the major neuronal 

theories of consciousness. The diffuse projections of the matrix-type thalamus may be 

a circuit level mechanism underlying the non-linear and widespread “ignition” response 

proposed by global neuronal workspace theory to underlie the transition from 

unconscious to conscious processing (Benitez et al., 2023; Cortes et al., 2023; 

Klatzmann et al., 2022; Mashour et al., 2020). The improvement in signal-to-noise 

ratio associated with bursting aligns with signal detection theoretic versions of higher-

order theory (Lau, 2007), and the recurrent nature of matrix thalamus – L5PT loops 

could be considered a thalamocortical extension of the currently corticocentric 

recurrent processing theory (Lamme, 2006). In addition, in previous work we have 

shown that diffuse matrix-type control of bursting in a sheet of L5PT cells maximises 

an approximate measure of integrated information (Munn, Müller, Aru, et al., 2023), 

in line with integrated information theory (Albantakis et al., 2023). We speculate that 

exploring the interaction between the cellular conditions for awareness interrogated in 

this paper, and the topology of largescale brain networks, may be of crucial importance 

in resolving the ongoing debate between the theories described above regarding the 

macroscale network conditions necessary for awareness.  
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To strike the right balance between neurobiological detail and interpretability, we 

made a number of simplifying assumptions that place some limitations on our model. 

Most notably, we did not include L2/3 pyramidal neurons – which are arguably the 

primary source of long distance horizontal connections in the cortex (Douglas & 

Martin, 2004) and arguably cross column inhibition (Qian et al., 2023) – nor a core 

thalamic population which forms a targeted recurrent loops with L4 and L6 of cortex 

(Harris & Shepherd, 2015) preventing us from performing systematic perturbation 

experiments on our model highlighting the precise function of L5PT cells and higher-

order matrix thalamus in a more realistic cortical microcircuit. We also did not include 

time delays between our corticocortical or thalamocortical connections preventing our 

model from providing a realistic model (e.g., Tahvili & Destexhe, 2023) of time-

frequency components of common electrophysiological measures such as local field 

potentials. Finally, our model has only a single hierarchical level preventing us from 

making contact with evidence showing a potential prefrontal contribution to 

perceptual switches (Dwarakanath et al., 2020; Kapoor et al., 2020).  

 

Our model is, of course, only a first step towards a formal characterisation of the 

minimal neurobiological mechanisms underlying perceptual awareness. Extending the 

model, and modelling strategy more generally, to new paradigms such as backward 

masking (Gale et al., 2024), will be of paramount importance in the progression of the 

field as mouse models and the tools of systems neuroscience are brought into contact 

with the sophisticated psychophysical paradigms used to study the behavioural 

signatures of awareness in humans. 
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Materials and Methods 
Thalamocortical spiking neural network 
The neuronal backbone of the model consists of a (novel) dual compartment model of 

L5PT neurons, fast spiking interneurons (basket cells), and thalamic cells. The 

dynamics of basket cells, thalamic cells, and the somatic compartment of L5PT cells 

(Fig 1A-C) were described by Izhikevich quadratic adaptive integrate and fire neurons, 

a hybrid dynamical system that is capable of reproducing a wide variety spiking 

behaviour whilst still being highly efficient to integrate numerically (Izhikevich, 2003, 

2004, 2006). The Izhikevich neuron consists of the following two-dimensional system 

of ODEs: 

 

𝐶𝑣(̇𝑠) = 𝑘(𝑣(𝑠) − 𝑣𝑟
(𝑠))(𝑣(𝑠) − 𝑣𝑡

(𝑠)) − 𝑢(𝑠) + 𝐼𝑒𝑥𝑡  (1) 

                    𝑢(̇𝑠) = 𝑎{𝑏(𝑣(𝑠) − 𝑣𝑟
(𝑠)) − 𝑢(𝑠)}                                       (2) 

  

with reset conditions: if 𝑣 ≥ 𝑣𝑝𝑒𝑎𝑘 then 𝑣 → 𝑐, 𝑢 → 𝑢 + 𝑑. The equations are in 

dimensional form giving the membrane potential (including the resting potential 𝑣𝑟, 

spike threshold 𝑣𝑡, and spike peak 𝑣𝑝𝑒𝑎𝑘, and reset c), input 𝐼𝑒𝑥𝑡, time 𝑡, and capacitance 

𝐶, biophysically interpretable units (mV, pA, mS, and pF respectively). The remaining 

four parameters 𝑘, 𝑎, 𝑏, and d, are dimensionless and control the sharpness of the 

quadratic-nonlinearity, the timescale of spike adaptation, the sensitivity of spike 

adaptation to sub-threshold oscillations, and the magnitude of the spike reset 

adaptation variable. Crucially, Izhikevich (Izhikevich, 2006; Izhikevich & Edelman, 

2008) fit parameters for a large class of cortical and sub-cortical neurons, thus affording 

our model a high degree of neurobiological plausibility while greatly reducing the 

number of free parameters.  

 

The apical compartment of the L5PT neuron consists of a two dimensional non-linear 

system introduced by Naud and colleagues (Naud & Sprekeler, 2018) as a 

phenomenological model of the Ca2+ plateau potential in the apical dendrites of L5PT 

neurons.  
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𝐶𝑣(̇𝑑) = −𝑙(𝑣(𝑑) − 𝑣𝑟
(𝑑)) + 𝑔𝑓(𝑣(𝑑)) + 𝑚𝐻(𝑡 − 𝑡𝑠) + 𝑢(𝑑) + 𝐼𝑒𝑥𝑡  (3) 

               𝑢(̇𝑑) = 𝑎{𝑏(𝑣(𝑑) − 𝑣𝑟
(𝑑)) − 𝑢(𝑑)}                                               (4) 

 

Where 𝑓(𝑥) =  1/(1 + exp (− (𝑥+38)
6 ) describes the regenerative non-linearity 

underlying the Ca2+ plateau potential, and 𝐻(𝑡 − 𝑡𝑠) denotes a square wave function 

of unitary amplitude describing the backpropagating action potential (delayed by 0.5 

[ms] and lasts for 2 [ms]) with 𝑡𝑠 denoting the somatic compartment spike time. The 

parameters 𝑙, 𝑔, 𝑚, denote the leak conductance [nS], amplitude of regenerative non-

linearity [pA], and amplitude of the back propagating action potentials [pA] 

respectively. The model and parameters were derived from a more complex model of 

Ca2+ spikes built to predict in vitro L5PT spike times (Naud et al., 2014).   

 

To simulate key observations from empirical experiments, we coupled the 

compartments together so that sodium spikes in the somatic compartment triggered a 

back propagating action potential affecting the apical compartment through the square 

wave function 𝐻(𝑡 − 𝑡𝑠). In turn, plateau potentials in the apical compartment 

controlled the reset conditions of the somatic compartment. We leveraged the insight 

(Izhikevich, 2003; Munn, Müller, Aru, et al., 2023; Munn, Müller, Medel, et al., 2023) 

that the difference between regular spiking and intrinsic bursting can be modelled by 

changing the reset conditions of equations (1) and (2), raising the reset voltage 

(increasing 𝑐) taking the neuron closer to threshold, and reducing the magnitude of 

spike adaptation (decreasing 𝑑). Whenever the membrane potential in the apical 

compartment exceeded −30 mv the reset conditions changed from regular spiking to 

bursting parameters. This allowed us to reproduce the transient change in dynamical 

regime in L5PT cells that occurs when they receive coincident apical and basal drive. 

Parameters values for each neuron/compartment are given in table 1. 
 

Neuron 𝑪 [pF] 𝒌 [a.u.] 𝒗𝒓 [mV] 𝒗𝒕 [mV] 𝒂  𝒃  𝒄 [mV] 𝒅 [a.u.] 𝒗𝒑𝒆𝒂𝒌 [mV] 𝒍 [nS] 𝒈 [pA] 𝒎 [pA] 

L5PT apical dendrite 170 ~ − 70 ~ 1
30 [ms]−1 −13 nS ~ ~ ~ 24.2857 1200 2600 

L5PT soma 150 2.5 − 75 − 45 0.01 [a. u] 5 [a. u] RS: − 65 

IB: − 55 

RS: 250 

IB: 150 

50 ~ ~ ~ 

Basket cell 20 1 − 55 − 40 0.15 [a. u] 8 [a. u] − 55 200 25 ~ ~ ~ 

Matrix thalamus 200 1.6 − 60 − 50 0.01 [a. u] 15 [a. u] − 60 10 35 ~ ~ ~ 
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Table 1. Parameters for each neuron L5PT apical dendrite parameters were taken from Naud and 

Sprekeler, (2018). L5PT soma parameters were modified from the model of intrinsic bursting (p.290) 

described in Izhikevich (2006). Basket cell (fast spiking interneuron), and matrix thalamus parameters 

were taken from Izhikevich and Edelman (2008). 

 

Based on the finding that communication between apical dendrites and the soma of 

L5PT cells requires depolarising input from the matrix thalamus to the “apical coupling 

zone” in L5a (Suzuki & Larkum, 2020) we made back propagating action potentials 

and Ca2+ driven parameter switches depend stochastically upon a phenomenological 

model of excitatory dynamics in the apical coupling zone described by the saturating 

linear system shown in equation (5).  

 

𝑔𝑖̇,𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = −
𝑔𝑖,𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 
𝜏𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

+ (1 − 𝑔𝑖,𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔) ∑ 𝛿(𝑡 − 𝑡𝑗
𝑠

𝑗
) (5) 

  

Coupling was driven by thalamic spikes (where 𝑡𝑠 denotes the time that the thalamic 

neuron passes the threshold 𝑣 ≥ 𝑣𝑝𝑒𝑎𝑘) and the decay constant 𝜏𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 was taken from 

work estimating the decay of the post synaptic excitatory effects of metabotropic 

glutamate receptors (Greget et al., 2011) which have been shown empirically to 

mediate inter-compartmental coupling in L5PT cells (Suzuki & Larkum, 2020). By 

design, the dynamics of the coupling variable varied between 0 and 1 and governed 

the probability with which back propagating action potentials would reach the apical 

compartment and the probability with which a Ca2+ spike would lead to a switch in 

the soma reset parameters. 

 

Based on previous spiking neural network models of rivalry (Laing et al., 2010; Laing 

& Chow, 2002; Wang et al., 2020) the cortical component of the network had a one-

dimensional ring architecture. Each point on the ring represents an orientation 

preference with one full rotation around the ring corresponding to a 180° visual 

rotation. This mirrors the fact that a 180° rotation of a grating results in a visually 

identical stimulus and also ensures periodic boundary conditions. The cortical ring 

contained 90 L5PT neurons and 90 fast spiking interneurons. Each pair of excitatory 

and inhibitory neurons was assigned to an equidistant location on the ring (unit circle) 
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giving each neuron a 2° difference in orientation preference relative to each of its 

neighbours. The (dimensionless) synaptic weights 𝑤𝑖,𝑗
𝜅𝜔 connecting neurons (𝐸 → 𝐸, 

𝐼 → 𝐸, and 𝐸 → 𝐼), were all-to-all with amplitude decaying as a function of the 

Euclidean distance 𝑑𝑖,𝑗 between neurons (equations (6)) according to a spatial Gaussian 

footprint (equation (7)). 

 

𝑑𝑖,𝑗 = √(cos 𝜃𝑖 − cos 𝜃𝑗)2 + (sin 𝜃𝑖 − sin 𝜃𝑗)2 (6) 

𝑤𝑖,𝑗
𝜅𝜔 =  λ𝜅𝜔𝑒−1

2(
𝑑𝑖,𝑗
𝜎𝜅𝜔)

2

 

 

(7) 

Where 𝜃 is the location of the neuron on the unit circle, 𝜅 and 𝜔 denote the pre- and 

post-synaptic neuron type (i.e. 𝐸 → 𝐸), λ controls the magnitude of the synaptic 

weights, and 𝜎𝜅𝜔 the spatial spread. In line with empirical constraints inhibitory 

coupling had a larger spatial spread than excitatory to excitatory coupling (Naka & 

Adesnik, 2016). Each thalamic neuron received input from 9 cortical neurons and then 

projected back up to the apical dendrites of the same 9 cortical neurons recapitulating 

the diffuse projections of higher-order thalamus onto the apical dendrites of L5PT 

neurons in layer 1 (Mease & Gonzalez, 2021; Shepherd & Yamawaki, 2021). For 

simplicity we set projections to and from the thalamus to a constant value (e.g., 

𝑤𝑖,𝑗
𝑇𝐻→𝐷 = λ𝑇𝐻→𝐷). For the sake of computational efficiency we also neglected 

differences in rise time between receptor types which allowed us to model receptor 

dynamics with a first-order linear differential equation (equation 8) with decay (𝜏𝑑𝑒𝑐𝑎𝑦) 

constants chosen to recapitulate the dynamics of inhibitory (GABAA), and excitatory 

(AMPA and NMDA) synapses (Dayan & Abbott, 2005; Gerstner et al., 2014).  

 

𝑔𝑖̇,𝑠𝑦𝑛 = −
𝑔𝑖,𝑠𝑦𝑛 
𝜏𝑑𝑒𝑐𝑎𝑦

+ 𝑤𝑖,𝑗
𝜅𝜔 ∑ 𝛿(𝑡 − 𝑡𝑗

𝑠

𝑗
) (8) 

 

Where, as above, denotes 𝑡𝑠 the time that the neuron passes the threshold 𝑣 ≥ 𝑣𝑝𝑒𝑎𝑘. 

The conductance term entered into the input 𝐼𝑒𝑥𝑡 through the relation 𝐼𝑖,𝑠𝑦𝑛 =

 𝑔∞𝑔𝑖(𝑡)𝑠𝑦𝑛(𝐸𝑠𝑦𝑛 − 𝑣𝑖(𝑡)) where 𝐸𝑠𝑦𝑛 is the reverse potential of the synapse. Following 

Izhikevich and Edelman (2008) we set 𝑔∞ to 1 for GABAA and AMPA synapses, and 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2025. ; https://doi.org/10.1101/2023.07.13.548934doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548934
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

𝑔∞ = [(𝑣+80)/60]2
1+[(𝑣+80)/60]2 for NMDA synapses. To prevent artificial distortions of the spike 

shape that can occur during parameter sweeps that push the model outside its normal 

operating regime we clipped individual NMDA conductances to a maximum value of 

85 [nS].  

 

For the threshold detection simulations, the somatic compartment of each L5PT cell 

received 600 [Hz] of independent (Poisson) external drive and apical compartments 

received 50 [Hz] of external drive. The whisker deflection was simulated by a pulse of 

constant amplitude varying between 0 – 350 [pA] lasting 200 [ms] and weighted by the 

spatial Gaussian shown in equation (9) where N is the neuron at the centre of the 

pulse and 𝜎𝑇𝐷 the spatial spread. 

 

ℎ𝑖
𝑇𝐷 = 𝑒−((𝑖−𝑁)

𝜎𝑇𝐷 )
2

 
(9) 

 

For the visual rivalry simulations, separate monocular inputs targeting the somatic 

compartment of L5PT cells were modelled with two independent Poisson processes 

(representing input from the left and right eyes in the case of binocular rivalry or left 

and right movement selective populations in the case of plaid perception) with rates 

varying between 1200 and 1800 [Hz] depending on the simulation. The external drive 

was weighted by the spatial Gaussian shown in equation (10) centred on neurons 90° 

apart on the ring abstractly corresponding to the orthogonal grating stimuli commonly 

employed in binocular rivalry experiments.  

 

ℎ𝑖
𝑉𝑅 = 𝑒−((𝑖−𝑁𝐿)

𝜎𝑉𝑅 )
2

+ 𝑒−((𝑖−𝑁𝑅)
𝜎𝑉𝑅 )

2

 
(10) 

 

Here 𝑖 denotes the index of the 𝑖th neuron, 𝑁𝐿 and 𝑁𝑅 control the orientation of the 

stimulus delivered to the left and right eyes, and 𝜎𝑉𝑅 the spatial spread. 

 

To capture the slow hyperpolarising current that traditionally governs switching 

dynamics in models of bistable perception (Wilson & Cowan, 2021), the somatic 

compartment of each L5PT cell was coupled to a phenomenological model of slow 
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hyperpolarising Ca2+ mediated K+ currents (McCormick & Williamson, 1989) which 

entered into the external drive term for each cell (i.e. 𝐼𝑖,𝑎𝑑𝑎𝑝𝑡 = 𝑔𝑖(𝑡)𝑎𝑑𝑎𝑝𝑡(𝐸𝑎𝑑𝑎𝑝𝑡 −

𝑣𝑖(𝑡))) with dynamics given by equation (10). 

 

𝑔𝑎̇𝑑𝑎𝑝𝑡 = − 𝑔(𝑡)𝑎𝑑𝑎𝑝𝑡
𝜏𝑎𝑑𝑎𝑝𝑡

+  Δ𝑔𝛿(𝑡 − 𝑡𝑠)    (11) 

  

Where ∆𝑔 denotes the contribution of each spike to the hyperpolarising current, and 

𝜏𝑎𝑑𝑎𝑝𝑡 the decay constant.  

 

Rather than fit the parameters of our model to individual experimental findings, which 

permits substantial degrees of freedom and risks overinterpretation of idiosyncratic 

aspects of individual experiments, we instead elected to challenge a single model to 

qualitatively reproduce a wide array of experimental findings with a minimal set of 

parameter changes carefully chosen to reflect experimental manipulations and 

perturbations. Specifically, we initialised the connectivity parameters such that: 1) 

when the model received a background drive the conductances were approximately E/I 

balanced with a coefficient of variation > 1, corresponding to an asynchronous irregular 

regime (Destexhe, 2009); 2) inhibitory connections on the cortical ring had broader 

(Gaussian) connectivity than excitatory connections generating a winner-take-all 

regime when the model received two “competing” inputs to opposite sides of the 

cortical ring; and 3) a slow hyperpolarising current was added to the somatic 

compartment of each L5PT cell destabilizing the winner-take-all attractor states leading 

to spontaneous switches between transiently stable persistent states with an average 

duration in the experimentally observed range for binocular rivalry. Parameters for 

the model components described by equations (5) – (11) are supplied in table 2. 

 
Parameter Description Value Units 

λ𝐴𝑀𝑃𝐴
𝐸→𝐸   Amplitude of excitatory to excitatory coupling for (AMPA) 6.125

𝜎𝐸→𝐸 
√

2𝜋  a.u. 

λ𝑁𝑀𝐷𝐴
𝐸→𝐸   Amplitude of excitatory to excitatory coupling (NMDA) 1.225

𝜎𝐸→𝐸 
√

2𝜋  a.u. 

λ𝐸→𝐼  Amplitude of excitatory to inhibitory coupling (NMDA and 

AMPA) 

1
𝜎𝐸→𝐼 

√
2𝜋  a.u. 

λ𝐼→𝐸  Amplitude of inhibitory to excitatory coupling (GABAA) 5
𝜎𝐼→𝐸 

√
2𝜋  a.u. 

λ𝐸→𝑇𝐻  Constant excitatory to thalamic coupling constant (AMPA 

only) 

4  a.u. 

λ𝐴𝑀𝑃𝐴
𝑇𝐻→𝐷  Constant thalamic to apical dendrite coupling (AMPA) 10  a.u. 

λ𝑁𝑀𝐷𝐴
𝑇𝐻→𝐷   Constant thalamic to apical dendrite coupling (NMDA) 10  a.u. 
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𝜎𝐸→𝐸  Spread of excitatory to excitatory coupling 0.5  a.u. 

𝜎𝐸→𝐼  Spread of excitatory to inhibitory coupling 2  a.u. 

𝜎𝐼→𝐸  Spread of inhibitory to excitatory coupling 2  a.u. 

𝜏𝑑𝑒𝑐𝑎𝑦: AMPA Decay time of AMPA conductance 6  ms 

𝜏𝑑𝑒𝑐𝑎𝑦: GABAA Decay time of GABAA conductance 6  ms 

𝜏𝑑𝑒𝑐𝑎𝑦: NMDA Decay time of NMDA conductance 100 ms  

𝜏𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 Decay time of apical coupling zone 800  ms  

𝜏𝑎𝑑𝑎𝑝𝑡  Decay time of adaptation current  2000  ms 

Δ𝑔  Contribution of each spike to adaptation current 0.065  nS 

𝜎𝑇𝐷  Spatial spread of external drive 20  a.u. 

𝜎𝑉𝑅  Spatial spread of apical drive 18 a.u. 

𝐸𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦  Reverse potential of excitatory synapses 0  mV 

𝐸𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦  Reverse potential of inhibitory synapses -75 mV 

𝐸𝐴𝑑𝑎𝑝𝑡 Reverse potential of adaptation currents. -80 mV 

 

Table 2. Parameter description, values and units for the model components described by equations (5-

11). 

 

The equations were integrated numerically in MATLAB 2023b. The apical 

compartment was integrated with a standard forward Euler scheme. All other 

compartments were integrated using the hybrid scheme for conductance based models 

introduced by Izhikevich (2010). All simulations used a step size of 0.1 [ms] and were 

run for 30 [s]. Unless stated otherwise, all simulation results were averaged over a 

minimum of 30 random seeds. 

 

Distance to bifurcation 
To obtain a closed form expression for the distance to bifurcation in the apical 

compartment (equations 3-4), we leveraged the fact that saddle node bifurcations occur 

when the nullclines (𝑣(̇𝑑) = 𝑢(̇𝑑) = 0) of the system intersect tangentially (Strogatz, 

2018). That is, the nullclines and derivative of the nullclines must be equal leading to 

the following two requirements (where we have absorbed the term describing back 

propagating action potentials 𝐻(𝑡 − 𝑡𝑠) into the external drive 𝐼𝑒𝑥𝑡 which we treat as 

a constant). 

 
𝑙
𝐶 (𝑣(𝑑) − 𝑣𝑟

(𝑑)) + 1
𝐶 (𝑔𝑓(𝑣(𝑑)) + 𝐼𝑒𝑥𝑡) =  𝑏(𝑣(𝑑) − 𝑣𝑟

(𝑑)) (12) 

 

𝑑
𝑑𝑣 [ 𝑙

𝐶 (𝑣(𝑑) − 𝑣𝑟
(𝑑)) + 1

𝐶 (𝑔𝑓(𝑣(𝑑)) + 𝐼𝑒𝑥𝑡)] = 𝑑
𝑑𝑣 [𝑏(𝑣(𝑑) − 𝑣𝑟

(𝑑))] 

 

(13) 
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We used equation (13) to solve for 𝑣(𝑑) giving 𝑣(𝑑)∗ = [−44.6601, −31.3399]. We then 

substituted 𝑣(𝑑)∗ back into equation (12) to solve for 𝐼𝑒𝑥𝑡 yielding the value of the 

external current at each of the two bifurcations IB1 = 538.911 [pA] and IB2 = 647.375 

[pA] (corresponding to points at which the linear adaptation current nullcline 

intersects tangentially with the left and right knees of the cubic membrane potential 

nullcline see supplementary material S1B-D). 

 

Psychometric and neurometric functions 

To obtain a measure of response probability from our model comparable to the 

psychometric functions in Takahashi et al (2016, 2020) we took a two pronged 

approach. First, for all stimulus intensities including stimulus absent trials (when the 

model only received a background drive) we calculated the frequency with which the 

spike count in the 1000ms post stimulus window exceeded a criterion defined on the 

interval between the minium and maximium spike count. We then selected the 

(optimal) criterion that best minimised misses and false alarms. Trials exceeding the 

optimal criterion were counted as a response. Following Takahashi et al (2016), we 

then fit logistic functions (equation 14) to the network responses using non-linear least-

squares. 

𝑃 (𝑥; 𝛼, 𝛽, 𝜆, 𝛾) =  𝛾+ 1 − 𝛾− 𝜆
1 + 𝑒−𝛽(𝑥−𝛼) 

(14) 

  

Where P(x) is the detection probability (i.e. the probability of the model producing a 

hit or false alarm), and 𝛼, 𝛽, 𝜆, 𝛾 are free parameters. We used the optimal criterion 

found in the unperturbed (i.e. control) simulations in the perturbation simulations.  

 

Second, to ensure that our results were not an artefact of the (optimal) criterion we 

constructed neurometric functions following the procedure described in the 

supplementary material of Takahashi et al (2016). Specifically, for each stimulus 

intensity we constructed ROC curves and then computed the AUC (area under the 

ROC curve) thereby summing over all criterions. To convert the AUC into a quantity 

comparable to a psychometric function (i.e. so that each neurometric function vairied 

between 0 and 1), we normalised the AUC values, 𝑃 (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) = (𝐴𝑈𝐶 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) ∗
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𝑚𝑎𝑥. The intercept was given by the minimium AUC across all conditions, and the 

𝑚𝑎𝑥 was given by the maximium AUC across all conditions.  

 

Supplementary material 
S1. Apical compartment phase plane 

 
Figure S1. A) Bifurcation diagram of the L5PT apical compartment. The saddle node bifurcation at IB1 

generates a stable plateau potential which coexists with the resting state of the apical compartment 

until the model passes through a second saddle node bifurcation at IB2 at which point the resting state 

of the compartment vanishes and the plateau potential becomes globally attracting. B-C) Phase plane 

representation of the apical compartment showing the nullclines (black) for the following values of the 

bifurcation parameter;  𝐼𝑒𝑥𝑡 < IB1, IB1 < 𝐼𝑒𝑥𝑡< IB2, 𝐼𝑒𝑥𝑡 >IB2.  

 

S2. Sweeping the magnitude of model perturbations 

 
Figure S2. A-C) Psychometric function fit to spiking model output across apical compartment 

excitation (blue), apical compartment inhibition (pink), and thalamic inhibition (orange), of varying 
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magnitudes; A = 300 pA, B = 200 pA, C = 100 pA. D-F) Same as A-C but for neurometric 

functions; D = 300 pA, E = 200 pA, F = 100 pA.  
 

S3. Robustness of rivalry duration across burstiness parameters  

 
Figure S3. Mean dominance duration as a function of the spike reset parameter values controlling the 

burstiness of the model L5PT cells.  

 

S4. Dynamical regime underlying visual rivalry 

To interrogate the structure of the dynamical system underlying the stochastic 

oscillations we made inter-compartment coupling deterministic and drove the model 

with a constant current and asymmetric initial conditions so that the system converged 

to a state where one of the populations was dominant whilst the other was suppressed. 

We reasoned that if the oscillations were driven by stochastic jumps between stable 

fixed points with basins of attraction modulated by adaptation then in the absence of 

noise the oscillations should disappear. In contrast, if adaptation exerts a large effect, 

the oscillations should consist of a stable limit cycle and the model should continue to 

oscillate in the absence of noise (c.f. Moreno-Bote et al., 2007; Shpiro et al., 2009). In 

agreement with the stable limit cycle hypothesis in the absence of noise the model 

continued to oscillate (Fig S4A). To test the stability of the limit cycle we: i) confirmed 

the existence of an unstable structure inside the limit cycle; and ii) confirmed that 

perturbations to the limit cycle decayed back to a stable orbit. With symmetric initial 

conditions the model converged to a state where excitatory activity on each side of the 

ring was perfectly matched. Perturbations to this state consisting of a 1 ms pulse of 

constant drive (50 [pA]) to the somatic compartment of a single L5PT neuron caused 

the orbit to converge to the surrounding limit cycle (Fig S4B). Such perturbations had 

little effect on already oscillating orbits confirming the stability of the limit cycle (Fig 

S4C). 
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Figure S4. A) Average firing rate of neuronal populations centred on opposite ends of the ring driven 

by a constant drive with asymmetric initial conditions. B)  Average firing rate of neuronal populations 

simulated with constant drive and symmetric initial conditions. A perturbation was delivered at 𝑡 =

 5000 [ms] sending the population orbit to the surrounding stable limit cycle. C) Average firing rate of 

neuronal populations driven by constant drive with asymmetric initial conditions. Perturbation 

delivered at 𝑡 =  5000 [ms] had no substantial effect on the already oscillating orbit indicative of a 

stable limit cycle. 

 

S5. Key effects of visual rivalry simulations are preserved in scaled-up model 

To help guard against possible biases in the results caused by finite size effects or other 

simplifying assumptions made in the model such as the 50/50 excitatory/inhibitory 

neuron ratio, or the all-to-all connectivity of the cortical ring we constructed a scaled-

up version of the model consisting of 2160 neurons (1600 excitatory, 400 inhibitory, 

160 thalamic). The scaled-up model had sparse connectivity (12.5% connection 

probability), and an 80/20 excitatory/inhibitory neuron ratio (i.e. in line with Dale’s 

law). Because of the non-linearities in the model, and the reduction in the number of 

inhibitory neurons, we could not simply rescale the parameters of the original smaller 

network. Instead, we retuned the connectivity and adaptation parameters using the 

procedure described in materials and methods. Parameter values of the scaled-up 

network model are supplied below in table S1.  

 
Parameter Description Value Units 

λ𝐴𝑀𝑃𝐴
𝐸→𝐸   Amplitude of excitatory to excitatory coupling for (AMPA) 4.2

𝜎𝐸→𝐸 
√

2𝜋  a.u. 

λ𝑁𝑀𝐷𝐴
𝐸→𝐸   Amplitude of excitatory to excitatory coupling (NMDA) 0.84

𝜎𝐸→𝐸 
√

2𝜋  a.u. 

λ𝐸→𝐼  Amplitude of excitatory to inhibitory coupling (NMDA and 

AMPA) 

1.5
𝜎𝐸→𝐼 

√
2𝜋  a.u. 

λ𝐼→𝐸  Amplitude of inhibitory to excitatory coupling (GABAA) 5.85
𝜎𝐼→𝐸 

√
2𝜋  a.u. 

λ𝐸→𝑇𝐻  Constant excitatory to thalamic coupling constant (AMPA 

only) 

4  a.u. 

λ𝐴𝑀𝑃𝐴
𝑇𝐻→𝐷  Constant thalamic to apical dendrite coupling (AMPA) 10  a.u. 

λ𝑁𝑀𝐷𝐴
𝑇𝐻→𝐷   Constant thalamic to apical dendrite coupling (NMDA) 10  a.u. 

𝜎𝐸→𝐸  Spread of excitatory to excitatory coupling 0.25  a.u. 
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𝜎𝐸→𝐼  Spread of excitatory to inhibitory coupling 2  a.u. 

𝜎𝐼→𝐸  Spread of inhibitory to excitatory coupling 2  a.u. 

𝜏𝑑𝑒𝑐𝑎𝑦: AMPA Decay time of AMPA conductance 6  ms 

𝜏𝑑𝑒𝑐𝑎𝑦: GABAA Decay time of GABAA conductance 6  ms 

𝜏𝑑𝑒𝑐𝑎𝑦: NMDA Decay time of NMDA conductance 100 ms  

𝜏𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 Decay time of apical coupling zone 800  ms  

𝜏𝑎𝑑𝑎𝑝𝑡  Decay time of adaptation current  2000  ms 

Δ𝑔  Contribution of each spike to adaptation current 0.05  nS 

𝜎𝑉𝑅  Spatial spread of apical drive 20 a.u. 

𝐸𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦  Reverse potential of excitatory synapses 0  mV 

𝐸𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦  Reverse potential of inhibitory synapses -75 mV 

𝐸𝐴𝑑𝑎𝑝𝑡 Reverse potential of adaptation currents. -80 mV 

Table S1. Parameter description, values, and units of the (scaled-up) model components described by 

equations (5-11). 

 

In line with the behaviour of the small network model reported in the main text, the 

large network model (Fig S5A) generated a Gamma distribution of dominance 

durations (Fig S5B), and was consistent with Levelt’s second (Fig S5C) and fourth 

(Fig S5D) propositions supporting the robustness of the burst-dependent mechanism 

of perceptual dominance put forward in the paper. All simulations run in the scaled 

up network lasted for 20 [s] and results were averaged over 20 random seeds. 

 

 
Figure S5. A) Raster plots of somatic spikes from the scaled-up population of L5PT cells B) Histogram 

of dominance durations, black line shows the fit of a Gamma distribution with parameters estimated 

via MLE (𝛼 = 6.2, 𝜃 = 0.56). C) Simulation confirming Levelt’s second proposition in scaled-up model. 

Dashed line shows the dominance duration of the population receiving the decreasing external drive, 

solid line shows dominance duration of population receiving a fixed drive. D) Simulation of Levelt’s 

fourth proposition in scaled-up model. 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2025. ; https://doi.org/10.1101/2023.07.13.548934doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548934
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

 

S6. In silico electrophysiology supplemental figures 

 
Figure S6. A) Inter-compartment coupling probability under asymmetric perturbation for perturbed 

(solid) and unperturbed (dashed) populations as a function of perturbation strength for each 

perturbation type (colours same as main text). B) Dominance duration standard deviation under 

asymmetric perturbation as a function of the strength of each perturbation type. C) Inter-compartment 

coupling probability under symmetric perturbations. D) Dominance duration standard deviation under 

symmetric perturbation as a function of perturbation strength for each perturbation type.  

 

Code and Data Availability 

Complete code necessary to reproduce the simulations reported in the paper can be 

found at https://github.com/cjwhyte/LVPA.  
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