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Abstract

Contemporary models of perceptual awareness lack tractable neurobiological
constraints. Inspired by recent cellular recordings in a mouse model of tactile threshold
detection, we constructed a biophysical model of perceptual awareness that
incorporated essential features of thalamocortical anatomy and cellular physiology.
Our model reproduced, and mechanistically explains, the key in vivo neural and
behavioural signatures of perceptual awareness in the mouse model, as well as the
response to a set of causal perturbations. We generalised the same model (with
identical parameters) to a more complex task — visual rivalry — and found that the
same thalamic-mediated mechanism of perceptual awareness determined perceptual
dominance. This led to the generation of a set of novel, and directly testable,
electrophysiological predictions. Analyses of the model based on dynamical systems
theory show that perceptual awareness in simulations of both threshold detection and
visual rivalry arises from the emergent systems-level dynamics of thalamocortical

loops.
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Introduction

The study of perceptual awareness — the process of gaining conscious access to
perceptual content — in human participants (e.g. Overgaard, 2015; Pitts et al., 2014;
Sergent et al., 2005) and animal models (e.g. Ciceri et al., 2024; Gale et al., 2024; Oude
Lohuis et al., 2022; Palagina et al., 2017) have opposing but complementary
limitations. Human participants can rapidly learn complex tasks that isolate and
control for key psychological constructs, however the high-resolution (i.e., cell specific)
recordings and precise causal manipulations (e.g., optogenetic and pharmacological)
that are needed to make effective inferences about the neural basis of behaviour are
exceedingly difficult and often impossible to obtain. At the same time, animal models,
and transgenic mouse models in particular, allow for an astonishing degree of
experimental precision in the recording and causal manipulation of neural activity.
Animal models are, however, highly limited in the range and complexity of the tasks
they can perform, restricting the type of psychological inferences that can be drawn.
Both fields contain crucial pieces of the puzzle for understanding perceptual awareness,
however the links between the two are limited at best. Effective progress, therefore,
hinges on our ability to create empirically tractable tethers between the behavioural
signatures of perceptual awareness studied in humans and the fine-grained

neurobiological mechanisms studied in animal models (He, 2023).

Recent work in a mouse model of perception has identified a key thalamocortical circuit
connecting thick-tufted layer 5 pyramidal-tract (L5pT) neurons and matrix thalamic
cells as playing a causal role in the threshold for perceptual awareness (Aru et al.,
2019, 2020; Bachmann et al., 2020; Takahashi et al., 2016, 2020). Specifically, based
on a range of cellular recordings and causal perturbations, it has been shown that
matrix-thalamus-mediated coupling of apical dendrite and somatic compartments in
L5pr cells leads to a burst-firing state that is a reliable signature of perceptual
awareness of a near-threshold tactile stimulus (Takahashi et al., 2016, 2020). However,
the simplicity of the threshold detection task and species-specific differences in neural
architecture means that it is not clear whether the mechanisms of perceptual awareness
characterised in the mouse model will generalise beyond the whisker detection task to

the more complex paradigms typically studied in human participants.
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Here, we use biophysical modelling to bridge the gap between the thalamocortical
circuit identified in the mouse model of perception (Aru et al., 2020; Takahashi et al.,
2016a, 2020) and the behavioural signatures of perceptual awareness studied in human
psychophysics. Specifically, we built a thalamocortical spiking neural network model
that explains the full suite of behavioural and neural findings in the mouse model of
tactile threshold detection. Given the ubiquity of the thalamocortical circuit
architecture across sensory modalities, we (Aru et al., 2020; Bachmann et al., 2020;
Whyte et al., 2024), along with others (Marvan et al., 2021; Phillips et al., 2016), have
proposed that reverberant bursting activity in L5pt — matrix thalamus loops may be
a necessary component part in a domain general mechanism of perceptual awareness.
A key test of this hypothesis is whether this same circuit architecture can explain
psychophysical principles known to govern perceptual awareness in more complex

paradigms and in other sensory modalities.

To test this hypothesis in silico, we leveraged the same model with identical parameters
to simulate both tactile threshold detection and visual rivalry (which we use as a catch
all term for binocular rivalry and related bistable perception paradigms). Visual rivalry
is a complex but highly psychophysically-constrained phenomenon whereby visual
perception stochastically switches between stimulus percepts that differ only in terms
of their perceptual content (Alais & Blake, 2005; Blake & Tong, 2008; Carmel et al.,
2010; Tong et al., 2006). Visual rivalry provides a means to dissociate the neural
mechanisms of subjective perception from the correlates of physical stimulation.
Crucially, variants of visual rivalry (i.e., plaid rivalry; Hupé & Rubin, 2003) can now
be studied in mouse models (Bogatova et al., 2022; Palagina et al., 2017) as well in
human and non-human primates, allowing us to test our model against existing
psychophysical findings in primates and to make predictions for what should be
observed in the mouse model before data has been collected — a central component in
the evolving dialogue between theory and experiment. In addition, although our model
is consistent with the psychophysical predictions of previous models of visual rivalry
(e.g., Grossberg et al., 2008; Laing et al., 2010; Laing & Chow, 2002; Safavi & Dayan,
2022; Shpiro et al., 2007, 2009; Wilson, 2003, 2007, 2017), our approach has an unique
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level of neurobiological specificity that allows us to generate cellular level predictions
about the neural underpinnings of perceptual awareness in a language that is applicable

to the causal methods used by modern systems neuroscientists.

Results

A spiking corticothalamic model recreates key features of cellular physiology

The dynamical elements of the model were inspired by recent empirical observations,
and consist of three classes of neurons (Fig 1 A-B) — Lb5pr cells (blue), fast spiking
interneurons (basket cells, gold), and diffuse projecting matrix thalamocortical cells
(purple) — each of which are modelled using biophysically plausible spiking neurons
(Izhikevich, 2003, 2004, 2006; Naud & Sprekeler, 2018) that were coupled through
conductance-based synapses. By building the model from these circuit elements, we
ensured that the emergent dynamics of the population recapitulate known signatures
of cell-type-specific firing patterns, thus retaining the capacity to translate insights
between computational modellers and cellular physiologists.
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Fig 1. Thalamocortical model of perceptual awareness. A) Idealised anatomy of the model
thalamocortical loop connecting higher-order matrix thalamus and L5pt neurons. B) Single neuron
dynamics of example neurons in the thalamocortical network for each class of cell when driven with 600
[Hz] of independent background drive to the somatic compartment of every neuron and 50 [Hz] to apical
compartment of L5pt cells. C) Bifurcation diagram of the L5pT apical compartment. Is1 denotes a saddle
node bifurcation generating a stable plateau potential which coexists with the resting state of the apical
compartment until the model passes through a second saddle node bifurcation at Is2 at which point the
resting state vanishes and the stable plateau potential becomes globally attracting. D) Somatic firing
rate of the novel dual compartment L5pT model as a function of basal (i.e. somatic compartment) drive

and apical drive (measured in terms of the distance to I1). In line with empirical data (Larkum, 2004),


https://doi.org/10.1101/2023.07.13.548934
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.13.548934; this version posted January 16, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

apical drive increases the gain of the somatic compartment. E) Model thalamocortical ring architecture.

L5pt cells and basket cells were placed on a cortical ring at evenly space intervals.

To model the non-linear bursting behaviour of L5pr cells (which has been linked to
perceptual awareness; Larkum, 2004, 2022; Larkum et al., 2009), we created a novel
dual-compartment model with active apical dendrites that captures the essential
features of the cells’ physiology. Empirical recordings have shown that L5pr cells
switch from regular spiking to bursting when they receive near-simultaneous input to
both their apical (top) and basal (bottom) dendrites (Larkum, 2004, 2022; Fig 1B).
As such, our model includes a somatic compartment, described by an Izhikevich
adaptive quadratic integrate and fire neuron (Izhikevich, 2006; Munn, Miller, Aru, et
al., 2023; Munn, Miiller, Medel, et al., 2023) and an apical compartment, described by
a non-linear model of the Ca®" plateau potential (Naud et al., 2014; Naud & Sprekeler,
2018). To recapitulate known physiology, we coupled the compartments such that
sodium spikes in the somatic compartment back propagate to the apical compartment;
in turn if a Ca*" plateau potential is triggered in the apical compartment the somatic
compartment's behaviour (probabilistically) switches from regular spiking to bursting
(implemented by switching the reset conditions of the somatic compartment). The
amount of current entering the apical compartment controls this switching process.
With sufficiently high current the apical compartment passes through a saddle node
bifurcation (Ig1; Fig 1C) and a stable Ca”" plateau potential coexists with the resting
state of the compartment. Further increases in current cause the cell's resting state to
disappear (by passing the cell through a second saddle node bifurcation at Ips; Fig
1C), making the plateau potential globally attracting (supplementary materials S1A-
D).

Based on the finding that communication between the soma and apical dendrites of
L5pt cells depends upon depolarising input from the matrix thalamus to the “apical
coupling zone” of Lbpt cells (Suzuki & Larkum, 2020), we made the probability of
successful propagation between compartments proportional to the amplitude of
thalamic conductances. In line with empirical findings and previous modelling

(Larkum, 2004; Shai et al., 2015), Ca’" plateau potentials in the apical compartment
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controlled the gain of the somatic compartment’s firing rate curve by increasing the
amount of time the somatic compartment spent in a bursting rather than a regular

spiking parameter regime (Fig 1D).

In line with previous spiking neural network models of early sensory cortex (Laing et
al., 2010; Laing & Chow, 2002; Wang et al., 2020; Zerlaut et al., 2018), we embedded
the cortical neurons in a one-dimensional ring architecture (90 pairs of L5pt excitatory
and fast-spiking inhibitory interneurons; Fig 1E). Each point on the ring represents
an orientation preference, with one full rotation around the ring corresponding to a
180" visual rotation — this provides each neuron with a 2" difference in orientation
preference, relative to its neighbours. The cortical ring was coupled to a thalamic ring
with a 9:1 ratio (to approximately reflect the cortico-thalamic ratio in mammals),
which then projected back up to the apical dendrites of the same 9 cortical neurons,
representing the diffuse projections of higher-order thalamus onto the apical dendrites
of L5pT neurons in layer 1 (Mease & Gonzalez, 2021; Shepherd & Yamawaki, 2021).
Cortical coupling was modelled with a spatial decay, with long range inhibitory
coupling and comparatively local excitatory coupling (i.e., centre-surround ‘Mexican-

hat’ connectivity).

When driven solely by baseline input, the model emitted irregular spikes interspersed
with sparse spatially localised bursts mediated by depolarising input from the thalamus
which allowed L5pr somatic spikes to back-propagate initiating Ca®" plateau
potentials in the apical dendrites which in turn initiated transient burst spiking in the

somatic compartment (Fig 1C). Cortical spiking activity was highly irregular (mean

standard deviation __
mean - 24)

inter-spike interval coefficient of variation characteristic of a
waking state (Destexhe, 2009). For more details on the model architecture and analysis

of the dynamics see materials and methods.

The thalamocortical model reproduces empirical signatures of threshold detection
We first set out to reproduce the results of the whisker-based tactile detection
paradigm employed by Takahashi and colleagues (2016, 2020), who trained mice to

report a mechanical deflection of a whisker over a range of deflection intensities (Fig
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2A) whilst recording L5pt activity in barrel cortex from the apical dendrites via fast
scanning two-photon Ca?" imaging, and somatic activity via juxtacellular electrodes.
The original study found that bursting activity in the soma of L5pr cells, generated by
Ca’" plateau potentials in the apical dendrites, distinguished hits and false alarms
from misses and correct rejections. Importantly, they were able to establish causality
through a series of perturbation experiments (Fig 2B). Optogenetic excitation of the
apical dendrites reduced the animal’s threshold for awareness increasing both hits and
false-alarms (Fig 2C). In turn, pharmocological inhibition of the apical dendites and
POm (a matrix-rich higher-order thalamic nucleus with closed loop connections to
barrel cortex; Mease & Gonzalez, 2021) increased the animals perceptual threshold

(Fig 2D-E).
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Fig 2. Apical compartment distance to bifurcation and thalamic-gating explains shifts in perceptual
threshold. A) Whisker deflection paradigm modified from Takahashi et al, (2020). B) Representation
of causal perturbations to L5pr thalamocortical circuit including optogenetic excitation of the apical
dendrites (light blue), pharmacological inhibition of the apical dendrites (pink), and pharmacological

inhibition of POm (orange). C-D) Psychometric function of animals performing a whisker deflection
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task for the control condition (grey), optogenetic excitation of apical dendrites (blue), and
pharmacological inhibition of apical dendrites (pink). Modified from Takahashi et al, (2016) and
Takahashi et al, (2020). E) Response probability as a function of whisker deflection intensity for control
(grey) and pharmacological inhibition of POm (orange). Modified from Takahashi et al., (2020). F-H)
Model response probability as a function of stimulus intensity across simulated causal perturbations.
Colours same as above. I) Apical compartment bifurcation diagram showing the average distance to B1
in post stimulus period averaged across stimulus intensities. J) Average distance to B1 across stimulus
intensities and simulated causal perturbations in the post stimulus period. K) Proportion of population
in bursting regime across stimulus intensities and simulated causal perturbations in the post stimulus
period. L) Average inter-compartment coupling probability across stimulus intensities and simulated
causal perturbations in the post stimulus period. M) Average spike count across stimulus intensities

and simulated causal perturbations in the post stimulus period.

To model the perceptual discrimination process underlying threshold detection —
discriminating the presence of a weak stimulus against a noisy background — all
neurons received a constant background drive consisting of independent Poisson spike
trains whilst an arbitrary cortical neuron was pulsed by a current of constant width
and variable amplitude that we weighted by a spatial Gaussian to mimic the selectivity
of neurons in early sensory cortex. We operationalised perceptual awareness in the
threshold detection simulations in terms of what an upstream ideal observer could
readout from the population by computing whether trial-by-trial spike counts in the
1000 ms post stimulus window exceeded an optimal criterion (i.e. the criterion that
best minimises misses and false alarms across stimulus intensities). We counted the
model as having made a response whenever the spike count exceeded the optimal
criterion. Psychometric functions were then fit to the model’ responses (for details see
materials and methods). Qualitatively identical results were obtained using
neurometric functions which summed over all criterion values (see supplementary

material S2; Britten et al., 1992).

The model responses to simulated whisker deflections recapitulated the empirically
observed sigmoid-like relationship between the intensity of the simulation and the
model’s response probability (Fig 2F-H). In addition, perturbations to the model
designed to replicate optogenetic excitation and pharmacological inhibition (Fig 2A)

qualitatively reproduced the empirically observed shifts in response probability across
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perturbation types (Fig 2C-H). For each type of perturbation we ran the simulation
over a range of perturbation magnitudes to ensure the reliability of the effect see
supplementary material S2. For brevity, we only show the results for 300 [pA]
perturbations in the main text. In addition, we note that the saturating detection
probability values in the model are due to an absense of behavioural stochasticity
resulting from extranious factors such as decision noise which are inherent to empirical

data.

A key benefit of biophysical modelling is the capacity to mechanistically probe the
model and determine how the empirical observations may have emerged from the
underlying circuit dynamics. To this end, we used tools from dynamical systems theory
to interrogate the cell-type-specific dynamics underlying the behaviour of the model
including the distance to bifurcation (Ig1) in the apical compartment, the parameter
regime of the somatic compartment (i.e. regular spiking or bursting), and the inter-
compartment coupling probability. Excitation of the apical dendrites (blue) reduced
the average distance to bifurcation (here defined as the distance to Ig1) in the apical
compartment across the network in the 1000 [ms] period post stimulus onset (Fig 2I-
J). This increased the proportion of time each somatic compartment spent in the
bursting regime (Fig 2K), which in turn increased the average spike count of L5pt
cells across stimulus intensities resulting in reduction of the model’s perceptual
threshold (Fig 2F & 2M). Conversely, inhibition of the apical dendrites (pink) and the
thalamus (orange) both resulted in an increase in the perceptual threshold (Fig 2G-

H).

Importantly, however, the mechanisms underlying the increase in the perceptual
threshold differed across apical dendrite and thalamic inhibitory perturbations.
Inhibition of the apical dendrites increased the average distance to bifurcation at B
in the apical compartment across the network (Fig 2I-J). In contrast, inhibition of the
thalamus resulted in a comparatively minor reduction in the distance to bifurcation in
the apical dendrites (Fig 2I-J) but reduced the thalamus mediated inter-compartment
coupling (Fig 2L) thereby reducing the probability that a back propagating action

potential could reach the apical compartment, and the probability with which a

10
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plateau potential could switch the regime of the somatic compartment from regular
spiking to bursting. Together this resulted in a similar reduction in the proportion of
cells in the bursting regime for both thalamic and apical dendrite inhibition, and
likewise, a similar reduction in the average stimulus evoked spike count explaining the

comparable increase in perceptual thresholds (Fig 2M).

Thalamocortical spiking model generalises to visual rivalry

We next sought to generalise our thalamocortical model of perceptual awareness to
visual rivalry formalising and interrogating the hypothesis that the role played by
pulvinar — L5pt loops in visual cortex is analogous to the role played by POm — L5pr
loops in barrel cortex. To simulate visual rivalry we drove the model with input
representing orthogonal gratings presented to each eye, typical of standard binocular
rivalry experiments (Logothetis & Leopold, 1996; Tong et al., 2006), targeting the
soma (i.e., basal dendrites) of L5pt cells on opposite sides of the ring with orthogonal

orientation preferences (Fig 3A).
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Fig 3. A thalamocortical cascade underlies perceptual switches. A) Thalamocortical ring architecture
driven by input representing orthogonal gratings. B) Raster plots of L5pr soma (blue) and matrix
thalamus population (purple) during rivalry. C) Example single neuron spiking activity around a
perceptual switch — dotted lines denote the crossing in the population averaged time series. D)
Population averaged neuronal variables centred on a perceptual switch. E) Histogram of dominance
durations, black line shows the fit of a Gamma distribution with parameters estimated via MLE (o =
4.85, 0 = 0.56). F) Simulation confirming Levelt’s second proposition. Dashed line shows the dominance
duration of the population receiving the decreasing external drive, solid line shows dominance duration
of population receiving a fixed drive. G) Simulation of Levelt’s fourth proposition. Notably, for low
stimulus strengths our model, along with a number of meanfield models of visual rivalry (Shpiro et al.,

2007), predicts a deviation from Levelt’s fourth proposition.

Due to the fact that inhibitory connectivity is broader than excitatory connectivity,
delivering external drive to opposite sides of the ring shifts the model into a winner-
take-all regime with burst-dependent persistent states on either side of the ring
competing to inhibit one another. Importantly, through the accumulation of slow a
hyperpolarising adaptation current in the somatic compartment of each L5pr cell
(representing slow Ca’' mediated K* currents; McCormick & Williamson, 1989;
Wilson & Cowan, 2021), burst-dependent persistent states are only transiently stable
leading to stochastic switches between persistent states characteristic of binocular
rivalry (Fig 3B-C). We operationalised perceptual dominance (i.e., awareness of a
percept at the exclusion of the other) in terms of the difference in average firing rate
between the persistent ‘bumps’ of L5pr cell activity on opposite sides of the ring. In
line with common practice (e.g. Li et al., 2017) in models of rivalry a population was
counted as dominant when it had a firing rate 5 [Hz] > than its competitor and lasted
for longer than 250 [ms] (results were robust across a large range of threshold values).
The initial competition for perceptual dominance was determined by which population
of Lbpr cells first established a recurrent loop with matrix-thalamus. This interaction
allowed the recurrently connected population of cells to enter a bursting regime, at
which point the population had sufficient activity to maintain a persistent state and
inhibit the competing population into silence. In previous work we have argued that
this emergent property of corticothalamic loops is a good candidate for a cellular-level

correlate of perceptual awareness (Aru et al., 2020; Whyte et al., 2024).
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Crucially, our model provides a cellular-level explanation of spontaneous rivalry-
induced perceptual switches in terms of these same mechanisms. As the reliable
initiation of Ca’" plateau potentials in the model depends upon back-propagating
action potentials, perceptual switches are always preceded by regular spikes in the
suppressed population. Preceding each switch, the accumulation of adaptation reduces
the firing rate of the dominant population to a sufficient level that the suppressed
population can escape from inhibition and emit a brief series of regular spikes that
transition into bursts as thalamus is recruited and Ca*" plateau potentials are initiated
(Fig 3C), eventually gaining sufficient excitatory activity to inhibit the previously
dominant population into silence via recurrent interactions with the basket cell
population. At the population level (Fig 3D), this cascade of neuronal events is
characterised by an initial ramping in the somatic firing rate of the suppressed
population, followed by the inter-compartment coupling probability, the proportion of
the population bursting, and finally by the average distance to bifurcation in the apical
compartment. Once dominant, approximately half the population is in a bursting
regime at each point in time (0.5424 mean + 0.058 standard deviation), and the
average distance to bifurcation in the apical compartment fluctuates around zero (-
11.0185 + 48.067 [pA]), with approximately a third (0.3669 + 0.097) of the population
located above the critical boundary (Ig1) at each point in time. In addition, the average
inter-compartment coupling probability is (0.8845 4+ 0.102) allowing reliable
communication between compartments. Once silenced, adaptation in the previously
dominant population decays back to baseline levels and accumulates in the previously
suppressed, now dominant, population. In this way, the competitive organisation of
the cortico-cortical and corticothalamic loop provides a natural “flip-flop” switch that

stochastically alternates between dominant percepts.

As cortical pyramidal cells are known to display considerable differences in spiking
behaviour across species (Kalmbach et al., 2021) we swept the parameters of our model
L5pt cell responsible for the bursting behaviour to ensure that visual rivalry (quantified
by average dominance duration) is stable across a wide range of parameters. In favour

of the robustness of the model, dominance durations in an empirically plausible range

13


https://doi.org/10.1101/2023.07.13.548934
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.13.548934; this version posted January 16, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(i.e. with a period on the order of seconds) occurred across a wide range of parameter

values (supplementary material S3).

In close agreement with psychophysical data, switches between dominance and
suppression had a right-skewed distribution of dominance durations (Brascamp et al.,
2015; Levelt, 1967; Logothetis & Leopold, 1996; Fig 3E). Across stimulus drive
conditions (1300 — 1500 [Hz]), comparison of negative log likelihoods showed that the
distribution of dominance durations was best fit by a Gamma distribution
(£ =2.81 x 1073), compared to lognormal (¢ =2.88 x 1073) or normal distributions
(¢ = 2.88 x 1073). Because of the large size of the network and the discontinuity in the
somatic compartment we could not use analytic methods to interrogate the structure
of the dynamical system underlying the stochastic oscillations. Instead we used a
heuristic line of argument (see Strogatz, 2018, Ch.8) combined with simulations in the
absence of noise to confirm that the dynamical regime underlying these stochastic
oscillations likely consists of noisy excursions around a stable closed orbit (i.e. a stable

limit cycle; supplementary material S4).

Thalamocortical spiking model conforms to Levelt’s propositions

To further test the psychophysical validity of our neurobiologically detailed model, we
simulated the experimental conditions described by Levelt’s modified propositions
(Brascamp et al., 2015) — a set of four statements that compactly summarise the
relationship between stimulus strength (e.g., luminance contrast, colour contrast,
stimulus motion) and the average dominance duration of each stimulus percept. Here,
we focus on the modified second and fourth propositions, as they constitute the “core
laws” of rivalry and incorporate recent psychophysical findings (propositions one and

three are consequences of proposition two; Brascamp et al., 2015).

Levelt’s modified second proposition states that increasing the difference in stimulus
strength between the two eyes will principally increase the average dominance duration
of the percept associated with the stronger stimulus (Brascamp et al., 2015; Leopold
& Logothetis, 1996; Logothetis & Leopold, 1996). To simulate Levelt’s second

proposition, we decreased the spike rate entering one side of the ring from 1350 to 1200
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[Hz] in steps of 50 [Hz] across simulations. In line with predictions (Fig 3F), the average
dominance duration of the percept corresponding to the stronger stimulus showed a
steep increase from ~3.25 [s| with matched input, to ~ 6 [s] with maximally different
input whilst the average dominance duration on the side of the weakened stimulus

decreased comparatively gradually to ~1.9 [s] with maximally different inputs.

According to Levelt’s modified fourth proposition, increasing the strength of the
stimulus delivered to both eyes will increase the average perceptual reversal rate (i.e.,
decrease dominance durations; Brascamp et al., 2015), a finding that has been
replicated across a wide array of experimental settings (Bonneh et al., 2014; Brascamp
et al., 2006; Buckthought et al., 2008; Meng & Tong, 2004). To simulate Levelt’s fourth
proposition, we ran a series of simulations in which we increased the spike rate of the
external drive in steps from 1300 to 1500 [Hz] in steps of 50 [Hz] across simulations.
Again in line with predictions (Fig 3G), the perceptual alternation rate increased with
input strength, starting at ~7.75 alternations per minute at the second weakest
stimulus strength (1350 [Hz]) and increasing to ~15 alternations per minute for the
strongest stimulus (1500 [Hz]). Interestingly, along with a number of meanfield models
of rivalry (Shpiro et al., 2007), our model predicts a deviation from Levelt’s fourth
proposition for very low stimulus values with an uptick in alternation rate occurring
at the lowest external dive value (1300 [Hz]). Encouragingly, there is some initial
evidence that deviations from Levelt’s fourth law may be present in human

psychophysical data (Brascamp et al., 2015).

To help ensure that the simulation results were not biased by finite size effects or other
simplifying assumptions such as the all-to-all connectivity of the cortical ring, or the
50/50 excitatory /inhibitory neuron ratio, we show in supplementary material S5 that
a scaled-up version model consisting of 2000 cortical neurons with sparse connectivity,
and an 80/20 excitatory/inhibitory neuron ratio (i.e. consistent with Dale’s law), also
produces a Gamma distribution of dominance durations, and is consistent with Levelt’s

second and fourth propositions.
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We thus confirmed that our neurobiologically detailed model of the matrix thalamus -
L5pt loop is capable of reproducing Levelt’s propositions, which together with the
right-skewed distribution of dominance durations, show the consistency of our model

with the psychophysical “laws” known to govern visual rivalry.

Generating testable predictions through in silico electrophysiology

Binocular rivalry is thought to depend in part on the substantial degree of binocular
overlap in humans (~120°), however the lateral position of the eyes in mice leaves only
~40 © of binocular overlap (Poort & Meyer, 2021). For this reason, there are no current
mouse models of binocular rivalry, however there are monocular variants of visual
rivalry, namely plaid perception, that can be studied the mouse model (Bogatova et
al., 2024; Palagina et al., 2017). Crucially, plaid perception, like binocular rivalry,
conforms to Levelt’s laws (Brascamp et al., 2015; Hupé et al., 2019) and also has a
right skewed distribution of dominance durations that is well fit by a Gamma
distribution (Bogatova et al., 2024). We hypothesise, therefore, that the principles
underlying the simulation of binocular rivalry in our model will also describe other
forms of visual rivalry (such as plaid perception), offering a plausible means to test
cellular level predictions derived through simulation. To this end, we next ran a series
of perturbation experiments, with the aim of interrogating the novel burst-dependent
mechanism of perceptual dominance by mimicking the optogenetic and
pharmacological experiments carried out in threshold-detection studies (Takahashi et
al, 2016; 2020), in the context visual rivalry. As perceptual dominance depends on the
formation and maintenance of a burst-dependent persistent state, we hypothesised that
artificially exciting the apical dendrites would result in an increase in the average
dominance duration of the excited population, and artificially inhibiting the apical
dendrites and thalamus would result in a decrease in the dominance durations for the

inhibited populations.

Due to the fact that the distance to bifurcation of the dominant population fluctuates
around zero, we predicted that exciting the apical dendrites would increase the
proportion of the population above the bifurcation at Bi, thereby reducing the

probability with which a fluctuation in somatic drive would lead to a sizable enough
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drop in the proportion of the population below Bi to release the competing population
from inhibition. This should, therefore, result in an increase in the frequency of long
dominance duration events, thereby increasing the mean and the spread of the
distribution. Equivalently, we predicted that inhibiting the apical dendrites would
reduce the proportion of the population above B1, making it more likely that transient
fluctuations in somatic drive would allow the competing population to escape from
inhibition, reducing the occurrence of long dominance duration events, thereby
reducing both the mean and the spread of the distribution of dominance durations.
Finally, based on the results of the threshold detection simulations we predicted that
thalamic inhibition would have an analogous effect on dominance durations to apical
dendrite inhibition but would be mediated by a reduction in the coupling probability.
To test these hypotheses, we conducted two in silico experiments analogous to the
conditions described by Levelt’s modified propositions but instead of manipulating the
external drive entering the somatic compartment of L5pr cells we manipulated the
amplitude of simulated causal perturbations to the L5pr apical compartment and

thalamus (Fig 4A & 5A).
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Fig 4. In silico electrophysiology reveals degenerate mechanisms of perceptual dominance
(asymmetric perturbations). A) Causal perturbations to one half of the thalamocortical circuit
underlying visual rivalry consisting of optogenetic excitation of the apical compartment (blue),
pharmacological inhibition of the apical compartment (pink), and pharmacological inhibition of the

thalamus (orange). B-D) Average dominance duration of perturbed (solid), and unperturbed (dashed)
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populations. Error bars show SEM. E) Average distance to bifurcation point at B1 shown on bifurcation
diagram for perturbed (solid) and unperturbed (dashed) populations during periods of perceptual
dominance with 400 [pA] perturbation strength. F) Average distance to bifurcation point at Bi for
perturbed (solid) and unperturbed (dashed) populations during periods of perceptual dominance. G)
Proportion of population above bifurcation point at Bi during periods of perceptual dominance. H)

Proportion of population in bursting regime during periods of perceptual dominance.

In the first set of experiments, we simulated optogenetic excitation and
pharmacological inhibition of one of the two competing populations by adding a
constant current (£ 200, 400 [pA]) to all of the target variables (i.e. apical
compartment or thalamic neurons) on one side of the ring (Fig 4A). In line with
predictions, we found that the average dominance duration of the excited population
(Fig 4B) increased, the distance to bifurcation decreased (Fig 4E-F), the proportion
of the population above the critical point at B1 increased (Fig 4G), and the proportion
of the population in the bursting regime increased (Fig 4H). The dominance durations

and neuronal dynamics of the unexcited population remained relatively unchanged.

Similarly, inhibition of both the apical dendrites and thalamus reduced the average
dominance duration of the inhibited population whilst the uninhibited population was
again relatively unchanged (Fig 4C-D). As in the threshold detection simulations,
inhibition of the apical dendrites led to a large increase in the distance to B1 compared
to thalamic inhibition (Fig 4E-F) which primarily affected the inter-compartment
coupling probability (supplementary material S6A). Both apical dendrite and
thalamic inhibition led to almost identical reductions in the proportion of the
population above the critical point at Bi (Fig 4G), and the proportion of the
population in the bursting regime (Fig 4H). The uninhibited population again
remained relatively constant across all of the neuronal measures (the small drop in
dominance durations of the uninhibited population for the 400 [pA] inhibitory
perturbations is due to the adaptation variable having less time to recover). As
predicted the spread of the distribution of dominance durations increased with the
amplitude of excitatory perturbation and decreased under inhibition (supplementary

material S6B).
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Fig 5. In silico electrophysiology reveals degenerate mechanisms of perceptual dominance
(symmetric perturbations). A) Causal perturbations to full thalamocortical circuit underlying visual
rivalry. Colours same as above. B-D) Perceptual alternations per minute of simulation time across
perturbation types. Error bars show SEM. E) Average distance to bifurcation point at B1 shown on
bifurcation diagram for perturbed (blue, orange, pink) and unperturbed (grey) simulations during
periods of perceptual dominance at 400 [pA]. F) Average distance to bifurcation point at Bi for full
network perturbations during periods of perceptual dominance. G) Average proportion of population
above bifurcation point at Bi1 for full network perturbations during periods of perceptual dominance.
H) Average proportion of population in bursting regime for full network perturbations during periods

of perceptual dominance.

In the second set of experiments, we simulated optogenetic excitation and
pharmacological inhibition of both competing neuronal populations simultaneously by
adding a constant current (+ 200, 400 [pA]) to all of the target variables on the ring
(Fig 5A). Again, in line with predictions, the speed of rivalry (i.e., the number of
perceptual alternations per minute of simulation time) decreased as a function of apical
dendrite excitation (Fig 5B). Excitation also decreased the average distance to B1 (Fig
5E-F), increased the proportion of the population above the critical point at B1 (Fig
5G), and increased the proportion of the population in the bursting regime (Fig 5H).

In contrast, inhibition of the apical dendrites and thalamus both increased the speed

of rivalry (Fig 5C-D). Inhibition of the apical dendrites led to a large increase in the
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distance to the critical point at B1 compared to thalamic inhibition (Fig 5E-F), but
both apical dendrite inhibition and thalamic inhibition reduced the proportion of the
population above the critical point at Bi (Fig 5G), and the proportion of the
population in a bursting regime (Fig 5H) through reductions in the thalamus mediated
inter-compartment coupling probability (supplementary material S6C). As with the
asymmetric perturbation simulations, inhibition exerted a much larger effect on the
speed of rivalry than excitation. Finally, again in line with our predictions, the spread
of the distribution of dominance durations increased under excitatory perturbation of
the apical dendrites and decreased under inhibition of the apical dendrites and

thalamus (supplementary material S6D).

Together, these in silico electrophysiological experiments provide important testable
(and explainable) hypotheses for future experiments that although not testable in any
existing data sets are well within the purview of modern systems neuroscience

providing an opportunity to conduct precise theory-driven tests of the model.

Discussion

The study of perceptual awareness in human participants and animal models has so
far proceeded largely in parallel — the former exploring the largescale neural dynamics
and behavioural signatures of perceptual awareness across a rich array of experimental
settings, and the latter characterising the cellular circuitry of perception in exquisite
detail, and with precise causal control, but with only limited links to higher level
perceptual phenomena (He, 2023). Leveraging a neurobiologically detailed model of
the matrix thalamus — Lbpr loop, we have shown that a potential circuit-level
mechanism of tactile perceptual awareness discovered in a mouse model of tactile
awareness (Aru et al., 2019, 2019; Takahashi et al., 2016, 2020) generalises to visual
rivalry, thus providing a roadmap for the linking circuit level mechanisms studied in
animal models to the behavioural signatures of perceptual awareness studied in human

participants.

The balance of neurobiological detail and interpretability offered by our model allowed

us to reproduce the threshold-detection results of Takahashi et al (2016, 2020) and
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interrogate the mechanisms underlying the experiments in a manner that would be
impossible in vivo. In particular, examination of the model’s dynamics under simulated
causal perturbations to the circuit revealed a degenerate dynamical mechanism for
controlling the threshold for perceptual awareness. Excitation of the apical
compartment reduced the distance to bifurcation in the apical compartment, thus
increasing the probability that each cell could generate a Ca®' plateau potential
switching the soma into a bursting regime. This resulted in an increase in the baseline
and stimulus-evoked spike count, and correspondingly, led to a reduction in the
model’s perceptual threshold. Inhibition of the apical compartment and thalamus
resulted in comparable downward shifts in the baseline and stimulus-evoked spike
count, leading to increases in the model’s perceptual threshold. Importantly, however,
the neural mechanisms underlying the increases in perceptual threshold were distinct:
inhibiting the apical compartment increased the distance to bifurcation, thus reducing
the probability with which each cell would generate a Ca*" plateau potential, whereas
inhibiting the thalamus reduced the inter-compartment coupling. Both mechanisms,
however, led to comparable reductions in the proportion of cells in the bursting regime
explaining the comparable increase in perceptual thresholds, suggesting that it is the
emergent action of the corticothalamic circuit as a whole, rather than single cells within

the circuit, that are responsible for perceptual awareness.

The degenerate mechanisms underlying the threshold for perceptual awareness
combined with the operational definition of perceptual awareness in the threshold
detection task (in terms of psychometric functions) points to a conceptually important
point about the role of bursts in the model, and potentially, the empirical data itself.
Specifically, controlling the ease with which a cell can burst through optogenetic and
pharmacological perturbation is simply a means for controlling how easily a stimulus
can evoke reverberant activity in corticocortical and thalamocortical loops which, in
the simple case of threshold detection, constrains the extent to which stimulus evoked

activity can stand out against a background of noise driven fluctuations.

We next showed that the same thalamus-gated burst-dependent mechanism underlying

perceptual awareness in simulations of the tactile threshold detection task also
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determines perceptual dominance in simulations of visual rivalry. Specifically,
perceptual dominance is initiated by a succession of regular spikes and maintained
through the formation of a transiently stable burst-dependent persistent state
characterised by reliable coupling between apical and somatic compartments. This
allows the apical compartment to generate temporally extended plateau potentials in
a large subset of the dominant population reliably switching the L5pT soma from a
regular spiking to a bursting regime. Perceptual dominance is then maintained until
the slow hyperpolarising adaptation current accumulates to a sufficiently high level
that the dominant population is no longer able to maintain inhibit the competing and

a perceptual switch ensues.

Importantly, the model conforms to Levelt’s modified propositions. Originally proposed
in 1965 (Levelt, 1965), “Levelt’s laws” have proven to be remarkably robust needing
only minor modification and contextualisation (Brascamp et al., 2015) and have,
therefore, served as a benchmark for computational models of visual rivalry (e.g.,
Grossberg et al., 2008; Laing & Chow, 2002; Shpiro et al., 2007; Wilson, 2007).
Together with the right-skewed (Gamma) distribution of dominance durations the
consistency of our model with Levelt’s propositions provides an in silico conformation
of the hypothesis that pulvinar — L5pT loops in visual cortex may play an analogous
role to POm — L5pt loops in barrel cortex. This is a minimal but necessary first step
in testing the hypothesis that reverberant activity in matrix thalamus — L5pr1 loops is

a necessary component part in a domain general mechanism of perceptual awareness.

Having validated our model against psychophysical benchmarks, we next sought to
interrogate the novel thalamus-gated burst-dependent mechanism of perceptual
dominance by emulating the optogenetic and pharmacological experiments carried out
by Takahashi et al (2016, 2020) in the context of visual rivalry. Under conditions of
visual rivalry, the simulated causal perturbations are similar to the conditions
described by Levelt’s propositions, but instead of manipulating the strength of the
external stimulus we  manipulated the strength apical compartment
excitation/inhibition, or thalamic inhibition, highlighting the unique contribution of

these neurobiological components to visual rivalry. Across asymmetric and symmetric

22


https://doi.org/10.1101/2023.07.13.548934
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.13.548934; this version posted January 16, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

perturbations excitation of the apical compartment slowed perceptual alternations
(i.e., increased dominance durations) by increasing the proportion of the population
able to sustain temporally extended Ca’" plateau potentials and remain in a
transiently-stable bursting regime, whereas inhibition of both the apical dendrites and
thalamus had the opposite effect. Although technically difficult, these simulated
experimental manipulations are well within the purview of modern experimental
techniques and therefore represent a means of causally testing the predictions of our
model. Importantly, the simulation of these experimental perturbations would not be
possible in any existing models of rivalry, even those at the spiking level (e.g. Laing &
Chow, 2002; Wang et al., 2020; Wilson, 2003), as they focus on the minimal conditions
for rivalry in point-neuron models of cortical interaction. The inclusion of a dual
compartment model of L5pr cells, and an explicit thalamic population, was, therefore,

required in order to make contact with the results of Takahashi et al (2016, 2020).

In addition to the predicted effect of causal perturbations on visual rivalry, our model
generates a number of more straightforward correlational predictions. Specifically,
matrix-rich higher-order thalamic nuclei with recurrent connections to sensory cortex,
such as the pulvinar, should be selective for perceptual awareness rather than physical
stimulation, a prediction supported by both human neuroimaging (Qian et al., 2023;
Seo et al., 2022) and non-human primate electrophysiology (Wilke et al., 2009).
Similarly, synchronous bursting activity in deep layers of cortex, specifically layer 5b
which contain the soma of ttLbpr cells, should likewise be selective for perceptual
awareness rather than physical stimulation a prediction that, with the advent of
primate Neuropixels (Trautmann et al., 2023), is also readily testable. Finally, in the
context of visual rivalry, perceptual dominance should be characterised by elongated
Ca’" plateau potentials in the apical dendrites of L5pr cells (located in L1) in cells
selective for the dominant percept, a prediction testable in mouse models of visual

rivalry (e.g. Bogatova et al., 2024).
We anticipate that the cellular conditions for awareness explored in this paper are

likely to have consequences for the largescale correlates of awareness. Indeed, we

venture that at the level of large scale brain networks diffuse matrix-thalamus gated
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bursting may play a key role in the formation of a quasi-critical regime (Miiller et al.,
2020, 2023) allowing single nodes in a network to transiently escape from a tight E/I
balanced state. This permits stimulus information to rapidly propagate across the
cortical sheet whilst also maintaining stability at the level of the whole network (Miiller
et al., 2020) effectively modulating the gain of interareal connectivity in line with
previous computational models of pulvinar-cortical interactions in cognitive tasks
(Jaramillo et al., 2019). Indeed, efforts to test the largescale consequences of the
cellular level mechanisms interrogated in this paper are already very much underway.
Biophysical modelling of source-localised MEG data showed that auditory awareness
evoked activity was best fit by increased input to superficial layers of the cortical
column consistent with the projections of matrix-type higher-order thalamus (Pujol et

al., 2023).

As has been noted elsewhere (c.f. Aru et al., 2020; Storm et al., 2024), the circuit level
conditions for awareness explored here fit well with many of the major neuronal
theories of consciousness. The diffuse projections of the matrix-type thalamus may be
a circuit level mechanism underlying the non-linear and widespread “ignition” response
proposed by global neuronal workspace theory to underlie the transition from
unconscious to conscious processing (Benitez et al., 2023; Cortes et al., 2023;
Klatzmann et al., 2022; Mashour et al., 2020). The improvement in signal-to-noise
ratio associated with bursting aligns with signal detection theoretic versions of higher-
order theory (Lau, 2007), and the recurrent nature of matrix thalamus — L5pT loops
could be considered a thalamocortical extension of the currently corticocentric
recurrent processing theory (Lamme, 2006). In addition, in previous work we have
shown that diffuse matrix-type control of bursting in a sheet of L5pr cells maximises
an approximate measure of integrated information (Munn, Miiller, Aru, et al., 2023),
in line with integrated information theory (Albantakis et al., 2023). We speculate that
exploring the interaction between the cellular conditions for awareness interrogated in
this paper, and the topology of largescale brain networks, may be of crucial importance
in resolving the ongoing debate between the theories described above regarding the

macroscale network conditions necessary for awareness.
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To strike the right balance between neurobiological detail and interpretability, we
made a number of simplifying assumptions that place some limitations on our model.
Most notably, we did not include L.2/3 pyramidal neurons — which are arguably the
primary source of long distance horizontal connections in the cortex (Douglas &
Martin, 2004) and arguably cross column inhibition (Qian et al., 2023) — nor a core
thalamic population which forms a targeted recurrent loops with L4 and L6 of cortex
(Harris & Shepherd, 2015) preventing us from performing systematic perturbation
experiments on our model highlighting the precise function of L5pr cells and higher-
order matrix thalamus in a more realistic cortical microcircuit. We also did not include
time delays between our corticocortical or thalamocortical connections preventing our
model from providing a realistic model (e.g., Tahvili & Destexhe, 2023) of time-
frequency components of common electrophysiological measures such as local field
potentials. Finally, our model has only a single hierarchical level preventing us from
making contact with evidence showing a potential prefrontal contribution to

perceptual switches (Dwarakanath et al., 2020; Kapoor et al., 2020).

Our model is, of course, only a first step towards a formal characterisation of the
minimal neurobiological mechanisms underlying perceptual awareness. Extending the
model, and modelling strategy more generally, to new paradigms such as backward
masking (Gale et al., 2024), will be of paramount importance in the progression of the
field as mouse models and the tools of systems neuroscience are brought into contact
with the sophisticated psychophysical paradigms used to study the behavioural

signatures of awareness in humans.
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Materials and Methods

Thalamocortical spiking neural network

The neuronal backbone of the model consists of a (novel) dual compartment model of
L5pT neurons, fast spiking interneurons (basket cells), and thalamic cells. The
dynamics of basket cells, thalamic cells, and the somatic compartment of Lbp cells
(Fig 1A-C) were described by Izhikevich quadratic adaptive integrate and fire neurons,
a hybrid dynamical system that is capable of reproducing a wide variety spiking
behaviour whilst still being highly efficient to integrate numerically (Izhikevich, 2003,
2004, 2006). The Izhikevich neuron consists of the following two-dimensional system

of ODEs:

Co's) = k(v(s) —v s)) (11(5) — vis)) —u' + 1, (1)

u'®) = a{b<v<s> — s)) — u<s)} (2)

with reset conditions: if v>wv,,, then v —c,u —u+d. The equations are in

dimensional form giving the membrane potential (including the resting potential v,.,

and reset c), input I, time ¢, and capacitance

ext)

spike threshold v,, and spike peak v

peak>
C, biophysically interpretable units (mV, pA, mS, and pF respectively). The remaining
four parameters k, a, b, and d, are dimensionless and control the sharpness of the
quadratic-nonlinearity, the timescale of spike adaptation, the sensitivity of spike
adaptation to sub-threshold oscillations, and the magnitude of the spike reset
adaptation variable. Crucially, Izhikevich (Izhikevich, 2006; Izhikevich & Edelman,
2008) fit parameters for a large class of cortical and sub-cortical neurons, thus affording
our model a high degree of neurobiological plausibility while greatly reducing the

number of free parameters.

The apical compartment of the L5pT neuron consists of a two dimensional non-linear
system introduced by Naud and colleagues (Naud & Sprekeler, 2018) as a
phenomenological model of the Ca®' plateau potential in the apical dendrites of L5pr

neuromns.
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Co = —I(v' D — o) + gf (VD) + mH(t — ) + u'® + I, (3)
il = a{b(v® — o)y} (4)

Where f(z)= 1/(1+exp (—@) describes  the regenerative non-linearity

underlying the Ca®" plateau potential, and H (t — t*) denotes a square wave function
of unitary amplitude describing the backpropagating action potential (delayed by 0.5
[ms] and lasts for 2 [ms]) with ¢* denoting the somatic compartment spike time. The
parameters [, g, m, denote the leak conductance [nS], amplitude of regenerative non-
linearity [pA], and amplitude of the back propagating action potentials [pA]
respectively. The model and parameters were derived from a more complex model of

Ca’" spikes built to predict in vitro L5pr spike times (Naud et al., 2014).

To simulate key observations from empirical experiments, we coupled the
compartments together so that sodium spikes in the somatic compartment triggered a
back propagating action potential affecting the apical compartment through the square
wave function H(t—t*). In turn, plateau potentials in the apical compartment
controlled the reset conditions of the somatic compartment. We leveraged the insight
(Izhikevich, 2003; Munn, Miiller, Aru, et al., 2023; Munn, Miiller, Medel, et al., 2023)
that the difference between regular spiking and intrinsic bursting can be modelled by
changing the reset conditions of equations (1) and (2), raising the reset voltage
(increasing c¢) taking the neuron closer to threshold, and reducing the magnitude of
spike adaptation (decreasing d). Whenever the membrane potential in the apical
compartment exceeded —30 mv the reset conditions changed from regular spiking to
bursting parameters. This allowed us to reproduce the transient change in dynamical
regime in L5pr cells that occurs when they receive coincident apical and basal drive.
Parameters values for each neuron/compartment are given in table 1.

Neuron C [pF] k[au] v, [mV] vy [mV] a b ¢ [mV] d [au] Vpeat [mV] ! [n8] g [pA] m [pA]

L5pr apical dendrite 170 ~ — 170 —13 08 ~ ~ ~ 24.2857 1200 2600

L5pr soma 150 25 — 75 — 45 0.01 [a.u] | 5 [a.u] RS: — 65 RS: 250 50 ~ ~
IB: — 55 1B: 150
Basket cell 20 1 — 55 — 40 0.15 [a.u] | 8 [a.u] — 55 200 25 ~ ~

Matrix thalamus 200 1.6 — 60 — 50 0.01 [a.u]| 15 [a.u] — 60 10 35 ~ ~
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Table 1. Parameters for each neuron Lb5pr apical dendrite parameters were taken from Naud and
Sprekeler, (2018). L5pr soma parameters were modified from the model of intrinsic bursting (p.290)
described in Izhikevich (2006). Basket cell (fast spiking interneuron), and matrix thalamus parameters

were taken from Izhikevich and Edelman (2008).

Based on the finding that communication between apical dendrites and the soma of
L5pr cells requires depolarising input from the matrix thalamus to the “apical coupling
zone” in Lba (Suzuki & Larkum, 2020) we made back propagating action potentials
and Ca’" driven parameter switches depend stochastically upon a phenomenological
model of excitatory dynamics in the apical coupling zone described by the saturating

linear system shown in equation (5).

. gi,cou lin s
gi,coupling = e + (]- - gi,coupling) Z 5<t - t]) <5>

7-coupling j

Coupling was driven by thalamic spikes (where ¢* denotes the time that the thalamic

neuron passes the threshold v > v, ;) and the decay constant 7, was taken from

coupling
work estimating the decay of the post synaptic excitatory effects of metabotropic
glutamate receptors (Greget et al., 2011) which have been shown empirically to
mediate inter-compartmental coupling in L5pr cells (Suzuki & Larkum, 2020). By
design, the dynamics of the coupling variable varied between 0 and 1 and governed
the probability with which back propagating action potentials would reach the apical

compartment and the probability with which a Ca®" spike would lead to a switch in

the soma reset parameters.

Based on previous spiking neural network models of rivalry (Laing et al., 2010; Laing
& Chow, 2002; Wang et al., 2020) the cortical component of the network had a one-
dimensional ring architecture. Each point on the ring represents an orientation
preference with one full rotation around the ring corresponding to a 180" visual
rotation. This mirrors the fact that a 180 rotation of a grating results in a visually
identical stimulus and also ensures periodic boundary conditions. The cortical ring
contained 90 L5pt neurons and 90 fast spiking interneurons. Each pair of excitatory

and inhibitory neurons was assigned to an equidistant location on the ring (unit circle)
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giving each neuron a 2 difference in orientation preference relative to each of its

neighbours. The (dimensionless) synaptic weights wf% connecting neurons (E — FE,

I - E, and E — I), were all-to-all with amplitude decaying as a function of the

Euclidean distance d; ; between neurons (equations (6)) according to a spatial Gaussian

footprint (equation (7)).

d; ;= \/(cos 0, — cos ;)% 4 (sinf; —sin0;)> (6)
_1(4i; ? 7
wEY = \e 3(o4) (7)

Where 6 is the location of the neuron on the unit circle, x and w denote the pre- and
post-synaptic neuron type (i.e. E — E), X\ controls the magnitude of the synaptic
weights, and ¢"“ the spatial spread. In line with empirical constraints inhibitory
coupling had a larger spatial spread than excitatory to excitatory coupling (Naka &
Adesnik, 2016). Each thalamic neuron received input from 9 cortical neurons and then
projected back up to the apical dendrites of the same 9 cortical neurons recapitulating
the diffuse projections of higher-order thalamus onto the apical dendrites of Lbpr
neurons in layer 1 (Mease & Gongzalez, 2021; Shepherd & Yamawaki, 2021). For
simplicity we set projections to and from the thalamus to a constant value (e.g.,

TH—D _ >\TH%D>

w; For the sake of computational efficiency we also neglected

differences in rise time between receptor types which allowed us to model receptor

dynamics with a first-order linear differential equation (equation 8) with decay (7,..4,)

constants chosen to recapitulate the dynamics of inhibitory (GABAA), and excitatory

(AMPA and NMDA) synapses (Dayan & Abbott, 2005; Gerstner et al., 2014).

: gi:s n Kw s
Gisyn — — =4 Wy Z o(t — tj) (8)
J

Tdecay

Where, as above, denotes ¢° the time that the neuron passes the threshold v > v,

The conductance term entered into the input I,,, through the relation I, ., =

900 9i(t) syn (Egyn — v;(t)) where E . is the reverse potential of the synapse. Following
Izhikevich and Edelman (2008) we set g, to 1 for GABAA and AMPA synapses, and
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_ [(v+80)/60]?
9oo = TH[(v+80)/60]2

for NMDA synapses. To prevent artificial distortions of the spike
shape that can occur during parameter sweeps that push the model outside its normal
operating regime we clipped individual NMDA conductances to a maximum value of

85 [nS].

For the threshold detection simulations, the somatic compartment of each L5pr cell
received 600 [Hz| of independent (Poisson) external drive and apical compartments
received 50 [Hz] of external drive. The whisker deflection was simulated by a pulse of
constant amplitude varying between 0 — 350 [pA] lasting 200 [ms] and weighted by the
spatial Gaussian shown in equation (9) where N is the neuron at the centre of the

pulse and P the spatial spread.

(o N)y* (9)

thD — 87( ocTD

For the visual rivalry simulations, separate monocular inputs targeting the somatic
compartment of Lbpr cells were modelled with two independent Poisson processes
(representing input from the left and right eyes in the case of binocular rivalry or left
and right movement selective populations in the case of plaid perception) with rates
varying between 1200 and 1800 [Hz] depending on the simulation. The external drive
was weighted by the spatial Gaussian shown in equation (10) centred on neurons 90’
apart on the ring abstractly corresponding to the orthogonal grating stimuli commonly

employed in binocular rivalry experiments.

e = o () () (10)

Here ¢ denotes the index of the ith neuron, N; and Ny control the orientation of the

stimulus delivered to the left and right eyes, and ¢"" the spatial spread.
To capture the slow hyperpolarising current that traditionally governs switching

dynamics in models of bistable perception (Wilson & Cowan, 2021), the somatic

compartment of each Lbpr cell was coupled to a phenomenological model of slow
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hyperpolarising Ca®" mediated K* currents (McCormick & Williamson, 1989) which

entered into the external drive term for each cell (i.e. I; jgupt = 9i()adapt(Eadapt —

v;(t))) with dynamics given by equation (10).

gadapt - _w—i_ Agé(t - ts> <11>

Tadapt

Where Ag denotes the contribution of each spike to the hyperpolarising current, and

T

adapt the decay constant.

Rather than fit the parameters of our model to individual experimental findings, which
permits substantial degrees of freedom and risks overinterpretation of idiosyncratic
aspects of individual experiments, we instead elected to challenge a single model to
qualitatively reproduce a wide array of experimental findings with a minimal set of
parameter changes carefully chosen to reflect experimental manipulations and
perturbations. Specifically, we initialised the connectivity parameters such that: 1)
when the model received a background drive the conductances were approximately E/I
balanced with a coefficient of variation > 1, corresponding to an asynchronous irregular
regime (Destexhe, 2009); 2) inhibitory connections on the cortical ring had broader
(Gaussian) connectivity than excitatory connections generating a winner-take-all
regime when the model received two “competing” inputs to opposite sides of the
cortical ring; and 3) a slow hyperpolarising current was added to the somatic
compartment of each L5pr cell destabilizing the winner-take-all attractor states leading
to spontaneous switches between transiently stable persistent states with an average
duration in the experimentally observed range for binocular rivalry. Parameters for

the model components described by equations (5) — (11) are supplied in table 2.

Parameter Description Value Units

)\‘3_7154 Amplitude of excitatory to excitatory coupling for (AMPA) 1.

)\‘5?1%4 Amplitude of excitatory to excitatory coupling (NMDA) ”E%z\‘/; a.u.

s Amplitude of excitatory to inhibitory coupling (NMDA and m a.u.
AMPA)

A 1oE Amplitude of inhibitory to excitatory coupling (GABA4) m a.u.

2 BT Constant excitatory to thalamic coupling constant (AMPA 4 a.u.

only)

)\?{7;} Constant thalamic to apical dendrite coupling (AMPA) 10 a.u.
ALH=D

NMDA Constant thalamic to apical dendrite coupling (NMDA) 10 a.u.
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oBoF Spread of excitatory to excitatory coupling 0.5 a.u.
al=1 Spread of excitatory to inhibitory coupling 2 a.u.
ol=F Spread of inhibitory to excitatory coupling 2 a.u.
Taecay: AMPA Decay time of AMPA conductance 6 ms
Tiecay: GABAA Decay time of GABAA conductance 6 ms
Taecay: NMDA Decay time of NMDA conductance 100 ms
Teoupling Decay time of apical coupling zone 800 ms
Tadapt Decay time of adaptation current 2000 ms
Ag Contribution of each spike to adaptation current 0.065 nS
o™P Spatial spread of external drive 20 a.u.
Vi Spatial spread of apical drive 18 a.u.
Epycitatory Reverse potential of excitatory synapses 0 mV
Epnivitory Reverse potential of inhibitory synapses -75 mV
Epdapt Reverse potential of adaptation currents. -80 mV

Table 2. Parameter description, values and units for the model components described by equations (5-

11).

The equations were integrated numerically in MATLAB 2023b. The apical
compartment was integrated with a standard forward Euler scheme. All other
compartments were integrated using the hybrid scheme for conductance based models
introduced by Izhikevich (2010). All simulations used a step size of 0.1 [ms] and were
run for 30 [s]. Unless stated otherwise, all simulation results were averaged over a

minimum of 30 random seeds.

Distance to bifurcation

To obtain a closed form expression for the distance to bifurcation in the apical
compartment (equations 3-4), we leveraged the fact that saddle node bifurcations occur
when the nullclines (99 = @Y = 0) of the system intersect tangentially (Strogatz,
2018). That is, the nullclines and derivative of the nullclines must be equal leading to
the following two requirements (where we have absorbed the term describing back
propagating action potentials H (¢ — ¢°) into the external drive I,,, which we treat as

a constant).

é (IU(d) - U'E“d>) +é(gf(v<d>) + Iext) = b<v(d) - ,Ug“d)) <12>
# o0 ) G | = TR0 -]
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We used equation (13) to solve for v¥) giving v\@* = [~44.6601, —31.3399]. We then
substituted v'¥* back into equation (12) to solve for I,,, yielding the value of the
external current at each of the two bifurcations Ig1 = 538.911 [pA] and Ig2 = 647.375
[pA] (corresponding to points at which the linear adaptation current nullcline
intersects tangentially with the left and right knees of the cubic membrane potential

nullcline see supplementary material S1B-D).

Psychometric and neurometric functions

To obtain a measure of response probability from our model comparable to the
psychometric functions in Takahashi et al (2016, 2020) we took a two pronged
approach. First, for all stimulus intensities including stimulus absent trials (when the
model only received a background drive) we calculated the frequency with which the
spike count in the 1000ms post stimulus window exceeded a criterion defined on the
interval between the minium and maximium spike count. We then selected the
(optimal) criterion that best minimised misses and false alarms. Trials exceeding the
optimal criterion were counted as a response. Following Takahashi et al (2016), we
then fit logistic functions (equation 14) to the network responses using non-linear least-
squares.

l—y—4 (14)
14+ e Blz—a)

P(zyo, B, A\ y) = v+
Where P(x) is the detection probability (i.e. the probability of the model producing a
hit or false alarm), and «a, 3, A,y are free parameters. We used the optimal criterion

found in the unperturbed (i.e. control) simulations in the perturbation simulations.

Second, to ensure that our results were not an artefact of the (optimal) criterion we
constructed neurometric functions following the procedure described in the
supplementary material of Takahashi et al (2016). Specifically, for each stimulus
intensity we constructed ROC curves and then computed the AUC (area under the
ROC curve) thereby summing over all criterions. To convert the AUC into a quantity
comparable to a psychometric function (i.e. so that each neurometric function vairied

between 0 and 1), we normalised the AUC values, P(response) = (AUC — intercept) *
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max. The intercept was given by the minimium AUC across all conditions, and the

max was given by the maximium AUC across all conditions.

Supplementary material

S1. Apical compartment phase plane

mV*

-55
500 550 600 650 700
Apical drive (pA)

Figure S1. A) Bifurcation diagram of the L5pt apical compartment. The saddle node bifurcation at I1
generates a stable plateau potential which coexists with the resting state of the apical compartment
until the model passes through a second saddle node bifurcation at Is2 at which point the resting state
of the compartment vanishes and the plateau potential becomes globally attracting. B-C) Phase plane
representation of the apical compartment showing the nullclines (black) for the following values of the

bifurcation parameter; I, < Ip1,Is1 < I, < IB2, I,,, >IB2.

S2. Sweeping the magnitude of model perturbations
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Figure S2. A-C) Psychometric function fit to spiking model output across apical compartment

excitation (blue), apical compartment inhibition (pink), and thalamic inhibition (orange), of varying
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magnitudes; A = 300 pA, B = 200 pA, C = 100 pA. D-F) Same as A-C but for neurometric
functions; D = 300 pA, E = 200 pA, F = 100 pA.

S3. Robustness of rivalry duration across burstiness parameters
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Figure S3. Mean dominance duration as a function of the spike reset parameter values controlling the

burstiness of the model L5pr cells.

S4. Dynamical regime underlying visual rivalry

To interrogate the structure of the dynamical system underlying the stochastic
oscillations we made inter-compartment coupling deterministic and drove the model
with a constant current and asymmetric initial conditions so that the system converged
to a state where one of the populations was dominant whilst the other was suppressed.
We reasoned that if the oscillations were driven by stochastic jumps between stable
fixed points with basins of attraction modulated by adaptation then in the absence of
noise the oscillations should disappear. In contrast, if adaptation exerts a large effect,
the oscillations should consist of a stable limit cycle and the model should continue to
oscillate in the absence of noise (c.f. Moreno-Bote et al., 2007; Shpiro et al., 2009). In
agreement with the stable limit cycle hypothesis in the absence of noise the model
continued to oscillate (Fig S4A). To test the stability of the limit cycle we: i) confirmed
the existence of an unstable structure inside the limit cycle; and ii) confirmed that
perturbations to the limit cycle decayed back to a stable orbit. With symmetric initial
conditions the model converged to a state where excitatory activity on each side of the
ring was perfectly matched. Perturbations to this state consisting of a 1 ms pulse of
constant drive (50 [pA]) to the somatic compartment of a single L5pT neuron caused
the orbit to converge to the surrounding limit cycle (Fig S4B). Such perturbations had

little effect on already oscillating orbits confirming the stability of the limit cycle (Fig
S4C).
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Figure S4. A) Average firing rate of neuronal populations centred on opposite ends of the ring driven
by a constant drive with asymmetric initial conditions. B) Average firing rate of neuronal populations
simulated with constant drive and symmetric initial conditions. A perturbation was delivered at ¢ =
5000 [ms] sending the population orbit to the surrounding stable limit cycle. C) Average firing rate of
neuronal populations driven by constant drive with asymmetric initial conditions. Perturbation
delivered at ¢ = 5000 [ms] had no substantial effect on the already oscillating orbit indicative of a

stable limit cycle.

S5. Key effects of visual rivalry simulations are preserved in scaled-up model

To help guard against possible biases in the results caused by finite size effects or other
simplifying assumptions made in the model such as the 50/50 excitatory/inhibitory
neuron ratio, or the all-to-all connectivity of the cortical ring we constructed a scaled-
up version of the model consisting of 2160 neurons (1600 excitatory, 400 inhibitory,
160 thalamic). The scaled-up model had sparse connectivity (12.5% connection
probability), and an 80/20 excitatory/inhibitory neuron ratio (i.e. in line with Dale’s
law). Because of the non-linearities in the model, and the reduction in the number of
inhibitory neurons, we could not simply rescale the parameters of the original smaller
network. Instead, we retuned the connectivity and adaptation parameters using the
procedure described in materials and methods. Parameter values of the scaled-up

network model are supplied below in table S1.

Parameter Description Value Units

}\5;154 Amplitude of excitatory to excitatory coupling for (AMPA) ”E%z\/; a.u.

)\‘,5?1%_‘ Amplitude of excitatory to excitatory coupling (NMDA) ”Ei';i/; a.u.

omy] ; ; o inhib : I . 5

AT Amplitude of excitatory to inhibitory coupling (NMDA and ﬁﬁ a.u.
AMPA)

A 1oE Amplitude of inhibitory to excitatory coupling (GABA4) ”Ij;?/ﬁ a.u.

2 BT Constant excitatory to thalamic coupling constant (AMPA 4 a.u.
only)

)\2{1}2 Constant thalamic to apical dendrite coupling (AMPA) 10 a.u.

)\{]{fDD_‘ Constant thalamic to apical dendrite coupling (NMDA) 10 a.u.

oBoF Spread of excitatory to excitatory coupling 0.25 a.u.
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al=1 Spread of excitatory to inhibitory coupling 2 a.u.
ol=F Spread of inhibitory to excitatory coupling 2 a.u
Taecay: AMPA Decay time of AMPA conductance 6 ms
Tiecay: GABAA Decay time of GABAA conductance 6 ms
Taecay: NMDA Decay time of NMDA conductance 100 ms
Teoupling Decay time of apical coupling zone 800 ms
Tadapt Decay time of adaptation current 2000 ms
Ag Contribution of each spike to adaptation current 0.05 nS
Vi Spatial spread of apical drive 20 a.u.
Epucitatory Reverse potential of excitatory synapses 0 mV
Eh,;“buu,»y Reverse potential of inhibitory synapses _75 mV
Epdapt Reverse potential of adaptation currents. -80 mV

Table S1. Parameter description, values, and units of the (scaled-up) model components described by

equations (5-11).

In line with the behaviour of the small network model reported in the main text, the
large network model (Fig S5A) generated a Gamma distribution of dominance
durations (Fig S5B), and was consistent with Levelt’s second (Fig S5C) and fourth
(Fig S5D) propositions supporting the robustness of the burst-dependent mechanism
of perceptual dominance put forward in the paper. All simulations run in the scaled

up network lasted for 20 [s] and results were averaged over 20 random seeds.

A B C D
1500 ) : 9 :
032
v e bt e ) .,.......I E 0.281 98 4
(5} 4 2 B
< 1000 v § 025 g7 p
= A 021 = g1
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2 s00 2 014/ S0
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Z. ot - . 3 0.11 ; - £
LU L ULy £ 007, sap o g-d 2
H -
- ' 0.04 | 2]
0 0 L. . . b
300 200 100 0 1500 1600 1700 1800
0 5 10 15 20 0 D2 . ~4D 68 Stimulus difference (Hz) Stimaulus strength (Hz)
Time (s) ominance Durations (s)

Figure S5. A) Raster plots of somatic spikes from the scaled-up population of L5pr cells B) Histogram
of dominance durations, black line shows the fit of a Gamma distribution with parameters estimated
via MLE (« = 6.2, 8§ = 0.56). C) Simulation confirming Levelt’s second proposition in scaled-up model.
Dashed line shows the dominance duration of the population receiving the decreasing external drive,
solid line shows dominance duration of population receiving a fixed drive. D) Simulation of Levelt’s

fourth proposition in scaled-up model.
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S6. In silico electrophysiology supplemental figures
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Figure S6. A) Inter-compartment coupling probability under asymmetric perturbation for perturbed
(solid) and unperturbed (dashed) populations as a function of perturbation strength for each
perturbation type (colours same as main text). B) Dominance duration standard deviation under
asymmetric perturbation as a function of the strength of each perturbation type. C) Inter-compartment
coupling probability under symmetric perturbations. D) Dominance duration standard deviation under

symmetric perturbation as a function of perturbation strength for each perturbation type.

Code and Data Availability

Complete code necessary to reproduce the simulations reported in the paper can be

found at https://github.com/cjwhyte/LVPA.
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