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Abstract  38 
In humans, many neurobiological features of the cortex—including gene expression patterns, 39 
microstructure, and functional connectivity—vary systematically along a sensorimotor-association (S-40 
A) axis of brain organisation. To date, it is still poorly understood whether inter-individual differences in 41 
patterns of S-A axis capture these robust spatial relationships across neurobiological properties 42 
observed at the group-level. Here, we examine inter-individual differences in structural and functional 43 
properties of the S-A axis, namely cortical microstructure, geodesic distances, and the functional 44 
gradient, in a sample of young adults from the Human Connectome Project (N = 992, including 328 45 
twins). We quantified heritable variation associated with inter-individual differences in the S-A axis, and 46 
assessed whether structural and functional properties that are highly spatially correlated at the group-47 
level also share genetic underpinnings. To consider measurement errors in resting-state functional 48 
connectivity data and their impact on properties of the S-A axis, we used a multivariate twin design 49 
capable of disentangling individual-level variation in both intra- and inter-individual differences. After 50 
accounting for some of the intra-individual variation, we found average heritable individual differences 51 
in both the functional gradient (htwin2 = 57%), cortical microstructure (htwin2 = 43%), and geodesic 52 
distances (htwin2 = 34%). However, these genetic influences were mostly distinct and deviated from 53 
group-level patterns. In particular, we found no significant genetic correlation between the functional 54 
gradient and microstructure, while we found both positive and negative genetic associations between 55 
the functional gradient and geodesic distances. Our approach highlights the complexity of genetic 56 
contributions to brain organisation and may have potential implications for understanding cognitive 57 
variability within the S-A axis framework.  58 
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Introduction 59 
The human brain supports perception and action but also abstract cognition (1,2). This diversity of 60 
functions is thought to be reflected by the gradual dissociation between unimodal sensory and 61 
transmodal association cortical areas along a sensorimotor-association (S-A) axis (3). The S-A axis 62 
spans a vast array of neuroanatomical properties, including microstructural variation (myelination and 63 
cytoarchitecture) and inter-areal connectivity distance (1,3–6). Here, sensory areas show increased 64 
layer differentiation, myelination, and, predominantly, short-range connections. In contrast, association 65 
areas show less differentiated microstructural profiles, reduced myelination, and a combination of short- 66 
and long-range connectivity profiles (5,7,8).  67 
 68 
The differentiation between sensory and association areas underwent evolutionary changes (3), with 69 
an expansion of cortical association areas paralleled by a marked laminarisation of sensory areas in 70 
human primates (9,10). Such structural re-organisation and evolutionary changes along the S-A axis 71 
(1,6,11,12) may have provided the scaffold for functional differentiation (13,14), allowing in turn for 72 
human-specific cognitive and behavioural flexibility (1,13).  73 
 74 
Several discoveries have enhanced our understanding of links between structural and functional 75 
features of the S-A axis. These findings have highlighted spatial associations of microarchitectonic 76 
differentiation (15) and cortical geometry (16) with functional organisation (13,17). For example, 77 
T1w/T2w maps derived from non-invasive Magnetic Resonance Imaging (MRI)—indexing cortical 78 
microstructural differences —and histological markers based on cell staining have been shown to relate 79 
strongly to gene transcriptional profiles and functional dissociation along the S-A axis. Such group-level 80 
associations suggest that a canonical genetic architecture may shape S-A axis structural organisation, 81 
providing foundations for the differentiation of cortical function (6).  82 
 83 
Recent studies noted that various features of the S-A axis show inter-individual differences in human 84 
populations that are associated with variability in a host of traits, such as neuropsychiatric traits, 85 
including autism (18), schizophrenia (19), and depression (20), as well as sex (21) and developmental 86 
(22) differences. These findings highlight the overall importance of the S-A axis for human complex trait 87 
variation. However, it remains unclear how the different structural and functional properties of this axis 88 
relate to each other when viewed at the level of the individual, i.e. whether well-documented strong 89 
associations between such properties at the group-level (3,4,6,23–25) are also reflected in patterns of 90 
inter-individual differences. Knowing whether such patterns converge or diverge is crucial because it 91 
directly informs the study of the impact of alterations along the S-A axis on human traits. For instance, 92 
divergences between findings at the individual and group levels may suggest that associations between 93 
functional characteristics of the S-A axis and trait variability do not parallel analogous structural 94 
differences. Similarly, these differences may entail that a lack of associations between a specific 95 
neurobiological feature of the S-A axis and a particular trait does not necessarily imply the absence of 96 
relationships across other S-A axis neurobiological properties.  97 
 98 
Here, we asked: Do individual differences in structural properties of the S-A axis relate to differences in 99 
functional properties? In other words, we studied whether previous widely reported group averages can 100 
inform S-A axis associations at the individual level. Specifically, we tested whether anatomical individual 101 
differences in regional cortical microstructure (6) and cortical geometry—captured by the geodesic 102 
distance of inter-connected regions across the cortical mantle (1,26)—relate to the well-known 103 
functional dissociations between sensory and transmodal association areas (1,3).  104 
 105 
To thoroughly account for the known issue of measurement error heterogeneity across the cortex (27) 106 
and its impact on association estimates (28,29), we adapted and applied measurement error models in 107 
the form of structural equation models (30,31). This allowed us to rigorously tease apart unreliable intra-108 
individual from reliable inter-individual variation in the functional organisation of the S-A axis.  109 
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We then went further to interrogate upstream sources of inter-individual differences in the S-A axis in 110 
structure and function: genetic variation. We asked: Are genetic effects on the S-A axis shared across 111 
structural and functional properties? Here, we analysed a genetically informative sample and quantified 112 
the extent of overlap across genetic effects on structural and functional properties of the S-A axis. 113 
Specifically, we used an augmented twin-informed design to quantify and tease out genetic overlaps 114 
between the S-A axis's structural and functional properties while accounting for the impact of reliability 115 
on classic heritability estimates (31,32). Last, we evaluated the robustness of our results, both across 116 
subsamples, between regional and global cortical metrics, and between and within individuals' S-A axis 117 
properties. 118 
 119 
Results 120 
To quantify structural and functional S-A axis properties, we combined microstructural and resting-state 121 
functional MRI (rsfMRI) data from the Human Connectome Project (HCP (33); N = 992 adults; 529 122 
women, mean age 28 y; 22-37 y). We computed two structural metrics and one functional metric 123 
indexing the S-A axis:  124 
 125 

• Regional microstructure: we quantified regional microstructure indexing the differentiation 126 
between sensorimotor and association areas using the individuals’ mean intensity of regional 127 
T1w/T2w (T1w/T2wmi) in 400 parcels (6,34) 128 

• Geodesic distance: we quantified cortical geometry in each individual as regional cortico-129 
cortical network proximity (26) by computing the geodesic distance (GD) between every cortical 130 
region and its corresponding functional network, averaging within each region to get parcel-131 
wise estimates (18). We chose geodesic distances because they align with the anatomical 132 
layout of axonal wiring along the cortical sheet and are strongly associated with functional 133 
connectivity gradients (1,35), thus providing a spatial framework that complements 134 
microstructural measures  135 

• Functional gradient loadings: we quantified the functional S-A axis in each individual by 136 
obtaining the first component of the individual functional connectomes (FCG1) using diffusion 137 
map embedding (1) 138 

We started our analysis by testing whether associations between group-level averaged maps of 139 
structural S-A axis properties correlated with the functional S-A axis (Fig. 1A-C). By using a subsample 140 
of n = 482 adults (229 women, mean age 28 y; 22-37 y; a subsample obtained by excluding all twins 141 
included in the full HCP sample), we were able to replicate group-level findings between averaged 142 
T1w/T2wmi and FCG1, extending the results to GD and FCG1 (Fig. 1D-E).  143 
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 144 
Figure 1. Structural and functional S-A axes strongly correlate at the group-level. Structural (A-145 
B) and functional (C) indices of Sensorimotor-Association (S-A) axes plotted on inflated cortical 146 
surfaces (36). Values represent averages of individual T1w/T2w mean intensity profiles (A; T1w/T2wmi), 147 
averages of individual geodesic distances (B; GD), and functional gradients loadings (C; FCG1) 148 
extracted from the average of individual functional connectomes across 400 cortical regions. (D) 149 
Structural indices are strongly associated with functional indices of the S-A axis; Spearman ϼ = -.61 150 
and ϼ = .75 between T1w/T2wmi and FCG1, and GD and FCG1, respectively; all p < .05. Each dot 151 
represents a regional value; the colour represents canonical Yeo-Krienen 7 network membership. (E) 152 
Conceptual representation of group-level analysis. Note that individual and regional information is lost 153 
in favour of group-level results.  154 
 155 
Pervasive inter-individual differences in the S-A axis of cortical organisation. Having estimated 156 
the extent of overlap between structural and functional S-A axis properties at the group-level, we shifted 157 
the focus to the individual level. Since group-level S-A axis can mask substantial individual variability 158 
(Fig. 2A), we asked: does individual variability in structural S-A axis properties relate to variability in S-159 
A functional properties, as for group-level analysis (Fig. 2B)?  160 
 161 
In shifting analysis from group-level summary statistics to individual variability, we harnessed the 162 
distinction between intra- and inter-individual differences (37). The first (i.e., intra-individual) is known 163 
to index unreliable and fluctuating variability within individuals over time, while the second (i.e., inter-164 
individual) indexes the reliable and stable part of the overall variability between individuals (Fig. 2C) 165 
(37). This distinction is crucial, as intra-individual variability can downward bias effect sizes and reduce 166 
statistical power (37), additionally downward biasing genetic estimates (38). Such factors apply 167 
heterogeneously across the whole cortex (27), and can, therefore, increase reproducibility issues (see 168 
(28) for details).  169 
 170 
We were able to robustly distinguish between intra- and inter-individual effects by exploiting one of the 171 
strengths of the HCP design, which emphasises multiple rsfMRI sessions (across two days of scanning 172 
sessions, ~30 min each). This feature of the HCP design allowed us to partly discard intra-individual 173 
fluctuations in rsfMRI data from inter-individual differences in the functional gradient. Precisely, we 174 
partition the inter-individual variance (σinter(i)2) from the overall observed variance in the functional 175 
gradient (σFCG1(i)2 for any parcel i) by applying a measurement error model ((30,31) Fig. 2D, see 176 
Methods).  177 
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Estimates obtained from the measurement error model indicate that 33% of the total variability in the 178 
functional gradient was, on average, accounted for by intra-individual variance (Fig. 2D) even when 179 
using individual functional gradients extracted from functional connectomes averaged across two days 180 
of rsfMRI sessions (totalling ~60 min of scanning session). In other words, estimates for the association 181 
between the functional gradient and other S-A axis properties (or any other variable) would be, on 182 
average, biased downward by a factor of bias(r-observed, r-true) = .82 (a lower bound calculated 183 
assuming perfect reliability for the other S-A axis property (28)). Second, we observed systematic 184 
differences in estimates obtained across functional cortical networks, F(6, 393) = 33.21, p < .001; η2 = 185 
0.34, 95% CI [0.27, 1.00]), with estimates for parcel-wise inter-individual variances ranging from 186 
σinter(114)2= .39  to σinter(294)2= .89 (Fig. 2D). That is, bias is heterogeneous and expected to influence 187 
estimates across the cortex systematically. 188 
 189 

 190 
Figure 2. Pervasive inter-individual differences in the S-A axis of functional connectivity. (A) 191 
group-level estimates (black contour) overshadow pervasive individual differences in S-A axis 192 
properties. (B) The shift between levels of analyses: from group-level (grey square) to between-193 
individuals (coloured squares); the gradient square conceptually captures panel A. (C) Measurement 194 
error model to partition, for any parcel i, variance in the functional gradient loadings into intra- (σd-intra(i)2, 195 
for regional values measured at day 1 or 2 of the testing session, i.e., rectangles) and inter- (σinter(i)2, for 196 
the latent component, i.e., circle) individual variance. Parameter estimates for any parcel i can be found 197 
in Supplementary Table S1. (D) The proportion of intra- and inter-individual variance in the functional 198 
network across Yeo-Krienen functional networks: the horizontal dashed line represents the mean 199 
proportion of variance across networks; the horizontal lines display the median within network; lower 200 
and upper hinges correspond to the first and third quartile; the whisker extends from the hinge to the 201 
largest/lower value no further than 1.5 * interquartile range from the hinge. Note that across all parcels, 202 
observed variance includes substantial inter-individual variation. Notes on measurement model: 203 
Rectangles represent the measured phenotypes; the circle is the latent component; the double-headed 204 
arrows within the circle represent the variance associated with the latent components; one-headed 205 
arrows are the paths (here all set to 1). 206 
 207 
Individual differences in regional cortico-cortical network proximity, rather than microstructure, 208 
relate to the functional gradient of the S-A axis of cortical organisation. To simultaneously 209 
deattenuate the heterogeneous downward biases and handle structural and functional S-A metrics, we 210 
used a Structural Equation Modelling (SEM) approach. Precisely, we specified a model in which the 211 
inter-individual differences in the functional gradient estimated via the measurement error model were 212 
directly tested for associations with microstructural profiles and geodesic distances parcel-wise data 213 
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(see Methods). Here, we note that we avoided making assumptions about the causal structure 214 
generating the possible correlations between structural and functional metrics. We simply limited 215 
ourselves to estimating the association between regional properties of the S-A axis.  216 
 217 
On the one hand, contrary to group-level topographies, we found less than 2% of the 400 parcels to 218 
display a significant association between individuals' microstructural profiles and functional gradient 219 
loadings. These significant associations were all negative, weak (-.20 > r > -.27), and spread across 220 
both hemispheres and the dorsal, ventral, and default-mode functional networks. Conversely, we found 221 
large overlaps between individual geodesic distances and functional gradient loadings (Fig. 3A), with 222 
57% of the 400 parcels showing significant associations after Bonferroni correction. The directionality 223 
of the estimates for the association between individual regional geodesic distances and functional 224 
gradient loadings highlighted systematic differences across functional networks. Significant positive 225 
associations were preferentially clustered within the visual and the default mode (one sample t-test, 226 
two-sided,  t(21) = 5.82, p < .001, average r = .51, and t(53) = 4.04, p = .001, average r = .25), while 227 
negative associations were preferentially clustered within the somatomotor and ventral attention 228 
networks (one sample t-test, two-sided, t(59) = -13.32, p < .001, average r = -.48, and t(27) = -8.14, p 229 
< .001, average r = -.40, respectively, all tests accounting for multiple-testing via Bonferroni correction). 230 
Estimates obtained from standard correlation analysis further confirmed that the SEM approach 231 
successfully deattenuated measurement error bias (Fig. 3B). 232 
 233 

 234 
Figure 3. Structural and functional S-A axes selectively correlate between individuals. (A) 235 
Summary for the standardised estimates on the inflated cortical surface (36) from the structural 236 
measurement error model (see Methods) indicates little and weak phenotypic correlations (rp) between 237 
microstructural intensity (T1w/T2wmi) and functional gradient loadings (FCG1) inter-individual differences 238 
but large and highly significant (p<.05 after Bonferroni multiple-testing correction) overlaps between 239 
functional gradient loadings and geodesic distances. All parameter estimates for any parcel i, including 240 
the covariances between T1w/T2wmi and GD that were not the focus of the current study, can be found 241 
in Supplementary Table  S2. (B) The scatter plot shows how correlations between regional functional 242 
gradient loadings and geodesic distance estimated following the classic Pearson correlation approach 243 
(rgd-g1, on the x-axis) relate to correlations estimated with the measurement error model approach 244 
(deattenuated rgd-g1, on the y-axis). The grey line represents the deviation from the expected relationship 245 
between the two approaches under no estimated difference. As can be seen, negative and positive 246 
downward biases tend to be deattenuated.   247 
 248 
Genetic influences on inter-individual differences in the functional gradient of cortical 249 
organisation.  We went on to assess the extent of genetic influences on the S-A axis and the degree 250 
to which their estimates are impacted by measurement error. To do so, we exploited the family structure 251 
in the HCP to partition individual differences. In particular, we applied a twin design and partitioned the 252 
variability of functional gradient loadings into genetic (σA2;  A: additive) and unsystematic environmental 253 
(σE2; E: unique-environmental) sources via SEM. We focused our analysis on the twin HCP subsample 254 
including both monozygotic (MZ) and dizygotic (DZ) twins (n = 328, 195 MZ and 133 DZ individual twins, 255 
124 and 88 women, respectively; mean age 29 y, range = 22-35 y; see Methods for details on inclusion 256 
criteria), and derived twin-based heritability estimates (htwin2). These htwin2 estimates were derived from 257 
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an integrated SEM that incorporated the measurement error model. This approach made it possible to 258 
separate intra- and inter-individual differences in the functional gradient, yielding htwin2 estimates that 259 
robustly accounted for intra-individual variation, including measurement error.   260 
 261 
We benchmarked our htwin2 estimates for functional gradient loadings (obtained from the model that 262 
accounted for measurement error) by comparing them to a classic twin model (not accounting for 263 
measurement error). Following standard cut-offs (31), we retained 395 and 398 parcel-wise 264 
measurement error and classic twin models, respectively, with a satisfactory CFI > .90 and an RMSEA 265 
< .08. We excluded an additional parcel-wise measurement error twin model as it returned an out-of-266 
bounds estimate of htwin2 > 1.The inclusion of the measurement error model substantially boosted htwin2 267 
estimates relative to the estimates obtained from models not accounting for intra-individual variance. In 268 
particular, accounting for intra-individual differences resulted in a much larger average heritability for 269 
functional gradient loadings: htwin2 = .57, SD = 0.13, compared to the htwin2 = .37, SD = 0.11 obtained 270 
from classic models (Fig. 4A-B). Fig. 4C provides an illustration of the enhanced estimates for the 271 
heritability of S-A axis functional organisation when properly accounting for measurement error. 272 
 273 

 274 
Figure 4. Univariate twin AE models that account for measurement error boost functional 275 
gradient heritability estimation. Parcel-wise twin heritability (htwin2) estimates for the 392 parcels with 276 
satisfactory fit indices across classic and measurement error twin models. A Box plot of the htwin2 277 
stratified per Yeo-Krienen 7 functional networks. B Box plot of the htwin2 stratified per Yeo-Krienen 7 278 
functional networks obtained from the model accounting for measurement error (here, intra-individual 279 
differences, see Methods). The dashed line displays the mean htwin2 across networks. Note that the 280 
average heritability is 53% higher in B. Parameter estimates for any parcel i can be found in 281 
Supplementary Table 3. C Scatter plot showing the increase of the htwin2 estimate across the cortex in 282 
both models. Each dot represents one parcel.  283 
 284 
Genetic effects on different properties of regional S-A axis variability are substantial yet mostly 285 
distinct.  After having related inter-individual differences in structural and functional S-A axis properties, 286 
and showing heritable variation in functional organisation of the S-A axis, we asked whether genetic 287 
effects were mostly common or distinct across S-A axis properties. To partition variability (σp2; p: S-A 288 
axis phenotypic property) within S-A modalities in σA2 and σE2 sources, and further unpack genetic and 289 
environmental structure-function associations, we specified a multigroup multivariate model with only A 290 
and E components (see Methods). We retained all multivariate models as they displayed satisfactory 291 
fit indices, except a model returning an out-of-bounds estimate of htwin2 > 1. Similar to functional gradient 292 
loadings, microstructural profiles, mean htwin2 = .43, SD = 0.11, and geodesic distances, mean htwin2 = 293 
.34, SD = 0.11, displayed substantial htwin2 across the cortex (Fig. 5A-B).  294 
 295 
Notwithstanding such relatively high htwin2 for both microstructural profiles and functional gradient 296 
loadings, we found no significant additive genetic correlation between the two (all p > .05, Bonferroni 297 
corrected; Fig. 5B). This suggested little room for possible shared genetic causes between the S-A axis 298 
properties indexed by microstructural intensity and functional gradient loadings. Conversely, 14% of the 299 
parcels displayed significant additive genetic correlations between geodesic distances and functional 300 
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gradient loadings (7% negative and 7% positive in directionality, p < .05, Bonferroni corrected, Fig. 5C). 301 
The average magnitude of the genetic correlation (rA) was rA = -.67, SD = 0.16, and rA = .64, SD = 0.16. 302 
Furthermore, we found that for 30% of the parcels, complementary environmental effects mostly 303 
correlated between geodesic distances and functional gradient loadings (Fig. 5D).  304 
 305 

 306 
Figure 5.  Genetic sources of structural and functional properties of the S-A axis are selectively 307 
distinct. (A) Parcel-wise twin heritability (htwin2) estimates for microstructure and (B) geodesic 308 
distances. (C) Summary for the significant additive genetic correlations rA and (D) and environmental 309 
correlations (rE) across structural S-A axis properties with the functional gradient loadings on the inflated 310 
cortical surface (46). Note that the only significant genetic correlations are between geodesic distances 311 
and functional gradients loadings. The rA estimates can be found in Supplementary Tables S4-S5. 312 
 313 
Associations between structural and functional properties of the S-A axis are robust across 314 
samples. To test for the robustness of the results discussed so far, we estimated the overlap of the 315 
significant regional genetic or environmental associations in the genetically informative subsample with 316 
the significant regional phenotypic associations obtained from the first subsample. Of the 104 parcels 317 
that displayed significant genetic and/or environmental correlations between geodesic distances and 318 
functional gradient loadings in the genetically informative sample, 99 also displayed a significant 319 
phenotypic correlation in the first subsample. In other words, we found a 95% overlap between 320 
subsamples in terms of the parcels implicated. These results show that regional results were robust 321 
across two subsamples drawn from the HCP.  322 
 323 
Genetic and environmental associations extend beyond regional S-A axis variability. As a final 324 
analysis, we asked whether associations between geodesic distances and functional gradients were 325 
generalisable beyond regional differences. First, we quantified variability in global S-A axis properties 326 
as the overall Median Absolute Deviation (MAD) across all parcels within individuals. Within an 327 
individual, higher MAD scores indicate a larger dispersion in S-A axis values across the cortex. Once 328 
more, we found no significant genetic or environmental associations between microstructural profile 329 
intensity and functional gradients MAD scores. Yet, we found a substantial negative genetic correlation 330 
between the geodesic distances and functional gradient MAD scores (rA = -.78, 95% CI [-1.19, -.34], 331 
CFI = .93, RMSEA = .04; Fig. 6A).  332 
 333 
Additionally, to obtain a complementary estimate of global S-A axis variability, we quantified 334 
microstructural profile intensity, geodesic distance, and functional gradient ϼ similarity indices. These 335 
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indices assessed how similar S-A axis properties in one individual are compared to the average. 336 
Consistent with regional and global variance differences, ϼ similarity indices in geodesic distance, rather 337 
than microstructure, showed strong and positive genetic correlations with global differences in the 338 
functional gradient (rA = .61, 95% CI [.43, .79], CFI = .95, RMSEA = .04; Fig. 6B). Findings were robust 339 
to intra-cranial volume as a possible common cause of S-A axis structure-function covariance (Fig.6C-340 
D)  341 
 342 

 343 
Figure 6. Findings extend beyond regional S-A axis associations. (A) Simplified graphical 344 
representation of the multivariate twin-informed SEM for overall within-individual Median Absolute 345 
Deviations (MAD). Note the strong but negative significant associations between the latent additive 346 
genetic components (A, circles in red) underlying geodesic distances (GD; centre) and functional 347 
gradient loadings (FCG1; right). The blue circles represent the latent residual environmental components 348 
(E). (B) Simplified graphical representation of the multivariate twin-informed SEM for ϼ similarity indices 349 
(Fisher-z transformed). As for the model reported in panel A, the only significant associations are found 350 
between GD and FCG1. * p < .05. (C) and (D) panels show that the associations between MAD scores 351 
and ϼ similarity indices are robust to intra-cranial volume (ICV) as a possible confounder. Here, double-352 
headed arrows between latent variables indicate correlations (since we report standardised solutions). 353 
Dashed arrows represent nonsignificant correlations.  354 
 355 
Discussion 356 
Our results reveal that group-level estimates of spatial associations between structural and functional 357 
gradients differentiating sensory from association areas in the human brain might mask pervasive inter-358 
individual differences. These inter-individual differences, in turn, might display different patterns of 359 
associations from those depicted at the group level.  360 
 361 
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Notwithstanding the comparable heritability of the different S-A axis properties as shown in this study, 362 
theoretical models of S-A axis development and evolution (3), and group-level relationships between 363 
patterns of gene expression, cortical microstructure, and functional differentiation of sensorimotor to 364 
transmodal-association areas (6), our findings revealed minimal convergence between microstructural 365 
and functional features of the S-A axis at the individual level. Specifically, we found little evidence of 366 
phenotypic and an absence of evidence for genetic associations between cortical microstructure (as 367 
measured by T1w/T2w) and S-A function (as measured by the principal gradient of functional 368 
connectivity) of the cortex.  369 
 370 
At the same time, our results showed substantial genetic and environmental associations between 371 
individual-level differences in cortico-cortical network proximity (as measured by the geodesic distance 372 
of inter-connected regions across the cortical mantle) and S-A function. These latter results align with 373 
theories emphasising geometric constraints of brain function (1), yet do not fully align with  group-level 374 
estimates. While group-level associations indicate a positive relationship between cortico-cortical 375 
network proximity, our results uncover a mixture of positive and negative relationships at the individual 376 
level of analysis (the former preferentially clustered within the visual and default mode network, the 377 
latter with the somatomotor and the ventral attention network).  378 
 379 
Moreover, we found negative, not positive, genetic correlations when shifting from local to global 380 
association, as we did when analysing overall within-individual S-A axis dispersion. This suggests that 381 
genetic differences between people that tend to co-occur with decreased variation in geodesic distances 382 
across the cortex also tend to co-occur with more dispersed functional gradients. It is worth noting that 383 
the stronger relationship between geodesic distances and functional gradients (compared to 384 
microstructure) likely reflects the spatial constraints imposed by cortical geometry on functional 385 
organisation. While geodesic distances capture anatomical spatial relationships and functional 386 
gradients reflect connectivity patterns, both are shaped by the underlying architecture of neural 387 
connections. In particular, short-range anatomical proximity supports stronger functional coupling, 388 
which may contribute to the observed robust association. The selective associations between geodesic 389 
distances and functional gradients at the individual level also support the observed dissociation in S-A 390 
axis with microstructure, rather than reflecting a broader issue with finer spatial features of gradient-391 
based approaches. 392 
 393 
Fundamental principles of brain organisation can appear to be highly conserved across neurobiological 394 
properties if based on group-based analyses of topological co-variation, yet our results suggest this 395 
conservation may break down when assessed at the level of the individual. Based on group-level 396 
associations, previous work suggested that cortical maturation of diverse neurobiological properties 397 
proceeds along an evolutionary conserved and developmentally rooted S-A axis of cortical organisation 398 
(3,4). However, our results indicate that genetic variation within a population is expected to be 399 
selectively associated with some properties (e.g., function and cortico-cortical network proximity) but 400 
not others (e.g., microstructure), at least within cortical regions. The apparent paradox of observing 401 
stable group-level patterns and individual variation fits with current models of brain organisation, which 402 
recognise both shared principles and meaningful personal differences. This view is in line with recent 403 
perspectives (e.g., 39), which emphasise the importance of individual-specific brain features. 404 
 405 
These findings may also be important for understanding the origins of differences between individuals, 406 
such as in various neuropsychiatric disorders or work on brain-behaviour associations in general. First, 407 
since we found a dissociation between structural and functional gradients, complementing studies of S-408 
A axis variability with both structural and functional features may result in the discovery of brain-409 
behaviour associations with selective neurobiological properties of this axis. Second, the addition of 410 
informative genetic models of structural and functional S-A axis variability would provide several novel 411 
insights into previously observed correlations. Along these lines, by disentangling brain-behaviour 412 
associations into their genetic and environmental sources, genetically informative models could also 413 
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enhance our understanding of whether previously observed associations are caused by non-genetic 414 
factors. We also note that our model can be further applied to many neurobiological properties (e.g., 415 
rsfMRI, see (31)) to enhance current brain-behaviour mapping efforts (40). To facilitate this, we have 416 
made all the code available and provided all SEM functions in R and lavaan syntax. 417 
 418 
We also underscore that the measurement error modelling approach can successfully tease apart 419 
unstable intra-individual differences from stable inter-individual differences, and this effect can have a 420 
substantial downstream impact on estimates. For example, applying the measurement error modelling 421 
approach, in line with previous results (31), resulted in a nearly 50% increase in estimates of heritability. 422 
These results should also work as a cautionary tale against interpreting differences in average 423 
heritability across principles of S-A organisation, or, more generally, between functional and structural 424 
properties of the cortex. Before accounting for intra-individual differences that occur also as a result of 425 
measurement error, heritability estimates for functional gradient loadings may have seemed lower than 426 
heritability estimates for structure. Yet, after accounting for such intra-individual variation, estimates 427 
were higher. This apparent puzzle is reconciled due to heritability being a ratio, with intra-individual 428 
variation being part of the denominator. Since functional connectivity tends to vary intra-individually, 429 
estimates will tend to be smaller when not accounting for this intra-individual variability.  430 
 431 
We foresee that the measurement error modelling approach could have further direct application in 432 
ongoing research on the origins of psychiatric disorders and brain-behaviour studies, and in the analysis 433 
of the genomic architecture of principles of brain organisation, exactly because we show that it may 434 
mitigate the impact of measurement error heterogeneity on estimates. Indeed, when individual 435 
variability in the S-A axis is the predictor of interest, such as in brain-behaviour studies, applying any 436 
measurement error model is expected to deattenuate downwardly biased estimates (28,37,41,42). 437 
Moreover, genome-wide association studies could easily implement genome-based structural equation 438 
modelling (43,44) extensions of our approach to discard unstable and unreliable variance, overcoming 439 
attenuation biases in associations between single nucleotide polymorphisms and target phenotypes 440 
(e.g., similarly to what has been done for analyses based on polygenic indices (42)). 441 
 442 
Yet, it is important to note that the interpretation of deattenuated estimates rests upon assumptions of 443 
what type of error is expected to influence the measurement of functional S-A axis properties across 444 
days of measurement. Here, we assumed that what is measured as being shared between sessions is 445 
the common cause of what is measured within each session. Within this framework, what is left is 446 
unique to each session, including sources of measurement error. Such application of the measurement 447 
error model to S-A axis functional properties is not expected to perfectly segregate S-A axis error-free 448 
variance in the inter-individual component (37). For example, the systematic error of individual S-A axis 449 
measurement would be indistinguishable from meaningful inter-individual variability and still be 450 
captured by the inter-individual variance component.  Additionally, this measurement error model could 451 
confound unsystematic S-A axis error with genuine intra-individual differences, which may even be 452 
partially heritable (45). Therefore, the actual sources of session-to-session differences may be more 453 
nuanced than the simple measurement error model implies. Consequently, we advise caution when 454 
interpreting inter- and intra-individual differences as exclusively “error-free” and “error” variance, 455 
respectively (see Methods for further details). 456 
 457 
Another limitation of our study is the lack of repeated structural metric measures. Although applying a 458 
measurement error model allowed us to partly disentangle intra- and inter-individual variability in 459 
functional gradient loadings, we could not account for the differences in structural properties within 460 
individuals. This limitation may have attenuated the estimated relationship between structure and 461 
function. However, the nature of the metrics and the twin design employed to elucidate differences 462 
between individuals should mitigate the impact of such a lack of repeated structural metrics (38). By 463 
applying the classical twin design, we were able to further partition unstable measurement error in the 464 
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environmental (E) component of the model, which minimised possible biases introduced by hypothetical 465 
measurement error, at least for the additive genetic (A) correlations (rA) estimates.  466 
 467 
In sum, our findings reveal that group-level results can overshadow substantial inter-individual 468 
differences within and between different neurobiological properties. By focusing on these previously 469 
underappreciated differences, we could highlight selective associations of individual variation in S-A 470 
axis cortical structure and function. These inter-individual differences and associations open a window 471 
into genetic sources of S-A axis structure and function, which we reveal to be selectively distinct. Our 472 
results underscore the complex interplay between the S-A axis's structural and intrinsic functional 473 
properties and provide a set of tools that can be used to test their potentially differential roles in shaping 474 
cognition. 475 
 476 
Materials and Methods 477 
Sample. We used data from the Human Connectome Project (HCP) S1200 release. The HCP includes 478 
data from 1206 individuals (656 women) that comprise 298 Monozygotic (MZ) twins, 188 Dizygotic (DZ) 479 
twins, and 720 individuals, with mean age ± SD = 28.8 ± 3.7 years (age range = 22-37 years). Informed 480 
consent for all individuals was obtained by HCP, and our data usage was approved by HCP and 481 
complied with all relevant ethical regulations for working with human participants (see (13,33,46)). The 482 
primary participant pool comes from individuals born in Missouri to families that include twins, sampled 483 
as healthy representatives of ethnic and socioeconomic diversity of US individuals, based on data from 484 
the Missouri Department of Health and Senior Services Bureau of Vital Records. We followed standard 485 
guidelines for inclusion criteria as described elsewhere (13). Our sample, in line with Valk et al., (13) 486 
comprised 992 (529 women) individuals. The first subsample of n = 482 (229 women) was created by 487 
excluding all twins. The second genetically informative subsample of n = 328 (212 women) was created 488 
by including only twins with genotyped zygosity matching self-reported zygosity (195 MZ and 133 DZ 489 
individuals; 124 women and 88 men, respectively, forming between 150 and 152 complete pairs, 490 
depending on data availability for the S-A axis modality). 491 
 492 
Functional imaging. Functional connectivity matrices were based on four 14 min 33 s of functional 493 
Magnetic Resonance Imaging (fMRI) data acquired over two sessions, spaced two days apart, through 494 
the HCP, which underwent HCP’s minimal preprocessing. No global signal regression was performed 495 
in the processing of the fMRI data. For each individual, four functional connectivity matrices were 496 
computed using the minimally preprocessed, spatially normalised resting-state fMRI (rsfMRI) scans, 497 
which were co-registered using MSMAll to template HCP 32k_LR surface space. 32k_LR surface space 498 
consists of 32,492 total nodes per hemisphere (59,412 excluding the medial wall). We computed four 499 
functional connectivity matrices per individual from the average time series extracted in each of the 400 500 
Schaefer cortical parcels. The individual functional connectomes were generated by averaging 501 
preprocessed time series within nodes, Pearson correlating nodal time series and converting them to 502 
Fisher-z scores. The average functional connectomes were obtained by averaging functional 503 
connectomes within individuals (i.e., between sessions) and between individuals.   504 

Structural imaging. MRI protocols of the HCP have been previously described (33,46). MRI data were 505 
acquired originally on the same day on the HCP’s custom 3T Siemens Skyra equipped with a 32-506 
channel head coil. T1w images with identical parameters were acquired using a 3D-MP-RAGE 507 
sequence over 7 min 40 s (0.7 mm isovoxels, matrix = 320 × 320, 256 sagittal slices; TR = 2400 ms, 508 
TE = 2.14 ms, TI = 1000 ms, flip angle = 8°; iPAT = 2). T2w images were acquired using a 3D T2-509 
SPACE sequence with identical geometry over 8 min and 24 s (TR = 3200 ms, TE = 565 ms, variable 510 
flip angle; iPAT = 2). We followed the preprocessing steps outlined in Valk et al. (13). 511 

Parcellation and functional networks. We used the Schaefer group-level hard-parcellation, originally 512 
obtained by a gradient-weighted Markov random field model integrating local gradient and global 513 
similarity approaches (34). To stratify results within canonical cortical functionally coupled networks, we 514 
used the seven Yeo-Krienen networks (47). 515 
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Microstructural profiles (T1w/T2wmi). We used T1w/T2w imaging myelin-sensitive contrast from the 516 
HCP minimal processing pipeline, which uses the T2w to correct for inhomogeneities in the T1w image 517 
to estimate mean intensity T1w/T2w microstructural profiles (T1w/T2wmi). T1w/T2wmi has been shown 518 
to map to model-based tract-tracing histological data in macaque, estimate intracortical myelin content, 519 
and thus approximate architectural complexity and cortical hierarchy (6).  520 

Geodesic distance (GD). Individual geodesic distances (GD) were computed using the Micapipe 521 
toolbox (26). Briefly, we computed GD between each region and their top 10% of maximally functionally 522 
connected regions along each individual native cortical midsurface. We further averaged within regions 523 
to obtain a parcel-wise value and improve computation performance. Micapipe implements the Dijkstra 524 
algorithm (48) (further details can be found in (26)). 525 

Functional gradient loadings (FCG1). We sequentially averaged FCs, first within days, resulting in two 526 
FCs per individual, and then between days, resulting in one FC per individual. We then extracted the 527 
three first components from the two sequentially averaged and one averaged FCs, using the Python 528 
package BrainSpace (49). Extraction of the first eigenvector followed standard procedures, with the 529 
original individual FCs set at a connection density of 10% (i.e., the FCs were made sparse by setting a 530 
sparsity threshold of 90%). The first ten eigenvectors were then obtained by decomposing the FCs by 531 
diffusion map embedding, a robust non-linear manifold learning technique (1). To aid comparability 532 
across individuals, we aligned individual eigenvectors to the template eigenvector by Procrustes 533 
rotation (50). The template functional gradient was directly extracted from the overall mean FC matrix. 534 

Group-level associations analysis. We computed Spearman rank-order correlations (ϼ) between the 535 
structural (T1w/T2wmi and GD) and functional (FCG1) S-A axis group-level properties. Group-level 536 
properties were obtained from the average of the individual structural S-A properties (i.e., average 537 
T1w/T2wmi and GD), and from the decomposition of the average FC (i.e., principal gradient obtained 538 
via diffusion map embedding of the average FC).  539 

Measurement model of error in individual variability of the functional S-A axis. To partition stable 540 
inter-individual variability in functional gradient loading, we adapted previous measurement error 541 
models to rsfMRI to the functional gradient (30,31). The intuition behind such a modelling strategy is 542 
simple. Suppose parcel-wise values are measured without error and are stable over a reasonable 543 
period of time (e.g., one day). In that case, the correlations across individuals between the values 544 
obtained across two time points will equal 1. If the correlations deviate from 1 instead, regional values 545 
will be measured with some error, with bigger deviations corresponding to higher error or fluctuation 546 
over time. As can be seen in Fig. 2C, when errors or changes over time are present, it may become 547 
difficult to distinguish regional differences between individuals from regional differences within 548 
individuals. In this case, we can use the measurement error model to estimate what stays constant 549 
across time, indexing the “true” regional values. Across the manuscript, for correctness, since “error” 550 
variance can include meaningful, yet unstable, fluctuation in rsfMRI, while “true” variance can also 551 
consist of systematic measurement error across sessions, we refer to the former term as intra-individual 552 
and the latter as inter-individual variability (37). First, we fit a measurement model to parcel-wise 553 
functional gradient loadings averaged within days. In line with Teeuw et al. (31), we did not constrain 554 
intra-individual variance components to be equal across days of scanning sessions. We performed 555 
model fitting in lavaan (44) after standardising observed variables (i.e., std.ov = T). We then used model 556 
estimates obtained for the variances of the latent and observed components. Using Spearman-Brown 557 
correction, we computed the averaged proportion of stable inter-individual variance in functional 558 
gradient loadings across days as the intra-class correlation (ICC) (51). For each parcel i, the ICC was 559 
calculated as follows: 560 

ICC(2, 𝑘)! =	
k ∗ ICC(2,1)!

1 + (𝑘 − 1) ∗ ICC(2,1)!
	 (1) 561 
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Where k is a constant equal to the number of measures (i.e., k = 2) and the ICC(2,1)i is calculated as 562 
follows: 563 

ICC(2,1)! =	
𝜎"#$%&(!))

𝜎"#$%&(!)) + 0
𝜎*+"#$&,(!)) +	𝜎)+"#$&,(!))

2 1
	 (2)

 564 

ICC(2,k)i estimates the proportion of inter-individual variance over the total variance, σinter(i)2, in the 565 
functional loadings as if they were obtained from the average of the two scanning sessions. The 566 
proportion of intra-individual variance for a parcel i, σintra(i)2, is obtained simply by subtracting the 567 
ICC(2,k)i from 1.  568 

The expected bias for any parcel i was calculated following Tiego et al. (28):   569 

bias(") =	6𝑅-,- ∗ 𝑅/01*,/01*(!)	 (3) 570 

Where Rp,p, the reliability for the structural S-A axis property p (e.g., T1w/T2wmi), was set to be equal 571 
to 1 across all parcels, and RFCG1,FCG1(i), the reliability of parcel-wise value for the functional gradient 572 
loading, was calculated as ICC(2,k)i. 573 

Multivariate Measurement error SEM. We used Structural Equation Modelling (SEM) to estimate 574 
correlations between structural (i.e., T1w/T2wmi(i), GD(i))  and functional (i.e, FCG1(i))  S-A modalities. 575 
Each multivariate model simultaneously accounted for intra-individual variances by including the 576 
measurement error model (Fig. 7A).  All models were fitted in lavaan (52) after standardising all 577 
observed variables (i.e., std.ov = T). Prior to model fitting, sex and age were regressed from parcel-578 
wise S-A axis values using the function umx::umx_residualize() (53). Structural equation models were 579 
fit to residual scores. We assumed missing data to be missed at random and followed parameters’ 580 
estimation via full-information Maximum Likelihood (i.e., missing = “ML”).  581 

Twin-informed Multivariate Structural Equation Modelling. We used multigroup SEM to partition 582 
parcel-wise variability in structural (σT1w/T2wmi(i)2, σGD(i)2) and functional (σinter(i)2) S-A modalities into 583 
either additive genetic (σA2) or unsystematic environmental (σE2) sources of variance. Structural 584 
equation models were fit to T1w/T2wmii, GDi, and FCG1i1 (day 1) and FCG1i2 (day 2) data, grouped by 585 
zygosity (i.e., two groups). The model specification was informed by the multivariate twin design (54).  586 
Briefly, monozygotic (MZ) twins are ~100 % genetically identical, coming from the same fertilised egg. 587 
In contrast, dizygotic (DZ) twins are, on average, only 50% additively genetically similar regarding allelic 588 
variants coming from two different fertilised eggs. Thus, the correlation f between the additive genetic 589 
component (A) is set to be equal to 1 for MZ and ½ for DZ. In contrast, each twin's unique environment 590 
(E) component will be unique; therefore, their correlation will be equal to 0. In total, we fit one 591 
multivariate AE model per parcel. Following the measurement error procedure outlined above and in 592 
reference (31), a common pathway measurement error model was included in the specification of the 593 
multigroup SEM (Fig. 7B). As such, each multivariate model simultaneously accounted for intra-594 
individual variance (Fig. 7C). We employed the direct symmetric approach by estimating variance 595 
components directly while setting path coefficients to 1 (with the exception of the measurement model, 596 
for which we fixed the variance to be equal to 1, and estimated the path coefficients, instead). We chose 597 
this approach as it has been shown to reduce type I errors and produce asymptotically unbiased χ2 598 
(55).  599 

Similarly to reference (56), twin models were fitted in lavaan (52), with standardisation of observed 600 
variables before model fitting (i.e., std.ov = T). To control for the effect of age and sex on S-A axis 601 
properties, we residualised parcel-wise variables prior to modelling using the function 602 
umx::umx_residualize() (53). Residuals were used as observed variables in later twin modelling. We 603 
estimated parameters via full-information Maximum Likelihood (i.e., missing = “ML”) and evaluated the 604 
goodness of fit for each parcel by comparative fit index (CFI) and root mean square error of 605 
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approximation (RMSEA) scores. Following standard cut-offs (31), we retained only models with a 606 
“satisfactory” CFI>.90 and an RMSEA<.08.  Narrow-sense twin heritability (htwin2) estimates for each 607 
parcel i were defined as the ratio of the additive genetic variance over the sum of the additive genetic 608 
and environmental variances: 609 

ℎ$2"#+-(!)) =	
𝜎3-(!))

𝜎3-(!)) + σ4-(!)) 	 (4) 610 

Where σAp(i) 2 is the additive genetic variance for the S-A axis parcel-wise value for the given property p 611 
(e.g., GD). For functional gradient loadings, the heritability was calculated as  612 

ℎ$2"#+"#$%&(!)) =	σ3"#$%&(!)) 	 (5)   613 

After imposing the equality constraint on the common factor FCG1inter(i) 614 

𝜎3"#$%&(!)) + σ4"#$%&(!)) = 1	 (6) 615 

Genetic correlations (rA) were calculated as: 616 

𝑟5 =	
𝜎3-*!,36)!

?𝜎3-*!	) ∗ 	𝜎3-)!	)
	 (7)

 617 

Where σAp1,Ap22 is the additive genetic covariance between two S-A axis properties, p1 and p2 (e.g., GD 618 
and T1w/T2wmi). Environmental correlations (rE) were calculated similarly to rA but using environmental 619 
variance and covariance estimates.  620 

621 
Figure 7. SEM approach. (A) Structural measurement error model used to estimate deattenuated 622 
correlation between S-A axis properties considering the distinction between intra- and inter-individual 623 
differences in functional gradient loading variability. Observed parcel-wise values and latent 624 
components are standardised before model fitting. (B) Twin model used to obtain deattenuated htwin2 625 
estimates. Here, the covariance between the twins’ parcel-wise functional gradient loadings is 626 
estimated directly on the inter-individual component of variance (i.e., FCG1) and set to f * σAinter2, where 627 
f = 1 for MZ twins and f = ½ for DZ twins. The model assumes absence of shared household and non-628 
additive genetic effects on functional gradients in young adults. (C) Simplified graphical representation 629 
of the multivariate twin-informed SEM, which puts the models depicted in A and B together. Notes on 630 
SEM: Rectangles represent the measured structural or functional MRI-derived phenotypes; the circle is 631 
the latent components; the double-headed arrows connecting circles with themselves represent the 632 
variance associated with the latent components; double-headed arrows connected between circles 633 
covariances; Where not noted, one-headed arrows are the paths (here all set to 1). 634 

Generalisation beyond regional associations. For each individual, we obtain two metrics for 635 
structural and functional S-A axis properties (i.e., a total of six measures per individual): 636 

Overall within-individual Median Absolute Deviation: we quantified the spread of the regional values 637 
across the cortex by computing within-individual Median Absolute Deviation (MAD) of microstructure, 638 
geodesic distances, and functional gradient loadings. MAD is a robust univariate measure of statistical 639 
dispersion and is simply calculated as follows: 640 
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𝑀𝐴𝐷-8 = 𝑚𝑒𝑑GH𝑝-8! −𝑚𝑒𝑑G𝑝-8JHJ	 (8) 641 

Where pij is the parcel-wise value for a property p, an individual j, and a parcel I and med is the median.    642 

ϼ similarity index: we obtained the similarity index by estimating the Spearman rank (ϼ) correlations 643 
between each individual microstructure, cortico-cortical network proximity, and functional gradient 644 
loadings with the respective S-A group-level modality vectors. For example, the ϼ similarity index for the 645 
cortico-cortical network proximity for an individual j was obtained by correlating their GD with the group-646 
level GD. Similarly, for the same individual j, the similarity index for their functional gradient loading was 647 
obtained by correlating their FCG1 on day 1 and on day 2 of scanning with the group-level FCG1.  648 

Similar to what is outlined above for regional analysis, we fit two multivariate AE models, one per metric. 649 
Before model fitting, ϼ similarity indices were first Fisher-z transformed. To recapitulate regional analysis 650 
as closely as possible within the multivariate model, we also included the measurement error model to 651 
overall within-individual MAD and ϼ similarity index functional gradient loadings obtained on days 1 and 652 
2 of scanning sessions. Note that standardised coefficients are obtained using the 653 
lavaan::standardizedSolution() function. As a final sensitivity analysis, to discount individuals’ whole 654 
brain volume as a possible confounding effect of the relationship between SA axis structure-function 655 
associations, we additionally included total intra-cranial volume. Precisely, we followed a two-step 656 
procedure to discount intra-cranial volume as a possible common cause. First, we regressed out intra-657 
cranial volume from overall within-individual MAD and Fisher-z transformed ϼ similarity indices for all S-658 
A axis properties. We then re-fit the exact multivariate twin models to the residuals. 659 

Data availability 660 
We obtained human data from the open-access Human Connectome Project (HCP) S1200 young 661 
adult sample. HCP Young Adult data are available at https://www.humanconnectome.org/study/hcp-662 
young-adult. The Supplementary Table  with summary statistics can be found at 663 
https://github.com/giacomobignardi/h2_SA_axis/tree/main/SI. 664 
 665 
Code availability 666 
All code is available and can be found at https://github.com/giacomobignardi/h2_SA_axis. SEM and 667 
twin-based analysis were carried out using the statistical package latent variable analysis (lavaan) 668 
https://lavaan.ugent.be/. The function to apply the measurement error model (meermo) can be found 669 
here: https://github.com/giacomobignardi/h2_SA_axis/tree/main/R/functions/meermo. The lavaan 670 
syntax for latent variable analysis of twin data (lavaantwda) can be found in the repository 671 
https://github.com/giacomobignardi/h2_SA_axis/tree/main/R/functions/lavaantwda. An introduction to 672 
twin modelling using lavaan can be found at https://rpubs.com/MichelNivard/798608. Code and tutorial 673 
for functional gradient decomposition of functional connectomes are available 674 
at https://brainspace.readthedocs.io/en/latest/pages/install.html. The code and tutorial to generate 675 
geodesic distances can be found at https://micapipe.readthedocs.io/en/latest/.  676 
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