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Abstract

In humans, many neurobiological features of the cortex—including gene expression patterns,
microstructure, and functional connectivity—vary systematically along a sensorimotor-association (S-
A) axis of brain organisation. To date, it is still poorly understood whether inter-individual differences in
patterns of S-A axis capture these robust spatial relationships across neurobiological properties
observed at the group-level. Here, we examine inter-individual differences in structural and functional
properties of the S-A axis, namely cortical microstructure, geodesic distances, and the functional
gradient, in a sample of young adults from the Human Connectome Project (N = 992, including 328
twins). We quantified heritable variation associated with inter-individual differences in the S-A axis, and
assessed whether structural and functional properties that are highly spatially correlated at the group-
level also share genetic underpinnings. To consider measurement errors in resting-state functional
connectivity data and their impact on properties of the S-A axis, we used a multivariate twin design
capable of disentangling individual-level variation in both intra- and inter-individual differences. After
accounting for some of the intra-individual variation, we found average heritable individual differences
in both the functional gradient (hwin®> = 57%), cortical microstructure (hwin> = 43%), and geodesic
distances (hwin> = 34%). However, these genetic influences were mostly distinct and deviated from
group-level patterns. In particular, we found no significant genetic correlation between the functional
gradient and microstructure, while we found both positive and negative genetic associations between
the functional gradient and geodesic distances. Our approach highlights the complexity of genetic
contributions to brain organisation and may have potential implications for understanding cognitive
variability within the S-A axis framework.
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59 Introduction

60  The human brain supports perception and action but also abstract cognition (1,2). This diversity of
61 functions is thought to be reflected by the gradual dissociation between unimodal sensory and
62  transmodal association cortical areas along a sensorimotor-association (S-A) axis (3). The S-A axis
63  spans a vast array of neuroanatomical properties, including microstructural variation (myelination and
64  cytoarchitecture) and inter-areal connectivity distance (1,3-6). Here, sensory areas show increased
65 layer differentiation, myelination, and, predominantly, short-range connections. In contrast, association
66  areas show less differentiated microstructural profiles, reduced myelination, and a combination of short-
67  and long-range connectivity profiles (5,7,8).

68

69  The differentiation between sensory and association areas underwent evolutionary changes (3), with
70 an expansion of cortical association areas paralleled by a marked laminarisation of sensory areas in
71  human primates (9,10). Such structural re-organisation and evolutionary changes along the S-A axis
72 (1,6,11,12) may have provided the scaffold for functional differentiation (13,14), allowing in turn for
73 human-specific cognitive and behavioural flexibility (1,13).

74

75 Several discoveries have enhanced our understanding of links between structural and functional
76  features of the S-A axis. These findings have highlighted spatial associations of microarchitectonic
77  differentiation (15) and cortical geometry (16) with functional organisation (13,17). For example,
78  T1w/T2w maps derived from non-invasive Magnetic Resonance Imaging (MRI)—indexing cortical
79  microstructural differences —and histological markers based on cell staining have been shown to relate
80  strongly to gene transcriptional profiles and functional dissociation along the S-A axis. Such group-level
81 associations suggest that a canonical genetic architecture may shape S-A axis structural organisation,
82  providing foundations for the differentiation of cortical function (6).

83

84  Recent studies noted that various features of the S-A axis show inter-individual differences in human
85 populations that are associated with variability in a host of traits, such as neuropsychiatric traits,
86 including autism (18), schizophrenia (19), and depression (20), as well as sex (21) and developmental
87 (22) differences. These findings highlight the overall importance of the S-A axis for human complex trait
88 variation. However, it remains unclear how the different structural and functional properties of this axis
89 relate to each other when viewed at the level of the individual, i.e. whether well-documented strong
90  associations between such properties at the group-level (3,4,6,23-25) are also reflected in patterns of
91 inter-individual differences. Knowing whether such patterns converge or diverge is crucial because it
92 directly informs the study of the impact of alterations along the S-A axis on human traits. For instance,
93  divergences between findings at the individual and group levels may suggest that associations between
94  functional characteristics of the S-A axis and trait variability do not parallel analogous structural
95  differences. Similarly, these differences may entail that a lack of associations between a specific
96  neurobiological feature of the S-A axis and a particular trait does not necessarily imply the absence of
97 relationships across other S-A axis neurobiological properties.
98
99 Here, we asked: Do individual differences in structural properties of the S-A axis relate to differences in
100 functional properties? In other words, we studied whether previous widely reported group averages can
101 inform S-A axis associations at the individual level. Specifically, we tested whether anatomical individual
102  differences in regional cortical microstructure (6) and cortical geometry—captured by the geodesic
103  distance of inter-connected regions across the cortical mantle (1,26)—relate to the well-known
104  functional dissociations between sensory and transmodal association areas (1,3).
105
106  To thoroughly account for the known issue of measurement error heterogeneity across the cortex (27)
107 and its impact on association estimates (28,29), we adapted and applied measurement error models in
108 the form of structural equation models (30,31). This allowed us to rigorously tease apart unreliable intra-
109 individual from reliable inter-individual variation in the functional organisation of the S-A axis.
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110  We then went further to interrogate upstream sources of inter-individual differences in the S-A axis in
111  structure and function: genetic variation. We asked: Are genetic effects on the S-A axis shared across
112 structural and functional properties? Here, we analysed a genetically informative sample and quantified
113  the extent of overlap across genetic effects on structural and functional properties of the S-A axis.
114  Specifically, we used an augmented twin-informed design to quantify and tease out genetic overlaps
115 between the S-A axis's structural and functional properties while accounting for the impact of reliability
116  on classic heritability estimates (31,32). Last, we evaluated the robustness of our results, both across
117  subsamples, between regional and global cortical metrics, and between and within individuals' S-A axis
118  properties.

119

120 Results

121  To quantify structural and functional S-A axis properties, we combined microstructural and resting-state
122  functional MRI (rsfMRI) data from the Human Connectome Project (HCP (33); N = 992 adults; 529
123  women, mean age 28 y; 22-37 y). We computed two structural metrics and one functional metric
124  indexing the S-A axis:

125

126 e Regional microstructure: we quantified regional microstructure indexing the differentiation
127 between sensorimotor and association areas using the individuals’ mean intensity of regional
128 T1w/T2w (T1w/T2wmi) in 400 parcels (6,34)

129 ¢ Geodesic distance: we quantified cortical geometry in each individual as regional cortico-
130 cortical network proximity (26) by computing the geodesic distance (GD) between every cortical
131 region and its corresponding functional network, averaging within each region to get parcel-
132 wise estimates (18). We chose geodesic distances because they align with the anatomical
133 layout of axonal wiring along the cortical sheet and are strongly associated with functional
134 connectivity gradients (1,35), thus providing a spatial framework that complements
135 microstructural measures

136 e Functional gradient loadings: we quantified the functional S-A axis in each individual by
137 obtaining the first component of the individual functional connectomes (FCa1) using diffusion
138 map embedding (1)

139  We started our analysis by testing whether associations between group-level averaged maps of
140  structural S-A axis properties correlated with the functional S-A axis (Fig. 1A-C). By using a subsample
141  of n = 482 adults (229 women, mean age 28 y; 22-37 y; a subsample obtained by excluding all twins
142  included in the full HCP sample), we were able to replicate group-level findings between averaged
143  T1w/T2wmi and FCa1, extending the results to GD and FCes1 (Fig. 1D-E).
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144
145 Figure 1. Structural and functional S-A axes strongly correlate at the group-level. Structural (A-

146  B) and functional (C) indices of Sensorimotor-Association (S-A) axes plotted on inflated cortical
147  surfaces (36). Values represent averages of individual T1w/T2w mean intensity profiles (A; T1w/T2wmi),
148  averages of individual geodesic distances (B; GD), and functional gradients loadings (C; FCa1)
149  extracted from the average of individual functional connectomes across 400 cortical regions. (D)
150  Structural indices are strongly associated with functional indices of the S-A axis; Spearman p = -.61
151 and p = .75 between T1w/T2wmi and FCg1, and GD and FCec1, respectively; all p < .05. Each dot
152  represents a regional value; the colour represents canonical Yeo-Krienen 7 network membership. (E)
153  Conceptual representation of group-level analysis. Note that individual and regional information is lost
154  in favour of group-level results.

155

156  Pervasive inter-individual differences in the S-A axis of cortical organisation. Having estimated
157  the extent of overlap between structural and functional S-A axis properties at the group-level, we shifted
158 the focus to the individual level. Since group-level S-A axis can mask substantial individual variability
159 (Fig. 2A), we asked: does individual variability in structural S-A axis properties relate to variability in S-
160 A functional properties, as for group-level analysis (Fig. 2B)?

161

162 In shifting analysis from group-level summary statistics to individual variability, we harnessed the
163  distinction between intra- and inter-individual differences (37). The first (i.e., intra-individual) is known
164  to index unreliable and fluctuating variability within individuals over time, while the second (i.e., inter-
165 individual) indexes the reliable and stable part of the overall variability between individuals (Fig. 2C)
166  (37). This distinction is crucial, as intra-individual variability can downward bias effect sizes and reduce
167  statistical power (37), additionally downward biasing genetic estimates (38). Such factors apply
168 heterogeneously across the whole cortex (27), and can, therefore, increase reproducibility issues (see
169  (28) for details).

170

171 We were able to robustly distinguish between intra- and inter-individual effects by exploiting one of the
172  strengths of the HCP design, which emphasises multiple rsfMRI sessions (across two days of scanning
173  sessions, ~30 min each). This feature of the HCP design allowed us to partly discard intra-individual
174  fluctuations in rsfMRI data from inter-individual differences in the functional gradient. Precisely, we
175 partition the inter-individual variance (ointer(y?) from the overall observed variance in the functional
176  gradient (oFCa1()? for any parcel i) by applying a measurement error model ((30,31) Fig. 2D, see
177  Methods).
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178  Estimates obtained from the measurement error model indicate that 33% of the total variability in the
179  functional gradient was, on average, accounted for by intra-individual variance (Fig. 2D) even when
180  using individual functional gradients extracted from functional connectomes averaged across two days
181  of rsfMRI sessions (totalling ~60 min of scanning session). In other words, estimates for the association
182  between the functional gradient and other S-A axis properties (or any other variable) would be, on
183  average, biased downward by a factor of bias(r-observed, r-true) = .82 (a lower bound calculated
184  assuming perfect reliability for the other S-A axis property (28)). Second, we observed systematic
185  differences in estimates obtained across functional cortical networks, F(6, 393) = 33.21, p <.001; n? =
186  0.34, 95% CI [0.27, 1.00]), with estimates for parcel-wise inter-individual variances ranging from
187 Ointer(114)°= .39 t0 Ointer204)?= .89 (Fig. 2D). That is, bias is heterogeneous and expected to influence
188  estimates across the cortex systematically.
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191  Figure 2. Pervasive inter-individual differences in the S-A axis of functional connectivity. (A)
192  group-level estimates (black contour) overshadow pervasive individual differences in S-A axis
193 properties. (B) The shift between levels of analyses: from group-level (grey square) to between-
194  individuals (coloured squares); the gradient square conceptually captures panel A. (C) Measurement
195  error model to partition, for any parcel i, variance in the functional gradient loadings into intra- (Gd-intra()%,
196 for regional values measured at day 1 or 2 of the testing session, i.e., rectangles) and inter- (Ginter(y?, for
197 the latent component, i.e., circle) individual variance. Parameter estimates for any parcel i can be found
198 in Supplementary Table S1. (D) The proportion of intra- and inter-individual variance in the functional
199 network across Yeo-Krienen functional networks: the horizontal dashed line represents the mean
200 proportion of variance across networks; the horizontal lines display the median within network; lower
201 and upper hinges correspond to the first and third quartile; the whisker extends from the hinge to the
202 largest/lower value no further than 1.5 * interquartile range from the hinge. Note that across all parcels,
203  observed variance includes substantial inter-individual variation. Notes on measurement model:
204 Rectangles represent the measured phenotypes; the circle is the latent component; the double-headed
205 arrows within the circle represent the variance associated with the latent components; one-headed
206  arrows are the paths (here all set to 1).

207

208 Individual differences in regional cortico-cortical network proximity, rather than microstructure,
209 relate to the functional gradient of the S-A axis of cortical organisation. To simultaneously
210  deattenuate the heterogeneous downward biases and handle structural and functional S-A metrics, we
211  used a Structural Equation Modelling (SEM) approach. Precisely, we specified a model in which the
212  inter-individual differences in the functional gradient estimated via the measurement error model were
213 directly tested for associations with microstructural profiles and geodesic distances parcel-wise data
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214  (see Methods). Here, we note that we avoided making assumptions about the causal structure
215 generating the possible correlations between structural and functional metrics. We simply limited
216  ourselves to estimating the association between regional properties of the S-A axis.

217

218 On the one hand, contrary to group-level topographies, we found less than 2% of the 400 parcels to
219  display a significant association between individuals' microstructural profiles and functional gradient
220 loadings. These significant associations were all negative, weak (-.20 > r > -.27), and spread across
221  both hemispheres and the dorsal, ventral, and default-mode functional networks. Conversely, we found
222 large overlaps between individual geodesic distances and functional gradient loadings (Fig. 3A), with
223 57% of the 400 parcels showing significant associations after Bonferroni correction. The directionality
224  of the estimates for the association between individual regional geodesic distances and functional
225 gradient loadings highlighted systematic differences across functional networks. Significant positive
226  associations were preferentially clustered within the visual and the default mode (one sample t-test,
227  two-sided, t(21) = 5.82, p < .001, average r = .51, and #53) = 4.04, p = .001, average r = .25), while
228 negative associations were preferentially clustered within the somatomotor and ventral attention
229  networks (one sample t-test, two-sided, #59) = -13.32, p < .001, average r = -.48, and #(27) = -8.14, p
230 <.001, average r = -.40, respectively, all tests accounting for multiple-testing via Bonferroni correction).
231 Estimates obtained from standard correlation analysis further confirmed that the SEM approach
232 successfully deattenuated measurement error bias (Fig. 3B).

233
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235  Figure 3. Structural and functional S-A axes selectively correlate between individuals. (A)
236  Summary for the standardised estimates on the inflated cortical surface (36) from the structural
237  measurement error model (see Methods) indicates little and weak phenotypic correlations (rp) between
238  microstructural intensity (T1w/T2wmi) and functional gradient loadings (FCa1) inter-individual differences
239 but large and highly significant (p<.05 after Bonferroni multiple-testing correction) overlaps between
240 functional gradient loadings and geodesic distances. All parameter estimates for any parcel J, including
241  the covariances between T1w/T2wmi and GD that were not the focus of the current study, can be found
242 in Supplementary Table S2. (B) The scatter plot shows how correlations between regional functional
243  gradient loadings and geodesic distance estimated following the classic Pearson correlation approach
244  (rgag1, On the x-axis) relate to correlations estimated with the measurement error model approach
245 (deattenuated rga-g1, ON the y-axis). The grey line represents the deviation from the expected relationship
246 between the two approaches under no estimated difference. As can be seen, negative and positive
247  downward biases tend to be deattenuated.

248

249  Genetic influences on inter-individual differences in the functional gradient of cortical
250 organisation. We went on to assess the extent of genetic influences on the S-A axis and the degree
251  towhich their estimates are impacted by measurement error. To do so, we exploited the family structure
252 in the HCP to partition individual differences. In particular, we applied a twin design and partitioned the
253 variability of functional gradient loadings into genetic (042, A: additive) and unsystematic environmental
254  (0£2 E: unique-environmental) sources via SEM. We focused our analysis on the twin HCP subsample
255  including both monozygotic (MZ) and dizygotic (DZ) twins (n = 328, 195 MZ and 133 DZ individual twins,
256 124 and 88 women, respectively; mean age 29 y, range = 22-35 y; see Methods for details on inclusion
257  criteria), and derived twin-based heritability estimates (hwin?). These hwin? estimates were derived from
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258 an integrated SEM that incorporated the measurement error model. This approach made it possible to
259  separate intra- and inter-individual differences in the functional gradient, yielding hwin? estimates that
260  robustly accounted for intra-individual variation, including measurement error.

261

262  We benchmarked our hwin? estimates for functional gradient loadings (obtained from the model that
263  accounted for measurement error) by comparing them to a classic twin model (not accounting for
264  measurement error). Following standard cut-offs (31), we retained 395 and 398 parcel-wise
265  measurement error and classic twin models, respectively, with a satisfactory CFI > .90 and an RMSEA
266 < .08. We excluded an additional parcel-wise measurement error twin model as it returned an out-of-
267  bounds estimate of hwin?> > 1.The inclusion of the measurement error model substantially boosted hiwin?
268  estimates relative to the estimates obtained from models not accounting for intra-individual variance. In
269  particular, accounting for intra-individual differences resulted in a much larger average heritability for
270  functional gradient loadings: hwin® = .57, SD = 0.13, compared to the hwin®> = .37, SD = 0.11 obtained
271  from classic models (Fig. 4A-B). Fig. 4C provides an illustration of the enhanced estimates for the
272 heritability of S-A axis functional organisation when properly accounting for measurement error.
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275  Figure 4. Univariate twin AE models that account for measurement error boost functional

276  gradient heritability estimation. Parcel-wise twin heritability (hwin?) estimates for the 392 parcels with
277  satisfactory fit indices across classic and measurement error twin models. A Box plot of the hiwin?
278  stratified per Yeo-Krienen 7 functional networks. B Box plot of the hwin? stratified per Yeo-Krienen 7
279 functional networks obtained from the model accounting for measurement error (here, intra-individual
280 differences, see Methods). The dashed line displays the mean hwin?> across networks. Note that the
281  average heritability is 53% higher in B. Parameter estimates for any parcel i can be found in
282  Supplementary Table 3. C Scatter plot showing the increase of the hwin? estimate across the cortex in
283  both models. Each dot represents one parcel.

284

285  Genetic effects on different properties of regional S-A axis variability are substantial yet mostly
286 distinct. After having related inter-individual differences in structural and functional S-A axis properties,
287 and showing heritable variation in functional organisation of the S-A axis, we asked whether genetic
288  effects were mostly common or distinct across S-A axis properties. To partition variability (o2 p: S-A
289  axis phenotypic property) within S-A modalities in g4 and o sources, and further unpack genetic and
290 environmental structure-function associations, we specified a multigroup multivariate model with only A
291  and E components (see Methods). We retained all multivariate models as they displayed satisfactory
292 fitindices, except a model returning an out-of-bounds estimate of hwin? > 1. Similar to functional gradient
293 loadings, microstructural profiles, mean hwin? = .43, SD = 0.11, and geodesic distances, mean hwin? =
294 .34, SD = 0.11, displayed substantial hwin? across the cortex (Fig. 5A-B).

295

296 Notwithstanding such relatively high hwin® for both microstructural profiles and functional gradient
297 loadings, we found no significant additive genetic correlation between the two (all p > .05, Bonferroni
298  corrected; Fig. 5B). This suggested little room for possible shared genetic causes between the S-A axis
299  properties indexed by microstructural intensity and functional gradient loadings. Conversely, 14% of the
300 parcels displayed significant additive genetic correlations between geodesic distances and functional
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301 gradient loadings (7% negative and 7% positive in directionality, p < .05, Bonferroni corrected, Fig. 5C).
302 The average magnitude of the genetic correlation (ra) was ra = -.67, SD = 0.16, and ra = .64, SD = 0.16.
303  Furthermore, we found that for 30% of the parcels, complementary environmental effects mostly
304 correlated between geodesic distances and functional gradient loadings (Fig. 5D).

305
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306
307 Figure 5. Genetic sources of structural and functional properties of the S-A axis are selectively

308 distinct. (A) Parcel-wise twin heritability (hwin?) estimates for microstructure and (B) geodesic
309 distances. (C) Summary for the significant additive genetic correlations ra and (D) and environmental
310 correlations (re) across structural S-A axis properties with the functional gradient loadings on the inflated
311  cortical surface (46). Note that the only significant genetic correlations are between geodesic distances
312  and functional gradients loadings. The ra estimates can be found in Supplementary Tables S4-S5.
313

314  Associations between structural and functional properties of the S-A axis are robust across
315 samples. To test for the robustness of the results discussed so far, we estimated the overlap of the
316 significant regional genetic or environmental associations in the genetically informative subsample with
317  the significant regional phenotypic associations obtained from the first subsample. Of the 104 parcels
318 that displayed significant genetic and/or environmental correlations between geodesic distances and
319 functional gradient loadings in the genetically informative sample, 99 also displayed a significant
320 phenotypic correlation in the first subsample. In other words, we found a 95% overlap between
321 subsamples in terms of the parcels implicated. These results show that regional results were robust
322  across two subsamples drawn from the HCP.

323

324  Genetic and environmental associations extend beyond regional S-A axis variability. As a final
325 analysis, we asked whether associations between geodesic distances and functional gradients were
326  generalisable beyond regional differences. First, we quantified variability in global S-A axis properties
327  as the overall Median Absolute Deviation (MAD) across all parcels within individuals. Within an
328  individual, higher MAD scores indicate a larger dispersion in S-A axis values across the cortex. Once
329 more, we found no significant genetic or environmental associations between microstructural profile
330 intensity and functional gradients MAD scores. Yet, we found a substantial negative genetic correlation
331 between the geodesic distances and functional gradient MAD scores (ra = -.78, 95% CI [-1.19, -.34],
332  CFl=.93, RMSEA = .04; Fig. 6A).

333

334  Additionally, to obtain a complementary estimate of global S-A axis variability, we quantified
335  microstructural profile intensity, geodesic distance, and functional gradient p similarity indices. These
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indices assessed how similar S-A axis properties in one individual are compared to the average.
Consistent with regional and global variance differences, p similarity indices in geodesic distance, rather
than microstructure, showed strong and positive genetic correlations with global differences in the
functional gradient (ra = .61, 95% CI [.43, .79], CFI = .95, RMSEA = .04; Fig. 6B). Findings were robust
to intra-cranial volume as a possible common cause of S-A axis structure-function covariance (Fig.6C-

D)

A Multivariate model for overall within-individual S-A axis MAD

_.-07[-43, 28]
<

-, ~
7’ ~

V.51 V.46
MAD MAD

Microstructural Geodesic
intensity distances,

Va9 V54

~
~

S —’
10[-.18, .39]

’
A \/,
-

, /\\ -78[-1.18, -.38]*

MAD
Functional
gradienty, time 1

MAD
Functional
gradienty, time 2

27 .00, .54]*

> Multivariate model for overall within-individual S-A axis MAD

accounting for ICV
_.-08[-43, 27] _
~

’ ~

Microstructural Geodesic
intensity; distances;

m! \/ﬁ! V52
S \_/

_
St 118,397

, /\\\-.81 [1.25, -.39]*
V.51 i V.42 V.48
gradient, time 1

/
7
-

MAD

Functional

MAD
Functional
gradienty, time 2

275 .01, .53]*

B Multivariate mode

| for S-A axis p similarity indices

_.~20[-05, .64]
-
/\‘ \ , .80]"

ZPsi

V.06 V.59 Functional
gradient time 1
ZPsi ZPsi
Microstructural Geodesic
intensity, distancesy;
ZPsi
NEZY Va1 Functional

A Y
~
~

gradient; time 2

4
\-// 68 .36, .99]*
o

-

T 0113233

D Multivariate model for S-A axis p similarity indices
accounting for ICV

-17[-91, .56] _

Py

- ~

7’

/\\ 64[.45 , 83]*

z
Vo7 V.69 Func‘tizlnal
gradienty, time 1
ZPsi ZPsi
Microstructural Geodesic
intensity, distancesy;
ZPsi
V.93 V.31 Functional

N
~
~

gradient, time 2

\-// 67 .37, .97]
-

~ ”
S . 08[-.11, .27]

Figure 6. Findings extend beyond regional S-A axis associations. (A) Simplified graphical
representation of the multivariate twin-informed SEM for overall within-individual Median Absolute
Deviations (MAD). Note the strong but negative significant associations between the latent additive
genetic components (A, circles in red) underlying geodesic distances (GD; centre) and functional
gradient loadings (FCat; right). The blue circles represent the latent residual environmental components
(E). (B) Simplified graphical representation of the multivariate twin-informed SEM for p similarity indices
(Fisher-z transformed). As for the model reported in panel A, the only significant associations are found
between GD and FCas1. * p < .05. (C) and (D) panels show that the associations between MAD scores
and p similarity indices are robust to intra-cranial volume (ICV) as a possible confounder. Here, double-
headed arrows between latent variables indicate correlations (since we report standardised solutions).
Dashed arrows represent nonsignificant correlations.

Discussion

Our results reveal that group-level estimates of spatial associations between structural and functional
gradients differentiating sensory from association areas in the human brain might mask pervasive inter-
individual differences. These inter-individual differences, in turn, might display different patterns of
associations from those depicted at the group level.
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362 Notwithstanding the comparable heritability of the different S-A axis properties as shown in this study,
363  theoretical models of S-A axis development and evolution (3), and group-level relationships between
364  patterns of gene expression, cortical microstructure, and functional differentiation of sensorimotor to
365 transmodal-association areas (6), our findings revealed minimal convergence between microstructural
366  and functional features of the S-A axis at the individual level. Specifically, we found little evidence of
367 phenotypic and an absence of evidence for genetic associations between cortical microstructure (as
368 measured by T1w/T2w) and S-A function (as measured by the principal gradient of functional
369  connectivity) of the cortex.

370

371 At the same time, our results showed substantial genetic and environmental associations between
372 individual-level differences in cortico-cortical network proximity (as measured by the geodesic distance
373  of inter-connected regions across the cortical mantle) and S-A function. These latter results align with
374  theories emphasising geometric constraints of brain function (1), yet do not fully align with group-level
375 estimates. While group-level associations indicate a positive relationship between cortico-cortical
376 network proximity, our results uncover a mixture of positive and negative relationships at the individual
377  level of analysis (the former preferentially clustered within the visual and default mode network, the
378 latter with the somatomotor and the ventral attention network).

379

380 Moreover, we found negative, not positive, genetic correlations when shifting from local to global
381  association, as we did when analysing overall within-individual S-A axis dispersion. This suggests that
382  genetic differences between people that tend to co-occur with decreased variation in geodesic distances
383  across the cortex also tend to co-occur with more dispersed functional gradients. It is worth noting that
384 the stronger relationship between geodesic distances and functional gradients (compared to
385  microstructure) likely reflects the spatial constraints imposed by cortical geometry on functional
386  organisation. While geodesic distances capture anatomical spatial relationships and functional
387  gradients reflect connectivity patterns, both are shaped by the underlying architecture of neural
388 connections. In particular, short-range anatomical proximity supports stronger functional coupling,
389  which may contribute to the observed robust association. The selective associations between geodesic
390 distances and functional gradients at the individual level also support the observed dissociation in S-A
391 axis with microstructure, rather than reflecting a broader issue with finer spatial features of gradient-
392  based approaches.

393

394 Fundamental principles of brain organisation can appear to be highly conserved across neurobiological
395 properties if based on group-based analyses of topological co-variation, yet our results suggest this
396 conservation may break down when assessed at the level of the individual. Based on group-level
397 associations, previous work suggested that cortical maturation of diverse neurobiological properties
398 proceeds along an evolutionary conserved and developmentally rooted S-A axis of cortical organisation
399 (3,4). However, our results indicate that genetic variation within a population is expected to be
400  selectively associated with some properties (e.g., function and cortico-cortical network proximity) but
401 not others (e.g., microstructure), at least within cortical regions. The apparent paradox of observing
402 stable group-level patterns and individual variation fits with current models of brain organisation, which
403  recognise both shared principles and meaningful personal differences. This view is in line with recent
404 perspectives (e.g., 39), which emphasise the importance of individual-specific brain features.

405

406  These findings may also be important for understanding the origins of differences between individuals,
407  such as in various neuropsychiatric disorders or work on brain-behaviour associations in general. First,
408  since we found a dissociation between structural and functional gradients, complementing studies of S-
409 A axis variability with both structural and functional features may result in the discovery of brain-
410 behaviour associations with selective neurobiological properties of this axis. Second, the addition of
411  informative genetic models of structural and functional S-A axis variability would provide several novel
412 insights into previously observed correlations. Along these lines, by disentangling brain-behaviour
413  associations into their genetic and environmental sources, genetically informative models could also
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414  enhance our understanding of whether previously observed associations are caused by non-genetic
415  factors. We also note that our model can be further applied to many neurobiological properties (e.g.,
416 rsfMRI, see (31)) to enhance current brain-behaviour mapping efforts (40). To facilitate this, we have
417  made all the code available and provided all SEM functions in R and lavaan syntax.

418

419 We also underscore that the measurement error modelling approach can successfully tease apart
420  unstable intra-individual differences from stable inter-individual differences, and this effect can have a
421 substantial downstream impact on estimates. For example, applying the measurement error modelling
422 approach, in line with previous results (31), resulted in a nearly 50% increase in estimates of heritability.
423  These results should also work as a cautionary tale against interpreting differences in average
424 heritability across principles of S-A organisation, or, more generally, between functional and structural
425 properties of the cortex. Before accounting for intra-individual differences that occur also as a result of
426 measurement error, heritability estimates for functional gradient loadings may have seemed lower than
427 heritability estimates for structure. Yet, after accounting for such intra-individual variation, estimates
428 were higher. This apparent puzzle is reconciled due to heritability being a ratio, with intra-individual
429  variation being part of the denominator. Since functional connectivity tends to vary intra-individually,
430  estimates will tend to be smaller when not accounting for this intra-individual variability.

431

432  We foresee that the measurement error modelling approach could have further direct application in
433 ongoing research on the origins of psychiatric disorders and brain-behaviour studies, and in the analysis
434  of the genomic architecture of principles of brain organisation, exactly because we show that it may
435 mitigate the impact of measurement error heterogeneity on estimates. Indeed, when individual
436  variability in the S-A axis is the predictor of interest, such as in brain-behaviour studies, applying any
437  measurement error model is expected to deattenuate downwardly biased estimates (28,37,41,42).
438 Moreover, genome-wide association studies could easily implement genome-based structural equation
439 modelling (43,44) extensions of our approach to discard unstable and unreliable variance, overcoming
440  attenuation biases in associations between single nucleotide polymorphisms and target phenotypes
441  (e.g., similarly to what has been done for analyses based on polygenic indices (42)).

442

443  VYet, it is important to note that the interpretation of deattenuated estimates rests upon assumptions of
444  what type of error is expected to influence the measurement of functional S-A axis properties across
445 days of measurement. Here, we assumed that what is measured as being shared between sessions is
446  the common cause of what is measured within each session. Within this framework, what is left is
447 unique to each session, including sources of measurement error. Such application of the measurement
448 error model to S-A axis functional properties is not expected to perfectly segregate S-A axis error-free
449  variance in the inter-individual component (37). For example, the systematic error of individual S-A axis
450 measurement would be indistinguishable from meaningful inter-individual variability and still be
451 captured by the inter-individual variance component. Additionally, this measurement error model could
452 confound unsystematic S-A axis error with genuine intra-individual differences, which may even be
453 partially heritable (45). Therefore, the actual sources of session-to-session differences may be more
454 nuanced than the simple measurement error model implies. Consequently, we advise caution when
455  interpreting inter- and intra-individual differences as exclusively “error-free” and “error” variance,
456  respectively (see Methods for further details).

457

458  Another limitation of our study is the lack of repeated structural metric measures. Although applying a
459  measurement error model allowed us to partly disentangle intra- and inter-individual variability in
460 functional gradient loadings, we could not account for the differences in structural properties within
461 individuals. This limitation may have attenuated the estimated relationship between structure and
462  function. However, the nature of the metrics and the twin design employed to elucidate differences
463  between individuals should mitigate the impact of such a lack of repeated structural metrics (38). By
464 applying the classical twin design, we were able to further partition unstable measurement error in the
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465  environmental (E) component of the model, which minimised possible biases introduced by hypothetical
466  measurement error, at least for the additive genetic (A) correlations (ra) estimates.

467

468 In sum, our findings reveal that group-level results can overshadow substantial inter-individual
469  differences within and between different neurobiological properties. By focusing on these previously
470  underappreciated differences, we could highlight selective associations of individual variation in S-A
471 axis cortical structure and function. These inter-individual differences and associations open a window
472 into genetic sources of S-A axis structure and function, which we reveal to be selectively distinct. Our
473 results underscore the complex interplay between the S-A axis's structural and intrinsic functional
474  properties and provide a set of tools that can be used to test their potentially differential roles in shaping
475  cognition.

476

477  Materials and Methods

478  Sample. We used data from the Human Connectome Project (HCP) S1200 release. The HCP includes
479  data from 1206 individuals (656 women) that comprise 298 Monozygotic (MZ) twins, 188 Dizygotic (DZ)
480  twins, and 720 individuals, with mean age + SD = 28.8 + 3.7 years (age range = 22-37 years). Informed
481  consent for all individuals was obtained by HCP, and our data usage was approved by HCP and
482  complied with all relevant ethical regulations for working with human participants (see (13,33,46)). The
483 primary participant pool comes from individuals born in Missouri to families that include twins, sampled
484  as healthy representatives of ethnic and socioeconomic diversity of US individuals, based on data from
485 the Missouri Department of Health and Senior Services Bureau of Vital Records. We followed standard
486  guidelines for inclusion criteria as described elsewhere (13). Our sample, in line with Valk et al., (13)
487  comprised 992 (529 women) individuals. The first subsample of n = 482 (229 women) was created by
488  excluding all twins. The second genetically informative subsample of n = 328 (212 women) was created
489 by including only twins with genotyped zygosity matching self-reported zygosity (195 MZ and 133 DZ
490 individuals; 124 women and 88 men, respectively, forming between 150 and 152 complete pairs,
491  depending on data availability for the S-A axis modality).

492

493 Functional imaging. Functional connectivity matrices were based on four 14 min 33 s of functional
494  Magnetic Resonance Imaging (fMRI) data acquired over two sessions, spaced two days apart, through
495  the HCP, which underwent HCP’s minimal preprocessing. No global signal regression was performed
496 in the processing of the fMRI data. For each individual, four functional connectivity matrices were
497 computed using the minimally preprocessed, spatially normalised resting-state fMRI (rsfMRI) scans,
498  which were co-registered using MSMAII to template HCP 32k LR surface space. 32k_LR surface space
499  consists of 32,492 total nodes per hemisphere (59,412 excluding the medial wall). We computed four
500 functional connectivity matrices per individual from the average time series extracted in each of the 400
501  Schaefer cortical parcels. The individual functional connectomes were generated by averaging
502  preprocessed time series within nodes, Pearson correlating nodal time series and converting them to
503 Fisher-z scores. The average functional connectomes were obtained by averaging functional
504  connectomes within individuals (i.e., between sessions) and between individuals.

505  Structural imaging. MRI protocols of the HCP have been previously described (33,46). MRI data were
506 acquired originally on the same day on the HCP’s custom 3T Siemens Skyra equipped with a 32-
507 channel head coil. T1w images with identical parameters were acquired using a 3D-MP-RAGE
508  sequence over 7 min 40 s (0.7 mm isovoxels, matrix = 320 x 320, 256 sagittal slices; TR = 2400 ms,
509 TE =2.14 ms, Tl = 1000 ms, flip angle = 8°; iPAT = 2). T2w images were acquired using a 3D T2-
510 SPACE sequence with identical geometry over 8 min and 24 s (TR =3200 ms, TE =565 ms, variable
511 flip angle; iPAT =2). We followed the preprocessing steps outlined in Valk et al. (13).

512  Parcellation and functional networks. We used the Schaefer group-level hard-parcellation, originally
513  obtained by a gradient-weighted Markov random field model integrating local gradient and global
514  similarity approaches (34). To stratify results within canonical cortical functionally coupled networks, we
515  used the seven Yeo-Krienen networks (47).
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516  Microstructural profiles (T1w/T2wmi). We used T1w/T2w imaging myelin-sensitive contrast from the
517 HCP minimal processing pipeline, which uses the T2w to correct for inhomogeneities in the T1w image
518 to estimate mean intensity T1w/T2w microstructural profiles (T1w/T2wmi). T1w/T2wmi has been shown
519 to map to model-based tract-tracing histological data in macaque, estimate intracortical myelin content,
520 and thus approximate architectural complexity and cortical hierarchy (6).

521 Geodesic distance (GD). Individual geodesic distances (GD) were computed using the Micapipe
522  toolbox (26). Briefly, we computed GD between each region and their top 10% of maximally functionally
523  connected regions along each individual native cortical midsurface. We further averaged within regions
524  to obtain a parcel-wise value and improve computation performance. Micapipe implements the Dijkstra
525  algorithm (48) (further details can be found in (26)).

526  Functional gradient loadings (FCc1). We sequentially averaged FCs, first within days, resulting in two
527 FCs per individual, and then between days, resulting in one FC per individual. We then extracted the
528 three first components from the two sequentially averaged and one averaged FCs, using the Python
529 package BrainSpace (49). Extraction of the first eigenvector followed standard procedures, with the
530 original individual FCs set at a connection density of 10% (i.e., the FCs were made sparse by setting a
531  sparsity threshold of 90%). The first ten eigenvectors were then obtained by decomposing the FCs by
532  diffusion map embedding, a robust non-linear manifold learning technique (1). To aid comparability
533 across individuals, we aligned individual eigenvectors to the template eigenvector by Procrustes
534 rotation (50). The template functional gradient was directly extracted from the overall mean FC matrix.

535 Group-level associations analysis. We computed Spearman rank-order correlations (p) between the
536  structural (T1w/T2wmi and GD) and functional (FCs1) S-A axis group-level properties. Group-level
537  properties were obtained from the average of the individual structural S-A properties (i.e., average
538 T1w/T2wmi and GD), and from the decomposition of the average FC (i.e., principal gradient obtained
539  via diffusion map embedding of the average FC).

540 Measurement model of error in individual variability of the functional S-A axis. To partition stable
541  inter-individual variability in functional gradient loading, we adapted previous measurement error
542  models to rsfMRI to the functional gradient (30,31). The intuition behind such a modelling strategy is
543 simple. Suppose parcel-wise values are measured without error and are stable over a reasonable
544  period of time (e.g., one day). In that case, the correlations across individuals between the values
545 obtained across two time points will equal 1. If the correlations deviate from 1 instead, regional values
546 will be measured with some error, with bigger deviations corresponding to higher error or fluctuation
547  over time. As can be seen in Fig. 2C, when errors or changes over time are present, it may become
548  difficult to distinguish regional differences between individuals from regional differences within
549  individuals. In this case, we can use the measurement error model to estimate what stays constant
550 across time, indexing the “true” regional values. Across the manuscript, for correctness, since “error”
551  variance can include meaningful, yet unstable, fluctuation in rsfMRI, while “true” variance can also
552 consist of systematic measurement error across sessions, we refer to the former term as intra-individual
553 and the latter as inter-individual variability (37). First, we fit a measurement model to parcel-wise
554  functional gradient loadings averaged within days. In line with Teeuw et al. (31), we did not constrain
555 intra-individual variance components to be equal across days of scanning sessions. We performed
556  model fitting in lavaan (44) after standardising observed variables (i.e., std.ov = T). We then used model
557  estimates obtained for the variances of the latent and observed components. Using Spearman-Brown
558  correction, we computed the averaged proportion of stable inter-individual variance in functional
559  gradient loadings across days as the intra-class correlation (ICC) (51). For each parcel j, the ICC was
560 calculated as follows:

k *1CC(2,1);

s61 ICC(2, k), = 1+ (k—1) *1CC(2,1);

(1)
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562  Where k is a constant equal to the number of measures (i.e., k = 2) and the ICC(2,1); is calculated as
563 follows:

2
Ointer(i)
ICC(2,1); = = (2)
2 Glz—intra(i) + Gzz—intra(i)
O-inter(i) + 2

564

565 ICC(2,k); estimates the proportion of inter-individual variance over the total variance, Ginter(y?, in the
566  functional loadings as if they were obtained from the average of the two scanning sessions. The
567 proportion of intra-individual variance for a parcel i, Oina()?, is obtained simply by subtracting the
568 ICC(2,k)ifrom 1.

569  The expected bias for any parcel i was calculated following Tiego et al. (28):

570 biasy = /Ry * Rrca1Fcci )

571  Where Ry, the reliability for the structural S-A axis property p (e.g., T1w/T2wmi), was set to be equal
572  to 1 across all parcels, and Rrca1,Fca1(), the reliability of parcel-wise value for the functional gradient
573  loading, was calculated as ICC(2,k)..

574  Multivariate Measurement error SEM. We used Structural Equation Modelling (SEM) to estimate
575  correlations between structural (i.e., T1w/T2wmi), GD()) and functional (i.e, FCs1)) S-A modalities.
576 Each multivariate model simultaneously accounted for intra-individual variances by including the
577  measurement error model (Fig. 7A). All models were fitted in lavaan (52) after standardising all
578  observed variables (i.e., std.ov = T). Prior to model fitting, sex and age were regressed from parcel-
579  wise S-A axis values using the function umx::umx_residualize() (53). Structural equation models were
580 fit to residual scores. We assumed missing data to be missed at random and followed parameters’
581  estimation via full-information Maximum Likelihood (i.e., missing = “ML”).

582 Twin-informed Multivariate Structural Equation Modelling. We used multigroup SEM to partition
583 parcel-wise variability in structural (aT1w/T2wmi2, 0GD()?) and functional (Ginter(y?) S-A modalities into
584  either additive genetic (0a%?) or unsystematic environmental (o£?) sources of variance. Structural
585  equation models were fit to T1w/T2wmi;, GD;, and FCa1i1 (day 1) and FCa1i2 (day 2) data, grouped by
586  zygosity (i.e., two groups). The model specification was informed by the multivariate twin design (54).
587  Briefly, monozygotic (MZ) twins are ~100 % genetically identical, coming from the same fertilised egg.
588 In contrast, dizygotic (DZ) twins are, on average, only 50% additively genetically similar regarding allelic
589  variants coming from two different fertilised eggs. Thus, the correlation f between the additive genetic
590 component (A) is set to be equal to 1 for MZ and ¥z for DZ. In contrast, each twin's unique environment
591 (E) component will be unique; therefore, their correlation will be equal to 0. In total, we fit one
592  multivariate AE model per parcel. Following the measurement error procedure outlined above and in
593 reference (31), a common pathway measurement error model was included in the specification of the
594  multigroup SEM (Fig. 7B). As such, each multivariate model simultaneously accounted for intra-
595 individual variance (Fig. 7C). We employed the direct symmetric approach by estimating variance
596 components directly while setting path coefficients to 1 (with the exception of the measurement model,
597  for which we fixed the variance to be equal to 1, and estimated the path coefficients, instead). We chose
598 this approach as it has been shown to reduce type | errors and produce asymptotically unbiased X2
599  (55).

600  Similarly to reference (56), twin models were fitted in lavaan (52), with standardisation of observed
601 variables before model fitting (i.e., std.ov = T). To control for the effect of age and sex on S-A axis
602  properties, we residualised parcel-wise variables prior to modelling using the function
603  umx:umx_residualize() (53). Residuals were used as observed variables in later twin modelling. We
604  estimated parameters via full-information Maximum Likelihood (i.e., missing = “ML”) and evaluated the
605 goodness of fit for each parcel by comparative fit index (CFl) and root mean square error of
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606  approximation (RMSEA) scores. Following standard cut-offs (31), we retained only models with a
607  “satisfactory” CFI>.90 and an RMSEA<.08. Narrow-sense twin heritability (hwin?) estimates for each
608  parcel i were defined as the ratio of the additive genetic variance over the sum of the additive genetic
609  and environmental variances:

2
610 h2 S ON. @)

twin-p(i) — 2 2
R O R

611 Where oap() 2 is the additive genetic variance for the S-A axis parcel-wise value for the given property p
612  (e.g., GD). For functional gradient loadings, the heritability was calculated as

613 htzwin—inter(i) = Gflinter(i) (5)
614  After imposing the equality constraint on the common factor FCatinter()

615 O-jinter(i) + O-?Tinter(i) =1 (6)
616  Genetic correlations (ra) were calculated as:

aApli,ApZi

2 2
; GApli * O-Apzi

618  Where gap1,402° is the additive genetic covariance between two S-A axis properties, p1 and p2 (e.g., GD
619 and T1w/T2wmi). Environmental correlations (re) were calculated similarly to ra but using environmental
620  variance and covariance estimates.
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621
622  Figure 7. SEM approach. (A) Structural measurement error model used to estimate deattenuated
623 correlation between S-A axis properties considering the distinction between intra- and inter-individual
624  differences in functional gradient loading variability. Observed parcel-wise values and latent
625  components are standardised before model fitting. (B) Twin model used to obtain deattenuated hiwin?
626  estimates. Here, the covariance between the twins’ parcel-wise functional gradient loadings is
627  estimated directly on the inter-individual component of variance (i.e., FCs1) and set to f* Gainter?, Where
628  f=1 for MZ twins and f = % for DZ twins. The model assumes absence of shared household and non-
629  additive genetic effects on functional gradients in young adults. (C) Simplified graphical representation
630 of the multivariate twin-informed SEM, which puts the models depicted in A and B together. Notes on
631  SEM: Rectangles represent the measured structural or functional MRI-derived phenotypes; the circle is
632 the latent components; the double-headed arrows connecting circles with themselves represent the
633 variance associated with the latent components; double-headed arrows connected between circles
634  covariances; Where not noted, one-headed arrows are the paths (here all set to 1).

635  Generalisation beyond regional associations. For each individual, we obtain two metrics for
636  structural and functional S-A axis properties (i.e., a total of six measures per individual):

637 Overall within-individual Median Absolute Deviation: we quantified the spread of the regional values
638  across the cortex by computing within-individual Median Absolute Deviation (MAD) of microstructure,
639  geodesic distances, and functional gradient loadings. MAD is a robust univariate measure of statistical
640  dispersion and is simply calculated as follows:
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641 MAD,; = med(|ppﬁ — med(ppj)|) (8
642  Where pjis the parcel-wise value for a property p, an individual j, and a parcel / and med is the median.

643  p similarity index: we obtained the similarity index by estimating the Spearman rank (p) correlations
644  between each individual microstructure, cortico-cortical network proximity, and functional gradient
645 loadings with the respective S-A group-level modality vectors. For example, the p similarity index for the
646 cortico-cortical network proximity for an individual j was obtained by correlating their GD with the group-
647  level GD. Similarly, for the same individual j, the similarity index for their functional gradient loading was
648  obtained by correlating their FCs10on day 1 and on day 2 of scanning with the group-level FCax.

649 Similar to what is outlined above for regional analysis, we fit two multivariate AE models, one per metric.
650 Before model fitting, p similarity indices were first Fisher-z transformed. To recapitulate regional analysis
651  as closely as possible within the multivariate model, we also included the measurement error model to
652  overall within-individual MAD and p similarity index functional gradient loadings obtained on days 1 and
653 2 of scanning sessions. Note that standardised coefficients are obtained using the
654  lavaan::standardizedSolution() function. As a final sensitivity analysis, to discount individuals’ whole
655  brain volume as a possible confounding effect of the relationship between SA axis structure-function
656  associations, we additionally included total intra-cranial volume. Precisely, we followed a two-step
657 procedure to discount intra-cranial volume as a possible common cause. First, we regressed out intra-
658  cranial volume from overall within-individual MAD and Fisher-z transformed p similarity indices for all S-
659 A axis properties. We then re-fit the exact multivariate twin models to the residuals.

660  Data availability

661  We obtained human data from the open-access Human Connectome Project (HCP) S1200 young
662  adult sample. HCP Young Adult data are available at https://www.humanconnectome.org/study/hcp-
663  young-adult. The Supplementary Table with summary statistics can be found at

664  https://github.com/giacomobignardi/h2_SA _axis/tree/main/SI.

665

666  Code availability

667  All code is available and can be found at https://github.com/giacomobignardi/h2_SA_axis. SEM and
668  twin-based analysis were carried out using the statistical package latent variable analysis (lavaan)
669  https://lavaan.ugent.be/. The function to apply the measurement error model (meermo) can be found
670 here: https://github.com/giacomobignardi/h2_SA_axis/tree/main/R/functions/meermo. The lavaan
671 syntax for latent variable analysis of twin data (lavaantwda) can be found in the repository
672 https://qithub.com/giacomobignardi/h2_SA_axis/tree/main/R/functions/lavaantwda. An introduction to
673 twin modelling using lavaan can be found at https://rpubs.com/MichelNivard/798608. Code and tutorial
674  for functional gradient decomposition of functional connectomes are available
675 at https://brainspace.readthedocs.io/en/latest/pages/install.html. The code and tutorial to generate
676  geodesic distances can be found at https://micapipe.readthedocs.io/en/latest/.
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