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4 Biobanks now contain genetic data from millions of individuals. Dimensional-
5 ity reduction, visualization and clustering are standard when exploring data at
6 these scales; while efficient and tractable methods exist for the first two, clus-
7 tering remains challenging because of uncertainty about sources of population
8 structure. In practice, clustering is commonly performed by drawing shapes
9 around dimensionally reduced data or assuming populations have a “type”
10 genome. We propose a method of clustering data with topological analysis

1 that is fast, easy to implement, and integrates with existing pipelines. The ap-

12 proach is robust to the presence of sub-populations of varying sizes and wide
13 ranges of population structure patterns. We use UMAP and HDBSCAN, re-
14 spectively methods of dimensionality reduction and density clustering, on data
15 from three biobanks. We illustrate how topological genetic strata can help us
16 understand structure within biobanks, evaluate distributions of genotypic and
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17 phenotypic data, examine polygenic score transferability, identify potential in-

18 fluential alleles, and perform quality control.

» Introduction

20 Following improvements in genomic technologies, large-scale biobanks have become common-
21 place. The Global Biobank Meta-analysis Initiative (GBMI), for example, lists 23 biobanks with
22 genetic data and health records from over 2.2 million individuals[!]. The growth in sample
23 sizes has led to increased potential for scientific findings, with thousands of genetic loci impli-
24 cated with phenotypes in genome-wide association studies (GWAS), and used to predict disease
25 traits via polygenic scores (PGS). Though the growth of biobanks has fuelled discovery, pop-
26 ulation structure—the phenomenon in which allele frequencies systematically differ between
27 populations—remains a persistent confounder in GWAS and PGS (e.g. [2, 3]). Many meth-
2s ods in population genetics seek to describe and account for population structure, but the com-
29 plexity of human history and of biobank recruitment strategies preclude simple model-based
s approaches from effectively capturing the many determinants of observed genetic variation.

31 As an alternative, dimensional reduction and visualization are commonly used to exam-
32 ine both discrete and continuous aspects of genetic variation (e.g. [4, 5]). Within the frame-
33 work of exploratory-confirmatory data analysis, visualization of complex data enables pattern-
s« recognition and the generation and testing of hypotheses[6]. Visualization alone, however, can-
35 not be used for analysis, and visualization techniques are often used as a precursor to strati-
s fication. For example, principal component analysis (PCA) can be used to visualize data and
37 individuals within a certain area are commonly deemed to share an ancestry label. In recently
ss admixed populations (i.e., populations who derive ancestry from “source” populations who had
s been in relative isolation), grouping based on inferred admixture proportions is also common,

s often with the use of a reference panel as a proxy for the source populations. By definition,
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41 PCA-based approaches capture only the axes of variation that expalin the most variance in
22 a sample, and may not work to discern populations with no reference panel, or with com-
a3 plex admixture histories, or small sample sizes[7]. Other approaches cluster based on shared
s identity-by-descent (IBD) segments or recent genetic relatedness (e.g. [, 9]). These approaches
s typically capture finer scale population structure, but are analytically and computationally de-
s manding. Self-declared variables like race and ethnicity are also sometimes used for genetic
47 stratification but are imperfect indicators of genetic ancestry and are no longer recommend as
a8 proxies forit [10, 11].

49 Despite the demand, there is not an effective, fast, and tractable method for stratifying
so biobank data based on patterns of genetic structure. In practice, researchers often manually
st group participants into discrete ad hoc “clusters” that they perceive in low-dimensional visual-
s2 izations, which they use as strata in downstream analyses regarding, e.g., heterogeneity in an-
ss  cestry and allele frequencies[ 2], environmental exposures[4], or assessing the performance of
s« PGS[2, 13]. There are many drawbacks to such ad hoc approaches. For example, in cosmopoli-
s5 tan cohorts, there are many subgroups with distinct ancestral histories, leading researchers to
ss manually distinguish between a “majority” cluster and an “everybody else” cluster—often to be
57 discarded due to its heterogeneity[ |4, 15].

58 We propose a topological data analysis approach as an alternative. Rather than fitting indi-
so viduals to a pre-defined notion of a population, a topological approach describes the network of
s neighbourhoods between data points—here, this would be the network of genetic similarity be-
st tween individuals. It is well-suited to describe collections of points in high-dimensional space
e2  with smooth distributions but with no clear centre or “archetype”. We assume that structure
es in high-dimensional genetic data can be represented topologically, and can be locally approx-
s+ 1mated and reconstructed in a low-dimensional space. After reconstructing data in the low-

es dimensional space, we identify dense clusters of data—i.e., the genetic strata. This approach is
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e unsupervised, requiring neither a number of clusters nor a reference panel, and thus fits natu-
ez rally with population genetic data, which is sparse and contains numerous sub-populations of
es unknown and varying sizes, often without a priori definitions.

69 We demonstrate the effectiveness of this approach on three biobanks, showing that we can
70 consistently and effectively identify and characterize sources of population structure in each
71 cohort, and relate many key variables to this structure. We simultaneously identify structured
72 groups as small as 100 individuals and as large as 400, 000 within the same cohort in a matter
73 of seconds, and describe environmental, sociodemographic, and phenotype variation across
72 groups. We use stratification to identify populations for which PCA adjustment fails within
75 a biobank (often admixed populations) and populations for which PGS transferability is poor
76 (often, but not always, populations diverged from the training population). Finally, we highlight
77 the role of topological modelling in quality control, a critical aspect of the fast-growing biobank
78 Space.

79 Topological modelling, which describes data in terms of local neighbourhoods in a high-
s dimensional space, is therefore a powerful alternative to ancestral component modelling for the

st description of genetic variation in complex cohorts.

« Methods

ss  Our method works on genotype data, represented by a matrix of allele counts for each indi-
s« vidual and genetic variant. To reduce computational burden, we can also perform analyses on
ss genotype data previously projected to any number of principal components (PCs). We use uni-
ss form manifold approximation and projection (UMAP)[16], a dimensionality reduction method,
&7 and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN),
ss a clustering algorithm. HDBSCAN has been used before on population genetic data directly

ss on PC-reduced data [17, 18]. As we will see, this results in large proportions of individu-
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Figure 1: By using different parameters, UMAP can be optimized for clustering or visu-
alization. Visualization requires a two-dimensional representation with the points spread out
to make patterns easier to see. In contrast, clustering benefits from UMAP reduction to three
or more dimensions to strike a balance between preservation of the original data topology and
high point density for clustering. The 2D UMAP plots used to visualize clusterings in this work
and are not the same ones used for clustering.

o0 als discarded as noise. The application of UMAP leads to increased point density and facili-
o1 tates clustering (Table S7), and a recent implementation of HDBSCAN by Malzer and Baum
o2 (HDBSCAN(€),[19]) drastically reduces the number of discarded points.

93 UMAP seeks to preserve high-dimensional neighbours in the low-dimensional space[!6].
94 The algorithm requires three parameter inputs: the target number of dimensions, the number
o5 of nearest neighbours (used to define the size of high-dimensional neighbourhoods to approx-
9 1imate), and the minimum distance between points in the low-dimensional space. We have
o7 previously explored its use for visualization in 2 and 3 dimensions[4]. In this work, we will use
s UMAP both for visualizing data and for preprocessing data for clustering. Both tasks require

99 different parameter choices (Figure 1):

100 1. For visualization, we reducing data to 2 dimensions and use a relatively high minimum
101 distance (0.3 to 0.5), to facilitate human perception and understanding.

102 2. For clustering, we reduce data to 3 or more dimensions and use a very low minimum
103 distance (near or equal to 0) to facilitate algorithmic identification of dense clumps of
104 data.
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105 After reducing genetic data to 3 or more dimensions with UMAP in step 2, we use
106  HDBSCAN(€) to extract clusters. HDBSCAN(€) is a hierarchical density-based clustering
107 algorithm based on predecessors HDBSCAN and DBSCAN*[19]. It is motivated by situations
1s Where we expect data to be in a sparsely populated space with relatively dense clusters through-
100 out. The number of clusters is not known, and the sizes of the clusters are assumed to vary. This
110 describes biobank data particularly well since they are expected to contain population structure
111 at many different scales, and it is usually difficult to specify in advance a useful number of sub-
112 groups to consider. The parameter € allows clusters to have widely varying sizes; we provide
113 more details on parameters in the Supporting Information (SI).

114 We use UMAP-assisted density-based clustering on data from three biobanks: the 1000
115 Genomes Project (1KGP), the UK biobank (UKB), and CARTaGENE (CaG). The 1KGP data
116 consists of the genotypes of 3,450 individuals sampled from 26 populations from around the
117 world; the populations were decided in advance and their sample sizes are similar, ranging from
11 104 to 183 samples[20]. The UKB is a cohort of 488, 377 individuals from the United Kingdom
119 (UK) with genotypic, phenotypic, and sociodemographic data. UKB participants were recruited
120 by inviting 9 million individuals registered with the National Health Service (NHS) who lived
121 near a testing centre[21]. CaG is a cohort of residents of the Canadian province of Québec,
122 with genotype data for 29, 337 participants who were recruited using registration data from the
123 Régie de 1’assurance maladie du Québec (RAMQ), the provincial health authority, from four
124 metropolitian areas in the province[22]. Unlike the 1KGP, CaG and the UKB do not have a
125 priori populations defined, though they collected information about ethnicity, country of birth,

126 and residential geographic distribution.
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Figure 2: Clusters generated from 1KGP genotype data reflect its population sampling. (A)
UMAP embedding of data without labels. (B) UMAP embedding of data, coloured by popula-
tion label. (C) UMAP embedding of data, coloured by 21 clusters derived from HDBSCAN(¢)
applied to a 5D UMAP embedding. (D) Proportions of each 1KGP population contained within
a given cluster. Most populations fall almost entirely within a single cluster, with a few splitting
into multiple clusters. Population labels are provided in Table S4.
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= Results
s Clustering captures population structure from sample design

120 The 1KGP’s relatively balanced global sample design makes it useful for testing algorithms
130 to identify population structure. We have previously shown that UMAP results in clear visual
131 clusters from 1KGP data in two dimensions[4]. Figure 2 shows a UMAP representation of
122 the 1KGP. Figure 2a shows the data without population labels (to mimic data with unknown
133 populations), Figure 2b shows the data with corresponding population labels from the 1KGP,
13« and Figure 2c shows the data with cluster labels generated by HDBSCAN(¢) run on a 5D
135 UMAP.

136 The major source of genetic structure in 1 KGP data is its sampling scheme, which selected
137 individuals from geographically diverse populations. The clusters formed by UMAP and ex-
138 tracted by HDBSCAN(¢€) largely reflect this sampling strategy, with some exceptions noted
139 below. Figure 2d shows strong agreement between population label and cluster label, (see also
140 Tables S5 and S6).

141 These results are comparable to a supervised neural network approach to predict sam-
122 pled population label (e.g. Figure 3 in [23]), though our approach is unsupervised and runs
113 much more quickly: depending on implementation, deriving the principal components can
144 take 5 to 20 minutes, with the subsequent UMAP step requiring approximately 10 seconds
145 and HDBSCAN(é) less than one second. Comparing these clusters to population labels, the
16 adjusted Rand Index (ARI) is 0.769.

147 Though there have been methods developed to generate discrete population clusters from
148 genetic data (e.g. [24]), most do not scale to hundreds of thousands of samples. To provide
129 baselines for comparison, we applied k-means clustering to 1KGP data. In one approach we

150 estimated individual-level admixture proportions assuming /& populations and then applied k-
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151 means clustering using the same K as the parameter. Using ADMIXTURE with K = 21
152 populations (to match the 21 clusters generated by HDBSCAN(€)), k-means clustering resulted
153 1n an ARI of 0.611, while K = 26 populations (to match the 26 1KGP populations) resulted in
15 an ARI of 0.669 (see Figures S1 and S2 for visualizations, and methods for details). In another
155 approach, we applied k-means clustering directly to the leading PCs; the best performing case
156 was K = 25 on the top 20 PCs resulting in an ARI of 0.696 (Figure S3).

157 One benefit of the unsupervised approach is that we do not require a priori assumptions
158 about the origins of structure, making it possible to capture meaningful clusters despite consid-
159 erable within-cluster heterogeneity, including in admixed populations. The admixed American
1e0 population clusters largely match their IKGP labels (CLM, MXL, PEL, PUR; ARI=0.952), de-
161 spite their heavily overlapping distributions in admixture proportions, illustrated in Figure 3,
ez which is higher than any k-means based clustering (although k-means with k=21 was close at
16 ARI=0.934, see Figure S2b).

164 Some populations are clustered together: GBR and CEU (British From England and Scot-
s land; and Utah residents with Northern/Western European ancestry), CDX and KHV (Chinese
1e6 Dai in Xishuangbanna, China; and Kinh in Ho Chi Minh City, Vietnam), IBS and TSI (Iberian
1e7 Populations in Spain; and Toscani in Italy), ACB and ASW (African Caribbean in Barbados;
1es and African Ancestry in SW USA). While these groups differ in their sampling and history,
160 supervised learning methods also struggle in distinguishing most of these pairs (Figure 3A in
170 [23]). We also note that the CDX and KHV (Cluster 2 in Figure 2b) populations are present at
171 opposite ends of one continuous cloud of points. In other words, two groups belonging to one
172 cluster does not mean that the groups are indistinguishable. Rather, it means that HDBSCAN(¢€)
173 could find a relatively continuous path in genetic space linking individuals sampled in one group
174 to individuals sampled in the other.

175 Some South Asian populations are split into different clusters, possibly from stronger pat-
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Figure 3: HDBSCAN clusters capture structure in populations with overlapping admix-
ture proportions in the 1IKGP. A ternary plot of the PUR, PEL, MXL, and CLM populations
from the 1KGP with axes corresponding to global ancestry proportions estimated using AD-
MIXTURE (K = 3). Shapes indicate 1KGP label, colours indicate cluster label and match
Figure 2c; bolded points with a + symbol indicate individuals who are not members of the
modal cluster of their IKGP population (full results given in Tables S5 and S6). While many
individuals from these populations have similar admixture proportions, UMAP-HDBSCAN(¢)
is able to extract clusters more effectively than admixture-based methods.

176 terns of relatedness within those groups[4, 25]. We note the ITU (Indian Telugu in the UK)

177 population is visibly split into two groups in 2D, while clustering carried out in 5D groups them

J

178 together (Cluster 11). While some clusters will tend to persist across many parametrizations of

~

179 UMAP and HDBSCAN(€), others based on more subtle patterns or in populations with more

180 continuous variation will be less stable—though discrete groupings can help us understand data,

10
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151 the delineations are always, to a degree, arbitrary.

w2 Correlates between populations and sociodemographic, phenotypic, and
s environmental variables

1ea The UK biobank (UKB) contains 488, 377 genotypes from volunteers with an array of demo-
185 graphic, phenotypic, and biomedical data, with individuals’ ages ranging from 40 to 69. The
18 demographic data collected for the UKB include Country of Birth (COB) and Ethnic Back-
157 ground (EB), which is selected from a nested set of pre-determined options (see Table S8).
188 Participants first select their “ethnic group” from a list (e.g. “White”’; “Black or Black British”),
189 which determines the list of possible “ethnic background” values (e.g. “British”; “Caribbean”).
190 The most common countries of birth in the data set are England, Scotland, Wales, and the Re-
191 public of Ireland, comprising 77.8%, 8.0%, 4.4%, and 1.0%, respectively. For EB, 88.3% of
192 participants selected “White British”, with an additional 5.8% selecting “White Irish” or “Any
1.3 other white background”. Here we primarily focus on the 28, 814 individuals with other back-
194 grounds.

195 Many studies of the UKB discard non-European samples, sometimes citing concerns re-
196 lated to confounding from population structure[ 14]. The population structure has been deeply
1e7  explored, though typically focused on British or European individuals[26, 27, 28]. Because its
198 sub-populations are numerous, geographically/ancestrally diverse, and of widely varying sizes,
199 clustering the UKB data is challenging, requiring overly broad categorization (e.g. a small
200 number of continental populations [12, 17]) and/or significant computational resources. The
201 original implementation of HDBSCAN, without the ¢ parameter, discards much of the UKB
202 data as noise and splits populations into hundreds of microclusters that are not interpretable

203 (Fig S4).

11
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Figure 4: An example of clusters of population structure in the UKB. The clusters reflect
a mixture of demographic history within the UK, the geographic origins of recent immigrants,
the colonial history of the British Empire, and ongoing admixture. (a) Left: A 2D UMAP
of UKB genotypes coloured by HDBSCAN(¢). This parametrization generated 26 clusters.
(b) Middle: Five clusters are highlighted with word clouds for the most common countries of
birth within the cluster. (c) Right: The same five clusters are highlighted with word clouds for
the most common EB within the cluster. Admixture proportions for clusters are presented in
Figure S6. Detailed breakdowns of EB and country of birth are presented in Tables S9 and S10.
An alternative clustering is presented in Figure S15.

204 Figure 4a shows 26 clusters generated by HDBSCAN(¢), placing 99.99% of individuals
205 in clusters. We generated word clouds for COB and EB, shown in Figures 4b and 4c, which
206 allow us to illustrate sources of structure without having to impose a label to groups which may
207 be heterogeneous. Individuals in Cluster 10, for example, are mostly born in Somalia (84%),
206 while those in Cluster 23 are mostly born in East Africa (Ethiopia, Sudan, Eritrea; 33%, 29%,
200 25%), respectively). Those in Cluster 18 are mostly born in sub-Saharan Africa, and 77% chose
210 “African” as their EB, while 19% chose “Other ethnic group”. Figure S5 presents word clouds
211 for another subset of data. Individuals in Cluster 0 are mostly born in Japan and South Korea

212 (84% and 9%, respectively), and those in Cluster 15 are mostly born in Nepal (80%). In contrast,

12
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213 individuals in Cluster 13 are born in a variety of East/Southeast Asian jurisdictions; the most
214 common EB was “Chinese” (70%), followed by “Other ethnic group” (16%) and “Any other
215 Asian background” (11%). Tables S9 and S10 provide breakdowns for clusters.

216 Clusters 14 and 22 both capture structure resulting from recent admixture following immi-
217 gration and colonial history, with 49% and 66% of their respective populations being born in
218 England (see also Figure S6). No single EB represents a majority in either cluster; the most
219 common EB in Cluster 14 is “Any other mixed background” (29%), while for Cluster 22 it is
220 “Mixed, White and Black Caribbean” (39%).

221 Significant proportions of majority-African-born clusters chose “Other ethnic group” as
222 their EB—a respective 24%, 19%, and 37% in Clusters 10, 18, and 2—suggesting that fil-
223 tering data based on EB would reduce both genetic and ethnic diversity in a sample. Cluster 18
224 captures individuals born in sub-Saharan Africa, while Cluster 19 consists of individuals born
225 in the Caribbean (31%), England (28%), as well as Nigeria (14%) and Ghana (12%). These re-
226 gions are historically linked to the UK; between the years 1641 and 1808, an estimated 325, 311
227 Africans from the Bight of Benin, between the coasts of modern-day Ghana and Nigeria, were
228 enslaved by British ships and sent to the British Caribbean[29, 30].

229 Despite the complexity of the UKB, topological clustering identifies population structure
230 that is interpretable from historical or demographic perspectives and includes all or almost all
231 1ndividuals. Such structure is difficult to infer from a single label such as geography or ethnicity;

232 once it is characterized, it can clarify the genetic structure of the cohort.
233 Phenotype smoothing and modelling

23« Epidemiological research often focuses on observed differences between groups—for exam-
235 ple, finding the mean of a phenotype or sociodemographic measure and comparing between

23 populations. Clustering is one method to define groups based on shared genetic ancestry, and

13
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237 compare means across groups. However, clustering data featuring continuous variation patterns
233 can be sensitive to input parameters, and the size of clusters can vary across parameterizations,
239 making it challenging to identify the “right” choice of parameters to test for heterogeneity. One
240 approach to visualize heterogeneity across parameter choices is to average phenotypic mean
241 values over multiple parameterization (see Algorithm 1).

242 To avoid depending on a single parametrization for identifying patterns in phenotypic and
243 sociodemographic data, we can smooth the data over multiple clustering parametrizations (we
244 use 288, outlined in the Supporting Information) using Algorithm 1 and use the smoothed val-
2¢s ues. This approach has room for improvement but illustrates a proof of concept of incorporat-
246 ing multiple runs of discrete clustering to study patterns in continuous data. Such an approach
247 can be useful in modelling non-linearities in distributions of continuous data and visualize the
24 impact of covariate adjustment in the context of population structure and to identify residual
2e9 heterogeneity in phenotype distributions (as we present in this section) and environmental data

250 (e.g. smoking rates presented in Figure S8).

Algorithm 1 We create a smoothed value for each measure by taking the mean of cluster means
for each individual. Given a set of parameters P for the clustering algorithm, each parametriza-
tion p will result in a set of clusters C,. We use varying cluster assignments across parametriza-
tions to smooth a measured quantity (e.g. phenotype) m for individual ¢.

Given a set of parametrizations P, each with a set of clusters C),, for some measure of interest
m, we calculate the regularized value y; for each individual .
for pin P do
for cin C, do
For each individual 7 in C),, set the mean value p,,; == >;m;/ | C, |
end for

end for

pep Hpyi

Set i = P

251 We visualize these smoothed values in Figure 5 for two phenotypes: FEV1 and neutrophil

252 count. Despite having regressed out the effects of the top 40 principal components, there re-
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Phenotype distribution after smoothing Phenotype distribution after smoothing
(FEV1) (Neutrophil count)

0.50 0.50
0.25 0.25
0.00 0.00
-0.25 -0.25

- -0.50 - -0.50

(a) (b)

Figure 5: Smoothed phenotypic measures across multiple parametrizations of clustering.
A 2D UMAP coloured by phenotype residuals after having regressed the top 40 PCs. Results
were averaged by clusters, and we show averaged averages over 288 parametrizations of the
clustering pipeline. The colour scale runs from —0.50 to 0.50, for the standard deviation o of
each phenotype after regressing the linear effects of the top 40 PCs. We observe that the dis-
tributions of phenotypes among some groups are not centred about 0 even after PC adjustment.
(a) Left: FEV1. (b) Right: Neutrophil count.

253 mains structure in the distribution of the residuals, visible at the scale of 0.50, where o is
254 the standard deviation of the phenotype across the UKB. For example, the average residual
255 value 1s noticeably higher in individuals who fell in Cluster 22 as defined in Figure 4a. This
256 cluster is composed mostly of individuals with admixed African/European backgrounds, and al-
257 though they are intermediate in PCA space to African and European ancestry populations (Fig-
258 ure S11), their phenotype distributions are not intermediate to clusters of primarily European-
259 and African-ancestry individuals (Figure S9, Figure S10).

260 To test if smoothed cluster estimates have explanatory power for these admixed individuals,

15
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MSE between predicted and actual values
EB: White and Black Caribbean (total pop=573)
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(a)
MSE between predicted and actual values
EB: White and Black African (total pop=389)
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(b)

Figure 6: Cluster-based estimation can improve phenotype models. To test the explanatory
value of smoothed cluster estimates generated from Algorithm 1, we carried out a five-fold
cross-validation on the UKB data, compared phenotype prediction using the top 40 principal
components versus estimates generated from the residual structure presented in Figure 5, and
calculated the average MSE across folds.

261 we compared simple linear models for phenotype prediction using the top 40 PCs versus using
262 the smoothed estimates made from residuals after removing the effects of the top 40 PCs. We

263 compared the models for populations that selected “Mixed” as their EB in the UKB question-
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26« naire and found that for individuals who selected “White and Black Caribbean” (n = 573) or
265 “White and Black African” (n = 389), the smoothed cluster estimates indeed outperformed the

266 PCA model, with an improved mean squared error across several phenotypes (see Figure 6; full

267 table of MSE values in Tables S11 and S12).

s Evaluating transferability of polygenic scores

260  Most investigations of PGS transferability are done at a population-level using large-scale ge-
270 ographical groups (e.g. “African”, “European”, “Asian”). However, these broad populations
271 themselves exhibit population structure[31]. To illustrate the value for finer population group-
272 ings, we use our 26 cluster labels from Figure 4a, and compared the transferability of PGS
273 across them.

274 Using UKB data, we estimated effect sizes of SNPs using VIPRS[32]. As a training pop-
275 ulation, we used individuals who selected “White British” as their EB to mimic the well-
276 documented overrepresentation of European-ancestry individuals in GWAS. We estimated phe-
277 notypes for individuals and calculated the values of the fixation index (Fs7) between the clus-
278 ters. In Figure 7, we plot the PGS accuracy for two phenotypes—standing height and low-
279 density lipoprotein cholesterol (LDL)—against the Fsp for each cluster relative to Cluster 17, a
250 cluster with over 400, 000 individuals and with significant overlap with the training population
281 (> 95% selected “White British” as their EB). We observe for height (Figure 7a) that as the
252 Fgp between populations grows, the predictive value of the PGS decreases; such a decrease is
253 expected, due to factors like population-specific causal variants, gene-by-environment interac-
284 tion, differences in allele frequencies, and linkage disequilibrium between assayed SNPs and
285 causal variants[33].

286 However, we see no such relationship for LDL (Figure 7b). Cluster 18, composed mostly of

257 individuals born in sub-Saharan Africa and of whom 77% selected the EB “Black African”, has
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Figure 7: PGS accuracy by Fs; for standing height and LDL. A plot of the mean R? of a
PGS against the difference in Fs7 from the White British in the UKB. We use clusters extracted
using HDBSCAN(€). There is a negative linear relationship between Fsp from the largest
cluster and PGS accuracy. (a) Top: A PGS of height shows a strong decay between R? and
Fsp, as expected. (b) Bottom: A PGS of LDL-cholesterol has an unclear relationship between
R? and Fgr. Cluster 18 has the largest Fgr but one of the highest R? values; the cluster also
has the highest frequency of the rs7412 and rs4420638 alleles.

288 one of the best PGS predictions despite its large s from the training population. This may
289 be because there are a few variants with large effect sizes; in contrast to height, LDL has been
200 noted for its relatively low polygenicity[7]. Since Fsy compares genome-wide variation, the

291 accuracy of a PGS constructed from relatively few variants with strong effects is not expected
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292 to correlate as strongly with Flgp.

293 To test if the frequencies of certain alleles impacted the PGS estimates, we modelled the
20« R? from the VIPRS estimates for each cluster against minor allele frequencies (MAF) of the
295 top 100 SNPs and found the two strongest results were for rs4420638 and rs7412 (Tables S1
206 and S2; Figures S12 and S13, respectively). Both have their highest frequencies in Cluster 18
207 and both markers are in the apolipoprotein E (APOE) gene cluster; rs7412 had the largest
208 overall effect size (B = —0.1812), while 54420638 had the second largest effect size in the
209 opposite direction (B = 0.02813). The rs7412 allele has been linked to LDL[34] and was
a0 found to explain significant variation in LDL in African Americans[35]. The rs4420638 allele
a1 was associated with LDL even in the presence of the 757412 allele in a study of Sardinian,
sz Norwegian, and Finnish individuals[36]; it was also found to affect LDL in studies of children
a3 in Germany[37] and China[38].

304 The relationship between PGS accuracy and fine-scale population structure is complex and
sos will vary by phenotype. It is not immediately obvious whether a PGS will transfer when there
a6 1s a large degree of differentiation between the estimand and training populations. However, an
so7 approach like UMAP-HDBSCAN(€) can provide a detailed picture of the likely performance of

ss a PGS in various genetic subgroups.

w0 Quality control for complex multi-ethnic cohorts

a0 Generally the fine-scale structure of biobank data is not known in advance. The structure of
st under-represented groups in particular, such as minority populations or those with complex his-
sz tories of recent migration and admixture, can also be intricate and poorly understood, at least
a3 by geneticists. Individuals with uncommon combinations of ancestral, geographic, and eth-
314 nic descriptors are present in all biobanks. These combinations can be real and represent the

a5 completely different nature of genetic ancestry and ethnicity; they may also represent clerical
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st errors[39]. Distinguishing the two is especially relevant when biobanks are used as sample
317 frames for deeper sequencing or for follow-up studies, and when variables like country of birth
ais and ethnicity are used as selection criteria. Using HDBSCAN(€) to explore the relationship
a9 between clusters membership and auxiliary variables can detect data collection errors before
s20 sample selection is carried out, preventing serious methodology problems or unnecessary ex-

s21 clusion of individuals.

Algeria

Tunisia American Samoa

UMAP2

Morocco

UMAP1

Figure 8: Clustering can identify data collection errors. A 2D UMAP of CARTaGENE data
coloured by clusters extracted using HDBSCAN(¢€). The highlighted cluster was found to have
most of its individuals born in North Africa. A word cloud shows that a significant minority of
individuals were born in American Samoa, which was found to be a coding error.

322 CARTaGENE is a biobank of residents from Quebec, Canada, that has recently genotyped
a3 29,337 individuals[27]. We were interested in identifying populations of North African descent
s24 for further study. In Figure 8, we identified a cluster of 446 people born largely in North Africa
s with 51 individuals (11.4%) recorded as being born in American Samoa, an American island
a6 territory in the South Pacific Ocean with fewer than 50,000 inhabitants. After researching

327 possible historical explanations (e.g. migration between American Samoa and North Africa),
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a8 we traced the result to a coding error from different country codes used over the course of
a0 data collection; the actual birth country was corrected to Algeria. The same coding error was
s0 found in other clusters, affecting 266 individuals born in 43 countries. While this error was
a1 easy to discover using HDBSCAN(é), it is not obvious whether or how it would have been
w2 identified otherwise given that it affected less than 1% of the cohort. Efficient data exploration,
a3 aided by visualization and clustering, remains one of our best tools to combat the dual evils of

s« bookkeeping errors and batch effects.

= Discussion

s We present UMAP-HDBSCAN(€), a new approach to describe population structure that ap-
s7  proximates the topology of high-dimensional genetic data and detects dense clusters in a low-
a8 dimensional space.

339 The most commonly used approaches for fine-scale genetic community identification are
a0 based on measures of recent relatedness such as identity-by-descent (IBD; see e.g. [8, 9, 40,
341 ]). An IBD-based approach in ATLAS, for example, recently identified associations between
a2 genetic clusters and genetic, clinical, and environmental data [42]. The ability of IBD clustering
a3 to identify fine-scale structure can be due to two effects. First, it focuses on recent relatedness
a4 between individuals, which may be helpful in identifying recent demographic effects. Second,
a5 because it focuses on pairwise similarity, it encourages the use of clustering methods that focus
a6 on genetic neighbourhoods, i.e., on more topological approaches.

347 Despite the existence of such methods, researchers commonly rely on hand-delineation of
as  dimensionally-reduced data (e.g. [12, 2]). This is because IBD clustering is analytically de-
s manding, and because IBD clusters focus on recent relatedness and may not reflect overall
a0 genetic similarity observed in PCA or UMAP plots. The topological approach presented here

351 1S meant to capture overall genetic similarity. Since it bypasses the need to perform phasing

21


https://doi.org/10.1101/2023.07.06.548007
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548007; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sz and IBD calling, it requires fewer analytical tools and computational resources: starting from
53 UMAP data, clustering the UKB takes less than 60 seconds on a single core. It can model pop-
ss4  ulations of widely varying sizes and requires neither reference panels nor a priori definitions of
355 populations, but can use auxiliary data such as geographic coordinates, jurisdiction, country of
sse  birth, population label, ethnicity, etc., to characterize the clusters a posteriori and learn about
357 their history or origins.

358 A recent publication suggested moving entirely away from stratification based on genetic
sso  clusters [7]. Instead, they argued in favour of individual-level measures. They cite three issues
seo with clusters: (i) clustering algorithms fail to capture populations without reference panels,
st such as those that are relatively small or recently admixed; (ii) clusters ignore inter-individual
se2 variation; and (iii) clustering results change based on algorithms and reference panels. We
a3 believe that these criticisms are valid for the type of archetype-based stratification considered
se4 1n [7]: if an individual fell within a certain PCA distance of one of nine pre-defined population
35 centroids, they were considered a member of a cluster; otherwise, their ancestry was considered
a6 unknown.

367 We believe that the first two objections can be resolved by topological approaches. In the
s UKB, 91% of participants were placed into clusters in [7]. In contrast, across 604 runs with
se varying parameters, the median percentage of individuals placed in a cluster was 99.99% (Fig-
a0 ure S14), with the three worst-performing runs of UMAP-HDBSCAN(€) respectively assigning
a7t 99.11%, 99.69%, and 99.86% of individuals in the UKB to a cluster. The clusters reflect groups
sz that have shared genetic and geographic histories, including for relatively small and recently
a7z admixed groups which were often excluded based on prior approaches[7, 15]. We achieved
a74 similar results with CaG and 1KGP data, suggesting that our approach is robust to details of

a7s  biobank composition.
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s Applications

a7 Understanding the population structure of a biobank is a necessary precursor to many analy-
a7 ses. In the 1KGP, the source of its structure is largely the sampling scheme, which is reflected
aro  in Figure 2—the populations were deliberately sampled from multiple locations around the
a0 world with similar sample sizes. The sources of population structure of the UKB, on the other
st hand, reflect a complex history of migrations at different geographic and time scales, includ-
sz 1ng isolation by distance within the UK and recent immigration and admixture. The structure
ss3  of a typical biobank is more similar to the UKB than the 1KGP, as the recruitment methodol-
s8¢ 0gy is often based on residence within a jurisdiction. Examples include municipal (ATLAS in
sss  Los Angeles[42], BioMe in New York City[43]), regional (CARTaGENE in Quebec[?”]) and
sss national (Million Veterans Project (MVP),[44], CANPATH[45]) biobanks. Leveraging these
ss7 diverse cohorts can improve variant discovery[46, 47].

388 Though population labels like ethnicity can be useful, individuals may identify as “Other”
a0 or “Unknown”, leading to incomplete data. In the MVP, missing data were imputed using a
a0 support vector machine trained on race/ethnicity data to harmonize genetic data with labels for
a9t an ethnicity-specific GWAS[48]. A similar supervised approach with random forests was used
s2 by gnomADI[18]. Rather than assigning ethnicities to individuals, we constructed clusters from
a3  genetic data and investigated the distributions of auxiliary variables within clusters, including
s« missing values. We found word clouds to be well-suited for describing data without imposing a
ses reductive label.

396 The goal of genetic stratification is in no way to replace self-declared variables in contexts
a7 where they are relevant. In fact, genetic stratification revealed interesting trends in self-declared
s variables. For example, in Cluster 17 of Figure 4a, 97.6% of individuals were born in Britain
ae and Ireland and 99.5% chose an ethnic group label; in contrast, 18.9% of those in Cluster 18

w0 (mostly born in sub-Saharan Africa) and 36.5% in Cluster 23 (mostly born in the Horn of Africa)
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a0t chose “Other”, highlighting differential completeness of questionnaire data. UKB strata with
a2 “mixed” ethnic backgrounds as their mode featured multiple ethnic background labels, likely
a3 reflecting both the fact that (genetically) admixed individuals may have a diversity of ethnic
a4 backgrounds, and the fact that individuals with both mixed genetic and cultural heritage may
a5 have to choose among potentially inadequate labels (see, e.g., discussion in [15]). The presence
a6 oOr absence of a label in data collection can critically influence how people identify: between
w07 the 2011 National Household Survey and the 2016 Census in Canada, there was a 53.6% drop
a8 1n people who identified as “Jewish” simply because the label was not provided as an example

a9 ethnicity in the 2016 questionnaire[49].

w0 Considerations

a1 Unlike archetype-based methods, HDBSCAN(¢) identifies groups that can be created by link-
412 ing nearby individuals—it is possible to have a long chain containing many individuals who are
a13 each closely related to those near them within a cluster but not to those at the distant end. In
414 this way, admixed populations can form a single cluster even though individuals within cluster
415 can differ as much as individuals from the different ancestral “source” populations. In a sense,
42,6 HDBSCAN(¢) identifies groups of individuals whose distribution in genetic space suggests a
+17 - common sampling or demographic history, rather than genetic similarity. For this reason, topo-
#18 logical stratification may be less conducive to reification of clusters and the notion that popu-
419 lation labels reflect a true underlying “type”. However, given the weaponization of population
20 genetics research in the past[50], it is worth emphasizing limitations common to all clustering
421 approaches.

422 No single label is an individual’s “true” ancestry, race, or ethnicity, as these are com-
23 plex, multifactorial population descriptors[!5, 51]. Thus clustering does not have a well-

s2¢ defined ground truth [52], and clusters are most useful as “helpful constructs that support
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a5 clarification”[53]. With real genetic data, there is no ‘“correct” number of populations[54]
226 and discrete groupings provide a flattened view of a high-dimensional landscape[ 15, 55]. The
«27 clusters generated are sensitive to the input samples, since the demographic composition of a
228 biobank will impact the clustering, and they are also affected by the parameters at the filter-
29 1ng, dimensionality reduction, and clustering steps. This is a reflection of the data, as genetic
a0 data are not composed of “natural types”. These clusters can be useful in understanding how
a1 genetics relates to health and the environment, but variation in phenotypes across genetic clus-
a2 ters does not imply a genetic cause, as differences in environment or systemic discrimination
33 are also expected to produce such variation[56]. Each identified cluster is also heterogeneous.
s« The UK biobank clusters of majority sub-Saharan-born individuals, for example, encompass
a5 considerable genetic substructure[57]. Different choices of metrics for clustering (i.e., genetic
a6 relatedness vs. IBD) can emphasize different types of structure. There are no true clusters.

437 Ultimately, however, many useful analyses require some definition of “populations”. For
a3 example, an allele frequency can only be calculated and reported within a population. Data
a9 exploration and quality control often require investigating relevant subsets of the data to decide
a0 whether they reflect technical artefacts or meaningful subgroups. To date there has not been a
s1 - method of stratification that is tractable, easy to implement, robust to the presence of many pop-
a2 ulations of many sizes, and that captures all or almost all individuals with complex population
a3 histories. We believe our topological approach satisfies these important needs. Looking for-
w4 ward, we expect that topological approaches underlying UMAP and HDBSCAN(€) also present
w5 apromising avenue to move towards a more continuous description of genetic variation in com-

a6 plex cohorts.
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s Materials and Methods

a6 Our code is available at https://github.com/diazale/topstrat. We have pro-
57 vided command line tools to run Python implementations of UMAP and HDBSCAN(€). We
a8 used three datasets for this analysis: the 1000 Genomes project (1KGP), the UK biobank
w9 (UKB), and CARTaGENE (CaG).

460 For the 1KGP we used 3,450 genotypes using Affy 6.0 genotyping[20]. We generated
st the principal components using a Python script and have made the top PCs available in the
sz repository to demonstrate the code. We used the genotype file

463 ALL.wgs.nhgri_coriell_affy_6.20140825.genotypes_has_ped.vcf.gz
464 and population labels

465 affy_samples.20141118.panel 20131219.populations.tsv,

466 availableathttp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/
7 supporting/hd_genotype_chip/. We generated admixture proportions using AD-
ss MIXTURE 1.3.0[58] from 45,197 SNPs. Using 32GB of RAM and 32 cores, this took 10, 554
a9 seconds to run with K = 21 populations and 40, 719 seconds to run with K = 26 populations.

470 For the UKB, we limited our analyses to the 488, 377 individuals with genotype data. We
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used the UKB’s top 40 pre-computed PCs (Data-Field 22009), blood cell counts (Data-Fields
30000, 30010, 30120, 30130, 30140, 30150, 30160), lung function measures (Data-Fields 3062,
3063), age (Data-Field 21003), sex (Data-Field 31), standing height (Data-Field 50), weight
(Data-Field 21002), BMI (Data-Field 21001), smoking status (Data-Field 20116), country of
birth (Data-Fields 1647, 20115), and ethnic group/background (Data-Field 21000). Ethnic
group/background is a hierarchical item in which participants are prompted to select from a
pre-populated list of options for Ethnic Group (e.g. “White”) and, if available, a secondary
option for Ethnic Background (e.g. “British”). Phenotypes used in analyses were normal-
ized with respect to variables sex, age, and age®. Access to the UKB can be granted at

https://www.ukbiobank.ac.uk/scientists—-3/genetic-data/.

For CARTaGENE, we used 29, 337 individuals with genotype data. We generated the

PCs using PLINK[59] after filtering for linkage disequilibrium and HLA (chromosome 6,
25000000-33500000 ). The options used were:

e indep-pairwise 1000 50 0.1 (PLINK2)

e maf 0.05

e mind 0.1

e geno 0.1

e hwe le-o0.

We used the Python implementations of UMAP[16] (0.3.6) and HDBSCAN (0.8.24), inte-

grating the updates from Malzer and Baum[ 19]. To calculate PGS, we used VIPRS[32].
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e« Supporting Information (SI)

ess For visualization, we reduce our data to 2D via UMAP and set a relatively high minimum dis-
sss tance (M D; usually between 0.3 and 0.5); this enables us to view fine-scale patterns of structure.
s37  We find satisfactory results with the number of neighbours (N V) varying from 15 to 50; higher
sss values will require more computational resources, but they increase the connectivity between
39 points in the data, as discussed in [60]. For clustering, we set a low value of minimum distance
ss0  (equal to or close to 0) and reduce the number of dimensions to at least 3—in our analyses, we
es1 used 3, 4, and 5 dimensions. The low minimum distance encourages dimensionally-reduced
ss2 data to form dense clusters, while keeping the dimensionality at > 3 preserves the complexities
sss  Of data that can be lost because of artificial tearing in the drop from 3 to 2 dimensions. The
s« number of neighbours will vary depending on what is a reasonable expectation for the data.
ess For the 1KGP data, which consists of geographically diverse samples of roughly similar size,
sss D0 neighbours capture the structure well. For biobank data, it is common for structure to arise
ss7 from a handful of individuals; we found 10 to 25 neighbours to work best. Lower neighbour-
sss  hood values (e.g. NN = 5) will create smaller clusters, but can also highlight highly-localized
ss9  structure within larger populations. 2D visualizations can give intuition as to the presence and
eso sizes of clusters. If pre-processing the data with PCA, more PCs tend to reveal finer-scale struc-
es1  ture (see e.g. the relationship with geographical coordinates in Figures S17 and S18 in [4]). For
es2 the 1KGP clusters in Figure 2 we used the top 16 PCs; for the UKB in Figure 4a and CaG in
ess Figure 8 we used the top 25.

654 In parametrizing HDBSCAN(¢€), the parameter € defines a threshold at which clusters are
ess merged or split. We find values of € ranging from 0.3 to 0.5 to be effective at ensuring all or
ess almost all individuals are clustered while still identifying fine-scale structure. The minimum
es7  number of points (M P) should not be significantly higher than the number of neighbours used

ess  1n the associated UMAP. If M P is high and N N is low, it can result in a large number of points
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sso being classified as noise since the UMAP data will tend to form small clusters; e.g. a UMAP
ss0 parametrized with NN = 10 and HDBSCAN(¢) with M P = 100 may return poor results.

661 Changing parameters will result in different clusters being generated. Given the low com-
es2 putational costs of UMAP and HDBSCAN(¢), we recommend running a grid search for vi-
ess sualization and exploratory analysis. Clusters can then be characterized using auxiliary data,
s« such as country of birth, geographical location, population label, self-identification, etc. We
ess selected the clustering for the UKB for its suitability for comparing PGS results by Fsp from
ess the training population. For CaG, we selected one of the clustering runs that generated a cluster
es7 Of individuals with North African ancestry.

668 We calculated pairwise Fgp for UKB clusters using PLINK[59]. We calculated admixture
s proportions using ADMIXTURE 1.3.0[58]. For computational reasons, for the UKB we cal-
70 culated admixture proportions on individuals not falling into Cluster 17 (the largest cluster,
e71  containing around 400, 000 individuals) in Figure 4a.

672 Visualizations and statistical analyses were done in R (3.5.3)[61]. We used ggplot2[62] for
e7s  graphics and ggwordcloud for word clouds, and stargazer[63] to generate tables.

674 For phenotype smoothing, we removed the effects of the top 40 PCs using linear regression,

e7s working with the residuals. For phenotype p and individuals 7 = 1. .. I, we use the model:

40
Ypi = 5p,0 + Z 5p,jpcj,i + €pis Epyi ™ N(O, 012,)
j=1
676 We visualize the data in Figure 5 with the values e, ; = v, ; — (5;,0 + ?il 6;,7jPC’j7i)
677 For UKB figures we varied the number of input PCs (5. ..40) into UMAP as well as the
e7s  UMAP parameters (setting the number of neighbours to 5 or 10, the minimum distance to O or
e7o 0.01, and the dimensionality to 3 or 5) and set the HDBSCAN(€) parameters to 25 minimum

sso points and € to 0.5. This resulted in 36 X 2 x 2 x 2 = 288 unique runs of parameters. To test the

es1 robustness of the clustering (shown in Figure S14), we re-ran a subset of the parametrizations
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ez for a total of 604 runs.
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Figure S1: Clustering 1KGP data using ADMIXTURE 1.3.0. (a) Generating 21 clusters using
k-means clustering on admixture proportions (K = 21 populations specified). The adjusted
Rand Index compared to population labels is 0.611. (b) Generating 21 clusters using k-means
clustering on admixture proportions (/X = 26 populations specified). The adjusted Rand Index
compared to population labels is 0.661. Using density clustering gives an adjusted Rand Index
of 0.769. (c¢) UMAP of the 1KGP coloured by k-means clustering of admixture proportions
(21 clusters on K = 21 admixture populations). (¢) UMAP of the 1KGP coloured by k-means
clustering of admixture proportions (21 clusters on K = 26 admixture populations).
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k-means on global ancestry proportions for varying k
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Figure S2: Adjusted Rand Indices (ARI) comparing hard clustering of global ancestry esti-
mates. We generated ancestry proportions from 1KGP individuals assuming & = {3,...,26}
source populations, and then ran k-means on the individual-level proportions, assuming a corre-
sponding value of £ clusters (e.g. for ADMIXTURE with £ = 10 we also ran k-means assuming
10 clusters). We use 1KGP population labels as ground truth, and the ARI of HDBSCAN il-
lustrated in Figure 2b is presented for comparison. An ARI closer to 1 is considered closer to
ground truth. Top: ARI for all IKGP populations. Bottom: ARI for the CLM, MXL, PEL,
PUR populations.
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k-means on PCA data using 20 PCs
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Figure S3: Adjusted Rand Indices (ARI) comparing k-means clustering of the top 20 PCs of the
1KGP data. We applied k-means clustering assuming £ = 3...26. We use 1KGP population
labels as ground truth, and the ARI of HDBSCAN illustrated in Figure 2b is presented for
comparison. An ARI closer to 1 is considered closer to ground truth. We also applied k-means
clustering to the top 5, 10, 15, 25, 30, 35, 40, 45, 50 PCs but the results were similar. We illustrate
20 PCs specifically because it provided the highest ARI (0.696 at k& = 25).
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Dependent variable:

R2

MAF 0.401%**

(0.100)
Constant 0.018

(0.016)
Observations 26
R? 0.402
Adjusted R? 0.378
Residual Std. Error 0.025 (df =24)
F Statistic 16.163*** (df = 1, 24)
Note: *p<0.1; **p<0.05; ***p<0.01

Table S1: Linear regression model between minor allele frequency (MAF) of 754420638 within
each cluster from Figure 4a and the R? of a PGS for LDL generated by VIPRS using the clusters
from Figure 4a. The plot of the regression is present in Figure S12.
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HDBSCAN clustering. Black = unclustered
Min points: 15

PCs: 10

Dimensions: 5

Min dist 0.001

Num clusters: 197
Num unclustered: 4197

dim2

Figure S4: An example of a clustering of the UKB data using HDBSCAN rather than
HDBSCAN(€). The algorithm fails to adequately cluster many of the sub-populations, cate-
gorizing 4, 197 individuals as noise and generated almost 200 micro-clusters.
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Figure S5: Word clouds generated from four clusters in the UKB from Figure 4. (a) Left:
Word clouds of the most common countries of birth within each cluster. Most individuals in the
orange cluster (Cluster 0) were born in Japan, and most in the pink cluster (Cluster 15) were
born in Nepal. (b) Right: Word clouds for the most common EB. The most common in the blue
cluster (Cluster 13) was “Chinese”, while those in the green cluster (Cluster 14) select a variety,

including “White British”, “Chinese”, “Mixed”, or “Other”. Detailed breakdowns are available
in Tables S9 and S10.
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Figure S6: Admixture proportions for K = 5 populations on each of the clusters in Figure 4.
Cluster 17 (n > 400, 000) was excluded for computational reasons. Individuals not assigned to
a cluster are labelled as —1.
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Phenotype distribution after smoothing
(FEV1)
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Figure S7: FEV1 values averaged by a single run of clustering rather than smoothed over mul-
tiple runs of clustering. Patterns that appear in Figure 5 are obscured because, e.g., smaller
clusters may have been merged into larger ones in this particular set of parameters.
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Distribution after smoothing
(Proportion of daily smokers)
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Figure S8: Proportion of daily smokers, smoothed using Algorithm 1.
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Figure S9: Distributions of FEV1 adjusted for age and sex stratified by cluster. Vertical dotted
lines represent the mean of the distribution. Cluster labels and colours match those in Figure 4a.
Cluster 17 is mostly European-born individuals, Cluster 18 is mostly sub-Saharan African born
individuals, Cluster 19 is mostly individuals born in England, the Caribbean, Ghana, and Nige-
ria, and Cluster 22 is mostly individuals born in England who chose the EB “White and Black
Caribbean” or “White and Black African”. (a) Top: Distribution of FEV1 by cluster without
adjusting for population structure. (b) Bottom: Distribution of FEV1 by cluster after having
adjusted for the top 40 principal components.
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Figure S10: Distributions of neutrophil count adjusted for age and sex stratified by cluster. Ver-
tical dotted lines represent the mean of the distribution. Cluster labels and colours match those
in Figure 4a. Cluster 17 is mostly European-born individuals, Cluster 18 is mostly sub-Saharan
African born individuals, Cluster 19 is mostly individuals born in England, the Caribbean,
Ghana, and Nigeria, and Cluster 22 is mostly individuals born in England who chose the EB
“White and Black Caribbean” or “White and Black African”. (a) Top: Distribution of neu-
trophil count by cluster without adjusting for population structure. (b) Bottom: Distribution of
neutrophil count by cluster after having adjusted for the top 40 principal components.
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Figure S11: Cluster 22 from Figure 4a highlighted coloured in on a plot of PC1 and PC2.
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R? of VIPRS vs MAF of rs4420638
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Figure S12: Regression line of the R? of a PGS generated by VIPRS versus the minor allele
frequency rs4420638, labelled by clusters from Figure 4a. The regression summary is presented
in Table S1.

Dependent variable:

R2
MAF 0.609***
(0.202)
Constant 0.041%**
(0.014)
Observations 26
R? 0.275
Adjusted R? 0.245
Residual Std. Error 0.027 (df =24)
F Statistic 9.126%** (df = 1; 24)
Note: *p<0.1; **p<0.05; ***p<0.01

Table S2: Linear regression model between minor allele frequency (MAF) of rs7412 within
each cluster from Figure 4a and the R? of a PGS for LDL generated by VIPRS using the
clusters from Figure 4a. The plot of the regression is present in Figure S13.
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R? of VIPRS vs MAF of rs7412
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Figure S13: Regression line of the R? of a PGS generated by VIPRS versus the minor allele
frequency rs7412, labelled by clusters from Figure 4a. The regression summary is presented in
Table S2.

Number PCs | Unclustered individuals
2 8970
3 19701
4 61938
5 11423
6 92124
7 99824
8 65442
9 113299

Table S3: HDBSCAN run on PCA data alone classifies many individuals as noise. Minimum
points were set to 5, € = 0.5
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Figure S14: For 604 runs of UMAP-HDBSCAN(¢) on the UKB, we count the number of in-
dividuals not assigned to a cluster. (a) Top: Across all 604 runs. (b) Bottom: To improve the
scale of the figure, we remove 3 outlier runs in which 684, 1,535, and 4, 346 individuals were

not assigned to a cluster.
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Figure S15: An alternative clustering of UKB data. Compared to Figure 4a, the largest cluster
(Cluster 17 in that figure) has been split into three smaller clusters (Clusters 14, 24, 25 in this
figure). Other clusters have been split or merged, while some remain the same between runs.
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Abbreviation Population name
ACB African Caribbean in Barbados
ASW African Ancestry in SW USA
BEB Bengali in Bangladesh
CDX Chinese Dai in Xishuangbanna, China
CEU Utah residents with Northern/Western European ancestry
CHB Han Chinese in Beijing, China
CHS Han Chinese South
CLM Colombian in Medellin, Colombia
ESN Esan in Nigeria
FIN Finnish in Finland
GBR British From England and Scotland
GWD Gambian in Western Division — Mandinka
GIH Gujarati Indians in Houston, Texas, USA
IBS Iberian Populations in Spain
ITU Indian Telugu in the UK
JPT Japanese in Tokyo, Japan
KHV Kinh in Ho Chi Minh City, Vietnam
LWK Luhya in Webuye, Kenya
MSL Mende in Sierra Leone
MXL Mexican Ancestry in Los Angeles, CA, USA
PEL Peruvian in Lima, Peru
PIL Punjabi in Lahore, Pakistan
PUR Puerto Rican in Puerto Rico
STU Sri Lankan Tamil in the UK
TSI Toscani in Italy
YRI Yoruba in Ibadan, Nigeria

Table S4: Names and abbreviations of 1KGP populations.
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1KGP population | Cluster label | 1KGP in cluster | Total in IKGP | Proportion in cluster
ACB 0 122 122 1.0000000
ASW 0 103 107 0.9626168
ASW 5 3 107 0.0280374
ASW 15 1 107 0.0093458
BEB 1 133 143 0.9300699
BEB 11 10 143 0.0699301
CDX 2 104 105 0.9904762
CDX 4 1 105 0.0095238
CEU 3 183 183 1.0000000
CHB 4 105 105 1.0000000
CHS 4 171 171 1.0000000
CLM 5 142 146 0.9726027
CLM 15 4 146 0.0273973
ESN 6 172 172 1.0000000
FIN 7 104 104 1.0000000
GBR 3 105 105 1.0000000
GIH 8 69 111 0.6216216
GIH 17 41 111 0.3693694
GIH 11 1 111 0.0090090
GWD 9 179 180 0.9944444
GWD 14 1 180 0.0055556
IBS 10 162 162 1.0000000
ITU 11 109 118 0.9237288
ITU 17 9 118 0.0762712
JPT 12 104 105 0.9904762
JPT 4 1 105 0.0095238
KHV 2 118 121 0.9752066
KHV 4 3 121 0.0247934
LWK 13 110 110 1.0000000
MSL 14 122 122 1.0000000
MXL 15 97 104 0.9326923
MXL 10 7 104 0.0673077
PEL 16 128 129 0.9922481
PEL 5 1 129 0.0077519
PJL 17 95 155 0.6129032
PJL 19 48 155 0.3096774
PJL 11 12 155 0.0774194
PUR 18 145 149 0.9731544
PUR 0 4 149 0.0268456
STU 11 124 128 0.9687500
STU 17 4 128 0.0312500
TSI 10 111 111 1.0000000
YRI 20 181 182 0.9945055
YRI 6 1 182 0.0054945

Table S5: Cluster assignments for each 1KGP population, showing how many individuals from
each population ended up in each cluster.
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Cluster | 1KGP population | 1KGP population in cluster | Proportion
0 ACB 122 | 0.5327511
0 ASW 103 | 0.4497817
0 PUR 41 0.0174672
1 BEB 133 | 1.0000000
2 CDX 104 | 0.4684685
2 KHV 118 | 0.5315315
3 CEU 183 | 0.6354167
3 GBR 105 | 0.3645833
4 CDX 1 | 0.0035587
4 CHB 105 | 0.3736655
4 CHS 171 | 0.6085409
4 JPT 1 | 0.0035587
4 KHV 3 1 0.0106762
5 ASW 3 1 0.0205479
5 CLM 142 | 0.9726027
5 PEL 1 | 0.0068493
6 ESN 172 | 0.9942197
6 YRI 1 | 0.0057803
7 FIN 104 | 1.0000000
8 GIH 69 | 1.0000000
9 GWD 179 | 1.0000000
10 IBS 162 | 0.5785714
10 MXL 7 | 0.0250000
10 TSI 111 | 0.3964286
11 BEB 10 | 0.0390625
11 GIH 1 | 0.0039062
11 ITU 109 | 0.4257812
11 PJL 12 | 0.0468750
11 STU 124 | 0.4843750
12 JPT 104 | 1.0000000
13 LWK 110 | 1.0000000
14 GWD 1 | 0.0081301
14 MSL 122 | 0.9918699
15 ASW 1 | 0.0098039
15 CLM 41 0.0392157
15 MXL 97 | 0.9509804
16 PEL 128 | 1.0000000
17 GIH 41 | 0.2751678
17 ITU 9 | 0.0604027
17 PJL 95 | 0.6375839
17 STU 4] 0.0268456
18 PUR 145 | 1.0000000
19 PJL 48 | 1.0000000
20 YRI 181 | 1.0000000

Table S6: Composition of each cluster broken down by 1KGP population.
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Min. points | € | Number PCs | Number unclustered | Min. points | € | Number PCs | Number unclustered
5 0 2 218613 10 0 2 273869
5 0 3 317131 10 0 3 14369
5 0 4 384120 10 0 4 16778
5 0 5 11423 10 0 5 63767
5 0 6 92124 10 0 6 52090
5 0 7 99824 10 0 7 52906
5 0 8 65442 10 0 8 45236
5 0 9 113299 10 0 9 66286
5 0.3 2 14217 10 0.3 2 11900
5 0.3 3 30645 10 0.3 3 14369
5 0.3 4 183491 10 0.3 4 16778
5 0.3 5 11423 10 0.3 5 63767
5 0.3 6 92124 10 0.3 6 52090
5 0.3 7 99824 10 0.3 7 52906
5 0.3 8 65442 10 0.3 8 45236
5 0.3 9 113299 10 0.3 9 66286
5 0.5 2 8970 10 0.5 2 8972
5 0.5 3 19701 10 0.5 3 14369
5 0.5 4 61938 10 0.5 4 16778
5 0.5 5 11423 10 0.5 5 63767
5 0.5 6 92124 10 0.5 6 52090
5 0.5 7 99824 10 0.5 7 52906
5 0.5 8 65442 10 0.5 8 45236
5 0.5 9 113299 10 0.5 9 66286

Table S7: HDBSCAN(¢) carried out on the top PCs of the UKB for varying values of the mini-
mum number of points, ¢, and the number of input PCs. Regardless of parameters, HDBSCAN
is unable to cluster many individuals in the UKB without UMAP as an intermediate step.
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Ethnic group Ethnic background

White British

White Irish

White Any other white background
Mixed White and Black Caribbean
Mixed White and Black African
Mixed White and Asian

Mixed Any other mixed background
Asian or Asian British | Indian

Asian or Asian British | Pakistani

Asian or Asian British | Bangladeshi

Asian or Asian British

Any other Asian background

Black or Black British | Caribbean

Black or Black British | African

Black or Black British | Any other Black background
Chinese

Other ethnic group

Do not know

Prefer not to answer

Table S8: Possible values for ethnic background in the UKB (Data-Field 21000). Participants
are first asked “What is your ethnic group?” and then asked “What is your ethnic background?”
For “Chinese”, there is no second question. Participants may also select “Prefer not to an-
swer” for the second question; it is possible to have ethnic background recorded as ethnic group
(e.g. just “White” or “Mixed”. Excluding “Do not know”, “Prefer not to answer”, and “Not
available”, there were 20 unique values of ethnic background.
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Cluster COB Count Proportion Cluster COB Count Proportion
n/a England <20 0.51 12 Peru 35 0.29
n/a Morocco <20 <0.1 12 Ecuador 24 0.20
n/a Sudan <20 <0.1 12 Mexico 21 0.17
n/a Libya <20 <0.1 12 Bolivia <20 <02
n/a Wales <20 <0.1 12 Colombia <20 <0.2

0 Japan 242 0.84 13 Hong Kong 459 0.22

0 South Korea 26 0.09 13 China 373 0.18

1 Italy 35 0.83 13 Philippines 321 0.16

1 England <20 <0.2 13 Malaysia 314 0.15

2 Finland 136 0.92 14 England 194 0.49

3 England 1707 0.82 14 Myanmar (Burma) 24 0.06

4 England 2418 0.76 14 Hong Kong 23 0.06

4 Scotland 181 0.06 15 Nepal 123 0.80

4 USA 170 0.05 15 Prefer not to answer <20 <0.1

5 Iran 502 0.31 16 Spain 330 0.39

5 Iraq 303 0.19 16 Portugal 282 0.33

5 England 169 0.10 16 England 56 0.07

5 Cyprus 163 0.10 17 England 355844 0.82

5 Turkey 135 0.08 17 Scotland 37490 0.09

6 Egypt 72 0.22 18 Zimbabwe 258 0.26

6 Algeria 70 0.21 18 Congo 144 0.14

6 Morocco 66 0.20 18 Uganda 126 0.13

6 Libya 37 0.11 18 Kenya 111 0.11

7 India 3019 0.33 18 Zambia 56 0.06

7 Pakistan 1344 0.15 18 South Africa 53 0.05

7 Kenya 1067 0.12 19 Caribbean 2268 0.31

7 England 743 0.08 19 England 2077 0.28

7 Sri Lanka 644 0.07 19 Nigeria 1017 0.14

8 India 140 0.33 19 Ghana 867 0.12

8 Kenya 124 0.29 20 England 3528 0.87

8 Uganda 81 0.19 21 England 8338 0.54

8 England 31 0.07 21 Germany 970 0.06

8 Tanzania 24 0.06 21 Scotland 938 0.06

9 England 553 0.60 22 England 697 0.66

9 India 190 0.21 22 Caribbean 79 0.08

10 Somalia 76 0.84 23 Ethiopia 57 0.33
10 Prefer not to answer <20 <0.1 23 Sudan 50 0.29
11 England 50 0.58 23 Eritrea 44 0.25
11 Wales <20 <0.2 24 England 3178 0.62
11 France <20 <0.1 25 England 74 0.21
11 Egypt <20 <0.1 25 South Africa 69 0.20
25 Mauritius 63 0.18

25 Caribbean 36 0.10

Table S9: Frequency of country of birth by cluster for Figure 4a. Proportion refers to the
proportion within the cluster. Categories with proportion below 0.05 are not listed.
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Cluster EB Count Proportion Cluster EB Count Proportion
n/a Mixed, White and Black African <20 <0.3 12 Other ethnic group, Other ethnic group 90 0.74
n/a Mixed, Any other mixed background <20 <0.2 12 Mixed, Any other mixed background <20 <0.2
n/a  Other ethnic group, Other ethnic group <20 <0.2 12 White, Any other white background <20 <0.2
n/a  White, British <20 <0.2 13 Chinese, Chinese 1454 0.70
n/a  White, Any other white background <20 <0.1 13 Other ethnic group, Other ethnic group 323 0.16
n/a Black or Black British, African <20 <0.1 13 Asian or Asian British, Any other Asian background 232 0.11

0 Other ethnic group, Other ethnic group 220 0.76 14 Mixed, Any other mixed background 114 0.29
0 Asian or Asian British, Any other Asian background 54 0.19 14 Mixed, White and Asian 93 0.23
1 White, Any other white background 39 0.93 14 Other ethnic group, Other ethnic group 61 0.15
2 White, Any other white background 145 0.98 14 Asian or Asian British, Any other Asian background 44 0.11
3 White, British 1585 0.76 14 Chinese, Chinese 31 0.08
3 White, Any other white background 407 0.20 14 White, British 31 0.08
4 White, British 1880 0.59 15 Asian or Asian British, Any other Asian background 63 0.41
4 White, Any other white background 993 0.31 15 Other ethnic group, Other ethnic group 63 0.41
4 Other ethnic group, Other ethnic group 239 0.08 15 Not Available 22 0.14
5 Other ethnic group, Other ethnic group 751 0.46 16 White, Any other white background 753 0.89
5 White, Any other white background 435 0.27 16  White, British 53 0.06
5 Asian or Asian British, Any other Asian background 229 0.14 17 White, British 412206 0.95
5 White, British 103 0.06 18 Black or Black British, African 773 0.77
6 Other ethnic group, Other ethnic group 223 0.68 18  Other ethnic group, Other ethnic group 190 0.19
6 White, Any other white background 47 0.14 19 Black or Black British, Caribbean 4143 0.56
6 Mixed, White and Black African <20 <0.1 19 Black or Black British, African 2225 0.30
7 Asian or Asian British, Indian 5177 0.57 19 Other ethnic group, Other ethnic group 602 0.08
7 Asian or Asian British, Pakistani 1726 0.19 20 White, British 3778 0.93
7 Asian or Asian British, Any other Asian background 1049 0.12 20 White, Any other white background 221 0.05
7 Other ethnic group, Other ethnic group 498 0.06 21 White, British 7848 0.51
8 Asian or Asian British, Indian 419 0.99 21 White, Any other white background 7020 0.45
9 Mixed, White and Asian 432 0.47 22 Mixed, White and Black Caribbean 408 0.39
9  White, British 141 0.15 22  Mixed, White and Black African 254 0.24
9 Asian or Asian British, Indian 84 0.09 22 Mixed, Any other mixed background 111 0.11
9 Mixed, Any other mixed background 76 0.08 22 Black or Black British, Caribbean 106 0.10
9 Other ethnic group, Other ethnic group 53 0.06 22 Other ethnic group, Other ethnic group 69 0.07
10 Black or Black British, African 67 0.74 23 Black or Black British, African 95 0.54
10 Other ethnic group, Other ethnic group 22 0.24 23 Other ethnic group, Other ethnic group 64 0.37
11 Mixed, Any other mixed background 30 0.35 24  White, British 3416 0.67
11  White, British 20 0.23 24 White, Any other white background 646 0.13
11 White, Any other white background <20 <0.2 24 Other ethnic group, Other ethnic group 285 0.06
11 Mixed, White and Asian <20 <0.2 25  Other ethnic group, Other ethnic group 100 0.29
11 Other ethnic group, Other ethnic group <20 <0.2 25 Mixed, Any other mixed background 83 0.24
25 Mixed, White and Black African 24 0.07

25 Black or Black British, Caribbean 23 0.07

Table S10: Frequency of selected EB by cluster for Figure 4a. Proportions refer to the propor-
tion within the cluster. Categories with proportions below (.05 are not listed.
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phenotype model Any other mixed background Any other white background British Chinese Irish Other ethnic group Pakistani White and Asian
Basophil count CLS 0.874 (n=194) 0.835 (n=3058) 1 (n=83497) 0.511 (1=291)  1.148 (n=2471) 1.101 (n=837) 1.126 (n=337) 0.726 (n=156)
Basophil count PCA 0.942 (n=194) 0.836 (n=3058) 0.999 (n=83497)  0.524 (n=291)  1.151 (n=2471) 1.114 (n=837) 1.163 (n=337) 0.763 (n=156)
BMI CLS 1.183 (n=198) 1.051 (n=3150) 0.984 (n=85947)  0.649 (n=299)  0.959 (n=2541) 1.096 (n=858) 0.936 (n=344) 1.056 (n=160)
BMI PCA 1.219 (n=198) 1.044 (n=3150) 0.981 (n=85947) 0.657 (n=299) 0.961 (n=2541) 0.991 (n=858) 0.946 (n=344) 1.159 (n=160)
Eosinophil count CLS 1.3 (n=194) 0.917 (n=3058) 0.974 (n=83497)  1.171 (n=291)  1.041 (n=2471) 1.292 (n=837) 1.661 (n=337) 1.354 (n=156)
Eosinophil count PCA 1.384 (n=194) 0.918 (n=3058) 0.973 (n=83497) 1.207 (n=291) 1.044 (n=2471) 1.268 (n=837) 1.721 (n=337) 1.451 (n=156)
Erythrocyte count CLS 1.092 (n=195) 0.993 (n=3063) 0.965 (n=83645) 1.441 (n=291) 0.989 (n=2477) 1.251 (n=839) 1.366 (n=337) 1.069 (n=156)
Erythrocyte count PCA 1.157 (n=195) 0.99 (n=3063) 0.961 (n=83645) 1.449 (n=291) 0.992 (n=2477) 1.23 (n=839) 1.409 (n=337) 1.147 (n=156)
FEV1 CLS 0.863 (n=181) 0.867 (n=2896) 0.918 (n=78597) 0.861 (n=280) 0.978 (n=2308) 1.18 (n=786) 1.264 (n=311) 0.903 (n=148)
FEVI PCA 0.82 (n=181) 0.844 (n=2896) 0.913 (n=78597)  0.886 (n=280)  0.98 (n=2308) 0.961 (n=786) 1.275 (n=311) 0.882 (n=148)
FvC CLS 0.924 (n=181) 0.852 (n=2896) 0.899 (n=78597) 0.937 (n=280) 0.948 (n=2308) 1.288 (n=786) 1.39 (n=311) 0.886 (n=148)
FVC PCA 0.866 (n=181) 0.82 (n=2896) 0.893 (n=78597)  0.957 (n=280)  0.951 (n=2308) 1.074 (n=786) 1.406 (n=311) 0.861 (n=148)
Leukocyte count CLS 1.012 (n=195) 0.977 (n=3063) 0.987 (n=83644)  0.939 (n=291)  1.021 (n=2477) 1.134 (n=839) 0.861 (n=337) 0.971 (n=156)
Leukocyte count PCA 1.067 (n=195) 0.973 (n=3063) 0.985 (n=83644)  0.982 (n=291)  1.026 (n=2477) 1.06 (n=839) 0.888 (n=337) 1.024 (n=156)
Lymphocyte count ~ CLS 1.01 (n=194) 0.946 (n=3058) 0.99 (n=83497)  0.841 (n=291)  0.987 (n=2471) 1.046 (n=837) 0.925 (n=337) 0.972 (n=156)
Lymphocyte count ~ PCA 1.039 (n=194) 0.944 (n=3058) 0.988 (n=83497)  0.889 (n=291)  0.99 (n=2471) 1.025 (n=837) 0.952 (n=337) 1.032 (n=156)
Monocyte count CLS 1.508 (n=194) 0.935 (n=3058) 0.99 (1=83497)  0.733 (n=291)  1.071 (n=2471) 1.027 (n=837) 1.079 (n=337) 1.178 (n=156)
Monocyte count PCA 1.632 (n=194) 0.936 (n=3058) 0.989 (n=83497)  0.757 (n=291)  1.076 (n=2471) 1.007 (n=837) 1.13 (n=337) 1.215 (n=156)
Neutrophil count CLS 1.127 (n=194) 0.966 (n=3058) 0.977 (n=83497)  0.974 (n=291) 1.03 (n=2471) 1.192 (n=837) 0.886 (n=337) 0.941 (n=156)
Neutrophil count PCA 1.174 (n=194) 0.961 (n=3058) 0.976 (n=83497)  1.018 (n=291)  1.033 (n=2471) 1.09 (n=837) 0.916 (n=337) 0.994 (n=156)
Standing height CLS 1.027 (n=199) 1.061 (n=3154) 0.967 (n=86037)  0.799 (n=299)  0.936 (n=2544) 1.058 (n=859) 0.888 (n=344) 0.873 (n=160)
Standing height PCA 0.993 (n=199) 0.96 (n=3154) 0.953 (n=86037) 0.815 (n=299) 0.932 (n=2544) 0.914 (n=859) 0.905 (n=344) 0.896 (n=160)
Weight CLS 1.181 (n=198) 1.032 (n=3151) 0.978 (n=85979) 0.673 (n=299) 0.97 (n=2543) 1.208 (n=859) 0.913 (n=344) 1.039 (n=160)
Weight PCA 1.193 (n=198) 1.019 (n=3151) 0.976 (n=85979) 0.686 (n=299) 0.972 (n=2543) 1.001 (n=859) 0.921 (n=344) 1.137 (n=160)

Table S11: Comparing two phenotype models split by EB. One model (PCA) uses the top 40 PCs to estimate phenotypes,
while the other (CLS) uses a cluster-smoothed phenotype estimate from Algorithm 1 in addition to the top 40 PCs. Values in
the table are the average mean squared error with the average number of testing samples in a five-fold cross validation.
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phenotype model African Any other Asian background Bangladeshi Caribbean Indian White ‘White and Black African White and Black Caribbean
Basophil count CLS 1.107 (n=607) 0.739 (n=335) 0.529 (n=41) 096 (n=813)  0.922 (n=1094)  1.351 (n=106) 0.87 (n=78) 1701 (n=115)
Basophil count PCA 1.105 (n=607) 0.753 (n=335) 0.668 (n=41)  0.971 (n=813)  0.928 (n=1094)  1.741 (n=106) 1.172 (n=78) 1.846 (n=115)
BMI CLS 1.052 (n=630) 0.801 (n=344) 2398 (n=43) 1214 (n=849)  0.878 (n=1112)  1.285 (n=108) 1.288 (n=80) 1.169 (n=118)
BMI PCA 1.06 (n=630) 0.811 (n=344) 0.942 (n=43) 122 (n=849)  0.882 (n=1112)  1.476 (n=108) 1.545 (n=80) 1.232 (n=118)
Eosinophil count CLS 1.365 (n=607) 1.756 (n=335) 1.936 (n=41)  1.106 (n=813) 1.61 (n=1094) 0.94 (n=106) 1.469 (n=78) 0.981 (n=115)
Eosinophil count PCA 1.388 (n=607) 1.792 (n=335) 2.479 (n=41) 1.116 (n=813) 1.626 (n=1094) 1.156 (n=106) 1.556 (n=78) 1.008 (n=115)
Erythrocyte count CLS 1.506 (n=608) 1.214 (n=337) 1.243 (n=42) 1.523 (n=816) 1.355 (n=1097) 1.099 (n=106) 1.361 (n=78) 1.219 (n=115)
Erythrocyte count PCA 1.517 (n=608) 1.23 (n=337) 1.654 (n=42)  1.546 (n=816)  1.354 (n=1097)  1.511 (n=106) 1.744 (n=78) 1.316 (n=115)
FEVI CLS 1.212 (n=577) 1.232 (n=315) 0.964 (n=775)  1.027 (n=1053) 1.274 (n=96) 0.843 (n=73) 0.999 (n=109)
FEVI1 PCA 1.176 (n=577) 1.155 (n=315) 0.968 (n=775)  1.007 (n=1053) 1.515 (n=96) 0.989 (n=73) 1.081 (n=109)
FVC CLS 1.416 (n=577) 1.414 (n=315) 1.138 (0=775)  1.174 (n=1053) 1.071 (n=96) 0.855 (n=73) 1.009 (n=109)
FVC PCA 1.384 (n=577) 1.305 (n=315) 1.147 0=775)  1.154 (n=1053) 1.355 (n=96) 0.975 (n=73) 1.122 (n=109)
Leukocyte count CLS 0.912 (n=608) 0.938 (n=337) 0.86 (n=42) 1.192 (n=816)  0.854 (n=1097)  1.034 (n=106) 1.195 (n=78) 1.045 (n=115)
Leukocyte count PCA  0.902 (n=608) 0.939 (n=337) 1.199 (n=42) 1.19(n=816)  0.865 (n=1097)  1.233 (n=106) 1.654 (n=78) 1.199 (n=115)
Lymphocyte count ~ CLS 0.932 (n=607) 1.09 (n=335) 0.908 (n=41)  1.082 (n=813)  1.032 (n=1094)  0.945 (n=106) 1.079 (n=78) 0.999 (n=115)
Lymphocyte count ~ PCA  0.944 (n=607) 1.084 (n=335) 1298 (n=41)  1.094 (n=813)  1.047 (n=1094)  1.026 (n=106) 1.251 (n=78) 1.108 (n=115)
Monocyte count CLS 0.913 (n=607) 1.178 (n=335) 1205 (n=41)  1.011 (n=813)  0.951 (n=1094)  1.122 (n=106) 0.927 (n=78) 0.96 (n=115)
Monocyte count PCA 0916 (n=607) 1.195 (n=335) 1512 (n=41)  1.018 (n=813)  0.963 (n=1094)  1.383 (n=106) 1.101 (n=78) 1.099 (n=115)
Neutrophil count CLS 1.007 (n=607) 0.945 (n=335) 0.893 (n=41) 1.3 (n=813) 0.861 (n=1094) 1 (n=106) 1.172 (n=78) 1.036 (n=115)
Neutrophil count PCA  0.995 (n=607) 0.962 (n=335) 1284 (n=41)  1.298 (n=813)  0.868 (n=1094)  1.202 (n=106) 1.591 (n=78) 1.178 (n=115)
Standing height CLS 0.975 (n=631) 0.937 (n=345) 0.772 (n=44)  0.955 (n=850)  0.959 (n=1114) 1.05 (n=108) 1 (n=80) 1.072 (n=119)
Standing height PCA 0.978 (n=631) 0.926 (n=345) 1.08 (n=44) 0.96 (n=850) 0.931 (n=1114) 1.119 (n=108) 1.097 (n=80) 1.109 (n=119)
Weight CLS 1.15 (n=630) 0.874 (n=347) 0.799 (n=43) 1.23 (n=851) 0.919 (n=1135) 1261 (n=108) 1.26 (n=80) 1.142 (n=119)
Weight PCA 1.15 (n=630) 0.859 (n=347) 0.956 (n=43) 1.237 (n=851) 0.911 (n=1135) 1.411 (n=108) 1.527 (n=80) 1.185 (n=119)

Table S12: Comparing two phenotype models split by EB. One model (PCA) uses the top 40 PCs to estimate phenotypes,
while the other (CLS) uses a cluster-smoothed phenotype estimate from Algorithm 1 in addition to the top 40 PCs. Values in
™ the table are the average mean squared error with the average number of testing samples in a five-fold cross validation.
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