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Abstract 

A frequent goal of phage biology is to quantify how well a phage kills a population of host bacteria. 
Unfortunately, traditional methods to quantify phage success can be time-consuming, limiting the 
throughput of experiments. Here, we use theory to show how the effects of phages on their hosts can 
be quantified using bacterial population dynamics measured in a high-throughput microplate reader 
(automated spectrophotometer). We use mathematical models to simulate bacterial population 
dynamics where specific phage and bacterial traits are known a priori. We then test common metrics of 
those dynamics (e.g. growth rate, time and height of peak bacterial density, death rate, extinction time, 
area under the curve) to determine which best predict: 1) infectivity over the short-term, and 2) phage 
suppression over the long-term. We find that many metrics predict infectivity and are strongly 
correlated with one another. We also find that metrics can predict phage growth rate, providing an 
effective way to quantify the combined effects of multiple phage traits. Finally, we show that peak 
density, time of peak density, and extinction time are the best metrics when comparing across different 
bacterial hosts or over longer timescales where plasticity or evolution may play a role. In all, we 
establish a foundation for using bacterial population dynamics to quantify the effects of phages on their 
bacterial hosts, supporting the design of in vitro empirical experiments using microplate readers. 

 

Significance 

Bacteriophages are viruses that infect bacteria, with relevance from basic science to medical application. 
Frequently we seek to quantify how these viruses negatively impact bacterial growth. Typical methods 
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are labor-intense, limiting the number of experiments that can be done. Here, we show how easily-
collectable data (called ‘bacterial population dynamics’ or ‘growth curves’) can be used to quantify virus 
killing of bacteria across a wide range of conditions. In all, our work suggests that these dynamics 
provide an effective and high-throughput method to quantify phage effects on their hosts.    
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Introduction 

In the study of lytic bacteriophages (phages), a common experimental goal is to quantify how well a 
phage can kill a given bacterial strain. This question is asked both on short timescales as well as over 
longer timescales. On short timescales we want to quantify ‘infectivity’, which we define as how well a 
specific phage strain infects and kills a specific bacterial strain. At this timescale, we expect that phage 
and bacterial phenotypes are mainly constant, and that infectivity reflects both: 1) the phage’s ability to 
infect host cells, as well as 2) the bacterium’s ability to resist phage attack (1, 2). On longer timescales, 
plasticity and evolution can come into play, allowing phage and bacterial phenotypes to change. In this 
case, we want to quantify the magnitude and duration of phage-driven suppression of the bacterial 
population, even as bacteria become resistant to phages. Unfortunately, experimentally quantifying 
phage success over the short or long-term can require time-consuming methods, limiting the 
throughput of experiments (3–8). 

Here, we aim to show how the success of obligately-lytic phages over both the short and long-term can 
be quantified in high-throughput from bacterial population dynamics estimated in a microplate reader 
(‘growth curves’, e.g. as measured with optical density). Many groups have measured proxies of 
bacterial density over time in the presence and absence of phages in order to qualitatively infer phage 
activity (9–36). In addition, some studies have proposed ways to use population dynamics to quantify 
infectivity (37–50), attempting to extract a metric (or metrics) from the time series of bacterial densities 
that reflects infectivity. However, which of these proposed approaches best reflect infectivity, and 
whether they can be extended to quantify phage success over longer timescales with plasticity or 
evolution, has not been systematically tested. 

To address this gap, we used mathematical models to simulate bacterial population dynamics in the 
presence and absence of infecting phages (Fig S1). Such models have been widely used to study phage-
bacteria interactions (51–53), but only rarely applied to understand how population dynamics could be 
used to quantify phage success (45, 47). By modeling, we can simulate and compare bacterial population 
dynamics where bacterial and phage traits are precisely controlled and known a priori. Using our 
models, we complement the existing body of largely-empirical papers (37–50) to show that many 
metrics predict infectivity, are strongly correlated with one another, and can be used to infer phage 
growth rate, providing an effective way to quantify the combined effects of multiple phage traits. 
Additionally, we find that peak density, time of peak density, and extinction time are the best metrics 
when bacterial hosts vary in their growth or over longer timescales where plasticity or evolution may 
play a role. 

 

Materials and Methods 

Overview  

We used the common approach of modeling populations of susceptible bacteria, infected bacteria, free 
phage particles, and nutrients with a system of differential equations (Fig S1). These equations track the 
densities of each of the four populations over time, linking the effects of each population on the others 
through mathematical terms for processes like growth, infection, and lysis. Such terms also include 
parameters like growth rate, stationary phase density, infection rate, burst size (number of phages 
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produced by each infected cell), and lysis time (lag between infection of a susceptible cell and lysis to 
release new phage particles). By simulating population dynamics with different parameter values, we 
can then observe how changes in each parameter value alter the observed bacterial population 
dynamics. Finally, we can apply the various approaches to analyze growth curves from the literature to 
our simulated data, enabling us to directly test the efficacy of each approach. 

Main model of bacterial population dynamics 

We built a delay differential equation model of bacterial and phage growth (54) (Eqs. 1 – 4) with 
populations of susceptible bacteria (S), infected bacteria (I), free phages (P), and nutrients (N). The 
nutrient population is defined in units of cells, so that one unit of nutrients yields one cell. In this model, 
nutrients can return into the environment from cell lysis at a rate controlled by the d parameter. Note 
that when d = 1 (i.e. the lysis of one cell returns one cell’s-worth of nutrients back into the 
environment), this model simplifies to logistic growth. For convenience, we let k be the stationary phase 
density of cells, and let 𝑁଴ = 𝑘 − 𝑆଴ − 𝐼଴. Subscripts denote time (i.e. 𝑆௧ is the population of susceptible 
cells at time t). Descriptions of all parameters are provided in Table 1. 

ௗௌ

ௗ௧
= 𝑢𝑆௧

ே೟

௞
− 𝑎𝑆௧𝑃௧          [1] 

ௗூ

ௗ௧
= 𝑎𝑆௧𝑃௧ − 𝑎𝑆௧ିఛ𝑃௧ିఛ          [2] 

ௗ௉

ௗ௧
= −𝑎𝑆௧𝑃௧ + 𝑏𝑎𝑆௧ିఛ𝑃௧ିఛ − 𝑎𝑧𝐼௧𝑃௧        [3] 

ௗே

ௗ௧
= −𝑢𝑆௧

ே೟

௞
+ 𝑑𝑎𝑆௧ିఛ𝑃௧ିఛ         [4] 

This model produces growth curves under the assumption that bacteria remain fully susceptible to 
phage infection at all times. However, susceptibility to phage infection is known to decline as bacterial 
growth and metabolism slow as the population enters stationary phase (51, 55–59). We identified 
simulated growth curves where this assumption is likely violated when 𝑆 + 𝐼 ≥ 0.9 ∗ 𝑘 at any point in 
time. In some plots in the main text these simulations are excluded (as noted in the figure legends), but 
plots with all simulations are included in the supplement. 

Models of bacterial population dynamics with plasticity or evolution 

To explicitly model changes in bacterial susceptibility over time via plasticity or evolution (Fig 8), we 
used previously-published approaches (51) to model three scenarios. In the first scenario, as nutrient 
density and bacterial growth rate decline, phage growth slows via decreases in the infection rate [Eqs. 5 
– 9, (60)] or burst size (Appendix 9), or increases in lysis time (Appendix 9). Here, at declines linearly with 
decreasing nutrient availability. The slope of that decline, and the total decrease when nutrients have 
been completely depleted, is controlled by the f parameter. 

ௗௌ

ௗ௧
= 𝑢𝑆

ே

௞
− 𝑎௧𝑆𝑃          [5] 

ௗூ

ௗ௧
= 𝑎௧𝑆𝑃 − 𝑎௧ିఛ𝑆௧ିఛ𝑃௧ିఛ         [6] 

ௗ௉

ௗ௧
= −𝑎௧𝑆𝑃 + 𝑏𝑎௧ିఛ𝑆௧ିఛ𝑃௧ିఛ − 𝑎௧𝑧𝐼𝑃        [7] 
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ௗே

ௗ௧
= −𝑢𝑆

ே

௞
+ 𝑑𝑎௧ିఛ𝑆௧ିఛ𝑃௧ିఛ         [8] 

Where: 

𝑎௧ = 𝑎 ∗ max ቀ0, 1 − 𝑓௔ + 𝑓௔
ே೟

௞
ቁ        [9] 

 
In the second and third scenarios, bacterial cells transition into a resistant state (Eqs. 10 – 12), either 
because of plastic changes conferring a non-growing resistant state (𝑢ோ = 0), or evolutionary mutations 
conferring cost-free resistance (𝑢ோ > 0) [Appendix 9, (61)]. Descriptions of all parameters are provided 
in Table 1. 

 

ௗௌ

ௗ௧
= 𝑢ௌ𝑆

ே

௞
− 𝑎௧𝑆𝑃 − ℎ𝑢ௌ𝑆         [10] 
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ே

௞
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ௗே
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= −𝑢ௌ𝑆

ே

௞
− 𝑢ோ𝑅

ே

௞
          [12] 

 

 

Table 1. Model parameter terms and their definitions. Unless otherwise noted, all simulations used the 
default value listed. For the noted exceptions, simulations typically used the range of values in brackets, 
which approximately span the experimentally-observed ranges of phenotypes (Table S1). 

Parameter Definition Default Value [Range of values] 
uS Maximum per-capita growth rate of susceptible cells 0.0179 [0.00798 – 0.04] /min 

(doubling time of ~39 [87 – 17] 
minutes) 

k Stationary phase density of cells 109 [108 – 1010] CFU/mL 
a Maximum infection rate of susceptible cells by free 

phage particles 
10-10 [10-12 – 10-8] 
infections/cell/phage/mL/min 

b Burst size: number of phages produced by each 
infected cell 

50 [5 – 500] phages/cell 

𝜏 Lysis time, the lag between infection of a susceptible 
cell and lysis to release new phages 

31.6 [10 – 100] minutes 

z Scaling parameter for rate of superinfection of 
infected cells by free phages relative to rate of 
infection of susceptible cells 

1 

d Fraction of nutrients replenished by each cell death 0 [0 – 1] 
h Transition rate of susceptible cells to resistant cells, 

relative to growth rate 
0 [0, 10-8 – 10-1] 

uR Maximum per-capita growth rate of resistant cells 0 [0 – 0.0179] /min 
fa Degree of infection rate plasticity 0 [0 – 3] 
S0 Initial density of susceptible cells 106 [106 – 108] CFU/mL 
I0 Initial density of infected cells 0 CFU/mL 
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P0 Initial density of phages 104 [104 – 106] PFU/mL 
N0 Initial density of nutrients 𝑘 − 𝑆଴ − 𝐼଴ CFU/mL 

 

Simulation implementation and analysis 

Simulated population dynamics data were generated using deSolve (62), using default values for all 
parameters (Table 1) for 48 hours of simulated time unless otherwise noted. Data was analyzed using 
gcplyr (63): maximum growth rate was calculated using a sliding window 5 data points wide on non-log-
transformed data, 104 CFU/mL was used as the arbitrary threshold for extinction time, and 106 CFU/mL 
was used as the arbitrary threshold for emergence time. Principal component analyses were carried out 
using each timepoint as a variable, using either the raw density values or (for ‘normalized PCA’) the 
difference in density values from a control with no phages added. Relative area under the curve (AUC) in 
Fig 7 was calculated as AUC divided by the AUC of a control curve with no phages added. The coefficient 
of variation in Fig 7 is the standard deviation divided by the mean. All code used to generate, analyze, 
and visualize data in R v4.4.3 is available at https://github.com/mikeblazanin/growth-curves. 

 

Results 

First, we tested how changes in phage traits (burst size, lysis time, and infection rate) alter the shape of 
the curves of bacterial population dynamics. Regardless of the phage trait that varies, we observe that 
all bacterial populations still display a characteristic exponential phase, before the population density 
peaks and then rapidly declines due to phage killing (Fig 1). Notably, phage traits do not substantially 
alter the bacterial population’s density or growth rate during the initial exponential phase, even though 
our simulations assume cells cease growth immediately upon infection. We and others have observed 
such a pattern empirically [Appendix 8, (19, 36, 40, 41, 43–47, 49)], which arises because infection 
remains rare during the exponential phase.  
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Figure 1. Phage infectivity alters peak and death phases of bacterial population dynamics, but not 
exponential phase. Bacterial population dynamics were simulated with phages with varying infection 
rates (A), burst sizes (B), or lysis times (C), plotting the total bacterial density over time. The dashed line 
denotes bacterial growth in the absence of phages.  

 

Next, we tested how changes in phage traits affect the various metrics that have been proposed (4, 37–
46, 48, 50) to quantify phage infectivity from bacterial population dynamics. As expected from the 
patterns in bacterial population dynamics in Fig 1, metrics like the bacterial growth rate (38, 41), time to 
reach a threshold density (39, 42), and rate of population decline (41) do not correlate with phage 
infection rate (Fig 2A, 2B, 2E), burst size (Fig S2), or lysis time (Fig S3). In contrast, metrics like the height 
and timing of the peak bacterial density (45, 47), the timing of bacterial population extinction (45), the 
area under the curve (38, 40, 43, 44, 46, 48), and multivariate principal component analyses (37, 48) 
correlate strongly with phage infection rate (Fig 2C, 2D, 2F, 2G, 2H), burst size (Fig S2), and lysis time (Fig 
S3). 
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Figure 2. Metrics of the exponential phase and rate of decline do not correlate with phage infectivity, 
while metrics of peak, overall growth, and timing of death phase do correlate with phage infectivity. 
Bacterial population dynamics were simulated for 48 hours with phages with all combinations of varying 
infection rates, lysis times (10, 17.8, 31.6, 56.2, 100 mins), and burst sizes (5, 15.8, 50, 158, 500 
PFU/infection). Each line plots the metrics calculated from bacterial population dynamics with phages 
having the same lysis time and burst size, across varying infection rates. A, B. Small amounts of jitter in 
both the x and y direction were added to aid visualization of many overlapping lines. F. Six populations 
did not reach the extinction threshold and are plotted as 48 hours. H. PC1 is the first principal 
component from a principal component analysis of the bacterial population dynamics. 

 

Next, we tested whether metrics calculated from bacterial population dynamics are correlated with 
each other, since it remains unclear how these different metrics compare to one another and whether 
they provide redundant versus complementary information about phage infectivity. We find that 
different metrics are extremely tightly correlated with one another, suggesting they provide redundant 
information (Figs 3, S4). 
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Figure 3. Metrics of bacterial population dynamics are tightly correlated with each other. Bacterial 
population dynamics were simulated with phages with all combinations of varying infection rates (10-12, 
10-11, 10-10, 10-9, 10-8 /CFU/PFU/min), lysis times (10, 17.8, 31.6, 56.2, 100 mins), and burst sizes (5, 15.8, 
50, 158, 500 PFU/infection). Bacterial populations which approximately reached their stationary phase 
density are excluded from this plot (see Fig S4). PC1 is the first principal component from a principal 
component analysis of the bacterial population dynamics. 

 

Thus far, we have shown that metrics calculated from bacterial population dynamics correlate strongly 
with each other and with the phage traits of burst size, lysis time, and infection rate. However, many 
experiments do not go to the level of quantifying specific phage traits, instead quantifying overall phage 
growth. Here, we find that metrics calculated from bacterial population dynamics are also strongly 
correlated with average phage growth rate (Fig 4, Appendix 4). These findings are consistent with past in 
vitro and in silico work (45, 47) and suggest that lytic phage growth rate can be inferred simply by 
quantifying the observable effects the phage has on the population density of its bacterial host. 
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Figure 4. Metrics of bacterial population dynamics are correlated with phage growth rate. Bacterial 
population dynamics were simulated with phages with all combinations of varying infection rates (10-12, 
10-11, 10-10, 10-9, 10-8 /CFU/PFU/min), lysis times (10, 17.8, 31.6, 56.2, 100 mins), and burst sizes (5, 15.8, 
50, 158, 500 PFU/infection). PC1 is the first principal component from a principal component analysis of 
the bacterial population dynamics. Populations which approximately reached their stationary phase 

density are not plotted here (see Fig S5).  The average phage growth rate was calculated as 
୪୭୥ (௉೑೔೙ೌ೗/௉బ)

௧೑೔೙ೌ೗
 

using the extinction time as the final timepoint. 

 

We next quantified how the phage traits of burst size, lysis time, and infection rate interact with each 
other in altering bacterial population dynamics, as well as quantifying how strongly each trait affects the 
metrics calculated from bacterial population dynamics. All three traits contribute substantially to 
shaping bacterial population dynamics (Fig 5, S6 – S10), frequently interacting with diminishing returns 
(Fig S11). Of the three traits, lysis time typically has the strongest absolute effect (Fig 5D, S12); that is, a 
given fold-change in lysis time has a larger effect than the same fold-change in burst size or infection 
rate. However, the three traits are not equally variable: infection rate has the widest range of natural 
variation, followed by burst size, then lysis time (Table S1). If we normalize to compare across the full 
range of natural variation, infection rate often has the largest effect (Fig 5E, S12). Regardless, these data 
show that metrics of bacterial population dynamics provide an effective way to quantify the combined 
effects of multiple phage traits without measuring individual phage traits. 
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Figure 5. Phage traits jointly determine time of peak bacterial density. Bacterial population dynamics 
were simulated with phages with all combinations of varying infection rates (10-12, 10-11, 10-10, 10-9, 10-8 
/CFU/PFU/min), lysis times (10, 17.8, 31.6, 56.2, 100 mins), and burst sizes (5, 15.8, 50, 158, 500 
PFU/infection). Plotted are subsets of the simulations where A, burst size = 50, B, lysis time = 31.6 min, 
or C, infection rate = 10-10 /cfu/pfu/mL/min. Bacterial populations which approximately reached their 
stationary phase density are plotted as ‘x’s. D. We calculated the magnitude (i.e. absolute value) of the 
rate of change of the time of peak bacterial density against a 10-fold change in each phage trait. E. We 
calculated the magnitude (i.e. absolute value) of the rate of change of the time of peak bacterial density 
against each phage trait normalized to have a range of 1. Populations which approximately reached their 
stationary phase density are not plotted in D and E (see Fig S12). 

 

Next, we tested how strongly the initial densities of bacteria and phages affect the metrics calculated 
from bacterial population dynamics. Initial densities can substantially alter bacterial population 
dynamics, with initial bacterial density typically having a stronger effect than initial phage density (Fig 6, 
Appendix 6, Figs S13 – S15). Fortunately, both initial bacterial density and initial phage density typically 
have weaker effects on bacterial population dynamics than phage infectivity, so although initial densities 
do need to be experimentally controlled, random noise in inoculation densities should not obscure 
differences in infectivity (Appendix 6, Figs S16, S17). Additionally, in contrast to the strong interactions 
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between traits in determining population dynamic metrics (Fig 5, Appendix 5), the effects of log initial 
phage and log bacterial density are approximately linear on many metrics (Fig 6, Appendix 6). Thus, 
experimenters can manipulate initial bacterial and phage density to maximize the signal of phage 
infectivity between strains (Fig S14C, S14D). 

 

 
Figure 6. Metrics of bacterial population dynamics can be sensitive to inoculation densities. Bacterial 
population dynamics were simulated with phages with all combinations of varying infection rates and 
initial phage (A) or bacterial (B) densities (while holding the other constant). Bacterial populations which 
approximately reached their stationary phase density are plotted as ‘x’s. A. The initial density of bacteria 
was held constant at 106 CFU/mL. B. The initial density of phages was held constant at 104 PFU/mL. C. 
We calculated the magnitude of the rate of change of the time of peak bacterial density against a 10-
fold change in infection rate, initial bacterial density, or initial phage density. Populations which 
approximately reached their stationary phase density are not plotted (see Fig S15). 

 

We now set out to test how metrics of population dynamics can be used to compare phage infectivity 
across different bacterial hosts, for instance when bacterial strains vary in their resistance to infection. 
Many population dynamic metrics used to infer infectivity can be strongly affected by variation in 
bacterial traits like growth rate or stationary phase density (Fig 7, Appendix 7). Of the metrics, the time 
of peak bacterial density and extinction time tend to be the best metrics (i.e., are least affected by 
variation in bacterial traits). One proposed approach to explicitly account for variation in bacterial traits 
is to calculate the area under the curve (AUC) relative to the AUC of a control where bacteria are grown 
alone (40, 44, 46). When bacterial strains vary in their growth rate, relative AUC can be a somewhat 
better indicator than raw AUC of infectivity (Fig 7A). However, counterintuitively, when bacterial strains 
vary in their stationary phase density, relative AUC is actually a much worse indicator of infectivity (Fig 
7B). This arises because phages typically cause bacterial populations to collapse before they begin to 
approach stationary phase, so AUC values vary more in the control than in the presence of phages. A 
second approach to explicitly account for variation in bacterial traits is to use multivariate ordination 
methods like PCA on the raw density values or the density values relative to those of a control where 
bacteria are grown alone (37, 48). When bacteria vary in growth rate, both PCA approaches work well as 
metrics of infectivity, with little overall improvement from PCA on relative densities (Fig 7A). However, 
when bacterial strains vary in their stationary phase density, PCA on relative densities is a much worse 
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metric of phage infectivity (Fig 7B). This arises for much the same reason as AUC: when bacteria vary in 
stationary phase density, control densities vary more than densities in the presence of phages. 
 

 

Figure 7. When bacteria vary the time of peak bacterial density and extinction time are the best 
metrics of phage infectivity. Bacterial population dynamics were simulated with phages with all 
combinations of varying infection rates (10-12, 10-11, 10-10, 10-9, 10-8 /CFU/PFU/min) and bacteria with 
varying stationary phase densities (108, 108.5, 109, 109.5, 1010 CFU/mL) and growth rates (0.04, 0.027, 
0.018, 0.012, 0.008 /min; doubling times of 17, 26, 39, 58, and 87 mins). We then calculated the amount 
of variation in each metric among simulations with A. the same infection rate and stationary phase 
density, or B. the same infection rate and growth rate. Smaller coefficients of variation indicate that the 
measure is a better indicator of infectivity across bacteria that vary in A. growth rate, or B. stationary 
phase density. For AUC and Relative AUC, and PC1 and Relative PC1, lines connect sets of simulations 
with the same parameter values. 

 

Finally, we sought to test how bacterial population dynamics can be used to quantify the effects of 
phages over longer timescales, when bacteria can become resistant through plastic or evolutionary 
changes. For instance, in vitro bacterial susceptibility is often observed to decline as bacterial growth 
slows (51, 55–59), and bacteria are also known to readily evolve resistance against phages. To assess 
these effects on bacterial population dynamics, we used previously-published approaches (51) to 
simulate three scenarios (Fig 8, Appendix 9):  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2025. ; https://doi.org/10.1101/2023.06.29.546975doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.29.546975
http://creativecommons.org/licenses/by/4.0/


1) Phage growth weakening as bacterial growth slows (20, 51, 57, 60, 64, 65). Here, we find that 
bacterial population dynamics are substantially altered if bacteria reach stationary phase (Fig 
8A). There, bacterial growth slows enough that phage growth falls to zero, preventing the 
collapse observed in previous simulations. This also makes it impossible to distinguish phage 
infectivity differences between any bacterial populations that are sufficiently resistant to reach 
stationary phase (Fig 8D). 

2) Bacterial cells transitioning into a phenotypically resistant state (61). Here, transitions into a 
phenotypically resistant state can produce patterns of partial population collapse (Figs 8B, 8E) 
that have been observed empirically [(9), Fig S21], although such patterns in optical density can 
also be explained by debris (Fig S27). 

3) Bacteria evolving mutations that confer resistance to phage infection. Here, bacterial 
populations collapse to near-zero densities before rebounding because of the evolution of 
phage-resistant mutants (Fig 8C). 

Across all three scenarios, metrics like final density or re-emergence time reflect both infectivity and the 
degree/rate of plasticity or evolution (Fig 8D, 8E, 8F), while metrics like peak density, time of peak 
density, and extinction time remain good indicators of phage infectivity alone, independent of the 
effects of plasticity or evolution (Fig S29).  

 

 

Figure 8. Plasticity and evolution can alter the shape of bacterial population dynamics over longer 
timescales. Bacterial population dynamics were simulated with phages with varying infection rates (10-

12, 10-11, 10-10, 10-9, 10-8 /CFU/PFU/min). A. Phages were simulated with an infection rate that declines 
linearly with declining bacterial growth rate (fa = 1.5). Bacterial populations that reach stationary phase 
enough that the phage infection rate reaches 0 (inset) can persist without ever crashing. Population 
densities and infection rates have been slightly offset horizontally for visualization. B. Bacteria were 
simulated with transitions into a non-growing resistant state (h = 0.01). C. Bacteria were simulated with 
cost-free mutations providing complete phage resistance (h = 10-5). 
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Discussion 

Here, we set out to test how bacterial population dynamics can be used to quantify phage infectivity 
(and bacterial resistance), using mathematical models to simulate population dynamics with known trait 
values. We showed that many, but not all, metrics of bacterial population dynamics reflect phage 
infectivity (Fig 2), and that metrics are strongly correlated with one another (Fig 3). We then showed 
that these metrics can be used to infer phage growth rate (Fig 4), providing an effective way to quantify 
the combined effects of multiple phage traits (Fig 5). We also showed that metrics can be somewhat 
affected by initial inoculum densities (Fig 6), and identified time of peak density and extinction time as 
the best metrics to compare across different bacterial hosts (Fig 7). Finally, we showed that the effects 
of phages can sometimes be inferred over longer time-scales where bacterial plasticity or evolution can 
alter population dynamics (Fig 8). 

Observation of bacterial population dynamics complements existing methods for estimating phage 
infectivity. Existing methods often exhibit tradeoffs between throughput and precision (3, 4), with some 
approaches (e.g. efficiency of plaquing) providing quantitative but low-throughput measures of 
infectivity (5–7), while others (e.g. cross-streaks) provide qualitative but high-throughput measures of 
infectivity (8). In contrast, bacterial population dynamics can be easily scaled to collect many replicates 
in parallel and can produce quantitative measures of infectivity, albeit with a smaller range of detection 
(~2 orders of magnitude in infectivity, Fig 2C). In addition, inferring phage infectivity from bacterial 
population dynamics may better reflect phage-bacteria interactions in liquid environments than the 
existing agar surface-based methods for observing phage infectivity, although further work is needed. 

Our work builds on prior papers that used bacterial population dynamics to infer phage activity (37–50). 
However, our findings contrast with some of their previously-reported results. For example, several 
papers have suggested using normalized area under the curve (40, 44, 46) or PCA (37) to compare 
infectivity across bacterial hosts, but we find that these metrics are not particularly well-suited to this 
task, and in some cases are worse than the unnormalized metrics (Fig 7). Additionally, two recent papers 
have suggested fitting mathematical models to bacterial population dynamics to extract phage trait 
values (47, 49). Although we did not directly explore fitting-based approaches, so they remain an avenue 
for future theoretical work, our findings that metrics strongly covary (Fig 3) and that many combinations 
of trait values can produce similar curves (Fig 5) would suggest that bacterial population dynamics are 
unlikely to be sufficient to quantify specific phage life history traits like adsorption rate, burst size, or 
lysis time. At the same time, our findings do align with some previously-reported results. For instance, 
we found that the exponential phase of population dynamics provides little information about phage 
infectivity (Fig 1), a pattern that has been observed in our own empirical data (Appendix 8), previous 
phage-bacteria studies (19, 36, 40, 41, 43–47, 49), and in epidemiology (66, 67). Our simulations also 
reproduced previously-reported near-linear relationships between phage growth rate and bacterial 
extinction time [Fig 4C, (45)], peak bacterial density and initial phage density [Fig S14B, (47)], and time of 
peak bacterial density and initial bacterial density [Fig 6B, (49)].  

Our work has established a broad foundation for using bacterial population dynamics to quantify phage 
infectivity and bacterial resistance, opening avenues for future work. In particular, empirical work is 
needed to test the patterns and predictions from this paper. This includes experimental validation of the 
relationships among metrics (Fig 2) and between metrics and phage growth rate (Fig 4), but especially to 
quantify relationships between phage traits and population dynamic metrics (Figs 3, 5, S2, S3). 
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Additional empirical work is also needed to strengthen our understanding of the relationship between 
cell density and measured proxies of cell density like optical density (68–71), especially over longer 
timescales where some cells may become resistant or debris may play a role [Figs 8, S27, (9)]. Both 
empirical and theoretical work are needed to better understand how bacterial susceptibility to phages 
changes across the phases of bacterial growth (51, 55–59), something our simulations generally ignored 
(but see Fig 8). At the same time, future theoretical work should test the capacity and limitations of 
fitting-based approaches to quantify phage infectivity from bacterial population dynamics. Theory 
should also explore how additional biological processes alter population dynamics and the inference of 
infectivity, including lysogeny, stochasticity, failed infections, coinfection exclusion, cooperation, or 
continuous intrapopulation trait variation. Finally, theory should also be applied to improve our 
understanding of other methods of quantifying infectivity, like the efficiency of plaquing assay (72). 

In all, we have shown that bacterial population dynamics can enable powerful quantification of phage-
bacteria interactions. Given that such approaches are already widely used heuristically in the phage-
bacteria literature, our findings suggest that they may be ripe for quantitative application from basic to 
applied questions. 
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