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Abstract 
 
 
The epigenomic landscape of human immune cells is dynamically shaped by both genetic factors 

and environmental exposures. However, the relative contributions of these elements are still not 

fully understood. In this study, we employed single-nucleus methylation sequencing and ATAC-

seq to systematically explore how pathogen and chemical exposures, along with genetic variation, 

influence the immune cell epigenome. We identified distinct exposure-associated differentially 

methylated regions (eDMRs) corresponding to each exposure, revealing how environmental 

factors remodel the methylome, alter immune cell states, and affect transcription factor binding. 

Furthermore, we observed a significant correlation between changes in DNA methylation and 

chromatin accessibility, underscoring the coordinated response of the epigenome. We also 

uncovered genotype-associated DMRs (gDMRs), demonstrating that while eDMRs are enriched 

in regulatory regions, gDMRs are preferentially located in gene body marks, suggesting that 

exposures and genetic factors exert differential regulatory control. Notably, disease-associated 

SNPs were frequently colocalized with meQTLs, providing new cell-type-specific insights into the 

genetic basis of disease. Our findings underscore the intricate interplay between genetic and 

environmental factors in sculpting the immune cell epigenome, offering a deeper understanding 

of how immune cell function is regulated in health and disease. 
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Introduction 
 
The debate between nature and nurture is a long-standing discussion in both biology and 

society. It centers around the relative impact of genetic inheritance (nature) versus 

environmental factors (nurture) on human development. In the field of epigenetics, the dividing 

line between an inherited and an acquired feature remains unclear 1,2. While inherited epigenetic 

marks are passed down through generations, acquired features arise from environmental 

influences and can alter gene expression without changing the underlying DNA sequence. 

Recent studies found that acquired epigenetic features can also be inherited 3. Understanding 

the contributions of these two sources of epigenetic variation is crucial for comprehending how 

genes and environments together shape biological outcomes. This complexity highlights the 

need for ongoing research to elucidate how inherited and environmental factors interact to affect 

the epigenome and further influence various aspects of health and disease. 

The interplay between genetic predispositions and environmental factors shapes biological 

outcomes4. Monozygotic twin studies have enhanced our understanding of how genetic, 

environmental, and stochastic factors influence epigenetics 5–8. DNA Methylation as an 

important layer of epigenome, has been reported to have inheritance between generations 3,9,10. 

Previous twin studies based on bulk tissues have estimated that the average heritability of 

methylation levels at cytosine-guanine dinucleotides (CpGs) across the genome ranges from 

5% to 19% in different tissues 11–14. Following studies on methylation quantitative trait locus 

(meQTL) studies have also revealed the association between genetic variations and methylation 

status of individual CpG sites 15–20. However, these studies use bulk tissues or whole blood, and 

most of them used Illumina Methylation EPIC array to profile the methylome. A comprehensive 

genome-wide and cell-type-specific relationship between genetic variations and methylation has 

yet to be fully elucidated. 

The exposome, which includes the entirety of exposures—such as chemical, microbiological, 

physical, medicinal, and diet—that an individual encounters throughout their life, has the 

potential to influence the epigenome. The epigenome has long been recognized as a crucial 

intermediary influenced by environmental factors, a concept first highlighted by studies showing 

its role in regulating plant flowering in response to environmental cues 21,22 and monozygotic 

twins in human 7. The theme of exposome and epigenetics generates excitement because 

environmental exposures are increasingly linked to phenotypic changes and diseases through 

mechanisms involving DNA methylation and chromatin alterations 23-25. Human studies of how 
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individual exposure can remodel the epigenome have been a focal point in recent single-cell 

research. For example, Aracena et al. 23 have revealed chromatin accessibility changes 

associated with influenza virus, and numerous coronavirus disease 2019 (COVID-19) studies 

have discussed the role of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infection in reshaping the epigenome 24. However, these studies typically focus on chromatin 

accessibility changes and often investigate each exposure separately. Our understanding of 

how much the exposome will reshape the comprehensive epigenome in each cell type is still 

limited. Furthermore, as Feil et al. stated more than ten years ago, the relative contributions of 

extrinsic (environmental) factors and intrinsic factors to stochastic changes remain largely 

unknown 25. Additionally, the precise mechanisms by which genetics and environmental factors 

(G × E) interact to regulate gene expression and influence human health and disease remain an 

area of active research 2.  

 

To dissect the contributions of the exposome and genetics to human immune cell epigenomes 

in a cell-type-specific manner, we obtained 171 peripheral blood mononuclear cell (PBMC) 

samples from 110 individuals. These individuals were either exposed or not exposed to various 

pathogens (Human immunodeficiency virus 1 [HIV-1], Influenza A virus [IAV], Methicillin-

resistant Staphylococcus aureus [MRSA], Methicillin-sensitive Staphylococcus aureus [MSSA], 

Anthrax Vaccine [BA], SARS-CoV-2) and chemicals (Organophosphate [OP]). We performed 

Fluorescence-activated Cell Sorting (FACS) on major immune cells (B cell, Monocyte, NK cell, 

CD8 memory T cell [Tc-Mem], CD8 Naive T cell [Tc-Naive], CD4 memory T cell [Th-Mem], and 

CD4 naive T cell [Th-Naive]). Further, we performed single-nucleus methylation sequencing 

(snmC-seq2) 26 on these samples. Additionally, we conducted single-nucleus ATAC-seq 27  on 

the HIV-1 samples to further explore chromatin accessibility. We built a comprehensive catalog 

of cell type-specific epigenomic alterations by each individual exposure (eDMRs) and dissected 

the methylome that is determined by genetic variations (gDMRs) and affected by exposome. 

eDMRs and gDMRs are enriched in different chromatin regions, with eDMRs enriched at 

enhancer marks, while gDMRs enriched at gene body marks, indicating genetics and exposures 

regulate gene expression through different mechanisms. We found that each exposure can 

uniquely alter the epigenome and some exposures can perturb the enhancers which are 

probably bound by master transcription factors. Comparison of HIV-1-associated changes in 

methylation and chromatin accessibility showed significant correlations. We further found 

substantial colocalization of GWAS SNPs with the meQTLs, which provides cell type-specific 

insight on these disease SNPs. The human population immune cell atlas and the catalog of 
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exposures and genetics-associated epigenomic features will be excellent resources for future 

mechanistic research on both human infectious and genetic diseases.  

 
 
Results 
 
An exposures-driven single-cell epigenomic atlas of human immune cells  

We collected 171 PBMC samples from 110 individuals who were exposed or not exposed to 

seven major exposures (Figure 1, Table S1). HIV-1 exposed samples were collected from iPrEx 

cohort, a Phase III clinical trial, which was designed to assess the efficacy of pre-exposure 

prophylaxis (PrEP) for HIV-1 prevention. We analyzed PBMC samples from nine donors at three 

distinct time points: approximately 200 days before HIV-1 positivity (pre), the day of HIV-1 

diagnosis (acu), and approximately 200 days after initiating treatment (cro). In IVA exposure, the 

BARDA-Vaccitech FLU010 study evaluated the VTP-100 vaccine against the H3N2 influenza 

virus strain. We studied pre- and 28 days post-challenge (with live H3N2 influenza virus) PBMC 

samples from 18 donors who received the placebo vaccine. We also analyzed PBMC samples 

from donors who were exposed to SARS-CoV-2 and had severe or non-severe COVID-19 

symptoms.  

For bacterial exposure, PBMC from 19 patients who tested positive to either MRSA or MSSA 

were analyzed, with a total of 27 samples. We also obtained PBMC samples from 27 vaccinated 

subjects who handled Bacillus anthracis in a controlled Biosafety Level 3 (BSL3) facility while 

wearing appropriate PPE.  These individuals were trained scientists working in a BSL3 

laboratory who had received either BioThrax®, an inactivated, acellular vaccine primarily 

containing the non-pathogenic protective antigen (PA) protein, or the Anthrax Vaccine Adsorbed 

as a part of the safety protocols of the facility. Organophosphates (OP) are a class of pesticides 

that are known to have a severe impact on the dopaminergic and serotonergic systems. A 

common form of this pesticide (Chlorpyrifos) has been used widely in the US. As part of this 

project, samples were collected from farm workers and residents around the farms. By tracking 

the levels of TCPY over a four-month period, samples from 27 donors were classified as 

exposed to high, moderate, or low levels of OP.  

PBMCs from these samples were FAC-sorted into major immune cell types (Figure S1) and 

processed through a single-nucleus methylation sequencing pipeline as previously described 26. 

96 cells for each sample and cell type were sorted to ensure enough coverage for each cell 
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type. To control for potential batch effects, all cell types were sorted on the same 384-well plate 

(Figure S1). Additionally, we performed single-nucleus ATAC-seq on unsorted PBMCs from all 

three-time points from 4 HIV-1 donors. The analysis of the single-nucleus methylation data was 

performed using our in-house pipelines, as previously described26. After filtering out low-quality 

cells, 104,000 cells were clustered using average CG methylation level in 5 Kb bins across the 

autosomes. The single-nucleus ATAC-seq data from HIV-1 were integrated with methylation 

data and cell type labels were transferred.  

 

Figure 1. Overview of the study. For HIV-1 and IVA, we have internal control samples which 

are from the same set of donors before infection, and collected samples from them after 

exposure. We also collected PBMC from 12 healthy donors as external controls. For exposures 

without internal controls (COVID, Anthrax Vaccine, MRSA/MSSA and OP), all the healthy 

samples were used as control. We performed single-nucleus ATAC-seq and single-nucleus 

methylation sequencing on the PBMCs and identified the exposure associated differentially 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2025. ; https://doi.org/10.1101/2023.06.29.546792doi: bioRxiv preprint 

https://paperpile.com/c/ayXg89/7NHR
https://doi.org/10.1101/2023.06.29.546792
http://creativecommons.org/licenses/by/4.0/


 

 

methylated regions (eDMRs) associated with exposures and genotypes. We also identified the 

genotype-associated DMRs (gDMRs) using this dataset. 

 

 

Heterogeneity in Methylation Profiles Reveals Exposure-Specific Immune Cell Clusters 
 
To investigate whether the exposome globally affects the methylome of each immune cell type, 

we performed within-cell-type clustering for the major sorted immune cell types. This analysis 

revealed heterogeneity in methylation profiles, resulting in more than ten distinct clusters for 

each cell type. We observed significant bias of cells from each exposure in each cell type. Of 

note, HIV-1, SARS-CoV-2 and MRSA/MSSA exposures seem to have unique monocyte, CD4 

and CD8 naive T cell profiles. (Figure 2A, Figure S2). This is unlikely to be a batch effect as 

different cell types from the same sample are processed on the same 384-well plate (Figure 

S3C). The proportion of immune cells from each exposure in these clusters varied significantly 

(Figure 2B). For example, we observed a cluster of monocytes enriched in both severe and non-

severe COVID samples. Considering the biased distribution among the clusters of different 

exposures might also be caused by heterogeneity between individuals, but not the specific 

exposures, we focused on the proportional change of HIV-1 and IAV samples, which were from 

the same donors before and after infections. While IAVsamples have comparable proportions in 

each cluster across the cell types, HIV-1 infection markedly changed the cell proportions among 

clusters, indicating that HIV-1 remodeled the global methylome and functional states of these 

immune cells, especially in NK cells, CD8 memory and naive T cells (Figure 2C). 

To further validate the changes in functional states of different immune cell types caused by 

HIV-1 infection, we performed within-cell-type clustering of HIV-1 samples. The clustering 

revealed that cells from the three stages of HIV-1 infection (pre, acu, and cro) were unevenly 

distributed among the clusters, with biased clusters exhibiting different global methylation levels 

(Figure 2D, Figure S3A). In NK cells, the cluster that is enriched in ‘pre’ stage cells has a higher 

global methylation level, which is likely in a naive state, suggesting a transition from naive to 

active NK cells after HIV-1 infection. Similarly, in CD8 naive T cells, the cluster that is 

hypomethylated is enriched in ‘acu’ and ‘cro’ stage cells, indicating these cells might be exiting 

the naive state to the effector state, though the naive T cell marker CCR7 is on the cell surface 

(FACS). To further dissect the identity of each subtype that is significantly differentially 
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distributed among the three stages (FDR < 0.05, Fisher’s exact test), we identified differentially 

methylated genes (DMGs) in each cluster compared to all other clusters and performed 

functional enrichment of these genes. Immune cell activation and differentiation-related 

functions are enriched among these clusters (Figure 2E), suggesting that clusters that are 

biased to specific HIV-1 infection stages are related to a response to HIV-1 infection. While the 

marker genes in B cells and NK cells are driven by the global difference between naive states 

and memory/active states, the cluster in CD8 memory T cells that were specifically enriched in 

‘acu’ stage cells are enriched in positive regulation of immune response. In other naive cell 

subtypes, where we didn’t observe an enrichment of immune activation functions, we observed 

some important immune genes are hypomethylated. For example, in a subtype of CD4 naive T 

cells which is depleted in ‘acu’ stage cells, TCF7 and LEF1 are hypomethylated, suggesting the 

acute stage CD4 naive T cells were exiting naive states.  

While donor heterogeneity cannot be entirely excluded, the monocyte cluster uniquely enriched 

with COVID samples and depleted in controls and other exposures is likely associated with this 

specific exposure (Figure 2F). Almost half of the monocytes from both severe and non-severe 

COVID-19 samples are separated in these two clusters (Figure 2F), significantly more than the 

control samples (P=2.05e-237, Fisher’s exact test). In our sorting strategy, we specifically sorted 

CD14 high populations as monocytes (Figure S1A), so the two populations are not CD14 

monocytes and CD16 (CD14 low) monocytes as identified by other single-cell studies. To 

further confirm the identity and function of the two clusters of monocytes, we identified the 

DMGs and DMRs between them. We identified 321 DMGs between ‘Monocyte1’ and 

‘Monocyte2’, of which 262 and 59 genes are hypomethylated in ‘Monocyte2’ and ‘Monocyte1’, 

respectively (Figure S3B). Functional enrichment of these genes showed that genes 

hypomethylated in both monocyte clusters are enriched in pro-inflammation functions like ‘IL-18 

signaling pathway’ and ‘regulation of interleukin-1 (IL-1) production’(Figure S4G). Both IL-18 

and IL-1 are reported to be protective during murine coronavirus infection 28, while IL-1 has a 

pivotal role in the induction of cytokine storm due to uncontrolled immune responses in SARS-

Cov2 infection 29. This suggests that both monocyte clusters exhibit pro-inflammatory 

signatures, though different genes are involved in the process. Moreover, besides IL-1 and IL-

18 production-related functions, DMGs in  ‘Monocyte2’ are also enriched in the functions of 

‘phagocytosis’ and ‘endocytosis’ (Figure 2G), indicating the antigen presentation function of this 

cluster, which is specifically enriched in COVID-19 monocytes.   
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Figure 2. Within cell type changes are associated with each exposure. A. Uniform Manifold 

Approximation and Projection (UMAP) of cells in each cell type from FACS using single-nucleus 

methylation sequencing data. The cells are colored by exposures. HIV: exposure to HIV; 

HIV_pre: before HIV infection from the same donors; Flu_pos: after IVA infection; Flu_pre: 

before IVA infection from the same donors; COVID_S: severe COVID patient samples; 

COVID_nS: non-severe COVID patient samples; MRSA: samples exposed to MRSA; MSSA: 

samples exposed to MSSA; BA: samples from the donors that have taken Anthrax vaccine and 

work frequently or infrequently in a controlled BSL3 facility handling Bacillus anthracis; OP: 

samples from the donors that are exposed to OP. B. bar plots show the proportions of cells from 

each group and cell type in the Leiden clusters, colored by the FACS cell types. The x-axis are 

the Leiden clusters, and the y-axis shows the proportions of cells in each Leiden cluster in each 

group. C. Scatter plot shows the cell proportional changes before and after infection of HIV and 

IVA in each Leiden cluster. Dots are clusters with IVA exposures and crosses are HIV exposure. 

Color shows the FACS cell types. D. UMAP of cells from HIV exposure donors in the cell types 

that have the most cell proportion changes. The three rows are UMAP of cells from NK cell, Tc-

Mem and Tc-Naive, and the columns are the cells from ‘pre’, ‘acu’ and ‘cro’ stages. Cells from 

the stage are shown in red, and cells from other stages are shown in gray. E. The dot-plot 

shows the enrichment of cells from the three HIV infection stages (‘pre’, ‘acu’, ‘cro’) in the 

Leiden clusters. The heatmap shows the GO enrichment of differentially methylated genes 

(DMGs) of the corresponding Leiden cluster. The dot plot and heatmap have the same x-axis. F. 
Two clusters of monocytes were identified. The bar plot shows the cell proportions of the two 

clusters of monocytes in controls, severe and non-severe COVID samples. Statistical tests were 

done using the Chi-Square test. (**** indicates P value < 1x10-100). G. GO enrichment of DMGs 

between the two clusters of Monocytes.  

 

Cell-Type-Specific Epigenomic Responses to Exposures 
 
To comprehensively assess the impact of exposome on the epigenome in the immune cells in a 

cell-type-specific manner, we refined our cell types by integrating methylation information. 

Clustering with methylation profiles of all immune cells showed that B cells and NK cells can be 

separated into two clusters by global CG methylation level (Figure 3A). The higher methylated 

clusters were annotated as a naive state (B-Naive and NK-Naive), while the cluster with lower 

methylation level of B cells is annotated as memory B cells (B-Mem), and a lower methylated 
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cluster of NK cells is defined as the active state (NK-Active)30. We observed some inconsistency 

between FACS and methylation profile clustering, with some naive T cells clustered together 

with memory T cells, indicating the transition of cell states of some naive T cells (Figure 3A). We 

labeled these cells still as naive T cells based on cell surface marker CCR7+ and CD45RA+. 

Some sorted NK cells (CD56+ or CD16+ and CD14-) also have a similar methylation profile as 

monocytes, which might be some CD16+ monocytes. These cells were not included in the 

downstream analysis. In the following analysis, we dissected the contributions of exposome and 

genetics to the epigenome in these nine immune cell types. 

 

We aimed to dissect the impact of different exposures on the epigenome in these cell types by 

identifying the exposure-dependent differentially methylated regions (eDMRs). Considering it’s 

difficult to control other exposures each individual might have experienced and the different 

genomes of these donors, we used internal controls for HIV-1 and IVA exposures, for which we 

have cells before and after exposure. We used a stringent pipeline to identify the eDMRs of 

other exposures (Methods), in which the external controls are used. We used three sets of 

controls (healthy donors, HIV-1 ‘pre,’ and Flu ‘pre’), and identified eDMRs that were significantly 

different between exposure samples and all control samples. These eDMRs were not 

significantly different between any two sets of controls, minimizing the contribution of individual 

genetic variation and baseline exposures to these eDMRs. 

We identified 756,575 eDMRs across all exposures and cell types, with 517,698 and 238,877 

eDMRs hypo- and hyper-methylated, respectively (Figure 3C). On average, each exposure and 

cell type exhibited approximately 10,000 eDMRs. SARS-CoV-2, organophosphates (OP), and 

MRSA/MSSA showed the most abundant eDMRs across the majority of the cell types, 

highlighting their pronounced impact on the epigenetic profiles (Figure 3C). Of note, the majority 

of eDMRs in each exposure and cell type are single CpG sites (Figure S4A), suggesting that 

exposure-associated DNA methylation alterations are often confined to individual CpG sites. 

These single-CpG methylation changes have been reported in aging, development, 

environmental and disease changes31–35, and a recent study using nanopore sequencing also 

reported that most CpG units are singletons 36.  

To further characterize the chromatin state of cell-type-specific eDMRs, we examined the 

associated histone modification peaks from ENCODE37 in each cell type. We found that both 

hypo- and hyper-methylated eDMRs across all exposures are slightly enriched in 

heterochromatin regions marked by H3K9me3 (Figure 3D, S4A). Notably, COVID-19 hyper 
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eDMRs in monocytes, naive T cells, and NK-naive cells showed significant enrichment in 

enhancer marks like H3K27ac and H3K4me1, as well as the promoter mark H3K4me3, across 

all immune cell types (Figure 3D). Similar patterns were observed with HIV-1, where hypo 

eDMRs in CD8 memory T cells and hyper eDMRs in CD8 naive T cells displayed enrichment in 

these active histone marks (Figure 3D). Furthermore, MSSA monocyte hyper eDMRs were 

enriched in H3K27ac, while NK-active cells from MSSA-infected individuals (but not MRSA-

infected ones) showed enrichment in enhancer regions. Interestingly, naive T cells from severe 

COVID-19 patients had hypo eDMRs with greater enrichment in active histone marks than those 

from non-severe patients (Figure 3D). These eDMRs are generally depleted at CG islands, 

promoters and SINE elements but slightly enriched in DNA, LINE and LTR transposable 

elements (Figure S4B).  

 

DNA methylation influences transcription factor (TF) binding to DNA 38,39, potentially altering 

gene expression. To further investigate which transcription factors (TF) might be perturbed at 

these eDMRs, we performed motif enrichment for the hypo and hyper eDMRs separately. To 

compare the differentially enriched transcription factor motifs among the exposures and cell 

types, we performed principal component analysis (PCA) on the enriched motif of hypo and 

hyper eDMRs separately and selected the TF motifs in the top 10 PCs. The TF motifs in 

hypermethylated eDMRs display distinct enrichment patterns across each cell type and 

exposure, underscoring their unique perturbation on the epigenetic landscape (Figure 3E). 

Specifically, we observed master TF motifs were enriched in COVID-19 monocytes and CD4 

naive T cells. For example, PRDM1 (encoding BLIMP-1) in monocytes 40 and TCF family TFs 

(including TCF7) motifs in CD4 naive T cells are uniquely enriched in COVID-19 samples 40,41. 

Similarly, CEBP family TF motifs are specifically enriched in MRSA/MSSA monocytes 42. The 

enrichment of hyper eDMRs from these two exposures and cell types in H3K27ac-marked 

enhancers suggests that the binding of master transcription factors in the corresponding cell 

types may be affected, potentially perturbing their functions due to these exposures. These 

results suggest that methylomes remodeled by exposures might be able to inhibit the binding of 

master TFs, through which they change the function of the cells. On the other hand, hypo-

methylated eDMRs across the exposures share many similarly enriched motifs (Figure S4C). 
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Figure 3. Identification of Exposure-associated DMRs (eDMRs) and their features. A. 
UMAP of all cells from all exposures using single-nucleus methylation profiles. Cells are colored 

by the global methylation level of each cell. B. UMAP of all cells from all exposures using single-

nucleus methylation profiles. Cells are colored by the FACS cell types. C. Barplots shows the 

Hypo- (upper plot) and Hyper- (lower plot) methylated eDMR counts. Hypo means the eDMRs 

are hypo-methylated in exposures compared to controls. Hyper is the other way around. The 

colors show the exposures, and x-axis is cell type, which is colored and sorted in the same 

order for all exposures. D. Dotplot shows the enrichment of eDMRs from COVID, HIV and 

MSSA in histone modification peaks. Each column shows the hypo-eDMRs in that condition. 

Color of the dots shows the enrichment or depletion in the corresponding histone modification. 

E. Dotplot shows the motif enrichment of eDMRs from each exposure and cell type. The dot 

size indicates the P values of enrichment, and the color shows the cell type from which the 

eDMRs are.  
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Linking DNA Methylation and Chromatin Accessibility in HIV-1 Exposure  

To investigate whether the DNA methylation changes observed with each exposure correspond 

to alterations in chromatin accessibility, we conducted single-nucleus ATAC-seq on four of the 

same donors previously analyzed for methylation in the context of HIV-1 exposure. Comparing 

exposure-associated changes in DNA methylation and chromatin accessibility will provide a 

comprehensive catalog of epigenomes remodeled by exposure and also further dissect the 

eDMRs for following mechanistic investigations.  

We integrated single-nucleus DNA methylation data with single-nucleus ATAC-seq data using 5 

kb bins on autosomes. We mapped the cells from single-cell ATAC-seq to methylation clusters 

and transferred the cell type labels using Canonical Correlation Analysis (CCA) (Figure 4A, 

4B)(Stuart et al., 2019). To assess how much the two modalities are correlated, we calculated 

the genome-wide correlation between these two modalities. Specifically, we divided the genome 

into 5 kb bins and calculated the hypomethylation score using single-cell methylation data and 

the number of Tn5 insertions using single-nucleus ATAC data. We then calculated the 

correlation between these two measurements for each bin. We observed a strong correlation 

between the two modalities (methylation and open chromatin) across all cell types, with the 

highest correlation observed in monocytes (Figure S5). Interestingly, we detected a loss of 

methylation and an increase in accessibility after HIV-1 infection in memory CD8 T cells at the 

intron of DGKH (Figure 4C), a gene previously reported to exhibit differential methylation 

between elite controllers (individuals able to maintain undetectable viral loads for at least 12 

months without antiretroviral therapy) and individuals receiving antiretroviral therapy (Frias et 

al., 2021). Although this region experienced a loss of chromatin accessibility, the methylation 

level remained unchanged between the "acute" and "chronic" stages (Figure 3E). When 

comparing all eDMRs with differentially accessible regions (DARs) from the two modalities, we 

count the eDMRs that have the same direction (hypo eDMR with gained accessibility in the 

same stage) DAR within 1 kb and found a considerable fraction of eDMRs are consistent with 

changes in chromatin accessibility (Figure 4D). The highest overlap (25.6%) between these two 

modalities was observed in ‘pre’ stage hypo eDMRs in CD8 naive T cells. Given the overall 

correlation of these two modalities in each cell type, the overlap between hypo eDMRs and 

gained peaks indicates a consistent change in DNA methylation and chromatin accessibility.  
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Figure 4. Consistent changes in DNA methylation and chromatin accessibility in HIV 
exposure. A. UMAP of cells from HIV exposure using single-nucleus methylation when 

integrating with single-nucleus ATAC-seq data. Color shows the cell types identified from FACS 

and DNA methylation. B. UMAP of cells from one HIV donor sample after integration with 

single-nucleus methylation data. The color shows the cell type labels transferred from DNA 

methylation data in integrating the two modalities. C. A genome browser view of a region at 

DGKH gene that has consistent changes after HIV exposure in DNA methylation and chromatin 

accessibility in CD8 memory T cells. The top three panels are normalized ATAC-seq reads, and 

the DNA methylation panels show the methylation levels in each bin at this locus. The eDMRs 

are shown in the blue bars. D. The overlap between hypo-eDMRs and gained ATAC-seq peaks 

in each condition in the corresponding cell types. The more accessible peaks are from pairwise 
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comparisons, so each condition has two comparisons. The color of the heatmaps shows the 

proportion of overlaps between hypo-eDMRs and gained peaks.  

 

Genotype Associated DMRs Reveal the Influence of Genetics on Immune Cell Epigenomes 
 
To dissect how much of the epigenome is determined by each individual’s genome, we used 

this single-cell epigenomic atlas to identify genotype-associated DMRs (gDMRs). We identified 

the single nucleotide polymorphism sites (SNPs) of each individual using the DNA methylation 

data with biscuit43, followed by genotype imputation with Minimac4 and filtering out SNPs that 

are not in dbsnp. To confirm the accuracy of the SNP calls using this strategy, we compared the 

SNPs from whole genome sequencing (WGS) and methylation data from a previous study from 

our lab, which used the same technology and platform. The results showed a strong agreement 

with WGS SNPs in a 10 Mb region, with low rates of false positives and false negatives (Figure 

S6A). To further verify the SNP accuracy from biscuit, we called the SNPs from our inhouse 

bulk m3C (a joint assay of DNA methylation and chromatin conformation) data from GM12878 

cell line and compared the SNP calls with genotypes of NA12878. The SNPs from biscuit are 

quite accurate (Figure S6B). These results give us confidence to conduct genotype-associated 

epigenome analysis using SNPs derived from methylation data. 

 

We first identified differentially methylated regions (DMRs) between individuals within each cell 

type in the CpG context and quantified the methylation level for each individual. DMRs 

overlapping with SNPs were excluded. Since the SNPs are derived from methylation data, those 

located in blacklist regions were also removed from downstream analysis. We then performed 

meQTL analysis as described (Methods). 

 

After stringent filtering of the meQTL-DMR pairs, we got 234,600 gDMRs across all nine cell 

types, with 183,990 cis-correlated with SNP and 50,610 in trans. The number of cis gDMRs are 

comparable across different cell types except CD8 memory T cells, which have more gDMRs 

compared to other cell types (Figure 5A). The trans gDMRs are mostly identified in different T 

cell types (Figure 5A). To compare with the chromatin states of eDMRs, we did an enrichment 

analysis between these two sets of DMRs on different histone marks. In contrast to eDMRs at 

enhancer marks, gDMRs are predominantly enriched at gene body mark H3K36me3 peaks, 

especially in memory state lymphocytes (B cell, CD4 and CD8 T cells) (Figure 5B), while 
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eDMRs are enriched at enhancer and promoter regions in naive lymphocytes. To further 

investigate the enrichment of chromatin loops between these two sets of DMRs, we did 

enrichment analysis of them at the loop anchors in different immune cells from ENCODE, which 

showed that gDMRs are more enriched at loops anchors in memory state lymphocytes and 

eDMRs are more associated with naive lymphocytes (Figure 5C). This indicates that eDMRs 

and gDMRs might regulate gene expression in different cell types through distinct mechanisms. 

This differential enrichment underscores the complexity of epigenetic control, with eDMRs and 

gDMRs contributing uniquely to the gene expression landscape depending on the cell type and 

the nature of the environmental or genetic input. Both eDMRs and gDMRs have similar genomic 

feature enrichment regarding genes and transposable elements (Figure S6C). 

 

To determine which genes might be regulated by eDMRs and gDMRs that overlap with 

H3K36me3 marks, we performed functional enrichment analysis on genes with DMRs 

overlapping H3K36me3 peaks. Both eDMRs and gDMRs were significantly enriched in 

housekeeping and immune-related functions, with more significant enrichment in eDMRs 

(Figure 5D). This suggests that eDMRs play a direct role in regulating the immune response to 

environmental exposures, whereas gDMRs in these immune cells are less involved. This 

distinction highlights the specific impact of environmental factors on immune-related gene 

regulation through epigenetic modifications. 

 

Besides chromatin states, the enriched motifs also differ between eDMRs and gDMRs. While 

both hypo and hyper eDMRs are enriched mainly in immune-related TF motifs, gDMRs do not 

show enrichment of immune TF motifs (Figure S6D). Using the gDMRs as background in 

Homer, we found significant enrichment of RUNX and ETS family TF motifs, including PU.1, 

ETS1, and Fli1, in the eDMRs. In contrast, no significant motif enrichment except ETS motifs in 

CD8 memory T cells was observed in the gDMRs using eDMRs as background. These results 

suggest that compared with gDMRs, eDMRs are primarily enriched with key transcription factor 

binding sites in immune cells, playing a role in regulating gene expression through transcription 

factor binding. Meanwhile, gDMRs are more likely to be located on gene bodies, where they 

probably regulate gene expression in a different mechanism. 
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Figure 5. Identification of genotype-associated DMRs (gDMRs) and their features. A. 
barplot shows the counts of gDMRs in each cell type. The colors of the bars show the cell types. 

B. Dotplot shows the enrichment of gDMRs in histone modification peaks from each cell type. 

Each column is a cell type, and each row has one histone modification peak in each cell type. 

Color of the dots shows the enrichment of depletion of gDMRs in the corresponding histone 

modification. C. Dotplot shows the enrichment of gDMRs in chromatin loops. Each column is a 

cell type, and each row is the chromatin loop in each cell type. Color of the dots shows the 

enrichment or depletion of gDMRs in the corresponding chromatin loop. D. Go enrichment of the 

genes that are overlapped with eDMRs or gDMRs. Color of the heatmap shows the log10(P-

value) of the enrichment. Results for eDMRs and gDMRs in all cell types are sorted in the same 

order. 

 
 
Cell-Type-Specific Colocalization of gDMRs and GWAS SNPs Links to Immune Diseases 
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To investigate the association of gDMRs with human diseases and immune-related traits, we 

performed colocalization analysis between our meQTLs and GWAS SNPs linked to various 

traits. We identified many colocalized GWAS SNPs and meQTLs within these immune cell 

types, suggesting potential cell type-specific regulatory connections between methylation 

changes and genetic variants associated with immune functions. Enrichment analysis of GWAS 

SNPs within the meQTLs of each cell type revealed a predominant enrichment in CD8 naive T 

cells, as well as in CD4 memory and naive T cells (Figure S7A). This suggests that these 

specific immune cell types are particularly influenced by genetic variants associated with 

immune-related traits and diseases. For example, GWAS SNPs associated with “Alzheimer’s 

disease and Lewy body co-pathology” are enriched in CD8 naive T cells and CD4 memory T 

cells meSNPs that colocalize with the GWAS SNPs (Figure S7A). We further linked the gDMRs 

to specific diseases and phenotypes (Figure S7B) through colocalization analysis between 

meQTLs and phenotype-associated GWAS SNPs. The result showed that most gDMRs are 

only associated with one phenotype (Figure S7B). 

 

This analysis enabled us to uncover cell-type-specific regulatory connections between gDMRs 

and various diseases and phenotypes, providing insights into the potential mechanisms by 

which GWAS SNPs influence the epigenome. For instance, SNPs associated with Addison’s 

disease showed colocalization with multiple meQTLs across various immune cell types in a cell-

type-specific manner. Most of the GWAS SNPs only colocalize with meQTL in one cell type 

(Figure 6A), indicating a high degree of cell-type specificity in the regulatory effects of these 

GWAS SNPs on the epigenome. This suggests that the impact of genetic variants on DNA 

methylation, and consequently on gene regulation, can be highly specialized and confined to 

particular immune cell types. Notably, the SNP rs910320, associated with Addison’s disease, 

resides in the HLA locus and colocalized with a meQTL in CD8 naive T cells (Figures 6B, 6C), 

highlighting a potential epigenetic regulatory pathway specific to this cell type. This cell-type-

specific colocalization information will greatly facilitate the mechanistic studies on the diseases. 
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Figure 6. Colocalization of gDMRs with autoimmune-related disease (Addison’s disease) 
GWAS SNPs. A. Upset plot shows the number of meQTLs that are colocalized with GWAS 

SNPs in each cell type or multiple cell types. B. scatter plot shows the correlation of SNPs at the 

locus by the -log10(P-Value) associated with disease and gDMR. The r2 is the linkage 

disequilibrium with the leading SNP (rs910320). C. Genotype-disease association P values in 

the HLA locus for Addison’s disease GWASs (top panel) and meQTL signal in CD8 Naive T cell 

(bottom panel). 
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Discussion  

Our study delivers a comprehensive, exposure-driven atlas of human immune cells, revealing 

how genetic and environmental factors shape their epigenomes. We constructed an intricate 

epigenomic atlas using single-nucleus methylation sequencing and ATAC-seq, revealing the 

epigenomic features associated with different exposures. This comprehensive approach 

enabled us to identify exposure-specific DMRs (eDMRs) and genotype-associated DMRs 

(gDMRs), dissecting the roles of these two factors in shaping the epigenome of human immune 

cells. We also identified significant colocalization of meQTLs with GWAS disease-associated 

SNPs, uncovering the potential cell-type-specific epigenetic mechanisms of these SNPs. 

Single-cell technologies have revolutionized our understanding of how individual cells’ 

transcriptomes and chromatin accessibilities respond to various exposures, such as smoking 

and infectious diseases 7,44–46. Our study primarily focuses on selected exposomes and their 

effect on DNA methylation, fills the gap of our understanding of how different exposures can 

alter the methylome of single cells. The eDMRs will serve as valuable resources for 

understanding the mechanisms underlying each exposure. Additionally, they have potential as 

biomarkers for identifying specific exposures, offering enhanced diagnostic and possibly 

therapeutic options. The unique subclusters associated with HIV-1 and SARS-CoV-2 exposures 

were not observed in other single-cell modalities 47,48, indicating distinct DNA methylation 

responses to these pathogens. Our approach, which combines FACS with single-cell 

methylation sequencing, enables us to investigate the heterogeneity within each cell type more 

effectively. The enrichment of specific exposure associated eDMRs in enhancers and promoters 

marks, which are mostly single-CpG changes, also deepens our understanding of these 

diseases. 

Genetics and exposome have long been recognized to shape epigenomes 4. While previous 

studies have identified DNA methylation changes associated with genetic 4,15–17 or 

environmental exposures 2,4,6, our study uniquely examines both eDMRs and gDMRs within the 

same group of donors. This approach allows for a more reliable comparison of changes driven 

by these two factors. The differential enrichment of eDMRs and gDMRs on the chromatin 

indicates genetics and environments may regulate gene expression differently. Although we 

cannot fully disentangle the effects of genetics from different exposure histories in our donors, 

genetic factors exert a stronger regulatory influence on memory lymphocytes. In contrast, 

exposome regulation has a more pronounced effect on naive lymphocytes. 
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In summary, our findings highlight the complex contributions of genetic and environmental 

factors in shaping the epigenetic landscape of immune cells. This research enhances our 

understanding of how immune cell function is regulated by these factors and lays the 

groundwork for future studies exploring their combined effects on health and disease. The 

underlying mechanisms by which genetic factors and exposome modulate the effects of each 

exposure remain to be elucidated. The interplay between genetic and environmental factors in 

shaping the epigenome and influencing disease states remains to be fully uncovered. This gap 

in understanding highlights the need for further research to uncover how genetic predispositions 

interact with environmental factors to shape the epigenomic landscape, fully addressing the 

‘nature and nurture’ question in human disease.  
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Methods 

DATA GENERATION 

Fluorescence-activated Cell Sorting of immune cell types 

Cells were sorted into 384-well plates using fluorescence-activated cell sorting (FACS) based on 

their specific antibody labeling. The FACS antibody cocktail allowed for the identification of seven 

different immune cell types in blood (Figure S1). The sorted cell types included Naive helper T 

cells (CD3+, CD4+, CCR7+, CD45RA+), Memory helper T cells (CD3+, CD4+, CD45RA-), Naive 

cytotoxic T cells (CD3+, CD8+, CCR7+, CD45RA+), Memory cytotoxic T cells (CD3+, CD8+, 

CD45RA-), B cells (CD3-, CD19+), Monocytes (CD3-, CD19-, CD14+), NK cells (CD3-, CD19-, 

CD14-, CD16+, CD56+), and other cells (CD3-, CD19-, CD14-, CD16-, CD56-). The SONY Muti-

Application Cell Sorter LE-MA900 Series was used to isolate single cells in 384-well PCR plates 

containing protein kinase. After cell sorting, the plates were spun down to capture the cells at the 

bottom of the well and then subjected to thermocycling at 50 ℃ for 20 minutes. The plates 

containing the DNA from the cells were subsequently stored at -20 ℃ or moved directly to library 

preparation. 

snmC-seq2 Library preparation and Illumina sequencing 

For library preparation, we followed the previously described methods for bisulfite conversion and 

library preparation in snmC-seq2 (Luo et al., 2017, 2018). The snmC-seq2 libraries generated 

from the isolated immune cells were sequenced using an Illumina Novaseq 6000 instrument with 

S4 flow cells in the 150-bp paired-end mode. Freedom EVOware v2.7 was utilized for library 

preparation, while Illumina MiSeq control software v3.1.0.13 and NovaSeq 6000 control software 

v1.6.0/Real-Time Analysis (RTA) v3.4.4 were employed for sequencing. 

Single-nucleus ATAC-seq on HIV-1 donors  

Single-nucleus ATAC-seq was performed as previously described 49, using the Chromium Next 

GEM Single Cell ATAC Library & Gel Bead Kit v1.1 (10x Genomics, 1000175) and the Chromium 

Next GEM Chip H (10x Genomics, 1000161) or Chromium Single Cell ATAC Library & Gel Bead 

Kit (10x Genomics, 1000110). Libraries were sequenced on the Illumina NovaSeq 6000 system 

(1.4 pM loading concentration, 50 × 8 × 16 × 49 bp read configuration), targeting an average of 

25,000 reads per nucleus. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Single-cell methylation data processing (alignment, QC) 

For alignment and quality control (QC) of the single-cell methylation data, we employed the same 

mapping strategy used in our previous single-cell methylation projects in our lab (Liu et al., 2021). 

Specifically, we utilized our in-house mapping pipeline, YAP (https://hq-1.gitbook.io/mc/), for all 

the mapping-related analysis. The pipeline includes the following main steps: (1) demultiplexing 

FASTQ files into single cells, (2) reads-level QC, (3) mapping, (4) BAM file processing and QC, 

and (5) generation of the final molecular profile. Detailed descriptions of these steps for snmC-

seq2 can be found in the work by Luo et al. (2018). All the reads were mapped to the human hg38 

genome, and we calculated the methylcytosine counts and total cytosine counts for two sets of 

genomic regions in each cell after mapping. 

We filtered out low-quality cells based on three metrics generated during mapping: mapping rate 

> 50%, final mC reads > 500,000, and global mCG > 0.5. Chromosomes X, Y, and M were 

excluded from the analysis, and the remaining genome was divided into 5 kb bins to create a cell-

by-bin matrix. In this matrix, each bin was assigned a hypomethylation score (hypo-score) 

calculated from the p-values of a binomial test, which indicates the probability of hypomethylation 

of that bin. The matrix was further binarized for downstream analysis using a hypo-score cutoff of 

>= 0.95.  

Hypo-score measures the likelihood of observing greater than 𝑚 methylated reads under the 

assumption that methylation follows the binomial distribution with parameters 𝑐 and p.  

p=∑ ⬚!
"#$ #"
∑ ⬚!
"#$ $"

 

𝑚 is the observed number of methylated count for region 𝑖, 𝑐 is the coverage (total count) 

covering region 𝑖 and 𝑛 is the total number of 5kb bin regions, p is the expected probability of 

methylation for this cell. 

Let’s assume 

 𝑋 ∼ 	𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑐, 𝑝) 
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then for each 5 kb bin, 

ℎ𝑦𝑝𝑜	𝑠𝑐𝑜𝑟𝑒 = 1	 − 𝑃(𝑋 ≤ 𝑚) = ;⬚
#

%&'

𝐶$%𝑝%(1 − 𝑝)$(% 	 

The calculation of hypo score was implemented in ALLCools 

(https://lhqing.github.io/ALLCools/intro.html) using scipy50  

hypo-score = stats.binom(c, p).sf(m) 

Bins covered by fewer than five cells and those with any absolute z-score(the number of cells with 

non-zero values) greater than 2 were filtered out. Additionally, we excluded bins that overlapped 

with the ENCODE blacklist using "bedtools intersect" (Dale, Pedersen, and Quinlan 2011; Quinlan 

and Hall 2010). 

Unsupervised clustering 

To perform unsupervised clustering, we utilized ALLCools (Liu et al., 2021), which first conducted 

principal component analysis (PCA) on the 5 kb bin matrix. For each exposure, we selected the 

top 32 principal components (PCs) for clustering using the modules in scanpy (Wolf, Angerer, and 

Theis 2018). In the HIV-1 and influenza cohorts, we observed a donor effect in the clustering 

results with these PCs. Therefore, we applied harmony (Korsunsky et al., n.d.) to correct the donor 

effect on these PCs. We performed clustering separately for control samples ('HIV_pre', 'Flu_pre', 

and 'Ctrl') and samples from the 'MRSA/MSSA', 'BA', 'COVID-19', and 'OP' groups, allowing for 

better comparison between the exposures and control samples. 

To annotate the cells, we used both the single-cell methylation clustering results and cell surface 

markers. In almost every cohort, we observed two clusters of B cells and NK cells, which were 

distinguished by their global mCG levels. Therefore, we assigned these clusters as naive and 

memory B cells, naive and active NK cells. We also merged clusters with cell surface markers 

indicating memory CD4 and CD8 T cells, even if they exhibited multiple clusters in the T-SNE 

embedding. 

Exposure-associated differentially methylated regions (eDMR) identification 
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To identify DMRs associated with each immune cell type, we utilized peripheral blood 

mononuclear cells (PBMCs) from healthy donors. Based on single-cell methylation and 

fluorescence-activated cell sorting (FACS), we identified nine cell types through clustering. These 

cell types were grouped based on their global mCG levels, and DMRs were called separately 

within high-mCG and low-mCG cell types. We employed methylpy 

(https://github.com/yupenghe/methylpy) for DMR calling, and the resulting DMRs were further 

annotated with genes and promoters. 

To identify DMRs associated with each exposure, we merged the control samples and samples 

from each exposure group. We used methylpy (https://github.com/yupenghe/methylpy) to identify 

DMRs between the control and exposure groups and between different exposure groups. Once 

we obtained the primary set of DMRs, we calculated the methylation levels of all samples at these 

DMRs using "methylpy add-methylation-level". 

Additional filtering on the DMRs was performed by comparing the methylation levels among 

different sample groups using Student's t-test. Only DMRs with a minimum p-value less than 0.05 

between any two groups were retained. For DMRs associated with MRSA/MSSA, BA, OP, and 

SARS-CoV-2, where external controls were used for DMR calling, we compared the methylation 

levels of exposure samples and control samples, as well as different cohorts of controls (HIV, Flu, 

and commercial controls). DMRs that showed significant differences (p-value < 0.05) between the 

exposure group and all three control cohorts but no significant differences (p-value > 0.05) 

between any two control cohorts were retained. 

To visualize the complex heatmaps, we employed PyComplexHeatmap 

(https://github.com/DingWB/PyComplexHeatmap) 49,51. Hypomethylated DMRs in the 

corresponding sample groups and cell types were labeled for better visualization. The heatmap 

rows were split according to sample groups, and the columns were split based on DMR groups 

and cell types. Within each subgroup, rows and columns were clustered using ward linkage and 

the Jaccard metric. 

Validation of DMRs by shuffling the samples 

To validate that the identified DMRs for each exposure were not confounded by batch effects or 

other factors, we shuffled the group labels of the samples within each exposure and identified 

DMRs among the randomly assigned groups. We quantified the methylation levels of all samples 
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at the DMRs from the random groups and performed t-tests on the methylation levels between 

each pair of groups. 

SNP Calling 

We merged the bam files from the same donors, and SNP calling was performed using Biscuit's43 

variant calling function. This process identifies SNPs in both CpG and non-CpG contexts by 

analyzing the bisulfite-treated reads. Biscuit distinguishes between methylated cytosines and 

actual C/T polymorphisms, reducing the risk of false positives. 

Standard variant filtering was applied to remove low-confidence SNPs. We excluded SNPs with 

a minor allele frequency (MAF) below 0.05. Additionally, SNPs overlapping with regions in the 

blacklist were filtered out. 

Identification of gDMR-meQTL Pairs 

To identify methylation quantitative trait loci (meQTLs) associated with differentially methylated 

regions (DMRs), we used QTLtools (v2.0-7-g61a04d2c5e)  52. The analysis was conducted using 

two approaches: nominal and permuted methods, both designed to account for the statistical 

significance of the association between SNPs and methylation levels. DMRs between the 110 

donors in each cell type were identified using methylpy. 

meQTL Mapping 

1. Nominal Analysis: We used QTLtools' nominal mode to calculate the association 
between genotype (SNP) and methylation levels within DMRs. This method tests all 

SNP-DMR pairs within a specified genomic window (1Mb) around the DMRs, reporting 

nominal p-values for each pair. Associations were considered significant at a nominal 

threshold of FDR < 0.01. 

2. Permutation-Based Analysis: 

To estimate the empirical significance of the identified meQTLs and correct for multiple 

testing, we performed 1000 permutations of the methylation data using QTLtools' 

permutation mode. The permuted p-values were used to compute a false discovery rate 

(FDR) and assess the robustness of the identified DMR-meQTL pairs. 

Covariates and Adjustment 
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In both analyses, we included covariates such as age, sex, first 5 PCs of genotypes, and 

exposures. Covariate adjustment was performed using the QTLtools built-in method for linear 

model regression. 

Motif enrichment 

We obtained the hypo- and hyper-DMRs reported by methylpy from the columns 

'hypermethylated_samples' and 'hypomethylated_samples'. HOMER was used to identify 

enriched motifs within these different sets of 

DMRs for each exposure. The results from HOMER's 'knownResults.txt' output files were used 

for downstream analysis. Only motif enrichments with a p-value < 0.01 were retained. The motif 

enrichment results were visualized using scatterplots in seaborn. 

Differentially methylated gene (DMG) identification 

Pairwise differential methylation analysis of genes (DMGs) for each exposure was performed 

using ALLCools, following the tutorial (https://lhqing.github.io/ALLCools/cell_level/dmg/04-

PairwiseDMG.html). Significantly differentially methylated genes were selected based on an FDR 

< 0.01 and a delta mCG > 0.05. The functional enrichment analysis of the DMGs was conducted 

using metascape (Zhou et al., 2019) (https://metascape.org/). 

Integration with single-cell ATAC 

We integrated our single-cell methylation data with single-cell ATAC-seq data from HIV-1. This 

integration was performed using Canonical Correlation Analysis (CCA), where we transferred our 

methylation cell annotations to the cells from the other modality. To generate the peaks and bigwig 

files for each cell type, we utilized SnapATAC2 (Zhang et al., 2021; Fang et al., 2021). 

Correlation of single-cell methylation and single-cell ATAC 

To assess the correlation between single-cell methylation and single-cell ATAC, we calculated 

the correlation between the hypo-score of each 5 kb bin and Tn5 insertions in each bin. This 

correlation was performed between cell types and within matched cell types. 

Colocalization of meQTL with GWAS traits 
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Summary statistics of GWAS were downloaded from the NHGRI-EBI GWAS Catalog 

(https://www.ebi.ac.uk/gwas/) 53,  including 29,401 studies and 25,111 traits. we performed 

colocalization analysis with coloc (v5.2.3) using default priors to calculate the probability that both 

the meQTL and GWAS traits share a common causal variant. The posterior probability (PP4) of 

one causal variant associated with both DMR and GWAS traits was used to identify significant 

colocalizations (PP4 > 0.50), and a high PP4 value indicates strong evidence for shared causality. 

R packages locuscomparer (v1.0.0)54 and locuszoomr (v0.3.1) 55 were employed to visualize the 

colocalization results. To test whether the meSNP (snp of meQTL) and GWAS SNP are 

significantly overlapped for each pair of colocalized DMR and trait, we used the chi-squared test 

(function stats.chi2_contingency from Python package scipy 50), p-values were adjusted using 

Benjamini/Hochberg method. 
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Figure Legends 

Figure 1. Overview of the study. For HIV-1 and IVA, we have internal control samples which 

are from the same set of donors before infection, and collected samples from them after 

exposure. We also collected PBMC from 12 healthy donors as external controls. For exposures 

without internal controls (COVID, Anthrax Vaccine, MRSA/MSSA and OP), all the healthy 

samples were used as control. We performed single-nucleus ATAC-seq and single-nucleus 

methylation sequencing on the PBMCs and identified the exposure associated differentially 

methylated regions (eDMRs) associated with exposures and genotypes. We also identified the 

genotype-associated DMRs (gDMRs) using this dataset. 

Figure 2. Within cell type changes are associated with each exposure. A. Uniform Manifold 

Approximation and Projection (UMAP) of cells in each cell type from FACS using single-nucleus 

methylation sequencing data. The cells are colored by exposures. HIV: exposure to HIV; 

HIV_pre: before HIV infection from the same donors; Flu_pos: after IVA infection; Flu_pre: 

before IVA infection from the same donors; COVID_S: severe COVID patient samples; 

COVID_nS: non-severe COVID patient samples; MRSA: samples exposed to MRSA; MSSA: 

samples exposed to MSSA; BA: samples from the donors that have taken Anthrax vaccine and 

work frequently or infrequently in a controlled BSL3 facility handling Bacillus anthracis; OP: 

samples from the donors that are exposed to OP. B. bar plots show the proportions of cells from 

each group and cell type in the Leiden clusters, colored by the FACS cell types. The x-axis are 

the Leiden clusters, and the y-axis shows the proportions of cells in each Leiden cluster in each 

group. C. Scatter plot shows the cell proportional changes before and after infection of HIV and 

IVA in each Leiden cluster. Dots are clusters with IVA exposures and crosses are HIV exposure. 

Color shows the FACS cell types. D. UMAP of cells from HIV exposure donors in the cell types 

that have the most cell proportion changes. The three rows are UMAP of cells from NK cell, Tc-

Mem and Tc-Naive, and the columns are the cells from ‘pre’, ‘acu’ and ‘cro’ stages. Cells from 

the stage are shown in red, and cells from other stages are shown in gray. E. The dot-plot 

shows the enrichment of cells from the three HIV infection stages (‘pre’, ‘acu’, ‘cro’) in the 

Leiden clusters. The heatmap shows the GO enrichment of differentially methylated genes 

(DMGs) of the corresponding Leiden cluster. The dot plot and heatmap have the same x-axis. F. 
Two clusters of monocytes were identified. The bar plot shows the cell proportions of the two 

clusters of monocytes in controls, severe and non-severe COVID samples. Statistical tests were 

done using the Chi-Square test. (**** indicates P value < 1x10-100). G. GO enrichment of DMGs 

between the two clusters of Monocytes.  
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Figure 3. Identification of Exposure-associated DMRs (eDMRs) and their features. A. 
UMAP of all cells from all exposures using single-nucleus methylation profiles. Cells are colored 

by the global methylation level of each cell. B. UMAP of all cells from all exposures using single-

nucleus methylation profiles. Cells are colored by the FACS cell types. C. Barplots shows the 

Hypo- (upper plot) and Hyper- (lower plot) methylated eDMR counts. Hypo means the eDMRs 

are hypo-methylated in exposures compared to controls. Hyper is the other way around. The 

colors show the exposures, and x-axis is cell type, which is colored and sorted in the same 

order for all exposures. D. Dotplot shows the enrichment of eDMRs from COVID, HIV and 

MSSA in histone modification peaks. Each column shows the hypo-eDMRs in that condition. 

Color of the dots shows the enrichment or depletion in the corresponding histone modification. 

E. Dotplot shows the motif enrichment of eDMRs from each exposure and cell type. The dot 

size indicates the P values of enrichment, and the color shows the cell type from which the 

eDMRs are.  

Figure 4. Consistent changes in DNA methylation and chromatin accessibility in HIV 
exposure. A. UMAP of cells from HIV exposure using single-nucleus methylation when 

integrating with single-nucleus ATAC-seq data. Color shows the cell types identified from FACS 

and DNA methylation. B. UMAP of cells from one HIV donor sample after integration with 

single-nucleus methylation data. The color shows the cell type labels transferred from DNA 

methylation data in integrating the two modalities. C. A genome browser view of a region at 

DGKH gene that has consistent changes after HIV exposure in DNA methylation and chromatin 

accessibility in CD8 memory T cells. The top three panels are normalized ATAC-seq reads, and 

the DNA methylation panels show the methylation levels in each bin at this locus. The eDMRs 

are shown in the blue bars. D. The overlap between hypo-eDMRs and gained ATAC-seq peaks 

in each condition in the corresponding cell types. The more accessible peaks are from pairwise 

comparisons, so each condition has two comparisons. The color of the heatmaps shows the 

proportion of overlaps between hypo-eDMRs and gained peaks.  

Figure 5. Identification of genotype-associated DMRs (gDMRs) and their features. A. 
barplot shows the counts of gDMRs in each cell type. The colors of the bars show the cell types. 

B. Dotplot shows the enrichment of gDMRs in histone modification peaks from each cell type. 

Each column is a cell type, and each row has one histone modification peak in each cell type. 

Color of the dots shows the enrichment of depletion of gDMRs in the corresponding histone 

modification. C. Dotplot shows the enrichment of gDMRs in chromatin loops. Each column is a 

cell type, and each row is the chromatin loop in each cell type. Color of the dots shows the 
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enrichment or depletion of gDMRs in the corresponding chromatin loop. D. Go enrichment of the 

genes that are overlapped with eDMRs or gDMRs. Color of the heatmap shows the log10(P-

value) of the enrichment. Results for eDMRs and gDMRs in all cell types are sorted in the same 

order. 

Figure 6. Colocalization of gDMRs with autoimmune-related disease (Addison’s disease) 
GWAS SNPs. A. Upset plot shows the number of meQTLs that are colocalized with GWAS 

SNPs in each cell type or multiple cell types. B. scatter plot shows the correlation of SNPs at the 

locus by the -log10(P-Value) associated with disease and gDMR. The r2 is the linkage 

disequilibrium with the leading SNP (rs910320). C. Genotype-disease association P values in 

the HLA locus for Addison’s disease GWASs (top panel) and meQTL signal in CD8 Naive T cell 

(bottom panel). 

Figure S1. FACS gating process and plate pooling strategy. A. An example gating process 

for one sample. B. An example of gating statistics of one sample. C. We sorted different cell 

types in the same plate for each sample.  

Figure S2. Distribution of cells from each exposure within cell type UMAP. The cells from 

the corresponding exposure are colored in red, while other cells and control cells are colored in 

dark gray and gray. 

Figure S3. Within cell type methylation difference between sub-clusters. A. The UMAP of 

cells from HIV exposure in each FACS cell type. The color shows the global methylation level of 

each cell. B. methylation level of DMGs between the two clusters of monocytes in COVID 

samples.  

Figure S4. Features of eDMRs. A. Heatmap shows the ratio of single CpG eDMRs in each 

exposure and cell type. B. Dotplot shows the enrichment of eDMRs from BA, influenza virus and 

OP in histone modification peaks. Each column shows the hypo-eDMRs in that condition. Color 

of the dots shows the enrichment or depletion in the corresponding histone modification. C. 
Genomic features enrichment of eDMRs in each cell type and exposure. D. Motif enrichment of 

hypo-eDMRs in each cell type and exposure.  

Figure S5. Global correlation of DNA methylation and chromatin accessibility in each cell 
type.  
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Figure S6. Features of gDMRs. A. Venn diagram shows the overlap of SNPs called from 

methylation reads and WGS in a 10 Mb region. The SNPs are intersected with dbsnp. B. Venn 

diagram shows the overlap of SNPs called from methylation reads and ground truth SNPs for 

NA12878. The SNPs are intersected with dbsnp. C. Heatmap shows the ratio of single CpG 

gDMRs in each cell type in trans and cis. D. Genomic features enrichment of eDMRs and 

gDMRs. E. Motif enrichment of gDMRs and eDMRs using each other as background.  

Figure S7. Colocalization of meQTL and phenotype-associated GWAS SNPs. A. 
Enrichment of colocalized GWAS SNPs from each phenotype with the meQTLs from each cell 

type. B. Heatmap shows the distribution of colocalized meQTLs with different phenotypes in 

each cell type.  
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