

Characterization of spatial homogeneous regions in tissues with concordex

Kayla C. Jackson^{1,2}, A. Sina Booeshaghi³, Ángel Gálvez-Merchán⁴, Lambda Moses⁵, Tara Chari⁶, Alexandra Kim⁷, Orhan Hosten-Mittermaier⁸, and Lior Pachter^{1,9,*}

¹Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA

²Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

³Department of Bioengineering, University of California, Berkeley, CA, USA

⁴Cellarity, Boston, MA, USA

⁵Department of Statistics, Columbia University, New York, NY, USA

⁶Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA

⁷Polytechnic High School, Pasadena, CA, USA

⁸The College Preparatory School, Oakland, CA, USA

⁹Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

*To whom correspondence should be addressed

Abstract

The rapid advancement of spatially resolved transcriptomics (SRT) technologies has facilitated exploration of how gene expression varies across tissues. However, identifying spatially variable genes remains challenging due to confounding variation introduced by the spatial distribution of cell types. We introduce a new approach to identifying spatial domains that are homogeneous with respect to cell-type composition that facilitates the decomposition of gene expression patterns by cell-type and spatial variation. Our method, called concordex, is efficient and effective across technological platforms and tissue types, and using several biological datasets we show that it can be used to identify genes with subtle variation patterns that are missed when considering only cell-type variation, or spatial variation, alone. The concordex tool is freely available at <https://github.com/pachterlab/concordexR>.

Introduction

Spatially resolved transcriptomics (SRT) have enabled highly multiplexed molecular profiling of cells within a tissue, with current technologies presenting a range of tradeoffs in approach and resolution (1). Broadly, in-situ hybridization based methods, such as seqFISH (2, 3), seqFISH+ (4), and MERFISH (5), offer cellular or sub-cellular resolution for capture of hundreds to thousands of genes, while methods that rely on spatial barcoding and sequencing (e.g. Visium, Slide-Seq (6), Slide-SeqV2 (7) offer near-cellular resolution and measure the expression of genes across the entire transcriptome.

A major goal of spatial transcriptomics data analysis is the determination of spatially variable genes. Ideally, methods should be able to distinguish whether variability is driven by the spatial distribution of cell types or by spatial variation that is independent of cell-type. One approach to untangling these two covariates is to partition assayed tissues into regions that constitute domains of functional or compositional homogeneity. This task first relies on abstracting transcriptomic expression into notions of cell type, whereby cells of

the same type have similar transcriptomic profiles, but can be morphologically or functionally distinct. The concept of a spatial region introduces another layer of abstraction and requires aggregation of cell types into domains with distinct cell-type composition. The cells in these regions are characterized by their local cellular environments, and have neighborhoods with similar proportions of cell types, which can be a mixture of cell types or a single type. We therefore refer to regions with this property as spatial homogeneous regions (SHRs).

Several algorithms have been proposed for identifying spatial or tissue domains defined by coherent gene expression, yet, in principle, these domains can consist of various cell types with different expression profiles (8–13). The result is that these methods implicitly identify SHRs. Broadly, these approaches rely on neural networks, hidden Markov random fields (HMRFs), or spatial smoothing to encode spatial dependence. For example, Giotto (11) and BayesSpace (13) infer domain assignment using an HMRF and relate the gene expression of a cell or spot and its neighbors. BANKSY (8) uses spatial kernels to encode spatial dependence in the local and extended environment around a tissue. GASTON (12) relies on a neural network to represent gene expression and spatial information as a one-dimensional gradient. SpaGCN (10) and STAGATE (9) use graph convolutional neural networks to integrate gene expression with spatial and/or histology information.

The regions identified by these methods have been used in downstream analysis pipelines to detect spatial differentially expressed genes (sp-DEGs), but it is unclear how this analysis partitions variability into cell type and spatial effects. In an extreme case, a SHR composed entirely of a unique cell type—absent from other SHRs—may yield differentially expressed genes that simply reflect cell-type differences rather than true spatial variation. On the other hand, testing for domain differences without accounting for the effect of cell type may obscure distinct spatial effects and ignores cases where cell type and spatial effects overlap. Thus, the question of how to best identify SHRs and sp-DEGs in a coherent manner remains open.

79 We propose to solve these problems by first utilizing spatial k-nearest-neighbor (kNN) graph representation of transcriptomics data to answer questions about spatial homogeneity in SRT data. The key to our approach is a method we develop for assessing the neighborhood composition of nodes in a kNN graph built from spatial or non-spatial attributes, which we implement in a tool called concordex. We show that concordex can efficiently and effectively identify SHRs in spatial transcriptomics data, and also that it is a useful tool for assessing concordance between partitions of cells derived from clustering and kNN graphs in non-spatial transcriptomics data. We demonstrate the utility of concordex in many contexts with both simulated and publicly available biological datasets that encompass a range of technologies. Subsequently, we demonstrate the compatibility of concordex with a method for differential analysis based on a generalized linear model (GLM). We model SHRs and cell types directly, which allows for the separation of gene expression patterns driven by spatial context from those driven by cell type. This coupling of concordex to a GLM reveals genes with subtle, yet interesting, spatial variation patterns.

100 Results

101 **Neighborhood consolidation with concordex.** The concordex workflow can be used to interrogate the neighborhood composition of the nodes in a spatial kNN graph, $G = (V, E)$, where V is a set of cells or spots and E is the set of edges in the graph. The edges of the graph are determined by some metric on V , usually by computation of transcriptomic or spatial distance, and the nodes are assigned predetermined discrete or continuous labels. When discrete labels are available, the concordex assessment proceeds first by calculating the neighborhood consolidation matrix K , with a row for each cell i and one column for each label j (Figure 1). The entries K_{ij} can be interpreted as the fraction of neighbors of cell i that are assigned label j . This representation has been used to identify ‘cellular neighborhoods’ in multiplexed imaging data (14–16), but has yet to be comprehensively applied to datasets on scale with modern SRT technologies. Additionally, since this approach relies on pre-annotated labels, which are often unavailable or imprecisely defined, concordex extends the labeling framework to include continuous representations of cells. Here, the columns of the neighborhood consolidation matrix correspond to each component of the continuous vector. Clustering the rows in the neighborhood consolidation matrix assembles cells into SHRs, where cells within an SHR can be thought of as having similar neighborhood composition. Though we focus on the spatial applications of concordex, the matrix K can be used in a non-spatial context to reveal cells with non-homogeneous neighborhoods and assess cluster boundaries via direct visualization of between-cluster relationships and within-cluster heterogeneity (Supplemental Note).

131 We use concordex to identify SHRs in datasets encompassing several SRT technologies and spatial scales. We build on previous results that demonstrate the utility of this approach with discrete annotations and extend this result to

show that continuous labels accurately partition cells into SHRs. In cases where anatomical information about the tissue is known, we use k-means clustering to identify SHRs in the spatial context, but otherwise, SHRs are obtained using graph-based clustering algorithms such as Leiden (17) or Louvain (18) to cluster the neighborhood consolidation matrix.

Benchmarking concordex in control and Visium data.

To better understand the utility of our approach, we simulated control spatial datasets in various patterns. First, we designed a synthetic dataset containing two cell types and distributed the cells on a chessboard in different proportions (Figure 1B, Methods). This scenario is useful because it allows analysis of whether a method can detect regions of varying cell type composition, even when a cell type is present throughout the entire spatial field of view. We assessed whether other methods described above could perform the same region segmentation task. Ideally, methods should detect the checkerboard as a macro-pattern rather than the exact positions of the individual cell types.

We find that concordex is able to effectively reconstruct the chessboard squares (Figure 1C) and each detected region contains the expected proportion of the simulated cell types. The concordex predictions were most similar to STAGATE and BANKSY, with both methods producing recognizable chessboard and correctly assigning grid points with relatively high accuracy (Figure 1D). Conversely, other methods failed to perform this task in notable ways. Two methods, BayesSpace and SpaGCN, reproduced the cell type assignment rather than aggregating the points into regions even when using parameters that should prefer region identification over cell type identification (Figure 1D). Though the cell type locations resemble the chessboard grid, we argue that the misidentification of regions at this step precludes meaningful downstream gene analysis. On the other hand, Giotto and GASTON did not produce a recognizable chessboard (Figure 1D). When we arranged the simulated cell types in sequential layers and used concordex to predict the layers (Supplemental Figure S6), we found the results were consistent with the chessboard control (Supplemental Figure S6). Importantly, concordex captures the expected organization of the simulated tissue across an array of gene expression patterns and relies on compositional changes, not expression, to determine regional boundaries.

Next, we evaluated the ability of concordex to identify SHRs in 12 manually annotated sections of the human dorsolateral prefrontal cortex (DLPFC) (19). This dataset was acquired on the 10x Genomics Visium platform, and each section includes up to 7 annotated anatomical regions that can serve as ground truth. Since the Visium platform does not have cellular resolution and deconvoluted cell type predictions were not available for the spots, we used the first 50 principal components to compute the neighborhood consolidation matrix. Given the presence of unbalanced clusters, we used the adjusted mutual information (AMI) to compare the accuracy of SHRs identified by concordex to established and recently developed spatial clustering methods, includ-

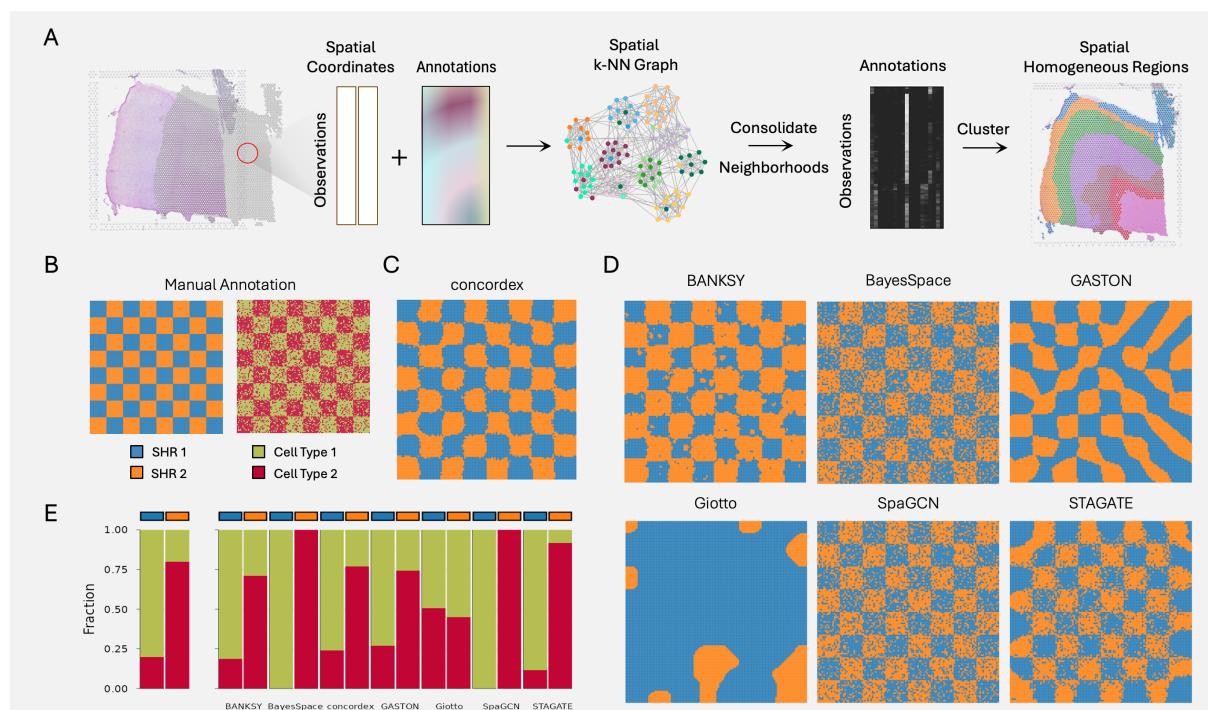


Fig. 1. The concordex workflow: **A**. A spatial k-NN graph is constructed from spatial coordinates and associated annotations such as cell types or features from a principal component analysis projection. For each cell or spot, the entries in the neighborhood consolidation matrix represent the fraction of neighbors that have a label indicated. SHRs are defined by clustering the neighborhood consolidation matrix. **B**. A control experiment in which a chessboard pattern consists of two regions, each comprising two cell types, one with 80% of one cell type, and 20% of another, and the other region with a 20% / 80% mix. **C**. concordex captured this pattern with high accuracy, while **D**. the performance of six other methods varied. **E**. The expected proportion of cell types in each SHR in the control (left) and the predicted proportion of cell types produced by each method (right)

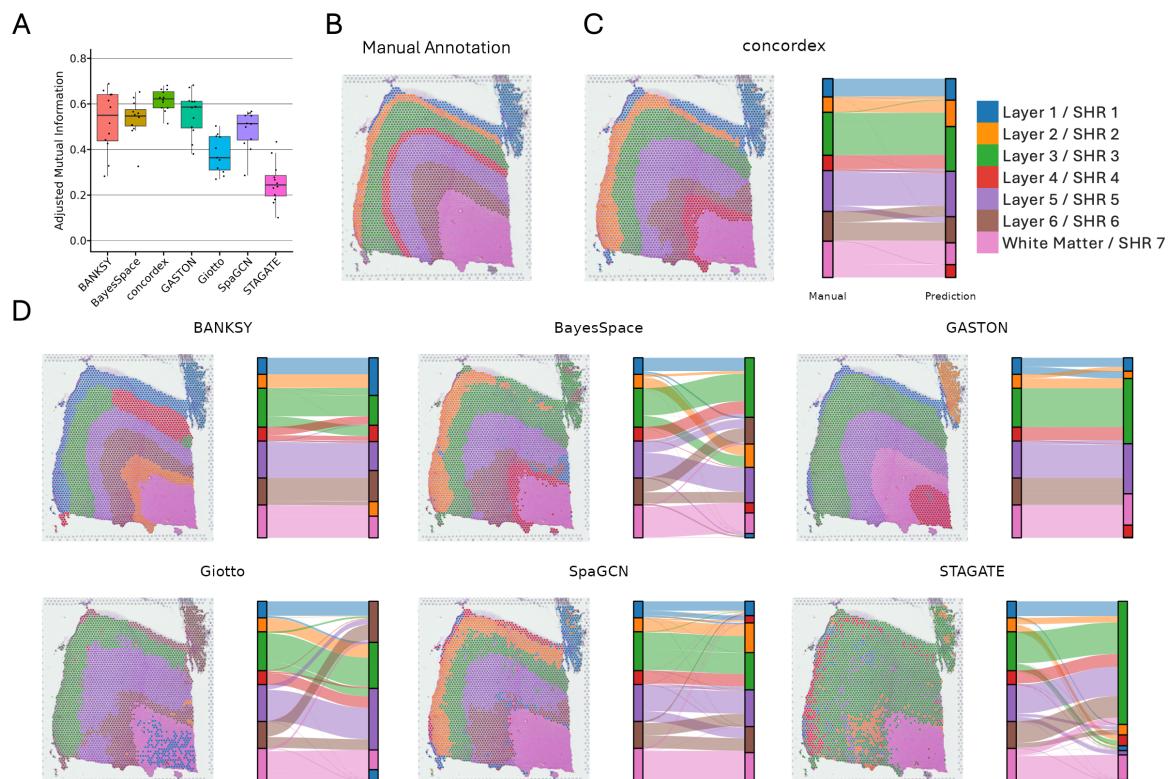


Fig. 2. Evaluation of in Visium DLPFC dataset. **A**. Comparison of adjusted mutual information scores across 12 sections of the DLPFC dataset **B**. The manual annotations for section 151675. **C**. Evaluation of concordex and **D**. other methods in section 151675 from the human DLPFC dataset. Each method is shown next to the corresponding alluvial diagram mapping the manual annotations to the predicted annotations.

192 ing BANKSY, BayesSpace, GASTON, Giotto, SpaGCN, and 249
193 STAGATE. 250

194 Across the 12 sections, concordex consistently identi- 251
195 fied the expected cortical layers across sections of the DLPFC 252
196 dataset (Figure 2A)). Using sample 151675 as an example, 253
197 we found that the SHRs identified by concordex generally 254
198 agree with the ground truth annotations (Figure 2B) and rep- 255
199 resent a qualitative and quantitative improvement over sev- 256
200 eral methods (Figure 2C-D), confirming that the neighbor- 257
201 hood consolidation matrix is a useful representation for defin- 258
202 ing SHRs in practical applications. The other methods pro- 259
203 duced results that vary in their agreement with the annota- 260
204 tions (Figure 2D). Despite having comparable AMI (Figure 261
205 2A) in some sections, we find that the predictions from other 262
206 methods produce layers that are qualitatively less distinct 263
207 than concordex, and in general, require more computational 264
208 time to compute (Supplmental Figure S4). 264

209 Interestingly, Giotto, SpaGCN, and STAGATE pro- 265
210 duced results that are substantially worse than those of the 266
211 other methods and contrast with the results published in the 267
212 respective manuscripts for these methods. This is in part due 268
213 to the fact that we used analytic Pearson residuals (20) instead 269
214 of sequencing depth to normalize the data before dimension 270
215 reduction with PCA. Although the question of how to nor- 271
216 malize spatial transcriptomics data remains open, we found 272
217 that the PCs computed from analytic Pearson residuals better 273
218 retained spatial tissue structure compared to explicitly depth 274
219 normalized data. 275
276

220 **Improved identification of layers in the mouse neocor- 277**
221 **tex using concordex.** To assess whether concordex could 278
222 be used to predict SHRs in a dataset with cellular resolution, 279
223 we applied our method to an adult mouse primary visual neo- 280
224 cortex profiled with STARmap technology (21). STARmap 281
225 relies on padlock probes that hybridize to intracellular mRNA 282
226 followed by *in situ* amplification and imaging to read out 283
227 gene-specific sequences. The authors provided data for 1020 284
228 genes detected in 1207 cells along with molecularly defined 285
229 cell types and annotated anatomical regions as shown in Fig- 286
230 ure 3A. To further demonstrate the utility of using continuous 287
231 representation of cells, we again used the first 50 PCs as cell 288
232 labels for input to concordex. 289

233 The combination of cellular and region annotations al- 290
234 lows for a thorough evaluation of how well the regions pre- 291
235 dicted by concordex capture the expected cell type distribu- 292
236 tion in a well-studied system. The predicted SHRs agreed 293
237 well with the annotations when run with default parameters 294
238 (Figure 3B) and improved the predictions generated by other 295
239 methods (Figure 3C). In contrast to Visium, the distance be- 296
240 tween adjacent spatial locations in the STARmap data varies 297
241 considerably. The performance of concordex in this dataset 298
242 also demonstrates that this approach is robust to differences 299
243 in spatial scale that exist across SRT technologies. Addition- 300
244 ally, the cell types present in each predicted SHR align with 301
245 the expected cell type distributions in each layer even though 302
246 specific cell types are present in multiple layers in similar 303
247 proportions, for example, eL2/3 cells in L1 and L2/3 (Figure 304
248 3D). This is expected given that concordex explicitly clusters 305

cells into regions on the basis of local neighborhood compo-
sition. Other methods fail to resolve this difference and combine
the layers or produce arbitrary divisions (Figure 3B).

We further validated the predicted SHRs based on known marker genes for the upper and lower layers of the mouse neocortex (Figure 3E). The expression of *Slc17a7* is broadly expressed in all of the layers and excludes the white matter and hippocampus. To delineate the upper layers, we focused on *Lamp5* for layers 2/3 and 4. The expression of *Pcp4* has been shown to localize to the upper layers, L5 and L6. Importantly, the expression of these genes maps onto several SHRs predicted by concordex. This demonstrates the value of defining regions using rather than the spatial expression of individual genes.

Identification of spatially variable genes in the mouse cerebellum. We next used concordex to identify SHRs in a Slide-Seq V2 mouse cerebellum dataset (22). Typical downstream differential expression (DE) analysis to identify spatially variable genes would examines differences between SHRs or rely on global metrics like Moran's I or its local equivalent (23). However, we maintain that these approaches preclude exploration of the interaction between cell type and SHR, and cannot distinguish patterns that are driven by distinct spatial and cell type effects.

The SHRs identified by concordex show qualitative agreement with the annotations from the Allen Brain Reference Atlas (Figure 4A-B). To identify spatial DE genes, we used a Negative Binomial generalized linear model (NB-GLM) that includes an offset term for sequencing depth and an interaction term between cell type and SHR. In total, 1,246 genes could be explained by cell type, SHR, or an interaction (Figure 4C). We classified genes as being cell type- or spatial-dominant based on the model term with largest coefficient. For genes with evidence of an interaction, we further identified whether this effect could be explained more by cell type or SHR (Methods).

When we looked at genes that had a combination of SHR and cell type effects without an interaction, we found that cell type effects dominate for most genes, and in general, SHR effects were smaller in magnitude compared to cell type effects (Figure 4D; upper panel). Interestingly, genes without an interaction did not exhibit spatial autocorrelation measured by Moran's I (Figure 4D; upper panel), which suggests that cell type and spatial interaction is required for autocorrelation. In contrast, genes with an interaction display strong spatial autocorrelation and have higher effects overall (Figure 4D; lower panel). The dominant effect for most genes in this class is the combined cell type and interaction effect. This suggests that the gene is more aptly described as a spatial-cell type marker gene. We observed that spatial-interaction effects are in general smaller than cell type-interaction effects (Figure 4D; lower panel) and in most cases, the spatial interaction effect is only slightly larger than the cell type interaction effect. One clear outlier to this pattern is *Aldoc* which has dominant spatial-interaction effects (Figure 4E). In the cerebellum, this gene is predominantly expressed by Purkinje cells, but it also exhibits strong spatial patterning, with ex-

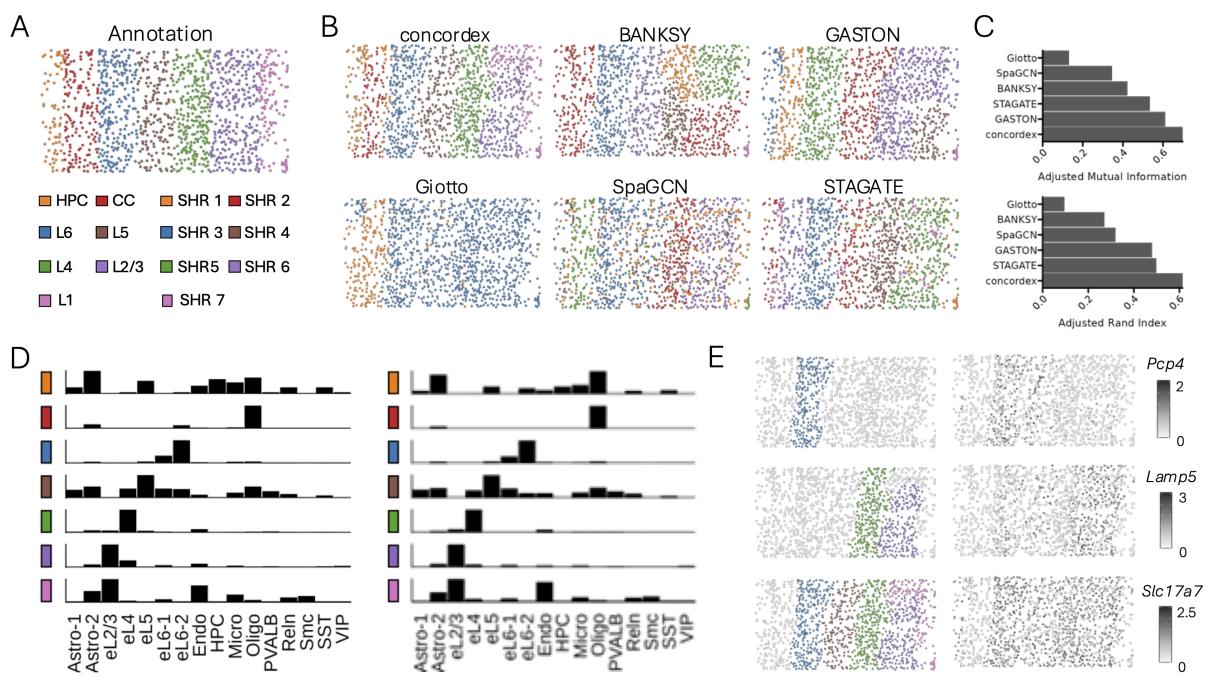


Fig. 3. Evaluation of concordex on STARmap dataset. **A.** Manual annotations of the regions. **B.** SHR predictions from various methods. For concordex, the first 50 PCs were used to generate the neighborhood consolidation matrix. **C.** Performance of all methods using AMI (top) and ARI (bottom). **D.** Proportions of cell types in each SHR in the annotation (left) and concordex (right). **E.** Validation of predicted SHRs using normalized expression of known marker genes. Abbreviations: HPC - hippocampus, CC - corpus callosum

306 expression localized to alternating parasagittal bands (24). The 307 spatial banding pattern in Purkinje cells is apparent in the 308 Slide-Seq data (Figure 4E), but the expression of this gene 309 by other cells in this layer contribute to the strong spatial- 310 interaction effect relative to the Purkinje-interaction effect 311 (Figure 4E). Overall, these results show that linear models 312 paired with accurate region identification by concordex can 313 identify biologically and spatially relevant genes. 314

315 developed concordex to explicitly aggregate cells into regions 316 based on the compositional similarity of their local neighborhoods. This approach enables long-range identification of 317 regions and broad characterization of tissues. Our method is 318 fast and flexible, leveraging research that has resulted in 319 optimized algorithms for computing the kNN graph. On 320 simulated data, concordex readily identifies global organization, 321 even when the same cell types are represented throughout 322 the spatial field. Using concordex, we were able to identify 323 the well-described laminar structure of the mouse cerebellum 324 and regions of functional importance in the mouse liver. 325

326 Importantly, we have demonstrated the utility of using 327 local neighborhood compositional similarity as a marker of 328 SHRs in spatially resolved transcriptomics data. Approaches 329 that rely on k-NN graphs and discrete labels have been 330 developed for multiplexed imaging analysis (14–16) and SRT (26). 331 concordex extends these workflows both as a tool for 332 exploratory analysis of non-spatial transcriptomics data and by 333 allowing continuous attributes for neighborhood consolidation. 334 We demonstrate that using continuous attributes to build 335 SHRs performs similar to the discrete case. This addresses a 336 significant limitation of other methods that to our knowledge, 337 require cell type annotation as a prerequisite. Other methods 338 aim to detect regions within a tissue where gene expression 339 is consistent. The assumption is that the organization of 340 tissues is related to the spatial dependence of gene expression. 341 However, this approach for region identification often 342 overlooks the cell type heterogeneity within a region and 343 confounds the biological interpretation of spatial domains with 344 the procedure used to generate them. For example, the notion 345 of a ‘tissue domain’ in the BANKSY paper (8), is de- 346

347 **Fast identification of SHRs in the mouse small intestine.** Finally, we applied concordex to a VisiumHD dataset of 348 a mouse small intestine (25). VisiumHD greatly enhances the 349 resolution of the Visium platform with the capture area $2\mu\text{m}$ 350 bins arranged in a regular 3250×3250 grid to achieve cellu- 351 lar scale. Nearly 400,000 $8\mu\text{m}$ bins overlap with the tissue 352 sample in the mouse intestine dataset. Since this data is very 353 sparse, we used the dataset that aggregated the $2\mu\text{m}$ bins into 354 the larger $16\mu\text{m}$ bin size in order to visualize SHRs (Supple- 355 mental Figure S7). Using putative cell type annotations as 356 input, concordex readily identified villus, crypt, and muscu- 357 lar structures that are consistent with histology (Supplemen- 358 tal Figure S7). These results demonstrate that concordex can 359 accurately reconstruct spatial structures across diverse tissue 360 types, even when working with large datasets, which are ex- 361 pected to become increasingly common in the future. 362

363 Discussion

364 Efforts to characterize the expression and functional similar- 365 ities of cells in their tissue context rely on accurate meth- 366 ods to identify regions with compositional similarity. We de- 367

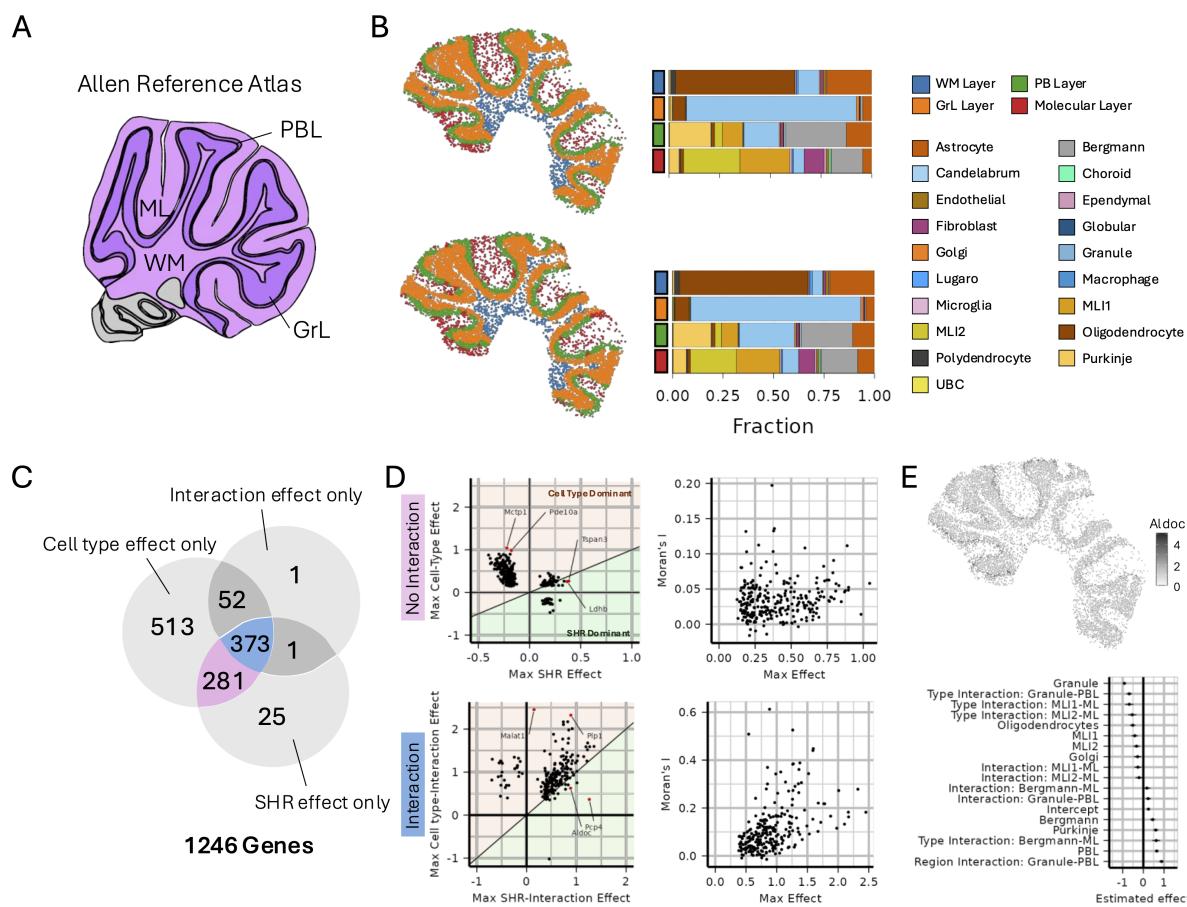


Fig. 4. Identification of spatially variable genes using generalized linear models. **A.** Schematic of the mouse cerebellum from Allen Brain Atlas. **B.** Prediction of SHRs in the cerebellar cortex using cell types (top) or the top 50 PCs (bottom) to compute the neighborhood consolidation matrix. The proportion of cell types in each SHR is similar in either case. **C.** Different combinations of effects were detected in each gene. **D.** For genes without an interaction effect (top) cell type effects tend to be most prominent and correlate poorly with Moran's I. In contrast, genes with an interaction effect (bottom) correlate more strongly with Moran's I and are generally larger in magnitude. **E.** The gene *Aldoc* displays cell type and SHR-specific expression, the spatial effects dominate.

365 defined as the result obtained when ‘building aggregates with 388 neighborhood kernel[s] and spatial yardstick[s]’. Similarly, 389 in the GASTON paper (12), ‘spatial domains’ are described 390 in terms of topographic maps, that result from isodepth which 391 the GASTON method infers. Again, the notion of a ‘spatial’ 392 or ‘tissue’ domain is tautological with the algorithm used to 393 produce it. In the concordex framework, we prioritize the bi- 394 ological definition of spatial homogeneous regions, and our 395 approach to identify SHRs follows from the definition, not 396 the other way around. Thus, while other methods can, at 397 times, produce similar results to concordex, concordex re- 398 liably distinguishes between cell type and region assignment 399 and is particularly adept at identifying SHRs that recur in spa- 400 tially distant parts of the tissue. 401

399 Many SRT studies aim to identify the relative position 402 of cell types in space. Implicit in these analyses is that 403 cell types are organized into SHRs, and efforts to identify 404 region-specific variation largely rely on alignment to previ- 405 ously characterized anatomical structures (27). On the other 406 hand, computational approaches for identifying SHRs vary 407 in their scalability and interpretability. Spatial smoothing ap- 408 proaches often increase the dimension of SRT data, usually 409 by concatenating information from spatial neighbors into a 410

single matrix as input to dimension reduction and clustering algorithms (8, 28). These approaches are computationally burdensome as k (the number of neighbors) and n (the number of observations) becomes large, and can be intractable even for current datasets. As spatial transcriptomics technologies continue to improve, not only in terms of resolution, but also throughput, computational efficiency will become increasingly important.

Aggregation of cells and spots into neighborhoods based on the compositional similarity of their local neighborhoods enables long-range SHR identification of regions and broad characterization of the tissue. As we showed in simulation, existing methods that are based on gene expression or attributes derived from gene expression can fail to differentiate cell type variation from regional variation. By using information about cell neighborhoods, concordex naturally allows for cells of the same type to be assigned to different regions. When cell type labels are used with concordex, one possible limitation is that densely populated cells with identical neighborhoods may be identified as a single SHR, which may not correspond to a histological feature. We believe that this result is important for what it reveals about the tissue organization, such as varying cell density and type homogeneity.

411 We also demonstrated that concordex has non-spatial 465
412 applications when the neighborhood consolidation matrix is 466
413 constructed from principal components or expression vec- 467
414 tors. A typical use case of concordex in this context includes 468
415 assessing the existence of and relationships between prede- 469
416 fined groups or clusters. In contrast to UMAP, the similarity 470
417 matrix can be used to visualize distinct clusters without dis- 471
418 torting the global relationships between them. The neighbor- 472
419 hood consolidation matrix is especially useful for estimating 473
420 the proximity of clusters and presents a more natural interpre- 474
421 tation of the biological relationship between them. Given that 475
422 UMAP plots are also used to visualize gene expression data 476
423 within a cluster, we note that gene expression can be readily 477
424 plotted as a heatmap grouped by pre-defined clusters without 478
425 loss of information present in the UMAP visualization.

426 In summary, concordex provides an accurate and effi- 479
427 cient framework for identifying SHRs across a variety of spa- 480
428 tial scales and technologies, furthering the understanding of 481
429 complex spatial regionalization patterns. Future work should 482
430 focus on identifying genes with regionally restricted expres- 483
431 sion and distinguishing this pattern from cell type localiza- 484
432 tion. We believe that the SHRs identified by concordex can 485
433 offer substantial insight in future analyses and will facilitate 486
434 further efforts to characterize complex tissues.

435 Methods

436 Overview of concordex.

437 **Construction of the kNN graph.** The k-nearest neighbor 491
438 (kNN) graph $G = (V, E)$ can be generated from a scRNA- 492
439 seq or SRT dataset where V , the set of cells or spots, and E , 493
440 the set of edges, are determined according to some metric on 494
441 V . The number of cells in the dataset is denoted $|V| = n$.

442 For SRT data, we use the Euclidean distance between 492
443 the spatial locations of cell (or spot) i and cell j to determine 493
444 the number of neighbors represented in the G , and disallow 494
445 self-neighbors. By default, 30 nearest-neighbors are retained. 495
446 For Visium data, we compute the 12 nearest neighbors.

447 **Computation of the neighborhood consolidation matrix.** The 498
448 concordex workflow requires labeling the nodes of G from 499
449 a finite set C with $|V| = m$ distinct labels or with continu- 500
450 ous vectors to create the $n \times m$ neighborhood consolidation 501
451 matrix, K .

452 We conceptualize the case for continuous labels by con- 503
453 sidering the k nearest-neighbors of a node as a $(k-1)$ - 504
454 simplex whose vertices can be described in \mathbb{R}^m for $m \geq k$. 505
455 When continuous vectors are used to color the nodes in G , 506
456 this amounts to assigning those vectors to the vertices of the 507
457 neighborhood simplex. This approach is easily amenable to 508
458 discrete labels, where each discrete label is assigned to a 509
459 unique element of a vector in \mathbb{R}^m . The vertices can then 510
460 be mapped to the standard vectors in \mathbb{R}^m . In either the dis- 511
461 crete or continuous case, the n rows of K can be interpreted 512
462 as the center of mass of each simplex. We use the princi- 513
463 pal components to compute concordex in the DLPFC and 514
464 STARmap datasets. However, alternative approaches such 515

as Non-negative Matrix Factorization (NMF), topic modeling, or methods that identify gene programs in cells would also serve as equivalent options for this application. These methods generate latent representations that capture underlying patterns in the data that can be interpreted in a similar manner to PCA components. In the absence of explicit cell type information, these methods offer a way to abstract cell type into meaningful representations, effectively capturing its influence without requiring direct categorization. The columns of K either represent each of discrete labels or the non-zero elements of the vectors in \mathbb{R}^m . For discrete labels, the entries K_{ij} can be interpreted further and represent the fraction of neighbors of cell i that are assigned label j .

Identification of spatial homogeneous regions. To assemble cells or spots into spatial homogeneous regions (SHRs), we use the matrix K and the k-means clustering algorithm when there is prior information for the expected number of domains. However, when the number of SHRs is not known, unsupervised clustering algorithms such as Leiden (17) can be used to generate assignments.

Differential Expression Analysis. To assess whether spatial gene expression effects were a result of cell type effects, global spatial effects, or an interaction between the two, we used a Negative Binomial generalized linear model (NB-GLM) where the parameters were cell type, SHR, an interaction term, and an offset for library size. The link function for the mean can be written as

$$\log \mu_i = \beta_0 + \sum_j^{J-1} \beta_j \mathbb{1}(\text{type}_i = j) + \sum_k^{K-1} \beta_k \mathbb{1}(\text{SHR}_i = j) + \sum_{j,k}^{J-1, K-1} \beta_{jk} \mathbb{1}(\text{SHR}_i = j) \mathbb{1}(\text{type}_i = k) \quad (1)$$

In the equation above, $\mathbb{1}(\cdot)$ is the indicator function and the β coefficients are estimated from the model. The linear models were fitted and analyzed using the INLA R package (29).

To classify genes by the pattern of cell type and spatial effects, we first excluded any terms with a confidence interval including zero. After this exclusion, terms without evidence of an interaction were called "cell type dominant" if a cell type term had the greatest effect and were called "spatial dominant" if a spatial term had the greatest effect. For genes with non-zero interaction terms, we first rearranged equation 1 to group like spatial or like cell type terms. In the former case, we computed total effect of SHR k interacting with cell type j as $\beta_k + \beta_{jk}$. Similarly, we computed the total effect of cell type j interacting with SHR k as $\beta_j + \beta_{jk}$. We refer to these effects as spatial-interaction and cell type-interaction effects, respectively. Similar to the non-interaction case, genes with a greater spatial-interaction term were called "spatial-interaction dominant", otherwise, we labeled the gene "cell type-interaction" dominant. In cases where the fixed cell type or SHR effect was greater than the interaction effects, we labeled the gene "cell type dominant" or "spatial dominant". Genes with only negative terms were not classified.

516 **Datasets.** We applied concordex to samples from several 569
517 SRT technologies including Visium, VisiumHD, STARmap, 570
518 and Slide-Seq V2. More specifically, we used the human 571
519 DLPFC Visium dataset from (19). Each of the 12 samples 520
521 in this dataset contained approximately 3460 to 4789 spots 572
522 and profiled more than 12,000 genes. Manual annotations 573
523 of the cortical layers were provided with the data and served 574
524 as ground truth in our analysis. We downloaded the mouse 575
525 intestine VisiumHD dataset from the 10x genomics website 576
526 (25). The data were provided at the 2 μ m, 8 μ m, and 16 μ m 577
527 resolution along with putative cell type assignments for the 578
528 8 μ m and 16 μ m resolution data. The STARmap data (21) 579
529 contained 1020 genes measured in 1207 cells, and the Slide- 580
530 Seq V2 (22) data contained 10,121 genes and 9985 cells. The 581
531 details for the simulated dataset are provided in the Supple- 582
532 mentary Information. Briefly, we used the splatter simulation 583
533 software (30) to generate a count matrix containing 14,400 584
534 cells and 10,000 genes and arranged these cells in either a 585
535 checkerboard or stripe pattern in different proportions ac- 586
536 cording to the simulated cell type. 587

536 **Data pre-processing.** In all datasets that rely on a patterned 587
537 capture grid, we first removed all capture locations that were 588
538 outside of the main tissue area. If raw data were available, 589
539 genes expressed in fewer than 50 cells/spots were removed. 590
540 We used the analytic Pearson residuals to normalize the data, 591
541 compute principal components, and identify the top 3,000 592
542 highly variable genes. Otherwise, we used the processed data 593
543 provided by the authors. 594

544 **Ethics approval and consent to participate.** Not applicable 593
545 594

546 **Consent for publication.** Not applicable 597
547 598

548 **Data availability.** The data used in this manuscript are 601
549 available from their original authors. 602
550 The Visium DLPFC dataset and annotations (19) are 604
551 available for download using the SpatialLIBD Bio- 605
552 conductor package here <https://doi.org/doi:10.18129/B9.bioc.spatialLIBD>. The STARMAP 608
553 dataset from (21) is available on Figshare with the identifier 610
554 <https://doi.org/10.6084/m9.figshare.22565209.v1>. 611
555 We obtained the Mouse Cerebellum Slide-Seq V2 dataset 613
556 from (22) and downloaded it from the Broad Institute Single Cell 614
557 Portal https://singlecell.broadinstitute.org/single_cell/study/SCP948. 615
558 We downloaded the mouse intestine VisiumHD dataset from the 10x 616
559 genomics website (25) 617

562 **Code availability.** concordex is available as a Bioconductor 625
563 package at <https://www.bioconductor.org/packages/release/bioc/html/concordexR.html>. 626
564 The source code for the Bioconductor implementation 627
565 is available at <https://github.com/pachterlab/concordexR>, 628
566 and the Python version is available at 629
567 <https://github.com/pachterlab/concordex>. 630

568 Code to reproduce the figures in this manuscript are 631
569 available at the following Github repository: https://github.com/pachterlab/JBMMCKP_2023/ 632

570 **Author contributions.** The concordex project was led by 633
571 KJ who conceptualized the spatial concordex method, 634
572 obtained the results and performed the analyses in the paper, 635
573 implemented the method in R, and drafted the manuscript. ASB 636
574 and AGM implemented an initial version of concordex in 637
575 Python, and contributed to the development of the non-spatial 638
576 concordex method and applications. LM and TC helped in 639
577 developing the concordex non-spatial method. AK improved 640
578 the concordex Python implementation under the supervision 641
579 of KJ. OHM contributed to the DE analysis. KJ and LP edited 642
580 the manuscript with assistance from the other authors. 643

581 **Acknowledgments.** The authors thank Michal Polonsky 644
582 and other participants in the Caltech CI2 initiative for helpful 645
583 discussions on challenges in interpreting spatial transcriptomics 646
584 data. 647

585 **Funding.** This work was supported in part by NIH grant 648
586 5UM1HG012077-02. 649

591 **Competing Interests.** The authors declare that they have no 652
592 competing interests. 653

595 References

1. Lambda Moses and Lior Pachter. Museum of spatial transcriptomics. *Nature Methods*, 19(5):534–546, May 2022. ISSN 1548-7105. doi: 10.1038/s41592-022-01409-2.
2. Sheel Shah, Eric Lubeck, Wen Zhou, and Long Cai. In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus. *Neuron*, 92(2):342–357, October 2016. ISSN 1097-4199 0896-6273. doi: 10.1016/j.neuron.2016.10.001.
3. Sheel Shah, Eric Lubeck, Wen Zhou, and Long Cai. seqFISH Accurately Detects Transcripts in Single Cells and Reveals Robust Spatial Organization in the Hippocampus. *Neuron*, 94(4):752–758.e1, May 2017. ISSN 08966273. doi: 10.1016/j.neuron.2017.05.008.
4. Chee-Huat Linus Eng, Michael Lawson, Qian Zhu, Ruben Dries, Noushin Koulena, Yodai Takei, Jina Yun, Christopher Cronin, Christoph Karp, Guo-Cheng Yuan, and Long Cai. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. *Nature*, 568(7751):235–239, April 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1049-y.
5. Guiping Wang, Jeffrey R. Moffitt, and Xiaowei Zhuang. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. *Scientific Reports*, 8(1):4847, March 2018. ISSN 2045-2322. doi: 10.1038/s41598-018-22297-7.
6. Samuel G. Rodrigues, Robert R. Stickels, Aleksandrina Goeva, Carly A. Martin, Evan Murray, Charles R. Vanderburg, Joshua Welch, Linlin M. Chen, Fei Chen, and Evan Z. Macosko. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. *Science*, 363(6434):1463–1467, March 2019. doi: 10.1126/science.aaw1219.
7. Robert R. Stickels, Evan Murray, Pawan Kumar, Jilong Li, Jamie L. Marshall, Daniela J. Di Bella, Paola Arlotta, Evan Z. Macosko, and Fei Chen. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. *Nature Biotechnology*, 39(3):313–319, March 2021. ISSN 1546-1696. doi: 10.1038/s41587-020-0739-1.
8. Vipul Singhal, Nigel Chou, Joseph Lee, Yifei Yue, Jinyue Liu, Wan Kee Chock, Li Lin, Yun-Ching Chang, Erica Mei Ling Teo, Jonathan Aow, Hwee Kuan Lee, Kok Hao Chen, and Shyam Prabhakar. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. *Nature Genetics*, 56(3):431–441, March 2024. ISSN 1546-1718. doi: 10.1038/s41588-024-01664-3.
9. Kangning Dong and Shihua Zhang. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. *Nature Communications*, 13(1):1739, April 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-29439-6.
10. Jian Hu, Xiangjie Li, Kyle Coleman, Amelia Schroeder, Nan Ma, David J. Irwin, Edward B. Lee, Russell T. Shinohara, and Mingyao Li. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. *Nature Methods*, 18(11):1342–1351, November 2021. ISSN 1548-7105. doi: 10.1038/s41592-021-01255-8.
11. Ruben Dries, Qian Zhu, Rui Dong, Chee-Huat Linus Eng, Huipeng Li, Kan Liu, Yuntian Fu, Tianxiao Zhao, Arpan Sarkar, Feng Bao, Rani E. George, Nico Pierson, Long Cai, and Guo-Cheng Yuan. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. *Genome Biology*, 22(1):78, March 2021. ISSN 1474-760X. doi: 10.1186/s13059-021-02826-2.
12. Uthsav Chitra, Brian J. Arnold, Hirak Sarkar, Cong Ma, Sereno Lopez-Darwin, Kohei Sanno, and Benjamin J. Raphael. Mapping the topography of spatial gene expression

635 with interpretable deep learning. *bioRxiv*, page 2023.10.10.561757, January 2023. doi:
636 10.1101/2023.10.10.561757.

637 13. Edward Zhao, Matthew R. Stone, Xing Ren, Jamie Guenthoer, Kimberly S. Smythe, Thomas
638 Pulliam, Stephen R. Williams, Cedric R. Uyttingoo, Sarah E. B. Taylor, Paul Nghiem, Jason H.
639 Bielas, and Raphael Gottardo. Spatial transcriptomics at subspot resolution with BayesS-
640 pace. *Nature Biotechnology*, 39(11):1375–1384, November 2021. ISSN 1546-1696. doi:
641 10.1038/s41587-021-00935-2.

642 14. Jonas Windhager, Vito Riccardo Tomaso Zanotelli, Daniel Schulz, Lasse Meyer, Michelle
643 Daniel, Bernd Bodenmiller, and Nils Eling. An end-to-end workflow for multiplexed image
644 processing and analysis. *Nature Protocols*, 18(11):3565–3613, November 2023. ISSN
645 1750-2799. doi: 10.1038/s41596-023-00881-0.

646 15. Christian M. Schürch, Salil S. Bhaté, Graham L. Barlow, Darci J. Phillips, Luca Noti, Inti
647 Zlobec, Pauline Chu, Sarah Black, Janos Demeter, David R. McIlwain, Shigemi Kinoshita,
648 Nikolay Samusik, Yury Goltsev, and Garry P. Nolan. Coordinated Cellular Neighborhoods
649 Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front. *Cell*, 182(5):
650 1341–1359.e19, September 2020. ISSN 0092-8674. doi: 10.1016/j.cell.2020.07.005.

651 16. Yury Goltsev, Nikolay Samusik, Julia Kennedy-Darling, Salil Bhaté, Matthew Hale, Gustavo
652 Vazquez, Sarah Black, and Garry P. Nolan. Deep Profiling of Mouse Splenic Architecture
653 with CODEX Multiplexed Imaging. *Cell*, 174(4):968–981.e15, August 2018. ISSN 0092-
654 8674. doi: 10.1016/j.cell.2018.07.010.

655 17. V. A. Traag, L. Waltman, and N. J. van Eck. From Louvain to Leiden: guaranteeing well-
656 connected communities. *Scientific Reports*, 9(1):5233, March 2019. ISSN 2045-2322. doi:
657 10.1038/s41598-019-41695-z.

658 18. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
659 unfolding of communities in large networks. *Journal of Statistical Mechanics: Theory and
660 Experiment*, 2008(10):P10008, October 2008. ISSN 1742-5468. doi: 10.1088/1742-5468/
661 2008/10/P10008.

662 19. Kristen R. Maynard, Leonardo Collado-Torres, Lukas M. Weber, Cedric Uyttingoo, Brianna K.
663 Barry, Stephen R. Williams, Joseph L. Catalini, Matthew N. Tran, Zachary Besich, Mad-
664 havi Tippani, Jennifer Chew, Yifeng Yin, Joel E. Kleinman, Thomas M. Hyde, Nikhil Rao,
665 Stephanie C. Hicks, Keri Martinowich, and Andrew E. Jaffe. Transcriptome-scale spatial
666 gene expression in the human dorsolateral prefrontal cortex. *Nature Neuroscience*, 24(3):
667 425–436, March 2021. ISSN 1546-1726. doi: 10.1038/s41593-020-00787-0.

668 20. Jan Lause, Philipp Berens, and Dmitry Kobak. Analytic Pearson residuals for normalization
669 of single-cell RNA-seq UMI data. *Genome Biology*, 22(1):258, September 2021. ISSN
670 1474-760X. doi: 10.1186/s13059-021-02451-7.

671 21. Xiao Wang, William E. Allen, Matthew A. Wright, Emily L. Sylwestrak, Nikolay Samusik,
672 Sam Vesuna, Kathryn Evans, Cindy Liu, Charu Ramakrishnan, Jia Liu, Garry P. Nolan,
673 Felice-Alessio Bava, and Karl Deisseroth. Three-dimensional intact-tissue sequencing of
674 single-cell transcriptional states. *Science (New York, N.Y.)*, 361(6400), July 2018. ISSN
675 1095-9203 0036-8075. doi: 10.1126/science.aat5691.

676 22. Dylan M. Cable, Evan Murray, Luli S. Zou, Aleksandrina Goeva, Evan Z. Macosko, Fei
677 Chen, and Rafael A. Irizarry. Robust decomposition of cell type mixtures in spatial
678 transcriptomics. *Nature Biotechnology*, 40(4):517–526, April 2022. ISSN 1546-1696. doi:
679 10.1038/s41587-021-00830-w.

680 23. P. A. P. Moran. Notes on Continuous Stochastic Phenomena. *Biometrika*, 37(1/2):17–23,
681 1950. ISSN 00063444, 14643510. doi: 10.2307/2332142.

682 24. Anna Riivik and Karl Herrup. Development of cerebellar modules: extrinsic control of late-
683 phase Zebrafish II pattern and the exploration of rat/mouse species differences. *Molecular and
684 Cellular Neuroscience*, 24(4):887–901, December 2003. ISSN 1044-7431. doi: 10.1016/
685 S1044-7431(03)00240-9.

686 25. 10x Genomics. Visium HD Spatial Gene Expression Library, Mouse Small Intestine (FFPE).

687 26. Matthew N. Bernstein, Dillon Scott, Cynthia C. Hession, Tim Nieuwenhuis, Jacqueline Ger-
688 ritzen, Siamak Tabrizi, Vandana Nandivada, Matthew A. Huggins, Meixue Duan, Shruti
689 Malu, and Ming Tang. Monkeybread: A Python toolkit for the analysis of cellular niches
690 in single-cell resolution spatial transcriptomics data. *bioRxiv*, page 2023.09.14.557736,
691 January 2023. doi: 10.1101/2023.09.14.557736.

692 27. Meng Zhang, Xingjie Pan, Won Jung, Aaron R. Halpern, Stephen W. Eichhorn, Zhiyun
693 Lei, Limor Cohen, Kimberly A. Smith, Bosiljka Tasic, Zizhen Yao, Hongkui Zeng, and Xi-
694 awei Zhuang. Molecularly defined and spatially resolved cell atlas of the whole mouse
695 brain. *Nature*, 624(7991):343–354, December 2023. ISSN 1476-4687. doi: 10.1038/
696 s41586-023-06808-9.

697 28. Hailing Shi, Yichun He, Yiming Zhou, Jiahao Huang, Kamal Maher, Brandon Wang, Zefang
698 Tang, Shuchen Luo, Peng Tan, Morgan Wu, Zuwan Lin, Jingyi Ren, Yaman Thapa, Xin
699 Tang, Ken Y. Chan, Benjamin E. Deverman, Hao Shen, Albert Liu, Jia Liu, and Xiao Wang.
700 Spatial atlas of the mouse central nervous system at molecular resolution. *Nature*, 622
701 (7983):552–561, October 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06569-5.

702 29. Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent
703 Gaussian models by using integrated nested Laplace approximations. *Journal of the Royal
704 Statistical Society: Series B (Statistical Methodology)*, 71(2):319–392, April 2009. ISSN
705 1369-7412. doi: 10.1111/j.1467-9868.2008.00700.x.

706 30. Luke Zappia, Belinda Phipson, and Alicia Oshlack. Splatter: simulation of single-cell RNA
707 sequencing data. *Genome Biology*, 18(1):174, September 2017. ISSN 1474-760X. doi:
708 10.1186/s13059-017-1305-0.