
Characterization of spatial homogeneous
regions in tissues with concordex

Kayla C. Jackson1,2, A. Sina Booeshaghi3, Ángel Gálvez-Merchán4, Lambda Moses5, Tara Chari6, Alexandra Kim7, Orhan
Hosten-Mittermaier8, and Lior Pachter1,9,*

1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
2Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

3Department of Bioengineering, University of California, Berkeley, CA, USA
4Cellarity, Boston, MA, USA

5Department of Statistics, Columbia University, New York, NY, USA
6Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA

7Polytechnic High School, Pasadena, CA, USA
8The College Preparatory School, Oakland, CA, USA

9Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
*To whom correspondence should be addressed

Abstract1

The rapid advancement of spatially resolved transcriptomics2

(SRT) technologies has facilitated exploration of how gene3

expression varies across tissues. However, identifying spa-4

tially variable genes remains challenging due to confound-5

ing variation introduced by the spatial distribution of cell6

types. We introduce a new approach to identifying spatial7

domains that are homogeneous with respect to cell-type com-8

position that facilitates the decomposition of gene expres-9

sion patterns by cell-type and spatial variation. Our method,10

called concordex, is efficient and effective across technolog-11

ical platforms and tissue types, and using several biological12

datasets we show that it can be used to identify genes with13

subtle variation patterns that are missed when considering14

only cell-type variation, or spatial variation, alone. The con-15

cordex tool is freely available at https://github.com/16

pachterlab/concordexR.17

Introduction18

Spatially resolved transcriptomics (SRT) have enabled highly19

multiplexed molecular profiling of cells within a tissue, with20

current technologies presenting a range of tradeoffs in ap-21

proach and resolution (1). Broadly, in-situ hybridization22

based methods, such as seqFISH (2, 3), seqFISH+ (4), and23

MERFISH (5), offer cellular or sub-cellular resolution for24

capture of hundreds to thousands of genes, while methods25

that rely on spatial barcoding and sequencing (e.g. Visium,26

Slide-Seq (6), Slide-SeqV2 (7) offer near-cellular resolution27

and measure the expression of genes across the entire tran-28

scriptome.29

A major goal of spatial transcriptomics data analysis is30

the determination of spatially variable genes. Ideally, meth-31

ods should be able to distinguish whether variability is driven32

by the spatial distribution of cell types or by spatial variation33

that is independent of cell-type. One approach to untangling34

these two covariates is to partition assayed tissues into re-35

gions that constitute domains of functional or compositional36

homogeneity. This task first relies on abstracting transcrip-37

tomic expression into notions of cell type, whereby cells of38

the same type have similar transcriptomic profiles, but can39

be morphologically or functionally distinct. The concept of40

a spatial region introduces another layer of abstraction and41

requires aggregation of cell types into domains with distinct42

cell-type composition. The cells in these regions are charac-43

terized by their local cellular environments, and have neigh-44

borhoods with similar proportions of cell types, which can be45

a mixture of cell types or a single type. We therefore refer46

to regions with this property as spatial homogeneous regions47

(SHRs).48

Several algorithms have been proposed for identifying49

spatial or tissue domains defined by coherent gene expres-50

sion, yet, in principle, these domains can consist of various51

cell types with different expression profiles (8–13). The re-52

sult is that these methods implicitly identify SHRs. Broadly,53

these approaches rely on neural networks, hidden Markov54

random fields (HMRFs), or spatial smoothing to encode spa-55

tial dependence. For example, Giotto (11) and BayesSpace56

(13) infer domain assignment using an HMRF and relate the57

gene expression of a cell or spot and its neighbors. BANKSY58

(8) uses spatial kernels to encode spatial dependence in the59

local and extended environment around a tissue. GASTON60

(12) relies on a neural network to represent gene expres-61

sion and spatial information as a one-dimensional gradient.62

SpaGCN (10) and STAGATE (9) use graph convolutional63

neural networks to integrate gene expression with spatial64

and/or histology information.65

The regions identified by these methods have been used66

in downstream analysis pipelines to detect spatial differen-67

tially expressed genes (sp-DEGs), but it is unclear how this68

analysis partitions variability into cell type and spatial effects.69

In an extreme case, a SHR composed entirely of a unique cell70

type—absent from other SHRs—may yield differentially ex-71

pressed genes that simply reflect cell-type differences rather72

than true spatial variation. On the other hand, testing for do-73

main differences without accounting for the effect of cell type74

may obscure distinct spatial effects and ignores cases where75

cell type and spatial effects overlap. Thus, the question of76

how to best identify SHRs and sp-DEGs in a coherent man-77

ner remains open.78
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We propose to solve these problems by first utiliz-79

ing spatial k-nearest-neighbor (kNN) graph representation of80

transcriptomics data to answer questions about spatial homo-81

geneity in SRT data. The key to our approach is a method82

we develop for assessing the neighborhood composition of83

nodes in a kNN graph built from spatial or non-spatial at-84

tributes, which we implement in a tool called concordex. We85

show that concordex can efficiently and effectively identify86

SHRs in spatial transcriptomics data, and also that it is a use-87

ful tool for assessing concordance between partitions of cells88

derived from clustering and kNN graphs in non-spatial tran-89

scriptomics data. We demonstrate the utility of concordex90

in many contexts with both simulated and publicly avail-91

able biological datasets that encompass a range of technolo-92

gies. Subsequently, we demonstrate the compatibility of con-93

cordex with a method for differential analysis based on a gen-94

eralized linear model (GLM). We model SHRs and cell types95

directly, which allows for the separation of gene expression96

patterns driven by spatial context from those driven by cell97

type. This coupling of concordex to a GLM reveals genes98

with subtle, yet interesting, spatial variation patterns.99

Results100

Neighborhood consolidation with concordex. The con-101

cordex workflow can be used to interrogate the neighborhood102

composition of the nodes in a spatial kNN graph, G = (V,E),103

where V is a set of cells or spots and E is the set of edges in104

the graph. The edges of the graph are determined by some105

metric on V , usually by computation of transcriptomic or106

spatial distance, and the nodes are assigned predetermined107

discrete or continuous labels. When discrete labels are avail-108

able, the concordex assessment proceeds first by calculating109

the neighborhood consolidation matrix K, with a row for110

each cell i and one column for each label j (Figure 1). The111

entries Kij can be interpreted as the fraction of neighbors112

of cell i that are assigned label j. This representation has113

been used to identify ‘cellular neighborhoods’ in multiplexed114

imaging data (14–16), but has yet to be comprehensively ap-115

plied to datasets on scale with modern SRT technologies.116

Additionally, since this approach relies on pre-annotated la-117

bels, which are often unavailable or imprecisely defined, con-118

cordex extends the labeling framework to include continuous119

representations of cells. Here, the columns of the neighbor-120

hood consolidation matrix correspond to each component of121

the continuous vector. Clustering the rows in the neighbor-122

hood consolidation matrix assembles cells into SHRs, where123

cells within an SHR can be thought of as having similar124

neighborhood composition. Though we focus on the spa-125

tial applications of concordex, the matrix K can be used in126

a non-spatial context to reveal cells with non-homogeneous127

neighborhoods and assess cluster boundaries via direct visu-128

alization of between-cluster relationships and within-cluster129

heterogeneity (Supplemental Note).130

We use concordex to identify SHRs in datasets encom-131

passing several SRT technologies and spatial scales. We build132

on previous results that demonstrate the utility of this ap-133

proach with discrete annotations and extend this result to134

show that continuous labels accurately partition cells into135

SHRs. In cases where anatomical information about the tis-136

sue is known, we use k-means clustering to identify SHRs137

in the spatial context, but otherwise, SHRs are obtained us-138

ing graph-based clustering algorithms such as Leiden (17) or139

Louvain (18) to cluster the neighborhood consolidation ma-140

trix.141

Benchmarking concordex in control and Visium data.142

To better understand the utility of our approach, we simulated143

control spatial datasets in various patterns. First, we designed144

a synthetic dataset containing two cell types and distributed145

the cells on a chessboard in different proportions (Figure 1B,146

Methods). This scenario is useful because it allows analysis147

of whether a method can detect regions of varying cell type148

composition, even when a cell type is present throughout the149

entire spatial field of view. We assessed whether other meth-150

ods described above could perform the same region segmen-151

tation task. Ideally, methods should detect the checkerboard152

as a macro-pattern rather than the exact positions of the indi-153

vidual cell types.154

We find that concordex is able to effectively reconstruct155

the chessboard squares (Figure1C) and each detected region156

contains the expected proportion of the simulated cell types.157

The concordex predictions were most similar to STAGATE158

and BANKSY, with both methods producing recognizable159

chessboard and correctly assigning grid points with rela-160

tively high accuracy (Figure 1D). Conversely, other meth-161

ods failed to perform this task in notable ways. Two meth-162

ods, BayesSpace and SpaGCN, reproduced the cell type as-163

signment rather than aggregating the points into regions even164

when using parameters that should prefer region identifica-165

tion over cell type identification (Figure 1D). Though the cell166

type locations resemble the chessboard grid, we argue that the167

misidentification of regions at this step precludes meaning-168

ful downstream gene analysis. On the other hand, Giotto and169

GASTON did not produce a recognizable chessboard (Figure170

1D). When we arranged the simulated cell types in sequential171

layers and used concordex to predict the layers (Supplemen-172

tal Figure S6), we found the results were consistent with the173

chessboard control (Supplemental Figure S6). Importantly,174

concordex captures the expected organization of the simu-175

lated tissue across an array of gene expression patterns and176

relies on compositional changes, not expression, to determine177

regional boundaries.178

Next, we evaluated the ability of concordex to identify179

SHRs in 12 manually annotated sections of the human dor-180

solateral prefrontal cortex (DLPFC) (19). This dataset was181

acquired on the 10x Genomics Visium platform, and each182

section includes up to 7 annotated anatomical regions that183

can serve as ground truth. Since the Visium platform does184

not have cellular resolution and deconvoluted cell type pre-185

dictions were not available for the spots, we used the first 50186

principal components to compute the neighborhood consol-187

idation matrix. Given the presence of unbalanced clusters,188

we used the adjusted mutual information (AMI) to compare189

the accuracy of SHRs identified by concordex to established190

and recently developed spatial clustering methods, includ-191
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Fig. 1. The concordex workflow: A. A spatial kNN graph is constructed from spatial coordinates and associated annotations such as cell types or features from a principal
component analysis projection. For each cell or spot, the entries in the neighborhood consolidation matrix represent the fraction of neighbors that have a label indicated.
SHRs are defined by clustering the neighborhood consolidation matrix. B. A control experiment in which a chessboard pattern consists of two regions, each comprising two
cell types, one with 80% of one cell type, and 20% of another, and the other region with a 20% / 80% mix. C. concordex captured this pattern with high accuracy, while D. the
performance of six other methods varied. E. The expected proportion of cell types in each SHR in the control (left) and the predicted proportion of cell types produced by
each method (right)

Fig. 2. Evaluation of in Visium DLPFC dataset. A. Comparison of adjusted mutual information scores across 12 sections of the DLPFC dataset B. The manual
annotations for section 151675. C. Evaluation of concordex and D. other methods in section 151675 from the human DLPFC dataset. Each method is shown next to the
corresponding alluvial diagram mapping the manual annotations to the predicted annotations.
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ing BANKSY, BayesSpace, GASTON, Giotto, SpaGCN, and192

STAGATE.193

Across the 12 sections, concordex consistently identi-194

fied the expected cortical layers across sections of the DLPFC195

dataset (Figure 2A)). Using sample 151675 as an example,196

we found that the SHRs identified by concordex generally197

agree with the ground truth annotations (Figure 2B) and rep-198

resent a qualitative and quantitative improvement over sev-199

eral methods (Figure 2C-D), confirming that the neighbor-200

hood consolidation matrix is a useful representation for defin-201

ing SHRs in practical applications. The other methods pro-202

duced results that vary in their agreement with the annota-203

tions (Figure 2D). Despite having comparable AMI (Figure204

2A) in some sections, we find that the predictions from other205

methods produce layers that are qualitatively less distinct206

than concordex, and in general, require more computational207

time to compute (Supplmental Figure S4).208

Interestingly, Giotto, SpaGCN, and STAGATE pro-209

duced results that are substantially worse than those of the210

other methods and contrast with the results published in the211

respective manuscripts for these methods. This is in part due212

to the fact that we used analytic Pearson residuals (20) instead213

of sequencing depth to normalize the data before dimension214

reduction with PCA. Although the question of how to nor-215

malize spatial transcriptomics data remains open, we found216

that the PCs computed from analytic Pearson residuals better217

retained spatial tissue structure compared to explicitly depth218

normalized data.219

Improved identification of layers in the mouse neocor-220

tex using concordex. To assess whether concordex could221

be used to predict SHRs in a dataset with cellular resolution,222

we applied our method to an adult mouse primary visual neo-223

cortex profiled with STARmap technology (21). STARmap224

relies on padlock probes that hybridize to intracellular mRNA225

followed by in situ amplification and imaging to read out226

gene-specific sequences. The authors provided data for 1020227

genes detected in 1207 cells along with molecularly defined228

cell types and annotated anatomical regions as shown in Fig-229

ure 3A. To further demonstrate the utility of using continuous230

representation of cells, we again used the first 50 PCs as cell231

labels for input to concordex.232

The combination of cellular and region annotations al-233

lows for a thorough evaluation of how well the regions pre-234

dicted by concordex capture the expected cell type distribu-235

tion in a well-studied system. The predicted SHRs agreed236

well with the annotations when run with default parameters237

(Figure 3B) and improved the predictions generated by other238

methods (Figure 3C). In contrast to Visium, the distance be-239

tween adjacent spatial locations in the STARmap data varies240

considerably. The performance of concordex in this dataset241

also demonstrates that this approach is robust to differences242

in spatial scale that exist across SRT technologies. Addition-243

ally, the cell types present in each predicted SHR align with244

the expected cell type distributions in each layer even though245

specific cell types are present in multiple layers in similar246

proportions, for example, eL2/3 cells in L1 and L2/3 (Figure247

3D). This is expected given that concordex explicitly clusters248

cells into regions on the basis of local neighborhood compo-249

sition. Other methods fail to resolve this difference and com-250

bine the layers or produce arbitrary divisions (Figure 3B).251

We further validated the predicted SHRs based on252

known marker genes for the upper and lower layers of the253

mouse neocortex (Figure 3E). The expression of Slc17a7 is254

broadly expressed in all of the layers and excludes the white255

matter and hippocampus. To delineate the upper layers, we256

focused on Lamp5 for layers 2/3 and 4. The expression of257

Pcp4 has been shown to localize to the upper layers, L5 and258

L6. Importantly, the expression of these genes maps onto259

several SHRs predicted by concordex. This demonstrates the260

value of defining regions using rather than the spatial expres-261

sion of individual genes.262

Identification of spatially variable genes in the mouse263

cerebellum. We next used concordex to identify SHRs in a264

Slide-Seq V2 mouse cerebellum dataset (22). Typical down-265

stream differential expression (DE) analysis to identify spa-266

tially variable genes would examines differences between267

SHRs or rely on global metrics like Moran’s I or its local268

equivalent (23). However, we maintain that these approaches269

preclude exploration of the interaction between cell type and270

SHR, and cannot distinguish patterns that are driven by dis-271

tinct spatial and cell type effects.272

The SHRs identified by concordex show qualitative273

agreement with the annotations from the Allen Brain Ref-274

erence Atlas (Figure 4A-B). To identify spatial DE genes,275

we used a Negative Binomial generalized linear model (NB-276

GLM) that includes an offset term for sequencing depth and277

an interaction term between cell type and SHR. In total, 1,246278

genes could be explained by cell type, SHR, or an interac-279

tion (Figure 4C). We classified genes as being cell type- or280

spatial-dominant based on the model term with largest coef-281

ficient. For genes with evidence of an interaction, we further282

identified whether this effect could be explained more by cell283

type or SHR (Methods).284

When we looked at genes that had a combination of285

SHR and cell type effects without an interaction, we found286

that cell type effects dominate for most genes, and in general,287

SHR effects were smaller in magnitude compared to cell type288

effects (Figure 4D; upper panel). Interestingly, genes with-289

out an interaction did not exhibit spatial autocorrelation mea-290

sured by Moran’s I (Figure 4D; upper panel), which suggests291

that cell type and spatial interaction is required for autocor-292

relation. In contrast, genes with an interaction display strong293

spatial autocorrelation and have higher effects overall(Figure294

4D; lower panel). The dominant effect for most genes in this295

class is the combined cell type and interaction effect. This296

suggests that the gene is more aptly described as a spatial-297

cell type marker gene. We observed that spatial-interaction298

effects are in general smaller than cell type-interaction effects299

(Figure 4D; lower panel) and in most cases, the spatial inter-300

action effect is only slightly larger than the cell type interac-301

tion effect. One clear outlier to this pattern is Aldoc which302

has dominant spatial-interaction effects (Figure 4E). In the303

cerebellum, this gene is predominantly expressed by Purkinje304

cells, but it also exhibits strong spatial patterning, with ex-305
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Fig. 3. Evaluation of concordex on STARmap dataset. A. Manual annotations of the regions. B. SHR predictions from various methods. For concordex, the first 50 PCs
were used to generate the neighborhood consolidation matrix. C. Performance of all methods using AMI (top) and ARI (bottom). D. Proportions of cell types in each SHR in
the annotation (left) and concordex (right). E. Validation of predicted SHRs using normalized expression of known marker genes. Abbreviations: HPC - hippocampus, CC -
corpus callosum

pression localized to alternating parasagittal bands (24). The306

spatial banding pattern in Purkinje cells is apparent in the307

Slide-Seq data (Figure 4E), but the expression of this gene308

by other cells in this layer contribute to the strong spatial-309

interaction effect relative to the Purkinje-interaction effect310

(Figure 4E). Overall, these results show that linear models311

paired with accurate region identification by concordex can312

identify biologically and spatially relevant genes.313

Fast identification of SHRs in the mouse small intes-314

tine. Finally, we applied concordex to a VisiumHD dataset of315

a mouse small intestine (25). isiumHD greatly enhances the316

resolution of the Visium platform with the capture area 2µm317

bins arranged in a regular 3250 x 3250 grid to achieve cellu-318

lar scale. Nearly 400,000 8µm bins overlap with the tissue319

sample in the mouse intestine dataset. Since this data is very320

sparse, we used the dataset that aggregated the 2µm bins into321

the larger 16µm bin size in order to visualize SHRs (Supple-322

mental Figure S7). Using putative cell type annotations as323

input, concordex readily identified villus, crypt, and muscu-324

lar structures that are consistent with histology (Supplemen-325

tal Figure S7). These results demonstrate that concordex can326

accurately reconstruct spatial structures across diverse tissue327

types, even when working with large datasets, which are ex-328

pected to become increasingly common in the future.329

Discussion330

Efforts to characterize the expression and functional similar-331

ities of cells in their tissue context rely on accurate meth-332

ods to identify regions with compositional similarity. We de-333

veloped concordex to explicitly aggregate cells into regions334

based on the compositional similarity of their local neigh-335

borhoods. This approach enables long-range identification of336

regions and broad characterization of tissues. Our method is337

fast and flexible, leveraging research that has resulted in op-338

timized algorithms for computing the kNN graph. On simu-339

lated data, concordex readily identifies global organization,340

even when the same cell types are represented throughout341

the spatial field. Using concordex, we were able to identify342

the well-described laminar structure of the mouse cerebellum343

and regions of functional importance in the mouse liver.344

Importantly, we have demonstrated the utility of using345

local neighborhood compositional similarity as a marker of346

SHRs in spatially resolved transcriptomics data. Approaches347

that rely on k-NN graphs and discrete labels have been devel-348

oped for multiplexed imaging analysis (14–16) and SRT (26).349

concordex extends these workflows both as a tool for ex-350

ploratory analysis of non-spatial transcriptomics data and by351

allowing continuous attributes for neighborhood consolida-352

tion. We demonstrate that using continuous attributes to build353

SHRs performs similar to the discrete case. This addresses a354

significant limitation of other methods that to our knowledge,355

require cell type annotation as a prerequisite. Other methods356

aim to detect regions within a tissue where gene expression357

is consistent. The assumption is that the organization of tis-358

sues is related to the spatial dependence of gene expression.359

However, this approach for region identification often over-360

looks the cell type heterogeneity within a region and con-361

founds the biological interpretation of spatial domains with362

the procedure used to generate them. For example, the no-363

tion of a ‘tissue domain’ in the BANKSY paper (8), is de-364

Jackson et al. | concordex bioRχiv | 5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2025. ; https://doi.org/10.1101/2023.06.28.546949doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546949
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 4. Identification of spatially variable genes using generalized linear models. A. Schematic of the mouse cerebellum from Allen Brain Atlas. B. Prediction of SHRs
in the cerebellar cortex using cell types (top) or the top 50 PCs (bottom) to compute the neighborhood consolidation matrix. The proportion of cell types in each SHR is
similar in either case.C. Different combinations of effects were detected in each gene. D. For genes without an interaction effect (top) cell type effects tend to be most
prominent and correlate poorly with Moran’s I. In contrast, genes with an interaction effect (bottom) correlate more strongly with Moran’s I and are generally larger in
magnitude. E. The gene Aldoc displays cell type and SHR-specific expression, the spatial effects dominate.

fined as the result obtained when ‘building aggregates with365

neighborhood kernel[s] and spatial yardstick[s]’. Similarly,366

in the GASTON paper (12), ‘spatial domains’ are described367

in terms of topographic maps, that result from isodepth which368

the GASTON method infers. Again, the notion of a ‘spatial’369

or ‘tissue’ domain is tautological with the algorithm used to370

produce it. In the concordex framework, we prioritize the bi-371

ological definition of spatial homogeneous regions, and our372

approach to identify SHRs follows from the definition, not373

the other way around. Thus, while other methods can, at374

times, produce similar results to concordex, concordex re-375

liably distinguishes between cell type and region assignment376

and is particularly adept at identifying SHRs that recur in spa-377

tially distant parts of the tissue.378

Many SRT studies aim to identify the relative position379

of cell types in space. Implicit in these analyses is that380

cell types are organized into SHRs, and efforts to identify381

region-specific variation largely rely on alignment to previ-382

ously characterized anatomical structures (27). On the other383

hand, computational approaches for identifying SHRs vary384

in their scalability and interpretability. Spatial smoothing ap-385

proaches often increase the dimension of SRT data, usually386

by concatenating information from spatial neighbors into a387

single matrix as input to dimension reduction and clustering388

algorithms (8, 28). These approaches are computationally389

burdensome as k (the number of neighbors) and n (the num-390

ber of observations) becomes large, and can be intractable391

even for current datasets. As spatial transcriptomics tech-392

nologies continue to improve, not only in terms of resolution,393

but also throughput, computational efficiency will become in-394

creasingly important.395

Aggregation of cells and spots into neighborhoods based396

on the compositional similarity of their local neighborhoods397

enables long-range SHR identification of regions and broad398

characterization of the tissue. As we showed in simulation,399

existing methods that are based on gene expression or at-400

tributes derived from gene expression can fail to differentiate401

cell type variation from regional variation. By using infor-402

mation about cell neighborhoods, concordex naturally allows403

for cells of the same type to be assigned to different regions.404

When cell type labels are used with concordex, one possible405

limitation is that densely populated cells with identical neigh-406

borhoods may be identified as a single SHR, which may not407

correspond to a histological feature. We believe that this re-408

sult is important for what it reveals about the tissue organiza-409

tion, such as varying cell density and type homogeneity.410
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We also demonstrated that concordex has non-spatial411

applications when the neighborhood consolidation matrix is412

constructed from principal components or expression vec-413

tors. A typical use case of concordex in this context includes414

assessing the existence of and relationships between prede-415

fined groups or clusters. In contrast to UMAP, the similarity416

matrix can be used to visualize distinct clusters without dis-417

torting the global relationships between them. The neighbor-418

hood consolidation matrix is especially useful for estimating419

the proximity of clusters and presents a more natural interpre-420

tation of the biological relationship between them. Given that421

UMAP plots are also used to visualize gene expression data422

within a cluster, we note that gene expression can be readily423

plotted as a heatmap grouped by pre-defined clusters without424

loss of information present in the UMAP visualization.425

In summary, concordex provides an accurate and effi-426

cient framework for identifying SHRs across a variety of spa-427

tial scales and technologies, furthering the understanding of428

complex spatial regionalization patterns. Future work should429

focus on identifying genes with regionally restricted expres-430

sion and distinguishing this pattern from cell type localiza-431

tion. We believe that the SHRs identified by concordex can432

offer substantial insight in future analyses and will facilitate433

further efforts to characterize complex tissues.434

Methods435

Overview of concordex.436

Construction of the kNN graph. The k-nearest neighbor437

(kNN) graph G = (V,E) can be generated from a scRNA-438

seq or SRT dataset where V , the set of cells or spots, and E,439

the set of edges, are determined according to some metric on440

V . The number of cells in the dataset is denoted |V | = n.441

For SRT data, we use the Euclidean distance between442

the spatial locations of cell (or spot) i and cell j to determine443

the number of neighbors represented in the G, and disallow444

self-neighbors. By default, 30 nearest-neighbors are retained.445

For Visium data, we compute the 12 nearest neighbors.446

Computation of the neighborhood consolidation matrix. The447

concordex workflow requires labeling the nodes of G from448

a finite set C with |V | = m distinct labels or with continu-449

ous vectors to create the n × m neighborhood consolidation450

matrix, K.451

We conceptualize the case for continuous labels by con-452

sidering the k nearest-neighbors of a node as a (k − 1)-453

simplex whose vertices can be described in Rm for m ≥ k.454

When continuous vectors are used to color the nodes in G,455

this amounts to assigning those vectors to the vertices of the456

neighborhood simplex. This approach is easily amenable to457

discrete labels, where each discrete label is assigned to a458

unique element of a vector in Rm. The vertices can then459

be mapped to the standard vectors in Rm. In either the dis-460

crete or continuous case, the n rows of K can be interpreted461

as the center of mass of each simplex. We use the princi-462

pal components to compute concordex in the DLPFC and463

STARmap datasets. However, alternative approaches such464

as Non-negative Matrix Factorization (NMF), topic model-465

ing, or methods that identify gene programs in cells would466

also serve as equivalent options for this application. These467

methods generate latent representations that capture under-468

lying patterns in the data that can be interpreted in a simi-469

lar manner to PCA components. In the absence of explicit470

cell type information, these methods offer a way to abstract471

cell type into meaningful representations, effectively captur-472

ing its influence without requiring direct categorization. The473

columns of K either represent each of discrete labels or the474

non-zero elements of the vectors in Rm. For discrete labels,475

the entries Kij can be interpreted further and represent the476

fraction of neighbors of cell i that are assigned label j.477

Identification of spatial homogeneous regions. To assemble478

cells or spots into spatial homogeneous regions (SHRs), we479

use the matrix K and the k-means clustering algorithm when480

there is prior information for the expected number of do-481

mains. However, when the number of SHRs is not known,482

unsupervised clustering algorithms such as Leiden (17) can483

be used to generate assignments.484

Differential Expression Analysis. To assess whether spa-485

tial gene expression effects were a result of cell type ef-486

fects, global spatial effects, or an interaction between the two,487

we used a Negative Binomial generalized linear model (NB-488

GLM) where the parameters were cell type, SHR, an interac-489

tion term, and an offset for library size. The link function for490

the mean can be written as491

log µi = β0 +
∑J−1

j βj 1(typei = j)+
∑K−1

k βk1(SHRi = j)+
∑J−1,K−1

j,k βjk1(SHRi = j)1(typei = k)

(1)
In the equation above, 1(·) is the indicator function and492

the β coefficients are estimated from the model. The linear493

models were fitted and analyzed using the INLA R package494

(29).495

To classify genes by the pattern of cell type and spa-496

tial effects, we first excluded any terms with a confidence497

interval including zero. After this exclusion, terms with-498

out evidence of an interaction were called “cell type dom-499

inant" if a cell type term had the greatest effect and were500

called “spatial dominant" if a spatial term had the greatest501

effect. For genes with non-zero interaction terms, we first502

rearranged equation 1 to group like spatial or like cell type503

terms. In the former case, we computed total effect of SHR k504

interacting with cell type j as βk + βjk. Similarly, we com-505

puted the total effect of cell type j interacting with SHR k as506

βj + βjk. We refer to these effects as spatial-interaction and507

cell type-interaction effects, respectively. Similar to the non-508

interaction case, genes with a greater spatial-interaction term509

were called “spatial-interaction dominant", otherwise, we la-510

beled the gene “cell type-interaction" dominant. In cases511

where the fixed cell type or SHR effect was greater than the512

interaction effects, we labeled the gene “cell type dominant"513

or “spatial dominant". Genes with only negative terms were514

not classified.515
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Datasets. We applied concordex to samples from several516

SRT technologies including Visium, VisiumHD, STARmap,517

and Slide-Seq V2. More specifically, we used the human518

DLPFC Visium dataset from (19). Each of the 12 samples519

in this dataset contained approximately 3460 to 4789 spots520

and profiled more than 12,000 genes. Manual annotations521

of the cortical layers were provided with the data and served522

as ground truth in our analysis. We downloaded the mouse523

intestine VisiumHD dataset from the 10x genomics website524

(25). The data were provided at the 2µm, 8µm, and 16µm525

resolution along with putative cell type assignments for the526

8µm and 16µm resolution data. The STARmap data (21)527

contained 1020 genes measured in 1207 cells, and the Slide-528

Seq V2 (22) data contained 10,121 genes and 9985 cells. The529

details for the simulated dataset are provided in the Supple-530

mentary Information. Briefly, we used the splatter simulation531

software (30) to generate a count matrix containing 14,400532

cells and 10,000 genes and arranged these cells in either a533

checkerboard or stripe pattern in different proportions ac-534

cording to the simulated cell type.535

Data pre-processing. In all datasets that rely on a patterned536

capture grid, we first removed all capture locations that were537

outside of the main tissue area. If raw data were available,538

genes expressed in fewer than 50 cells/spots were removed.539

We used the analytic Pearson residuals to normalize the data,540

compute principal components, and identify the top 3,000541

highly variable genes. Otherwise, we used the processed data542

provided by the authors.543

Ethics approval and consent to participate. Not appli-544

cable545

Consent for publication. Not applicable546

Data availability. The data used in this manuscript are547

available from their original authors.548

The Visium DLPFC dataset and annotations (19) are549

available for download using the SpatialLIBD Bio-550

conductor package here https://doi.org/doi:551

10.18129/B9.bioc.spatialLIBD. The STARMAP552

dataset from (21) is available on Figshare with the identifier553

https://doi.org/10.6084/m9.figshare.554

22565209.v1. We obtained the Mouse Cere-555

bellum Slide-Seq V2 dataset from (22) and down-556

loaded it from the Broad Institute Single Cell Portal557

https://singlecell.broadinstitute.org/558

single_cell/study/SCP948. We downloaded the559

mouse intestine VisiumHD dataset from the 10x genomics560

website (25)561

Code availability. concordex is available as a Bioconductor562

package at https://www.bioconductor.org/563

packages/release/bioc/html/concordexR.564

html. The source code for the Bioconductor implementation565

is available at https://github.com/pachterlab/566

concordexR, and the Python version is available at567

https://github.com/pachterlab/concordex.568

Code to reproduce the figures in this manuscript are569

available at the following Github repository: https:570

//github.com/pachterlab/JBMMCKP_2023/571
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