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Abstract

39

The rapid advancement of spatially resolved transcriptomics “
(SRT) technologies has facilitated exploration of how gene N
42

expression varies across tissues. However, identifying spa-
tially variable genes remains challenging due to confound-
ing variation introduced by the spatial distribution of cell
types. We introduce a new approach to identifying spatial
domains that are homogeneous with respect to cell-type com-
position that facilitates the decomposition of gene expres-
sion patterns by cell-type and spatial variation. Our method,
called concordex, is efficient and effective across technolog-
ical platforms and tissue types, and using several biological
datasets we show that it can be used to identify genes with
subtle variation patterns that are missed when considering
only cell-type variation, or spatial variation, alone. The con-
cordex tool is freely available at ht tps://github.com/
pachterlab/concordexR.

Introduction

Spatially resolved transcriptomics (SRT) have enabled highly
multiplexed molecular profiling of cells within a tissue, with
current technologies presenting a range of tradeoffs in ap-
proach and resolution (1). Broadly, in-situ hybridization
based methods, such as seqFISH (2, 3), seqFISH+ (4), and
MERFISH (5), offer cellular or sub-cellular resolution for
capture of hundreds to thousands of genes, while methods
that rely on spatial barcoding and sequencing (e.g. Visium,
Slide-Seq (6), Slide-SeqV2 (7) offer near-cellular resolution
and measure the expression of genes across the entire tran-
scriptome.

A major goal of spatial transcriptomics data analysis is
the determination of spatially variable genes. Ideally, meth-
ods should be able to distinguish whether variability is driven
by the spatial distribution of cell types or by spatial variation
that is independent of cell-type. One approach to untangling
these two covariates is to partition assayed tissues into re-
gions that constitute domains of functional or compositional
homogeneity. This task first relies on abstracting transcrip-
tomic expression into notions of cell type, whereby cells of
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the same type have similar transcriptomic profiles, but can
be morphologically or functionally distinct. The concept of
a spatial region introduces another layer of abstraction and
requires aggregation of cell types into domains with distinct
cell-type composition. The cells in these regions are charac-
terized by their local cellular environments, and have neigh-
borhoods with similar proportions of cell types, which can be
a mixture of cell types or a single type. We therefore refer
to regions with this property as spatial homogeneous regions
(SHRs).

Several algorithms have been proposed for identifying
spatial or tissue domains defined by coherent gene expres-
sion, yet, in principle, these domains can consist of various
cell types with different expression profiles (8—13). The re-
sult is that these methods implicitly identify SHRs. Broadly,
these approaches rely on neural networks, hidden Markov
random fields (HMRFs), or spatial smoothing to encode spa-
tial dependence. For example, Giotto (11) and BayesSpace
(13) infer domain assignment using an HMRF and relate the
gene expression of a cell or spot and its neighbors. BANKSY
(8) uses spatial kernels to encode spatial dependence in the
local and extended environment around a tissue. GASTON
(12) relies on a neural network to represent gene expres-
sion and spatial information as a one-dimensional gradient.
SpaGCN (10) and STAGATE (9) use graph convolutional
neural networks to integrate gene expression with spatial
and/or histology information.

The regions identified by these methods have been used
in downstream analysis pipelines to detect spatial differen-
tially expressed genes (sp-DEGs), but it is unclear how this
analysis partitions variability into cell type and spatial effects.
In an extreme case, a SHR composed entirely of a unique cell
type—absent from other SHRs—may yield differentially ex-
pressed genes that simply reflect cell-type differences rather
than true spatial variation. On the other hand, testing for do-
main differences without accounting for the effect of cell type
may obscure distinct spatial effects and ignores cases where
cell type and spatial effects overlap. Thus, the question of
how to best identify SHRs and sp-DEGs in a coherent man-
ner remains open.
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We propose to solve these problems by first utiliz- 1ss
ing spatial k-nearest-neighbor (kNN) graph representation of 13
transcriptomics data to answer questions about spatial homo- 137
geneity in SRT data. The key to our approach is a method 1
we develop for assessing the neighborhood composition of 1as
nodes in a kNN graph built from spatial or non-spatial at- 140
tributes, which we implement in a tool called concordex. We 141
show that concordex can efficiently and effectively identify
SHRs in spatial transcriptomics data, and also that it is a use- 4
ful tool for assessing concordance between partitions of cells ™4
derived from clustering and kNN graphs in non-spatial tran- '
scriptomics data. We demonstrate the utility of concordex 4
in many contexts with both simulated and publicly avail- "
able biological datasets that encompass a range of technolo- '
gies. Subsequently, we demonstrate the compatibility of con- 4
cordex with a method for differential analysis based on a gen- #°
eralized linear model (GLM). We model SHRs and cell types
directly, which allows for the separation of gene expression '
patterns driven by spatial context from those driven by cell %2
type. This coupling of concordex to a GLM reveals genes '

with subtle, yet interesting, spatial variation patterns. 154
155

Results =
157
Neighborhood consolidation with concordex. The con- 1ss
cordex workflow can be used to interrogate the neighborhood 1se
composition of the nodes in a spatial KNN graph, G = (V, E), 1e0
where V' is a set of cells or spots and F is the set of edges in +e1
the graph. The edges of the graph are determined by some 12
metric on V, usually by computation of transcriptomic or e
spatial distance, and the nodes are assigned predetermined s+
discrete or continuous labels. When discrete labels are avail- 165
able, the concordex assessment proceeds first by calculating e
the neighborhood consolidation matrix K, with a row for e
each cell 7 and one column for each label j (Figure 1). The s
entries K;; can be interpreted as the fraction of neighbors ies
of cell ¢ that are assigned label j. This representation has 17
been used to identify ‘cellular neighborhoods’ in multiplexed 17
imaging data (14-16), but has yet to be comprehensively ap- 17
plied to datasets on scale with modern SRT technologies. 175
Additionally, since this approach relies on pre-annotated la- 174
bels, which are often unavailable or imprecisely defined, con- 175
cordex extends the labeling framework to include continuous 17
representations of cells. Here, the columns of the neighbor- 17
hood consolidation matrix correspond to each component of 17
the continuous vector. Clustering the rows in the neighbor- 17
hood consolidation matrix assembles cells into SHRs, where 1s0
cells within an SHR can be thought of as having similar e
neighborhood composition. Though we focus on the spa- 1
tial applications of concordex, the matrix /K can be used in s
a non-spatial context to reveal cells with non-homogeneous 1s4
neighborhoods and assess cluster boundaries via direct visu- 1ss
alization of between-cluster relationships and within-cluster 1ss
heterogeneity (Supplemental Note). 187

We use concordex to identify SHRs in datasets encom- 1ss
passing several SRT technologies and spatial scales. We build 1ss
on previous results that demonstrate the utility of this ap- s
proach with discrete annotations and extend this result to 11

2 | bioRxiv

show that continuous labels accurately partition cells into
SHRs. In cases where anatomical information about the tis-
sue is known, we use k-means clustering to identify SHRs
in the spatial context, but otherwise, SHRs are obtained us-
ing graph-based clustering algorithms such as Leiden (17) or
Louvain (18) to cluster the neighborhood consolidation ma-
trix.

Benchmarking concordex in control and Visium data.
To better understand the utility of our approach, we simulated
control spatial datasets in various patterns. First, we designed
a synthetic dataset containing two cell types and distributed
the cells on a chessboard in different proportions (Figure 1B,
Methods). This scenario is useful because it allows analysis
of whether a method can detect regions of varying cell type
composition, even when a cell type is present throughout the
entire spatial field of view. We assessed whether other meth-
ods described above could perform the same region segmen-
tation task. Ideally, methods should detect the checkerboard
as a macro-pattern rather than the exact positions of the indi-
vidual cell types.

We find that concordex is able to effectively reconstruct
the chessboard squares (Figure1C) and each detected region
contains the expected proportion of the simulated cell types.
The concordex predictions were most similar to STAGATE
and BANKSY, with both methods producing recognizable
chessboard and correctly assigning grid points with rela-
tively high accuracy (Figure 1D). Conversely, other meth-
ods failed to perform this task in notable ways. Two meth-
ods, BayesSpace and SpaGCN, reproduced the cell type as-
signment rather than aggregating the points into regions even
when using parameters that should prefer region identifica-
tion over cell type identification (Figure 1D). Though the cell
type locations resemble the chessboard grid, we argue that the
misidentification of regions at this step precludes meaning-
ful downstream gene analysis. On the other hand, Giotto and
GASTON did not produce a recognizable chessboard (Figure
1D). When we arranged the simulated cell types in sequential
layers and used concordex to predict the layers (Supplemen-
tal Figure S6), we found the results were consistent with the
chessboard control (Supplemental Figure S6). Importantly,
concordex captures the expected organization of the simu-
lated tissue across an array of gene expression patterns and
relies on compositional changes, not expression, to determine
regional boundaries.

Next, we evaluated the ability of concordex to identify
SHRs in 12 manually annotated sections of the human dor-
solateral prefrontal cortex (DLPFC) (19). This dataset was
acquired on the 10x Genomics Visium platform, and each
section includes up to 7 annotated anatomical regions that
can serve as ground truth. Since the Visium platform does
not have cellular resolution and deconvoluted cell type pre-
dictions were not available for the spots, we used the first 50
principal components to compute the neighborhood consol-
idation matrix. Given the presence of unbalanced clusters,
we used the adjusted mutual information (AMI) to compare
the accuracy of SHRs identified by concordex to established
and recently developed spatial clustering methods, includ-
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Fig. 1. The concordex workflow: A. A spatial KNN graph is constructed from spatial coordinates and associated annotations such as cell types or features from a principal
component analysis projection. For each cell or spot, the entries in the neighborhood consolidation matrix represent the fraction of neighbors that have a label indicated.
SHRs are defined by clustering the neighborhood consolidation matrix. B. A control experiment in which a chessboard pattern consists of two regions, each comprising two
cell types, one with 80% of one cell type, and 20% of another, and the other region with a 20% / 80% mix. C. concordex captured this pattern with high accuracy, while D. the
performance of six other methods varied. E. The expected proportion of cell types in each SHR in the control (left) and the predicted proportion of cell types produced by

each method (right)
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Fig. 2. Evaluation of in Visium DLPFC dataset. A. Comparison of adjusted mutual information scores across 12 sections of the DLPFC dataset B. The manual
annotations for section 151675. C. Evaluation of concordex and D. other methods in section 151675 from the human DLPFC dataset. Each method is shown next to the
corresponding alluvial diagram mapping the manual annotations to the predicted annotations.
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ing BANKSY, BayesSpace, GASTON, Giotto, SpaGCN, and 2«
STAGATE. 250
Across the 12 sections, concordex consistently identi- s
fied the expected cortical layers across sections of the DLPFC 252
dataset (Figure 2A)). Using sample 151675 as an example, 25
we found that the SHRs identified by concordex generally 25
agree with the ground truth annotations (Figure 2B) and rep- 2ss
resent a qualitative and quantitative improvement over sev- zss
eral methods (Figure 2C-D), confirming that the neighbor- 257
hood consolidation matrix is a useful representation for defin- 2ss
ing SHRs in practical applications. The other methods pro- 2s
duced results that vary in their agreement with the annota- 2
tions (Figure 2D). Despite having comparable AMI (Figure zs:
2A) in some sections, we find that the predictions from other 22
methods produce layers that are qualitatively less distinct
than concordex, and in general, require more computational 26
time to compute (Supplmental Figure S4). 264
Interestingly, Giotto, SpaGCN, and STAGATE pro- 26
duced results that are substantially worse than those of the 26
other methods and contrast with the results published in the 27
respective manuscripts for these methods. This is in part due 2
to the fact that we used analytic Pearson residuals (20) instead 2°
of sequencing depth to normalize the data before dimension 2°
reduction with PCA. Although the question of how to nor- 2"
malize spatial transcriptomics data remains open, we found 2
that the PCs computed from analytic Pearson residuals better 22
retained spatial tissue structure compared to explicitly depth 2

normalized data. 275
276

Improved identification of layers in the mouse neocor- >/
tex using concordex. To assess whether concordex could 27
be used to predict SHRs in a dataset with cellular resolution, 27
we applied our method to an adult mouse primary visual neo- 2s
cortex profiled with STARmap technology (21). STARmap 2s:
relies on padlock probes that hybridize to intracellular mRNA 22
followed by in situ amplification and imaging to read out 2s
gene-specific sequences. The authors provided data for 1020 2s«
genes detected in 1207 cells along with molecularly defined 2es
cell types and annotated anatomical regions as shown in Fig- 2s
ure 3A. To further demonstrate the utility of using continuous s
representation of cells, we again used the first 50 PCs as cell 2
labels for input to concordex. 289

The combination of cellular and region annotations al- 2s
lows for a thorough evaluation of how well the regions pre- 2o
dicted by concordex capture the expected cell type distribu- 2e
tion in a well-studied system. The predicted SHRs agreed 20
well with the annotations when run with default parameters s
(Figure 3B) and improved the predictions generated by other 2ss
methods (Figure 3C). In contrast to Visium, the distance be- 20
tween adjacent spatial locations in the STARmap data varies 2o7
considerably. The performance of concordex in this dataset 20
also demonstrates that this approach is robust to differences 20
in spatial scale that exist across SRT technologies. Addition- s
ally, the cell types present in each predicted SHR align with o1
the expected cell type distributions in each layer even though s
specific cell types are present in multiple layers in similar s
proportions, for example, el.2/3 cells in L1 and L2/3 (Figure 30
3D). This is expected given that concordex explicitly clusters aos

4 | bioRxiv

cells into regions on the basis of local neighborhood compo-
sition. Other methods fail to resolve this difference and com-
bine the layers or produce arbitrary divisions (Figure 3B).

We further validated the predicted SHRs based on
known marker genes for the upper and lower layers of the
mouse neocortex (Figure 3E). The expression of Slcl7a7 is
broadly expressed in all of the layers and excludes the white
matter and hippocampus. To delineate the upper layers, we
focused on Lamp5 for layers 2/3 and 4. The expression of
Pcp4 has been shown to localize to the upper layers, L5 and
L6. Importantly, the expression of these genes maps onto
several SHRs predicted by concordex. This demonstrates the
value of defining regions using rather than the spatial expres-
sion of individual genes.

Identification of spatially variable genes in the mouse
cerebellum. We next used concordex to identify SHRs in a
Slide-Seq V2 mouse cerebellum dataset (22). Typical down-
stream differential expression (DE) analysis to identify spa-
tially variable genes would examines differences between
SHRs or rely on global metrics like Moran’s I or its local
equivalent (23). However, we maintain that these approaches
preclude exploration of the interaction between cell type and
SHR, and cannot distinguish patterns that are driven by dis-
tinct spatial and cell type effects.

The SHRs identified by concordex show qualitative
agreement with the annotations from the Allen Brain Ref-
erence Atlas (Figure 4A-B). To identify spatial DE genes,
we used a Negative Binomial generalized linear model (NB-
GLM) that includes an offset term for sequencing depth and
an interaction term between cell type and SHR. In total, 1,246
genes could be explained by cell type, SHR, or an interac-
tion (Figure 4C). We classified genes as being cell type- or
spatial-dominant based on the model term with largest coef-
ficient. For genes with evidence of an interaction, we further
identified whether this effect could be explained more by cell
type or SHR (Methods).

When we looked at genes that had a combination of
SHR and cell type effects without an interaction, we found
that cell type effects dominate for most genes, and in general,
SHR effects were smaller in magnitude compared to cell type
effects (Figure 4D; upper panel). Interestingly, genes with-
out an interaction did not exhibit spatial autocorrelation mea-
sured by Moran’s I (Figure 4D; upper panel), which suggests
that cell type and spatial interaction is required for autocor-
relation. In contrast, genes with an interaction display strong
spatial autocorrelation and have higher effects overall(Figure
4D; lower panel). The dominant effect for most genes in this
class is the combined cell type and interaction effect. This
suggests that the gene is more aptly described as a spatial-
cell type marker gene. We observed that spatial-interaction
effects are in general smaller than cell type-interaction effects
(Figure 4D; lower panel) and in most cases, the spatial inter-
action effect is only slightly larger than the cell type interac-
tion effect. One clear outlier to this pattern is Aldoc which
has dominant spatial-interaction effects (Figure 4E). In the
cerebellum, this gene is predominantly expressed by Purkinje
cells, but it also exhibits strong spatial patterning, with ex-
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https://doi.org/10.1101/2023.06.28.546949
http://creativecommons.org/licenses/by-nd/4.0/

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546949; this version posted June 19, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A Annotation B

e AT A

BANKSY

concordex
"

Llag Mt

Giotto

SpaGCN

@EHPC mCC
HLle MHL5

@ SHR 1 mSHR 2
B SHR 3 ESHR 4
Hl4 HL2/3
mLu

[ SHR5 ESHR 6
@ SHR 7

GASTON C

Glotto:
SpaGCN
BANKSY:

STAGATE
GASTON
concordex

0'0 Ql‘l/ QP‘ Q‘@

STAGATE Adjusted Mutual Information
Glottor
BANKSY
SpaGCN:
GASTON:
STAGATE:
concordex

Qn Q’} Qh Qb

Adjusted Rand Index

Pcp4

Slc17a7

i

0

Fig. 3. Evaluation of concordex on STARmap dataset. A. Manual annotations of the regions. B. SHR predictions from various methods. For concordex, the first 50 PCs
were used to generate the neighborhood consolidation matrix. C. Performance of all methods using AMI (top) and ARI (bottom). D. Proportions of cell types in each SHR in
the annotation (left) and concordex (right). E. Validation of predicted SHRs using normalized expression of known marker genes. Abbreviations: HPC - hippocampus, CC -

corpus callosum

pression localized to alternating parasagittal bands (24). The sa
spatial banding pattern in Purkinje cells is apparent in the ss
Slide-Seq data (Figure 4E), but the expression of this gene ss
by other cells in this layer contribute to the strong spatial- a7
interaction effect relative to the Purkinje-interaction effect sss
(Figure 4E). Overall, these results show that linear models s
paired with accurate region identification by concordex can s«
identify biologically and spatially relevant genes. a1

342

Fast identification of SHRs in the mouse small intes- 3
tine. Finally, we applied concordex to a VisiumHD dataset of 3+
a mouse small intestine (25). isiumHD greatly enhances the ss
resolution of the Visium platform with the capture area 2pm s
bins arranged in a regular 3250 x 3250 grid to achieve cellu- s
lar scale. Nearly 400,000 8um bins overlap with the tissue as
sample in the mouse intestine dataset. Since this data is very as
sparse, we used the dataset that aggregated the 2pm bins into sso
the larger 16p4m bin size in order to visualize SHRs (Supple- s
mental Figure S7). Using putative cell type annotations as ss
input, concordex readily identified villus, crypt, and muscu- sss
lar structures that are consistent with histology (Supplemen- s«
tal Figure S7). These results demonstrate that concordex can sss
accurately reconstruct spatial structures across diverse tiSSue sss
types, even when working with large datasets, which are ex- a5
pected to become increasingly common in the future. as8

359
Discussion -
Efforts to characterize the expression and functional similar- s
ities of cells in their tissue context rely on accurate meth- sss
ods to identify regions with compositional similarity. We de- ss

Jackson etal. | concordex

veloped concordex to explicitly aggregate cells into regions
based on the compositional similarity of their local neigh-
borhoods. This approach enables long-range identification of
regions and broad characterization of tissues. Our method is
fast and flexible, leveraging research that has resulted in op-
timized algorithms for computing the kNN graph. On simu-
lated data, concordex readily identifies global organization,
even when the same cell types are represented throughout
the spatial field. Using concordex, we were able to identify
the well-described laminar structure of the mouse cerebellum
and regions of functional importance in the mouse liver.

Importantly, we have demonstrated the utility of using
local neighborhood compositional similarity as a marker of
SHREs in spatially resolved transcriptomics data. Approaches
that rely on k-NN graphs and discrete labels have been devel-
oped for multiplexed imaging analysis (14—16) and SRT (26).
concordex extends these workflows both as a tool for ex-
ploratory analysis of non-spatial transcriptomics data and by
allowing continuous attributes for neighborhood consolida-
tion. We demonstrate that using continuous attributes to build
SHRs performs similar to the discrete case. This addresses a
significant limitation of other methods that to our knowledge,
require cell type annotation as a prerequisite. Other methods
aim to detect regions within a tissue where gene expression
is consistent. The assumption is that the organization of tis-
sues is related to the spatial dependence of gene expression.
However, this approach for region identification often over-
looks the cell type heterogeneity within a region and con-
founds the biological interpretation of spatial domains with
the procedure used to generate them. For example, the no-
tion of a ‘tissue domain’ in the BANKSY paper (8), is de-
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Fig. 4. Identification of spatially variable genes using generalized linear models. A. Schematic of the mouse cerebellum from Allen Brain Atlas. B. Prediction of SHRs
in the cerebellar cortex using cell types (top) or the top 50 PCs (bottom) to compute the neighborhood consolidation matrix. The proportion of cell types in each SHR is
similar in either case.C. Different combinations of effects were detected in each gene. D. For genes without an interaction effect (top) cell type effects tend to be most
prominent and correlate poorly with Moran’s |. In contrast, genes with an interaction effect (bottom) correlate more strongly with Moran’s | and are generally larger in
magnitude. E. The gene Aldoc displays cell type and SHR-specific expression, the spatial effects dominate.

fined as the result obtained when ‘building aggregates with ass
neighborhood kernel[s] and spatial yardstick[s]’. Similarly, ss
in the GASTON paper (12), ‘spatial domains’ are described ss
in terms of topographic maps, that result from isodepth which s9:
the GASTON method infers. Again, the notion of a ‘spatial’ as
or ‘tissue’ domain is tautological with the algorithm used to ss
produce it. In the concordex framework, we prioritize the bi- s
ological definition of spatial homogeneous regions, and our sss
approach to identify SHRs follows from the definition, not
the other way around. Thus, while other methods can, atas
times, produce similar results to concordex, concordex re- ss7
liably distinguishes between cell type and region assignment ass
and is particularly adept at identifying SHRs that recur in spa- ss
tially distant parts of the tissue. 400
401
Many SRT studies aim to identify the relative position 4z
of cell types in space. Implicit in these analyses is that s
cell types are organized into SHRs, and efforts to identify o
region-specific variation largely rely on alignment to previ- «s
ously characterized anatomical structures (27). On the other s
hand, computational approaches for identifying SHRs vary 7
in their scalability and interpretability. Spatial smoothing ap- «s
proaches often increase the dimension of SRT data, usually 40
by concatenating information from spatial neighbors into a 1o

6 | bioRxiv

single matrix as input to dimension reduction and clustering
algorithms (8, 28). These approaches are computationally
burdensome as k& (the number of neighbors) and n (the num-
ber of observations) becomes large, and can be intractable
even for current datasets. As spatial transcriptomics tech-
nologies continue to improve, not only in terms of resolution,
but also throughput, computational efficiency will become in-
creasingly important.

Aggregation of cells and spots into neighborhoods based
on the compositional similarity of their local neighborhoods
enables long-range SHR identification of regions and broad
characterization of the tissue. As we showed in simulation,
existing methods that are based on gene expression or at-
tributes derived from gene expression can fail to differentiate
cell type variation from regional variation. By using infor-
mation about cell neighborhoods, concordex naturally allows
for cells of the same type to be assigned to different regions.
When cell type labels are used with concordex, one possible
limitation is that densely populated cells with identical neigh-
borhoods may be identified as a single SHR, which may not
correspond to a histological feature. We believe that this re-
sult is important for what it reveals about the tissue organiza-
tion, such as varying cell density and type homogeneity.
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We also demonstrated that concordex has non-spatial s
applications when the neighborhood consolidation matrix is s
constructed from principal components or expression vec- 47
tors. A typical use case of concordex in this context includes s
assessing the existence of and relationships between prede- s
fined groups or clusters. In contrast to UMAP, the similarity «70
matrix can be used to visualize distinct clusters without dis- «71
torting the global relationships between them. The neighbor- «72
hood consolidation matrix is especially useful for estimating 473
the proximity of clusters and presents a more natural interpre- 474
tation of the biological relationship between them. Given that 475
UMAP plots are also used to visualize gene expression data 7
within a cluster, we note that gene expression can be readily «77
plotted as a heatmap grouped by pre-defined clusters without
loss of information present in the UMAP visualization. 478

In summary, concordex provides an accurate and effi- 4o
cient framework for identifying SHRs across a variety of spa- s
tial scales and technologies, furthering the understanding of 4;
complex spatial regionalization patterns. Future work should 4
focus on identifying genes with regionally restricted expres- s
sion and distinguishing this pattern from cell type localiza- s
tion. We believe that the SHRs identified by concordex can
offer substantial insight in future analyses and will facilitate s

further efforts to characterize complex tissues. oo

487
Methods 488

Overview of concordex. o

490

Construction of the KNN graph.The k-nearest neighbor
(KNN) graph G = (V, E) can be generated from a scRNA-
seq or SRT dataset where V/, the set of cells or spots, and F,
the set of edges, are determined according to some metric on
V. The number of cells in the dataset is denoted |V | = n.
For SRT data, we use the Euclidean distance between 42
the spatial locations of cell (or spot) ¢ and cell j to determine 45
the number of neighbors represented in the G, and disallow 44
self-neighbors. By default, 30 nearest-neighbors are retained. 4
For Visium data, we compute the 12 nearest neighbors. 496
497
Computation of the neighborhood consolidation matrix. The ues
concordex workflow requires labeling the nodes of G from e
a finite set C' with |V| = m distinct labels or with continu- s
ous vectors to create the n x m neighborhood consolidation sos
matrix, . 502
We conceptualize the case for continuous labels by con- sos
sidering the k nearest-neighbors of a node as a (kK — 1)-so
simplex whose vertices can be described in R™ for m > k. sos
When continuous vectors are used to color the nodes in G, sos
this amounts to assigning those vectors to the vertices of the sor
neighborhood simplex. This approach is easily amenable to sos
discrete labels, where each discrete label is assigned to ase
unique element of a vector in R™. The vertices can then sio
be mapped to the standard vectors in R™. In either the dis- s
crete or continuous case, the n rows of K can be interpreted si
as the center of mass of each simplex. We use the princi- sis
pal components to compute concordex in the DLPFC and s
STARmap datasets. However, alternative approaches such sis
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as Non-negative Matrix Factorization (NMF), topic model-
ing, or methods that identify gene programs in cells would
also serve as equivalent options for this application. These
methods generate latent representations that capture under-
lying patterns in the data that can be interpreted in a simi-
lar manner to PCA components. In the absence of explicit
cell type information, these methods offer a way to abstract
cell type into meaningful representations, effectively captur-
ing its influence without requiring direct categorization. The
columns of K either represent each of discrete labels or the
non-zero elements of the vectors in R™. For discrete labels,
the entries K;; can be interpreted further and represent the
fraction of neighbors of cell ¢ that are assigned label j.

Identification of spatial homogeneous regions. To assemble
cells or spots into spatial homogeneous regions (SHRs), we
use the matrix K and the k-means clustering algorithm when
there is prior information for the expected number of do-
mains. However, when the number of SHRs is not known,
unsupervised clustering algorithms such as Leiden (17) can
be used to generate assignments.

Differential Expression Analysis. To assess whether spa-
tial gene expression effects were a result of cell type ef-
fects, global spatial effects, or an interaction between the two,
we used a Negative Binomial generalized linear model (NB-
GLM) where the parameters were cell type, SHR, an interac-
tion term, and an offset for library size. The link function for
the mean can be written as

log i = fo+ 307 " 8 L(type; = ) + 08 ! B L(SHR; = j) + 5751 7 B L(SHR; = ) L(type; = k)
1)

In the equation above, 1(+) is the indicator function and
the [ coefficients are estimated from the model. The linear
models were fitted and analyzed using the INLA R package
(29).

To classify genes by the pattern of cell type and spa-
tial effects, we first excluded any terms with a confidence
interval including zero. After this exclusion, terms with-
out evidence of an interaction were called “cell type dom-
inant" if a cell type term had the greatest effect and were
called “spatial dominant" if a spatial term had the greatest
effect. For genes with non-zero interaction terms, we first
rearranged equation 1 to group like spatial or like cell type
terms. In the former case, we computed total effect of SHR &
interacting with cell type j as Sy + (5. Similarly, we com-
puted the total effect of cell type j interacting with SHR £ as
Bj + Bjr. We refer to these effects as spatial-interaction and
cell type-interaction effects, respectively. Similar to the non-
interaction case, genes with a greater spatial-interaction term
were called “spatial-interaction dominant", otherwise, we la-
beled the gene “cell type-interaction” dominant. In cases
where the fixed cell type or SHR effect was greater than the
interaction effects, we labeled the gene “cell type dominant"
or “spatial dominant". Genes with only negative terms were
not classified.
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Datasets. We applied concordex to samples from several sss
SRT technologies including Visium, VisiumHD, STARmap, s7
and Slide-Seq V2. More specifically, we used the human s
DLPFC Visium dataset from (19). Each of the 12 samples

in this dataset contained approximately 3460 to 4789 spots sz
and profiled more than 12,000 genes. Manual annotations s
of the cortical layers were provided with the data and served sz
as ground truth in our analysis. We downloaded the mouse s
intestine VisiumHD dataset from the 10x genomics website sz
(25). The data were provided at the 2pm, 8um, and 16um sz
resolution along with putative cell type assignments for the sz
8um and 16um resolution data. The STARmap data (21) s7
contained 1020 genes measured in 1207 cells, and the Slide- sz
Seq V2 (22) data contained 10,121 genes and 9985 cells. The ss:
details for the simulated dataset are provided in the Supple- s
mentary Information. Briefly, we used the splatter simulation

software (30) to generate a count matrix containing 14,400 s,
cells and 10,000 genes and arranged these cells in either a s
checkerboard or stripe pattern in different proportions ac- s
cording to the simulated cell type. 586

Data pre-processing. In all datasets that rely on a patterned
capture grid, we first removed all capture locations that were
outside of the main tissue area. If raw data were available,
genes expressed in fewer than 50 cells/spots were removed. .,
We used the analytic Pearson residuals to normalize the data, .,
compute principal components, and identify the top 3,000
highly variable genes. Otherwise, we used the processed data
provided by the authors.

591

592

Ethics approval and consent to participate. Not appli- ;..

cable 595
596

597

Consent for publication. Not applicable 598
599
600
Data availability. The data used in this manuscript are eor

available from their original authors. o
The Visium DLPFC dataset and annotations (19) areeos
available for download using the SpatialLIBD Bio- 2"
conductor package here https://doi.org/doi: er
10.18129/B9.bioc.spatialLIBD. The STARMAP ®
dataset from (21) is available on Figshare with the identifier st
https://doi.org/10.6084/m9.figshare. o
22565209.v1. We obtained the Mouse Cere-e613
bellum Slide-Seq V2 dataset from (22) and down-:
loaded it from the Broad Institute Single Cell Portal et
https://singlecell.broadinstitute.org/ 2:;
single_cell/study/SCP948. We downloaded thesis
mouse intestine VisiumHD dataset from the 10x genomics &

website (25) 622

623
- T . . . 624
Code availability. concordex is available as a Bioconductor s

package at https://www.bioconductor.org/
packages/release/bioc/html/concordexR. 628
html. The source code for the Bioconductor implementation 2
is available at https://github.com/pachterlab/ es
concordexR, and the Python version is available at®®

633
https://github.com/pachterlab/concordex. eu
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Code to reproduce the figures in this manuscript are
available at the following Github repository: https:
//github.com/pachterlab/JBMMCKP_2023/
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