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Abstract:  
Early mammals were nocturnal until the Cretaceous-Paleogene extinction enabled diurnal niche 40 
expansion. Diurnality evolved multiple times independently, but the mechanisms driving this 
shift remain unclear. We identify a conserved cell-intrinsic signal inversion that facilitates the 
transition from nocturnality to diurnality. Diurnal and nocturnal mammalian cells respond 
oppositely to temperature and osmotic cycles, mirroring species’ activity patterns. Cells exhibit 
differential global responses to temperature changes, including the phosphoproteome and protein 45 
synthesis. mTOR signaling is identified as a central mediator of this inversion, with diurnal 
mammals converging on modifications to mTOR and WNK pathways during evolution. 
Reducing mTOR activity induces nocturnal-to-diurnal shifting at cellular, tissue, and organismal 
levels. Therefore, the mTOR pathway is a cellular nexus that integrates energetic state and 
environmental signals to determine activity niche. 50 
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Main text: Early mammals were nocturnal (night active) until extinction of the diurnal (day active) 
dinosaurs facilitated a rapid expansion into daytime niches (1–3). Diurnality subsequently arose 55 
multiple times, independently, from diverse and distant nocturnal lineages (1, 3). No mechanistic 
basis for the switch between nocturnality and diurnality is known, though evidently some change 
in the relationship between internal circadian clocks and external daily rhythms is required (4, 5). 
 
Despite the 76 million years that separate nocturnal mice and diurnal humans from their common 60 
ancestor (6), the same cell-autonomous circadian clock mechanism operates in both mouse and 
human cells (7). Daily rhythms of gene expression, proteome renewal, and myriad cellular 
functions depend on cell-intrinsic ~24h oscillations in the production of PERIOD (PER) proteins 
(7, 8); where the changing activity of PER over time effectively determines the biological time-
of-day (9). Similarly, the hypothalamic suprachiasmatic nucleus (SCN) performs an equivalent 65 
function in diurnal and nocturnal mammals, receiving light input directly from the eyes to generate 
an internal representation of solar time (5, 10–19). However, unlike the SCN, PER oscillations in 
peripheral cells and tissues are oppositely organized between diurnal and nocturnal mammals (18, 
20, 21), and instead vary with daily systemic signals that habitually coincide with the transition 
from resting, fasting and lower body temperature to activity, feeding and higher body temperature 70 
(22), rather than external solar time. Thus, excepting the SCN, the major behavioral and 
physiological daily rhythms in mammals are set to opposite times of day between nocturnal and 
diurnal mammals (Fig. 1A), suggesting a switch downstream of the SCN (4). How diurnal 
mammals integrate the same environmental cues to achieve an inversion of organismal and cellular 
physiology compared with nocturnal mammals is an open question whose answer is critical for 75 
understanding the internal synchrony that is pivotal for long-term health (23–26).  
 
At the cellular level, acute stimulation of PER and/or global protein synthesis elicits similar shifts 
in the timing (or phase) of subsequent PER oscillations in both mouse and human cells (9, 27–29). 
Physiologically, daily PER oscillations in cells throughout the body are synchronized and 80 
amplified by behavioral patterns of feed/fast, rest/activity, light/dark and stress exposure acting 
via specific systemic signals (29–35), a process known as circadian entrainment (36, 37). 
Hormonal entrainment by insulin signaling (22, 29, 38, 39) and glucocorticoids (30, 31) which 
signal patterns of feed/fast and light/dark respectively, occurs by similar mechanisms in human 
and mouse (29, 40), and should reinforce the differential behavioral patterns that drive the daily 85 
release of these hormones. Cellular clocks throughout the body and brain can also be synchronized 
by daily rhythms in body temperature that associate with locomotor/feeding thermogenesis during 
wakeful activity and increased cooling via peripheral vasodilation during sleep/rest (41–48). 
Whether temperature-mediated timing cues act comparably on cells from diurnal and nocturnal 
mammals has not been investigated, however.  90 
 
Circadian synchronization by temperature is typically weaker than hormonal stimulation, with heat 
shock pathways (46, 47), cold shock proteins (49, 50), cdc-like kinases (51) and upstream open 
reading frames (uORFs) in PER mRNA (52) having each been independently proposed to 
communicate temperature change to the cellular clock by a range of transcriptional and post-95 
transcriptional mechanisms (53–55). As these pathways are evolutionarily conserved, circadian 
responses to temperature change are assumed to operate analogously in mouse and humans and 
other mammals. Mouse and human biology can differ markedly, however, beyond obvious 
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developmental differences (56). For example, mouse and human cells exhibit profoundly different 
biochemical reaction rates (57–60). 100 
 
Here, we show that the mTOR signaling pathway activity and downstream sensitivity of bulk 
protein synthesis to temperature is a fundamental difference between nocturnal mice and diurnal 
humans, with profound physiological consequences that include the nocturnal-diurnal switch. We 
identify cell-autonomous differences between nocturnal and diurnal mammals in their response to 105 
thermal and osmotic challenge by specific (PER2 protein synthesis) and general (global 
phosphorylation and translation rate) mechanisms. We recapitulate temporal niche selection in 
vitro and reveal its cellular and molecular bases as a thermodynamic, not kinetic, effect. Finally, 
we test the functional consequences of modifying protein synthesis rates on temporal niche in vivo, 
and pinpoint mTOR activity as a signaling nexus that integrates bioenergetic and thermodynamic 110 
cues into the cellular clock.  
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Results 
 
Cellular circadian rhythms of nocturnal and diurnal mammals are differentially entrained by 115 
daily temperature cycles 
Daily temperature cycles can synchronize circadian clocks in cultured mammalian cells and 
modulate the timing of clock protein activity in vivo (44, 46, 47, 61). Most systemic timing cues 
elicit very similar effects on the circadian clocks of mouse and human cells when delivered in vitro 
and reflect the activation of cell-autonomous response pathways ((29, 40); fig. S1, A and B). We 120 
were therefore surprised to find that, using a conventional clock reporter (Bmal1:luciferase, 
Bmal1:luc), primary fibroblasts from multiple mice and humans consistently entrained oppositely 
to 12h:12h 37°C:32°C temperature cycles that mimic daily body temperature rhythms (Fig. 1B, 
fig. S1C, (43, 44, 47, 62)). This is evident from bioluminescence waveforms that rapidly become 
antiphasic to each other during the temperature cycle and subsequently persist at constant 125 
temperature, and suggests a fundamental difference in the way cells from the two species respond 
to temperature. 
 
This differential synchronization by temperature mirrors the opposite temporal niches habitually 
occupied by mice and humans, so we sought to test the generality of our findings using primary 130 
fibroblasts from a range of diurnal and nocturnal mammals. In natural environments, humans, 
gibbons, marmosets (63), sheep (64) and striped mice (65) occupy diurnal niches whereas rats, 
mice and many species of lemurs (63, 66) are typically nocturnal. Remarkably, we found that, after 
temperature cycles, nocturnal representatives consistently entrained oppositely to cells from 
diurnal species (Fig. 1C) with no significant difference in circadian period between temporal niche 135 
(fig. S1, D and E). The difference in phase did not associate with body size (Fig. 1D). 
 
To validate our findings and facilitate deeper mechanistic investigation, we repeated these 
experiments using an alternative reporter, PER2-LUCIFERASE (PER2-LUC aka PER2::LUC). 
PER2-LUC is a well-established, reliable reporter of the molecular clock in mammalian cells and 140 
tissues (67, 68), since resultant bioluminescence correlates directly with the nascent production of 
endogenous PER protein (69). We compared fibroblasts from PER2-LUC mice (67) with human 
PER2-LUC knock-in U2OS cells generated using CRISPR-Cas9 (fig. S1, F-G). Again, we found 
mouse and human cells quickly developed oppositely phased rhythms under a 5°C daily 
temperature cycle that were maintained under constant conditions (Fig. 1E, fig. S1, H and I).  145 
 
To confirm our findings were not attributable to any thermal stress response we repeated these 
experiments with a smaller 1.5°C temperature cycle. Again, we observed that human PER2-LUC 
showed an inverted phase relative to mouse PER2-LUC rhythms (Fig 1, F and G), with the only 
difference being that the absolute phases relative to the temperature cycle differed (Fig. 1G). This 150 
is consistent the theory that the phase of entrainment varies with the strength of stimulus (36). 
From these observations, we infer the existence of a cell-intrinsic signal inverter when diurnal 
mammalian cells are compared with nocturnal cells. We considered that understanding this signal 
inverter might provide insight into the nature of the mammalian nocturnal-diurnal switch. 
 155 
Diurnal cellular clocks are buffered against temperature change 
During entrainment in vivo, the phase of cellular clocks is adjusted during each day by systemic 
signals in a fashion that varies with the magnitude of each stimulus and the relative biological 
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times (circadian phase) at which they are received (70, 71). Having found that daily temperature 
cycles, in the absence of other synchronizing cues, elicited opposite effects on diurnal vs nocturnal 160 
cellular clocks, we sought to elucidate the mechanism of signal inversion by using thermal 
challenge as a tool. Single temperature shifts are sufficient to adjust cellular clock phase (46, 52); 
we therefore asked whether differential synchronization by temperature cycles between mouse and 
human cells is due to differences in their response to the same temperature shift. As such, mouse 
and human PER2-LUC cells were subjected to a single temperature increase or decrease at 165 
different circadian phases (fig. S2, A and B). From the phase response curves (fig. S2, C and D), 
it was evident the circadian clock was indeed differentially sensitive to single temperature steps 
between mouse and human cells. Whilst the qualitative response to temperature change was 
similar, over most of the circadian cycle, human cells showed greater advances for temperature 
increase whereas mouse cells showed greater delays for temperature decrease. Under a daily 170 
temperature cycle, this is sufficient to result in opposite entrainment (fig. S2E) and superficially 
explains the cellular phenomenon but not its underlying mechanism.  
 
Acute changes in PER protein production shift the phase of cellular clocks in vitro and in vivo (9, 
27, 29). We therefore asked whether differential sensitivity of mammalian cellular clocks to 175 
temperature change was reflected at the level of PER synthesis (Fig. 2A). We drew on 
understanding of firefly luciferase enzyme kinetics (69, 72, 73) to deconvolve the acute response 
to a rapid 5°C temperature increase (Fig. 2B) into two components. First, change in the baseline 
due to change in catalytic turnover of luciferase, which was not different between mouse and 
human cells (Fig. 2C); second, the change in total and peak luminescence that reflects the induction 180 
of PER2-LUC protein synthesis, which occurred more rapidly and produced more nascent PER2 
in mouse than human cells (Fig. 2D). At lower luciferin concentrations, which reflect steady-state 
PER2-luciferase concentration (69), the luciferase signal did not change with temperature over 
these short timescales (fig. S3, A and B), suggesting it is the synthesis of the PER2 protein which 
is responding to the temperature change with a different magnitude in mouse than human cells. 185 
Over several cycles then, in principle, species-specific differences in the thermal sensitivity of 
PER protein production could function cumulatively to invert cellular clock timing. We therefore 
asked by what mechanisms temperature-dependent translation of PER2 might differ between 
species. We considered this must either occur by mechanisms that selectively regulate PER or by 
more general mechanisms that include changes in PER expression and activity.  190 
 
Compared with the clear mouse/human difference in PER2 translation and consistent with 
previous reports, we found no evidence for equivalent differences in the acute transcriptional 
response of Per2 to temperature change (fig. S3, C and D (Miyake et al, 2023)). This suggests 
signal inversion occurs post-transcriptionally. As such, we note Per2 mRNA contains a 195 
temperature-responsive upstream open reading frame (uORF) that modulates translation of the 
PER2 protein to temperature increases in the physiological range (52, 74). The Per2 uORF is 
highly conserved among nocturnal and diurnal mammals however (fig. S3E and (52), and so not 
an attractive candidate for species-specific differences in PER2 protein synthesis. In contrast, 
mouse or human PER2-LUC ORF expressed constitutively in mouse or human cells recapitulated 200 
the acute response of endogenous PER2-LUC to temperature change (Fig. 2E, fig. S4, A and B), 
suggesting differential thermal sensitivity of PER2 translation is largely intrinsic to the coding 
region without requiring 5'- or 3'-UTR regulation. Rare codon usage and RNA secondary structure 
are common mechanisms of translational regulation that affect the synthesis of many proteins (75–
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79), including those with circadian function such as PER2 (80, 81). Consistent with this we found 205 
that, compared with wild type, codon-optimized hPER2 (hPER2-CO, fig. S4C) with less predicted 
mRNA structure (fig. S4D) showed minimal sensitivity to temperature change (Fig. 2E).  
 
On the other hand, we identified only modest differences in codon usage and predicted mRNA 
structure between mouse and human PER2 (fig. S4, C and D), with mouse PER2 slightly more 210 
structured than human. Furthermore, PER1 in both species was highly similar (fig. S4, E and F), 
so we wanted to distinguish whether PER2 itself was essential for the signal inverter in diurnal 
cells, or else simply associated with it. To directly test the contribution of PER2 to circadian 
synchronization by temperature cycles, we used CRISPR-edited cells where endogenous HALO-
tagged PER2 could be acutely depleted using HALO-PROTAC3 (Fig. 2F, and fig. S5). Critically, 215 
when PER2 was acutely depleted, we found significant but only modest differences in the effect 
of daily temperature cycles on the diurnal cellular clock (Fig. 2F), consistent with previous reports 
(52). Therefore, whilst species-specific differences in PER2 translation may contribute to 
differential effects of temperature, they cannot be the sole basis for cellular signal inversion. From 
these data, we do not discount differences in the individual contributions of many other proteins, 220 
such as PER1. However, an alternative hypothesis is that general diurnal/nocturnal differences in 
the temperature-dependence of the translational machinery underlie the observed PER2 
translational differences. This hypothesis is informed by recent developmental studies, showing 
marked differences in global biochemical reactions between species, with humans exhibiting 
generally slower rates and more stable proteins than mice (57–59). We therefore asked whether 225 
broader differences in the translational response to temperature change might underpin our 
observations.  
 
Using constitutively expressed luciferase as a reporter for bulk 5'-cap-dependent translation, we 
found that mouse cells were much more sensitive to temperature increase and decrease than human 230 
cells (Fig. 2G). Mouse cellular translation increased with temperature increase, and vice versa, as 
previously reported (82, 83). By contrast, human cells showed an inverted response with reduced 
magnitude: reduced translation for temperature increase and no significant change for temperature 
decrease. This inverted response of protein synthesis to temperature was particularly stark over 
repeated temperature cycles (fig. S6A). We validated these findings by quantifying nascent 235 
polypeptide production with puromycin-labelling in primary fibroblasts (Fig. 2H, and fig. S6B). 
Again, we found that protein synthesis in human cells was more resistant to physiological 
temperature change compared to mouse cells. The differential effect of temperature on translation 
rate was also observed over longer timescales: after 1 week at constant 32°C or 37°C, mouse cell 
protein synthesis was clearly temperature-dependent, faster at the higher temperature, whereas 240 
human cells showed no significant difference between the two (Fig. 2I). Translation in nocturnal 
rat cells likewise showed differential long-term temperature sensitivity compared with cells from 
the similarly sized but diurnal striped mouse (Fig. 2I, fig. S6C).  
 
Circadian rhythms exhibit the remarkable feature of temperature compensation, where, unlike 245 
most biological processes, the ~24h period of oscillation is only modestly affected by a change in 
ambient temperature (Q10 of 0.8-1.2) (84, 85). However, consistent with their increased 
translational sensitivity to temperature, the cellular circadian rhythms of nocturnal mammals 
showed an increased temperature dependence relative to diurnal mammals. Mouse and rat 
circadian rhythms ran at a significantly faster rate at 37°C than 32°C, whereas circadian rhythms 250 
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in human and striped mouse cells ran significantly slower at the higher temperature (Fig 2J, fig. 
S6D). Taken together, this suggests that biochemical reactions are more sensitive to temperature 
and run faster at higher temperatures in nocturnal mammalian cells compared to diurnal species. 
This provides an additional insight into cellular signal inversion that is complementary to the acute 
differences in thermosensitivity described above: during daily temperature cycles nocturnal 255 
cellular clocks accelerate at the higher temperature, whereas diurnal ones tend to slow down.  
 
Global species differences in the response to temperature change involve mTORC1 and WNK1  
What causes differences in the temperature sensitivity of the protein synthesis machinery at the 
molecular level? Protein synthesis is principally controlled by phosphorylation of proteins 260 
comprising the translational apparatus (86), including members of the cap-binding complex eIF4F, 
43S preinitiation complex, and the elongation factor eEF2 (87). To gain insight into differential 
responses to temperature, we performed quantitative (phospho)proteomics on biological replicates 
of primary mouse and human fibroblasts subjected to high or low temperature over either acute or 
extended time frames (Fig. 3A, fig. S7A). We reasoned that thermosensitive phosphosites could 265 
impart directionality to temperature signals, including those that collectively control translation 
rate. To identify potential thermosensitive phosphosites we focused our analysis on those where 
phosphorylation changed in proportion (fold change increases with temperature increase and vice 
versa) or in inverse proportion (fold change decreases with temperature increase and vice versa) 
with acute temperature change or longer-term temperature adaptation (Fig. 3, B and C and table 270 
S1).  
 
We first noted the clear directional bias to the acute temperature response of the phosphoproteome 
(Fig. 3B). This directional bias in phosphoproteome response of the two species matches their 
directional bias in phase response (Fig. S2). A similar directional bias was observed in the 275 
temperature-adapted phosphoproteome (Fig. 3C), reflecting widespread differences in their 
homeostatic mechanisms of ambient thermo-adaption. Conversely, protein abundances were much 
less sensitive to acute or longer-term temperature change in both species (fig. S7, B to D and table 
S1). 
 280 
There was, however, little overlap between mouse and human cells in the identity of temperature-
dependent phosphosites and of the proteins to which they belong (fig. S7E). The pathways 
previously identified as regulators of circadian temperature response, HSF1 signaling (46, 47) via 
HSP70 and HSP90, or the RNA binding proteins CIRBP and RBM3 (49, 50) had similar proteomic 
responses to acute or long-term temperature change between mouse and human cells (fig. S7F). 285 
This aligns with the expected strong evolutionary conservation of the cellular response to 
temperature (88–90), but not with a role in a cell-intrinsic circadian signal inverter. Therefore, to 
examine alternative regulators, we performed motif analysis for amino acids surrounding the 
phosphoacceptor (S/T/Y) to identify the kinases and/or phosphatases that drive the observed 
phosphoproteomic differences upon temperature changes. We observed differences between 290 
mouse and human cells in both the direction and magnitude of response: in mouse, basic residues 
were highly enriched for inversely proportional phosphorylations; in humans this trend was 
reversed, apparent only in the -2/-3 positions, and with smaller magnitude (Fig. 3D, fig. S7G).  
 
Basic residue motifs are recognized by diverse basophilic kinases, including those of the AGC 295 
family as well as With No Lysine/K (WNK) kinases (91, 92). The AGC family include key 
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regulators and effectors in the PI3K-AKT-mTOR pathway – the major pathway for control of 
protein synthesis, macromolecular crowding and cellular metabolism, whose activity reflects the 
integration of many different metabolic and extracellular signals to function as a ‘metabolic 
rheostat’ (93–98). WNK kinases are the master sensor/effectors of the WNK-OSR1/SPAK-300 
SLC12A pathway that maintains intracellular water balance. Amongst the relatively small number 
of overlapping proteins in mouse and human cells that showed a difference in the direction of their 
phosphorylation response to temperature change (acute, <3%; adaptation, <1%; fig. S7E), a clear 
differential pattern was observed in key regulatory sites of WNK1 and mTOR pathway 
components (Fig. 3, E and F) consistent with enrichment for basic motifs in opposite directions. 305 
WNK1 and mTOR are ubiquitous essential proteins that function as major determinants of 
translation and cellular homeostasis more generally, and whose activities are coordinately and 
circadian-regulated in cultured cells and in vivo (99–101). We hypothesized that nocturnal-diurnal 
differences in their response to perturbation underlies the phenotypic switch. 
 310 
Convergent evolution of diurnal response to thermodynamic perturbation 
Within concentrated macromolecule solutions like the cytosol, modest changes in temperature 
elicit large changes in the total thermodynamic potential energy of water. Water potential deviates 
from the linear relationship described by Van’t Hoff’s equation in both magnitude and direction 
as more water molecules are constrained within macromolecule hydration layers at lower 315 
temperatures with proportionally less ‘free’ molecules in bulk solvent, reducing the potential 
energy to perform work in the cell (102) . Thermosensitivity can therefore be imparted to 
biological systems through either direct kinetic effects or components that respond to changes in 
solvent thermodynamics. These are easily distinguished by testing whether an equivalent change 
in water potential can mimic a temperature shift. For example, increasing external osmolarity 320 
would phenocopy decreasing temperature as ‘free’ water moves out of the cell by osmosis, 
reducing the intracellular water potential. WNK and mTOR signaling pathways are both sensitive 
to changes in water potential, for example, phosphorylation at OXSR1-S339 and AKT1-T450 
scale directly with extracellular osmolarity and inversely with temperature (102). We therefore 
considered whether circadian entrainment to temperature change might occur by a thermodynamic 325 
mechanism and predicted, then demonstrated, that mouse and human cells differentially entrain to 
daily cycles in extracellular osmolarity (Fig. 3, G and H; fig. S8, A to D). Conversely, a nocturnal-
diurnal switch that relies on kinetic effects would be sensitive to absolute temperature. We 
subjected mouse and human cells to temperature cycles with the same 5oC amplitude but a lower 
mid-point of 30.5oC compared to 34.5oC and they continue to entrain to opposing phases (Fig. 3I).  330 
 
Collectively, these results support a model where WNK and mTOR pathways form an intrinsic 
nocturnal-diurnal switch by virtue of species-specific differences in their response to 
thermodynamic changes in the intracellular environment. Diurnality evolved several times, likely 
acting through complementary changes at many genetic loci that were assumed to differ between 335 
diurnal lineages. However, if changes in WNK and mTOR activity are an efficient evolutionary 
means to select for diurnal phenotypes then convergent evolution should be detected by 
comparative genomics. We therefore mined the Zoonomia comparative genomics resource of 
placental mammals (103, 104) to ask whether members of these pathways are amongst those genes 
that evolved particularly quickly in the genomes of diurnal mammals relative to nocturnal 340 
mammals. Of the 242 species analyzed, 77 and 109 were categorized as definitively diurnal and 
nocturnal, respectively, based on prior literature (Fig. 3J and table S2). After restricting the 
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analysis to ubiquitously expressed genes – excluding tissue-specific genes such as olfactory 
receptors (fig. S8, E and F) – to identify candidates that could contribute to our observed cellular 
phenotype, we found WNK1, RRAGB, a core regulator of mTOR complex 1 (mTORC1) activity 345 
(105), and translational quality control factor ZNF598 (106) were among the genes that have 
evolved significantly faster in diurnal mammals (Fig. 3K). Faster evolutionary rates in an 
additional key regulator of mTORC, TSC2, and a second paralogue of WNK1, WNK4, correlated 
with diurnality, but lay just outside our phylogeny-corrected significance threshold suggesting they 
are evolving faster in only a subset of related diurnal mammals (table S3).  350 
 
The emergence of diurnality in mammals converges on mTOR and WNK pathway modifications, 
but how might these variations mechanistically lead to differential sensitivity to solvent 
thermodynamics? mTOR has many components and regulators that might impart ‘water 
responsiveness’, so we focused on WNK1. WNK1 autophosphorylation and activation is acutely 355 
sensitive to water potential (100, 102, 107) . In cells, increased macromolecular crowding and the 
resultant decrease in solvent availability and potential energy drive WNK condensation, mediated 
by its intrinsically disordered C-terminal tail (100, 102, 107–110), an ensemble property of 
multiple sequence features rather than individual amino acid residues. Hydration of disordered 
regions has greater impact upon water potential than for compact structures, therefore they have 360 
increased likelihood of participating in compensatory biomolecular condensation to restore water 
equilibrium upon macromolecular crowding, thermal or osmotic challenge (102) . We therefore 
predicted that diurnal WNK1 would contain less intrinsic disorder compared to nocturnal WNK1 
as this would reduce the probability of (de)condensation upon temperature-driven changes in water 
potential and therefore the thermal sensitivity of WNK1 activity, reflecting the lower 365 
responsiveness of diurnal species to temperature change. We detected a significant difference in 
disorder between diurnal and nocturnal WNK1, the former tending towards less disorder as 
predicted and reflecting the lower responsiveness of diurnal species to temperature change (Fig. 
3L, fig. S8G). 
 370 
Comparative genomics therefore confirmed our hypothesis that the diurnal/nocturnal switch arose 
convergently and independently through multiple complementary mutations that act together to 
alter the cellular sensitivity (e.g. WNK pathway) and responsiveness (e.g. mTOR pathway) to 
perturbation of cellular thermodynamic equilibria by modulating the favorability of key 
macromolecular interactions. This differentially affects circadian phase via a combination of 375 
specific (PER synthesis) and more general mechanisms (basophilic kinase activity, bulk 
translation) that ultimately renders human circadian clocks more robust to thermal and osmotic 
perturbation than those in mice. Under repeated daily thermodynamic perturbations, this results in 
entrainment to opposing phases (fig. S2E). Ultimately, our results strongly suggest that cellular 
clocks respond to crowding-related changes in macromolecular hydration and supramolecular 380 
assembly rather than changes in solute kinetic energy, as was implicitly assumed. 
 
Perturbation of mTOR activity and translational initiation makes nocturnal cells behave like 
diurnal cells 
This hypothesis makes a simple testable prediction: decreasing the basal protein synthesis rate by 385 
inhibiting mTOR activity should attenuate the capacity of nocturnal cellular clocks to respond to 
thermal challenge more than diurnal clocks, rendering them more diurnal-like by reducing the 
relative magnitude of temperature-dependent differences in translation between the two.  Whereas 
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a panel of small molecule inhibitors of proteins and kinases previously implicated in circadian 
post-translational regulation revealed only modest effects on entrained phase under daily 390 
temperature cycles (fig. S9, A to D), inhibitors targeting the mTOR signaling pathway showed 
large effects on entrained phase (Fig. 4A and fig. S9, E and F), with selective mTOR inhibition by 
INK128 showing the largest effect. When mTOR activity is reduced, mouse cells showed 
significant phase delays under daily temperature cycles, whereas human cells were relatively 
unaffected (Fig. 4A). INK128 treatment of fibroblasts from another nocturnal mammal (rat) and 395 
diurnal mammal (striped mouse) gave comparable entrainment phenotypes, demonstrating the 
conservation of the role of this pathway in temperature signaling (Fig. 4B). Growth factor signaling 
acts via mTORC1 to control protein synthesis rates (93, 94), and can be manipulated in cell culture 
by changing serum concentration. In lower serum concentrations, mouse cellular rhythms were 
delayed by up to 6h under daily temperature cycles compared with high serum control conditions, 400 
whereas human cells were not (Fig. 4C). In all cases, suppression of mTOR activity makes cells 
from nocturnal mammals behave more like cells from diurnal mammals, with PER2-LUC peaks 
selectively shifting towards the early warm portion of the temperature cycle, whereas the contrary 
was not true for diurnal cells.  
 405 
mTOR inhibition was not sufficient to make nocturnal cells completely phenocopy diurnal cells, 
and several other essential genes showed faster evolution in diurnal than nocturnal species 
including translational regulators (table S3). We therefore assessed how robust human versus 
mouse cellular circadian rhythms are to acute perturbation of translation rate by pharmacological 
attenuation of 5'-cap-dependent translational initiation, independently of mTOR or temperature. 410 
Circadian clocks drive, and are driven/synchronized, by daily cycles of protein synthesis (28, 111–
114), amplified in vivo by daily timing cues such as insulin/IGF-1 signaling linked with feed/fast 
cycles, which act via the translational machinery (29). When treated at the same circadian phase, 
very clear and significant differences were observed in the magnitude and direction of circadian 
phase shifts between mouse and human cells in response to direct inhibitors of eIF4A, rocaglamide 415 
A (RocA) and hippuristanol (Fig. 4D). Again, the cellular clock in mouse cells was much more 
sensitive than in human cells, consistent with the idea that natural selection has led to increased 
resistance to translational perturbation in diurnal mammals.  
 
mTOR regulation of circadian phase is maintained from cells to tissues 420 
The function of the mTOR pathway as a cellular signaling nexus for translational regulation is 
conserved across eukaryotes and essential in mammals. Our results strongly suggest that 
differences in mTOR regulation and activity constitute a major element of the nocturnal-diurnal 
switch. If so, mTOR inhibition should render circadian clocks in mouse tissues more diurnal in 
their response to daily temperature cycles, both ex vivo and in vivo. 425 
 
To test this, we subjected tissue explants from adult PER2-LUC mice to daily temperature cycles 
± mTOR inhibition (Fig. 5A). As expected (46, 115), high amplitude PER2-LUC oscillations were 
observed in neuroendocrine (pituitary) and non-neuronal (lung, adrenal) tissues, with PER2 
consistently peaking around the warm-to-cold transition (Fig. 5B), as in mouse fibroblasts (Fig. 430 
1E). Reduction of mTOR activity by INK128 resulted in a significant phase shift, delaying the 
PER2-LUC peak by 8-12h to near the cold-to-warm transition (Fig. 5B), such that they now 
resembled human cells rather than mouse cells in vitro (Fig. 1E). 
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The hypothalamic SCN of nocturnal mammals are remarkable for PER rhythms that are essentially 435 
opposite to almost all other tissues, in the same phase as SCN of diurnal mammals (Fig. 1A). This 
is consistent with the SCN's conserved function in all mammals as a dedicated photic timekeeper, 
responsible for encoding and communicating anticipated photoperiod. Interneuronal coupling 
renders SCN PER rhythms more robust than other tissues and much more sensitive to photic cues 
than to systemic signals such as temperature (29, 46, 116). Adult SCN are sensitive to temperature, 440 
however, and explants stably entrain to the same daily temperature cycles employed throughout 
this study (Fig. 5C)(116–118). We found that after 7 daily temperature cycles, SCN entrained with 
a phase that was much later than other tissues, with PER2 peaking late in the cold phase (Fig. 5C) 
and at the end of the subjective day (Fig. 5D), reminiscent of the difference in circadian timing 
between SCN and other mouse tissues in vivo. Remarkably, the phase of SCN rhythms remained 445 
unaltered by mTOR inhibition (Fig. 5D). This mirrors the phenotype seen in cells and tissues from 
diurnal species, likely resulting from functional insensitivity to mTOR inhibition, which 
diminishes the responsiveness of the protein synthesis machinery to temperature changes. Indeed, 
the SCN is unaffected by abrupt changes in translation rate, which is conferred by network 
coupling (112, 119). Since SCN activity in nocturnal mammals aligns with daytime, as for diurnal 450 
mammals (Fig 1A), mouse brain temperature rhythms would be expected to reinforce, rather than 
disrupt, the SCN's established relationship with the light:dark cycle in vivo.  Our findings support 
a model in which all mammalian SCN maintain an mTOR-insensitive representation of daytime, 
while the timing of behavior and physiology outside the SCN is governed by the interaction 
between cell-autonomous timekeeping and timing cues – such as temperature, osmolarity and 455 
growth factors – that regulate global and specific (PER) protein synthesis via mTOR. 
 
mTOR activity regulates nocturnal-to-diurnal behavioral switching 
We have used a pharmacological inhibitor (INK128) that binds to the active site of mTOR (120)  to 
demonstrate that, in vitro, modifying the basal activity of this pathway differentially alters cell-460 
intrinsic responses in nocturnal vs diurnal mammals and thus mTOR pathway activity is implicated 
in the nocturnal-diurnal switch. However, diurnality/nocturnality is a behavioral phenotype in 
which timing of locomotor activity defines temporal niche classification. To truly demonstrate that 
mTOR pathway activity is implicated in the nocturnal-diurnal switch, we need to observe 
locomotor activity switching under organismal mTOR activity modification.  465 
 
Under dietary-restricted conditions, such as those found in the wild, mTORC1 activity and protein 
synthesis is greatly reduced (121–123). Accordingly, mouse behavior becomes more diurnal than 
when fed ad libitum (124). We sought to replicate these observations in mice under laboratory 
conditions. Precise control of mice energy balance can be achieved using the Work for Food (WFF) 470 
paradigm (125, 126), under which food is limited (Fig. 5E, fig. S10A) and mice lose significant 
body mass according to the negative energy balance imposed upon them (fig. S10B) (127, 128). 
In these conditions, mTOR activity is significantly reduced in multiple brain and peripheral tissues 
(fig. S11). Compared with control conditions (food ad libitum) where mice are nocturnally active 
(fig. S10, C and D), under the negative energy balance conditions of WFF, mice apportion more 475 
of their activity to the daytime, like a diurnal mammal, (Fig. 5F, fig. S10, C to E, (125)), which is 
matched by advanced timing of core body temperature rhythms towards daylight hours (fig. S10, 
F-H). 
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WFF demonstrates that, without affecting the SCN ((129) ; fig. S11), it is possible for a nocturnal 480 
mouse to significantly alter locomotor activity timing while integrating the same environmental 
cues, manifesting diurnal behavior. This is consistent with the conserved role of daylight timing 
signaling in nocturnal and diurnal mammals (Fig. 1A). Differential gene expression analysis 
implicates a role of mTOR (fig. S11), though demonstrates that many other pathways are targeted 
by this extreme starvation treatment (128, 130). To confirm that mTOR pathway activity is 485 
fundamental to the selection of locomotor activity timing, we targeted mTOR activity organismally 
via isocaloric modification of amino acid concentration in the diet. Unlike total caloric restriction, 
which acts largely independently of the mTOR pathway (131) and results in a self-imposed feed-
fast cycle (132), amino acid restriction inhibits mTOR activity through amino acid sensing by the 
Rag-dependent signaling pathway (105, 133, 134). In cells, amino acid reduction altered cellular 490 
entrainment to temperature cycles and phenocopied pharmacological inhibition of mTOR (fig. 
S10I). Partial, brain-restricted, mTOR inhibition was achieved in mice fed ad libitum for four 
weeks with an isocaloric methionine restricted diet (Fig. 5G, fig. S10, J and K) with minimal 
weight loss (fig. S10L). Under these conditions, which permit reduction in mTOR activity without 
adverse consequences such as excessive weight loss which can confound measurement of 495 
locomotor activity, both the onset and peak of activity of mice on a methionine-restricted diet was 
significantly phase-advanced into the daylight hours relative to control (Fig. 5, H and I) with no 
change in locomotor period (fig. S10M). Taken together, these activity shifts in response to 
organismal modifications of mTOR activity are consistent with the cellular data, and support a 
molecular mechanism whereby the basal level of mTOR activity modulates the response to 500 
physiological entraining cues. Therefore, amongst several factors, nocturnal-to-diurnal switching 
involves convergent evolution for differential responsiveness of WNK and mTOR pathway 
signaling which can be recapitulated in vitro and in vivo (Fig. 5J).  
  
 505 
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Discussion 
 
Mammalian colonization of the daytime niche accelerated when its previous occupants, the 
dinosaurs, became extinct (1). Subsequently, mammals came to occupy all temporal niches, 510 
frequently switching between them as life history and environment dictates (5, 135). The specific 
mechanism that permits this switch between nocturnality and diurnality was previously unknown. 
We investigated an apparent cell-intrinsic inversion of the molecular circadian clockwork to 
entrainment cues that alter intracellular water thermodynamics – temperature and osmolarity. This 
largely arises from differences in the basal activity and sensitivity of the mTOR pathway, with 515 
downstream consequences on protein synthesis. Members of this pathway have evolved more 
rapidly in diurnal compared to nocturnal mammals, and modulation of mTOR activity in cultured 
cells, tissues or in vivo is able to recapitulate the switch from nocturnal to diurnal circadian timing. 
 
These critical differences in the cellular response to temperature mirror recent findings in 520 
developmental biology, where mammalian species show marked differences in global biochemical 
reaction rates which correlate with developmental tempo (57–59). Our analogous discovery of 
significant differences in global phosphorylation and protein synthesis between mice and humans 
led to mTOR kinase as a plausible and key component of a different phenomenon: the nocturnal-
diurnal switch. We note that mTOR complexes 1 and 2 have several substrate effectors and are 525 
regulated by multiple different cell signaling systems (136). As part of the large and interlinked 
PI3K-AKT-mTOR pathway, mTOR regulates and is regulated by cellular crowding via WNK1 
and the circadian response to osmolarity, amongst myriad other things (97, 107, 137, 138). 
Therefore, we do not discount that differential temperature sensitivity of other cellular kinases, 
phosphatases, and signaling mechanisms, acting upstream, downstream or in parallel with mTOR, 530 
may also contribute to temporal niche switching. Moreover, that the re-organization of physiology 
under reduced mTOR activity via amino acid restriction or WFF requires several weeks and does 
not recapitulate diurnal behaviour (125, 130, 139) . Therefore, we also do not discount roles for 
hypothalamic neuroplasticity, melatonin signal inversion or direct photic modulation of locomotor 
activity in temporal niche selection (13, 140–142).  535 
 
Ultimately though, any switching mechanism that arose evolutionarily must have a genetic basis. 
We demonstrate this through a genome-wide comparison of diurnal and nocturnal mammals, 
which provides complimentary genetic evidence for the importance of mTOR activity with key 
proteins, RRAGB and WNK1, having faster evolutionary rates in diurnal versus nocturnal 540 
mammals. We consider genetic mechanisms of diurnality may be broadly dispersed and polygenic, 
and to this end we have evidence for faster evolutionary rates in olfactory pathway genes (fig. S9) 
and phototransduction genes (143). Future work might be directed towards identifying the detailed 
molecular and structural differences between diurnal and nocturnal mammals in mTOR pathway 
components and its regulators. 545 
 
At the whole organism level, our findings agree with the circadian thermo-energetics (CTE) 
hypothesis for conditional niche-switching in several different mammals (4). CTE states that 
nocturnal activity patterns for homeothermic mammals are more costly than diurnal patterns, since 
nocturnal animals have higher energy requirements to mitigate the greater heat loss of being active 550 
during the (cold) night (129, 144, 145). Diurnality arises as an energy saving measure when food 
availability is scarce, which outcompetes the extra predation pressure of being active by day (146, 
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147). At the cellular level, these results support the bioenergetic hypothesis for circadian and other 
biological rhythms (148–152), where oscillations primarily function to minimize the high cost of 
maintaining protein homeostasis. In this context, the increased resistance to translational 555 
perturbation in cells from diurnal mammals is thus an energy saving measure, and will diminish 
the cellular challenge of conflicting timing cues. It would be interesting to investigate whether 
birds – which independently evolved diurnality, homeothermy and have a higher basal core body 
temperature than mammals (153), as well as marked heat stress and specialized thermoregulation 
during flight (154) – use the same mechanism. 560 
 
Overall, our findings illustrate marked species differences in the cellular environment and global 
pathway activity which influences circadian phase in cells, tissues and in vivo. Our findings add to 
a growing literature demonstrating species-specific differences in molecular activity which map to 
a cellular or external phenotype (57–60, 155–157). It is striking that many of these findings involve 565 
global regulation of protein turnover and the mTOR pathway, and integrate metabolic status with 
functional output (157, 158). 
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Fig. 1. Entrainment to temperature is a cellular correlate of behavioral temporal niche 1410 
(A) With respect to the external day-night cycle, organismal and cellular physiology differ 
between nocturnal mice and diurnal humans, despite these species having the same cell-
autonomous circadian clock mechanism. The retinorecipient hypothalamic SCN functions very 
similarly in diurnal and nocturnal mammals, with neuronal firing and PER oscillations peaking 
in the daytime, allowing the SCN to serve as an internal representation of the day-night cycle. 1415 
However, outside of the SCN, organismal behaviour, physiology and cellular activity, including 
oscillations of PER, are oppositely organized between diurnal and nocturnal mammals and 
instead vary with daily systemic signals that consistently coincide with the transition from 
rest/fast to activity/feeding rather than external solar time. This suggests a switch, downstream of 
the SCN, that controls the appearance of diurnality. 1420 
(B) After entrainment in 7 x 37°C (red) and 32°C (blue) 12h:12h cycles (data for final 3 cycles 
shown) which emulate the daily body temperature rhythm, mouse (grey) and human (orange) 
primary fibroblasts (derived from N = 3 individuals) are set to opposing phases when released 
into constant 37°C (red). Bioluminescence from Bmal1:luc was recorded under cycling and 
constant temperature portions of the experiment, and signal was detrended and normalized to aid 1425 
visualization of circadian phase. A dotted line illustrates the inverse phases under constant 
conditions. Circadian period varies between individuals, as previously reported (159) , but does 
not significantly differ between the species (Student’s t-test). However, circadian phase, defined 
as the time of the peak of Bmal1:luc relative to the last transition to 37°C, significantly differs 
(Watson-Williams test). 1430 
(C) Primary fibroblasts from striped mouse (Rhabdomys pumilio), marmoset (Callithrix 
jacchus), gibbon (Hylobates lar), sheep (Ovis aries), rat (Rattus norvegicus) and lemur (Lemur 
catta) were cultured under 37°C and 32°C 12h:12h for 7 cycles (data for final 1.5 cycles shown) 
before release into constant 37 °C. Bioluminescence from Bmal1:luc was recorded throughout 
(n=6-8). A dotted line at t= 32h illustrates the different phases under constant conditions. 1435 
(D) Circadian phase of the Bmal1:luc rhythm in constant conditions for the 8 mammalian species 
from (B) and (C). Two distinct clusters of opposing circadian phases of entrainment are found in 
mammalian cells. Phase was significantly different between temporal niche (pWatson-Williams < 
0.0001) and did not correlate with body size rank (rcircular Pearson’s = -0.25; p = 0.10). Statistics: 
Temporal niche, Watson-Williams; Ranked body size, circular Pearson’s. 1440 
(E) Human (U2OS) and mouse (fibroblasts, immortalized) expressing PER2-LUC from its 
endogenous locus, entrain to cycles of temperature (12h 37°C: 12h 32°C, data for 3 cycles 
shown) with opposing phases (n=8). Note the high amplitude rhythms during temperature cycles 
that damp upon entry into constant temperature condition, and the different phase of entrainment 
between the two different reporters, Bmal1:luc (B) and PER2-LUC (E).  1445 
(F) Human (U2OS) and mouse (fibroblasts, immortalized) PER2-LUC cells were synchronized 
by medium change at t=-186h and subject to temperature cycles (12h 37°C: 12h 35.5°C, data for 
final 3 cycles shown)) set 6h out of alignment to original phase. Human and mouse cells re-
entrain to the new timing cue within 7 days, and exhibit a stable and opposite entrained phase in 
constant conditions. 1450 
(G) Circadian phase for mouse (grey) and human (orange), calculated from (D) and (E), is given 
as peak of PER2-LUC expression relative to the last transition to 37°C, and significantly differs 
between mouse and human at each cycle magnitude (Watson-Williams test). Phase difference 
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between mouse and human at cycle magnitudes of 5°C (solid circles) and 1.5°C (open circles) is 
not significantly different. Statistics: Phase difference, t-test; circular phase, Watson-Williams.  1455 
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Fig. 2. Differential response to temperature is both a specific property of PER2 and global 
translation  
(A) Schematic of acute temperature shift and long-term temperature adaptation experiments. 
Cells are maintained at the indicated temperature (37°C or 32°C) for >6 days before temperature 1460 
shifts (5°C shifts) occur. 
(B) Raw bioluminescence data (arbitrary luminescence units, LU) showing preceding 24h and 
ensuing 36h of cells exposed to a temperature shift up from 32°C to 37°C at 0h (trough of 
PER2). Change in baseline, ∆ baseline, due to temperature dependence of appKm of luciferase is 
indicated by arrow, and integration of luciferase signal, ò synthesis, due to synthesis of new 1465 
PER2-LUC is indicated by shading.  
(C) and (D) Quantification of ∆ baseline, (C), and ò synthesis, (D), after a temperature shift up at 
0 h in mouse and human lines. Mean ± SEM and individual points presented throughout. 
Statistics: Student’s t-test, unpaired. 
(E) (Left) U2OS cells stably expressing constitutive PER2-LUC fusions – human PER2-LUC 1470 
(orange), mouse PER2-LUC (grey) or codon-optimized human PER2-LUC (teal) – were kept for 
3 days at constant temperature of either 32°C or 37°C before shifting temperature at t = 0 min. 
Fold induction of luminescence is shown relative to t = 0 min. (Right) Rate of induction was 
quantified as the gradient of the straight line fit from non-linear regression (Prism), given as 
fold/hour. Induction rates were compared between reporters. Statistics: TWA followed by 1475 
Šídák’s post-hoc test.  
(F) U2OS cells expressing HaloTag from the endogenous PER2 locus were treated with 1 µM 
HaloPROTAC3 or DMSO control. (Left) Treatments were applied to tagged cells for 24h before 
lysis and immunoblotting. Anti-Halotag antibody was used to detect the presence of the fusion 
PER2-HALO protein, anti β-actin serves as a loading control. (Right) PER2-HaloTag U2OS 1480 
cells were cultured under temperature cycles ± 1 µM HaloPROTAC3 (n=4 each condition). At 
0h cells were kept in constant temperature. Bioluminescence from Bmal1:luc was recorded 
throughout. Difference in phase of entrainment between control and PROTAC treatment is 
given, mean ± SEM. PROTAC treatment elicits an advance in entrained phase to temperature 
relative to control. 1485 
(G) Human cells (U2OS) or mouse cells (NIH 3t3) stably expressing constitutive LUC as a 
reporter of protein synthesis were exposed to the same temperature conditions as (D). (Right) 
Rate of induction of constitutive LUC calculated as (D).  
(H) At 1.5h after temperature step, 10 µg/ml puromycin was added to the cells which were lysed 
30 min later. Fold change puromycin incorporation was calculated by comparing incorporation 1490 
in the stepped condition vs incorporation in the control condition. (Left) Representative 
immunoblot of one of three biological replicates of mouse or human cells exposed to the four 
conditions (constant 37°C, shift down from 37°C to 32°C, constant 32°C, shift up from 32°C to 
37°C). Anti-puromycin (top) and coomassie loading control (bottom). (Right) Fold change 
puromycin incorporation in each direction temperature shift, N=12. Statistics: TWA mixed-1495 
effects model, followed by Šídák’s post-hoc test. Interaction species x temperature F(1, 44) = 
30.47, p < 0.0001. 
(I) Fold change protein synthesis rate in cells adapted to constant 37°C vs constant 32°C (from 
Fig. 2H and fig. S6C) in (left) biological replicate primary fibroblast cells of mouse (N=12) or 
human (N=12), and (right) rat (n=3) or striped mouse (n=3) fibroblasts. Statistics: one sample t-1500 
test, H0 = 1. 
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(J) Free-running period at constant 37°C (red) or 32 °C (blue) in biological replicate fibroblast 
cells of mouse (N=3, n=6) or human (N=3, n=6) expressing Bmal1:luc. Statistics: TWA mixed-
effects model. Interaction species x temperature, F(1, 4) = 23.68, p = 0.0082, Šídák’s post-hoc 
test reported; (right) TWA. Interaction species x temperature F(1, 20) = 170.8, p < 0.0001, 1505 
Šídák’s post-hoc test reported. 
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 1510 
Fig. 3. Differential mTOR pathway activity as the basis of the nocturnal-diurnal switch 
(A) Schematic of temperature shift experiment for (phospho)proteomics. Human and mouse 
primary fibroblasts were kept for 1 week in constant temperature of either 32°C (blue) or 37°C 
(red). At t = -24h, cells were treated with 100 nM dexamethasone to synchronize and t = 0h cells 
either shifted up, down or kept at the constant temperature as a control (either 32°C or 37°C). 1515 
Cells were lysed 1h later and quantitative proteomics (TMT-MS/MS) was performed to analyze 
the (phospho)proteome. For each phosphosite or peptide, fold change upon a temperature step is 
calculated by dividing (phospho)peptide signal of the shifted condition by the constant condition 
from which they were shifted. Long-term adaptation to temperature was examined by calculation 
of fold change (phospho)peptide signal from constant 37°C by signal at constant 32°C. 1520 
(B) Phosphoproteomics matrices for mouse (6973 phosphopeptides) and human (5698 
phosphopeptides). Matrix shows fold changes upon shift up (x-axis) and shift down (y-axis) for 
each phosphopeptide. Phosphopeptides are classified where fold change significantly increases 
with increasing temperature and decreases with decreasing temperature (proportional, ∝ temp, 
red) or significantly decreases with increasing temperature and increases with decreasing 1525 
temperature (inversely proportional, ∝ 1/temp, blue). Phosphopeptides that do not change 
significantly, or change significantly but in a single direction, are shown in grey. Total 
phosphoproteome fold changes were compared by MANOVA, and centroids, representing the 
average direction of the phosphoproteome response to temperature shift, are plotted: mouse 
centroid (-0.028, 0.022); human centroid (0.047, 0.026).  1530 
(C) Probability density distribution of fold change upon temperature adaptation for every 
detected phosphosite. Mouse (grey) and human (orange). Statistics: Mann-Whitney, p-value 
shown. 
(D) Motif analysis was performed on phosphopeptides that changed proportionally (∝ temp) or 
inversely proportionally (∝ 1/temp). Sequence logos showing enriched AA residues with 1535 
significant differential AA usage (DAU) are shown for phosphopeptides that change 
proportionally (above) and inverse proportionally (below) for mouse (left) and human (right). 
Sequence logos are centered around the phosphoacceptor at position 0. Sequence logos showing 
under-represented AA residues (i.e. depleted) are shown in fig. S7. 
(E and F) Fold change of the abundance of significantly changing phosphosites of mTOR 1540 
pathway members and WNK1 in human and mouse cells under acute shift (E) and adaptation 
conditions (F), extracted from (B) and (C). 
(G) Schematic of microfluidic-based entrainment of cells to repeated cycles of osmolarity. 
(H) Human (U2OS) and mouse (fibroblasts, immortalized) expressing PER2-LUC, were cultured 
under flow in isosmotic media (isosmotic relative to standard culture media) for 60h before 1545 
exposure to cycles of osmolarity (12h iso-osmotic: 12h +50 mOsm) for 5 complete cycles and 
subsequent release back into isosmotic media for a final 48h. (H) Circadian phase of human and 
mouse cells relative to the final transition into isosmotic media. Circadian phase was compared 
with the Watson-Williams test. 
(I) Human (U2OS) and mouse (fibroblasts, immortalized) PER2-LUC cells entrain to cycles of 1550 
temperature at below physiological levels (12h 33°C: 12h 28°C) with opposing phases. (Right) 
Circadian phase of human and mouse cells relative to the final transition into 33°C constant 
conditions. Circadian phase was compared with the Watson-Williams test. 
(J) Analysis pipeline for relative evolutionary rate of genes in nocturnal and diurnal mammals 
from the Zoonomia database. 1555 
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(K) Correlation values (Rho) between relative evolutionary rates of 16209 genes and phenotype, 
comparing 186 mammalian species classified as diurnal or nocturnal species, plotted against 
significance (-log10 p-value). Gene with significantly different evolutionary rates between diurnal 
and nocturnal are colored teal; a selection of genes are labelled. 
(L) WNK1 protein disorder was calculated per residue per species using Metapredict v3 (160) on 1560 
amino acid sequences and alignments from the Zoonomia resource (103, 104). The median 
disorder score of WNK1 for each species was compared by activity pattern (diurnal vs 
nocturnal). 
 

 1565 
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Fig. 4. Manipulation of mTOR pathway activity alters phase of entrainment 
(A and B) Human U2OS and mouse fibroblasts expressing PER2-LUC (A) and striped mouse 
and rat fibroblasts expressing Bmal1:luc (B) were entrained in 7 x 12h:12h 37°C:32°C 1570 
temperature cycles in the presence of mTORC1/2 inhibitor (1 µM INK128) or control, then left 
to free-run at 37°C. Bioluminescence from PER2-LUC was recorded throughout, detrended and 
normalized to aid visualisation of circadian phase during cycling conditions. Circadian phase 
under control (black) and INK128 (blue) conditions is shown for human and striped mice 
(circles) and mouse and rat (triangles) as circle plots, and change in phase, relative to control, is 1575 
shown below. Statistics: Phasecontrol vs phasetreatment two-way ANOVA followed by Šídák’s post-
hoc test, n=4-6 each condition. 
(C) Human and mouse PER2-LUC fibroblasts, cultured in decreasing concentrations of serum, 
were entrained to 7 days of temperature cycles before transfer to constant conditions. Dashed 
line at the peak of 10% serum control is shown for illustration purposes. (Right) Circadian phase 1580 
under control (black) and 1% serum (medium grey) and 0% serum (light grey) conditions is 
shown for human (circles) and mouse (triangles). Colored lines indicate human (orange) and 
mouse phases (grey). Change in phase, relative to 10% serum control, is shown below. Statistics: 
Two-way ANOVA followed by Šídák’s post-hoc test, n=6 (human) or 19-24 (mouse). 
(D) Human and mouse PER2-LUC cells, kept in constant conditions, were treated with inhibitors 1585 
of the cap-binding complex that target eIF4A (rocaglamide, rocA; hippuristanol) at the trough of 
PER2-LUC at t=-12h, indicated by an arrow. Dashed line at the peak of DMSO control is shown 
for illustration purposes. (Right) Change in phase, relative to control, in mouse and human after 
treatment. Statistics: Two-way ANOVA followed by Šídák’s post-hoc test, n=4 each condition. 
 1590 
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Fig. 5. mTOR pathway activity underlies phase of entrainment in tissues and the 
nocturnal-diurnal switch in vivo 
(A) Experiment schematic. Tissues were dissected from PER2-LUC mice and exposed to 3-6 
temperature cycles coincident with or antiphasic to their previous activity patterns, or constant 1595 
temperature. INK128 or control was added at the start of culture and luminescence from PER2-
LUC was measured to compare circadian phase of entrainment. 
(B) PER2-LUC mouse pituitary (square), adrenal (triangle) or lung (circle) tissues were dissected 
from mice at the beginning of lights on (i.e. the start of the rest phase for nocturnal mice) at time 
= 0h. Tissue slices were cultured ex vivo in the presence of luciferin, treated with DMSO (black, 1600 
left) or INK128 (blue, right), and exposed to cycles of temperature (12h 37°C: 12h 32°C) 
antiphasic to previous activity patterns. Days 2 and 3 of temperature cycles and 3 days of 
constant conditions are shown. (Right) Circadian phase of entrainment, calculated given relative 
to the final transition from 32°C to 37°C, for each tissue under each condition is shown, with 
arrows indicating the direction of the phase shift. Delta phase, relative to DMSO control. 1605 
Statistics: TWA mixed-effects model, matched design. Interaction tissue x drug F(2, 24) = 4.28, 
p = 0.025; Šídák’s post-hoc test reported, n=5 each condition. 
(C) SCN tissue was dissected from PER2-LUC mice, sliced, and placed into ex vivo culture in 
the presence of luciferin.  Slices were entrained for 7 days in antiphasic temperature cycles (12h: 
12h  37 °C: 32°C, black line, or 32°C: 37°C, grey line) before release into constant 37 °C. 1610 
(Right) Circadian phase of entrainment, relative to time = 0h. Statistics: Student’s t-test, 
unpaired, n=4-5. 
(D) SCN slices from PER2-LUC mice kept under LD cycles (subjective LD cycle shown) were 
kept at constant temperature (37 °C) or exposed for 3 days to temperature cycles (12h: 12h  
37°C: 32°C) in antiphase to the LD cycle from which the mice were taken. Ex vivo culture 1615 
started at 0h when slices were given either INK128 (blue) or DMSO (black), and 
bioluminescence was monitored throughout. PER2-LUC expression is plotted against circadian 
time, where 0h = the start of the subjective light period. Delta phase, relative to DMSO control. 
Student’s t-test, unpaired, n=3-5, not significant. 
(E)  Experimental schematic for the Work for Food (WFF) paradigm as conducted by Hut et al. 1620 
(125). Adult male mice were singly housed in cages equipped water ad libitum and running 
wheels under 12h : 12h light:dark cycles throughout. The number of food pellets given was 
controlled by the number of revolutions each mouse made on the running wheel. In the baseline 
portion of the experiment, one pellet was given per ~100 revolutions. The number of revolutions 
per pellet was gradually increased in the WFF group until one pellet was given per ~300 1625 
revolutions. In this way, a finely controlled organismal reduction in mTOR-dependent processes 
can be achieved (128). Running wheel activity and core body temperature from implanted 
temperature logger was recorded throughout.  
(F) (Left) Average proportion of total daily locomotor activity in 1h bins across the 24h day 
during the baseline and test period in the WFF group is shown. Activity in N=11 mice was 1630 
averaged over 7 days of recording during each period of the experiment. (Right) Average 
acrophase of activity (top) and diurnality index (% of activity occurring in hours of full light, 
bottom) is shown for control (n=10) and WFF groups (n=11), with Holm-Šídák’s post-hoc test 
significance after Two-way ANOVA indicated. 
(G to I) WT mice (N=23, 12 male, 11 female) were kept in long day conditions (14h light: 4h 1635 
twilight: 6h dark) for 1 weeks with ad libitum supply of food and water. After week 1, N=12 
mice (6 male, 6 female) were switched onto an ad libitum supply of compositionally identical 
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food with the exception that methionine content was reduced to 25% of control. N=11 mice (6 
male, 5 female) were kept on ad libitum control diet containing 100% methionine. Mice were 
kept on diets for 4 weeks with continuous monitoring of wheel running activity. (G) mTOR 1640 
activity in liver and brain taken from mice after methionine restriction for 4 weeks, vs mice on 
control diet as indicated by immunoblot. 
(H) Representative actogram of mice on control diet (left) and methionine restricted diet (right). 
(I) Average 24h activity was calculated for days 15-37 for all mice, binned into 1h bins and 
normalized. Light conditions are indicated relative to midday as t=0h with twilight (light grey) 1645 
and darkness (dark grey) periods shaded. (Right) Average acrophase of activity (top) and 
diurnality index (% of activity occurring in hours of full light, bottom) is shown for control diet 
(con) and low methionine diet (low met) groups, with t-test (Welch’s correction) significance 
indicated. 
(J) Thermodynamic challenge and energy balance are integrated intracellularly by the mTOR 1650 
pathway and WNK pathways, which feedback upon each other and regulate the cell-intrinsic 
circadian clock. Differential sensitivity of this feedback in nocturnal and diurnal cells (through 
multigenic modifications including WNK1, RRAGB and ZNF598), sets the cellular circadian 
clock response resulting in distinct circadian phases. Dial icon by Colourcreatype from Noun 
Project (CC BY 3.0). 1655 
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