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Abstract:

Early mammals were nocturnal until the Cretaceous-Paleogene extinction enabled diurnal niche
expansion. Diurnality evolved multiple times independently, but the mechanisms driving this
shift remain unclear. We identify a conserved cell-intrinsic signal inversion that facilitates the
transition from nocturnality to diurnality. Diurnal and nocturnal mammalian cells respond
oppositely to temperature and osmotic cycles, mirroring species’ activity patterns. Cells exhibit
differential global responses to temperature changes, including the phosphoproteome and protein
synthesis. mTOR signaling is identified as a central mediator of this inversion, with diurnal
mammals converging on modifications to mTOR and WNK pathways during evolution.
Reducing mTOR activity induces nocturnal-to-diurnal shifting at cellular, tissue, and organismal
levels. Therefore, the mTOR pathway is a cellular nexus that integrates energetic state and
environmental signals to determine activity niche.
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Main text: Early mammals were nocturnal (night active) until extinction of the diurnal (day active)
dinosaurs facilitated a rapid expansion into daytime niches (/—3). Diurnality subsequently arose
multiple times, independently, from diverse and distant nocturnal lineages (/, 3). No mechanistic
basis for the switch between nocturnality and diurnality is known, though evidently some change
in the relationship between internal circadian clocks and external daily rhythms is required (4, 5).

Despite the 76 million years that separate nocturnal mice and diurnal humans from their common
ancestor (6), the same cell-autonomous circadian clock mechanism operates in both mouse and
human cells (7). Daily rhythms of gene expression, proteome renewal, and myriad cellular
functions depend on cell-intrinsic ~24h oscillations in the production of PERIOD (PER) proteins
(7, 8); where the changing activity of PER over time effectively determines the biological time-
of-day (9). Similarly, the hypothalamic suprachiasmatic nucleus (SCN) performs an equivalent
function in diurnal and nocturnal mammals, receiving light input directly from the eyes to generate
an internal representation of solar time (5, /0—19). However, unlike the SCN, PER oscillations in
peripheral cells and tissues are oppositely organized between diurnal and nocturnal mammals (/8,
20, 21), and instead vary with daily systemic signals that habitually coincide with the transition
from resting, fasting and lower body temperature to activity, feeding and higher body temperature
(22), rather than external solar time. Thus, excepting the SCN, the major behavioral and
physiological daily rhythms in mammals are set to opposite times of day between nocturnal and
diurnal mammals (Fig. 1A), suggesting a switch downstream of the SCN (4). How diurnal
mammals integrate the same environmental cues to achieve an inversion of organismal and cellular
physiology compared with nocturnal mammals is an open question whose answer is critical for
understanding the internal synchrony that is pivotal for long-term health (23-26).

At the cellular level, acute stimulation of PER and/or global protein synthesis elicits similar shifts
in the timing (or phase) of subsequent PER oscillations in both mouse and human cells (9, 27-29).
Physiologically, daily PER oscillations in cells throughout the body are synchronized and
amplified by behavioral patterns of feed/fast, rest/activity, light/dark and stress exposure acting
via specific systemic signals (29-35), a process known as circadian entrainment (36, 37).
Hormonal entrainment by insulin signaling (22, 29, 38, 39) and glucocorticoids (30, 37) which
signal patterns of feed/fast and light/dark respectively, occurs by similar mechanisms in human
and mouse (29, 40), and should reinforce the differential behavioral patterns that drive the daily
release of these hormones. Cellular clocks throughout the body and brain can also be synchronized
by daily rhythms in body temperature that associate with locomotor/feeding thermogenesis during
wakeful activity and increased cooling via peripheral vasodilation during sleep/rest (4/—48).
Whether temperature-mediated timing cues act comparably on cells from diurnal and nocturnal
mammals has not been investigated, however.

Circadian synchronization by temperature is typically weaker than hormonal stimulation, with heat
shock pathways (46, 47), cold shock proteins (49, 50), cdc-like kinases (57) and upstream open
reading frames (uORFs) in PER mRNA (52) having each been independently proposed to
communicate temperature change to the cellular clock by a range of transcriptional and post-
transcriptional mechanisms (53—55). As these pathways are evolutionarily conserved, circadian
responses to temperature change are assumed to operate analogously in mouse and humans and
other mammals. Mouse and human biology can differ markedly, however, beyond obvious


https://doi.org/10.1101/2023.06.22.546020
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546020; this version posted April 16, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

developmental differences (56). For example, mouse and human cells exhibit profoundly different
100  biochemical reaction rates (57—60).

Here, we show that the mTOR signaling pathway activity and downstream sensitivity of bulk
protein synthesis to temperature is a fundamental difference between nocturnal mice and diurnal
humans, with profound physiological consequences that include the nocturnal-diurnal switch. We

105 identify cell-autonomous differences between nocturnal and diurnal mammals in their response to
thermal and osmotic challenge by specific (PER2 protein synthesis) and general (global
phosphorylation and translation rate) mechanisms. We recapitulate temporal niche selection in
vitro and reveal its cellular and molecular bases as a thermodynamic, not kinetic, effect. Finally,
we test the functional consequences of modifying protein synthesis rates on temporal niche in vivo,

110  and pinpoint mTOR activity as a signaling nexus that integrates bioenergetic and thermodynamic
cues into the cellular clock.
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Results

115  Cellular circadian rhythms of nocturnal and diurnal mammals are differentially entrained by
daily temperature cycles
Daily temperature cycles can synchronize circadian clocks in cultured mammalian cells and
modulate the timing of clock protein activity in vivo (44, 46, 47, 61). Most systemic timing cues
elicit very similar effects on the circadian clocks of mouse and human cells when delivered in vitro

120  and reflect the activation of cell-autonomous response pathways ((29, 40); fig. S1, A and B). We
were therefore surprised to find that, using a conventional clock reporter (Bmall:luciferase,
Bmall:luc), primary fibroblasts from multiple mice and humans consistently entrained oppositely
to 12h:12h 37°C:32°C temperature cycles that mimic daily body temperature rhythms (Fig. 1B,
fig. S1C, (43, 44, 47, 62)). This is evident from bioluminescence waveforms that rapidly become

125 antiphasic to each other during the temperature cycle and subsequently persist at constant
temperature, and suggests a fundamental difference in the way cells from the two species respond
to temperature.

This differential synchronization by temperature mirrors the opposite temporal niches habitually

130  occupied by mice and humans, so we sought to test the generality of our findings using primary
fibroblasts from a range of diurnal and nocturnal mammals. In natural environments, humans,
gibbons, marmosets (63), sheep (64) and striped mice (65) occupy diurnal niches whereas rats,
mice and many species of lemurs (63, 66) are typically nocturnal. Remarkably, we found that, after
temperature cycles, nocturnal representatives consistently entrained oppositely to cells from

135  diurnal species (Fig. 1C) with no significant difference in circadian period between temporal niche
(fig. S1, D and E). The difference in phase did not associate with body size (Fig. 1D).

To validate our findings and facilitate deeper mechanistic investigation, we repeated these

experiments using an alternative reporter, PER2-LUCIFERASE (PER2-LUC aka PER2::LUC).
140 PER2-LUC is a well-established, reliable reporter of the molecular clock in mammalian cells and

tissues (67, 68), since resultant bioluminescence correlates directly with the nascent production of

endogenous PER protein (69). We compared fibroblasts from PER2-LUC mice (67) with human

PER2-LUC knock-in U20S cells generated using CRISPR-Cas9 (fig. S1, F-G). Again, we found

mouse and human cells quickly developed oppositely phased rhythms under a 5°C daily
145  temperature cycle that were maintained under constant conditions (Fig. 1E, fig. S1, H and I).

To confirm our findings were not attributable to any thermal stress response we repeated these
experiments with a smaller 1.5°C temperature cycle. Again, we observed that human PER2-LUC
showed an inverted phase relative to mouse PER2-LUC rhythms (Fig 1, F and G), with the only
150 difference being that the absolute phases relative to the temperature cycle differed (Fig. 1G). This
is consistent the theory that the phase of entrainment varies with the strength of stimulus (36).
From these observations, we infer the existence of a cell-intrinsic signal inverter when diurnal
mammalian cells are compared with nocturnal cells. We considered that understanding this signal
inverter might provide insight into the nature of the mammalian nocturnal-diurnal switch.
155
Diurnal cellular clocks are buffered against temperature change
During entrainment in vivo, the phase of cellular clocks is adjusted during each day by systemic
signals in a fashion that varies with the magnitude of each stimulus and the relative biological
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times (circadian phase) at which they are received (70, 71). Having found that daily temperature

160  cycles, in the absence of other synchronizing cues, elicited opposite effects on diurnal vs nocturnal
cellular clocks, we sought to elucidate the mechanism of signal inversion by using thermal
challenge as a tool. Single temperature shifts are sufficient to adjust cellular clock phase (46, 52);
we therefore asked whether differential synchronization by temperature cycles between mouse and
human cells is due to differences in their response to the same temperature shift. As such, mouse

165 and human PER2-LUC cells were subjected to a single temperature increase or decrease at
different circadian phases (fig. S2, A and B). From the phase response curves (fig. S2, C and D),
it was evident the circadian clock was indeed differentially sensitive to single temperature steps
between mouse and human cells. Whilst the qualitative response to temperature change was
similar, over most of the circadian cycle, human cells showed greater advances for temperature

170  increase whereas mouse cells showed greater delays for temperature decrease. Under a daily
temperature cycle, this is sufficient to result in opposite entrainment (fig. S2E) and superficially
explains the cellular phenomenon but not its underlying mechanism.

Acute changes in PER protein production shift the phase of cellular clocks in vitro and in vivo (9,
175 27, 29). We therefore asked whether differential sensitivity of mammalian cellular clocks to
temperature change was reflected at the level of PER synthesis (Fig. 2A). We drew on
understanding of firefly luciferase enzyme kinetics (69, 72, 73) to deconvolve the acute response
to a rapid 5°C temperature increase (Fig. 2B) into two components. First, change in the baseline
due to change in catalytic turnover of luciferase, which was not different between mouse and
180  human cells (Fig. 2C); second, the change in total and peak luminescence that reflects the induction
of PER2-LUC protein synthesis, which occurred more rapidly and produced more nascent PER2
in mouse than human cells (Fig. 2D). At lower luciferin concentrations, which reflect steady-state
PER2-luciferase concentration (69), the luciferase signal did not change with temperature over
these short timescales (fig. S3, A and B), suggesting it is the synthesis of the PER2 protein which
185 is responding to the temperature change with a different magnitude in mouse than human cells.
Over several cycles then, in principle, species-specific differences in the thermal sensitivity of
PER protein production could function cumulatively to invert cellular clock timing. We therefore
asked by what mechanisms temperature-dependent translation of PER2 might differ between
species. We considered this must either occur by mechanisms that selectively regulate PER or by
190  more general mechanisms that include changes in PER expression and activity.

Compared with the clear mouse/human difference in PER2 translation and consistent with
previous reports, we found no evidence for equivalent differences in the acute transcriptional
response of Per2 to temperature change (fig. S3, C and D (Miyake et a/, 2023)). This suggests
195 signal inversion occurs post-transcriptionally. As such, we note Per? mRNA contains a
temperature-responsive upstream open reading frame (UORF) that modulates translation of the
PER2 protein to temperature increases in the physiological range (52, 74). The Per2 uOREF is
highly conserved among nocturnal and diurnal mammals however (fig. S3E and (52), and so not
an attractive candidate for species-specific differences in PER2 protein synthesis. In contrast,
200  mouse or human PER2-LUC ORF expressed constitutively in mouse or human cells recapitulated
the acute response of endogenous PER2-LUC to temperature change (Fig. 2E, fig. S4, A and B),
suggesting differential thermal sensitivity of PER2 translation is largely intrinsic to the coding
region without requiring 5'- or 3'-UTR regulation. Rare codon usage and RNA secondary structure
are common mechanisms of translational regulation that affect the synthesis of many proteins (75—
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205 79), including those with circadian function such as PER2 (80, 81). Consistent with this we found
that, compared with wild type, codon-optimized hPER2 (hPER2-CO, fig. S4C) with less predicted
mRNA structure (fig. S4D) showed minimal sensitivity to temperature change (Fig. 2E).

On the other hand, we identified only modest differences in codon usage and predicted mRNA
210  structure between mouse and human PER2 (fig. S4, C and D), with mouse PER2 slightly more
structured than human. Furthermore, PER1 in both species was highly similar (fig. S4, E and F),
so we wanted to distinguish whether PER?2 itself was essential for the signal inverter in diurnal
cells, or else simply associated with it. To directly test the contribution of PER2 to circadian
synchronization by temperature cycles, we used CRISPR-edited cells where endogenous HALO-
215  tagged PER2 could be acutely depleted using HALO-PROTACS3 (Fig. 2F, and fig. S5). Critically,
when PER2 was acutely depleted, we found significant but only modest differences in the effect
of daily temperature cycles on the diurnal cellular clock (Fig. 2F), consistent with previous reports
(52). Therefore, whilst species-specific differences in PER2 translation may contribute to
differential effects of temperature, they cannot be the sole basis for cellular signal inversion. From
220 these data, we do not discount differences in the individual contributions of many other proteins,
such as PER1. However, an alternative hypothesis is that general diurnal/nocturnal differences in
the temperature-dependence of the translational machinery underlie the observed PER2
translational differences. This hypothesis is informed by recent developmental studies, showing
marked differences in global biochemical reactions between species, with humans exhibiting
225  generally slower rates and more stable proteins than mice (57-59). We therefore asked whether
broader differences in the translational response to temperature change might underpin our
observations.

Using constitutively expressed luciferase as a reporter for bulk 5'-cap-dependent translation, we

230 found that mouse cells were much more sensitive to temperature increase and decrease than human
cells (Fig. 2G). Mouse cellular translation increased with temperature increase, and vice versa, as
previously reported (82, 83). By contrast, human cells showed an inverted response with reduced
magnitude: reduced translation for temperature increase and no significant change for temperature
decrease. This inverted response of protein synthesis to temperature was particularly stark over

235  repeated temperature cycles (fig. S6A). We validated these findings by quantifying nascent
polypeptide production with puromycin-labelling in primary fibroblasts (Fig. 2H, and fig. S6B).
Again, we found that protein synthesis in human cells was more resistant to physiological
temperature change compared to mouse cells. The differential effect of temperature on translation
rate was also observed over longer timescales: after 1 week at constant 32°C or 37°C, mouse cell

240  protein synthesis was clearly temperature-dependent, faster at the higher temperature, whereas
human cells showed no significant difference between the two (Fig. 2I). Translation in nocturnal
rat cells likewise showed differential long-term temperature sensitivity compared with cells from
the similarly sized but diurnal striped mouse (Fig. 21, fig. S6C).

245  Circadian rhythms exhibit the remarkable feature of temperature compensation, where, unlike
most biological processes, the ~24h period of oscillation is only modestly affected by a change in
ambient temperature (Qio of 0.8-1.2) (84, 85). However, consistent with their increased
translational sensitivity to temperature, the cellular circadian rhythms of nocturnal mammals
showed an increased temperature dependence relative to diurnal mammals. Mouse and rat

250 circadian rhythms ran at a significantly faster rate at 37°C than 32°C, whereas circadian rhythms
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in human and striped mouse cells ran significantly slower at the higher temperature (Fig 2J, fig.
S6D). Taken together, this suggests that biochemical reactions are more sensitive to temperature
and run faster at higher temperatures in nocturnal mammalian cells compared to diurnal species.
This provides an additional insight into cellular signal inversion that is complementary to the acute
255  differences in thermosensitivity described above: during daily temperature cycles nocturnal
cellular clocks accelerate at the higher temperature, whereas diurnal ones tend to slow down.

Global species differences in the response to temperature change involve mTORCI and WNK1
What causes differences in the temperature sensitivity of the protein synthesis machinery at the

260 molecular level? Protein synthesis is principally controlled by phosphorylation of proteins
comprising the translational apparatus (86), including members of the cap-binding complex elF4F,
43S preinitiation complex, and the elongation factor eEF2 (87). To gain insight into differential
responses to temperature, we performed quantitative (phospho)proteomics on biological replicates
of primary mouse and human fibroblasts subjected to high or low temperature over either acute or

265 extended time frames (Fig. 3A, fig. S7TA). We reasoned that thermosensitive phosphosites could
impart directionality to temperature signals, including those that collectively control translation
rate. To identify potential thermosensitive phosphosites we focused our analysis on those where
phosphorylation changed in proportion (fold change increases with temperature increase and vice
versa) or in inverse proportion (fold change decreases with temperature increase and vice versa)

270  with acute temperature change or longer-term temperature adaptation (Fig. 3, B and C and table
S1).

We first noted the clear directional bias to the acute temperature response of the phosphoproteome
(Fig. 3B). This directional bias in phosphoproteome response of the two species matches their
275  directional bias in phase response (Fig. S2). A similar directional bias was observed in the
temperature-adapted phosphoproteome (Fig. 3C), reflecting widespread differences in their
homeostatic mechanisms of ambient thermo-adaption. Conversely, protein abundances were much
less sensitive to acute or longer-term temperature change in both species (fig. S7, B to D and table
S1).
280
There was, however, little overlap between mouse and human cells in the identity of temperature-
dependent phosphosites and of the proteins to which they belong (fig. S7E). The pathways
previously identified as regulators of circadian temperature response, HSF1 signaling (46, 47) via
HSP70 and HSP90, or the RNA binding proteins CIRBP and RBM3 (49, 50) had similar proteomic
285  responses to acute or long-term temperature change between mouse and human cells (fig. S7F).
This aligns with the expected strong evolutionary conservation of the cellular response to
temperature (88—90), but not with a role in a cell-intrinsic circadian signal inverter. Therefore, to
examine alternative regulators, we performed motif analysis for amino acids surrounding the
phosphoacceptor (S/T/Y) to identify the kinases and/or phosphatases that drive the observed
290  phosphoproteomic differences upon temperature changes. We observed differences between
mouse and human cells in both the direction and magnitude of response: in mouse, basic residues
were highly enriched for inversely proportional phosphorylations; in humans this trend was
reversed, apparent only in the -2/-3 positions, and with smaller magnitude (Fig. 3D, fig. S7G).

295  Basic residue motifs are recognized by diverse basophilic kinases, including those of the AGC
family as well as With No Lysine/K (WNK) kinases (97, 92). The AGC family include key
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regulators and effectors in the PI3K-AKT-mTOR pathway — the major pathway for control of
protein synthesis, macromolecular crowding and cellular metabolism, whose activity reflects the
integration of many different metabolic and extracellular signals to function as a ‘metabolic
300 rheostat’ (93-98). WNK kinases are the master sensor/effectors of the WNK-OSR1/SPAK-
SLC12A pathway that maintains intracellular water balance. Amongst the relatively small number
of overlapping proteins in mouse and human cells that showed a difference in the direction of their
phosphorylation response to temperature change (acute, <3%; adaptation, <1%; fig. S7E), a clear
differential pattern was observed in key regulatory sites of WNKI1 and mTOR pathway
305 components (Fig. 3, E and F) consistent with enrichment for basic motifs in opposite directions.
WNKI1 and mTOR are ubiquitous essential proteins that function as major determinants of
translation and cellular homeostasis more generally, and whose activities are coordinately and
circadian-regulated in cultured cells and in vivo (99-101). We hypothesized that nocturnal-diurnal
differences in their response to perturbation underlies the phenotypic switch.
310
Convergent evolution of diurnal response to thermodynamic perturbation
Within concentrated macromolecule solutions like the cytosol, modest changes in temperature
elicit large changes in the total thermodynamic potential energy of water. Water potential deviates
from the linear relationship described by Van’t Hoff’s equation in both magnitude and direction
315 as more water molecules are constrained within macromolecule hydration layers at lower
temperatures with proportionally less ‘free’ molecules in bulk solvent, reducing the potential
energy to perform work in the cell (/02). Thermosensitivity can therefore be imparted to
biological systems through either direct kinetic effects or components that respond to changes in
solvent thermodynamics. These are easily distinguished by testing whether an equivalent change
320 in water potential can mimic a temperature shift. For example, increasing external osmolarity
would phenocopy decreasing temperature as ‘free’ water moves out of the cell by osmosis,
reducing the intracellular water potential. WNK and mTOR signaling pathways are both sensitive
to changes in water potential, for example, phosphorylation at OXSR1-S339 and AKT1-T450
scale directly with extracellular osmolarity and inversely with temperature (/02). We therefore
325  considered whether circadian entrainment to temperature change might occur by a thermodynamic
mechanism and predicted, then demonstrated, that mouse and human cells differentially entrain to
daily cycles in extracellular osmolarity (Fig. 3, G and H; fig. S8, A to D). Conversely, a nocturnal-
diurnal switch that relies on kinetic effects would be sensitive to absolute temperature. We
subjected mouse and human cells to temperature cycles with the same 5°C amplitude but a lower
330 mid-point of 30.5°C compared to 34.5°C and they continue to entrain to opposing phases (Fig. 3I).

Collectively, these results support a model where WNK and mTOR pathways form an intrinsic
nocturnal-diurnal switch by virtue of species-specific differences in their response to
thermodynamic changes in the intracellular environment. Diurnality evolved several times, likely
335 acting through complementary changes at many genetic loci that were assumed to differ between
diurnal lineages. However, if changes in WNK and mTOR activity are an efficient evolutionary
means to select for diurnal phenotypes then convergent evolution should be detected by
comparative genomics. We therefore mined the Zoonomia comparative genomics resource of
placental mammals (103, 104) to ask whether members of these pathways are amongst those genes
340 that evolved particularly quickly in the genomes of diurnal mammals relative to nocturnal
mammals. Of the 242 species analyzed, 77 and 109 were categorized as definitively diurnal and
nocturnal, respectively, based on prior literature (Fig. 3J and table S2). After restricting the
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analysis to ubiquitously expressed genes — excluding tissue-specific genes such as olfactory

receptors (fig. S8, E and F) — to identify candidates that could contribute to our observed cellular
345  phenotype, we found WNK1, RRAGB, a core regulator of mTOR complex 1 (mTORC1) activity

(105), and translational quality control factor ZNF598 (/06) were among the genes that have

evolved significantly faster in diurnal mammals (Fig. 3K). Faster evolutionary rates in an

additional key regulator of mMTORC, TSC2, and a second paralogue of WNK 1, WNK4, correlated

with diurnality, but lay just outside our phylogeny-corrected significance threshold suggesting they
350 are evolving faster in only a subset of related diurnal mammals (table S3).

The emergence of diurnality in mammals converges on mTOR and WNK pathway modifications,
but how might these variations mechanistically lead to differential sensitivity to solvent
thermodynamics? mTOR has many components and regulators that might impart ‘water
355  responsiveness’, so we focused on WNK1. WNKI1 autophosphorylation and activation is acutely
sensitive to water potential (/00, 102, 107) . In cells, increased macromolecular crowding and the
resultant decrease in solvent availability and potential energy drive WNK condensation, mediated
by its intrinsically disordered C-terminal tail (100, 102, 107—-110), an ensemble property of
multiple sequence features rather than individual amino acid residues. Hydration of disordered
360 regions has greater impact upon water potential than for compact structures, therefore they have
increased likelihood of participating in compensatory biomolecular condensation to restore water
equilibrium upon macromolecular crowding, thermal or osmotic challenge (/02) . We therefore
predicted that diurnal WNK1 would contain less intrinsic disorder compared to nocturnal WNK1
as this would reduce the probability of (de)condensation upon temperature-driven changes in water
365 potential and therefore the thermal sensitivity of WNKI activity, reflecting the lower
responsiveness of diurnal species to temperature change. We detected a significant difference in
disorder between diurnal and nocturnal WNKI1, the former tending towards less disorder as
predicted and reflecting the lower responsiveness of diurnal species to temperature change (Fig.
3L, fig. S8G).
370
Comparative genomics therefore confirmed our hypothesis that the diurnal/nocturnal switch arose
convergently and independently through multiple complementary mutations that act together to
alter the cellular sensitivity (e.g. WNK pathway) and responsiveness (e.g. mTOR pathway) to
perturbation of cellular thermodynamic equilibria by modulating the favorability of key
375 macromolecular interactions. This differentially affects circadian phase via a combination of
specific (PER synthesis) and more general mechanisms (basophilic kinase activity, bulk
translation) that ultimately renders human circadian clocks more robust to thermal and osmotic
perturbation than those in mice. Under repeated daily thermodynamic perturbations, this results in
entrainment to opposing phases (fig. S2E). Ultimately, our results strongly suggest that cellular
380 clocks respond to crowding-related changes in macromolecular hydration and supramolecular
assembly rather than changes in solute kinetic energy, as was implicitly assumed.

Perturbation of mTOR activity and translational initiation makes nocturnal cells behave like
diurnal cells

385  This hypothesis makes a simple testable prediction: decreasing the basal protein synthesis rate by
inhibiting mTOR activity should attenuate the capacity of nocturnal cellular clocks to respond to
thermal challenge more than diurnal clocks, rendering them more diurnal-like by reducing the
relative magnitude of temperature-dependent differences in translation between the two. Whereas
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a panel of small molecule inhibitors of proteins and kinases previously implicated in circadian
390 post-translational regulation revealed only modest effects on entrained phase under daily
temperature cycles (fig. S9, A to D), inhibitors targeting the mTOR signaling pathway showed
large effects on entrained phase (Fig. 4A and fig. S9, E and F), with selective mTOR inhibition by
INK128 showing the largest effect. When mTOR activity is reduced, mouse cells showed
significant phase delays under daily temperature cycles, whereas human cells were relatively
395 unaffected (Fig. 4A). INK128 treatment of fibroblasts from another nocturnal mammal (rat) and
diurnal mammal (striped mouse) gave comparable entrainment phenotypes, demonstrating the
conservation of the role of this pathway in temperature signaling (Fig. 4B). Growth factor signaling
acts via mTORCI1 to control protein synthesis rates (93, 94), and can be manipulated in cell culture
by changing serum concentration. In lower serum concentrations, mouse cellular rhythms were
400 delayed by up to 6h under daily temperature cycles compared with high serum control conditions,
whereas human cells were not (Fig. 4C). In all cases, suppression of mTOR activity makes cells
from nocturnal mammals behave more like cells from diurnal mammals, with PER2-LUC peaks
selectively shifting towards the early warm portion of the temperature cycle, whereas the contrary
was not true for diurnal cells.
405
mTOR inhibition was not sufficient to make nocturnal cells completely phenocopy diurnal cells,
and several other essential genes showed faster evolution in diurnal than nocturnal species
including translational regulators (table S3). We therefore assessed how robust human versus
mouse cellular circadian rhythms are to acute perturbation of translation rate by pharmacological
410 attenuation of 5'-cap-dependent translational initiation, independently of mTOR or temperature.
Circadian clocks drive, and are driven/synchronized, by daily cycles of protein synthesis (28, 111—
114), amplified in vivo by daily timing cues such as insulin/IGF-1 signaling linked with feed/fast
cycles, which act via the translational machinery (29). When treated at the same circadian phase,
very clear and significant differences were observed in the magnitude and direction of circadian
415  phase shifts between mouse and human cells in response to direct inhibitors of eI[F4A, rocaglamide
A (RocA) and hippuristanol (Fig. 4D). Again, the cellular clock in mouse cells was much more
sensitive than in human cells, consistent with the idea that natural selection has led to increased
resistance to translational perturbation in diurnal mammals.

420 mTOR regulation of circadian phase is maintained from cells to tissues
The function of the mTOR pathway as a cellular signaling nexus for translational regulation is
conserved across eukaryotes and essential in mammals. Our results strongly suggest that
differences in mTOR regulation and activity constitute a major element of the nocturnal-diurnal
switch. If so, mTOR inhibition should render circadian clocks in mouse tissues more diurnal in
425  their response to daily temperature cycles, both ex vivo and in vivo.

To test this, we subjected tissue explants from adult PER2-LUC mice to daily temperature cycles
+ mTOR inhibition (Fig. 5A). As expected (46, 115), high amplitude PER2-LUC oscillations were
observed in neuroendocrine (pituitary) and non-neuronal (lung, adrenal) tissues, with PER2

430  consistently peaking around the warm-to-cold transition (Fig. 5B), as in mouse fibroblasts (Fig.
1E). Reduction of mTOR activity by INK128 resulted in a significant phase shift, delaying the
PER2-LUC peak by 8-12h to near the cold-to-warm transition (Fig. 5B), such that they now
resembled human cells rather than mouse cells in vitro (Fig. 1E).

11


https://doi.org/10.1101/2023.06.22.546020
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546020; this version posted April 16, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

435  The hypothalamic SCN of nocturnal mammals are remarkable for PER rhythms that are essentially
opposite to almost all other tissues, in the same phase as SCN of diurnal mammals (Fig. 1A). This
is consistent with the SCN's conserved function in all mammals as a dedicated photic timekeeper,
responsible for encoding and communicating anticipated photoperiod. Interneuronal coupling
renders SCN PER rhythms more robust than other tissues and much more sensitive to photic cues

440  than to systemic signals such as temperature (29, 46, 116). Adult SCN are sensitive to temperature,
however, and explants stably entrain to the same daily temperature cycles employed throughout
this study (Fig. SC)(116—118). We found that after 7 daily temperature cycles, SCN entrained with
a phase that was much later than other tissues, with PER2 peaking late in the cold phase (Fig. 5C)
and at the end of the subjective day (Fig. 5D), reminiscent of the difference in circadian timing

445  between SCN and other mouse tissues in vivo. Remarkably, the phase of SCN rhythms remained
unaltered by mTOR inhibition (Fig. 5D). This mirrors the phenotype seen in cells and tissues from
diurnal species, likely resulting from functional insensitivity to mTOR inhibition, which
diminishes the responsiveness of the protein synthesis machinery to temperature changes. Indeed,
the SCN is unaffected by abrupt changes in translation rate, which is conferred by network

450  coupling (112, 119). Since SCN activity in nocturnal mammals aligns with daytime, as for diurnal
mammals (Fig 1A), mouse brain temperature rhythms would be expected to reinforce, rather than
disrupt, the SCN's established relationship with the light:dark cycle in vivo. Our findings support
a model in which all mammalian SCN maintain an mTOR-insensitive representation of daytime,
while the timing of behavior and physiology outside the SCN is governed by the interaction

455  between cell-autonomous timekeeping and timing cues — such as temperature, osmolarity and
growth factors — that regulate global and specific (PER) protein synthesis via mTOR.

mTOR activity regulates nocturnal-to-diurnal behavioral switching

We have used a pharmacological inhibitor (INK128) that binds to the active site of mTOR (/20) to
460  demonstrate that, in vitro, modifying the basal activity of this pathway differentially alters cell-

intrinsic responses in nocturnal vs diurnal mammals and thus mTOR pathway activity is implicated

in the nocturnal-diurnal switch. However, diurnality/nocturnality is a behavioral phenotype in

which timing of locomotor activity defines temporal niche classification. To truly demonstrate that

mTOR pathway activity is implicated in the nocturnal-diurnal switch, we need to observe
465  locomotor activity switching under organismal mTOR activity modification.

Under dietary-restricted conditions, such as those found in the wild, mMTORCI1 activity and protein
synthesis is greatly reduced (/27—123). Accordingly, mouse behavior becomes more diurnal than
when fed ad libitum (124). We sought to replicate these observations in mice under laboratory

470  conditions. Precise control of mice energy balance can be achieved using the Work for Food (WFF)
paradigm (/25, 126), under which food is limited (Fig. SE, fig. SI0A) and mice lose significant
body mass according to the negative energy balance imposed upon them (fig. S10B) (127, 128).
In these conditions, mTOR activity is significantly reduced in multiple brain and peripheral tissues
(fig. S11). Compared with control conditions (food ad libitum) where mice are nocturnally active

475  (fig. S10, C and D), under the negative energy balance conditions of WFF, mice apportion more
of their activity to the daytime, like a diurnal mammal, (Fig. 5F, fig. S10, C to E, (/25)), which is
matched by advanced timing of core body temperature rhythms towards daylight hours (fig. S10,
F-H).
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480  WFF demonstrates that, without affecting the SCN ((/29) ; fig. S11), it is possible for a nocturnal
mouse to significantly alter locomotor activity timing while integrating the same environmental
cues, manifesting diurnal behavior. This is consistent with the conserved role of daylight timing
signaling in nocturnal and diurnal mammals (Fig. 1A). Differential gene expression analysis
implicates a role of mTOR (fig. S11), though demonstrates that many other pathways are targeted

485 Dby this extreme starvation treatment (/28, /30). To confirm that mTOR pathway activity is
fundamental to the selection of locomotor activity timing, we targeted mTOR activity organismally
via isocaloric modification of amino acid concentration in the diet. Unlike total caloric restriction,
which acts largely independently of the mTOR pathway (/37) and results in a self-imposed feed-
fast cycle (/32), amino acid restriction inhibits mTOR activity through amino acid sensing by the

490 Rag-dependent signaling pathway (105, 133, 134). In cells, amino acid reduction altered cellular
entrainment to temperature cycles and phenocopied pharmacological inhibition of mTOR (fig.
S10I). Partial, brain-restricted, mTOR inhibition was achieved in mice fed ad libitum for four
weeks with an isocaloric methionine restricted diet (Fig. 5G, fig. S10, J and K) with minimal
weight loss (fig. S1I0L). Under these conditions, which permit reduction in mTOR activity without

495 adverse consequences such as excessive weight loss which can confound measurement of
locomotor activity, both the onset and peak of activity of mice on a methionine-restricted diet was
significantly phase-advanced into the daylight hours relative to control (Fig. 5, H and I) with no
change in locomotor period (fig. SI0M). Taken together, these activity shifts in response to
organismal modifications of mTOR activity are consistent with the cellular data, and support a

500 molecular mechanism whereby the basal level of mTOR activity modulates the response to
physiological entraining cues. Therefore, amongst several factors, nocturnal-to-diurnal switching
involves convergent evolution for differential responsiveness of WNK and mTOR pathway
signaling which can be recapitulated in vitro and in vivo (Fig. 5J).

505
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Discussion

Mammalian colonization of the daytime niche accelerated when its previous occupants, the
510 dinosaurs, became extinct (/). Subsequently, mammals came to occupy all temporal niches,
frequently switching between them as life history and environment dictates (5, /35). The specific
mechanism that permits this switch between nocturnality and diurnality was previously unknown.
We investigated an apparent cell-intrinsic inversion of the molecular circadian clockwork to
entrainment cues that alter intracellular water thermodynamics — temperature and osmolarity. This
515 largely arises from differences in the basal activity and sensitivity of the mTOR pathway, with
downstream consequences on protein synthesis. Members of this pathway have evolved more
rapidly in diurnal compared to nocturnal mammals, and modulation of mTOR activity in cultured
cells, tissues or in vivo is able to recapitulate the switch from nocturnal to diurnal circadian timing.

520 These critical differences in the cellular response to temperature mirror recent findings in
developmental biology, where mammalian species show marked differences in global biochemical
reaction rates which correlate with developmental tempo (57-59). Our analogous discovery of
significant differences in global phosphorylation and protein synthesis between mice and humans
led to mTOR kinase as a plausible and key component of a different phenomenon: the nocturnal-

525  diurnal switch. We note that mTOR complexes 1 and 2 have several substrate effectors and are
regulated by multiple different cell signaling systems (/36). As part of the large and interlinked
PI3K-AKT-mTOR pathway, mTOR regulates and is regulated by cellular crowding via WNK1
and the circadian response to osmolarity, amongst myriad other things (97, 107, 137, 138).
Therefore, we do not discount that differential temperature sensitivity of other cellular kinases,

530 phosphatases, and signaling mechanisms, acting upstream, downstream or in parallel with mTOR,
may also contribute to temporal niche switching. Moreover, that the re-organization of physiology
under reduced mTOR activity via amino acid restriction or WFF requires several weeks and does
not recapitulate diurnal behaviour (125, 130, 139) . Therefore, we also do not discount roles for
hypothalamic neuroplasticity, melatonin signal inversion or direct photic modulation of locomotor

535  activity in temporal niche selection (13, 140-142).

Ultimately though, any switching mechanism that arose evolutionarily must have a genetic basis.
We demonstrate this through a genome-wide comparison of diurnal and nocturnal mammals,
which provides complimentary genetic evidence for the importance of mTOR activity with key
540 proteins, RRAGB and WNKI, having faster evolutionary rates in diurnal versus nocturnal
mammals. We consider genetic mechanisms of diurnality may be broadly dispersed and polygenic,
and to this end we have evidence for faster evolutionary rates in olfactory pathway genes (fig. S9)
and phototransduction genes (/43). Future work might be directed towards identifying the detailed
molecular and structural differences between diurnal and nocturnal mammals in mTOR pathway
545  components and its regulators.

At the whole organism level, our findings agree with the circadian thermo-energetics (CTE)
hypothesis for conditional niche-switching in several different mammals (4). CTE states that
nocturnal activity patterns for homeothermic mammals are more costly than diurnal patterns, since
550 nocturnal animals have higher energy requirements to mitigate the greater heat loss of being active
during the (cold) night (729, 144, 145). Diurnality arises as an energy saving measure when food
availability is scarce, which outcompetes the extra predation pressure of being active by day (/46,
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147). At the cellular level, these results support the bioenergetic hypothesis for circadian and other

biological rthythms (/48—152), where oscillations primarily function to minimize the high cost of
555 maintaining protein homeostasis. In this context, the increased resistance to translational

perturbation in cells from diurnal mammals is thus an energy saving measure, and will diminish

the cellular challenge of conflicting timing cues. It would be interesting to investigate whether

birds — which independently evolved diurnality, homeothermy and have a higher basal core body

temperature than mammals (/53), as well as marked heat stress and specialized thermoregulation
560  during flight (/54) — use the same mechanism.

Overall, our findings illustrate marked species differences in the cellular environment and global
pathway activity which influences circadian phase in cells, tissues and in vivo. Our findings add to
a growing literature demonstrating species-specific differences in molecular activity which map to

565  acellular or external phenotype (57-60, 155—157). It is striking that many of these findings involve
global regulation of protein turnover and the mTOR pathway, and integrate metabolic status with
functional output (157, 158).
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Fig. 1. Entrainment to temperature is a cellular correlate of behavioral temporal niche

(A) With respect to the external day-night cycle, organismal and cellular physiology differ
between nocturnal mice and diurnal humans, despite these species having the same cell-
autonomous circadian clock mechanism. The retinorecipient hypothalamic SCN functions very
similarly in diurnal and nocturnal mammals, with neuronal firing and PER oscillations peaking
in the daytime, allowing the SCN to serve as an internal representation of the day-night cycle.
However, outside of the SCN, organismal behaviour, physiology and cellular activity, including
oscillations of PER, are oppositely organized between diurnal and nocturnal mammals and
instead vary with daily systemic signals that consistently coincide with the transition from
rest/fast to activity/feeding rather than external solar time. This suggests a switch, downstream of
the SCN, that controls the appearance of diurnality.

(B) After entrainment in 7 x 37°C (red) and 32°C (blue) 12h:12h cycles (data for final 3 cycles
shown) which emulate the daily body temperature rhythm, mouse (grey) and human (orange)
primary fibroblasts (derived from N = 3 individuals) are set to opposing phases when released
into constant 37°C (red). Bioluminescence from Bmall :luc was recorded under cycling and
constant temperature portions of the experiment, and signal was detrended and normalized to aid
visualization of circadian phase. A dotted line illustrates the inverse phases under constant
conditions. Circadian period varies between individuals, as previously reported (/59) , but does
not significantly differ between the species (Student’s t-test). However, circadian phase, defined
as the time of the peak of Bmall:luc relative to the last transition to 37°C, significantly differs
(Watson-Williams test).

(C) Primary fibroblasts from striped mouse (Rhabdomys pumilio), marmoset (Callithrix
Jjacchus), gibbon (Hylobates lar), sheep (Ovis aries), rat (Rattus norvegicus) and lemur (Lemur
catta) were cultured under 37°C and 32°C 12h:12h for 7 cycles (data for final 1.5 cycles shown)
before release into constant 37 °C. Bioluminescence from Bmall:luc was recorded throughout
(n=6-8). A dotted line at t= 32h illustrates the different phases under constant conditions.

(D) Circadian phase of the Bmall:luc rthythm in constant conditions for the 8 mammalian species
from (B) and (C). Two distinct clusters of opposing circadian phases of entrainment are found in
mammalian cells. Phase was significantly different between temporal niche (pwatson-Witliams <
0.0001) and did not correlate with body size rank (pcircutar Pearson’s = -0.25; p = 0.10). Statistics:
Temporal niche, Watson-Williams; Ranked body size, circular Pearson’s.

(E) Human (U20S) and mouse (fibroblasts, immortalized) expressing PER2-LUC from its
endogenous locus, entrain to cycles of temperature (12h 37°C: 12h 32°C, data for 3 cycles
shown) with opposing phases (n=8). Note the high amplitude rhythms during temperature cycles
that damp upon entry into constant temperature condition, and the different phase of entrainment
between the two different reporters, Bmall:luc (B) and PER2-LUC (E).

(F) Human (U20S) and mouse (fibroblasts, immortalized) PER2-LUC cells were synchronized
by medium change at t=-186h and subject to temperature cycles (12h 37°C: 12h 35.5°C, data for
final 3 cycles shown)) set 6h out of alignment to original phase. Human and mouse cells re-
entrain to the new timing cue within 7 days, and exhibit a stable and opposite entrained phase in
constant conditions.

(G) Circadian phase for mouse (grey) and human (orange), calculated from (D) and (E), is given
as peak of PER2-LUC expression relative to the last transition to 37°C, and significantly differs
between mouse and human at each cycle magnitude (Watson-Williams test). Phase difference
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between mouse and human at cycle magnitudes of 5°C (solid circles) and 1.5°C (open circles) is
1455  not significantly different. Statistics: Phase difference, t-test; circular phase, Watson-Williams.
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Fig. 2. Differential response to temperature is both a specific property of PER2 and global
translation
(A) Schematic of acute temperature shift and long-term temperature adaptation experiments.
1460  Cells are maintained at the indicated temperature (37°C or 32°C) for >6 days before temperature
shifts (5°C shifts) occur.
(B) Raw bioluminescence data (arbitrary luminescence units, LU) showing preceding 24h and
ensuing 36h of cells exposed to a temperature shift up from 32°C to 37°C at Oh (trough of
PER?2). Change in baseline, A baseline, due to temperature dependence of *PKy, of luciferase is
1465 indicated by arrow, and integration of luciferase signal, | synthesis, due to synthesis of new
PER2-LUC is indicated by shading.
(C) and (D) Quantification of A baseline, (C), and | synthesis, (D), after a temperature shift up at
0 h in mouse and human lines. Mean + SEM and individual points presented throughout.
Statistics: Student’s t-test, unpaired.
1470  (E) (Left) U20S cells stably expressing constitutive PER2-LUC fusions — human PER2-LUC
(orange), mouse PER2-LUC (grey) or codon-optimized human PER2-LUC (teal) — were kept for
3 days at constant temperature of either 32°C or 37°C before shifting temperature at t = 0 min.
Fold induction of luminescence is shown relative to t = 0 min. (Right) Rate of induction was
quantified as the gradient of the straight line fit from non-linear regression (Prism), given as
1475  fold/hour. Induction rates were compared between reporters. Statistics: TWA followed by
Sidak’s post-hoc test.
(F) U20S cells expressing HaloTag from the endogenous PER2 locus were treated with 1 uM
HaloPROTAC3 or DMSO control. (Left) Treatments were applied to tagged cells for 24h before
lysis and immunoblotting. Anti-Halotag antibody was used to detect the presence of the fusion
1480 PER2-HALO protein, anti B-actin serves as a loading control. (Right) PER2-HaloTag U20S
cells were cultured under temperature cycles = 1 pM HaloPROTAC3 (n=4 each condition). At
Oh cells were kept in constant temperature. Bioluminescence from Bmall:luc was recorded
throughout. Difference in phase of entrainment between control and PROTAC treatment is
given, mean + SEM. PROTAC treatment elicits an advance in entrained phase to temperature
1485  relative to control.
(G) Human cells (U20S) or mouse cells (NIH 3t3) stably expressing constitutive LUC as a
reporter of protein synthesis were exposed to the same temperature conditions as (D). (Right)
Rate of induction of constitutive LUC calculated as (D).
(H) At 1.5h after temperature step, 10 pg/ml puromycin was added to the cells which were lysed
1490 30 min later. Fold change puromycin incorporation was calculated by comparing incorporation
in the stepped condition vs incorporation in the control condition. (Left) Representative
immunoblot of one of three biological replicates of mouse or human cells exposed to the four
conditions (constant 37°C, shift down from 37°C to 32°C, constant 32°C, shift up from 32°C to
37°C). Anti-puromycin (top) and coomassie loading control (bottom). (Right) Fold change
1495  puromycin incorporation in each direction temperature shift, N=12. Statistics: TWA mixed-
effects model, followed by Sidék’s post-hoc test. Interaction species x temperature F(1, 44) =
30.47, p <0.0001.
(I) Fold change protein synthesis rate in cells adapted to constant 37°C vs constant 32°C (from
Fig. 2H and fig. S6C) in (left) biological replicate primary fibroblast cells of mouse (N=12) or
1500 human (N=12), and (right) rat (n=3) or striped mouse (n=3) fibroblasts. Statistics: one sample t-
test, Ho = 1.
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(J) Free-running period at constant 37°C (red) or 32 °C (blue) in biological replicate fibroblast
cells of mouse (N=3, n=6) or human (N=3, n=6) expressing Bmall:luc. Statistics: TWA mixed-
effects model. Interaction species x temperature, F(1, 4) = 23.68, p = 0.0082, Sidak’s post-hoc

1505 test reported; (right) TWA. Interaction species x temperature F(1, 20) = 170.8, p < 0.0001,
Sidak’s post-hoc test reported.
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1510
Fig. 3. Differential mTOR pathway activity as the basis of the nocturnal-diurnal switch
(A) Schematic of temperature shift experiment for (phospho)proteomics. Human and mouse
primary fibroblasts were kept for 1 week in constant temperature of either 32°C (blue) or 37°C
(red). Att=-24h, cells were treated with 100 nM dexamethasone to synchronize and t = Oh cells

1515  either shifted up, down or kept at the constant temperature as a control (either 32°C or 37°C).
Cells were lysed 1h later and quantitative proteomics (TMT-MS/MS) was performed to analyze
the (phospho)proteome. For each phosphosite or peptide, fold change upon a temperature step is
calculated by dividing (phospho)peptide signal of the shifted condition by the constant condition
from which they were shifted. Long-term adaptation to temperature was examined by calculation

1520  of fold change (phospho)peptide signal from constant 37°C by signal at constant 32°C.

(B) Phosphoproteomics matrices for mouse (6973 phosphopeptides) and human (5698
phosphopeptides). Matrix shows fold changes upon shift up (x-axis) and shift down (y-axis) for
each phosphopeptide. Phosphopeptides are classified where fold change significantly increases
with increasing temperature and decreases with decreasing temperature (proportional, < temp,

1525 red) or significantly decreases with increasing temperature and increases with decreasing
temperature (inversely proportional, o< 1/temp, blue). Phosphopeptides that do not change
significantly, or change significantly but in a single direction, are shown in grey. Total
phosphoproteome fold changes were compared by MANOVA, and centroids, representing the
average direction of the phosphoproteome response to temperature shift, are plotted: mouse

1530  centroid (-0.028, 0.022); human centroid (0.047, 0.026).

(C) Probability density distribution of fold change upon temperature adaptation for every
detected phosphosite. Mouse (grey) and human (orange). Statistics: Mann-Whitney, p-value
shown.

(D) Motif analysis was performed on phosphopeptides that changed proportionally (¢ temp) or

1535 inversely proportionally (x 1/temp). Sequence logos showing enriched AA residues with
significant differential AA usage (DAU) are shown for phosphopeptides that change
proportionally (above) and inverse proportionally (below) for mouse (left) and human (right).
Sequence logos are centered around the phosphoacceptor at position 0. Sequence logos showing
under-represented AA residues (i.e. depleted) are shown in fig. S7.

1540 (E and F) Fold change of the abundance of significantly changing phosphosites of mTOR
pathway members and WNK1 in human and mouse cells under acute shift (E) and adaptation
conditions (F), extracted from (B) and (C).

(G) Schematic of microfluidic-based entrainment of cells to repeated cycles of osmolarity.
(H) Human (U20S) and mouse (fibroblasts, immortalized) expressing PER2-LUC, were cultured

1545  under flow in isosmotic media (isosmotic relative to standard culture media) for 60h before
exposure to cycles of osmolarity (12h iso-osmotic: 12h +50 mOsm) for 5 complete cycles and
subsequent release back into isosmotic media for a final 48h. (H) Circadian phase of human and
mouse cells relative to the final transition into isosmotic media. Circadian phase was compared
with the Watson-Williams test.

1550 () Human (U20S) and mouse (fibroblasts, immortalized) PER2-LUC cells entrain to cycles of
temperature at below physiological levels (12h 33°C: 12h 28°C) with opposing phases. (Right)
Circadian phase of human and mouse cells relative to the final transition into 33°C constant
conditions. Circadian phase was compared with the Watson-Williams test.

(J) Analysis pipeline for relative evolutionary rate of genes in nocturnal and diurnal mammals

1555  from the Zoonomia database.
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(K) Correlation values (Rho) between relative evolutionary rates of 16209 genes and phenotype,
comparing 186 mammalian species classified as diurnal or nocturnal species, plotted against
significance (-logio p-value). Gene with significantly different evolutionary rates between diurnal
and nocturnal are colored teal; a selection of genes are labelled.

1560 (L) WNKI1 protein disorder was calculated per residue per species using Metapredict v3 (/60) on
amino acid sequences and alignments from the Zoonomia resource (/03, 104). The median
disorder score of WNKI for each species was compared by activity pattern (diurnal vs
nocturnal).

1565
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Fig. 4. Manipulation of mTOR pathway activity alters phase of entrainment
(A and B) Human U20S and mouse fibroblasts expressing PER2-LUC (A) and striped mouse

1570  and rat fibroblasts expressing Bmall:luc (B) were entrained in 7 x 12h:12h 37°C:32°C
temperature cycles in the presence of mMTORC1/2 inhibitor (1 uM INK128) or control, then left
to free-run at 37°C. Bioluminescence from PER2-LUC was recorded throughout, detrended and
normalized to aid visualisation of circadian phase during cycling conditions. Circadian phase
under control (black) and INK 128 (blue) conditions is shown for human and striped mice

1575  (circles) and mouse and rat (triangles) as circle plots, and change in phase, relative to control, is
shown below. Statistics: Phasecontrol VS phaseireatment two-way ANOVA followed by Sidék’s post-
hoc test, n=4-6 each condition.

(C) Human and mouse PER2-LUC fibroblasts, cultured in decreasing concentrations of serum,
were entrained to 7 days of temperature cycles before transfer to constant conditions. Dashed

1580 line at the peak of 10% serum control is shown for illustration purposes. (Right) Circadian phase
under control (black) and 1% serum (medium grey) and 0% serum (light grey) conditions is
shown for human (circles) and mouse (triangles). Colored lines indicate human (orange) and
mouse phases (grey). Change in phase, relative to 10% serum control, is shown below. Statistics:
Two-way ANOVA followed by Sidak’s post-hoc test, n=6 (human) or 19-24 (mouse).

1585 (D) Human and mouse PER2-LUC cells, kept in constant conditions, were treated with inhibitors
of the cap-binding complex that target eIF4A (rocaglamide, rocA; hippuristanol) at the trough of
PER2-LUC at t=-12h, indicated by an arrow. Dashed line at the peak of DMSO control is shown
for illustration purposes. (Right) Change in phase, relative to control, in mouse and human after
treatment. Statistics: Two-way ANOVA followed by Sidak’s post-hoc test, n=4 each condition.

1590
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Fig. 5. mTOR pathway activity underlies phase of entrainment in tissues and the
nocturnal-diurnal switch in vivo

(A) Experiment schematic. Tissues were dissected from PER2-LUC mice and exposed to 3-6
temperature cycles coincident with or antiphasic to their previous activity patterns, or constant
temperature. INK128 or control was added at the start of culture and luminescence from PER2-
LUC was measured to compare circadian phase of entrainment.

(B) PER2-LUC mouse pituitary (square), adrenal (triangle) or lung (circle) tissues were dissected
from mice at the beginning of lights on (i.e. the start of the rest phase for nocturnal mice) at time
= Oh. Tissue slices were cultured ex vivo in the presence of luciferin, treated with DMSO (black,
left) or INK128 (blue, right), and exposed to cycles of temperature (12h 37°C: 12h 32°C)
antiphasic to previous activity patterns. Days 2 and 3 of temperature cycles and 3 days of
constant conditions are shown. (Right) Circadian phase of entrainment, calculated given relative
to the final transition from 32°C to 37°C, for each tissue under each condition is shown, with
arrows indicating the direction of the phase shift. Delta phase, relative to DMSO control.
Statistics: TWA mixed-effects model, matched design. Interaction tissue x drug F(2, 24) = 4.28,
p = 0.025; Sidak’s post-hoc test reported, n=5 each condition.

(C) SCN tissue was dissected from PER2-LUC mice, sliced, and placed into ex vivo culture in
the presence of luciferin. Slices were entrained for 7 days in antiphasic temperature cycles (12h:
12h 37 °C: 32°C, black line, or 32°C: 37°C, grey line) before release into constant 37 °C.
(Right) Circadian phase of entrainment, relative to time = Oh. Statistics: Student’s t-test,
unpaired, n=4-5.

(D) SCN slices from PER2-LUC mice kept under LD cycles (subjective LD cycle shown) were
kept at constant temperature (37 °C) or exposed for 3 days to temperature cycles (12h: 12h
37°C: 32°C) in antiphase to the LD cycle from which the mice were taken. Ex vivo culture
started at Oh when slices were given either INK128 (blue) or DMSO (black), and
bioluminescence was monitored throughout. PER2-LUC expression is plotted against circadian
time, where Oh = the start of the subjective light period. Delta phase, relative to DMSO control.
Student’s t-test, unpaired, n=3-5, not significant.

(E) Experimental schematic for the Work for Food (WFF) paradigm as conducted by Hut et al.
(125). Adult male mice were singly housed in cages equipped water ad libitum and running
wheels under 12h : 12h light:dark cycles throughout. The number of food pellets given was
controlled by the number of revolutions each mouse made on the running wheel. In the baseline
portion of the experiment, one pellet was given per ~100 revolutions. The number of revolutions
per pellet was gradually increased in the WFF group until one pellet was given per ~300
revolutions. In this way, a finely controlled organismal reduction in mTOR-dependent processes
can be achieved (/28). Running wheel activity and core body temperature from implanted
temperature logger was recorded throughout.

(F) (Left) Average proportion of total daily locomotor activity in 1h bins across the 24h day
during the baseline and test period in the WFF group is shown. Activity in N=11 mice was
averaged over 7 days of recording during each period of the experiment. (Right) Average
acrophase of activity (top) and diurnality index (% of activity occurring in hours of full light,
bottom) is shown for control (n=10) and WFF groups (n=11), with Holm-Sidék’s post-hoc test
significance after Two-way ANOVA indicated.

(G to I) WT mice (N=23, 12 male, 11 female) were kept in long day conditions (14h light: 4h
twilight: 6h dark) for 1 weeks with ad libitum supply of food and water. After week 1, N=12
mice (6 male, 6 female) were switched onto an ad libitum supply of compositionally identical
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food with the exception that methionine content was reduced to 25% of control. N=11 mice (6
male, 5 female) were kept on ad libitum control diet containing 100% methionine. Mice were
kept on diets for 4 weeks with continuous monitoring of wheel running activity. (G) mTOR
activity in liver and brain taken from mice after methionine restriction for 4 weeks, vs mice on
control diet as indicated by immunoblot.

(H) Representative actogram of mice on control diet (left) and methionine restricted diet (right).
(I) Average 24h activity was calculated for days 15-37 for all mice, binned into 1h bins and
normalized. Light conditions are indicated relative to midday as t=0h with twilight (light grey)
and darkness (dark grey) periods shaded. (Right) Average acrophase of activity (top) and
diurnality index (% of activity occurring in hours of full light, bottom) is shown for control diet
(con) and low methionine diet (low met) groups, with t-test (Welch’s correction) significance
indicated.

(J) Thermodynamic challenge and energy balance are integrated intracellularly by the mTOR
pathway and WNK pathways, which feedback upon each other and regulate the cell-intrinsic
circadian clock. Differential sensitivity of this feedback in nocturnal and diurnal cells (through
multigenic modifications including WNK 1, RRAGB and ZNF598), sets the cellular circadian
clock response resulting in distinct circadian phases. Dial icon by Colourcreatype from Noun
Project (CC BY 3.0).
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