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Abstract 

An essential requirement for the use of fluorescent dyes in biomedicine, molecular biology, 

biochemistry, biophysics and optical imaging is their (covalent) attachment to biomolecules. 

There is, however, no systematic and automated approach for the selection of suitable labeling 

sites in macromolecules, which is particular problematic for proteins. Here, we present a general 

and quantitative strategy to identify optimal residues for protein labeling using a naïve Bayes 

classifier. Based on a literature search and bioinformatics analysis of >100 proteins with ~400 

successfully labeled residues, we identified four parameters, which we combined into a labeling 

score to rank residues for their suitability as a label-site. The utility of our approach for the 

systematic selection of single residues and of residue pairs for FRET experiments is supported 

by data from the literature and by new experiments on different proteins. To make the method 

available to a large community of researchers, we developed a python package called 

“labelizer”, that performs an analysis of a pdb-structure (or structural models), label score 

calculation, and FRET assay scoring. We further provide a webserver 

(https://labelizer.bio.lmu.de/) to conveniently apply our approach and to build up a central 

open-access database of (non-)successfully labeled protein residues to continuously improve 

and refine the labelizer approach.   
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Introduction 

Microscopy and spectroscopy techniques are ubiquitously used in the life sciences, in 

biophysical and medical assays, to investigate structure, interactions, and dynamics of 

macromolecules and their complexes down to the single-molecule level[1–5]. Many applications 

require specific labeling of the biomolecule of interest with fluorescent probes[6–12]. Whereas 

fluorescent proteins are the first choice for imaging applications in live-cells[13–15], synthetic 

organic fluorophores (dyes) are often used for high sensitivity applications including single-

molecule detection[16–18] and super-resolution microscopy[19–21]. A common strategy for the 

(covalent) attachment of functional probes to proteins, including dyes, EPR spin probes, 

nanoparticles, and reactive surfaces, is via reactive linker moieties[6,22].  

A range of labeling strategies exists that exploit reactive groups, each with unique 

(dis)advantages. Coupling to amino groups in lysine residues can be achieved via N-

hydroxysuccinimide (NHS)-esters, but this approach lacks specificity because of the abundance 

of lysine residues in proteins[22]. Alternatively, a terminally located His-tag or the N-terminus 

of the protein itself can be used for selective attachment of functional probes, with the 

disadvantage that the choice of labeling position is greatly curtailed[22]. In contrast, peptide tags 

(e.g., CLIP, SNAP, Halo, etc.) can facilitate covalent or enzymatic probe attachment (AP-BirA, 

LPXTG-SortaseA, etc.) at any desired location, but the size of tags limits applications and can 

impact protein function[23]. The most widely used strategy for site-specific labeling of proteins 

is, therefore, to introduce non-native cysteine residues and to label their sulfhydryl-moiety via 

a maleimide-conjugate of the selected probe[22,24]. Cysteine residues can be labeled with 

minimal effects on protein structure and function. Alternatively, unnatural amino acids (UAAs) 

can be introduced as targets for labeling. UAAs have proven particularly useful in cases where 

the removal of native cysteines is not possible due to their relevance (or abundance) and for 

live-cell labeling, where too many different proteins with cysteine residues are present[25–30].  

The introduction of cysteine residues or UAAs have become the methods of choice for 

many spectroscopic and microscopic studies of proteins, including the characterization of 

structural and functional dynamics by single-molecule Förster resonance energy transfer 

(smFRET)[28,31,32] or pulsed electron-electron double resonance spectroscopy (PELDOR or 

DEER)[33–36]. Therefore, the ability to select optimal labeling sites for the introduction of 

suitable probes has grown in importance [37–39]. Currently, labeling sites are typically selected 

based on manual inspection of the protein structure in a lengthy trial and error process to 

identify labeling sites via physicochemical intuition that are not essential for protein structure 

or function[40–49], but that are also compatible with the assay requirements, e.g., for FRET to 

result in an inter-fluorophore distance close to the Förster Radius R0
[28,31,32]. Frequently 

encountered problems when selecting a labeling site for fluorescent dyes (Figure 1A) range 

from (i) influence of the fluorophore on protein properties including altered biochemical 

function (Figure 1A, “Protein Properties”), (ii) low labeling efficiency (Figure 1A, “Sample 

Yield”), or (iii) unwanted dye-protein interactions (Figure 1A, “Spatial Orientation”), to (iv) 

unpredictable or unfavorable photophysical properties of the dyes at the chosen site (Figure 1A, 

“Fluorescence Properties”). Suitable residues for labeling must not only enable specific and 

efficient attachment of fluorophores, but also avoid the problems summarized in Figure 1A. 

Currently, the selection of labeling sites is often based on sensible rules of thumb[50] selecting 
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those residues that satisfy assay requirements (e.g., distance constraints for FRET[52,53]), but 

that are also solvent accessible[54], show low conservation scores[28] and are not related to 

protein function or the presence of fluorescence quenchers such as tryptophans[50–52]. 

 

 

Figure 1. Labelizer workflow to score protein residues for labeling and FRET experiments. A) Schematic 

overview of protein-fluorophore interactions that can impact the quality and success of fluorescence assays. B) 

Parameter categories obtained from protein strctures and databases used for the labelizer analysis. C) Workflow 

for identifying suitable labeling sites, label score representation and selecting residue pairs for FRET experiments 

with FRET scoring. 

 

Here, we introduce an automated analysis pipeline based on a naïve Bayes 

classifier[55,56] to select suitable label sites using information of protein structure and sequence, 

e.g., from the protein data bank, PDB (Figure 1C, step 1). To systematically compare sites, we 

introduce a quantitative label score LS, which indicates the suitability of a protein residue to 

become a label-site, at which any of the problems shown in Figure 1A are minimal. We 

assembled a database of publications that report successful labeling of protein variants used in 

biophysical assays and identified an ideal set of parameters to allow ranking of such residues 

(Figure 1C, step 2/3). LS can be calculated independently of the choice of label (fluorophore, 

EPR probe, beads, surfaces etc.), yet we here focus on the use and characterization of LS for 

the attachment of fluorescent dyes to proteins. We also extended our analysis to pairs of residues 

for FRET assays, where the interdye distance should be close to the Förster radius to obtain 
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highest sensitivity (Figure 1C, step 4). Therefore, we score different residue pairs according to 

LS and simulated distances to obtain an optimal FRET assay, which express the suitability of a 

residue pair as a FRET score. We support the predictive power of the LS and FRET scores with 

data from the literature and experiments on substrate-binding proteins (SBPs)[57–59].  

To make the analysis routine available to a large community of researchers, we 

introduce a python package called “labelizer”, which implements our analysis of protein 

structures, label score calculation, and FRET assay scoring. The labelizer package allows 

researchers to build on our findings and adapt the code for their specific needs. For 

straightforward use, we also provide a webserver (https://labelizer.bio.lmu.de/) with a user-

friendly interface to apply our analysis approach without any programming efforts.  

 

 

Results 

Database of successfully labeled residues. As the basis of our label-site selection tool, we 

created a database of proteins that have been successfully labeled with fluorophores. A large 

set (>1000) of peer-reviewed papers and preprints was screened for labeled cysteine or UAA 

residues in proteins. We include protein residues in the database that have been covalently and 

site-specifically labeled at cysteines (predominantly) or UAAs with organic fluorophores1. 

Furthermore, only residues are included for which the structure of the protein has been 

deposited in the PDB. For the included proteins, we extract information on the labeled residue 

(chain, number), the type of mutation used for labeling (cysteine or UAA), the assay type (e.g., 

single fluorophore assays, smFRET assay with two labels, imaging, bulk FRET, etc.), and the 

type of label. We then gathered additional information on the protein, such as its oligomeric 

state (monomer, dimer, complexes), whether the protein structure has been experimentally 

determined or only a homology model is available, and whether it is a soluble or a membrane 

protein. Overall, we identified labeled residues in >100 different proteins from >100 

publications (see Supplementary Data: Reference Database Labelizer). An overview of the data 

and summary statistics are presented in Supplementary Figure S1.  

We used a standardized pre-processing routine (see Methods and Supplementary Note 

1) to extract all relevant residues from the pdb-files of the proteins in the database. The final 

data set from 104 pdb structures contains 43357 residues, 396 of which are reported to have 

been successfully labeled (the other residues are considered unknown). For all residues in our 

database, we compute multiple parameters that can be assigned to one of the four major 

categories (Figure 1B): (i) conservation score CS (ii) solvent exposure SE, (iii) secondary 

structure SS, and (iv), amino acid similarity of the exchanged residues to a cysteine, which we 

abbreviate as cysteine resemblance CR (see Supplementary Note 1 with Tables S1-S6). The 

parameters are either directly extracted from the residues in question, e.g., amino acid type, 

mass, charge and size, or calculated with the help of freely available software (conservation 

score (ConSurf[60,61]), solvent exposure (DSSP[62], HSE[63], MSMS[64]), and secondary structure 

(DSSP[62])). Altogether, we obtain 28 parameters for each residue.  

 
1 Note that we also included some spin labels or biotin-linked fluorophores, yet these represent <5% of all labels 

in the database (see Supplementary Figure S1). 
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Bayesian approach to the prediction of labeling sites. To identify suitable residues for 

labeling, we are interested in P(l|s), the conditional probability that the residue can be labeled 

given a parameter value s. By Bayes’ law 

 𝑃(𝑙|𝑠) =
𝑃(𝑠|𝑙)
𝑃(𝑠)

𝑃(𝑙) , (1) 

𝑃(𝑠) is the probability distribution of the parameter values 𝑠 over all residues, whether or not 

they can be labeled, while 𝑃(𝑠|𝑙) is the probability distribution of the parameter values 𝑠 given 

that the residue can be labeled. Finally, 𝑃(𝑙) is the a priori probability that a residue can be 

labeled. While 𝑃(𝑠) and 𝑃(𝑠|𝑙) can be readily computed from our database of labeled protein 

structures, 𝑃(𝑙) is harder to assess, since the literature is biased towards reporting successful 

attempts of labeling that have provided relevant insights. Since P(l) only scales the final 

probability and does not affect the predictions of the relative ease of labeling for different 

residues, we decided to here use a simplified parameter score 

 𝑃𝑆(𝑠) =
𝑃(𝑠|𝑙)

𝑃(𝑠)
  (2) 

instead of P(l|s) to assess the suitability of residues for labeling. PS(s) is in essence the odds 

ratio for a given parameter value to occur in a labeled residue compared to randomly selected 

residues. For all 28 parameters, we computed 𝑃(𝑠|𝑙) distributions for the 396 successfully 

labeled residues and 𝑃(𝑠) distributions from all 43357 residues of the 112 chains of the database 

(Figure 2A and Supplementary Figure S2/3). 

As a control, we compared the probability distributions 𝑃(𝑠) from our database of 

successfully labeled residues with the distributions computed for a random selection of protein 

chains from the PDB (PDBselect, November 2017)[65,66] (see Methods). Here, we find only 

minor differences, indicating that the protein parameters in our database are representative of 

the overall PDB content (Supplementary Figure S2). One notable difference is that cysteines 

are much less abundant (by ~50%) in the database of labeled proteins compared to the overall 

PDB, suggesting that cysteine insertion and labeling is easier (or at least more common) for 

proteins with fewer native cysteines (Supplementary Figure S2). Although we also included 

residues that were labeled via UAA incorporation, our database indicates that cysteine labeling 

is still the predominant strategy for proteins, since it makes up ~90% of all labeled residues in 

our database (Supplementary Figure S1D). 

We find clear differences between P(s|l) and P(s) and, therefore, non-uniform PS 

distributions for most of the investigated parameters (Figure 2A/C and Supplementary Figure 

S6), showing that they indeed contain information about the suitability of residues to serve as 

label sites. To evaluate which parameters are most predictive, we computed PS distributions for 

28 parameters (numbered from #1 to #28) from all four categories from our database (Figure 2 

and Supplementary Table S1-4). For each PS distribution, we analyzed their mean-square 

deviation from an equal distribution, the Gini coefficient, and the Shannon entropy (see 

Supplementary Note 1 and Supplementary Table S6). We find that the PS distributions for many 

parameters clearly deviate from an equal distribution and contain significant information (low 

Shannon entropy), e.g., seen in #1: relative surface area (Wilke), #4: first half-sphere exposure 

(10 Å), #16: variant length in homologues (see Supplementary Figure S3). Other parameters 

contain barely any information such as #17 cysteine in homologues (yes/no), or #27 amino acid 
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charge (Supplementary Figure S3). Thus, strikingly, it is largely unpredictive for labeling of a 

residue whether a cysteine is found in one of the homologue proteins at the same position or 

whether the residue is charged (see parameter #17 and #27, Supplementary Figure S3). One 

might have expected that residues with cysteine homologues are easily mutated to cysteines, 

and therefore, significantly enhanced in our scoring, which is not the case. 

 
Figure 2. Parameter score analysis. A) Probability distribution 𝑃(𝑠) for the parameter ConSurf score (#13, 

Supplementary Table S2 and S6, negative values represent highly conserved residues among homologues) for all 

analyzed residues (left) and for the successfully labeled residues 𝑃(𝑠|𝑙); right. B) Correlations between all 

parameters were calculated based on Pearson correlation (numeric-numeric), interclass correlation (categorical-

numeric) or Cramer’s V (categorical-categorical). The cross-correlations of the final parameter selection for the 

labelizer algorithm are marked (red circles). C) Parameter score distributions 𝑃𝑆 = 𝑃(𝑠|𝑙)/𝑃(𝑠) for the four 

parameters that we select as the default for scoring. The top panel shows the resulting parameter score from the 

distribution in A. For the other categories, the parameters are: solvent exposure (#11, mean surface distance, 

Supplementary Table S1/S6), secondary structure (#18, secondary structure from DSSP, Supplementary Table 

S3/S6), and cysteine resemblance (#25, amino acid identity, Supplementary Table S4/S6). Error bars are the 

standard deviation from counting statistics. The clear deviations from uniform distributions indicate that all four 

parameters contain information about the suitability of a site for labeling. 
 

After establishing the predictive power of individual parameters, we investigated what 

combinations of parameters should be used. For this we calculated the correlation between all 
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parameters2 to judge their statistical independence, which is desirable for our Baysian analysis 

(Figure 2B). We formed sets of four parameters and used a correlation measure (2-norm of all 

paired correlations, see Methods) to calculate a combined correlation estimator for all 

combinations of parameters (Supplementary Figure S4). Whereas this combined correlation-

derived measure shows higher values for most combinations of two or more parameters within 

the same categories CS, SE, CR, and SS, the correlation of combinations of parameters from 

different categories was smaller (<0.5). This effect was independent of whether parameters with 

high or low predictive power (MSD / Shannon entropy) were combined (Figure 2B and 

Supplementary Figure S4). The overall low correlation between parameters from different 

categories justifies our categorization and their consideration as independent variables if we 

restrict our selection to one parameter per category. The strong correlation within categories 

also suggests that the choice of the particular parameter from one category is not critical, i.e., 

most of the parameters can account for the properties of the respective category.  

 

The combined label score predicts potential labeling sites. To combine parameter scores into 

a final assessment of a given residue to serve as label site, we introduce a combined label score, 

LS. By standard probability theory different parameters si can be combined by 

 𝑃(𝑙|⋂ 𝑠𝑖
𝑛
𝑖=1 ) = ∏ 𝑃(𝑙|𝑠𝑖)

𝑛
𝑖=1 =

∏ 𝑃(𝑠𝑖|𝑙)𝑃(𝑙)𝑛
𝑖=1

∏ 𝑃(𝑠𝑖)
𝑛
𝑖=1

 (3) 

under the assumption that they are independent, where  denotes the product and ∩ the 

intersection. This naïve Bayes classification[55,56] is known to give good predictions for low and 

moderately correlated parameters[67–70], which is the case for our parameter set (Figure 2B). In 

general, any residual correlation alters the calculated probability values towards the extremes 

of 0 and 1[70]. However, we again use parameter scores as comparative figures without the 

meaning of probabilities and combine the PSi into the combined label score by taking their 

geometric mean:  

 𝐿𝑆 = √𝑃𝑆1 ∙ … ∙ 𝑃𝑆𝑛 
𝑛

 (4) 

An important question is which of the 28 parameters to include in the LS. We include 

one parameter from each of the four categories CS, SE, SR, and SS, for which concrete values 

were mapped onto the structure of the phosphate binding protein PBP (Figure 3A). For a 

rational selection of parameters, we strive (i) to maximize the dynamic range of values for LS, 

(ii) to maximize the enhancement/suppression level of LS of the successfully labeled residues 

in the database for high/low LS values and (iii) to maximize the statistical significance level of 

LS values of random residues over LS values of the labeled residues in the database.  

Based on these criteria, we were able to identify several parameter sets with predictive 

power (Supplementary Figure S5A,B), but also combinations with much less information 

(Supplementary Figure S5C). In the end, we decided on one set that resulted in a large 

difference of the distributions between the random and labeled residues: mean surface distance 

(SE, #11), conservation score (CS, #13), secondary structure of the labeled residue (SS, #18), 

and the mutated amino acid (CR, #25). This set is shown in Figure 3C and is used as default for 

 
2 Since we deal with categorical data (e. g. secondary structure) and numerical data (e. g. relative surface area), we 

used Pearson correlation, interclass correlation and Cramer’s V for the combinations of numeric-numeric, 

categorical-numeric, categorical-categorical values, respectively (see methods for details). 
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LS calculations in this manuscript and for the associated webserver. In the labelizer python 

package any parameter combination can be selected. 

 
Figure 3. Visualization of parameter and label scores. A) Visualization of the selected parameter scores from 

the four categories, which are used as default settings in our webserver for the example of PBP from E.coli[71,72]; 

pdb:1OIB. B) Visualization of the label score on PBP based on default parameters shown in panel A. C) Label 

score histogram of all residues (gray) and labeled residues (red) in the database. Due to lower numbers of residues 

in the labelled data set it was multiplied with a factor of 100 to allow better comparison of the distributions. The 

shaded area shows the 95% confidence interval from 400 bootstrapping runs. D) Additional examples of LS values 

indicated on protein structures for a membrane protein (left, LeuT of in A. aeolicus[73,74], pdb:2A65) and a DNA-

binding protein (right, DNA polymerase I of B. stearothermophilus[75,76] with DNA template, pdb:1L3U).  

 

We chose the default set out of all well-performing combinations, because of the 

intuitive nature of all selected parameters and the maximized differences between the mean LS 

values of all vs. the labeled residues. Both our choice of parameters and the selected number of 

categories to four (and not only two or three) are supported by statistical analysis of the 

significance, i.e., a t-test and a comparison of the mean values of all vs. labeled parameters for 

different parameter combinations (Supplementary Table S7). Our selection is further validated 

by comparing the receiver operating characteristic (ROC curve) for the baseline, when 

retraining with one of four scores removed and the predictive power of each of the scores on 

their own (Supplementary Figure S6). Bootstrapping of the final set demonstrates the 

robustness of our analysis (Figure 3C). For this final set of parameters, we find that the label 

scores LS range from 0.2 to 2 for most residues (except 5% failed calculations with LS = 0). 

The ratio of the LS distribution of successfully labeled residues in the database and all label 

scores shows that high label scores (>1.5) are significantly enhanced by a factor of ~3-4 for the 
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labeled residues, whereas low label scores (<0.5) are suppressed by a factor of ~10 (Figure 3C). 

This suggests that the label score is an informative measure to rank and compare residues for 

their suitability for labeling with fluorophores.3 We visualize the calculated LS scores for three 

typical proteins, comprising a soluble protein, a membrane protein, and a DNA binding protein 

(Figure 3D-F).  

Experimental benchmarking of the label score. To characterize the relation between LS 

values and experimentally observed behavior, we performed two different analyses of variants 

of the maltose binding protein (MalE) with single-cysteine labeling sites. MalE is a soluble 

bilobed protein with an open (apo) and a closed (holo) structure[59,77], which serves as the 

periplasmic component of the bacterial ABC importer MalFGK2-E
[78]. We visualized LS values 

for all sites of apo MalE in Figure 4A and the corresponding distribution in Figure 4B. The 

distribution shows a LS value range between 0 and 2; high values for LS appear mostly in 

positions of MalE near the surface, when LS are mapped back to the structure (Figure 4A).  

 

Figure 4. Characterization of LS values with experimental parameters and degree of labeling (DOL) for 

single cysteine variants of MalE. A) Crystal structure of MalE in the apo state with LS color coded. B) LS 

distribution of apo MalE for all (grey) and the 20 successfully labeled residues (red). C) LS vs. DOL for the MalE 

labeling data set, where different dyes are color coded. D) Average DOL for different dyes, based on the data in 

panel C. Error bars indicate the standard deviation. We do not observe a correlation of label efficiency and label 

score for the selected mutants with in general high label scores LS>1. We do not observe a significant difference 

 
3 We note here that it would be beneficial to compare the label scores of successfully labeled residues with non-

successfully labeled residues in the future. However, we do not have the information on non-successfully labeled 

residues and only 1% of the considered residues (396 out of 43357) are known as labeled, which should not affect 

the comparison significantly. 
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across fluorophore types (p-value >0.05) except of Cy3, which showed significantly lower DOL values (p-value 

<0.05) compared to all other fluorophores.  

 

First, we studied a data set of 20 variants of MalE, partially taken from previous work 

with (relatively) high LS scores representing residues that are good candidates for labelling 

according to our approach. For these experiments, we used the dyes Alexa546, Alexa647, Cy3, 

Cy5, sCy5 and ATTO647N and obtained an average degree of labeling (DOL) of 0.82 over all 

samples after protein labelling and SEC purification (Figure 4). The DOL was determined using 

the molar ratio between fluorophore and protein concentration from the Lambert-Beer law: 

DOL = c(fluorophore)/c(protein). All successfully labeled sites have an average of ~1.4 and 

almost 90% of them showed LS values >1 (Figure 4B/C). The distribution of the label scores 

for the successfully labeled sites is different from the distribution of all residues of the MalE 

protein (Figure 4B), again confirming that LS provides valuable information about the 

suitability of protein residues to act as label site. Our analysis shows, however, no correlation 

between LS and the experimentally determined DOL (Figure 4C). This is not too surprising 

since all tested residues have relatively high label scores and we focused on mutants with a 

reasonable chance of labeling and did not include measurements e.g., of buried residues with 

low label scores. Furthermore, we do not observe systematic differences between different dyes, 

suggesting that our method works robustly and is independent of the fluorophore (Figure 4D 

and Supplementary Data; LS vs. DOL). 

In a second set of experiments, we ranked all MalE residues by their label scores and 

then randomly selected 5 variants each from the best 10% LS scores (referred to as "positive 

control") and 5 residues from the worst 10% LS scores ("negative control"). For each of these 

10 variants, we characterized the effect of the cysteine mutation in terms of the protein’s 

expression yield and DOL using the dye sCy5 (all data are provided in the Supplementary Data 

Excel file and Table 1). All positive controls, i.e. MalE variants comprising residues with high 

label scores, expressed with high yields (> 15 mg from a 2 L expression culture) and could be 

labeled with a DOL > 85%. These findings again support that residues with high LS scores can 

be successfully expressed and labeled, in line with the first analysis of MalE point mutations 

(Figure 4).  

 

Table 1. Overview of expression and labelling properties of randomly selected MalE variants. 

Cysteine variant Control Expression Labelling 

Q72C positive OK OK 

S211C positive OK OK 

K219C positive OK OK 

E309C positive OK OK 

E322C positive OK OK 

L7C negative reduced X 

W94C negative no expression n.d. 

I116C negative OK X 

G228C negative OK OK 
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W230C negative OK OK 

 

In contrast, two of the negative control variants showed reduced expression yield (L7C 

with 7.8 mg) or no expression at all (W94C). Furthermore, two of the obtained four negative 

control variants showed DOL values <2%. Interestingly, the other two negative control variants 

showed good expression yields and adequate DOL values, suggesting that not all residues with 

low LS scores are necessarily unsuitable for labeling. Taking all variants from this set of 10 

MalE variants into account, there is a statistically significant correlation between LS score and 

DOL (p = 0.03 from a two-sample t-test), further supporting the approach presented here.   

Extension of the LS score to FRET experiments. To test our prediction tool for the design of 

a biophysical assay we extend it to FRET experiments. For this we combine the label score LS 

with an additional parameter for the rational design of FRET experiments. The central idea is 

to select residue pairs for FRET experiments that are (i) suitable as label site based on LS, (ii) 

are separated by a distance that is close to the Förster radius of the dyes used (for maximum 

sensitivity) and (iii) that can detect conformational motion. Criteria i/ii are relevant to the case 

where one protein structure is available, and a residue pair is wanted with a distance close to 

the Förster radius of the dye pair. In this scenario, the researcher can use combinations of 

residues in different domains of the protein for maximal sensitivity. We define the FRET score 

FS of a residue pair {i,j} for a single protein structure as: 

 𝐹𝑆 = √𝐿𝑆𝑖𝐿𝑆𝑗 ∙ (1 − 2 |
1

2
− 𝐸𝑖,𝑗|), (5) 

FS considers the label scores LSi and LSj of two residues 𝑖 and 𝑗 in the protein structure with 

corresponding predicted FRET efficiency 𝐸𝑖,𝑗 (see Supplementary Note 2 for details on the 

FRET efficiency prediction). FS is highest for residue pairs with predicted Ei,j  =  0.5, i.e., an 

interdye distance similar to the Förster radius of the dye pair.  

If two (interconverting) structures of a protein are available, one is interested to find 

FRET pairs that show the largest possible shifts in FRET efficiency. This scenario is 

encountered when ligand binding, protein-protein interactions or other macromolecular 

interactions are studied, and requires that distinct structures of the same protein, e.g., ligand-

free and ligand-bound, are available. We define the FRET difference score 𝐹𝑆∆ of a residue 

pair {i,j} for two available structures 𝐴 and 𝐵 of the same protein as 

 𝐹𝑆∆ = √𝐿𝑆𝑖
𝐴𝐿𝑆𝑖

𝐵√𝐿𝑆𝑗
𝐴𝐿𝑆𝑗

𝐵 ∙ |𝐸𝑖,𝑗
𝐴 − 𝐸𝑖,𝑗

𝐵 |, (6) 

with the label scores LS of two residues 𝑖 and 𝑗 in two protein structures 𝐴, 𝐵 with their 

corresponding FRET efficiencies 𝐸𝑖,𝑗
𝐴

 and 𝐸𝑖,𝑗
𝐵

, respectively. 

 

Accessible volume calculations for FRET labels. To rationally establish a FRET assay with 

maximum sensitivity it is necessary to operate at interprobe distances around the Förster radius. 

A crucial step for calculation of both FRET scores is, therefore, the ability to predict interdye 

distances from the protein structures accurately (Figure 5). The labelizer package supports three 

models for in silico fluorophore distance predictions. A rough approximation of expected FRET 
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efficiencies can be obtained from the C distances between two residues[54] (Figure 5A). 

However, these distances can differ >10 Å from the actual mean fluorophore positions, due to 

the size of the fluorophore and the flexible linkers (10-20 Å length) used for fluorophore 

attachment[79,80]. While distance changes are less impacted by such deviations, the absolute 

distances are significantly affected by the geometry of the labels (Figure 5C). Neglecting these 

effects can reduce the sensitivity of a FRET assay by up to a factor of ~4 (Figure 5D and 

Supplementary Figure S7 and 8).  

 

Figure 5. Accurate prediction of interdye distances on proteins and experimental benchmarking of the 

FRET scores. A) Distance estimation with FPS computes a grid-based accessible volume to determine the mean-

position of the fluorophore 〈𝑅⃗ 𝐹〉, the averaged inter-fluorophore distance 𝑅𝑀𝑃 = 〈𝑅⃗ 𝐷 − 𝑅⃗ 𝐴〉, and the efficiency 

weighted average fluorophore distance 𝑅〈𝐸〉
𝑚𝑜𝑑𝑒𝑙 approximated with an exponential correction factor (see 

Supplementary Note 2). Illustration shows donor and acceptor labeling at residues S3C and P86C, respectively, in 

PBP (pdb: 1OIB). B) Approximation of the accessible volume with a spherical sector. The spherical sector (left) 

is defined by the radius R (linker length of the fluorophore) plus an opening angle 𝛼 and approximates the 

accessible volume simulated with FPS software (right, blue volume). The red spheres represent the protein atoms 

within radius R from the Cß atom. C) Illustration of the determination of the mean position in 2D. The circles 

represent the atoms of the protein. The inaccessible volumes are the atoms within a radius R (pale red circle) to 

the Cß atom (dark red circle). D) Comparison of Cß distances and modelled distances with the introduced spherical 

sector approximation compared to FPS-derived distances in 10 selected pdb structures with 35 different 

fluorophore parameters (N = 32116, top). The data >100 Å are noisy due to low statistics. Histogram of the distance 

offsets from the Cß atom for the distances in the range 40 Å < 𝑅<𝐸>
𝑚𝑜𝑑𝑒𝑙 < 75 Å (N = 17359, bottom). E) Analysis 
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of the deviation of measured FRET efficiencies from 0.5 for selected MalE mutants taken from ref. [39,81] (literature) 

and new experiments (this work) in apo (empty circle) and holo state (full circle) with respect to the computed 

FRET scores (left). Measured FRET efficiency shift between apo and holo of mutants in A plotted against the 

FRET difference score 𝐹𝑆∆ (right). Linear fits of the data are shown as solid lines with R2 = 0.84 (left) and R2 = 

0.73 (left). 

 

To predict distances between fluorophore labels accurately, it is important to obtain 

accurate simulations of the accessible volumes (AVs) considering the size and shape of the dyes 

and their linkers. Molecular dynamics simulations have been successfully used for this 

purpose[82–84], yet they are too slow as a screening tool. Coarse-grained simulation via FRET-

restrained positioning and screening system (FPS), where all positions on a grid are examined 

to decide whether it can be occupied by a fluorophore of specified size and linker length, 

provide AVs that are in very good agreement with experimental values of interdye 

distances[49,80,81,85–90] (Figure 5A). Comparing the calculated Cß-distances of the residues with 

FRET-averaged distances 𝑅<𝐸>
𝑚𝑜𝑑𝑒𝑙 from AV simulations reveals deviations of 10 to 15 Å (RMSD, 

Figure 5B and Supplementary Figure S8A), highlighting the need to consider the dye and linker 

geometry. The computation time required for one pair of dyes using FPS, however, is still rather 

long for screening purposes, e.g., several hours when >10.000 residue pairs should be 

considered (see Supplementary Table S9). 

Therefore, we here introduce a simpler and faster distance estimator based on a spherical 

sector model (SSM) that estimates dye-accessible and dye-inaccessible volumes (Figure 5B). 

SSM is used for screening purposes since it is 100 to 1000 times faster than currently available 

simulations such as FPS. Our algorithm relies on an approximation of the accessible volume by 

a spherical sector of angle 𝛼 and radius R representing the linker length of the fluorophore (see 

Figure 5C). The atoms of the protein within radius 𝑅 from the attachment site (Cß atom) define 

an inaccessible volume (see Figure 5B/C, pale red spheres). We find a direct relation between 

the center of mass of these atoms 𝑑′⃗⃗  ⃗ (inaccessible volume) and the center of mass of the 

accessible volume 𝑑  (see Supplementary Note 2) as 

 𝑑 = (1 −
3

4

𝑅

|𝑑⃑′|
)𝑑′ . (7) 

We included a small correction 𝜀 (~0.5 Å for typical fluorophores) to the linker length 

𝑅̃ = 𝑅 + 𝜀 in this formula to compensate for the size of the fluorophore core (Supplementary 

Note 2, Supplementary Figure S7) and we used an estimation to convert the distance of the 

mean positions to FRET-averaged distances (Supplementary Note 2, Supplementary Figure 

S8). To test our method, we performed distance simulations for 100 donor-acceptor pairs in 10 

different protein structures, where we altered the linker length and the dye dimension with 35 

variations resulting in 35.000 distance simulations in total. Our SSM approach gives results in 

good agreement with the FPS method with a deviation of ±3 Å (RMSD, Figure 5 and 

Supplementary Figure S7), which is on the order of the intrinsic distance precision of FRET[80]. 

The mean-position distances are converted to FRET-averaged distances with an exponential 

correction factor at small distances (see Methods and Supplementary Figure S8). The spherical 

sector method allows to screen >10.000 FRET-pairs within seconds on a single CPU with <1 

ms calculation time per residue-pair (see Supplementary Table S9). Therefore, our standard 
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settings are to use the SSM method for a first selection of suitable FRET-labeling positions and 

subsequently refine the best three hundred FRET pairs with the FPS AV-simulations[81,90]. 

Alternatively, our python package allows calculating the Cß distances (low accuracy) or the 

FPS-derived derived distances (long runtime) for all residues by manual selection. 

 

Experimental benchmarking of the FRET score. At first we used the labelizer workflow to 

establish new FRET assays for mechanistic studies of the ABC transporter-related prokaryotic 

substrate-binding protein PBP[57–59,91] (Figure 6A). As seen in the crystal structures PBP 

undergoes a ligand-induced transition from a ligand-free open (pdb: 1OIB, apo) to a ligand-

bound closed state (pdb: 1PBP, holo; Figure 6A). Yet, the ligand binding mechanism of PBP, 

i.e., ligand-binding before conformational change (induced fit) or conformational change before 

ligand binding (conformational selection) has not been studied. Thus, our goal was to obtain 

assays with large changes in FRET efficiency upon addition of the ligand inorganic phosphate 

for dye pairs with a Förster radius around 5 nm. We identified multiple suitable residue 

combinations with maximized positive and negative distance changes based on 𝐹𝑆Δ (Figure 

6B). We selected four double cysteine variants with large predicted shifts from long (low 

FRET) to shorter (higher FRET) distances upon phosphate binding. We selected those from the 

list of 300 refined pairs using the FPS parameters for Alexa Fluor 555-Alexa Fluor 647 (Figure 

6B; Supplementary Table S8). Before conducting FRET experiments, we characterized one of 

the double-cysteine variants PBP (S3C-I76G-P86C) and the cysteine-less PBP variant PBP 

(I76G) biochemically by ITC and obtained Kd-values of 10  5 µM for PBP (S3C-I76G-P86C) 

and 19  6 µM for PBP (I76G); (mean ± SD from n = 2 protein preparations (Supplementary 

Figure S9). These experiments suggest that protein labelling does not affect substrate affinity. 

The I76G mutation was used in all PBP protein variants presented in this paper (Figure 6 and 

Supplementary Figure S9). 

Subsequently, we labeled all four PBP variants using established procedures[39,92] (see 

Methods) and studied freely-diffusing molecules with microsecond alternating laser excitation 

spectroscopy (µsALEX). For labeling, we used the donor-acceptor pair Alexa Fluor 555-Alexa 

Fluor 647 and the structurally-related combination LD555-LD655 (Figure 6D/E). The success 

of the labelizer prediction is seen in Figure 6E and Supplementary Figure S9, where high quality 

smFRET histograms are obtained for all four PBP variants with low FRET in the apo (open 

conformation, no phosphate) and high FRET in the holo state (closed conformation, 480 µM 

phosphate). Analyzing the shift of the open to closed conformation and plotting the closed-state 

fraction as a function of ligand concentrations for PBP (S3C-I76G-P86C) with Alexa555-

Alexa647 yields a Kd of 16±6 µM (Figure 6F), which is in agreement with results for the 

unlabeled proteins (Figure 6C). A similar behaviour for the FRET-assay properties and 

biochemical characteristics are found for all PBP variants (Supplementary Figure S10).  

Beside the demonstration of the success of the labelizer procedure, these experiments 

provide new and so far unavailable information on the ligand binding mechanism of PBP. The 

lack of a pronounced closed-state population in the absence of ligand (Supplementary Figure 

S9, apo) and the engulfed nature of the ligand in the closed state support the idea that PBP is 

likely to use a ligand binding mechanism like other structurally-related SBPs[58,59,77]. 
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Figure 6. Labelizer-based residue selection for FRET experiments and validation. A) Crystal structures of 

PBP in the apo (grey, PDB-ID: 1OIB) and holo (green, PDB-ID: 1PBP) states with mutations S3C and P86C 

indicated in black. This variant of PBP also contains an I76G mutation that lowers the affinity for inorganic 

phosphate by ∼200-fold compared to the wild-type protein. B) Maps illustrating the distance change and associated 

FRET score for all pairs of mutants in PBP. The selected mutation S3C and P86C is marked with an arrow. The 

distance change of the attachment atom (Cß, top-left) and the change of the simulated spherical sector model (top-

right) show a clear pattern of correlated movements. The calculated FRET score map of all pairs with average 

label score LS>1 shows only a few spots (~4%) with promising FRET scores FS>0.2 (bottom-left). The selection 

of the 1000 pairs with highest FRET score and a refinement with FPS software (bottom-right) shows only minor 

variation compared to the screening map (bottom-left) for the analyzed data points. C) Isothermal titration 

calorimetry (ITC) measurements of PBP (I76G) with average Kd-values. D) Size exclusion chromatography of 

PBP with LD555-655 showing protein absorbance (280 nm) and fluorophore wavelength at 548 nm and 646 nm. 

E) ES-FRET histograms of PBP (S3C-I76G-P86C) with LD555-655 in the ligand-free apo state (left) and with 

480 µM phosphate (right) F) Closed fraction (rclosed) as a function of the substrate concentration for PBP (S3C-

I76G-P86C) with Alexa Fluor 555-647 determined from smFRET measurements. The red line is a fitted binding 

curve; three technical replicates gave an average KD of 10.8±0.2 µM.  

 

To go beyond a qualitative assessment of the labelizer routine, we analyzed a large pool 

of smFRET experiments of different MalE double-cysteine variants to quantitively benchmark 

the scores FS and 𝐹𝑆Δ. In detail, we analyzed 34 data sets of published[39,81] and unpublished 
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data (Supplementary Figure S11/S12). For these the accurate FRET efficiencies of MalE in 

both apo- and holo-state are determined including the respective interprobe-distances and their 

distance change upon maltose binding (Supplementary Data). This data set covers an 

experimental interprobe distance range from 3-7 nm for three distinct dye pairs with Förster 

radii of 5.1 nm (Alexa Fluor 555- Alexa Fluor 647), 5.8 nm (ATTO532-ATTO643) and 6.5 nm 

(Alexa Fluor 546- Alexa Fluor 647)4 and E values ranging from 0.2-0.9. Consistent with 

expectations, the calculated FS values correlate linearly with the difference of the 

experimentally determined mean FRET efficiency from 0.5 (Figure 5E). Similarly, we observe 

a linear correlation between computed 𝐹𝑆Δ values and the experimentally observed change in 

FRET efficiency |Eholo-Eapo| upon ligand binding (Figure 5E). Whereas pairs with large FS and 

𝐹𝑆Δ values are desirable to detect changes upon ligand binding, pairs with high FS values of 

the two individual conformations but 𝐹𝑆Δ ≈ 0 (MalE 84/352, Supplementary Figure 12) can 

provide an important experimental control. Such pairs have a distance close to the Förster radius 

with (almost) no change in FRET efficiency upon conformational change. They can serve as 

negative controls to ensure that a protein or conformational changes do not influence 

fluorophores, e.g., via altered photophysics, lifetime and quantum yield changes, or for the 

characterization of quenchers such as metal ions[93], which can affect FRET efficiencies without 

conformational change.  

Importantly, all analyzed fluorophore-labeled MalE variants used for smFRET had LS 

values >1 and showed maltose affinities that are wildtype-like with Kd-values around ~1-2 µM 

(Supplementary Figure S11). Taken together these analyses provide strong support for the idea 

that the LS is a useful indicator to identify residues that (i) allow fluorophore attachment, (ii) 

preserve protein function and in combination with FS (iii) enable design of FRET assays. 

 

Discussion and Conclusions 

Here, we present a general strategy to identify optimal residues for protein labeling using a 

naïve Bayes classifier. Based on a literature screening and bioinformatics analysis of 104 

proteins with 396 successfully labeled residues, we identified a set of four parameters, which 

we combined into a label score to quantitatively rank residues according to their suitability as 

label site. We show using data from the literature and complementary experiments the 

predictive power of this labeling score and extend the method to systematically select residue 

pairs for FRET experiments, which we believe can be extended at later stage to consider the 

specific properties of the label and also other biophysical assays beyond FRET.  

To widely disseminate our methodology, we provide a python package called 

“labelizer”, which implements the analysis of the pdb-structure, label score calculation, and 

FRET assay scoring. The labelizer analysis routine can be modified and extended, to 

accommodate specific research questions and to build upon the work presented here. To make 

the methodology widely available to non-expert users, all key functionalities are available as a 

webserver with an intuitive and user-friendly interface https://labelizer.bio.lmu.de/. The 

webserver supports the label score calculation and its use for FRET experiments with default 

 
4 An overview of experimentally determined and theoretical Förster radii is provided in Supplementary Figure 

S11D. 
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parameters for the most frequently used fluorophores. For this purpose, pdb-files can be loaded 

automatically and preprocessed from the pdb-database. We further retrieve conservation scores 

directly from an independent installation of the ConSurf server[60,61] without the need of 

uploading any information (except when modified or user-specific pdb files should be used). 

The webserver visualizes the different scores in an interactive 3D structure viewer and provides 

a table with filter options for customized restrictions upon residue selection. Furthermore, 

human-readable result files (csv, json) are available for subsequent analysis. With the developed 

method, we hope to provide scientists in various research fields (biochemistry, molecular 

biology, bioimaging, high resolution optical microscopy and single-molecule biophysics) with 

a tool that enables them to systematically design and justify the residue selection.  

A challenging aspect of our analysis is the final selection of residues by the user based 

on the labelizer output. Since this step is decisive for which residues are used in experiments, 

the selection goes hand in hand with an assessment and interpretation of the LS/FS value 

distributions of the analyzed protein. It is difficult to define clear threshold values for residues 

to be excluded based on LS/FS, yet our findings empirically suggest that residues with LS 

values < 1 are less likely to be useful in experiments. Since the FRET-score values additionally 

depend on the underlying LS distribution, it is difficult to give general recommendations. We 

stress that the user of the algorithm should inspect the specific LS/FS distributions for each 

protein. For the residues ranked highest, we recommend the user to verify this selection with 

prior (expert) knowledge on the protein. A key question would be whether the highly-ranked 

residues, i.e., those favored by the labelizer, are known to negatively impact secondary 

structure, ligand-binding, biomolecular interactions, or protein folding. Additional information 

might also come from other biophysical approaches such as CD spectroscopy, FTIR, MD 

simulations or EPR studies considering any information that can help to assess if key residues, 

which should not be altered are actually (falsely) suggested by our algorithm.  

An interesting future direction for further development of the labelizer is to include more 

parameters (e.g., also fluorophore-dependent ones) with a potential differentiation of residues 

based on the selected fluorophores related to the specific charge environment on the protein or 

proximity to specific amino acids, e.g., tryptophane or histidine. We also plan to combine 

different parameter scores to improve the predictive ability of the labelizer, which might happen 

within one category, e. g., via simultaneous use of half-sphere exposure (HSE) and relative 

surface area (RSA) to combine the amino-acid direction and surface area or between categories, 

e.g., solvent exposure and cysteine resemblance. Furthermore, normal mode analysis (e.g. 

NMSim webserver[94,95]), mutation specific energy analysis (e.g. SDM[96,97]), or tailored MD-

simulations[98] could be used to identify FRET-residue pairs for analysis of conformational 

motion when only one protein structure is available. The concept of FRET scores could be also 

extended towards other fluorescence assay types related to fluorophore quenching[99,100], 

protein-induced fluorescence enhancement[101,102], and others[103,104]. We also envision applying 

the labelizer approach in related applications, such as EPR-distance measurements, since the 

methods share similar requirements in regard to the residue selection[37–39]. 

Another direction for future improvement and extension of the database and the 

algorithm, would be to revise the available PS values by an extended database, where 

particularly positions with low or no yield of labeling, could be an important new class of 
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information. Such an improved training data set can be obtained via a feedback loop, where 

researchers supply information on successfully and unsuccessfully labeled residues via a form 

planned on our website. Unsuccessful results are of particular interest, since negative results 

are rarely found in the literature (mainly successful results are published), and we were not able 

to collect enough negative examples from researchers directly. Therefore, we call on the 

scientific community to use the labelizer and to provide feedback on the approach and on 

positive and negative results, where labeling of specific residues was successful or failed, 

respectively. Finally, once a much larger dataset of labeled and non-labeled residues is 

available, applications of other machine learning procedures (e.g. support vector machine or 

neural networks) could significantly enhance the predictions.  

 

Data and code availability: 

The webserver with an intuitive user interface and default analysis settings is available under 

https://labelizer.bio.lmu.de/. The software is available as python package “labelizer” as source 

code under https://github.com/ChristianGebhardt/labelizer. The databases and additional 

information can be accessed from https://github.com/ChristianGebhardt/labelizer-supplement 

or from the online version of the paper. 
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Online Methods 

Database generation 

To identify parameters with predictive power for the possibility to label residues in proteins, 

we created a dataset based on a non-automated screening of more than 1000 publications 

published or preprinted which were available on or before December 2020 with a focus on the 

field of single-molecule microscopy and single-molecule FRET. The papers were screened to 

identify proteins and residues that were labeled successfully with a fluorophore and that 

satisfied the following criteria: (i) the proteins had a structure available in the PDB-database 

(with PDB identification code); (ii) the protein was labeled via site-specific mutagenesis and 

introduction of cysteines or UAAs; (iii) the protein was successfully labeled synthetic organic 

fluorophores (or spin labels) and used preferentially single-molecule assays. In order to increase 

the number of database entries, we complemented our search whenever some information was 

missing. Typical cases were missing PDB identification codes or residue numbers. In this case, 

the required information was obtained from other referenced papers (often) of the same research 

group.  

For each successfully labeled protein variant, which fulfilled the aforementioned criteria, 

the following information was collected5: 

• Protein (PDB identification code) 

• Soluble or membrane protein 

• Stoichiometry (monomers, dimer, complexes) 

• Homology model (true/false) 

• Labeled residue (chain and residue number) 

• Mutation (cysteine or UAA) 

• Assay type (smFRET, imaging, bulk-FRET, other) 

• Name of labeled fluorophores 

• Research group 

• Publication reference 

The final database with information on those positions in proteins that were successfully 

labeled had 396 successfully labeled residues in 112 different chains in 104 different protein 

structures (Supplementary Data). As comparison, we used a representative set of proteins 

(PDBselect, November 2017)[65,66] as a random reference database to check how representative 

the analyzed pdb structures are. Therefore, we randomly selected 300 chains (out of 4184 

chains) from the PDBselect database and performed the identical analysis with those pdb files. 

This important comparison shows that the selection of labeled proteins and residues is 

representative of the pdf content, indicated by only minor deviations between both P(s)  

distributions, mostly within statistical errors (see Supplementary Figure S2). 

 

 
5 Additional notes were gathered to account for issues such as: (i) dimer and polymer protein structures, which 

were crystallization artefacts and needed to be deleted for structural analysis; (ii) missing residues in protein 

structure, i.e., when parts of the protein were not resolved completely; (iii) we identified inconsistencies or missing 

information 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2025. ; https://doi.org/10.1101/2023.06.12.544586doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544586
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gebhardt et al., Labelizer version 2024 

#24 

Parameter frequency calculation: For every extracted parameter, the relative frequency defines 

a parameter score 

𝑃𝑆 =
𝑃(𝑠|𝑙)

𝑃(𝑠)
 , 

where 𝑃(𝑠) is the probability distribution of the score 𝑠 (calculated from the 112 chains of the 

database) and 𝑃(𝑠|𝑙) is the probability distribution of the score given that the residue was 

labeled (calculated from the 396 successfully labeled residues). 

The error bars 𝜎𝑠𝑙 and 𝜎𝑠 for 𝑃(𝑠|𝑙) and 𝑃(𝑠), respectively, were determined from 

Poissonian counting statistics as 𝜎𝑠𝑙 = √𝑃(𝑠|𝑙)/𝑛 and 𝜎𝑠 = √𝑃(𝑠)/𝑛 with 𝑛 being the total 

number of evaluated residues. The error bar 𝜎𝑃𝑆 for 𝑃𝑆 follows from standard error propagation 

rules: 

𝜎𝑃𝑆 = √
𝜎𝑠𝑙

2

𝑃(𝑠|𝑙)2
+

𝜎𝑠
2

𝑃(𝑠)2
𝑃𝑆 

 

Parameter information analysis: To evaluate the amount of information a single parameter score 

inheres, we used three measures to estimate the deviation from an equal distribution, which 

corresponds to the case of zero information. 

We used standard Pearson correlation for a pair of numeric parameters 

𝑀𝑆𝐷(𝑃𝑆) =
∑ (𝑃𝑆(𝑖) − 1)2𝑛

𝑖=1

𝑛
 , 

with n the number of bins/categories. 

We used standard Pearson correlation for a pair of numeric parameters 

𝑔𝑖𝑛𝑖(𝑃𝑆) =

𝑛 − 1
2

∑ 𝑃𝑆(𝑖)𝑛
𝑖=1 − ∑ ∑ 𝑃𝑆(𝑗)𝑖−1

𝑗=1
𝑛
𝑖=2

𝑛
2

∑ 𝑃𝑆(𝑖)𝑛
𝑖=1

 , 

with n the number of bins/categories. 

We used an adapted Shannon entropy accounting for the number of bins/categories as 

𝐻(𝑃𝑆) =
−∑ 𝑃𝑆̃(𝑖) 𝑙𝑛 (𝑃𝑆̃(𝑖))𝑛

𝑖=1

ln (n)
 , 

with a normalized parameter score 𝑃𝑆̃(𝑖) = 𝑃𝑆(𝑖)/(∑ 𝑃𝑆(𝑗)𝑛
𝑗=1 ) and n the number of 

bins/categories. 

 

Parameter cross-correlation: To evaluate the mutual statistical dependence of all calculated 

parameters, we use three different types of correlation coefficients, depending on the datatypes 

of the parameters: 
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We used standard Pearson correlation for a pair of numeric parameters 

𝑟𝑁𝑁 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1  √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 , 

with 𝑛 different residues with parameter scores 𝑥𝑖 , 𝑦𝑖 and corresponding mean values 𝑥̅ =

1/𝑛 ∑ 𝑥𝑖
𝑛
𝑖=1  (and 𝑦̅ accordingly)[105]. 

We used the interclass correlation for a pair of a categorical parameter and a numeric 

parameter[106]. The 𝑛 data points are grouped in k categories 𝑐𝑖 𝑤𝑖𝑡ℎ 𝑖 ∈ {1,2, … , 𝑘} of length 

𝑛𝑖. 

 

𝑟𝐶𝑁 =
𝑀𝑆𝑇 − 𝑀𝑆𝐸

𝑀𝑆𝑇 + (𝑛0 − 1)𝑀𝑆𝐸
 , 

with 

𝑀𝑆𝑇 =
∑ 𝑛𝑖 ∑ (𝑥𝑖̅ − 𝑥̅)2𝑛𝑖

𝑗=1
𝑘
𝑖=1

𝑘 − 1
 , 

𝑀𝑆𝐸 =
∑ ∑ (𝑥𝑖,𝑗 − 𝑥𝑖̅)

2𝑛𝑖
𝑗=1

𝑘
𝑖=1

𝑛 − 𝑘
 , 

𝑛0 =
𝑛 − ∑ 𝑛𝑖

2/𝑛𝑘
𝑖=1

𝑘 − 1
 , 

where 𝑥𝑖̅ is the mean of category 𝑖, 𝑥̅ the mean of all data, 𝑥𝑖,𝑗 the jth numeric value in category 

𝑐𝑖, and (𝑛0 − 1) the averaged interclass degree of freedom[106].  

We used the Cramer’s V for a pair of a categorical parameters[107]. The data are grouped 

in the two categories 𝑐𝑖 𝑤𝑖𝑡ℎ 𝑖 ∈ {1,2, … , 𝑘} and 𝑑𝑗  𝑤𝑖𝑡ℎ 𝑗 ∈ {1,2, … , 𝑙}. 

𝑟𝐶𝐶 = √
𝜒2

𝑛(min(𝑘, 𝑙) − 1)
 , 

with 

𝜒2 = ∑∑
(𝑛𝑖,𝑗 − 𝑛̃𝑖,𝑗)

2

𝑛̃𝑖,𝑗

𝑙

𝑗=1

𝑘

𝑖=1

 , 

where  𝑛̃𝑖,𝑗 = (∑ 𝑛𝑖,𝑗
𝑙
𝑗=1 )(∑ 𝑛𝑖,𝑗

𝑘
𝑖=1 )/𝑛, 𝑛 total number of residues and 𝑛𝑖,𝑗 number of residues 

of class 𝑐𝑖 and 𝑑𝑗. The cross-correlation was calculated for every combination of the 28 

extracted parameters to identify dependencies as shown in Figure 2. 

 

Parameter Selection Criteria: The selection of a suitable parameter set is based on two criteria. 

First, a joined correlation for any combination of parameters is calculated as 
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𝑟𝑠𝑒𝑡 = √∑𝑟𝑖𝑗

𝑛

𝑖=1

 , 

with 𝑟𝑖𝑗 the correlation of parameter 𝑖with 𝑗 and 𝑛 the number of selected parameters (in our 

case 4). Secondly, we used three measures to characterize our parameter sets: 

We calculate the t value of the calculated label scores as 

𝑡 =
𝜇𝑙 − 𝜇𝑎𝑙𝑙

√𝑆𝐸𝑀𝑙
2 + 𝑆𝐸𝑀𝑎𝑙𝑙𝑙

2
 , 

with the mean values 𝜇𝑙, 𝜇𝑎𝑙𝑙 and standard error of mean 𝑆𝐸𝑀𝑙, 𝑆𝐸𝑀𝑎𝑙𝑙 of the labeled/all 

residues, respectively. 

The dynamic range was calculated as the standard deviation of the logarithmic values 

𝜎(log(𝐿𝑆𝑎𝑙𝑙)). 

The suppression/enhancement of the labeling score of labeled residues for small/large 

values was calculated from the slope of a linear least square fit to the logarithm of the label 

score 𝐿𝑆 and the label score distribution of labeled residues and all residues. The data are binned 

into logarithmic bins with bin intervals [1.5𝑖, 1.5𝑖+1] 𝑓𝑜𝑟 𝑖 ∈ {−12,… ,11} and fitted to the 

function 

log (
𝑃(𝐿𝑆|𝑙)

𝑃(𝐿𝑆)
) = 𝑚 log(𝐿𝑆) + log (𝑐), 

where LS is the label score and 𝑃(𝐿𝑆)/ 𝑃(𝐿𝑆|𝑙) the probability distributions of the label score 

of all and the labeled residues. The slope 𝑚 is used as analysis parameter form the fitted values 

𝑚, 𝑐. 

 

Protein production and labeling 

In the current study we used single cysteine variants of MalE (Figure 4) that were obtained and 

fluorophore-labeled as described previously[59,108]. PBP double cysteine variants were produced 

for this study. The coding sequence for the E. coli K12 phoS gene (Genbank coding sequence 

NC_000913.3, 3910485 - 3911525 complement, protein accession number NP_418184.1), with 

amino-acid changes (A17C and A197C) corresponding to the rho-PBP fluorescent biosensor 

variant[109] was synthesized (Invitrogen GeneArt Gene Synthesis, Thermo Fisher) without its 

N-terminal signal sequence (25 amino acid N-terminal deletion). This construct utilized 

flanking NdeI/XhoI sites, and was subcloned into the pET20b expression vector. The resulting 

construct encoded a C-terminal His-tag fusion. The S3C-P86C-PBP mutant, with the additional 

I76G mutation that reduces the wild-type affinity (Kd 0.07 µM) of the protein for inorganic 

phosphate by ~200-fold[91] was created using a protocol based on the Stratagene Quikchange 

protocol[110]. As a control, a variant was also created with only the I76G mutation. 

E. coli BL21 (DE3) pLysS cells transformed with the S3C-P86C-PBP mutant expression 

plasmid (or the plasmid for the control variant) were used to inoculate Terrific Broth (TB; Carl 

Roth, Karlsruhe, Germany) supplemented with 100 µg/ml carbenicillin (Carl Roth) and 0.2% 
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glucose to an optical density at 600 nm (OD600) of 0.1 AU at 37C with shaking at 200 rpm. At 

an OD600 of ~0.3 AU, isopropyl b-D-1-thiogalactopyranoside (IPTG, Carl Roth) was added to 

a final concentration of 0.5 mM, followed by ~24 h incubation. Cells were harvested by 

centrifugation (5000g, 20 min, 4C) at a final culture OD600 of 3-4 AU, resuspended in 35 ml 

20 mM HEPES pH 7.5, 300 mM NaCl, 10% glycerol containing protease inhibitor (cOmplete, 

EDTA-free Protease Inhibitor Tablets, Sigma; 1 tablet/50 ml solution), and frozen and stored 

at -80C. 

The resulting cell suspension was thawed, supplemented with 5 mM -mercaptoethanol (-

ME) and 10 mM imidazole (Carl Roth), and then sonicated (Branson Digital Sonifier 450, 

Danbury, CT, USA) on ice for 10 min (Amplitude, 25%; 0.5 sec on and 0.5 sec off). Insoluble 

fractions containing cell debris were separated by centrifugation (165,000g for 1 h at 4C). The 

soluble fraction was incubated with 1.5 ml of Ni Sepharose 6 Fast Flow resin (GE Healthcare) 

for 1 h at 4C. The resin with bound protein was then washed with 80 ml of buffer containing 

25 mM imidazole. Bound protein was eluted in 10 ml buffer with 500 mM imidazole. The 

elution fraction was concentrated to < 0.5 ml using a Viva Spin 20 concentrator with a 10 kDa 

MWCO (Th. Geyer, Renningen, Germany), and subjected to further purification by size-

exclusion chromatography (SEC; using ÄKTA pure system, and Superdex 75 Increase 10/300 

GL column (GE Healthcare)) in 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM imidazole. 

The final purified proteins were >95% pure as assessed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). 

His-tagged MalE, and S3C-P86C-PBP proteins were labeled as described previously[59,108]. The 

proteins were incubated with 1 mM DTT to reduce cysteine residues. Following dilution to 

lower the DTT concentration to < 0.05 mM (so as not to interfere with binding of protein to the 

metal-affinity resin), the proteins were immobilized on 200 µl of Ni Sepharose resin. The resin 

was then washed with 12 ml of 50 mM Tris-HCl pH 7.4-8.0, 50 mM KCl, 5% glycerol for MalE 

and SBD2 (Buffer A), and 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM imidazole for PBP. 

28 nmoles of PBP were then incubated overnight with 50 nmol of each fluorophore dissolved 

in 2 ml of the appropriate buffer. Unreacted fluorophore for MalE and SBD2 was removed by 

washing the resin with 12 ml of Buffer A followed by 12 ml of Buffer A containing 50% 

glycerol. For PBP, a single 12 ml wash was performed. Bound MalE and SBD2 were eluted 

with 0.5 ml of Buffer A containing 500 mM imidazole, whereas PBP was eluted with 1 ml of 

buffer with 500 mM imidazole. The labeled proteins were further purified by size-exclusion 

chromatography (using ÄKTA pure system, and Superdex 75 Increase 10/300 GL column (GE 

Healthcare)). Absorbance of protein (280 nm) and fluorophore (488 nm, 532 nm and 640 nm) 

was used for determination of molar concentrations in samples and labeling efficiency, i.e., 

[Fluorophore]/[protein]*100. 

 

Affinity measurements: Isothermal titration calorimetry and MST 

Binding affinities of I76G-PBP and unlabeled S3C-P86C-PBP for inorganic phosphate were 

determined with a MicroCal PEAQ-ITC microcalorimeter (Malvern Panalytical) at 25C. 

Protein from a diluted solution was concentrated to ~ 30 µM using a Viva Spin 6 concentrator 

with a 10 kDa MWCO. The filtrate was used to prepare the phosphate solution at 450 µM. The 
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reaction cell was filled with the protein solution and titrated in 19 steps of 2 µl each of phosphate 

solution in 160-s intervals. A baseline control was obtained from measurements made with 

protein-free filtrate in the reaction cell, and this baseline was subtracted from the experimental 

thermograms. Data were fitted to a single binding site model using the Setup MicroCal PEAQ-

ITC Analysis Software provided by the manufacturer. 

 

smFRET spectroscopy and data analysis 

smFRET experiments of PBP were carried out on a home-built ALEX setup as described 

previously[58,92]: PBP was studied by diluting the labeled protein to concentrations of ≈80 pM 

in a 100 µl drop of buffer (20 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM imidazole) on a 

coverslip supplemented with the ligand phosphate as described in the text and figures. Before 

each experiment, the coverslip was passivated for 3 minutes with a 1 mg/ml BSA solution in 

buffer. The measurements were performed without photostabilizer. The fluorescent donor 

molecules were excited by a diode laser at 532 nm operated at 60 µW at the sample in 

alternation mode (50 µs alternating excitation and a 100 µs alternation period). The fluorescent 

acceptor molecules were excited by a diode laser at 640 nm operated at 25 µW at the sample. 

Data analysis was performed using a home written software package as described in reference 
[58]. Single-molecule events were identified using an all-photon-burst-search algorithm with a 

threshold of 15, a time window of 500 µs and a minimum total photon number of 150[111]. E-

histograms of double-labeled FRET species with LD555 and LD655 were extracted by selecting 

0.25<S<0.75. E-histograms of the open state without ligand (apo) and closed state with 

saturation of the ligand (holo) were fitted with a Gaussian distribution 𝐴 𝑒
−

(𝐸−𝜇)2

2𝜎2 . 
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A) Supplementary Note 1: Database parameter evaluation 
 

Data preprocessing: the 104 PDB files of the database and the comparison PDB files were 

downloaded from the protein databank and preprocessed to unify the data structures. Therefore, 

all hetero atom entries (HETATM), anisotropy entries (ANISOU), and connection entries 

(CONNECT, as well as all the meta-information (REMARK) were removed from the pdb 

files1,2. Chains of polymeric protein assemblies in crystals were deleted if these were bare 

crystallization artifacts and do not occur in natural environments. The conservation score was 

calculated for all 112 chains containing the labeled residues (and the reference database) with 

the default settings (see Supplementary Table S1)3,4. Failed conservation score calculations 

(e.g. if too few homologue structures are available) were ignored for further analysis. 

PDB data processing: The pdb files are parsed and processed with the “Bio.PDB” 

module5 of the “biopython” package6. 

Parameter extraction: 28 parameters were calculated or extracted from third party 

software and assigned to the four categories (i) solvent exposure, (ii) residue conservation, (iii) 

cysteine resemblance, and (iv) secondary structure (see Supplementary Table S1-4). 

Overall, 43357 and 29898 residues from the database and reference dataset are 

considered in the calculations, respectively. Failed parameter calculations were ignored for 

further analysis. Therefore, the number of calculated values varies for the 28 parameters 

(failure rate <10% for all parameters in the database and reference database; see Supplementary 

Table S5 for settings of the ConSurf-server and Supplementary Table S6 for exact numbers).  
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Supplementary Table S1. Solvent exposure related values were extracted using the third party algorithms (i) 

“Define Secondary Structure of Proteins” (DSSP) to calculate relative surface accessibility7, (ii) “Half-Sphere-

Exposure” (HSE) to calculate the number of C-alpha atoms in the half-spheres defined by the C-alpha – C-beta 

vector8, and (iii) “Michel Sanner's Molecular Surface” (MSMS) to calculate the protein surface and the residue 

depth of the atoms9. 

# Parameter name Library / 

webserver 

Extracted value Data 

type 

1 N_SE1_RSA_Wilke DSSP7 Relative surface area 

with amino acid 

surface areas 

according to Wilke10 

float 

2 N_SE2_RSA_Sander DSSP7 Relative surface area 

with amino acid 

surface areas 

according to Sander11 

float 

3 N_SE3_RSA_Miller DSSP7 Relative surface area 

with amino acid 

surface areas 

according to Miller12 

float 

4 I_SE4_HSE1_10A Bio.PDB5, 

HSE8 

Number of atoms in 

half-sphere 1 within 10 

Å 

integer 

5 I_SE5_HSE2_10A Bio.PDB5, 

HSE8 

Number of atoms in 

half-sphere 2 within 10 

Å 

integer 

6 I_SE7_HSE1_13A Bio.PDB5, 

HSE8 

Number of atoms in 

half-sphere 1 within 13 

Å 

integer 

7 I_SE8_HSE2_13A Bio.PDB5, 

HSE8 

Number of atoms in 

half-sphere 2 within 13 

Å 

integer 

8 I_SE10_HSE1_16A Bio.PDB5, 

HSE8 

Number of atoms in 

half-sphere 1 within 16 

Å 

integer 

9 I_SE11_HSE2_16A Bio.PDB5, 

HSE8 

Number of atoms in 

half-sphere 2 within 16 

Å 

integer 

10 N_SE13_CB_SURFACE_DIST Bio.PDB5, 

MSMS9 

Distance of the C-beta 

atom to the protein 

surface 

float 

11 N_SE14_MEAN_SURFACE_DIST Bio.PDB5, 

MSMS9 

Mean distance of all 

atoms to the protein 

surface 

float 
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Supplementary Table S2. Parameters related to residue conservation are extracted from the grades-file of the 

consurf server3,4. Settings for the ConSurf analysis are listed in Table S5. 

# Parameter name Library / 

webserver 

Extracted value Data type 

12 I_CS1_Color ConSurf3,4 Color representation of 

conservation score 

(binned conservation 

score with upper and 

lower boundary) 

integer 

13 N_CS2_Score ConSurf3,4 Conservation score float 

14 N_CS3_Lower_Score ConSurf3,4 Lower value of 

confidence interval of 

conservation score 

float 

15 N_CS4_Upper_Score ConSurf3,4 Upper value of 

confidence interval of 

conservation score 

float 

16 I_CS5_Variety_Length ConSurf3,4 Number of different 

amino acids in 

homologues 

integer 

17 C_CS6_Cys_In_Variety ConSurf3,4 Boolean: true if cysteine 

is in amino acid list of 

homologues; false else 

categorical 

 

 

Supplementary Table S3. Secondary structure related values were extracted using the third party algorithms 

“Define Secondary Structure of Proteins” (DSSP) to calculate the secondary structure of the residue of interest 

and its adjacent residues as well as the backbone torsion angles7. 

# Parameter name Library / 

webserver 

Extracted value Data type 

18 C_SS1_SS DSSP7 Secondary structure categorical 

19 N_SS2_Phi DSSP7 Backbone torsion angle (n-1)-n float 

20 N_SS3_Psi DSSP7 Backbone torsion angle n-(n+1) float 

21 C_SS4_SS-1 DSSP7 Secondary structure of 

predecessor residue  

categorical 

22 C_SS4_SS-2 DSSP7 Secondary structure two 

positions before 

categorical 

23 C_SS4_SS+1 DSSP7 Secondary structure of 

successor residue  

categorical 

24 C_SS4_SS+2 DSSP7 Secondary structure two 

positions after 

categorical 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2025. ; https://doi.org/10.1101/2023.06.12.544586doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544586
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gebhardt et al., Labelizer version 2024 – Supporting Information 

page #5 

 

Supplementary Table S4. Cysteine resemblance related values were taken from the amino acids structures to 

either compare the individual amino acids or group the amino acids by charge and size/mass. 

# Parameter name Library / 

webserver 

Extracted value Data type 

25 C_CR1_Name - Amino acid (name) categorical 

26 N_CR2_Mass - Mass of amino acid [u] float 

27 C_CR3_Charge - Charge of amino acid in 

buffer solution at 

pH=7.4 [e] 

categorical 

28 I_CR4_N_Sidechain - Number of sidechain 

atoms (without H-atoms) 

integer 

 

 

Supplementary Table S5. ConSurf-server settings. Overview of all user parameters set for the conservations 

score calculation on https://consurf.tau.ac.il/ (accessed January 24th, 2021). 

Parameter Value 

DNA_AA AA 

NMR no 

PDB_yes_no yes 

MSA_yes_no no 

Homolog_search_algorithm HMMER 

ITERATIONS 1 

E_VALUE 0.0001 

proteins_DB UNIREF90 

user_select_seq no 

MAX_NUM_HOMOL 150 

best_uniform_sequences uniform 

MAX_REDUNDANCY 95 

MIN_IDENTITY 35 

MSAprogram MAFFT 

ALGORITHM Bayes 

SUB_MATRIX BEST 
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Supplementary Table S6. Parameter overview and statistics. The table summarizes the number of analyzed 

residues (complete database, labeled residues) and the statistical evaluation of the parameter scores with respect 

to mean-square deviation (MSD), gini coefficient, and adapted Shannon entropy (see methods for details). 

# Name Number 

of all 

analyzed 

residues 

Number 

of 

labeled 

residues 

MSD Gini 

coeff 

Shannon 

entropy 

1 N_SE1_RSA_Wilke 40056 385 0.951 0.303 0.931 

2 N_SE2_RSA_Sander 40056 385 0.866 0.323 0.923 

3 N_SE3_RSA_Miller 40056 385 0.948 0.330 0.922 

4 I_SE4_HSE1_10A 40056 385 0.674 0.663 0.687 

5 I_SE5_HSE2_10A 40056 385 0.259 0.421 0.851 

6 I_SE6_HSE1_13A 40056 385 0.922 0.625 0.712 

7 I_SE7_HSE2_13A 40056 385 0.266 0.385 0.861 

8 I_SE8_HSE1_16A 40056 385 0.972 0.596 0.744 

9 I_SE9_HSE2_16A 40056 385 0.206 0.347 0.895 

10 N_SE10_CB_SURFACE_DIST 40056 385 0.210 0.585 0.721 

11 N_SE11_MEAN_SURFACE_DIST 40056 385 0.883 0.578 0.744 

12 I_CS1_Color 39409 376 0.322 0.271 0.940 

13 N_CS2_Score 39409 376 0.856 0.339 0.914 

14 N_CS3_Lower_Score 39409 376 0.869 0.469 0.819 

15 N_CS4_Upper_Score 39409 376 0.530 0.343 0.900 

16 I_CS5_Variety_Length 39409 376 0.677 0.354 0.911 

17 C_CS6_Cys_In_Variety 39409 376 0.006 0.038 0.996 

18 C_SS1_SS 41502 390 0.218 0.307 0.894 

19 N_SS2_Phi 41502 390 0.448 0.370 0.869 

20 N_SS3_Psi 41502 390 0.231 0.339 0.883 

21 C_SS4_SS-1 41227 385 0.258 0.383 0.861 

22 C_SS5_SS-2 41018 382 0.175 0.250 0.919 

23 C_SS6_SS+1 41227 388 0.218 0.316 0.900 

24 C_SS7_SS+2 41021 385 0.207 0.259 0.917 

25 C_CR1_Name 43357 396 0.753 0.401 0.909 

26 N_CR2_Mass 43357 396 0.361 0.367 0.905 

27 C_CR3_Charge 43357 396 0.156 0.162 0.956 

28 I_CR4_N_Sidechain 43357 396 0.413 0.368 0.902 
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B) Supplementary Note 2: Förster resonance energy transfer 
 

Förster radius calculation: 

Spectral information, quantum yield, and extinction coefficients are taken from the database 

https://www.fpbase.org/spectra/ and provided with the labelizer-package for the most 

commonly used fluorophores. 

The Förster radius R0 is given by 

  𝑅0
6 =

9 𝑙𝑛⁡(10)

128 𝜋5 𝑁𝐴

𝜅2

𝑛4
𝑄𝐷 ⁡

∫ 𝐹𝐷(𝜆)𝜀𝐴𝑚𝑎𝑥𝜀𝐴(𝜆)⁡𝜆
4⁡𝑑𝜆

∞
0

∫ 𝐹𝐷(𝜆)⁡𝑑𝜆
∞
0

, (1) 

whereby 𝑄𝐷 is the donor quantum yield, 𝐹𝐷 the normalized donor emission spectrum, 𝜀𝐴 the 

normalized acceptor emission spectrum, and 𝜀𝐴𝑚𝑎𝑥
 the acceptor extinction coefficient. 

The following values are set fix to theoretical values: 

Orientation factor 𝜅2: 2/3 

Averaged refractive index n (ref. 13): 1.4 

 

Distance screening:  

Center of mass of a sphere with radius R cut with a cone of angle 𝛼 in the z-dimension 

(spherical sector): 

𝑑 =
∫ 𝑑𝜃
𝜋−𝛼

0 ∫ 𝑑𝜙
2𝜋

0 ∫ 𝑑𝑟
𝑅

0
 𝑟2 sin(𝜃) ∙ 𝑟

∫ 𝑑𝜃
𝜋−𝛼

0 ∫ 𝑑𝜙
2𝜋

0 ∫ 𝑑𝑟
𝑅

0
 𝑟2 sin(𝜃) ∙ 1

= (
0
0
1
) ∙

3

8
𝑅(1 − cos(𝛼)) 

We assume the origin to be at the attachment site (C-ß atom) of the fluorophore and model the 

accessible volume of the dye with a cut sphere of angle 𝛼 and the non-accessible space with 

𝜋 − 𝛼. We approximate the center of mass of the non-accessible volume 𝑑′ with the center of 

mass of all 𝑁 atom positions 𝑟𝑖⁡⃑⃑⃑ ⃑ within the protein closer than 𝑅 to the attachment point (see 

Figure 5): 

𝑑′ =
1

𝑁
∑𝑟𝑖⁡⃑⃑⃑ ⃑

𝑖

⁡∀⁡𝑖⁡𝑤𝑖𝑡ℎ⁡|𝑟𝑖⁡⃑⃑⃑ ⃑ < 𝑅| 

The direct relation between the center of mass of atoms in the protein 𝑑′ and the center of mass 

of the fluorophores accessible-volume 𝑑 is given by: 

𝑑 = (
𝑑′

𝑅
−
3

4

𝑑′

|𝑑′|
)𝑅 

We add an empirically determined correction factor based on simulations with 35 different 

fluorophore parameters on 100 residue pairs in 10 different protein structures to account for 

the finite size of atoms and fluorophores, which leads to a gap between protein atoms and 

accessible volume (see Supplementary Figure S7B/D). 
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The offset for the protein surface is added as a small addition to the fluorophore linker 

𝑑 = (
𝑑′

𝑅
−
3

4

𝑑′

|𝑑′|
) (𝑅 + 𝜀) 

and reads as 

𝜀 = max(𝑅𝐴, 2⁡min(𝑅1, 𝑅2, 𝑅3) − 𝑅𝐴) + 0.014 ∗ 𝑅 − 0.0059 ∗ 𝑅2⁡. 

This correction can reproduce the simulated mean positions 𝑅⃗⃑𝑀𝑃 with a root mean square 

deviation of ±2.7 Å (see Supplementary Figure S7F) and mean position distances 𝑅𝑀𝑃 =

|𝑅⃗⃑𝑀𝑃,1 − 𝑅⃗⃑𝑀𝑃,2⁡| with a root mean square deviation of ±2.1 Å (see Figure 8C). 

We approximated the relation between the mean positions of the accessible volumes to the 

measured FRET averaged distances as 

𝑅<𝐸> = 𝑅𝑀𝑃 + 𝐴⁡𝑒−𝑏⁡𝑅𝑀𝑃 ⁡, 

whereby the second term accounts for FRET-efficiency weighted averaging effects at small 

distances (see Supplementary Figure 8B). The values 𝐴 and 𝑏 are determined as 𝐴 = 20.6⁡Å 

and 𝑏 = 0.037⁡1/Å from a fit to the 35000 simulated distances within the ten selected protein 

structures, which is similar to the reported relations in ref. 14 and 15 for DNA. With this 

relationship, the simulated distance with FPS is reproduced up to a deviation of ±3.4 Å  (±3.1 Å 

for distances between 40 and 75 Å). 

Based on the corrected FRET values, the (screening) FRET-efficiency of a residue pair {i,j} is 

calculated as 

𝐸𝑖,𝑗 =
1

1 + (
𝑅<𝐸>
𝑅0

)
6⁡. 

Distance refinement 

A refinement is calculated based on the N highest FRET scores (with default N=300) using the 

available FPS simulation software16 with standard parameter settings (see Supplementary 

Table S8). 
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C) Supplementary Figures 
 

 
Supplementary Figure S1. Labeling database statistics. A) Number of labeled residues per chain in the 

database with N=112 different protein chains. B) Comparison of published protein systems with soluble and 

membrane proteins (N=149 published protein systems, multiple occurrence possible). C) Statistics of the different 

assay types used for the labeling database (N=149 published protein systems, multiple occurrence possible). 

Around 90% of the assays are single-molecule FRET assays (FRET), the others are bulk FRET (BULK) or single 

fluorophore labeled (SINGLE) assays, spin labels (PELDOR), gold labels (PLASMON), biotin labels (BIOTIN) 

and linker labels for optical traps (TRAP). D) Statistics on the labeling residues (cysteine or unnatural amino acid, 

N=407 residues). E) Statistics on the fluorophores used in the publications (N=263 occurrences in the 

publications).  
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Supplementary Figure S2. Parameter distribution comparison. Probability distributions 𝑃(𝑠) of all 28 scores 

in the labeling database (gray). The values are compared to a randomly selected representative reference dataset 

(red line: mean values, pale area: standard deviation of triplicates) based on the pdbselect dataset
17,18

 (see methods 

for details). The x-axis label specifiers the parameter: first part for the type of data (I: integer, N: numeric, C: 

categorical), second part for the parameter group (SE: solvent exposure, CS: conservation score, SS: secondary 

structure, CR: cysteine resemblance), and the rest for a reasonable name (see methods for details).  
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Supplementary Figure S3. Conditional frequencies of parameters. Conditional frequency distributions 

𝑃(𝑠|𝑙)/𝑃(𝑠) defining the parameter scores of all 28 parameters in the labeling database. The x-axis label specifiers 

the parameter: first part for the type of data (I: integer, N: numeric, C: categorical), second part for the parameter 

group (SE: solvent exposure, CS: conservation score, SS: secondary structure, CR: cysteine resemblance), and 

the rest for a reasonable name (see methods for details).  
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Supplementary Figure S4. Correlation measure and averaged mean square deviation (MSD).   
The plot shows the geometric mean of the MSD value of the selected parameters (mean square deviation from 

equal contribution, see methods) versus the correlation measure (2-norm of all correlations). All parameters are 

combined with each other to sets of 4, whereby points with multiple (2 or more) parameters from the same group 

(e.g. solvent exposure) are marked black. Combinations with one parameter from each group are marked red. 
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Supplementary Figure S5. Label score evaluation for different parameter sets. A Label score probability 

distribution of all residues (gray) and labeled residues (red) in our database (left) and the a histogram with 

logarithmic scale of the label scores (middle) for the selected quadruple (#11: mean surface distance, #13: ConSurf 

score, #18: secondary structure, #25: amino acid identity) (default settings). The ratio of the probability 

distribution of labeled and all residues (gray) is fitted with a linear dependency (red, dashed) in the log-log-plot 

(right). B Same evaluation as in A for another suitable parameter selection of the quadruple (#2: relative surface 

area Sander, #12: ConSurf color, #18: secondary structure, #27: amino acid charge).  C Same evaluation as in A 

for a parameter set with poor prediction power (#5: second half of 10 Å half-sphere exposure, #17: cysteine in 

homologue structures, #14: secondary structure two positions after, #26: amino acid mass). 
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Supplementary Figure S6: ROC curves for reduced parameter sets. To study the importance of individual 

parameters in the final prediction, we compared the receiver operating characteristic (ROC curve) for the baseline, 

when removing one of four parameters and for each parameters on its own. We considered labeled sites positives 

and unlabeled site negatives, which most likely overestimates the false-positive rate. 
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Supplementary Figure S7. Correction parameter for mean position of accessible volume. (A) Simplified 

accessible volume simulation (green) in an idealized system of a planar array of atoms (gray). (B) Motivation for 

the correction factor is illustrated with the offset between the atom coordinates (lower dashed line) and the 

accessible volume coordinates (upper dashed line). The correction factor 𝜀 corrects for this gap between accessible 

surface (green) and inaccessible surface (gray) under the consideration of the linker length (R, corresponds to the 

AV radius), the atom radius 𝑅𝐴 and the smallest fluorophore radius 𝑅3 of the ellipsoidal approximation14,16,19. (C) 

Deviation between simulated mean position of accessible volume (FPS software) and estimated mean position 

(SSM approach) with indicated mean value (red line). (D) Mean offset from (C) for different linker lengths R and 

fluorophore radii R3 is shown with error bars (standard error of the mean from simulations). The estimation of the 

offset in (C) is fitted globally with the correction factor 𝜀 = max(𝑅𝐴, 2⁡min(𝑅1, 𝑅2, 𝑅3) − 𝑅𝐴) + 0.014 ∗ 𝑅 −

0.0059 ∗ 𝑅2 (dashed lines). (E) Deviation between simulated mean position of accessible volume (FPS software) 

and estimated mean position (SSM approach) including the correction factor 𝜀  (mean value: red line). (F) 

Distance between corrected screening mean position (SSM approach) and simulated mean position (FPS software) 

results in a deviation of 2.7 Å (RMSD). The large deviations for some positions (>6 Å) result from failed FPS 

simulations (unreasonable small accessible volumes due to interfering atoms close to the linker attachment site).  
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Supplementary Figure S8. Correction parameter for distance simulation. (A) C-beta distances are plotted 

against simulated distances with FPS-software (blue datapoints) with mean values (red line). The bottom axis 

shows the mean residual (red line) and the standard deviation interval (error bars / gray area) on binned data 

from the top. (B) Mean dye position distances 𝑅𝑀𝑃 (center of mass of the AV-simulation) are plotted against the 

FRET-averaged distances (blue datapoints) with mean values (red line). The mean values are fitted to the curve 

𝑅𝑀𝑃 + 𝐴⁡𝑒−𝑏⁡𝑅𝑀𝑃 with 𝐴 = 20.6⁡Å and 𝑏 = 0.037⁡1/Å (black dashed line). (C) Mean dye position estimations 

based on the spherical sector calculation (SSM) approach are plotted against mean dye position distances 𝑅𝑀𝑃 

from FPS-simulation software. (D) Mean dye position distances from the SSM-estimation are converted to 

FRET-averaged distances with the correction factors from (B) and plotted against the simulated 𝑅<𝐸>
𝑚𝑜𝑑𝑒𝑙  from 

FPS-simulation. 
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Supplementary Figure S9. smFRET Characterization of four distinct PBP double-cysteine variants with 

two different fluorophore pairs with similar Förster radius. ALEX histograms with 61 bins of apo and holo 

states of PBP variants as indicated labelled with (A) Alexa Fluor 555-647 and (B) LD555-655 dyes. Mean values 

for E* are background corrected apparent FRET efficiencies analyzed by a dual-colour burst search with 

additional per-bin thresholds of all photons >150.  
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Supplementary Figure S10. Biochemical characterization of labelled PBP variants using smFRET. (A) 

Representative data of S3-188C labelled with Alexa Fluor 555-647 at indicated phosphate concentrations 

including a two-state fit of low FRET apo and high-FRET holo state. (B) The binding curve was calculated from 

smFRET measurements considering the closed fraction (rclosed) as a function of the substrate concentration. (C) 

Determined mean Kd-values for all four labelled PBP variants including standard deviation.  
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Supplementary Figure S11. New smFRET and biochemical data of MalE variants used in accurate FRET 

analysis. (A) Label positions and smFRET of the respective variant for ligand-free apo, 1 µM maltose and 

saturated maltose (100 µM, holo). (B) Representative results from affinity titrations of MalE 53 with Alexa555-

647 and (C) mean and standard deviation of determined Kd-values for all three labelled variants.  
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Supplementary Figure S12. Biophysical and biochemical characterization of MalE variant with optimized 

FRET efficiency values but minimal FRET changes between apo and holo state. (A) Unccorrected FRET 

efficiency histogram of (B) MalE (84/352) labeled with Alexa Fluor 546-647 where ligand binding was verified 

by label-free microscale thermophoresis (C). Conversion of the data into accurate FRET efficiency values was 

done using additional data with distinct FRET efficiency values (yet use of the same fluorophore pair on MalE) 

and resulted in correction parameters (D) and accurate FRET efficiency values and distances using a Förster 

radius of 6.5 nm (E).  
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D) Supplementary Tables 7-9 
Supplementary Table S7. Parameter analysis. We compared the baseline model, the model with one of the four 

parameters removed and the predictive power of each parameter on its own. We show the difference between the 

means and the T value when comparing the distributions of P(s) and P(s|l), the average difference between the 

means after 400x bootstrapping together with the 95% CI intervals. The difference of means in our bayesian model 

is a metric for the model’s ability to separate the labeled residues from the background. Note that the median 

derived from bootstrapping of the differences of the distribution means diverges from the main analysis. 

Parameters Difference of 

P(s|l) and P(s) 

means  

T 

value 

400x bootstrapping median of the difference of P(s|l) 

and P(s) means [95% confidence interval] 

#11, #13, #18, #25 0.45 19.23 0.41 [0.38-0.47] 

#13, #18, #25 0.33 18.19 0.27 [0.24-0.34] 

#11, #18, #25 0.30 15.88 0.31 [0.28-0.33] 

#11, #13, #25 0.40 18.01 0.34 [0.30-0.42] 

#11, #13, #18 0.36 19.67 0.32 [0.29-0.39] 

#11 0.13 12.91 0.14 [0.12-0.17] 

#13 0.18 16.98 0.12 [0.09-0.19] 

#18 0.07 11.94 0.06 [0.05-0.08] 

#25 0.11 8.51 0.11 [0.08-0.13] 

#11, #13, #18, #25 0.45 19.23 0.41 [0.38-0.47] 

 

Supplementary Table S8. FPS settings. Overview of all user parameters set for the runtime analysis of the 

distance refinement simulation with the FPS software16. The default settings for the labelizer package and 

webserver use discStep = 0.8 and nsamples = 100000 (all other parameters depend on the selected fluorophore 

pair).  

LabelLib.dyeDensityAV3 

Parameter Value 

discStep 0.8 (coarse-grained: 1.2) 

linkerLength varied 

linkerDiameter 4.5 

dyeRadii varied 

LabelLib. meanEfficiency 

Parameter Value 

R0 57.5 

nsamples 100000 (coarse-grained: 10000) 

 

Supplementary Table S9. Spherical sector vs. FPS runtime comparison. Calculation time overview of the fast 

screening method (spherical sector calculation) and a coarse-grained distance refinement simulation (FPS 

software16) with 3500 distance pairs per pdb-file (100 distances, 35 different dye parameter) and a refined FPS 

simulation with 1400 distance pairs per pdb-file (40 distances, 35 different dye parameter). 

PDB Molar mass 

[u] 

SSM time per DA-

pair [ms] 

Coarse-grained FPS time per 

DA-pair [ms] 

FPS time per DA-

pair [ms] 

3L6G 28,830 0.81±0.04 103±5 315±11 

2KHO 65,650 0.84±0.01 166±5 419±8 

2CG9 188,730 0.94±0.01 303±12 647±10 

4B1O 831,160 4.31±0.09 1113±36 2087±46 

172L 18,730 0.67±0.01 77±2 249±10 

2A65 59,750 0.93±0.04 169±5 474±9 

1WDN 25,130 0.78±0.01 100±3 315±4 

5XPD 33,310 0.67±0.02 94±3 282±10 

1P7B 74,510 0.80±0.01 156±12 398±14 

1HKA 17,970 0.81±0.04 81±2 259±11 
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