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Abstract

An essential requirement for the use of fluorescent dyes in biomedicine, molecular biology,
biochemistry, biophysics and optical imaging is their (covalent) attachment to biomolecules.
There is, however, no systematic and automated approach for the selection of suitable labeling
sites in macromolecules, which is particular problematic for proteins. Here, we present a general
and quantitative strategy to identify optimal residues for protein labeling using a naive Bayes
classifier. Based on a literature search and bioinformatics analysis of >100 proteins with ~400
successfully labeled residues, we identified four parameters, which we combined into a labeling
score to rank residues for their suitability as a label-site. The utility of our approach for the
systematic selection of single residues and of residue pairs for FRET experiments is supported
by data from the literature and by new experiments on different proteins. To make the method
available to a large community of researchers, we developed a python package called
“labelizer”, that performs an analysis of a pdb-structure (or structural models), label score
calculation, and FRET assay scoring. We further provide a webserver
(https://labelizer.bio.Imu.de/) to conveniently apply our approach and to build up a central
open-access database of (non-)successfully labeled protein residues to continuously improve
and refine the labelizer approach.
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Introduction

Microscopy and spectroscopy techniques are ubiquitously used in the life sciences, in
biophysical and medical assays, to investigate structure, interactions, and dynamics of
macromolecules and their complexes down to the single-molecule level'*5], Many applications
require specific labeling of the biomolecule of interest with fluorescent probes®21, Whereas
fluorescent proteins are the first choice for imaging applications in live-cellsi*3151 synthetic
organic fluorophores (dyes) are often used for high sensitivity applications including single-
molecule detection®*8 and super-resolution microscopy™®2l. A common strategy for the
(covalent) attachment of functional probes to proteins, including dyes, EPR spin probes,
nanoparticles, and reactive surfaces, is via reactive linker moietiest®22,

A range of labeling strategies exists that exploit reactive groups, each with unique
(dis)advantages. Coupling to amino groups in lysine residues can be achieved via N-
hydroxysuccinimide (NHS)-esters, but this approach lacks specificity because of the abundance
of lysine residues in proteins(??l. Alternatively, a terminally located His-tag or the N-terminus
of the protein itself can be used for selective attachment of functional probes, with the
disadvantage that the choice of labeling position is greatly curtailed!??. In contrast, peptide tags
(e.g., CLIP, SNAP, Halo, etc.) can facilitate covalent or enzymatic probe attachment (AP-BirA,
LPXTG-SortaseA, etc.) at any desired location, but the size of tags limits applications and can
impact protein function?®. The most widely used strategy for site-specific labeling of proteins
is, therefore, to introduce non-native cysteine residues and to label their sulfhydryl-moiety via
a maleimide-conjugate of the selected probel?>?4l. Cysteine residues can be labeled with
minimal effects on protein structure and function. Alternatively, unnatural amino acids (UAAS)
can be introduced as targets for labeling. UAAs have proven particularly useful in cases where
the removal of native cysteines is not possible due to their relevance (or abundance) and for
live-cell labeling, where too many different proteins with cysteine residues are present!2>-3%,

The introduction of cysteine residues or UAAs have become the methods of choice for
many spectroscopic and microscopic studies of proteins, including the characterization of
structural and functional dynamics by single-molecule Forster resonance energy transfer
(SMFRET)283L32] or pulsed electron-electron double resonance spectroscopy (PELDOR or
DEER)B3-%1 Therefore, the ability to select optimal labeling sites for the introduction of
suitable probes has grown in importance B7-3, Currently, labeling sites are typically selected
based on manual inspection of the protein structure in a lengthy trial and error process to
identify labeling sites via physicochemical intuition that are not essential for protein structure
or functiont®491 put that are also compatible with the assay requirements, e.g., for FRET to
result in an inter-fluorophore distance close to the Forster Radius Rol?®31%2l. Frequently
encountered problems when selecting a labeling site for fluorescent dyes (Figure 1A) range
from (i) influence of the fluorophore on protein properties including altered biochemical
function (Figure 1A, “Protein Properties™), (ii) low labeling efficiency (Figure 1A, “Sample
Yield”), or (iii) unwanted dye-protein interactions (Figure 1A, “Spatial Orientation”), to (iv)
unpredictable or unfavorable photophysical properties of the dyes at the chosen site (Figure 1A,
“Fluorescence Properties”). Suitable residues for labeling must not only enable specific and
efficient attachment of fluorophores, but also avoid the problems summarized in Figure 1A.
Currently, the selection of labeling sites is often based on sensible rules of thumb™ selecting
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those residues that satisfy assay requirements (e.g., distance constraints for FRETP25%]) put
that are also solvent accessible™¥, show low conservation scores?®! and are not related to
protein function or the presence of fluorescence quenchers such as tryptophans0-521,
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Figure 1. Labelizer workflow to score protein residues for labeling and FRET experiments. A) Schematic
overview of protein-fluorophore interactions that can impact the quality and success of fluorescence assays. B)
Parameter categories obtained from protein strctures and databases used for the labelizer analysis. C) Workflow
for identifying suitable labeling sites, label score representation and selecting residue pairs for FRET experiments
with FRET scoring.

Here, we introduce an automated analysis pipeline based on a naive Bayes
classifier®5l to select suitable label sites using information of protein structure and sequence,
e.g., from the protein data bank, PDB (Figure 1C, step 1). To systematically compare sites, we
introduce a quantitative label score LS, which indicates the suitability of a protein residue to
become a label-site, at which any of the problems shown in Figure 1A are minimal. We
assembled a database of publications that report successful labeling of protein variants used in
biophysical assays and identified an ideal set of parameters to allow ranking of such residues
(Figure 1C, step 2/3). LS can be calculated independently of the choice of label (fluorophore,
EPR probe, beads, surfaces etc.), yet we here focus on the use and characterization of LS for
the attachment of fluorescent dyes to proteins. We also extended our analysis to pairs of residues
for FRET assays, where the interdye distance should be close to the Forster radius to obtain
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highest sensitivity (Figure 1C, step 4). Therefore, we score different residue pairs according to
LS and simulated distances to obtain an optimal FRET assay, which express the suitability of a
residue pair as a FRET score. We support the predictive power of the LS and FRET scores with
data from the literature and experiments on substrate-binding proteins (SBPs)",

To make the analysis routine available to a large community of researchers, we
introduce a python package called “labelizer”, which implements our analysis of protein
structures, label score calculation, and FRET assay scoring. The labelizer package allows
researchers to build on our findings and adapt the code for their specific needs. For
straightforward use, we also provide a webserver (https://labelizer.bio.Imu.de/) with a user-
friendly interface to apply our analysis approach without any programming efforts.

Results
Database of successfully labeled residues. As the basis of our label-site selection tool, we
created a database of proteins that have been successfully labeled with fluorophores. A large
set (>1000) of peer-reviewed papers and preprints was screened for labeled cysteine or UAA
residues in proteins. We include protein residues in the database that have been covalently and
site-specifically labeled at cysteines (predominantly) or UAAs with organic fluorophores?.
Furthermore, only residues are included for which the structure of the protein has been
deposited in the PDB. For the included proteins, we extract information on the labeled residue
(chain, number), the type of mutation used for labeling (cysteine or UAA), the assay type (e.g.,
single fluorophore assays, SMFRET assay with two labels, imaging, bulk FRET, etc.), and the
type of label. We then gathered additional information on the protein, such as its oligomeric
state (monomer, dimer, complexes), whether the protein structure has been experimentally
determined or only a homology model is available, and whether it is a soluble or a membrane
protein. Overall, we identified labeled residues in >100 different proteins from >100
publications (see Supplementary Data: Reference Database Labelizer). An overview of the data
and summary statistics are presented in Supplementary Figure S1.

We used a standardized pre-processing routine (see Methods and Supplementary Note
1) to extract all relevant residues from the pdb-files of the proteins in the database. The final
data set from 104 pdb structures contains 43357 residues, 396 of which are reported to have
been successfully labeled (the other residues are considered unknown). For all residues in our
database, we compute multiple parameters that can be assigned to one of the four major
categories (Figure 1B): (i) conservation score CS (ii) solvent exposure SE, (iii) secondary
structure SS, and (iv), amino acid similarity of the exchanged residues to a cysteine, which we
abbreviate as cysteine resemblance CR (see Supplementary Note 1 with Tables S1-S6). The
parameters are either directly extracted from the residues in question, e.g., amino acid type,
mass, charge and size, or calculated with the help of freely available software (conservation
score (ConSurfl8%61) solvent exposure (DSSP®2, HSE®S], MSMS®4), and secondary structure
(DSSP2))). Altogether, we obtain 28 parameters for each residue.

! Note that we also included some spin labels or biotin-linked fluorophores, yet these represent <5% of all labels
in the database (see Supplementary Figure S1).
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Bayesian approach to the prediction of labeling sites. To identify suitable residues for
labeling, we are interested in P(l|s), the conditional probability that the residue can be labeled
given a parameter value s. By Bayes’ law
_ P(sIh

P(ls) =5 PO, 1)
P(s) is the probability distribution of the parameter values s over all residues, whether or not
they can be labeled, while P(s|l) is the probability distribution of the parameter values s given
that the residue can be labeled. Finally, P(1) is the a priori probability that a residue can be
labeled. While P(s) and P(s|l) can be readily computed from our database of labeled protein
structures, P(1) is harder to assess, since the literature is biased towards reporting successful
attempts of labeling that have provided relevant insights. Since P(l) only scales the final
probability and does not affect the predictions of the relative ease of labeling for different
residues, we decided to here use a simplified parameter score
P(s|l)

PS(s) = )

)

instead of P(l|s) to assess the suitability of residues for labeling. PS(s) is in essence the odds
ratio for a given parameter value to occur in a labeled residue compared to randomly selected
residues. For all 28 parameters, we computed P(s|l) distributions for the 396 successfully
labeled residues and P (s) distributions from all 43357 residues of the 112 chains of the database
(Figure 2A and Supplementary Figure S2/3).

As a control, we compared the probability distributions P(s) from our database of
successfully labeled residues with the distributions computed for a random selection of protein
chains from the PDB (PDBselect, November 2017)[6566] (see Methods). Here, we find only
minor differences, indicating that the protein parameters in our database are representative of
the overall PDB content (Supplementary Figure S2). One notable difference is that cysteines
are much less abundant (by ~50%) in the database of labeled proteins compared to the overall
PDB, suggesting that cysteine insertion and labeling is easier (or at least more common) for
proteins with fewer native cysteines (Supplementary Figure S2). Although we also included
residues that were labeled via UAA incorporation, our database indicates that cysteine labeling
is still the predominant strategy for proteins, since it makes up ~90% of all labeled residues in
our database (Supplementary Figure S1D).

We find clear differences between P(s|l) and P(s) and, therefore, non-uniform PS
distributions for most of the investigated parameters (Figure 2A/C and Supplementary Figure
S6), showing that they indeed contain information about the suitability of residues to serve as
label sites. To evaluate which parameters are most predictive, we computed PS distributions for
28 parameters (numbered from #1 to #28) from all four categories from our database (Figure 2
and Supplementary Table S1-4). For each PS distribution, we analyzed their mean-square
deviation from an equal distribution, the Gini coefficient, and the Shannon entropy (see
Supplementary Note 1 and Supplementary Table S6). We find that the PS distributions for many
parameters clearly deviate from an equal distribution and contain significant information (low
Shannon entropy), e.g., seen in #1: relative surface area (Wilke), #4: first half-sphere exposure
(10 A), #16: variant length in homologues (see Supplementary Figure S3). Other parameters
contain barely any information such as #17 cysteine in homologues (yes/no), or #27 amino acid
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charge (Supplementary Figure S3). Thus, strikingly, it is largely unpredictive for labeling of a
residue whether a cysteine is found in one of the homologue proteins at the same position or
whether the residue is charged (see parameter #17 and #27, Supplementary Figure S3). One
might have expected that residues with cysteine homologues are easily mutated to cysteines,
and therefore, significantly enhanced in our scoring, which is not the case.
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Figure 2. Parameter score analysis. A) Probability distribution P(s) for the parameter ConSurf score (#13,
Supplementary Table S2 and S6, negative values represent highly conserved residues among homologues) for all
analyzed residues (left) and for the successfully labeled residues P(s|l); right. B) Correlations between all
parameters were calculated based on Pearson correlation (numeric-numeric), interclass correlation (categorical-
numeric) or Cramer’s V (categorical-categorical). The cross-correlations of the final parameter selection for the
labelizer algorithm are marked (red circles). C) Parameter score distributions PS = P(s|l)/P(s) for the four
parameters that we select as the default for scoring. The top panel shows the resulting parameter score from the
distribution in A. For the other categories, the parameters are: solvent exposure (#11, mean surface distance,
Supplementary Table S1/S6), secondary structure (#18, secondary structure from DSSP, Supplementary Table
S3/S6), and cysteine resemblance (#25, amino acid identity, Supplementary Table S4/S6). Error bars are the
standard deviation from counting statistics. The clear deviations from uniform distributions indicate that all four
parameters contain information about the suitability of a site for labeling.

After establishing the predictive power of individual parameters, we investigated what
combinations of parameters should be used. For this we calculated the correlation between all
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parameters? to judge their statistical independence, which is desirable for our Baysian analysis
(Figure 2B). We formed sets of four parameters and used a correlation measure (2-norm of all
paired correlations, see Methods) to calculate a combined correlation estimator for all
combinations of parameters (Supplementary Figure S4). Whereas this combined correlation-
derived measure shows higher values for most combinations of two or more parameters within
the same categories CS, SE, CR, and SS, the correlation of combinations of parameters from
different categories was smaller (<0.5). This effect was independent of whether parameters with
high or low predictive power (MSD / Shannon entropy) were combined (Figure 2B and
Supplementary Figure S4). The overall low correlation between parameters from different
categories justifies our categorization and their consideration as independent variables if we
restrict our selection to one parameter per category. The strong correlation within categories
also suggests that the choice of the particular parameter from one category is not critical, i.e.,
most of the parameters can account for the properties of the respective category.

The combined label score predicts potential labeling sites. To combine parameter scores into
a final assessment of a given residue to serve as label site, we introduce a combined label score,
LS. By standard probability theory different parameters si can be combined by
Pl NiZys) =T PUIs) = % 3)

under the assumption that they are independent, where IT denotes the product and N the
intersection. This naive Bayes classification®>%¢1 is known to give good predictions for low and
moderately correlated parameters® "% which is the case for our parameter set (Figure 2B). In
general, any residual correlation alters the calculated probability values towards the extremes
of 0 and 1%, However, we again use parameter scores as comparative figures without the
meaning of probabilities and combine the PS; into the combined label score by taking their
geometric mean:

LS =/PS,-..- PS, 4)

An important question is which of the 28 parameters to include in the LS. We include
one parameter from each of the four categories CS, SE, SR, and SS, for which concrete values
were mapped onto the structure of the phosphate binding protein PBP (Figure 3A). For a
rational selection of parameters, we strive (i) to maximize the dynamic range of values for LS,
(i1) to maximize the enhancement/suppression level of LS of the successfully labeled residues
in the database for high/low LS values and (iii) to maximize the statistical significance level of
LS values of random residues over LS values of the labeled residues in the database.

Based on these criteria, we were able to identify several parameter sets with predictive
power (Supplementary Figure S5A,B), but also combinations with much less information
(Supplementary Figure S5C). In the end, we decided on one set that resulted in a large
difference of the distributions between the random and labeled residues: mean surface distance
(SE, #11), conservation score (CS, #13), secondary structure of the labeled residue (SS, #18),
and the mutated amino acid (CR, #25). This set is shown in Figure 3C and is used as default for

2 Since we deal with categorical data (e. g. secondary structure) and numerical data (e. g. relative surface area), we
used Pearson correlation, interclass correlation and Cramer’s V for the combinations of numeric-numeric,
categorical-numeric, categorical-categorical values, respectively (see methods for details).
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LS calculations in this manuscript and for the associated webserver. In the labelizer python
package any parameter combination can be selected.
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Figure 3. Visualization of parameter and label scores. A) Visualization of the selected parameter scores from
the four categories, which are used as default settings in our webserver for the example of PBP from E.colil™*7;
pdb:10IB. B) Visualization of the label score on PBP based on default parameters shown in panel A. C) Label
score histogram of all residues (gray) and labeled residues (red) in the database. Due to lower numbers of residues
in the labelled data set it was multiplied with a factor of 100 to allow better comparison of the distributions. The
shaded area shows the 95% confidence interval from 400 bootstrapping runs. D) Additional examples of LS values
indicated on protein structures for a membrane protein (left, LeuT of in A. aeolicus”>74, pdb:2A65) and a DNA-
binding protein (right, DNA polymerase | of B. stearothermophilust™8 with DNA template, pdb:1L3U).

We chose the default set out of all well-performing combinations, because of the
intuitive nature of all selected parameters and the maximized differences between the mean LS
values of all vs. the labeled residues. Both our choice of parameters and the selected number of
categories to four (and not only two or three) are supported by statistical analysis of the
significance, i.e., a t-test and a comparison of the mean values of all vs. labeled parameters for
different parameter combinations (Supplementary Table S7). Our selection is further validated
by comparing the receiver operating characteristic (ROC curve) for the baseline, when
retraining with one of four scores removed and the predictive power of each of the scores on
their own (Supplementary Figure S6). Bootstrapping of the final set demonstrates the
robustness of our analysis (Figure 3C). For this final set of parameters, we find that the label
scores LS range from 0.2 to 2 for most residues (except 5% failed calculations with LS = 0).
The ratio of the LS distribution of successfully labeled residues in the database and all label
scores shows that high label scores (>1.5) are significantly enhanced by a factor of ~3-4 for the
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labeled residues, whereas low label scores (<0.5) are suppressed by a factor of ~10 (Figure 3C).
This suggests that the label score is an informative measure to rank and compare residues for
their suitability for labeling with fluorophores.® We visualize the calculated LS scores for three
typical proteins, comprising a soluble protein, a membrane protein, and a DNA binding protein
(Figure 3D-F).

Experimental benchmarking of the label score. To characterize the relation between LS
values and experimentally observed behavior, we performed two different analyses of variants
of the maltose binding protein (MalE) with single-cysteine labeling sites. MalE is a soluble
bilobed protein with an open (apo) and a closed (holo) structure® ' which serves as the
periplasmic component of the bacterial ABC importer MalFGK-E"8l. We visualized LS values
for all sites of apo MalE in Figure 4A and the corresponding distribution in Figure 4B. The
distribution shows a LS value range between 0 and 2; high values for LS appear mostly in
positions of MalE near the surface, when LS are mapped back to the structure (Figure 4A).
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Figure 4. Characterization of LS values with experimental parameters and degree of labeling (DOL) for
single cysteine variants of MalE. A) Crystal structure of MalE in the apo state with LS color coded. B) LS
distribution of apo MalE for all (grey) and the 20 successfully labeled residues (red). C) LS vs. DOL for the MalE
labeling data set, where different dyes are color coded. D) Average DOL for different dyes, based on the data in
panel C. Error bars indicate the standard deviation. We do not observe a correlation of label efficiency and label
score for the selected mutants with in general high label scores LS>1. We do not observe a significant difference

3 We note here that it would be beneficial to compare the label scores of successfully labeled residues with non-
successfully labeled residues in the future. However, we do not have the information on non-successfully labeled
residues and only 1% of the considered residues (396 out of 43357) are known as labeled, which should not affect
the comparison significantly.


https://doi.org/10.1101/2023.06.12.544586
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544586; this version posted February 18, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

across fluorophore types (p-value >0.05) except of Cy3, which showed significantly lower DOL values (p-value
<0.05) compared to all other fluorophores.

First, we studied a data set of 20 variants of MalE, partially taken from previous work
with (relatively) high LS scores representing residues that are good candidates for labelling
according to our approach. For these experiments, we used the dyes Alexa546, Alexa647, Cy3,
Cy5, sCyb5 and ATTO647N and obtained an average degree of labeling (DOL) of 0.82 over all
samples after protein labelling and SEC purification (Figure 4). The DOL was determined using
the molar ratio between fluorophore and protein concentration from the Lambert-Beer law:
DOL = c(fluorophore)/c(protein). All successfully labeled sites have an average of ~1.4 and
almost 90% of them showed LS values >1 (Figure 4B/C). The distribution of the label scores
for the successfully labeled sites is different from the distribution of all residues of the MalE
protein (Figure 4B), again confirming that LS provides valuable information about the
suitability of protein residues to act as label site. Our analysis shows, however, no correlation
between LS and the experimentally determined DOL (Figure 4C). This is not too surprising
since all tested residues have relatively high label scores and we focused on mutants with a
reasonable chance of labeling and did not include measurements e.g., of buried residues with
low label scores. Furthermore, we do not observe systematic differences between different dyes,
suggesting that our method works robustly and is independent of the fluorophore (Figure 4D
and Supplementary Data; LS vs. DOL).

In a second set of experiments, we ranked all MalE residues by their label scores and
then randomly selected 5 variants each from the best 10% LS scores (referred to as "positive
control™) and 5 residues from the worst 10% LS scores ("negative control"). For each of these
10 variants, we characterized the effect of the cysteine mutation in terms of the protein’s
expression yield and DOL using the dye sCy5 (all data are provided in the Supplementary Data
Excel file and Table 1). All positive controls, i.e. MalE variants comprising residues with high
label scores, expressed with high yields (> 15 mg from a 2 L expression culture) and could be
labeled with a DOL > 85%. These findings again support that residues with high LS scores can
be successfully expressed and labeled, in line with the first analysis of MalE point mutations
(Figure 4).

Table 1. Overview of expression and labelling properties of randomly selected MalE variants.

Cysteine variant Control Expression Labelling
Q72C positive OK OK
S211C positive OK OK
K219C positive OK OK
E309C positive OK OK
E322C positive OK OK

L7C negative reduced X
W94C negative no expression n.d.
1116C negative OK X
G228C negative OK OK
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W230C negative | OK OK |

In contrast, two of the negative control variants showed reduced expression yield (L7C
with 7.8 mg) or no expression at all (W94C). Furthermore, two of the obtained four negative
control variants showed DOL values <2%. Interestingly, the other two negative control variants
showed good expression yields and adequate DOL values, suggesting that not all residues with
low LS scores are necessarily unsuitable for labeling. Taking all variants from this set of 10
MalE variants into account, there is a statistically significant correlation between LS score and
DOL (p = 0.03 from a two-sample t-test), further supporting the approach presented here.

Extension of the LS score to FRET experiments. To test our prediction tool for the design of
a biophysical assay we extend it to FRET experiments. For this we combine the label score LS
with an additional parameter for the rational design of FRET experiments. The central idea is
to select residue pairs for FRET experiments that are (i) suitable as label site based on LS, (ii)
are separated by a distance that is close to the Forster radius of the dyes used (for maximum
sensitivity) and (iii) that can detect conformational motion. Criteria i/ii are relevant to the case
where one protein structure is available, and a residue pair is wanted with a distance close to
the Forster radius of the dye pair. In this scenario, the researcher can use combinations of
residues in different domains of the protein for maximal sensitivity. We define the FRET score
FS of a residue pair {i,j} for a single protein structure as:

FS = JISLS; - (1-2 |§ - Ei,]-|), (5)

FS considers the label scores LS; and LS; of two residues i and j in the protein structure with
corresponding predicted FRET efficiency E;; (see Supplementary Note 2 for details on the
FRET efficiency prediction). FS is highest for residue pairs with predicted E;; = 0.5, i.e., an
interdye distance similar to the Forster radius of the dye pair.

If two (interconverting) structures of a protein are available, one is interested to find
FRET pairs that show the largest possible shifts in FRET efficiency. This scenario is
encountered when ligand binding, protein-protein interactions or other macromolecular
interactions are studied, and requires that distinct structures of the same protein, e.g., ligand-
free and ligand-bound, are available. We define the FRET difference score FS, of a residue
pair {i,j} for two available structures A and B of the same protein as

FSy = \/ LSALS? \/LSJALSJB VEf; — G, ©

with the label scores LS of two residues i and j in two protein structures A, B with their

corresponding FRET efficiencies E‘{}j and Efj, respectively.

Accessible volume calculations for FRET labels. To rationally establish a FRET assay with
maximum sensitivity it is necessary to operate at interprobe distances around the Forster radius.
A crucial step for calculation of both FRET scores is, therefore, the ability to predict interdye
distances from the protein structures accurately (Figure 5). The labelizer package supports three
models for in silico fluorophore distance predictions. A rough approximation of expected FRET
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efficiencies can be obtained from the Cp distances between two residues® (Figure 5A).
However, these distances can differ >10 A from the actual mean fluorophore positions, due to
the size of the fluorophore and the flexible linkers (10-20 A length) used for fluorophore
attachment["®8%, While distance changes are less impacted by such deviations, the absolute
distances are significantly affected by the geometry of the labels (Figure 5C). Neglecting these
effects can reduce the sensitivity of a FRET assay by up to a factor of ~4 (Figure 5D and
Supplementary Figure S7 and 8).
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Figure 5. Accurate prediction of interdye distances on proteins and experimental benchmarking of the
FRET scores. A) Distance estimation with FPS computes a grid-based accessible volume to determine the mean-
position of the fluorophore (), the averaged inter-fluorophore distance R, = (R, — E,), and the efficiency
weighted average fluorophore distance R(;;;’del approximated with an exponential correction factor (see
Supplementary Note 2). Illustration shows donor and acceptor labeling at residues S3C and P86C, respectively, in
PBP (pdb: 101B). B) Approximation of the accessible volume with a spherical sector. The spherical sector (left)
is defined by the radius R (linker length of the fluorophore) plus an opening angle a and approximates the
accessible volume simulated with FPS software (right, blue volume). The red spheres represent the protein atoms
within radius R from the Cg atom. C) Illustration of the determination of the mean position in 2D. The circles
represent the atoms of the protein. The inaccessible volumes are the atoms within a radius R (pale red circle) to
the Cy atom (dark red circle). D) Comparison of Cy distances and modelled distances with the introduced spherical
sector approximation compared to FPS-derived distances in 10 selected pdb structures with 35 different
fluorophore parameters (N = 32116, top). The data >100 A are noisy due to low statistics. Histogram of the distance
offsets from the Cg atom for the distances in the range 40 A < R722¢! < 75 A (N = 17359, bottom). E) Analysis
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of the deviation of measured FRET efficiencies from 0.5 for selected MalE mutants taken from ref. %811 (literature)
and new experiments (this work) in apo (empty circle) and holo state (full circle) with respect to the computed
FRET scores (left). Measured FRET efficiency shift between apo and holo of mutants in A plotted against the
FRET difference score FS, (right). Linear fits of the data are shown as solid lines with R? = 0.84 (left) and R? =
0.73 (left).

To predict distances between fluorophore labels accurately, it is important to obtain
accurate simulations of the accessible volumes (AVs) considering the size and shape of the dyes
and their linkers. Molecular dynamics simulations have been successfully used for this
purposel®2-841 yet they are too slow as a screening tool. Coarse-grained simulation via FRET-
restrained positioning and screening system (FPS), where all positions on a grid are examined
to decide whether it can be occupied by a fluorophore of specified size and linker length,
provide AVs that are in very good agreement with experimental values of interdye
distances!®808185-901 (Fjgyre 5A). Comparing the calculated Cg-distances of the residues with
FRET-averaged distances Rmedet from AV simulations reveals deviations of 10 to 15 A (RMSD,
Figure 5B and Supplementary Figure S8A), highlighting the need to consider the dye and linker
geometry. The computation time required for one pair of dyes using FPS, however, is still rather
long for screening purposes, e.g., several hours when >10.000 residue pairs should be
considered (see Supplementary Table S9).

Therefore, we here introduce a simpler and faster distance estimator based on a spherical
sector model (SSM) that estimates dye-accessible and dye-inaccessible volumes (Figure 5B).
SSM is used for screening purposes since it is 100 to 1000 times faster than currently available
simulations such as FPS. Our algorithm relies on an approximation of the accessible volume by
a spherical sector of angle a and radius R representing the linker length of the fluorophore (see
Figure 5C). The atoms of the protein within radius R from the attachment site (Cg atom) define
an inaccessible volume (see Figure 5B/C, pale red spheres). We find a direct relation between

the center of mass of these atoms d’ (inaccessible volume) and the center of mass of the
accessible volume d (see Supplementary Note 2) as

i (13 R\
d—(l 4|a,|>d. @)

We included a small correction & (~0.5 A for typical fluorophores) to the linker length
R = R + ¢ in this formula to compensate for the size of the fluorophore core (Supplementary
Note 2, Supplementary Figure S7) and we used an estimation to convert the distance of the
mean positions to FRET-averaged distances (Supplementary Note 2, Supplementary Figure
S8). To test our method, we performed distance simulations for 100 donor-acceptor pairs in 10
different protein structures, where we altered the linker length and the dye dimension with 35
variations resulting in 35.000 distance simulations in total. Our SSM approach gives results in
good agreement with the FPS method with a deviation of +3 A (RMSD, Figure 5 and
Supplementary Figure S7), which is on the order of the intrinsic distance precision of FRETE,
The mean-position distances are converted to FRET-averaged distances with an exponential
correction factor at small distances (see Methods and Supplementary Figure S8). The spherical
sector method allows to screen >10.000 FRET-pairs within seconds on a single CPU with <1
ms calculation time per residue-pair (see Supplementary Table S9). Therefore, our standard
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settings are to use the SSM method for a first selection of suitable FRET-labeling positions and
subsequently refine the best three hundred FRET pairs with the FPS AV-simulations!®-%l,
Alternatively, our python package allows calculating the Cg distances (low accuracy) or the
FPS-derived derived distances (long runtime) for all residues by manual selection.

Experimental benchmarking of the FRET score. At first we used the labelizer workflow to
establish new FRET assays for mechanistic studies of the ABC transporter-related prokaryotic
substrate-binding protein PBPE-%9%1 (Figure 6A). As seen in the crystal structures PBP
undergoes a ligand-induced transition from a ligand-free open (pdb: 10IB, apo) to a ligand-
bound closed state (pdb: 1PBP, holo; Figure 6A). Yet, the ligand binding mechanism of PBP,
i.e., ligand-binding before conformational change (induced fit) or conformational change before
ligand binding (conformational selection) has not been studied. Thus, our goal was to obtain
assays with large changes in FRET efficiency upon addition of the ligand inorganic phosphate
for dye pairs with a Forster radius around 5 nm. We identified multiple suitable residue
combinations with maximized positive and negative distance changes based on FS, (Figure
6B). We selected four double cysteine variants with large predicted shifts from long (low
FRET) to shorter (higher FRET) distances upon phosphate binding. We selected those from the
list of 300 refined pairs using the FPS parameters for Alexa Fluor 555-Alexa Fluor 647 (Figure
6B; Supplementary Table S8). Before conducting FRET experiments, we characterized one of
the double-cysteine variants PBP (S3C-176G-P86C) and the cysteine-less PBP variant PBP
(176G) biochemically by ITC and obtained Kg-values of 10 + 5 uM for PBP (S3C-176G-P86C)
and 19 + 6 uM for PBP (176G); (mean = SD from n = 2 protein preparations (Supplementary
Figure S9). These experiments suggest that protein labelling does not affect substrate affinity.
The 176G mutation was used in all PBP protein variants presented in this paper (Figure 6 and
Supplementary Figure S9).

Subsequently, we labeled all four PBP variants using established procedures®2 (see
Methods) and studied freely-diffusing molecules with microsecond alternating laser excitation
spectroscopy (USALEX). For labeling, we used the donor-acceptor pair Alexa Fluor 555-Alexa
Fluor 647 and the structurally-related combination LD555-LD655 (Figure 6D/E). The success
of the labelizer prediction is seen in Figure 6E and Supplementary Figure S9, where high quality
SMFRET histograms are obtained for all four PBP variants with low FRET in the apo (open
conformation, no phosphate) and high FRET in the holo state (closed conformation, 480 uM
phosphate). Analyzing the shift of the open to closed conformation and plotting the closed-state
fraction as a function of ligand concentrations for PBP (S3C-176G-P86C) with Alexa555-
Alexa647 yields a Kq of 16£6 uM (Figure 6F), which is in agreement with results for the
unlabeled proteins (Figure 6C). A similar behaviour for the FRET-assay properties and
biochemical characteristics are found for all PBP variants (Supplementary Figure S10).

Beside the demonstration of the success of the labelizer procedure, these experiments
provide new and so far unavailable information on the ligand binding mechanism of PBP. The
lack of a pronounced closed-state population in the absence of ligand (Supplementary Figure
S9, apo) and the engulfed nature of the ligand in the closed state support the idea that PBP is
likely to use a ligand binding mechanism like other structurally-related SBPs859771,
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Figure 6. Labelizer-based residue selection for FRET experiments and validation. A) Crystal structures of
PBP in the apo (grey, PDB-ID: 10IB) and holo (green, PDB-ID: 1PBP) states with mutations S3C and P86C
indicated in black. This variant of PBP also contains an 176G mutation that lowers the affinity for inorganic
phosphate by ~200-fold compared to the wild-type protein. B) Maps illustrating the distance change and associated
FRET score for all pairs of mutants in PBP. The selected mutation S3C and P86C is marked with an arrow. The
distance change of the attachment atom (Cg, top-left) and the change of the simulated spherical sector model (top-
right) show a clear pattern of correlated movements. The calculated FRET score map of all pairs with average
label score LS>1 shows only a few spots (~4%) with promising FRET scores FS>0.2 (bottom-left). The selection
of the 1000 pairs with highest FRET score and a refinement with FPS software (bottom-right) shows only minor
variation compared to the screening map (bottom-left) for the analyzed data points. C) Isothermal titration
calorimetry (ITC) measurements of PBP (176G) with average Kg¢-values. D) Size exclusion chromatography of
PBP with LD555-655 showing protein absorbance (280 nm) and fluorophore wavelength at 548 nm and 646 nm.
E) ES-FRET histograms of PBP (S3C-176G-P86C) with LD555-655 in the ligand-free apo state (left) and with
480 uM phosphate (right) F) Closed fraction (rciosed) as a function of the substrate concentration for PBP (S3C-
176G-P86C) with Alexa Fluor 555-647 determined from smFRET measurements. The red line is a fitted binding
curve; three technical replicates gave an average Kp of 10.8+0.2 pM.

To go beyond a qualitative assessment of the labelizer routine, we analyzed a large pool
of SmFRET experiments of different MalE double-cysteine variants to quantitively benchmark
the scores FS and FS,. In detail, we analyzed 34 data sets of published*# and unpublished
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data (Supplementary Figure S11/S12). For these the accurate FRET efficiencies of MalE in
both apo- and holo-state are determined including the respective interprobe-distances and their
distance change upon maltose binding (Supplementary Data). This data set covers an
experimental interprobe distance range from 3-7 nm for three distinct dye pairs with Forster
radii of 5.1 nm (Alexa Fluor 555- Alexa Fluor 647), 5.8 nm (ATTO532-ATTO643) and 6.5 nm
(Alexa Fluor 546- Alexa Fluor 647)* and E values ranging from 0.2-0.9. Consistent with
expectations, the calculated FS values correlate linearly with the difference of the
experimentally determined mean FRET efficiency from 0.5 (Figure 5E). Similarly, we observe
a linear correlation between computed FS, values and the experimentally observed change in
FRET efficiency |Enolo-Eapo| upon ligand binding (Figure 5E). Whereas pairs with large FS and
FS, values are desirable to detect changes upon ligand binding, pairs with high FS values of
the two individual conformations but FS, =~ 0 (MalE 84/352, Supplementary Figure 12) can
provide an important experimental control. Such pairs have a distance close to the Forster radius
with (almost) no change in FRET efficiency upon conformational change. They can serve as
negative controls to ensure that a protein or conformational changes do not influence
fluorophores, e.g., via altered photophysics, lifetime and quantum yield changes, or for the
characterization of quenchers such as metal ionst®], which can affect FRET efficiencies without
conformational change.

Importantly, all analyzed fluorophore-labeled MalE variants used for sSmFRET had LS
values >1 and showed maltose affinities that are wildtype-like with Kg-values around ~1-2 uM
(Supplementary Figure S11). Taken together these analyses provide strong support for the idea
that the LS is a useful indicator to identify residues that (i) allow fluorophore attachment, (ii)
preserve protein function and in combination with FS (iii) enable design of FRET assays.

Discussion and Conclusions

Here, we present a general strategy to identify optimal residues for protein labeling using a
naive Bayes classifier. Based on a literature screening and bioinformatics analysis of 104
proteins with 396 successfully labeled residues, we identified a set of four parameters, which
we combined into a label score to quantitatively rank residues according to their suitability as
label site. We show using data from the literature and complementary experiments the
predictive power of this labeling score and extend the method to systematically select residue
pairs for FRET experiments, which we believe can be extended at later stage to consider the
specific properties of the label and also other biophysical assays beyond FRET.

To widely disseminate our methodology, we provide a python package called
“labelizer”, which implements the analysis of the pdb-structure, label score calculation, and
FRET assay scoring. The labelizer analysis routine can be modified and extended, to
accommaodate specific research questions and to build upon the work presented here. To make
the methodology widely available to non-expert users, all key functionalities are available as a
webserver with an intuitive and user-friendly interface https://labelizer.bio.Imu.de/. The
webserver supports the label score calculation and its use for FRET experiments with default

4 An overview of experimentally determined and theoretical Forster radii is provided in Supplementary Figure
S11D.
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parameters for the most frequently used fluorophores. For this purpose, pdb-files can be loaded
automatically and preprocessed from the pdb-database. We further retrieve conservation scores
directly from an independent installation of the ConSurf server®6l without the need of
uploading any information (except when modified or user-specific pdb files should be used).
The webserver visualizes the different scores in an interactive 3D structure viewer and provides
a table with filter options for customized restrictions upon residue selection. Furthermore,
human-readable result files (csv, json) are available for subsequent analysis. With the developed
method, we hope to provide scientists in various research fields (biochemistry, molecular
biology, bioimaging, high resolution optical microscopy and single-molecule biophysics) with
a tool that enables them to systematically design and justify the residue selection.

A challenging aspect of our analysis is the final selection of residues by the user based
on the labelizer output. Since this step is decisive for which residues are used in experiments,
the selection goes hand in hand with an assessment and interpretation of the LS/FS value
distributions of the analyzed protein. It is difficult to define clear threshold values for residues
to be excluded based on LS/FS, yet our findings empirically suggest that residues with LS
values < 1 are less likely to be useful in experiments. Since the FRET-score values additionally
depend on the underlying LS distribution, it is difficult to give general recommendations. We
stress that the user of the algorithm should inspect the specific LS/FS distributions for each
protein. For the residues ranked highest, we recommend the user to verify this selection with
prior (expert) knowledge on the protein. A key question would be whether the highly-ranked
residues, i.e., those favored by the labelizer, are known to negatively impact secondary
structure, ligand-binding, biomolecular interactions, or protein folding. Additional information
might also come from other biophysical approaches such as CD spectroscopy, FTIR, MD
simulations or EPR studies considering any information that can help to assess if key residues,
which should not be altered are actually (falsely) suggested by our algorithm.

An interesting future direction for further development of the labelizer is to include more
parameters (e.g., also fluorophore-dependent ones) with a potential differentiation of residues
based on the selected fluorophores related to the specific charge environment on the protein or
proximity to specific amino acids, e.g., tryptophane or histidine. We also plan to combine
different parameter scores to improve the predictive ability of the labelizer, which might happen
within one category, e. g., via simultaneous use of half-sphere exposure (HSE) and relative
surface area (RSA) to combine the amino-acid direction and surface area or between categories,
e.g., solvent exposure and cysteine resemblance. Furthermore, normal mode analysis (e.g.
NMSim webserver®®l) ‘mutation specific energy analysis (e.g. SDMP¢7)) or tailored MD-
simulations(®® could be used to identify FRET-residue pairs for analysis of conformational
motion when only one protein structure is available. The concept of FRET scores could be also
extended towards other fluorescence assay types related to fluorophore quenching!®®1
protein-induced fluorescence enhancement92:1921 and others[*%31%4, We also envision applying
the labelizer approach in related applications, such as EPR-distance measurements, since the
methods share similar requirements in regard to the residue selectiont3"-],

Another direction for future improvement and extension of the database and the
algorithm, would be to revise the available PS values by an extended database, where
particularly positions with low or no yield of labeling, could be an important new class of
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information. Such an improved training data set can be obtained via a feedback loop, where
researchers supply information on successfully and unsuccessfully labeled residues via a form
planned on our website. Unsuccessful results are of particular interest, since negative results
are rarely found in the literature (mainly successful results are published), and we were not able
to collect enough negative examples from researchers directly. Therefore, we call on the
scientific community to use the labelizer and to provide feedback on the approach and on
positive and negative results, where labeling of specific residues was successful or failed,
respectively. Finally, once a much larger dataset of labeled and non-labeled residues is
available, applications of other machine learning procedures (e.g. support vector machine or
neural networks) could significantly enhance the predictions.

Data and code availability:

The webserver with an intuitive user interface and default analysis settings is available under
https://labelizer.bio.Imu.de/. The software is available as python package “labelizer” as source
code under https://github.com/ChristianGebhardt/labelizer. The databases and additional
information can be accessed from https://github.com/ChristianGebhardt/labelizer-supplement
or from the online version of the paper.
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Online Methods
Database generation
To identify parameters with predictive power for the possibility to label residues in proteins,
we created a dataset based on a non-automated screening of more than 1000 publications
published or preprinted which were available on or before December 2020 with a focus on the
field of single-molecule microscopy and single-molecule FRET. The papers were screened to
identify proteins and residues that were labeled successfully with a fluorophore and that
satisfied the following criteria: (i) the proteins had a structure available in the PDB-database
(with PDB identification code); (ii) the protein was labeled via site-specific mutagenesis and
introduction of cysteines or UAAS; (iii) the protein was successfully labeled synthetic organic
fluorophores (or spin labels) and used preferentially single-molecule assays. In order to increase
the number of database entries, we complemented our search whenever some information was
missing. Typical cases were missing PDB identification codes or residue numbers. In this case,
the required information was obtained from other referenced papers (often) of the same research
group.
For each successfully labeled protein variant, which fulfilled the aforementioned criteria,

the following information was collected®:

o Protein (PDB identification code)

o Soluble or membrane protein

o Stoichiometry (monomers, dimer, complexes)

o Homology model (true/false)

o Labeled residue (chain and residue number)

o Mutation (cysteine or UAA)

o Assay type (SMFRET, imaging, bulk-FRET, other)

o Name of labeled fluorophores

o Research group

o Publication reference

The final database with information on those positions in proteins that were successfully

labeled had 396 successfully labeled residues in 112 different chains in 104 different protein
structures (Supplementary Data). As comparison, we used a representative set of proteins
(PDBselect, November 2017)15861 as a random reference database to check how representative
the analyzed pdb structures are. Therefore, we randomly selected 300 chains (out of 4184
chains) from the PDBselect database and performed the identical analysis with those pdb files.
This important comparison shows that the selection of labeled proteins and residues is
representative of the pdf content, indicated by only minor deviations between both P(s)
distributions, mostly within statistical errors (see Supplementary Figure S2).

> Additional notes were gathered to account for issues such as: (i) dimer and polymer protein structures, which
were crystallization artefacts and needed to be deleted for structural analysis; (ii) missing residues in protein
structure, i.e., when parts of the protein were not resolved completely; (iii) we identified inconsistencies or missing
information
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Parameter frequency calculation: For every extracted parameter, the relative frequency defines
a parameter score

_P(s|D
~P(s)’

where P(s) is the probability distribution of the score s (calculated from the 112 chains of the
database) and P(s|l) is the probability distribution of the score given that the residue was
labeled (calculated from the 396 successfully labeled residues).

The error bars o, and o, for P(s|l) and P(s), respectively, were determined from

Poissonian counting statistics as o, = /P(s|l)/n and g, = \/P(s)/n with n being the total
number of evaluated residues. The error bar op for PS follows from standard error propagation
rules:

Ope = % + o PS
BS T [P(sID? " P(s)?

Parameter information analysis: To evaluate the amount of information a single parameter score
inheres, we used three measures to estimate the deviation from an equal distribution, which
corresponds to the case of zero information.

We used standard Pearson correlation for a pair of numeric parameters

n N 2
MSD(PS) = "=1(PST(LL) 1),

with n the number of bins/categories.
We used standard Pearson correlation for a pair of numeric parameters
no Ly PSG) - X, X7 PS())
2 =1 1=24j=1

gini(PS) =
721, PS(D)

with n the number of bins/categories.
We used an adapted Shannon entropy accounting for the number of bins/categories as

— ¥, PS() in (P3 (D))

H(PS) = In (n) '

with a normalized parameter score PS(i) = PS(i)/(Z’}zlPS(j)) and n the number of
bins/categories.

Parameter cross-correlation: To evaluate the mutual statistical dependence of all calculated
parameters, we use three different types of correlation coefficients, depending on the datatypes
of the parameters:
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We used standard Pearson correlation for a pair of numeric parameters

g —0 i —¥)
VI G =02 3, (= )2

with n different residues with parameter scores x;,y; and corresponding mean values x =
1/n Y™, x; (and ¥ accordingly)t%,

NN =

We used the interclass correlation for a pair of a categorical parameter and a numeric
parameter('%®l, The n data points are grouped in k categories c; with i € {1,2, ..., k} of length
n;.

_ MST - MSE
N = MST + (ng — )MSE’

with

ic=1nl Z} 1(xl - x)z

MST =

k—1 ’
e (- &)
MSE — =1 j=1 199 3 )
n—=k
n—Yk . n?/n
METT T

where X, is the mean of category i, x the mean of all data, x; ; the j™ numeric value in category
c;, and (ny — 1) the averaged interclass degree of freedom[06],

We used the Cramer’s V for a pair of a categorical parameters'%’l. The data are grouped
in the two categories ¢; withi € {1,2,...,k} and d; with j € {1,2, ..., [}.

XZ
e = (min(k, ) — 1)

with

Zk:zl: ("11 "U) ’

i=1j=1

where #; ; = (Z] 1”11)(21 1M;7)/n, n total number of residues and n; ; number of residues
of class ¢; and d;. The cross-correlation was calculated for every combination of the 28
extracted parameters to identify dependencies as shown in Figure 2.

Parameter Selection Criteria: The selection of a suitable parameter set is based on two criteria.
First, a joined correlation for any combination of parameters is calculated as
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with r;; the correlation of parameter iwith j and n the number of selected parameters (in our
case 4). Secondly, we used three measures to characterize our parameter sets:

We calculate the t value of the calculated label scores as

¢ = Hi — Hau
JSEMZ + SEMZ,,,’

with the mean values y;, u,;; and standard error of mean SEM,;, SEM,,;; of the labeled/all
residues, respectively.

The dynamic range was calculated as the standard deviation of the logarithmic values
o (log(LSau))-

The suppression/enhancement of the labeling score of labeled residues for small/large
values was calculated from the slope of a linear least square fit to the logarithm of the label
score LS and the label score distribution of labeled residues and all residues. The data are binned
into logarithmic bins with bin intervals [1.5%, 1.5*1] for i € {—12,...,11} and fitted to the
function

(P(LSH)
log

B(LS) > = mlog(LS) + log (¢),

where LS is the label score and P(LS)/ P(LS|l) the probability distributions of the label score
of all and the labeled residues. The slope m is used as analysis parameter form the fitted values
m,c.

Protein production and labeling

In the current study we used single cysteine variants of MalE (Figure 4) that were obtained and
fluorophore-labeled as described previously®*!%1, PBP double cysteine variants were produced
for this study. The coding sequence for the E. coli K12 phoS gene (Genbank coding sequence
NC _000913.3, 3910485 - 3911525 complement, protein accession number NP_418184.1), with
amino-acid changes (A17C and A197C) corresponding to the rho-PBP fluorescent biosensor
variant'®! was synthesized (Invitrogen GeneArt Gene Synthesis, Thermo Fisher) without its
N-terminal signal sequence (25 amino acid N-terminal deletion). This construct utilized
flanking Ndel/Xhol sites, and was subcloned into the pET20b expression vector. The resulting
construct encoded a C-terminal His-tag fusion. The S3C-P86C-PBP mutant, with the additional
176G mutation that reduces the wild-type affinity (Kq 0.07 puM) of the protein for inorganic
phosphate by ~200-fold®! was created using a protocol based on the Stratagene Quikchange
protocol™°l. As a control, a variant was also created with only the 176G mutation.

E. coli BL21 (DE3) pLysS cells transformed with the S3C-P86C-PBP mutant expression
plasmid (or the plasmid for the control variant) were used to inoculate Terrific Broth (TB; Carl
Roth, Karlsruhe, Germany) supplemented with 100 pg/ml carbenicillin (Carl Roth) and 0.2%
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glucose to an optical density at 600 nm (ODeoo) of 0.1 AU at 37°C with shaking at 200 rpm. At
an ODeoo of ~0.3 AU, isopropyl b-D-1-thiogalactopyranoside (IPTG, Carl Roth) was added to
a final concentration of 0.5 mM, followed by ~24 h incubation. Cells were harvested by
centrifugation (5000g, 20 min, 4°C) at a final culture ODsoo of 3-4 AU, resuspended in 35 ml
20 mM HEPES pH 7.5, 300 mM NaCl, 10% glycerol containing protease inhibitor (cOmplete,
EDTA-free Protease Inhibitor Tablets, Sigma; 1 tablet/50 ml solution), and frozen and stored
at -80°C.

The resulting cell suspension was thawed, supplemented with 5 mM B-mercaptoethanol (j3-
ME) and 10 mM imidazole (Carl Roth), and then sonicated (Branson Digital Sonifier 450,
Danbury, CT, USA) on ice for 10 min (Amplitude, 25%; 0.5 sec on and 0.5 sec off). Insoluble
fractions containing cell debris were separated by centrifugation (165,0009 for 1 h at 4°C). The
soluble fraction was incubated with 1.5 ml of Ni Sepharose 6 Fast Flow resin (GE Healthcare)
for 1 h at 4°C. The resin with bound protein was then washed with 80 ml of buffer containing
25 mM imidazole. Bound protein was eluted in 10 ml buffer with 500 mM imidazole. The
elution fraction was concentrated to < 0.5 ml using a Viva Spin 20 concentrator with a 10 kDa
MWCO (Th. Geyer, Renningen, Germany), and subjected to further purification by size-
exclusion chromatography (SEC; using AKTA pure system, and Superdex 75 Increase 10/300
GL column (GE Healthcare)) in 20 mM Tris-HCI pH 8.0, 100 mM NaCl, 10 mM imidazole.
The final purified proteins were >95% pure as assessed by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE).

His-tagged MalE, and S3C-P86C-PBP proteins were labeled as described previously®*1%l, The
proteins were incubated with 1 mM DTT to reduce cysteine residues. Following dilution to
lower the DTT concentration to < 0.05 mM (so as not to interfere with binding of protein to the
metal-affinity resin), the proteins were immobilized on 200 pl of Ni Sepharose resin. The resin
was then washed with 12 ml of 50 mM Tris-HCI pH 7.4-8.0, 50 mM KCIl, 5% glycerol for MalE
and SBD2 (Buffer A), and 20 mM Tris-HCI pH 8.0, 100 mM NaCl, 10 mM imidazole for PBP.
28 nmoles of PBP were then incubated overnight with 50 nmol of each fluorophore dissolved
in 2 ml of the appropriate buffer. Unreacted fluorophore for MalE and SBD2 was removed by
washing the resin with 12 ml of Buffer A followed by 12 ml of Buffer A containing 50%
glycerol. For PBP, a single 12 ml wash was performed. Bound MalE and SBD2 were eluted
with 0.5 ml of Buffer A containing 500 mM imidazole, whereas PBP was eluted with 1 ml of
buffer with 500 mM imidazole. The labeled proteins were further purified by size-exclusion
chromatography (using AKTA pure system, and Superdex 75 Increase 10/300 GL column (GE
Healthcare)). Absorbance of protein (280 nm) and fluorophore (488 nm, 532 nm and 640 nm)
was used for determination of molar concentrations in samples and labeling efficiency, i.e.,
[Fluorophore]/[protein]*100.

Affinity measurements: Isothermal titration calorimetry and MST

Binding affinities of 176G-PBP and unlabeled S3C-P86C-PBP for inorganic phosphate were
determined with a MicroCal PEAQ-ITC microcalorimeter (Malvern Panalytical) at 25°C.
Protein from a diluted solution was concentrated to ~ 30 uM using a Viva Spin 6 concentrator
with a 10 kDa MWCO. The filtrate was used to prepare the phosphate solution at 450 uM. The
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reaction cell was filled with the protein solution and titrated in 19 steps of 2 ul each of phosphate
solution in 160-s intervals. A baseline control was obtained from measurements made with
protein-free filtrate in the reaction cell, and this baseline was subtracted from the experimental
thermograms. Data were fitted to a single binding site model using the Setup MicroCal PEAQ-
ITC Analysis Software provided by the manufacturer.

SMFRET spectroscopy and data analysis

SMFRET experiments of PBP were carried out on a home-built ALEX setup as described
previously®®%2l: PBP was studied by diluting the labeled protein to concentrations of ~80 pM
in a 100 ul drop of buffer (20 mM Tris-HCI pH 8.0, 100 mM NaCl, 10 mM imidazole) on a
coverslip supplemented with the ligand phosphate as described in the text and figures. Before
each experiment, the coverslip was passivated for 3 minutes with a 1 mg/ml BSA solution in
buffer. The measurements were performed without photostabilizer. The fluorescent donor
molecules were excited by a diode laser at 532 nm operated at 60 pW at the sample in
alternation mode (50 ps alternating excitation and a 100 us alternation period). The fluorescent
acceptor molecules were excited by a diode laser at 640 nm operated at 25 pW at the sample.
Data analysis was performed using a home written software package as described in reference
581, Single-molecule events were identified using an all-photon-burst-search algorithm with a
threshold of 15, a time window of 500 ps and a minimum total photon number of 1501, E-
histograms of double-labeled FRET species with LD555 and LD655 were extracted by selecting
0.25<S<0.75. E-histograms of the open state without ligand (apo) and closed state with

(E-w)?
saturation of the ligand (holo) were fitted with a Gaussian distribution A e 242 .
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A) Supplementary Note 1: Database parameter evaluation

Data preprocessing: the 104 PDB files of the database and the comparison PDB files were
downloaded from the protein databank and preprocessed to unify the data structures. Therefore,
all hetero atom entries (HETATM), anisotropy entries (ANISOU), and connection entries
(CONNECT, as well as all the meta-information (REMARK) were removed from the pdb
files2. Chains of polymeric protein assemblies in crystals were deleted if these were bare
crystallization artifacts and do not occur in natural environments. The conservation score was
calculated for all 112 chains containing the labeled residues (and the reference database) with
the default settings (see Supplementary Table S1)*4. Failed conservation score calculations
(e.g. if too few homologue structures are available) were ignored for further analysis.

PDB data processing: The pdb files are parsed and processed with the “Bio.PDB”
module® of the “biopython” package®.

Parameter extraction: 28 parameters were calculated or extracted from third party
software and assigned to the four categories (i) solvent exposure, (ii) residue conservation, (iii)
cysteine resemblance, and (iv) secondary structure (see Supplementary Table S1-4).

Overall, 43357 and 29898 residues from the database and reference dataset are
considered in the calculations, respectively. Failed parameter calculations were ignored for
further analysis. Therefore, the number of calculated values varies for the 28 parameters
(failure rate <10% for all parameters in the database and reference database; see Supplementary
Table S5 for settings of the ConSurf-server and Supplementary Table S6 for exact numbers).
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Supplementary Table S1. Solvent exposure related values were extracted using the third party algorithms (i)
“Define Secondary Structure of Proteins” (DSSP) to calculate relative surface accessibility’, (ii) “Half-Sphere-
Exposure” (HSE) to calculate the number of C-alpha atoms in the half-spheres defined by the C-alpha — C-beta
vector®, and (iii) “Michel Sanner's Molecular Surface” (MSMS) to calculate the protein surface and the residue

depth of the atoms®.

# | Parameter name Library /| Extracted value Data
webserver type
1 | N_SE1 RSA Wilke DSSP’ Relative surface area | float
with  amino  acid
surface areas
according to Wilke®®
2 | N_SE2_RSA_Sander DSSP’ Relative surface area | float
with  amino  acid
surface areas
according to Sander!?
3 | N_SE3 RSA Miller DSSP’ Relative surface area | float
with  amino  acid
surface areas
according to Miller?
4 | 1_SE4 HSE1 10A Bio.PDB?, Number of atoms in | integer
HSE® half-sphere 1 within 10
A
5 |1 _SE5 HSE2 10A Bio.PDB?, Number of atoms in | integer
HSE® half-sphere 2 within 10
A
6 || SE7 HSE1l 13A Bio.PDB?, Number of atoms in | integer
HSE® half-sphere 1 within 13
A
7 |1 _SE8 HSE2 13A Bio.PDB?, Number of atoms in | integer
HSE® half-sphere 2 within 13
A
8 | | SE10 HSE1 16A Bio.PDB?, Number of atoms in | integer
HSE® half-sphere 1 within 16
A
9 |1_SE11 HSE2 16A Bio.PDB?, Number of atoms in | integer
HSE® half-sphere 2 within 16
A
10 | N_SE13 CB_SURFACE_DIST Bio.PDB?, Distance of the C-beta | float
MSMS?® atom to the protein
surface
11 | N_SE14 MEAN_SURFACE_DIST | Bio.PDB®, | Mean distance of all | float
MSMS?® atoms to the protein
surface
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Supplementary Table S2. Parameters related to residue conservation are extracted from the grades-file of the
consurf server34, Settings for the ConSurf analysis are listed in Table S5.

#

Parameter name

Library /
webserver

Extracted value

Data type

12

I_CS1 Color

ConSurf®#4

Color representation of
conservation score
(binned  conservation
score with upper and
lower boundary)

integer

13

N_CS2_Score

ConSurf®#4

Conservation score

float

14

N_CS3 Lower_Score

ConSurf®4

Lower value of
confidence interval of
conservation score

float

15

N_CS4_Upper_Score

ConSurf34

Upper value of
confidence interval of
conservation score

float

16

|_CS5 Variety Length

ConSurf®4

Number of different
amino acids in
homologues

integer

17

C_CS6_Cys_In_Variety

ConSurf34

Boolean: true if cysteine
is in amino acid list of
homologues; false else

categorical

Supplementary Table S3. Secondary structure related values were extracted using the third party algorithms
“Define Secondary Structure of Proteins” (DSSP) to calculate the secondary structure of the residue of interest
and its adjacent residues as well as the backbone torsion angles’.

# Parameter name Library /| Extracted value Data type
webserver

18 | C_SS1_SS DSSP’ Secondary structure categorical

19 | N_SS2 Phi DSSP’ Backbone torsion angle (n-1)-n | float

20 | N_SS3 Psi DSSP’ Backbone torsion angle n-(n+1) | float

21 | C_SS4 SS-1 DSSP’ Secondary structure of | categorical
predecessor residue

22 | C_SS4 SS-2 DSSP’ Secondary  structure  two | categorical
positions before

23 | C_SS4 SS+1 DSSP’ Secondary structure of | categorical
successor residue

24 | C_SS4 SS+2 DSSP’ Secondary  structure  two | categorical
positions after
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Supplementary Table S4. Cysteine resemblance related values were taken from the amino acids structures to
either compare the individual amino acids or group the amino acids by charge and size/mass.

atoms (without H-atoms)

# Parameter name Library /| Extracted value Data type
webserver
25 C_CR1 Name - Amino acid (name) categorical
26 N_CR2_Mass - Mass of amino acid [u] | float
27 C_CR3_Charge - Charge of amino acid in | categorical
buffer  solution  at
pH=7.4 [€]
28 I_ CR4_N_Sidechain - Number of sidechain | integer

Supplementary Table S5. ConSurf-server settings. Overview of all user parameters set for the conservations
score calculation on https://consurf.tau.ac.il/ (accessed January 24", 2021).

Parameter Value
DNA _AA AA
NMR no
PDB_yes no yes

MSA yes no no
Homolog_search_algorithm | HMMER
ITERATIONS 1

E VALUE 0.0001
proteins DB UNIREF90
user_select_seq no
MAX_NUM_ HOMOL 150
best_uniform_sequences uniform
MAX_REDUNDANCY 95
MIN_IDENTITY 35
MSAprogram MAFFT
ALGORITHM Bayes
SUB_MATRIX BEST
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Supplementary Table S6. Parameter overview and statistics. The table summarizes the number of analyzed
residues (complete database, labeled residues) and the statistical evaluation of the parameter scores with respect
to mean-square deviation (MSD), gini coefficient, and adapted Shannon entropy (see methods for details).

# | Name Number | Number | MSD | Gini | Shannon
of all | of coeff | entropy
analyzed | labeled
residues | residues

1 | N SE1 RSA Wilke 40056 385 0.951 | 0.303 | 0.931

2 | N SE2 RSA Sander 40056 385 0.866 | 0.323 | 0.923

3 | N SE3 RSA Miller 40056 385 0.948 | 0.330 | 0.922

4 |1 SE4 HSE1 10A 40056 385 0.674 | 0.663 | 0.687

5 |1 SE6 HSE2 10A 40056 385 0.259 | 0.421 | 0.851

6 |1 SE6 HSE1l 13A 40056 385 0.922 | 0.625 | 0.712

7 |1 SE7 HSE2 13A 40056 385 0.266 | 0.385 | 0.861

8 || SE8 HSE1l 16A 40056 385 0.972 | 0.596 | 0.744

9 |1 SE9 HSE2 16A 40056 385 0.206 | 0.347 | 0.895

10 | N SE10 CB SURFACE_DIST 40056 385 0.210 | 0.585 | 0.721

11 | N SE11 MEAN SURFACE DIST | 40056 385 0.883 | 0.578 | 0.744

12 | 1 CS1 Color 39409 376 0.322 | 0.271 | 0.940

13 | N CS2 Score 39409 376 0.856 | 0.339 | 0.914

14 | N_CS3 Lower Score 39409 376 0.869 | 0.469 | 0.819

15 | N_CS4 Upper_Score 39409 376 0.530 | 0.343 | 0.900

16 | | CS5 Variety Length 39409 376 0.677 | 0.354 | 0.911

17 | C CS6 Cys In Variety 39409 376 0.006 | 0.038 | 0.996

18 | C SS1 SS 41502 390 0.218 | 0.307 | 0.894

19 | N _SS2 Phi 41502 390 0.448 | 0.370 | 0.869

20 | N_SS3 Psi 41502 390 0.231 | 0.339 | 0.883

21 | C SS4 SS-1 41227 385 0.258 | 0.383 | 0.861

22 | C SS5 SS-2 41018 382 0.175| 0.250 | 0.919

23 | C_SS6 SS+1 41227 388 0.218 | 0.316 | 0.900

24 | C_SS7 SS+2 41021 385 0.207 | 0.259 | 0.917

25 | C CR1 Name 43357 396 0.753 | 0.401 | 0.909

26 | N CR2 Mass 43357 396 0.361 | 0.367 | 0.905

27 | C_ CR3 Charge 43357 396 0.156 | 0.162 | 0.956

28 | | CR4 N Sidechain 43357 396 0.413 | 0.368 | 0.902
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B) Supplementary Note 2: Forster resonance energy transfer

Forster radius calculation:

Spectral information, quantum yield, and extinction coefficients are taken from the database
https://www.fpbase.org/spectra/ and provided with the labelizer-package for the most
commonly used fluorophores.

The Forster radius Ro is given by

Iy Fp(eapmgyea(A) 2* d2
Jo Fp(2) da ’

6 _ 9In(10) k2
T 12875 Nynt

(b D

0

whereby @, is the donor quantum yield, F, the normalized donor emission spectrum, &4 the
normalized acceptor emission spectrum, and ¢, the acceptor extinction coefficient.

The following values are set fix to theoretical values:

Orientation factor x2: 2/3
Averaged refractive index n (ref. 13): 1.4

Distance screening:

Center of mass of a sphere with radius R cut with a cone of angle a in the z-dimension
(spherical sector):

S fd0fTdg [ dr r?sin(®) 7 (0) 3

0| =R~
[ de [T d [} dr r2sin() -1 \1) 8 (1~ cost@)

We assume the origin to be at the attachment site (C-B atom) of the fluorophore and model the

accessible volume of the dye with a cut sphere of angle a and the non-accessible space with

7 — a. We approximate the center of mass of the non-accessible volume d’ with the center of
mass of all N atom positions 7; within the protein closer than R to the attachment point (see

Figure 5):

L 1oL .
d’=ﬁzn V i with [7 < R|
i

The direct relation between the center of mass of atoms in the protein d’ and the center of mass
of the fluorophores accessible-volume d is given by:

d= ¢ 3d R
R 4|

We add an empirically determined correction factor based on simulations with 35 different
fluorophore parameters on 100 residue pairs in 10 different protein structures to account for
the finite size of atoms and fluorophores, which leads to a gap between protein atoms and
accessible volume (see Supplementary Figure S7B/D).
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The offset for the protein surface is added as a small addition to the fluorophore linker

d & _3d (R +¢)
=|=—== £
R 4|d|

and reads as
& = max(Ry, 2 min(Ry, Ry, R3) — Ry) + 0.014 x R — 0.0059 * R?% .

This correction can reproduce the simulated mean positions ﬁMP with a root mean square
deviation of +2.7 A (see Supplementary Figure S7F) and mean position distances Ryp =

|§MP,1 — ﬁMp,z | with a root mean square deviation of +2.1 A (see Figure 8C).

We approximated the relation between the mean positions of the accessible volumes to the
measured FRET averaged distances as

Reps = Ryp + Ae P Rur

whereby the second term accounts for FRET-efficiency weighted averaging effects at small
distances (see Supplementary Figure 8B). The values A and b are determined as A = 20.6 A
and b = 0.037 1/A from a fit to the 35000 simulated distances within the ten selected protein
structures, which is similar to the reported relations in ref. * and *® for DNA. With this
relationship, the simulated distance with FPS is reproduced up to a deviation of +3.4 A (+3.1 A
for distances between 40 and 75 A).

Based on the corrected FRET values, the (screening) FRET-efficiency of a residue pair {i,j} is
calculated as

1
-

1+ ()

Eij=

Distance refinement

A refinement is calculated based on the N highest FRET scores (with default N=300) using the
available FPS simulation software'® with standard parameter settings (see Supplementary
Table S8).
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C) Supplementary Figures
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Supplementary Figure S1. Labeling database statistics. A) Number of labeled residues per chain in the
database with N=112 different protein chains. B) Comparison of published protein systems with soluble and
membrane proteins (N=149 published protein systems, multiple occurrence possible). C) Statistics of the different
assay types used for the labeling database (N=149 published protein systems, multiple occurrence possible).
Around 90% of the assays are single-molecule FRET assays (FRET), the others are bulk FRET (BULK) or single
fluorophore labeled (SINGLE) assays, spin labels (PELDOR), gold labels (PLASMON), biotin labels (BIOTIN)
and linker labels for optical traps (TRAP). D) Statistics on the labeling residues (cysteine or unnatural amino acid,
N=407 residues). E) Statistics on the fluorophores used in the publications (N=263 occurrences in the
publications).
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Supplementary Figure S2. Parameter distribution comparison. Probability distributions P(s) of all 28 scores
in the labeling database (gray). The values are compared to a randomly selected representative reference dataset
(red line: mean values, pale area: standard deviation of triplicates) based on the pdbselect dataset!’1 (see methods
for details). The x-axis label specifiers the parameter: first part for the type of data (I: integer, N: numeric, C:
categorical), second part for the parameter group (SE: solvent exposure, CS: conservation score, SS: secondary
structure, CR: cysteine resemblance), and the rest for a reasonable name (see methods for details).
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Supplementary Figure S3. Conditional frequencies of parameters. Conditional frequency distributions
P(s|1)/P(s) defining the parameter scores of all 28 parameters in the labeling database. The x-axis label specifiers
the parameter: first part for the type of data (I: integer, N: numeric, C: categorical), second part for the parameter
group (SE: solvent exposure, CS: conservation score, SS: secondary structure, CR: cysteine resemblance), and
the rest for a reasonable name (see methods for details).
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Supplementary Figure S4. Correlation measure and averaged mean square deviation (MSD).

The plot shows the geometric mean of the MSD value of the selected parameters (mean square deviation from
equal contribution, see methods) versus the correlation measure (2-norm of all correlations). All parameters are
combined with each other to sets of 4, whereby points with multiple (2 or more) parameters from the same group
(e.g. solvent exposure) are marked black. Combinations with one parameter from each group are marked red.
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Supplementary Figure S5. Label score evaluation for different parameter sets. A Label score probability
distribution of all residues (gray) and labeled residues (red) in our database (left) and the a histogram with
logarithmic scale of the label scores (middle) for the selected quadruple (#11: mean surface distance, #13: ConSurf
score, #18: secondary structure, #25: amino acid identity) (default settings). The ratio of the probability
distribution of labeled and all residues (gray) is fitted with a linear dependency (red, dashed) in the log-log-plot
(right). B Same evaluation as in A for another suitable parameter selection of the quadruple (#2: relative surface
area Sander, #12: ConSurf color, #18: secondary structure, #27: amino acid charge). C Same evaluation as in A
for a parameter set with poor prediction power (#5: second half of 10 A half-sphere exposure, #17: cysteine in
homologue structures, #14: secondary structure two positions after, #26: amino acid mass).
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Supplementary Figure S6: ROC curves for reduced parameter sets. To study the importance of individual
parameters in the final prediction, we compared the receiver operating characteristic (ROC curve) for the baseline,
when removing one of four parameters and for each parameters on its own. We considered labeled sites positives
and unlabeled site negatives, which most likely overestimates the false-positive rate.
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Supplementary Figure S7. Correction parameter for mean position of accessible volume. (A) Simplified
accessible volume simulation (green) in an idealized system of a planar array of atoms (gray). (B) Motivation for
the correction factor is illustrated with the offset between the atom coordinates (lower dashed line) and the
accessible volume coordinates (upper dashed line). The correction factor € corrects for this gap between accessible
surface (green) and inaccessible surface (gray) under the consideration of the linker length (R, corresponds to the
AV radius), the atom radius R, and the smallest fluorophore radius R of the ellipsoidal approximation416.19, (C)
Deviation between simulated mean position of accessible volume (FPS software) and estimated mean position
(SSM approach) with indicated mean value (red line). (D) Mean offset from (C) for different linker lengths R and
fluorophore radii R3 is shown with error bars (standard error of the mean from simulations). The estimation of the
offset in (C) is fitted globally with the correction factor ¢ = max(Ry, 2 min(R,, R,,R3) — Ry) + 0.014 xR —
0.0059 = R? (dashed lines). (E) Deviation between simulated mean position of accessible volume (FPS software)
and estimated mean position (SSM approach) including the correction factor ¢ (mean value: red line). (F)
Distance between corrected screening mean position (SSM approach) and simulated mean position (FPS software)
results in a deviation of 2.7 A (RMSD). The large deviations for some positions (>6 A) result from failed FPS
simulations (unreasonable small accessible volumes due to interfering atoms close to the linker attachment site).

page #15


https://doi.org/10.1101/2023.06.12.544586
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544586; this version posted February 18, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Gebhardt et al., Labelizer version 2024 — Supporting Information

120 120

RMSD=14.3 A RMSD=7.5A

100 | 100

(00]
o
T
(o]
o
T

R.e distance [A]
(o))
o

R.e. distance [A]
o
o

40t 40t
20 I 20}
of ol
_ 20 —l T T _ 20 _I T T
< =
— 10r = 10t
é of ! g of ——
 _10} @ _10}
m _20 -I 1 1 m _20 -I 1 1
0 50 100 0 50 100
C-beta distance [A] Mean position distance [A]
c
1201 MsD=2.1A 1201 omsD=3.4A
100 | 100+

Mean position distance [A]
[e)]
o
R.e. distance [A]
o
o

40 40
20 20
or or
< OF < oF
E i E i Lttt
. I L 01
w w
[} (o]
¥ —5¢f ¥ -5}
0 50 100 0 50 100
Estimated mean position distance [A] Estimated R.. distance [A]

Supplementary Figure S8. Correction parameter for distance simulation. (A) C-beta distances are plotted
against simulated distances with FPS-software (blue datapoints) with mean values (red line). The bottom axis
shows the mean residual (red line) and the standard deviation interval (error bars / gray area) on binned data
from the top. (B) Mean dye position distances R,y (center of mass of the AV-simulation) are plotted against the
FRET-averaged distances (blue datapoints) with mean values (red line). The mean values are fitted to the curve
Ryp + Ae P Rmp with A = 20.6 A and b = 0.037 1/A (black dashed line). (C) Mean dye position estimations
based on the spherical sector calculation (SSM) approach are plotted against mean dye position distances Ry,p
from FPS-simulation software. (D) Mean dye position distances from the SSM-estimation are converted to
FRET-averaged distances with the correction factors from (B) and plotted against the simulated R722¢! from
FPS-simulation.
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Supplementary Figure S9. smFRET Characterization of four distinct PBP double-cysteine variants with
two different fluorophore pairs with similar Forster radius. ALEX histograms with 61 bins of apo and holo
states of PBP variants as indicated labelled with (A) Alexa Fluor 555-647 and (B) LD555-655 dyes. Mean values

for E* are background corrected apparent FRET efficiencies analyzed by a dual-colour burst search with
additional per-bin thresholds of all photons >150.
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Supplementary Figure S10. Biochemical characterization of labelled PBP variants using smFRET. (A)
Representative data of S3-188C labelled with Alexa Fluor 555-647 at indicated phosphate concentrations
including a two-state fit of low FRET apo and high-FRET holo state. (B) The binding curve was calculated from
smFRET measurements considering the closed fraction (rcised) as a function of the substrate concentration. (C)
Determined mean Kd-values for all four labelled PBP variants including standard deviation.
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Supplementary Figure S11. New smFRET and biochemical data of MalE variants used in accurate FRET
analysis. (A) Label positions and smFRET of the respective variant for ligand-free apo, 1 pM maltose and
saturated maltose (100 pM, holo). (B) Representative results from affinity titrations of MalE 53 with Alexa555-
647 and (C) mean and standard deviation of determined Kd-values for all three labelled variants.
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Supplementary Figure S12. Biophysical and biochemical characterization of MalE variant with optimized
FRET efficiency values but minimal FRET changes between apo and holo state. (A) Unccorrected FRET
efficiency histogram of (B) MalE (84/352) labeled with Alexa Fluor 546-647 where ligand binding was verified
by label-free microscale thermophoresis (C). Conversion of the data into accurate FRET efficiency values was
done using additional data with distinct FRET efficiency values (yet use of the same fluorophore pair on MalE)
and resulted in correction parameters (D) and accurate FRET efficiency values and distances using a Forster

radius of 6.5 nm (E).
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D) Supplementary Tables 7-9

Supplementary Table S7. Parameter analysis. We compared the baseline model, the model with one of the four
parameters removed and the predictive power of each parameter on its own. We show the difference between the
means and the T value when comparing the distributions of P(s) and P(s|l), the average difference between the
means after 400x bootstrapping together with the 95% CI intervals. The difference of means in our bayesian model
is a metric for the model’s ability to separate the labeled residues from the background. Note that the median
derived from bootstrapping of the differences of the distribution means diverges from the main analysis.

Parameters Difference of | T 400x bootstrapping median of the difference of P(s|l)
P(s|l) and P(s) | value | and P(s) means [95% confidence interval]
means

#11, #13, #18, #25 0.45 19.23 | 0.41[0.38-0.47]

#13, #18, #25 0.33 18.19 | 0.27[0.24-0.34]

#11, #18, #25 0.30 15.88 | 0.31[0.28-0.33]

#11, #13, #25 0.40 18.01 | 0.34[0.30-0.42]

#11, #13, #18 0.36 19.67 | 0.32]0.29-0.39]

#11 0.13 12.91 | 0.14]0.12-0.17]

#13 0.18 16.98 | 0.12]0.09-0.19]

#18 0.07 11.94 | 0.06 [0.05-0.08]

#25 0.11 8.51 0.11 [0.08-0.13]

#11, #13, #18, #25 0.45 19.23 | 0.41[0.38-0.47]

Supplementary Table S8. FPS settings. Overview of all user parameters set for the runtime analysis of the
distance refinement simulation with the FPS software'®. The default settings for the labelizer package and
webserver use discStep = 0.8 and nsamples = 100000 (all other parameters depend on the selected fluorophore

pair).
LabelLib.dyeDensityAV3

Parameter Value
discStep 0.8 (coarse-grained: 1.2)
linkerLength varied
linkerDiameter 4.5
dyeRadii varied
LabelLib. meanEfficiency
Parameter Value
RO 57.5
nsamples 100000 (coarse-grained: 10000)

Supplementary Table S9. Spherical sector vs. FPS runtime comparison. Calculation time overview of the fast
screening method (spherical sector calculation) and a coarse-grained distance refinement simulation (FPS
software'®) with 3500 distance pairs per pdb-file (100 distances, 35 different dye parameter) and a refined FPS
simulation with 1400 distance pairs per pdb-file (40 distances, 35 different dye parameter).

PDB Molar mass | SSM time per DA- | Coarse-grained FPS time per | FPS time per DA-
[u] pair [ms] DA-pair [ms] pair [ms]
3L6G | 28,830 0.81+0.04 10345 315411
2KHO | 65,650 0.84+0.01 16645 419+8
2CGY9 | 188,730 0.94+0.01 303+12 647410
4B10 | 831,160 4.31+0.09 1113436 2087+46
172L 18,730 0.67+0.01 7742 249+10
2A65 | 59,750 0.93+0.04 169+5 47419
1WDN | 25,130 0.78+0.01 100+3 31544
5XPD | 33,310 0.67+0.02 9443 282410
1P7B | 74,510 0.80+0.01 156412 398+14
1HKA | 17,970 0.81+0.04 81+2 259411
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