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Abbreviations: 
MI       mutual information 
ED Euclidean Distance 
dMRI   diffusion magnetic resonance imaging 
Pcc        Pearson’s correlation coefficient  
OMST orthogonal-minimal-spanning-tree 
SBN structural brain network 
AAL Automated Anatomical Labeling 
iFOD2 Second-order Integration over Fiber Orientation Distributions 
GFA general fractional anisotropy 
ICVF Intra-Cellular Volume Fraction  
ODI Orientation Dispersion Index  
CSD constrained spherical deconvolution 
NS the number of streamlines  
FA fractional anisotropy  
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MD mean diffusivity  
RF relative frequency 
SLD  streamline density 
DTI diffusion tensor imaging  
DWI diffusion-weighting images 
ELD Embedded Laplacian Discrepancy 
MIN Matching Index 
 

Abstract: 

 It has been proposed that the estimation of the normalized graph Laplacian over a 

brain network's spectral decomposition can reveal the connectome harmonics 

(eigenvectors) corresponding to certain frequencies (eigenvalues). Here, I used test-

retest dMRI data from the Human Connectome Project to explore the repeatability, 

and the influence of graph construction schemes on a) graph Laplacian spectrum, b) 

topological properties, c) high-order interactions (3,4-motifs,odd-cycles), and d) their 

associations on structural brain networks (SBN). Additionally, I investigated the 

performance of subject’s identification accuracy (brain fingerprinting) of the graph 

Laplacian spectrum, the topological properties, and the high-order interactions. 

Normalized Laplacian eigenvalues were found to be subject-specific and repeatable 

across the five graph construction schemes. The repeatability of connectome 

harmonics is lower than that of the Laplacian eigenvalues and shows a heavy 

dependency on the graph construction scheme. A repeatable relationship between 

specific topological properties of the SBN with the Laplacian spectrum was also 

revealed. The identification accuracy of normalized Laplacian eigenvalues was 

absolute (100%) across the graph construction schemes, while a similar 

performance was observed for a combination of topological properties of SBN 

(communities,3,4-motifs, odd-cycles) only for the 9m-OMST. Collectively, Laplacian 

spectrum, topological properties, and high-order interactions characterized uniquely 

SBN. 

 

 

Keywords: brain network, connectome, Laplacian, eigenvalues, graph spectrum, 

normalized Laplacian, diffusion magnetic resonance imaging, structural brain 

network, brain fingerprinting  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.05.31.543029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.543029
http://creativecommons.org/licenses/by/4.0/


3 

 
 

1. Introduction 
 

The human brain can be modeled as a graph G = (V, E), comprising of nodes, V, 

representing brain regions and edges, E, referring to functional and anatomical 

strengths (Bullmore and Sporns, 2012). A high repertoire of network metrics has 

been adopted from social network analysis and applied to the analysis of human 

brain networks. Those metrics quantify different global and local properties of nodes 

such as the degree, the communication efficiency, etc (Boccaletti et al., 2006; 

Newman, 2003). Complementary to trivial network metrics, researchers have 

proposed a variety of qualitative measures for the examination of the global structure 

of brain networks (Atay et al., 2006; Banerjee and Jost, 2007; Banerjee, 2012; 

Varshney et al., 2011). 

The eigenanalysis of the graph Laplacian operator over the structural brain 

network reveals a set of graph Laplacian eigenvectors and eigenvalues. The graph 

Laplacian eigenvectors, called connectome harmonics, is a set of frequency ordered 

harmonic patterns arising from the cortex and can be seen as a connectome 

extension of the well-known Fourier basis of a 1D signal to the 2D human brain 

network. These connectome harmonics reported a relationship between low-

frequency harmonics (eigenvectors linked to smaller Laplacian eigenvalues) and the 

resting-state brain activity mainly from the default mode network (DMN) measured by 

functional magnetic resonance imaging (fMRI) recordings (Atasoy et al., 2016, 

2018b). 

 The transformation of the original brain network to the normalized Laplacian 

matrix gives us the opportunity to estimate the Laplacian eigenvalues which refer to 

the global network structure (Banerjee, 2012; Chung, 1996). The advantage of the 

normalized Laplacian spectrum over unnormalized is that all the relevant 

eigenvalues range between 0 and up to a maximum of 2, which further enables the 

comparison of networks across modalities, cohorts, age groups, and even sizes 

(Banerjee, 2012).  

 Research studies have applied spectral graph theory to neural networks 

(Banerjee and Jost, 2007; Varshney et al., 2011), proposing network metrics tailored 

to the eigenvectors of the brain network, the node centrality (Bonacich, 2007, 1972; 
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Page et al., 2001) and community detection methods (Fortunato, 2010; Harriger et 

al., 2012; Liang et al., 2011; Newman, 2006). The eigenvectors of a network are 

related to the local properties of a node over its neighborhood while the associated 

eigenvalues contain important information about the graph structure (Banerjee and 

Jost, 2007; Banerjee, 2012; McGraw and Menzinger, 2008; Vukadinović et al., 

2002).  

 Many researchers have already applied the graph Laplacian to brain 

connectivity networks reporting the progression of neurodegenerative diseases (Raj 

et al., 2012), brain malformation (Wang et al., 2017), attention switching period in a 

cognitive task (Huang et al., 2018; Medaglia et al., 2018), macroscale coupling 

gradient between brain regions (Preti and Van De Ville, 2019), structure-function 

decoupling (Griffa et al., 2022), and an aberrant dynamic connectivity profile 

constrained by structural brain network in patients with concussion (Sihag et al., 

2020). These studies focus on long-range and white-matter-based anatomical 

connectivity employing brain networks of sizes from a few tens up to a few hundred 

regions-of-interests (ROI) (Desikan et al., 2006; Destrieux et al., 2010). Recently, 

Atasoy et al. proposed an alternative framework for the application of graph 

Laplacian to the analysis of the human connectome. They combined assessment of 

local connectivity of the gray matter cortical structure captured from the magnetic 

resonance imaging (MRI) data with the assessment of long-range connectivity 

mediated via the white-matter thalamocortical fibers captured from the diffusion MRI 

(dMRI) data into a common anatomical network without the use of a template 

(Atasoy et al., 2017, 2016; Naze et al., 2021).  

After many years of reductionism in science, researchers understood that no 

matter how accurate is our knowledge at the level of subsystem, we will miss the 

linear, and nonlinear interactions between the system components (Anderson, 

1972). This is the reason, why we cannot fully explain the starting point of epileptic 

seizures just from the individual neurons of the human brain. Epilepsy is now 

conceptualized as a network disease (Lehnertz et al., 2023). Over the past decades, 

a variety of complex systems has been successfully described as networks whose 

interacting pairs of nodes are connected by links (Barabási,2011). Among these 

complex systems that are modelled as networks are the brain networks (Stam,2014). 

Breakthrough papers on networks were introduced to the scientific community close 

to millennium building upon earlier work in social network analysis, and mathematics 
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(Watts and Strogatz,1998 ; Barabási and  Albert, 1999 ). These pioneer studies 

triggered an exponential increment of published articles up to our days forming a 

new multidisciplinary field called Network Science. 

 

 

Up to now, the majority of research on network science, and its applications on 

every discipline such as brain network analysis focused mostly on pairwise 

interactions (Battiston et al.,2020). However,  interactions in general, and specifically 

in brain can often occur in groups of three or more nodes and cannot be described 

simply in terms of dyads (Sporns and Kotter,2004). Only recently, the community has 

devoted more attention to the high-order interactions introducing frameworks such as 

motifs, cliques, hypergraphs, simplicial complexes etc (Battiston et al., 2021). 

Here, I will focus on exploring high-order coordinated structural pattern encoded 

with motifs. Motifs are small recurrent subgraphs with specific connectivity pattern 

that are considered as a high-order structural signature of the underlying network’s 

function (Milo et al., 2002). Motifs allow to extract additional information on the 

properties of an interaction, while can be described of each edges (1-interactions) 

between vertices that appear to be statistically significant in the network. However, a 

drawback of the motifs’ research is that the whole set of possible motifs to explore 

grows exponentially  as the number of nodes involved in the whole analysis. 

Considering high-order interactions in human brain neuroimaging can help us 

understand many timeless mysteries of the human functionality such as 

consciousness (Herzog et al., 2024). 

The analysis of the relation between the spectrum of a graph, i.e., the eigenvalues 

of its adjacency matrix, and the structural properties of a network is the main goal of 

spectral graph theory. Graph Signal Processing (GSP) is a special area in signal 

processing based on spectral graph theory where the data possess an intrinsic 

graph structure here a SBN. GSP extends graph theoretical approaches, providing 

an elegant and concrete mathematical framework to describe brain function as signal 

diffusion through the structural connectivity (Lioi et al., 2021 ; Abdelnour et al., 2014). 

At the centre of GSP lies the graph Laplacian matrix and its decomposition into 

graph harmonics called eigenvectors or “gradients” (Margulies et al., 2016), 

reflecting orthogonal spatial patterns of a signal in the network, while every harmonic 

is associated to an eigenvalue reflecting its graph frequency (Chung, 1996 ; 
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Deslauriers-Gauthier et al., 2020 ; Luppi et al., 2020). The harmonic decomposition 

of the graph Laplacian matrix is similar to the Fourier transform of a signal. Laplacian 

harmonics form the set of Fourier basis that describes how brain signals would 

reflect in the structural brain networks, a transformation that link structural graph 

topology to functional synchrony (Müller et al., 2017). Each harmonic is associated 

with an eigenvalue, and conventionally harmonics are sorted by their ascending 

eigenvalues.  

Based on the aforementioned definitions, it is natural to employ the harmonic 

“eigenspectrum” as the organizing principle that can link the integration and 

segregation which are the two ends of a continuum from the synchrony to 

asynchrony (Deco et al., 2015 ; Sipes et al., 2024). Integrative and segregative 

harmonics occupy the ends of the continuum while degenerate harmonics are in the 

middle of the continuum (Sipes et al., 2024).  

In the present study, the general theme was then, firstly, to compute the 

eigenvalues of such matrices, and secondly, to relate the eigenvalues to structural 

properties of graphs such as: the synchronizability, the Laplacian energy, the relative 

frequency (RF), the number of communities (modules), the bipartiteness, the high-

order interactions such as the motifs’ distribution and the distribution of odd-

cycles. In the present study, I investigated the repeatability: a) of the Laplacian 

eigenvalue spectrum, b) of the Laplacian eigenvectors (connectome harmonics) of 

the structural brain networks derived from diffusion magnetic resonance imaging 

data (dMRI), c) of the structural properties of SBN including high-interactions 

investigated via motifs, and d) of the association between Laplacian eigenvalue 

spectrum and the structural properties of the dMRI-based brain networks. I analysed 

the test-retest MRI and diffusion-MRI data set from the multimodal neuroimaging 

database of the Human Connectome Project (HCP) (Glasser et al., 2013; S N 

Sotiropoulos et al., 2013; Van Essen et al., 2013).  

The main aims of the present study were unique in human brain network 

neuroscience, and especially in dMRI-based SBN. It is the very first time in the 

literature according to my knowledge, that the Laplacian spectrum, the relevant 

properties of the SBD, and especially the high-order network interactions, and their 

association are studying together in structural brain networks. On the top, the whole 

investigation includes brain fingerprinting performance of Laplacian spectrum, and of 

the adopted structural properties of the SBN. Additionally, the current study took the 
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advantage of this valuable open test-retest study to explore the repeatability of my 

findings (Dimitriadis et al., 2021; Messaritaki et al., 2019). As in our previous studies, 

I demonstrated how all these observations were influenced by the different graph 

construction schemes and the alternative network weighting schemes (Qi et al., 

2015). 

I constructed structural brain networks from this test–retest diffusion MRI scan data 

from the Human Connectome Project (HCP) using the b = 2000�s/mm2 data and 

selecting five out of seven most reproducible graph‐construction schemes as derived 

from our previous study on the same data (Messaritaki et al., 2019a).  

The major aim of this study was to investigate the associations of graph Laplacian 

spectrum with topological descriptors of the architecture of SBN. Simultaneously, I 

explored the repeatability of these observations and how could be influenced by 

alternative graph construction schemes. Finally, I examined how graph Laplacian 

spectrum and relevant brain network descriptors of SBN can produce a concrete 

system-level fingerprint of brain networks following a brain fingerprinting approach 

(de Lange et al., 2014,2016). 

The rest of this manuscript is organized as follows: Section 2 (Methods) describes 

briefly the cohort, the processing of dMRI test-retest dataset, the graph construction 

schemes, the estimation of graph topological descriptors and their associations with 

graph Laplacian spectrum. Section 3 (Results) reports our findings in terms of 

repeatable normalized Laplacian eigenvalues and eigenvectors and their subject 

specificity under the brain fingerprinting framework. Section 4 (Discussion) 

summarises the major contribution of my study explaining its advantages, limitations, 

and possible future directions. 

 

2. Methods 

All analyses were performed using MATLAB (2019a; The Mathworks, Inc., MA). 

2.1. Data 

 My study adopted the test-retest MRI and diffusion-MRI dataset from the large 

multimodal neuroimaging database of the Human Connectome Project (HCP) 

(Glasser et al., 2013; S N Sotiropoulos et al., 2013; Stamatios N Sotiropoulos et al., 

2013; Van Essen et al., 2013). The cohort used in my study consists of 37 subjects 

which were scanned twice with a time interval between the scans ranging between 
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1.5 and 11 months. The age range of the participants was 22–41 years. It should be 

noted that the test-retest time interval is shorter than the expected time over which 

maturation-induced structural changes can be measured with the diffusion MRI 

(dMRI) experiment reported in this study. 

The diffusion-weighted images (DWIs) had a resolution of (1.25×1.25×1.25) mm3 

and were acquired at three different diffusion weightings (b-values: 1000�s/mm2, 

2000�s/mm2 and 3000�s/mm2) across 90 gradient orientations for each b-value. 

The HCP acquisition details and pre-processing are described in (Feinberg et al., 

2010; Glasser et al., 2013; Moeller et al., 2010; Setsompop et al., 2012; S N 

Sotiropoulos et al., 2013; Stamatios N Sotiropoulos et al., 2013; Xu et al., 2012).  

2.2. Tractography 

 In our previous studies employing the same dataset, we performed 

tractography using the constrained spherical deconvolution (CSD) algorithm 

(Dimitriadis et al., 2021; Messaritaki et al., 2019). Here, I performed tractography 

with a probabilistic, anatomically constrained streamline tractography using MRtrix 

(Tournier et al., 2019), employing the iFOD2 (Second-order Integration over Fiber 

Orientation Distributions) algorithm (Smith et al., 2012, 2015; Tournier et al., 2010). 

The selected parameters of the algorithm were : a) the minimum and maximum 

streamline lengths were ranged between 30 mm and 250mm, b) the maximum angle 

between successive steps was defined to 50°, and c) the FOD amplitude cut-off was 

set-up to 0.06. 

A total amount of two million streamlines were generated for each participant, and 

in both scans, with the seed points to be set on the interface between grey matter 

and white matter. I performed a visual inspection of the tractograms as a way to 

secure that the white matter was covered, and streamlines didn’t out of the white 

matter space.  

IFOD2 was applied to DWI data acquired with b=2000 s/mm2 . 

2.3. Graph generation 

Different experimental protocols and researcher’s methodological choices can 

alter the final structural brain network (SBN) (Qi et al., 2015). SBN and the extracted 

topological network measures can vary remarkably across different MRI gradient 

schemes and orientation models (Zalesky et al. 2010). Bastiani et al. (2012) reported 
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that CSD generates a higher edge density and global efficiency, and lower small-

worldness than diffusion tensor imaging (DTI). Tractography algorithms can also 

affect the derived SBN. Bastiani et al. (2012) showed that probabilistic methods lead 

to higher edge density than the deterministic ones. Global tractography also 

generates a higher edge density than local tractography, likely due to a higher 

number of longer connections.  Moreover, many other factors such as the initial seed 

point region, the number of seed points, and the tracking termination criteria also 

affect the extracted SBN and the related network measures.  Additionally, alternative 

network weighting schemes have been proposed for the construction of weighted 

SBN (Qi et al., 2015). For a nice review, an interested reader can check Qi et al., 

(2015). In the present study, I will focus only on how the different graph construction 

schemes can alter the topology of SBN. 

 

2.3.1. Parcellation, and Node definition 

As in our previous studies, I adopted the Automated Anatomical Labeling (AAL) 

atlas (Tzourio-Mazoyer et al., 2002) to define 90 cortical and subcortical areas (45 

areas per hemisphere) as nodes of the constructed structural brain graphs.  

Structural brain networks (SBN) were generated for each participant, scan and for 

each edge weight (see section 2.3.2) using ExploreDTI-4.8.6 (Leemans et al., 2009). 

2.3.2. Alternative Network Weighting Schemes  

SBN are originally weighted and capture the information of connectivity attributes 

and strengths. Different weighting schemes can be employed for this scope. For 

example, the most straightforward scheme might be to utilize the number of fibers (or 

streamlines) connecting a pair of cortical regions as the weight, NS or the streamline 

density, (SLD), which is defined as the number of streamlines between two brain 

areas  (nodes) divided by the mean volume of the two brain areas (Buchanan et al., 

2014). Furthermore, the weight of the streamline density can be corrected by 

streamline length to generate WDL (Hagmann et al., 2008). A few important scalar 

metrics are fractional anisotropy (FA), Radial Diffusivity (RD) and Mean Diffusivity 

(MD) that have been interpreted as changes in the integrity of white matter 

microstructure for brain diseases and age-related morbidities, where the dMRI data 

are modelled by a locally anisotropic diffusion process (Jones et al., 2013). 
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Correspondingly, these scalar metrics can be useful for weighting connectivity. For 

instance, the weight of FA is adopted in a study by Buchanan et al. (2014). 

Microstructural white-matter properties (e.g., general fractional anisotropy (GFA), 

Intra-Cellular Volume Fraction (ICVF), Orientation Dispersion Index (ODI) 

(Lemkaddem et al., 2014) and physical distance properties (e.g., stream-line length, 

Euclidean distance between the nodes) (Bassett et al., 2011) can be estimated from 

dMRI as alternative weighting metrics for constructing SBN.  

The motivation of using a linear combination of various metrics as edge weights is 

that the integration of the brain’s properties are affected by more than one attribute 

of the white matter tracts. Previous studies have also employed various 

combinations of metrics as network weighting schemes. Moreover, the edge-weight 

in a SBN can be the combination of aforementioned various measures. For example, 

the weight can be a product of the weight of the FN and the weight of the mean FA 

along a fiber bundle connectivity a pair of brain areas (Zhang et al., 2011). Nigro 

et al. (2016) used the product of NS and FA to weigh the edges in a study of 

Parkinson's patients, and Taylor et al. (2015) used a combination of NS and TL in a 

study of epilepsy patients. 

 In the present study, I weighted the edges of the SBN by adopting the five 

most repeatable graph-construction schemes revealed previously with the same 

dataset (Messaritaki et al., 2019b), which were based on alternative combinations of 

the nine metrics listed in Table 1 (see Section 2.3.4). The edge weights of every 

SBN were normalized to have a maximum edge weight of 1, while the elements in 

the main diagonal were set to zero. 

 

Table 1. Metrics used in connectivity matrices. 

Metric Abbreviation 

Fractional anisotropy FA 

Mean diffusivity MD 

Radial diffusivity RD 
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Number of streamlines NS 

Percentage of streamlines PS 

Streamline density SLD 

Tract volume TV 

Tract length TL 

Euclidean distance between nodes ED 

 

2.3.3 Integrated Edge-Weights 

     Each metric shown in Table 1 conveys different information regarding the 

tissue properties. We previously proposed an integrated edge weighting scheme 

combining the metric-based SBN under a data-driven whole-brain algorithm 

(Dimitriadis et al., 2017a,b,c). An integrated SBN was formed by the combination of 

the nine metric-based SBNs for every participant and scan session. 

   An orthogonal-minimal-spanning-tree (OMST) algorithm was applied to every 

metric-based SBN, selecting edges of both small and large weights that preserved 

the efficiency of brain regions at a minimal wiring cost. The overall algorithm with the 

OMST on its center down-weights the metrics with a higher global topological 

similarity and up-weights the dissimilar metrics enhancing the complementarity of 

topological information across the nine adopted metrics. More details on the OMST 

algorithm and its implementation can be found in our previous work (Dimitriadis et 

al., 2017b,c ,2021, 2017a) and the related code is freely available at 

https://github.com/stdimitr/multi-group-analysis-OMST-GDD. 

  

2.3.4 Graph Construction Schemes 

 I will briefly explain the five graph construction schemes used here as in our 

previous studies. 

The first category includes SBN constructed via the data-driven algorithm 

(Dimitriadis et al., 2017b, 2017a, 2017c).  
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A) NS-OMST: apply the OMST filtering algorithm (Dimitriadis et al., 2017b, 2017a, 

2017c) to the NS-weighted matrix. 

B) 9m-OMST: Integrate all nine diffusion metrics (as originally reported in 

Dimitriadis et al. 2017b, see Table 2). 

The second category includes SBNs with edges weighted by the number of 

streamlines (NS), fractional anisotropy  (FA), and mean diffusivity (MD) with various 

combinations of applying absolute thresholding on one individual metric-based SBN 

while keeping the same sparsity as the 9m-OMST that showed the highest 

reproducibility (Messaritaki et al., 2019).  Since, absolute thresholding cannot 

guarantee the connectedness of the network, I first applied a minimal spanning tree 

(MST) on the original SBN constructed by NS. Then, I applied an absolute threshold 

on the rest of the NS weights (excluding the ones constitutes the MST) defined such 

as to return a SBN with the same density as the one returned by the 9m-OMST. 

After the MST and the absolute thresholding steps, the topology was either kept as it 

was (C) or re-weighted with one of the remaining two metrics (D,E) (see Table 2).  

C) NS-thr: MST plus keep the highest-NS edges to align the density to 9m-OMST 

D) NS-t/FA-w: Threshold to keep the highest-NS edges, then reweight those 

edges with their FA.  

E) NS-t/MD-w: Keep the highest-NS edges, then reweight those edges with their 

MD.  

In previous studies, we ranked twenty-one graph construction schemes with 

similarities ranging from 0.99 to 0.42 (Table 3 ; Messaritaki et al., 2019 ; Dimitriadis 

et al., 2021). Here, I focused on the first five graph construction schemes with the 

highest topological similarity (Table 2).  

SBN built with 9m-OMST, NS-thr, NS-t/FA-w and NS-t/MD-w graph construction 

schemes share the same density but a different topology while SBN constructed with 

NS-thr, NS-t/FA-w and NS-t/MD-w graph construction schemes share the same 

topology with different edge weights. 

Fig.1A illustrates the five SBNs from the first scan of the first subject. 
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Table 2. Summary of the graph-construction schemes 

(number of streamlines (NS), fractional anisotropy  (FA), and mean diffusivity (MD), 

orthogonal minimal spanning trees (OMST)) 

  

Abbreviation Initial Edge Weights Topology Final Edge 

Weights 

Symbol 

NS – OMST NS OMST Unchanged A 

9-m OMST lin. comb. of all 9 

metrics in Table 1 

OMST Unchanged B 

NS-thr NS keep highest-NS 

edges 

Unchanged C 

NS-t/FA-w NS keep highest-NS 

edges 

re-weight with 

FA 

D 

NS-t/MD-w NS keep highest-NS 

edges 

re-weight with 

MD 

E 
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2.4 Laplacian Spectrum 

2.4.1 The normalized Laplacian matrix 

In this paper, I considered the transformation of individual integrated SBNs from 

the five graph construction schemes to the normalized Laplacian matrix L. The 

Laplacian matrix L has the advantage that its eigenvalues range between 0 and 2, 

enabling the direct comparison of SBN across modalities, subjects, cohorts, and of 

different sizes (Chung, 1996). 

The normalized Laplacian matrix is defined as: 

����, �� �  

�
� 1, �� � � � ��� �������� � 0

� 1���� , �� � ��� � ��� ���������
0,                                   ��������� ��

     �1� 
 

with u and v representing two nodes of the network or brain regions, L(u,v) the 

edge from node u to v and degu the degree of node u which is the total number of its 

connections. Fig.1 illustrates the processing steps needed from the original SBN up 

to the estimation of the normalized Laplacian spectrum given by the normalized 

Laplacian eigenvalues. Rows correspond to the processing steps of extracting the 

normalized Laplacian eigenvalues from SBN while columns refer to the five graph 

construction schemes.  

The normalized Laplacian matrix can be also estimated and expressed from its 

relation with the adjacency matrix A as nL �  I �  $��/� % L % $��/� (Fig.1D) where 

the D is the degree matrix, where its diagonal  elements encapsulate the degree of 

every node (Fig.1B), L = D - A is the unnormalized Laplacian matrix (Fig.1C),  and A 

is the adjacency matrix. The eigenanalysis of the nL extracts a collection of 

eigenvalues λ for which a non-zero vector eigenvector v exists that satisfies the 

equation Lv = λv. 
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Eigenvalues share important properties. The multiplicity of the eigenvalues equal 

to 0 (λ = 0) is equal to the number of connected modules (Chung, 1996). The largest 

eigenvalue is equal to or smaller than 2, sorting the range of eigenvalues as 0 ≤ λ1 

≤… ≤λn ≤ 2 ( (Chung, 1996) ;  Fig.1E). 

 

Fig.1 Illustration of preprocessing steps for the estimation of normalized 
Laplacian eigenvalues. The data are derived from the first scan of the first 
subject from the dMRI cohort. A-E in columns refer to the five graph 
construction schemes tabulated in Table 2. Numbers refer to the processing 
steps: 

1. Original metric-based SBN for the five graph construction schemes as they are 
reported in Table 2. 
2. The D degree matrices of the five SBN shown in A 
3.The unnormalized Laplacian matrix L of the five SBN  
4. The normalized Laplacian matrices nL of the five SBN  
5.The normalized Laplacian eigenvalues (nL) linked to the five SBN 
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2.4.2 Repeatability of Laplacian Eigenvalues 

I quantified the repeatability of Laplacian eigenvalues using Pearson’s correlation 

coefficient (Pcc) accompanied by the relevant p-value. The Pcc was estimated 

between Laplacian eigenvalues derived from the two scan-sessions from the same 

graph construction scheme (within graph construction scheme) and also between 

graph construction schemes (5x4/2 = 20 pairs) from the same or different scan 

session (between graph construction schemes).  

I then estimated the group-mean Pcc across the cohort related to within-session 

and graph construction scheme and the group-mean Pcc linked to between-session 

and graph construction scheme. The Pcc values for the between-session approach 

were first averaged across the two scans for the 20 pairs and then across the 20 

pairs of comparisons. Adopting a Wilcoxon Signed Rank-Sum test, I estimated the 

significance level between the two sets of subject-specific Pcc values on the subject 

level that will support at which degree the Laplacian eigenvalues are highly 

dependent on the graph construction scheme. 

 

2.4.3 Repeatability of Important nL-based properties 

Network synchronizability of a variety of complex networks can be characterized 

by the ratio of the second smallest eigenvalue λ2 to the largest eigenvalue of the 

Laplacian matrix λn (Barahona and Pecora, 2002). So Synchronizability = λ2 / λn . 

 The following formula (2)  

�&��� �  ' (���   � 2*/�,         �2��

���
 

 is called the Laplacian energy of the network G, where nL are the normalized 

Laplacian eigenvalues,  m is the number of edges and n is the number of vertices 

(Hakimi-Nezhaad and Ashrafi, 2014). 

The repeatability of the Synchronizability and Laplacian energy per graph 

construction scheme and between the two scans was quantified with the absolute 

difference between the two scans. The original values were compared with the 
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surrogate ones per graph construction scheme and scans. A p-value is assigned to 

the original values by a direct comparison with ten thousand surrogate values. 

I applied a Wilcoxon Signed Rank-Sum test for both Synchronizability and 

Laplacian Energy properties between the two scans. 

 

2.4.4 Laplacian Spectrum Properties  

Many important dynamical network models can be formulated as a linear 

dynamical system which can be expressed by the following diffusion equation  ���� �  ���� �3�  
which is a continuous time version. 

As I mentioned before, the Laplacian matrix of a network is expressed as L = D – A. 

The Laplacian matrix is symmetric in which diagonal components are all non-

negative (representing node degrees) while the other components are all non-

positive. 

 

A Laplacian matrix of an undirected network has the following interesting 

properties: 

1. At least one of its eigenvalues is zero. 

2. All the other eigenvalues are either zero or positive. 

3. The number of its zero eigenvalues corresponds to the number of connected 

components in the network. 

4. If the network is connected, the dominant eigenvector is a homogeneity 

vector h=(11...1)T. 

5. The smallest non-zero eigenvalue is called the spectral gap of the network, 

which determines how quickly the diffusion takes place on the network. 

 

Smaller Eigenvalues 

Laplacian eigenvalues and the relevant eigenvectors play an important role on the 

studying of multiple aspects of complex network structures like resistance distance, 

spanning trees and community structures (Newman,2006). According to Newman’s 

study, only the eigenvectors related to positive eigenvalues could contribute to the 

partitioning of the network and to the modularity. This practically means that the 

optimal graph partitioning could be achieved by selecting the number of 
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communities/groups in a network to be equal with the number of positive 

eigenvalues plus 1.  In the normalized Laplacian graph, the important role of guiding 

the spectral clustering of the network is supported by the smallest normalized 

Laplacian eigenvalues. The k eigenvectors that correspond to the K smallest 

eigenvalues of the normalized Laplacian graph create a n x K matrix (where the n 

refers to vertices of the graph and K to the eigenvectors). Clustering the row 

eigenvectors ./ using K-Means will give us the number of communities of the 

network.  

Given a graph Laplacian matrix L (here normalized L), spectral clustering 

proceeds to compute the eigenvalue decomposition of � � .0.	 .Then we choose 

the K smallest eigenvalues and extract the matrix ./  which contains the K columns of 

U corresponding to theses values. ./   is of dimension n x K. Finally, I applied K-

means algorithm to cluster the n row vectors of ./  . Node i is assigned to the cluster 

of the ith row vector of ./. 

This is the famous spectral clustering with the following algorithmic steps: 

A. Perform an eigenvalue decomposition of a graph Laplacian matrix, here the 

normalized Laplacian matrix nL  :n� � .0.	  

B. Extract ./  by taking the K columns of U corresponding to the K smallest 

eigenvalues 

C. Cluster the row vectors of ./ using K-means algorithm 

 

 Performing a K-Means clustering on the n vertices in the K-dimensional 

Euclidean space, one can reveal the communities of the graph. Based on the 

aforementioned properties, the smallest eigenvalues of the Laplacian spectrum 

reflect the modular organization of a network (Donetti, 2005; Fortunato, 2010; Shen 

and Cheng, 2010; Shi and Malik, 2000).  

The spectral gap is the smallest non-zero eigenvalue of L, which corresponds to 

the largest non-zero eigenvalue of −αL and thus to the mode of the network state 

that shows the slowest exponential decay over time. The spectral gap’s value 

determines how quickly the diffusion takes place on the network. If the spectral gap 

is close to zero, this decay takes a very long time, resulting in slow diffusion. If the 

spectral gap is far above zero, the decay occurs quickly, and so does the diffusion.  

The larger the value of the first nonzero eigenvalue of L the faster the convergence 
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of the diffusive process. In that sense, the spectral gap of the Laplacian matrix 

captures some topological aspects of the network, i.e., how well the nodes are 

connected to each other from a dynamical viewpoint. The spectral gap of a 

connected graph (or, the second smallest eigenvalue of a Laplacian matrix in 

general) is called the algebraic connectivity of a network. 

Every eigenvector vi informs us of a unique bisection of the nodes of a network 

assigning to each one a positive or negative value and the associated eigenvalues λi 

express the inverse diffusion time of this dichotomy to the stationary state. Smaller 

eigenvalues are indicative of longer diffusion times, revealing a larger proportion of 

inter-module connections and a smaller number of inter-module connections.  

The λ2 eigenvalue provides the possible best division of nodes into two modules 

and it is called Fiedler value while the corresponding eigenvector is called Fiedler 

vector (Chung, 1996). One option that is proposed in the literature is the combination 

of divisions derived from all eigenvectors up to vi to assign every node to i 

communities. A possible optimal number of communities can be defined by the 

largest eigen-difference (eigen-gap) between consecutive Laplacian eigenvalues (λi + 

1 − λi) (Cheng and Shen, 2010; Shi and Malik, 2000). In summary, small 

eigenvalues, their number, and the eigen-differences reflect important attributes of 

the modular structure of a network (Fig.2A).  

In the present study, I compared the methods of eigen-gap Laplacian differences 

with the K-means clustering applied over the K eigenvectors that correspond to the K 

smallest eigenvalues of the normalized Laplacian graph. The second approach 

creates a n x K matrix (where the n refers to vertices of the graph and K to the 

eigenvectors). The total sum of the normalized Laplacian eigenvalues in my study 

equals to 90. I defined the smallest eigenvalues, the first ones where their sum 

divided by the total sum overcomes the 10%. I ran the K-Means clustering 50 times 

on the n vertices in the K-dimensional Euclidean space integrating the findings to 

avoid the influence of the random initializations of the K-Means algorithm. I adopted 

mutual information (MI) as in our previous study (Dimitriadis et al., 2021) to measure 

the similarity of graph partitions per subject and graph construction scheme between 

the two scans. The outcome of graph partitions affiliations with both the methods is 

compared with the outcome of the best partition observed in our exploratory analysis 

with a high number of graph partition algorithms applied in the same dataset 

(Dimitriadis et al., 2021). 
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I estimated group-mean λ2 (Fiedler value) and group-mean number of 

communities defined by the eigen-difference of Laplacian eigenvalues (Eigengap 

method) and by the K-Means clustering applied over the first eigenvectors. These 

group-means were averaged first across scans and then across subjects. Group-

mean λ2 and the number of communities defined by the two methods were compared 

with the surrogate number of communities. To quantify the similarity of graph 

communities between the two scans (repeatability) per graph construction scheme 

and in both methods, I employed MI as a proper measure. The original MI values 

were also compared with surrogate MI values for both methods adopting a Wilcoxon 

Rank-Sum test. 

 

Medium Eigenvalues 

Network motifs are statistically significant recurrent subgraphs. All networks like 

brain networks, biological, social and technological networks can be represented as 

graphs, which include a large variety of subgraphs. Practically, network motifs are 

repeatable sub-graphs that are defined by a specific pattern of interactions between 

vertices. They may also reflect a framework supporting particular functions to 

achieved in an efficient way (Sporns, and Kötter, 2004). For that reason, the motifs 

are of high importance to reveal the structural principles of complex networks 

reflecting their functional properties (Fig.2B). Motifs are characterized by their size 

that equals the number of vertices and by the repertoire of possible alternative ways 

that nodes are connected. By defining the number of the studying vertices M, I 

enumerated exhaustively the frequency of every single motif of size M across its 

structural connectivity variance. The outcome of this procedure gives the motif 

frequency spectra for structural motifs of size M. Usually, the size M is restricted 

within the range of [3 - 5] due to the computational power needed to enumerate 

exhaustively the motif frequency spectra of a network with a large number of vertices 

e.g. a few hundreds. Fig.3.A illustrates the repertoire of 2,3,4 motifs for an undirected 

graph. 

 It is well studied that repeated duplications and additions of nodes and motifs 

in the construction of a network leave traces in the network’s Laplacian spectrum 

(Banerjee and Jost, 2009, 2008). In a network, for example, two nodes with a similar 

connectivity pattern will  increase the eigenvalue λ=1 of the spectrum (Banerjee and 

Jost, 2008). Duplication of edge motifs, for example, duplication of two connected 
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nodes n1 and n2 has been shown to produce symmetrical eigenvalues around 1 with 

Laplacian eigenvalues  1
 � 1 2 � �

�������
�   , with dn being the degree of node n. To 

better understand the relationship between motifs and eigenvalues, I give the 

following examples. An inclusion of a new triangle motif to a network results in the 

addition of an eigenvalue λ = 1.5 to the spectrum (Banerjee and Jost, 2008a). The 

joining or duplication of a motif in a network produces specific eigenvalues in the 

spectrum and repetition of these processes result in characteristic aggregated 

eigenvalues observed as peaks of the  Laplacian spectrum. For that reason, the 

eigenvalues with high multiplicities e.g. high peak at λ = 1 or eigenvalues at equal 

distances around 1 are indicative of a local organization as a consequence of the 

presence of recursive motifs in the network (Fig.2B).  

In the present study, I exhaustively quantified the 3,4-motifs across subjects, 

scans, and in the five graph construction schemes. The repertoire and the topology 

of structural 3,4-motifs is demonstrated in Fig.3A (Sporns, O., and Kötter,2004). A 

motif is a subnetwork consisting of N nodes and at least (N�−�1) edges linking the 

nodes in a path. Network motifs are simple building blocks that characterized the 

complexity of information transfer within a network across many fields of science and 

their distributions deviates from those of random networks (Miro et al., 2002). I 

quantified the total number of structural 3,4-motifs in the network and also the motif 

frequency of occurrence around an individual node which is known as the motif 

fingerprint of that node (Figs7,8).  The estimation of the motifs has been realized with 

proper functions of the brain connectivity toolbox (Rubinov and Sporns,2010). 

Patterns of local connectivity are quantified by network motifs while simple 

measures of segregation are defined based on the total number of triangles in the 

whole network (global level). A high number of triangles implies strong segregation.  

In the local level, the fraction of triangles around a node is known as the clustering 

coefficient and is equivalent to the fraction of the node's neighbors that are also 

neighbors of each other (Watts and Strogatz, 1998). I estimated the nodal weighted 

clustering coefficient and I correlated (using Pearson’s correlation coefficient) it to 

each of the two global 3-motif frequencies represented in Fig.7 (Rubinon and 

Sporns,2010). I followed the same approach per graph construction scheme. This 

approach will reveal the relationship between a segregation network metric 

(weighted clustering coefficient) and patterns of local connectivity (motifs).  
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A recent study proposed a measure to capture the global symmetry of a network 

and showed in both empirical and network models that the main peak in the 

Laplacian spectrum (λ = 1) is related to network elements that exhibit similar wiring 

patterns. The global symmetry of a network is quantified by the Matching Index 

(MIN) (Hilgetag et al.,2002) that expressed the similarity between nodes i and j  and 

is inferred from the overlap between their connectivity pattern. De Lange et al., 

(2016) showed that global symmetry shaped neural spectra and the overlap in the 

wiring pattern of brain regions measured with MIN  can explain the large central peak 

observed in spectra of neural networks (λ = 1). To reveal a link between the peak(s) 

of the Laplacian spectrum and the total number of 3,4-motifs, I adopted a multi-linear 

regression analysis per graph construction scheme between the relative frequency 

(RF) linked to peak at λ = 1 and the total amount of every possible structural 3 or 4 

motif plus the Matching Index (MIN) with (Fig.2). 

In summary, I estimated the group-mean relative frequency (RF) linked to peak 

around one (λ = 1) across subjects for every graph construction scheme, at first 

averaged between scans. The original RF values were compared with the surrogate 

ones adopting a Wilcoxon Rank-Sum test. As I aforementioned, I applied a multi-

linear regression analysis between the RF and the total amount of each of the 3,4-

motif and the MIN across the SBN independently per scan. I estimated Pearson’s 

correlation coefficient between the nodal weighted clustering coefficient and the 

nodal 3-motifs distribution across graph construction schemes. Complementary, I 

estimated Pearson’s correlation coefficient (Pcc) in a pairwise fashion between nodal 

motif frequency of occurrence across the five graph construction schemes. I followed 

this approach independently per subject, scan and for each of the two 3-motifs and 

six 4-motifs. These Pcc correlations were averaged across scans first and afterwards 

across subjects. To compare my findings with those present in de Lange et al., 

(2016), I estimated the Pearson’s correlation coefficient between the MIN and the RF 

per graph construction scheme and scan and I presented the mean across graph 

construction schemes averaged across scans. 

 

Largest Eigenvalues  

 The largest eigenvalue of the Laplacian spectrum informs us of the level of 

‘bipartiteness’ of the most bipartite subpart of the network, which is closely related to 

the number of odd cyclic motifs in the network (Bauer and Jost, 2009). A subnetwork 
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is fully bipartite when its nodes can be divided into two groups where nodes of the 

same group are not connected.   

A graph G = (V;E) is bipartite if the vertex set V can be partitioned into two sets A 

and B (the bipartition) such that no edge in E has both endpoints in the same set of 

the bipartition. A matching 3 4 & is a collection of edges such that every vertex of V 

is incident to at most one edge of M. If a vertex v has no edge of M incident to it then 

v is said to be exposed (or unmatched). A matching is perfect if no vertex is 

exposed; in other words, a matching is perfect if its cardinality is equal to |6| � |7|. 
Fig.3C illustrates an example of perfect matchings and exposed edges. 

The ‘bipartiteness’ is directly linked to the total number of odd cycle motifs in a 

network (Fig.2C & Fig.3D). Here, I also estimated the bipartitenes of the SBN with 

the following bipartivity index bs (Estrada, 2022) 

8
 � ������exp ��<7=��������exp �<7=��    �4� 

 

The bipartivity index bs equals to 1 for a complete bipartite network while it 

changes monotonically with the increase of the number of edges “frustrating” the 

bipartition. The edges that if removed the network becomes bipartite are called 

frustrated. Such frustrated edges are shown in Fig.3B. One can see how the 

bipartivity index bs changes monotonically with the increase in the number of 

‘frustrated’ edges in a complete bipartite graph (Fig. 3B). 

A motif H can be decomposed into a set of disjoint small cycles and stars and this 

decomposition is valid if all vertices of a motif H belong to either a star or an odd 

cycle in the set (Fig.3D). A star is a subnetwork type where only a central node is 

connected with the rest of the nodes while an odd cycle is a subnetwork with an odd 

number of vertices that are connected between each other in a circular way (Fig.3D). 

The degree of every node in an odd cycle is 2. It is important to underline here that 

bipartite graphs (8
 � 1) do not contain odd length cycles, or graphs with odd length 

cycles are not bipartite (8
 ? 1).  If a graph is bipartite it doesn’t contain any odd length 

cycles, but, if a graph is non-bipartite it surely contains at least one odd length cycle. 

I estimated the group-mean largest eigenvalue λn per graph construction 

scheme and compared it with the surrogate ones. The group-mean largest 

eigenvalue λn was at first averaged per scan across the graph construction schemes. 

Here, I estimated odd-cycles of length = 3,5 and 7 in an exhaustive way. In a similar 
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way, I estimated the group-mean number of odd-cycles of length = 3,5,7 and the 

group-mean bs per graph construction scheme and compared it with the surrogate 

ones. Both measurements were first averaged between scans. 

In summary, I estimated the group-averaged of bipartivity index bs , of largest 

eigenvalue λn and of exhaustive estimation of odd-cycles of various lengths across 

subjects for every graph construction scheme, at first averaged between scans. The 

original values of bs , λn  and odd-cycles were compared with the surrogate ones by 

adopting a Wilcoxon Rank-Sum test. Complementary, I applied a multi-linear 

regression analysis between the largest eigenvalue  λn and the bs plus the total 

number of odd-cycles of length 3, 5 and 7 across the SBN independently per scan.  

 

Fig.2 Topological properties of a network reflected in the Laplacian Spectrum. 
Relative Frequency (RF) is linked to peak at λ=1. 
 
(A) The first smaller Laplacian eigenvalues are indicative of stronger community 

structures 

(B)  Recursive motifs in the complex network result in Laplacian eigenvalues of 

high multiplicities, revealing characteristic peaks in the Laplacian spectrum (λ=1) 

(C) The largest eigenvalue reflects the level of ’bipartiteness’ of the most bipartite 

subgraph of the network which is alternatively linked to the total number of odd 

cyclic motifs of the network. 
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Fig.3. Motifs, bipartivitiy, odd cycles, and stars (Inspired and redesigned by 
Fig.8 in Estrada, 2021,  Fig.3A in Biswas et al., 2021 and Fig.1 in lecture notes 
from Goemans, 2017). 

(A)  The repertoire of 2-3-4 structural motifs in an undirected graph 

(B)  Illustration of the monotonically change in the bipartivity index bs with the 

increase in the number of ‘frustrated’ edges in a complete bipartite graph 

(C) The edges (1 - 6), (2 - 7) and (3 - 8) form a matching. Vertices 4, 5, 9 and 10 

are exposed. 

(D) An example of an optimal decomposition of a motif H into odd cycles and 

stars. O3 refers to an odd-cycle of length = 3 that connects three nodes while O5 

denotes an odd-cycle of length = 5 that connects five nodes. 
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2.4.5 Repeatability of Laplacian Eigenvectors 

Ι estimated the repeatability of Laplacian eigenvectors (connectome harmonics) 

per graph construction scheme between the two scans by adopting the signum 

function (DLS).  

$�� � ' @∑ ������&����������
��� �
�� � �&����������
��� �
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where no of ROIs denotes the number of brain areas while the first sum runs across 

Laplacian eigenvectors and the second sum across its vector size that equals the no 

of ROIs.  The original group-mean DLS values for every graph construction scheme 

was compared with the surrogate ones. 

 

2.4.6 Integrative, segregative, and degenerate harmonics of SBN 

 A recent study on SBN introduced a new framework that placed integration 

and segregation on the end of a continuum of structural connectivity graph Laplacian 

harmonics via the presentation of a gap-spectrum (Sipes et al., 2024). Gap-spectrum 

is estimated over sorted eigenvalues and naturally partitions the harmonics into three 

distinct regimes, the integrative harmonics that have low eigenvalues with high 

spectral gaps, the segregative harmonics that have high eigenvalues and high 

spectral gaps, and the “degenerate” harmonics that have intermediate eigenvalues 

but with low spectral gaps. 

Gap-spectrum was defined as the derivative of the ascending eigenvalues 

accompanied with their index and presents a measure of harmonic degeneracy.  The 

authors first fit an order 10 spline with 3 knots to the structural connectivity Laplacian 

eigenvalues to smooth the gap-spectrum due to the amplification of noise caused by 

derivative. Then, they computed the first analytical spline derivative as the gap-

spectrum. They hypothesized that the first-order gap-spectrum (measuring harmonic 

degeneracy) would be related to various properties of harmonics. The 

implementation of the algorithm is presented on an open repository 

(https://github.com/Raj-Lab-UCSF/IntDegSeg/tree/main).  The algorithm estimates 

the two main gaps that separate the Laplacian spectrum into the three regimes. 
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 In my study, I estimated the gap-spectrum and the relevant integrative, 

segregative and degenerate harmonics on individual SBN and not on the consensus 

SBN (average SBN). The reason of this choice is to investigate the repeatability of 

these three regimes across subjects and graph construction scheme. Additionally, 

the estimation of a consensus SBN (averaging SBN across subjects) is impossible 

due to the individual network topology which involves weighted edges on subject-

specific pairs of ROIs not consistent across the cohort. Averaging can be solely 

realized on fully-weighted brain networks that don’t really exist in any neuroimaging 

modality which is an old-fashioned methodology that made many assumptions while 

destroying any individual network topology. 

 The repeatability of individual three regional harmonics across scans was 

quantified with Embedded Laplacian Discrepancy (ELD), a newly introduced metric 

for Multiscale Graph Comparison of different size (Tam and Dunson, 2023). For that 

purpose, I introduced for the very first time on brain networks the use of a new metric 

tailored to Laplacian eigenvectors and eigenvalues for comparing graphs of different 

size, a property that is important in my study. There is no restriction on the 

consistency of graph-spectrum across scans and this is the main purpose of 

adopting such a metric that can compare the three defined harmonics of different 

size across scans.  

The authors proposed the Embedded Laplacian Discrepancy (ELD) as a 

simple and fast approach to compare graphs (of potentially different sizes) based on 

the similarity of the graphs’ community structures. The ELD represents graphs as 

point clouds in a common, low-dimensional space, on which a natural Wasserstein-

based distance can be efficiently computed in a multiscale way. A main challenge in 

comparing graphs through any eigenvector-based approaches is the potential 

ambiguity that could arise due to sign-flips and basis symmetries. To overcome this 

potential limitation, the ELD leverages a simple symmetrization trick to bypass any 

sign ambiguities. The ELD becomes a nice metric that encapsulates many 

interesting properties like invariance to graph isomorphism and invariance to signs 

configurations.  

The theory behind ELD definition is based on the seminal paper (Belkin and 

Niyogi, 2003) where they showed that Laplacian decomposition provides a natural 

Laplacian - spectral embedding of a graph’s vertices in Euclidean space. This 

approach starts with the selection of the first K  Eigenvectors that corresponds to the 
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first K eigenvalues of nL (where F ∈ N+ is a hyperparameter), and continues with the 

employment of these eigenvectors as Euclidean coordinates for embedding the 

vertices in a common Euclidean space for comparisons. In other words, the �th entry 

of the Kth eigenvector vK(�) provides the Kth coordinate of vertex �. 
The Algorithmic steps of ELD estimation are the following: 

1. Compute the top K Laplacian eigenvectors of the two graphs under 

comparison.  

2. Use the entries of the K Laplacian eigenvectors as well as their flipped counterpart 

(for symmetrization) to represent the nodes of the two graphs as two point clouds in 

a common K-dimensional Euclidean space. 

 3. Compute the 1-dimensional Wasserstein distance of the point clouds along each 

of the K canonical Euclidean axes and average them. 

Given the �th eigenvector ��
� of a graph � with � nodes, the authors present it 

a one-dimensional empirical measure 

G� 
� � 12� '(HI1�

���
����J  K  HI�1�

���
����J ,�

���

  �6� 

 

where H is the Dirac measure and 1�
� is the �th eigenvalue. The negative (-) of the 

eigenvector is also included to symmetrize the embedding. In section 4 of (Tam and 

Dunson, 2023), one can read how the embeddings are invariant to sign-flips of 

eigenvectors. I employed  G (eq. (4)) and analogously M to define the empirical 

measures associated with the eigenvectors of the two different graphs. 

The ELD is finally defined as. Consider two graphs �1 = (N1, &1,� ) ∈ G and �2 = 

(N2, &2,�2) ∈ G, with sizes �1 = |N1 | and �2 = |N2 | and Laplacians ��� and ��� 

,respectively. Without loss of generality we assume �1 ≤ �2. Given a dimension 

hyperparameter K ≤ �1, define the embedded Laplacian discrepancy as 

O���, ��� �  1P ' Q�IG�
��, G�

��J �7��

���

 

 

Here, K refers to the min(n1,n2) where n1,n2 are the number of eigenvalues within 

every region of the spectrum defined by the gap-spectrum approach (Sipes et al., 

2024). 
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ELD is estimated between brain scans independently for the three regimes 

and graph construction scheme. I compared original ELD values with the surrogate 

ones independently for the three regimes and across graph construction schemes. I 

applied a Wilcoxon Rank-Sum test between the three regimes of harmonics in a 

pairwise fashion (3 pairs) and within every graph construction scheme and also per 

regime of harmonics across the graph construction schemes (5x4/2 = 10 pairs). 

 

2.4.7 Laplacian Spectrum’s Convolution 

We further processes the Laplacian spectrum not as the collection of the 

eigenvalues λj , but their convolution with a smoothing kernel, here a Gaussian, 

described by the following formula 

 

��S� �  ' 1√2UV� ��

exp W� XS � 1�X�

2V� Y        �8� 

The particular smoothing value σ was set to 0.015. Α  discrete smoothed spectrum 

was used in which f had steps of 0.001. Furthermore, the distribution was normalized 

such that the total eigenvalue frequency was one. Relative Frequency (RF) linked to 

peak at λ=1 is estimated over the Laplacian spectrum after convolved with the above 

formula (Fig.2).  

2.5 Brain Fingerprinting 

 As I have already mentioned, the human brain can be modelled as a network 

composed of brain regions (nodes) defined anatomically by a predefined brain atlas 

which are interconnected by two types of links or edges (de Reus and van den 

Heuvel, 2013). The structural connections can represent any attribute of white matter 

tracts assessed by dMRI leading to the structural connectome (Sporns et al., 2005). 

The functional connections represent statistical interdependencies between pairs of 

brain regions’ signals while subjects are either at rest or performing a task leading to 

the functional connectome (Friston, 2011). Structural and functional brain 

connectomics have been proven useful in mapping structural and functional 

properties between brain regions in large populations, but simultaneously in 

exploring the association between individual connectome features (connectomics) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.05.31.543029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.543029
http://creativecommons.org/licenses/by/4.0/


30 

and clinical, behavioural and genetic profiles (Fornito et al., 2019 ; Sareen et al., 

2020). 

 Fingerprinting is taking an ink impression of someone's fingerprints for the 

purpose of identification. Brain fingerprinting was first used as an objective, scientific 

method to detect concealed information stored in the brain by measuring 

electroencephalographic (EEG) brain activity elicited non-invasively by sensors 

placed over the scalp (Farwell, 2012). Scientists present salient details about a crime 

or investigated situation as a way to place the subject to a crime scene via the 

release of a specific brainwave patter called the P300-MERMER. In neuroimaging, 

the determination of individual uniqueness of brain activity or connectivity is 

known as 'brain fingerprinting'. Especially in cases where researchers employed 

brain connectome, it is called ‘brain connectome fingerprinting’ (Amico and 

Goñi, 2018; Finn et al., 2015; Miranda-Dominguez et al., 2014). Brain connectome 

fingerprinting is a new influential research field in brain connectomics that paves the 

way of extracting individual features from structural and functional connectomes. 

These connectome patterns and the extracted brain connectomic measures can be 

leveraged for potential clinical translational research such as the precision medicine 

(Fernandes et al., 2017; Hampel et al., 2019) linked to cognitive decline (Sorrentino, 

Rucco, Lardone, et al., 2021) and to Parkinson’s disease (Romano et al., 2022).  

Brain fingerprinting shows great promise as a predictor of mental health outcomes 

and for that reason, it is explored under various neuroimaging modalities. Recently, 

few studies have started to explore connectome fingerprinting in different functional 

neuroimaging modalities, such as functional Near-Infrared Spectroscopy (fNIRS) 

(Rodrigues et al., 2019), electroencephalography (EEG) (Demuru and 

Fraschini, 2020), and magnetoencephalography (MEG) (Demuru et al., 2017 ; 

Sareen et al., 2021). It is important to underline here that brain fingerprinting 

research demands the access in a test-retest cohort (repeat scans) as a way to use 

the feature dataset derived from the first scan as a baseline database with the 

subject’s identity and the feature dataset extracted from the second scan for 

validation purposes of subject’s identification.  

Another aim of my study was to investigate the repeatability of the Laplacian 

spectrum of SBN across alternative graph construction schemes. Complementary to 

the repeatability of Laplacian eigenvalues, I performed an identification analysis 

(brain fingerprinting) across pairs of scans where the second scan consists of the 
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‘target’ session and the first scan the ‘database’ session (Fig.4). Iteratively, one 

individual’s Laplacian eigenvalue was selected from the target set and compared 

against the N subject-specific Laplacian eigenvalues profile in the database set to 

find the Laplacian profile that was maximally similar. As a proper dissimilarity 

distance, I adopted the X2 statistics (Rubner, 2000). I followed a similar analysis on 

the Laplacian eigenvectors (harmonics) employing X2 statistics. The final outcome of 

this process is an identity matrix with 1s if the identity had been predicted correctly 

and 0s if it did not. Finally, I summed up the total number of corrected identifications 

per graph construction scheme and further divided by the total number of subjects to 

express the accuracy (performance) of the whole brain fingerprinting process. For a 

comparison purpose, I investigated the performance in terms of brain fingerprinting 

of the structural properties of SBN across alternative graph construction schemes 

separately for communities, 3,4-motifs, bipartiteness , and the total number of odd-

cycle motifs and also in an ensemble way. I adopted proper metrics for every 

structural property such as normalized mutual information (MI) for the communities, 

the X2 statistics for the 3,4-motifs, the Euclidean distance (ED) for the bipartiteness 

and the X2 statistics for the total number of odd cycle motifs. For comparison 

purposes of previous studies and the extracted aforementioned  features, I followed 

a brain connectome fingerprinting approach using Portrait Divergence metric as a 

proper graph distance metric applied over individual SBN (Bagrow and Bollt, 2019). 

We employed it in a previous systematic evaluation of fMRI data-processing 

pipelines for consistent functional connectomics (Luppi et al., 2024). 
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Fig.4 Identification analysis procedure 

Identification procedure. Given a query Laplacian eigenvalue profile from the target 

set, I estimated the Chi-square histogram distance between this Laplacian 

eigenvalue profile and all the Laplacian eigenvalue profiles in the database. The 

predicted identity ID* is the one with the highest Chi-square histogram distance value 

(argmax) or the highest ED or the highest MI. In a similar way and with a proper 

statistical measure, I followed this identification approach for multiple structural 

properties. 

 

2.6 Statistical Analysis  

 Below, I summarized the statistical analysis followed in my study. 

 

Robustness of measurements with random rewired networks (surrogates) 

To investigate the effect of adding small topological ‘noise’ to the structural brain 

networks to the Laplacian spectrum, I randomly rewired 5% of the edges while 

maintaining the degree and the strength of every node (Maslov and Sneppen, 2002). 

Ten thousand surrogate null network models were generated per subject, scan, and 

graph construction scheme (randmio_und_connected with iter = 10, Rubinov and 

Sporns,2010). All the properties estimated over original SBN and the relevant graph 
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Laplacian spectrum were compared those obtained from the surrogate SBN and the 

related Laplacian spectrum. 

Repeatability of Laplacian Eigenvalues 

 I employed Pcc between individual Laplacian eigenvalues between scans per 

graph construction scheme (within graph construction schemes) and Pcc between 

individual Laplacian eigenvalues across graph construction schemes in a pair-wise 

fashion (between graph construction schemes). Also, I applied a Wilcoxon Signed 

Rank-Sum test between the two sets of subject-specific Pcc values on the subject 

level that will support at which degree the Laplacian eigenvalues are highly 

dependent on the graph construction scheme. 

Repeatability of Important nL-based properties 

The repeatability of the Synchronizability and Laplacian energy per graph 

construction scheme and between the two scans was quantified with the absolute 

difference between the two scans. The original values were compared with the 

surrogate ones per graph construction scheme and scans. A p-value is assigned to 

the original values by a direct comparison with ten thousand surrogate values. 

I applied a Wilcoxon Signed Rank-Sum test for both Synchronizability and 

Laplacian Energy properties between the two scans. 

Laplacian Spectrum Properties 

Smaller Eigenvalues 

I estimated group-mean λ2 (Fiedler value) and group-mean number of 

communities defined by the eigen-difference of Laplacian eigenvalues (Eigengap 

method) and by the k-Means clustering applied over the first eigenvectors. These 

group-means were averaged first across scans and then across subjects. Group-

mean λ2 and the number of communities defined by the two methods were compared 

with the surrogate number of communities. To quantify the similarity of graph 

communities between the two scans (repeatability) per graph construction scheme 

and in both methods, I employed MI as a proper measure. The original MI values 

were also compared with surrogate MI values for both methods by adopting a 

Wilcoxon Rank-Sum test. 

Medium Eigenvalues 

I estimated the group-mean relative frequency (RF) linked to peak around one (λ = 

1) across subjects for every graph construction scheme, at first averaged between 

scans. The original RF values were compared with the surrogate ones by adopting a 
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Wilcoxon Rank-Sum test. As I aforementioned, I applied a multi-linear regression 

analysis between the RF and the total amount of each of the 3,4-motif and the 

Matching Index (MIN) across the SBN independently per scan. I estimated Pearson’s 

correlation coefficient between the nodal weighted clustering coefficient and the 

nodal 3-motifs distribution across graph construction schemes. Complementary, I 

estimated Pearson’s correlation coefficient in a pairwise fashion between nodal motif 

frequency of occurrence across the five graph construction schemes. I followed this 

approach independently per subject, scan and for each of the two 3-motifs and six 4-

motifs. These Pcc correlations were averaged across scans first and afterwards 

across subjects. To compare my findings with those present in de Lange et al., 

(2016), I estimated the Pearson’s correlation coefficient between the MIN and the RF 

per graph construction scheme and scan and I presented the mean across graph 

construction scheme averaged across scans. 

Largest Eigenvalues 

In summary, I estimated the group-averaged of bipartivity index bs , of largest 

eigenvalue λn and of odd-cycles of various lengths across subjects for every graph 

construction scheme, at first averaged between scans. The original values of bs , of 

λn  and of the exhaustive quantification of odd-cycles were compared with the 

surrogate ones by adopting a Wilcoxon Rank-Sum test. Complementary, I applied a 

multi-linear regression analysis between the largest eigenvalue  λn and the bs plus 

the total number of odd-cycles of length 3, 5 and 7 across the SBN independently 

per scan.  

Repeatability of Laplacian Eigenvectors 

DLS is estimated between scans and graph construction scheme. The original 

group-mean DLS values for every graph construction scheme was compared with the 

surrogate ones. 

Integrative, segregative, and degenerate harmonics of SBN 

ELD is estimated between brain scans independently for the three regimes 

and graph construction scheme. I compared original ELD values with the surrogate 

ones independently for the three regimes and across graph construction schemes. I 

applied a Wilcoxon Rank-Sum test between the three regimes of harmonics in a 

pairwise fashion (3 pairs) and within every graph construction scheme and also per 

regime of harmonics across the graph construction schemes (5x4/2 = 10 pairs). 

Multiple Comparison Correction 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.05.31.543029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.543029
http://creativecommons.org/licenses/by/4.0/


I applied the false discovery rate (q = 0.01) to correct for multiple comparisons. 

 

 

3. Results  

3.1 High Repeatability of Laplacian Eigenvalues 

 Laplacian eigenvalues were highly repeatable across the five graph 

construction schemes (within graph construction schemes; , 

). The between graph construction 

schemes correlation was  with a 

. The Wilcoxon Signed Rank-Sum test revealed a strong difference in 

Pcc values derived from the within graph construction schemes with those Pcc 

values extracted from the between graph construction schemes (p-value = 0.0021). 

Fig.5 illustrates the Pcc values between all the combinations across the five graph 

construction schemes and scan sessions for subject 1. In the main diagonal, one can 

see the high Pcc values (repeatability level), and the relevant p-value between scans 

derived from the same graph construction scheme. The off-diagonal Pcc values 

refers to the between-session and graph construction schemes. 

 

Fig.5 Pcc values between all the combinations across the graph construction 

schemes and scan sessions for subject 1. The main diagonal reports the 
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repeatability estimations of the Laplacian eigenvalues (within-session and graph 

construction scheme) while the off-diagonal refers to the between-session and graph 

construction schemes. 

 

3.2 Repeatability of the Laplacian Eigenvalue Properties 

Fig.6 summarizes the group-mean and absolute between-scan differences of the 

Synchronizability and the Laplacian Energy for every graph construction scheme. 

Interestingly, the range of Synchronizability shows a higher dependency on the 

graph construction scheme compared to the Laplacian energy. My observations are 

supported by a direct comparison of original values with the surrogate-based 

Laplacian properties. P-values for both Synchronizability and Normalized Laplacian 

Energy were significant compared to surrogates across graph construction schemes 

(p < 0.001). The smallest group-mean between-scan difference for Synchronizability 

is shown for the 9m-OMST (p-value = 0.0041) and NS-OMST (p-value = 0.0021) 

graph construction schemes and the Laplacian energy is shown for 9m-OMST (p-

value = 0.0032) and NS – OMST (p-value = 0.0022) graph construction schemes.  

 

 

Fig.6. Illustration of the group-mean Synchronizability and Laplacian Energy 
for every graph construction scheme.  

A. Group-mean Synchronizability, B. group-mean normalized Laplacian Energy, 
C. Group-mean between-scan absolute difference of Synchronizability, and D 
Group-mean between-scan absolute difference of Laplacian Energy. Letters 
from A to E refer to the five graph construction schemes defined in Table 2. In 
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A and B, blue/red colors refer to the first and second scan sessions, 
correspondingly. 

 
 
 
 
3.3 Laplacian Sub-spectrum findings 

Smaller Eigenvalues 

 Table 3 summarizes the group-mean λ2, the group-mean number of modules 

estimated with the method of eigen-difference of Laplacian eigenvalues (Eigengap 

method) and by the K-Means clustering applied over the first eigenvectors. For the 

first two graph construction schemes (NS-OMST, 9m-OMST) compared to the 

surrogate null models, the average λ2 revealed that the original SBN can be 

subdivided in two subnetworks, while the eigengap and the K-Means approaches for 

the detection of communities showed significant different findings compared to the 

surrogates (p < 0.001).  

Table 4 tabulates the MI of between-scan communities affiliations extracted with 

both methods and in every graph construction scheme. For the first two graph 

construction schemes (NS-OMST, 9m-OMST), the MI values for the K-Means 

algorithm are high, while the statistical comparison of the MI between the K-Means 

and the eigengap algorithms (p < 0.001) untangled the K-Means algorithm as a 

better approach compared to the eigengap. The communities extracted with K-

Means applied over the SBN constructed with the 9m-OMST method showed a high 

similarity with our previous study (3D � 0.91 2 0.04) where numerous graph partition 

algorithms were applied on the same set (Dimitriadis et al., 2021). 

Table 3.  Group-mean λ2 ,group mean Eigengap and the number of 

communities based on eigen-difference and K-Means clustering over the first 

eigenvectors across subjects for every graph construction scheme. I 

underlined with bold, the p-values that showed significant differences 

compared to the surrogate-based p-values (Letters from A to E refer to the five 

graph construction schemes defined in Table 2. 

 A B C D E 
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λ2(mean+/-
std) 
 ]�

����(mean
+/-std) 

0.67±0.04 
 
0.39±0.04 
 
 
(p = 
0.00015) 

0.70±0.04 
 
0.40±0.05 
 
 
(p = 
0.00005) 

0.41±0.28 
 
0.39±0.21 
 
 
(p = 0.071) 

0.23±0.05 
 
0.21±0.04 
 
 
(p = 0.064) 

0.18±0.04 
 
0.16±0.04 
 
 
(p = 0.068) 

Eigengap(
mean+/-
std) 
 
Eigengapsu

rr(mean+/-
std) 
 

2.61±0.24 
 
 
1.48±0.52 
 
(p = 
0.0007) 

3.42±0.56 
 
 
2.32±0.47 
 
(p = 
0.00038) 

2.76±0.65 
 
 
2.23±0.58 
 
(p = 0.072) 

2.31±0.57 
 
 
2.09±0.63 
 
(p = 0.079) 

2.21±0.23 
 
 
1.65±0.32 
 
(p = 0.071) 

K-
Means(mea
n+/-std) 
 
K-
Meanssurr(
mean+/-
std) 
 

7.67±1.35 
 
 
3.45±1.45 
 
(p = 
0.00019) 

8.72±0.62 
 
 
4.23±1.42 
 
(p = 
0.00041) 

4.41±1.34 
 
 
3.82±1.23 
 
(p = 0.634) 

2.81±1.34 
 
 
2.10±1.56 
 
(p = 0.712) 

2.65±0.78 
 
 
1.56±0.48 
 
(p = 0.685) 

 

 

 

Table 4. The between-scan MI of the communities extracted with eigen-

difference and K-Means clustering per graph construction schemes. I 

underlined with bold, the p-values that showed significant differences 

compared to the surrogate-based p-values (Letters from A to E refer to the five 

graph construction schemes defined in Table 2. 

 A B C D E 
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K-
Means(mea
n+/-std) 
 
K-
Meanssurr 
(mean+/-
std) 

0.78±0.06 
 
 
 
0.39±0.06 
 
 
(p = 
0.0021) 

0.88±0.04 
 
 
 
0.45±0.08 
 
 
(p = 
0.0038) 

0.46±0.11 
 
 
 
0.33±0.13 
 
 
(p = 0.592) 

0.24±0.06 
 
 
 
0.20±0.07 
 
 
(p = 0.208) 

0.37±0.11 
 
 
 
0.24±0.10 
 
 
(p = 0.182) 

Eigengap(
mean+/-
std) 
 
Eigengapsu

rr(mean+/-
std) 
 

0.42±0.08 
 
 
0.26±0.11 
 
(p = 
0.0029) 

0.62±0.09 
 
 
0.32±0.12 
 
(p = 
0.0024) 

0.29±0.12 
 
 
0.27±0.15 
 
(p = 0.418) 

0.20±0.13 
 
 
0.18±0.14 
 
(p = 0.672) 

0.30±0.14 
 
 
0.20±0.13 
 
(p = 0.386) 

 

 

 

 

Medium Eigenvalues 

 The Laplacian spectrum of the graph construction schemes showed a single 

clear smooth peak as presented in Fig.2. This peak around 1 suggests a number of 

motif duplications where its height is relevant to this number. The relationship 

between the relative frequency (RF) linked to peak at λ = 1 and the total number of 

unique 3 and 4 motifs and the Matching Index (MIN) is described below. The 

Laplacian spectrum of structural brain networks across subjects, scans, and graph 

construction schemes didn’t show any other clear peaks indicative of recurrent 

addition of motifs. My findings are supported by the surrogate analysis where peaks 

of significant lower amplitude were observed in surrogated Laplacian spectrums. All 

distributions showed a peak around 1 while the group-mean relative frequency (RF) 

related to this peak didn’t show differences across methods (p > 0.05, Bonferroni 

correction) but showed difference between original and surrogate null models (Table 

5). 

 

Table 5. Group-mean relative frequency (RF) linked to peak at λ = 1 across 

subjects for every graph construction scheme. I underlined with bold, the p-
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values that showed significant differences compared to the surrogate-based p-

values (Letters from A to E refer to the five graph construction schemes defined in 

Table 2. 

 A B C D E 

RF(mean+/
-std) 
 ^_���� 
(mean+/-
std) 

2.36±0.05 
 
 
1.29±0.12 
 
 
(p = 
0.32x10-12) 

2.67±0.06 
 
 
1.65±0.08 
 
 
(p = 
0.83x10-11) 

2.59±0.13 
 
 
1.65±0.14 
 
 
(p = 
0.64x10-10) 

2.54±0.12 
 
 
1.63±0.15 
 
 
(p = 
0.89x10-10) 

2.42±0.15 
 
 
1.55±0.14 
 
 
(p = 
0.42x10-12) 

  

 

The multi-linear regression analysis revealed a significant trend between the 

RF and the motifs only for the 9m-OMST graph construction scheme. The following 

equation described the relationship between the RF and the two 3-motifs, the first 

four 4-motifs and the Matching Index (MIN) (see Fig.3A): 

B` � 5.75 � 0.04S=�
 �!�"�� K 0.14S=�

 �!�"�� K 0.0017S=�
#�!�"�� K 0.0028S=�

#�!�"��

� 0.004S= 
#�!�"�� K 0.021S=#

#�!�"�� � 9.85S3D,  ��� ��� ����� ���� B�

� 0.431, a � 0.038  �6� 
 

B` � 5.34 � 0.04S=�
 �!�"�� K 0.12S=�

 �!�"�� K 0.0021S=�
#�!�"�� K 0.0024S=�

#�!�"��

� 0.004S= 
#�!�"�� K 0.022S=#

#�!�"�� � 9.67S3D, ��� ��� ������ ���� B�

� 0.408, a � 0.031  �7� 
Mean and standard deviations of motifs and MI for each scan (first / second scan). 

First scan : 

=�
 �!�"�� � 72.43 2 17.31,         

=�
 �!�"�� � 15.43 2 4.72 ,  

=�
#�!�"�� � 492.70 2 175.23, 

=�
#�!�"�� � 129.78 2 48.36, 

= 
#�!�"�� � 231.08 2 93.58, 
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=#
#�!�"�� � 10.49 2 4.51, 

3D � 0.24 2 0.0086 

Second scan: 

=�
 �!�"�� � 70.81 2 15.33,         

=�
 �!�"�� � 15.45 2 4.26 ,  

=�
#�!�"�� � 470.36 2 148.35, 

=�
#�!�"�� � 123.76 2 42.13, 

= 
#�!�"�� � 227.01 2 82.63, 

=#
#�!�"�� � 9.69 2 3.60, 

3D � 0.24 2 0.0078 

 

As per motifs, I encountered the total amount of either  3 or 4-motifs detected 

across the individual structural connectome per scan. Typically, this is the sum of 

distribution showed in Fig.7,8 in columns across graph construction schemes. Figs 

7-8 show the averaged across subjects and scans motif fingerprint of every node 

(ROI) across the five graph construction schemes for each of alternative 3,4-motifs. 

 The correlation of the MIN with the RF was 0.54 2 0.12 averaged across the 

graph construction scheme. This finding underlines how network symmetry 

quantified with MIN shapes the central peak of the graph Laplacian spectrum. 

 Fig.9 illustrates the group-averaged Pearson’s correlation coefficient between 

the nodal weighted clustering coefficient and the nodal 3-motifs distribution (Fig.7) 

across the five graph construction schemes. I first estimated the mean of correlations 

between scans per subject across the graph construction schemes. A positive 

correlation between the second 3-motif and weighted clustering coefficient was 

consistently observed across graph construction schemes while a mixed sign of 

correlation was detected for the first 3-motif (Fig.9). 

Fig.10 illustrates the group-averaged Pearson’s correlation coefficient 

between the motif frequency of occurrences across the graph constructions schemes 

independently for each of the two 3-motifs (Fig.7). Similarly, Fig.11 illustrates the 

group-averaged Pearson’s correlation coefficient between the motif frequency of 

occurrences across the graph constructions schemes independently for each of the 

six 4-motifs (Fig.7). I first estimated the mean of correlations between scans per 
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subject across graph construction schemes. In both 3,4-motifs, a strong positive 

correlation was consistently observed between the 9-m-OMST, NS-thr and  NS-

t/MD-w. This means that the individual SBN shares a large number of common local 

topologies that is reflected to the global network level. 

 

Fig.7. Group and scan averaged motif fingerprint of every ROI across the five graph 

construction schemes (A-E) and the two 3,motifs. 

 

Fig.8. Group and scan averaged motif fingerprint of every ROI across the five graph 

construction schemes (A-E) and the two 4,motifs. 
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Fig.9. Group-averaged Pearson’s correlation coefficient between the nodal weighted 

clustering coefficient and the two nodal 3-motifs distribution as shown in Fig.7 Mean 

values and standard deviation refer to the group level (Pcc – Pearson’s Correlation 

Coefficient).  

 

 

 

Fig.10. Group-averaged Pearson’s correlation coefficients of the motif frequency of 

occurrence between pairs of graph construction schemes for each of the two 3-

motifs. 

A and B refer to the two 3-motifs as demonstrated in Fig.7. 
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Fig.11. Group-averaged Pearson’s correlation coefficients of the motif frequency of 

occurrence between pairs of graph construction schemes for each of the six 4-

motifs. 

A – F refer to the six 4-motifs as demonstrated in Fig.8. 

 

 

 

 

Largest eigenvalues 

Table 6 summarizes the group-mean largest eigenvalue λn across graph 

construction schemes which differs significantly from the largest eigenvalue relevant 

to the random networks. The largest eigenvalue of the Laplacian spectrum informs 

us of the level of ‘bipartiteness’ of the most bipartite subpart of the network, which is 

closely related to the number of odd cyclic motifs in the network. Visual inspection of 

the associated eigenvector linked to the largest eigenvalue across the cohort, scans, 

and in the first two graph construction schemes (NS-OMST, 9m-OMST) with respect 

to communities as detected in (Dimitriadis et al., 2021; see Fig.5), is highly localized 

in modules 8 and 9. 

Table 7-9 shows the group-mean odd-cycles (odd-cycles of length 3,5 and 7) 

fingerprint related to the total number of odd-cycles across the graph construction 
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schemes. The odd-cycle fingerprint was significantly different for all the graph 

construction schemes compared to the random networks for the three lengths. 

Table 10 tabulates the group-mean bipartivity index bs across the graph 

construction schemes. The bipartivity index bs was significantly different only for the 

first two graph construction schemes (NS-OMST, 9m-OMST)  compared  to the 

random networks. Interestingly, the first graph construction scheme (NS-OMST) 

produced the highest bipartivity compared to the rest of graph construction schemes. 

Multi-linear regression analysis between the λn and the bs plus the three 

exhaustive estimation of odd-cycles of length = 3,5,7 across the graph construction 

schemes revealed interesting findings only for the first two graph construction 

schemes (Table 11). The multi-linear regression model for the 9m-OMST showed 

the highest R2 and the lowest p-value compared to the NS – OMST uncovering a 

relationship between RF and structural network properties expressed with bs and 

odd-cycles. Findings were consistent in both scans. 

 

 

 

 

 

 

 

 

Table 6. Group-mean large eigenvalue λn. (Letters from A to E refer to the five 

graph construction schemes defined in Table 2). I underlined with bold, the p-

values that showed significant differences compared to the surrogate-based p-

values (Letters from A to E refer to the five graph construction schemes defined in 

Table 2). 

 A B C D E 
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λn(mean+/-
std) 
 
 
λn

surr(mean
+/-std) 

1.32±0.05 
 
 
1.09±0.06 
 
 
(p = 
0.53x10-13) 

1.33±0.02 
 
 
1.08±0.03 
 
 
(p = 
0.32x10-15) 

1.31±0.02 
 
 
1.07±0.04 
 
 
 
(p = 
0.37x10-15) 

1.29±0.03 
 
 
1.05±0.05 
 
 
 
(p = 
0.43x10-13) 

1.28±0.02 
 
 
1.03±0.05 
 
 
 
(p = 
0.62x10-14) 

Table 7. Group-mean total number of the odd-cycles of length (b) = 3. (Letters 

from A to E refer to the five graph construction schemes defined in Table 2). I 

underlined with bold, the p-values that showed significant differences 

compared to the surrogate-based p-values (Letters from A to E refer to the five 

graph construction schemes defined in Table 2). 

 A B C D E 

cdd� efebgh �b� i� 
(mean+/-
std) 
 
 cdd �efebgh�b �i�����(mea
n+/-std) 

53.24±2.94 
 
 
 
 
31.51±2.37 
 
 
(p = 
0.24x10-12) 

463.37±117
.69 
 
 
 
294.72±75.
45 
 
(p = 
0.51x10-13) 

609.56±101
.79 
 
 
 
472.83±92.
45 
 
(p = 
0.18x10-12) 

77.82±12.5
1 
 
 
 
33.77±13.6
2 
 
(p = 
0.12x10-13) 

69.51±13.7
8 
 
 
 
40.92±8.62 
 
 
(p = 
0.23x10-15) 

 

 

Table 8. Group-mean total number of the odd-cycles of length (b) = 5. (Letters 

from A to E refer to the five graph construction schemes defined in Table 2). I 

underlined with bold, the p-values that showed significant differences 

compared to the surrogate-based p-values (Letters from A to E refer to the five 

graph construction schemes defined in Table 2). 
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 A B C D E 

cdd� efebgh �b� j� 
(mean+/-
std) 
 
 cdd �efebgh�b �j�����(mea
n+/-std) 

204±15 
 
 
 
 
67.85±6.78 
 
 
(p = 
0.12x10-16) 

12.448±2.4
70 
 
 
 
5.662±2.78
3 
 
(p = 
0.32x10-17) 

29.350±5.1
27 
 
 
 
6.723±1.93
2 
 
(p = 
0.23x10-16) 

26.127±4.3
56 
 
 
 
5.932±2.08
5 
 
(p = 
0.15x10-16) 

27.451±4.6
21 
 
 
 
7.542±3.87
2 
 
 
(p = 
0.18x10-17) 

Table 9. Group-mean total number of the odd-cycles of length (b) = 7. (Letters 

from A to E refer to the five graph construction schemes defined in Table 2). I 

underlined with bold, the p-values that showed significant differences 

compared to the surrogate-based p-values (Letters from A to E refer to the five 

graph construction schemes defined in Table 2). 

 A B C D E 

cdd� efebgh �b� k� 
(mean+/-
std) 
 
 cdd �efebgh�b �k�����(mea
n+/-std) 

798.10±88.
20 
 
 
 
 
417.56± 
59.14 
 
 
(p = 
0.09x10-17) 

414.980 ± 
337.180 
 
 
 
217.354± 
168.931 
 
 
 
(p = 
0.21x10-17) 

1.765.000± 
907.230 
 
 
 
889.451± 
392.753 
 
 
 
(p = 
0.11x10-17) 

1.326.000± 
675.341 
 
 
 
712.562± 
294.431 
 
 
 
(p = 
0.12x10-17) 

1.452.000± 
745.432 
 
 
 
798.542± 
334.231 
 
 
 
(p = 
0.11x10-16) 

 

Table 10. Group-mean bipartivity index bs. (Letters from A to E refer to the five 

graph construction schemes defined in Table 2). We underlined with bold, the p-

values that showed significant differences compared to the surrogate-based p-

values (Letters from A to E refer to the five graph construction schemes defined in 

Table 2). 
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 A B C D E 

bs(mean+/-
std) 
 
 
bs

surr(mean
+/-std) 

0.87±0.02 
 
 
0.15±0.05 
 
 
(p = 
0.46x10-14) 

0.19±0.04 
 
 
0.06±0.05 
 
 
(p = 
0.56x10-15) 

0.16±0.06 
 
 
0.09±0.04 
 
 
(p = 0.732) 

0.17±0.05 
 
 
0.10±0.04 
 
 
(p = 0.672) 

0.19±0.06 
 
 
0.10±0.07 
 
 
(p = 0.707) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11. Outcome of multi-linear regression analysis between the λn and the 

bs with the three odd-cycles (OC) of length (b)  = 3,5,7. Every row corresponds 

to each scan (with ‘x’ , I denote the arguments that didn’t overcome the 

statistical threshold of p-value < 0.05 ) 

 

 Intercept bs OCl=3 OCl=5 OCl=7 R2 p-value 

A 1.86 x - 0.00090 - 0.312 0.0152 
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1.85 x 0.0042 

-.0039 

0.00085 0.000087 

-

0.000077 

0.295 0.0245 

B 1.81 

1.82 

-0.057 

-0.061 

0.0012 

0.0013 

0.00025 

0.00027 

-

0.000017 

-

0.000016 

0.844 

0.812 

1.71e-12 

2.65e-11 

C 2.10 

2.05 

x 

x 

x 

x 

x 

x 

x 

x 

0.222 

0.213 

0.0819 

0.0912 

D 2.01 

1.92 

x 

x 

x 

x 

x 

x 

x 

x 

0.204 

0.187 

0.0721 

0.0834 

E 1.95 

1.86 

x 

x 

x 

x 

x 

x 

x 

x 

0.192 

0.167 

0.0654 

0.0782 

 

 

 

3.4 Repeatability of Laplacian Eigenvectors 

 Table 12 reports the group-mean between-scan DLS of the Laplacian 

eigenvectors for every graph-construction scheme. 9m-OMST graph construction 

scheme showed the smallest group-mean DLS followed by the FA-t/NS-w but without 

reaching the significant level (see Fig.12 ; p-value < 0.05, Bonferroni corrected). My 

findings are supported also by the direct comparison of original DLS values with the 

surrogate DLS values (p-value = 0.0057 & p-value = 0.0043, for 9m-OMST and NS-

OMST, correspondingly). An overview of the two Laplacian eigenvectors 

(connectomic harmonics) from both scan sessions for 9m-OMST are illustrated in 

Fig.13. 

 

 

Table 12. Group-mean between scan DLS of the Laplacian eigenvectors for 

every graph construction scheme. I underlined with bold, the p-values that 

showed significant differences compared to the surrogate-based p-values 

(Letters from A to E refer to the five graph construction schemes defined in Table 2). 
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 A B C D E 

DLS(mean+/-
std) 
 
 

 
(mean+/-
std) 

7.64±1.29 
 
 
5.12±1.42 
 
 
 
(p = 0.0059) 

5.12±1.56 
 
 
3.62±1.42 
 
 
 
(p = 0.0006) 

7.88±1.54 
 
 
6.42±1.61 
 
 
 
 
(p = 0.185) 

6.47±1.38 
 
 
5.56±1.62 
 
 
 
 
(p = 0.128) 

6.50±1.74 
 
 
5.62±1.58 
 
 
 
 
(p = 0.205) 
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Fig. 12. Illustration of the group-mean DLS for every graph construction scheme. (* 

denotes the statistical difference of DLS for the 9m-OMST method versus the four 

methods). 

 

 

Fig.13. Overview of the two Laplacian eigenvectors (connectomic harmonics) 

from both scan sessions for 9m-OMST method extracted from subject 1.  

A. First eigenvector from scan 1 (left) and scan 2 (right) 

B. Second eigenvector from scan 1 (left) and scan 2 (right) 

3.5 Repeatability of the Integrative, segregative, and degenerate harmonics of 

SBN using ELD 

 Fig.14 illustrates the group-averaged ELD values for every regime of 

harmonics across the graph construction schemes. It is clear that the repeatability of 

harmonics’ partitions is higher for the integrative harmonic, middle for the degenerate 
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and lower for the segregative. Group-averaged ELD values for every regime of 

harmonics and across graph construction schemes were significantly different 

compared to the surrogate ELD values (p < 0.01 x 10-5, Bonferroni corrected). 

Statistical analysis between the three regimes of harmonics in a pairwise fashion and 

within every graph construction scheme showed significant differences for every pair 

and graph construction scheme ( p < 0.01 x 10-12 , Bonferroni corrected). The 

comparison of ELD values per regime of harmonics across the graph construction 

schemes revealed interesting trends. No significant difference was detected across 

the graph construction schemes for integrative and degenerate harmonics while 

group-averaged ELD was statistically lower for segregative harmonics for 9-m-OMST 

graph construction scheme compared to the rest (p < 0.02 x 10-12 , Bonferroni 

corrected).  

Fig. 14. Repeatability of harmonics’ partitions. Group-averaged ELD values for 

every regime of harmonics across the graph construction schemes. 

3.6 Brain Fingerprinting 

 I presented the various inputs in the brain fingerprinting approach underling in 

parenthesis the adopted measure. My analysis succeeded in an accurate 

identification of subjects id (100%) on the test set (second session) on every graph 

construction scheme employing the Laplacian spectrum (Laplacian eigenvalues) as 

a feature vector (X2 statistics). However, the identification accuracy employing 

Laplacian eigenvectors (harmonics) showed a 100% level only for the 9m-OMST.  
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Similarly, I succeeded an absolute identification of subjects id (100%) across every 

graph construction scheme using the whole structural connectome as a 2D tensor 

using Portrait Divergence (PID) as a proper graph theoretic comparison metric.  

Complementary, Table 13 shows the Identification accuracy of structural properties 

of SBN across alternative graph construction schemes. Across the five studying 

structural properties, the highest accuracies were detected for communities (MI), and 

3,4-motifs (X2 statistics) across the five construction schemes while the highest 

performance was detected for 9m-OMST (B), and NS-OMST (A) with the former to 

get higher accuracies. The identification accuracy for Bipartiveness (ED) was too low 

while and for the odd-cycle motifs (X2 statistics) were high only for the 9m-OMST (B), 

and NS-OMST (A). The combination of the outcome of brain identification strategy 

for communities,  3,4-motifs and odd-cycles of length (b) = 3,5,7 (ensemble way) 

gave an absolute accuracy (100%) for the 9m-OMST (B) , and a 94.59 for the NS-

OMST (A). 

Table 13. Identification accuracy of structural properties of SBN across 
alternative graph construction schemes. (Letters from A to E refer to the five 
graph construction schemes defined in Table 2). 
 
 A B C D E 

Laplacian 

Eigenvalues 

(X2) 

100 100 100 100 100 

Laplacian 

Eigenvectors 

(X2) 

72.97 86.49 59.46 56.76 56.76 

SBN (PID) 100 100 100 100 100 

Communities 

(MI) 

83.78 89.19 56.76 59.46 54.05 

3-motifs (X2) 86.49 97.30 71.62 71.62 71.62 

4-motifs (X2) 89.19 94.59 64.86 62.16 67.57 

Bipartiveness 

(ED) 

45.95 51.35 37.84 37.84 40.54 

Odd-cycles 

motifs of 

75.68 86.49 56.76 54.05 54.05 
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length (b) = 

3,5,7 (X2) 

Ensemble: 

Communities, 

3-motifs , 4-

motifs, odd-

cycles of 

length (b) = 

3,5,7 

94.59 100 81.08 72.97 75.67 

 

4. Discussion 

 This study investigates the properties of graph Laplacian spectrum, the 

multiscale topological descriptors of the networks and their association over dMRI-

based structural brain networks (SBN). All the aforementioned estimators and 

associations were explored for their repeatability (test-retest scans), their 

individuality (brain fingerprinting) and how they could be affected by the choice of 

graph construction scheme.  Finally, the evidences of this study were supported 

statistically but also through perturbations by comparing original values with 

surrogates ones estimated over random null network models (edge rewiring). For 

that purpose, I adopted and analyzed the test-retest diffusion-MRI data set from the 

multimodal neuroimaging database of the Human Connectome Project (HCP) 

(Glasser et al., 2013; S N Sotiropoulos et al., 2013; Van Essen et al., 2013). 

 Graph laplacian spectrum of SBN has been studied as a whole but also in 

sub-ranges of low, middle and large eigenvalues. Every Laplacian eigenvalues 

subrange has been associated with specific topological patterns covering various 

spatial scales. The smallest eigenvalues of the Laplacian spectrum reflect the 

modular organization of a network (Donetti, 2005; Fortunato, 2010; Shen and Cheng, 

2010; Shi and Malik, 2000). Repeated duplications and additions of nodes and motifs 

in the construction of a network leave traces in the network’s Laplacian spectrum in 

the middle eigenvalues (Banerjee and Jost, 2009, 2008). De Lange et al., (2016) 

revealed that global symmetry shaped neural spectra and the overlap in the wiring 

pattern of brain regions measured with MIN can explain the large central peak 

observed in spectra of neural networks (λ=1). The largest eigenvalue of the 
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Laplacian spectrum informs us of the level of ‘bipartiteness’ of the most bipartite 

subpart of the network, which is closely related to the number of odd cyclic motifs in 

the network (Bauer and Jost, 2009). A recent study on SBN introduced a new 

framework that placed integration and segregation on the end of a continuum of 

structural connectivity graph Laplacian harmonics via the presentation of a gap-

spectrum (Sipes et al., 2024). Their approach partitions graph Laplacian spectrum 

into integrative, segregative, and degenerate harmonics. It is important to underline 

here that the whole analysis focused on normalized Laplacian spectrum. 

This study showed that normalized Laplacian eigenvalues of dMRI-based 

structural brain networks are subject-specific, and therefore be used to ‘fingerprint’ 

an individual with absolute accuracy (100%). Normalized Laplacian eigenvalues are 

also repeatable across the five graph construction schemes but their connectome-

related information of the studying SBN is highly dependent on the graph 

construction scheme.  

The repeatability of Laplacian eigenvectors (connectome harmonics ; Naze et al., 

2021) is highly dependent on the graph construction scheme. 9m-OMST graph 

construction scheme showed the smallest group-mean DLS followed by the NS-

OMST but without reaching the significant level (p < 0.05, Bonferroni corrected). 

These findings are supported also by the direct comparison of original MI values with 

the surrogate DLS values. However, the group-mean DLS even for the 9m-OMST 

method is far away from characterized as repeatable. 

 Investigation of the small eigenvalues from the Laplacian spectrum untangled 

a community structure for the first two graph construction schemes (NS-OMST, 9m-

OMST). For those graph construction schemes, the optimal division of the network 

based on the eigen-difference is suggested to be between 7 and 9 communities 

(Dimitriadis et al., 2021). My findings are supported by the direct comparison with the 

surrogate null models. In a recent exploratory study on the same dataset comparing 

thirty-three graph partition schemes and the same set of graph construction 

schemes, we revealed a consensus set of 9 communities ( Dimitriadis et al., 2021; 

Fig.5). My analysis showed that the K-Means clustering applied over the first 

eigenvectors is a better approach compared to the eigen-difference (eigen-gap) 

method applied over Laplacian eigenvalues. For the first two graph construction 

schemes (NS-OMST, 9m-OMST), the MI values for the K-Means algorithm 

demonstrated a high repeatability between the two scans, while the communities 
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extracted with K-Means applied over SBN constructed with 9m-OMST method 

showed a high similarity with our previous study (3D � 0.91 2 0.04) where a  large 

number of graph partition algorithms were applied on the same set (Dimitriadis et al., 

2021). 

The Laplacian spectrum of the graph construction schemes showed a clear 

smooth peak at the middle range as is shown in Fig.3. This peak around  λ = 1 

suggests a number of motif duplications where its height is relevant to this number. 

The Laplacian spectrum didn’t show any other clear peaks indicative of recurrent 

addition of motifs. The observation of this peak on the middle subpart of the 

Laplacian spectrum was consistent across the graph construction schemes while it 

was less peaked (lower amplitude) in the rewired surrogate networks. I explored a 

possible relationship between the RF extracted from the Laplacian spectrum linked 

to λ = 1 and the total number of 3,4-motifs extracted from the SBN plus the MIN. The 

adopted multilinear regression analysis untangled a significant trend between the RF 

and the 3,4-motifs plus the MIN only for the 9m-OMST graph construction scheme 

which was repeatable. These findings complement to the results of De Lange et al., 

(2016) showing that local recursive topological patterns expressed here with 3,4-

motifs and global symmetry measured with MIN  shaped graph Laplacian spectrum 

explaining partly the RF related to the large central peak observed in the Laplacian 

spectrum of SBN (λ = 1).  

Complementary to the aforementioned analysis, I investigated how nodal 

weighted clustering coefficient is correlated to the nodal 3-motifs distribution. A 

positive correlation between the second 3-motif and weighted clustering coefficient 

was consistently observed across graph construction schemes while a mixed sign of 

correlation was detected for the first 3-motif with the five graph construction 

schemes. Correlation between individual distributions of 3,4-motifs across graph 

construction schemes revealed a strong positive correlation between the 9-m-OMST, 

NS-thr and  NS-t/MD-w. This means that the individual SBN share a large number of 

common local topologies that is reflected to the global network level. 

Τhe largest Laplacian eigenvalues reflect the level of bipartiteness of the structural 

brain networks. Bipartiteness is related to the odd cyclic motifs, and especially is 

linked to the triangle motifs and high clustering coefficient observed in small-world 

brain networks (Bassett and Bullmore, 2006; Bullmore and Sporns, 2009; Hagmann 

et al., 2008; van den Heuvel et al., 2008).  In the present study, bipartiteness which 
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is linked to the largest Laplacian eigenvalue Ln was significantly different on the 

original SBN compared to the surrogate null networks only for the two graph 

construction schemes (NS-OMST, 9m-OMST). The exhaustive quantification of odd-

cycles with length = 3,5 and 7 over original SBN differed significantly from the ones 

estimated over surrogate null models for every graph construction scheme. Multi-

linear regression analysis between the λn and the bs plus the three total number of 

odd-cycles (length = 3,5,7) revealed interesting findings only for the two graph 

construction schemes (NS-OMST, 9m-OMST). Especially for the 9m-OMST, the 

outcome of this analysis revealed a significant model with a high R2 = 0.844 that 

involved every independent variable, the bs and the three odd-cycles. It is the very 

study that revealed such a trend between the λn, the bs and the odd-cycles in 

network science and especially in SBN. 

The repeatability of harmonics’ partitions with the gap-spectrum method is higher 

for the integrative harmonic, middle for the degenerate and lower for the segregative 

regime. Group-averaged ELD values for every regime of harmonics and across 

graph construction schemes were significantly different compared to the surrogate 

ELD values (p < 0.01 x 10-5, Bonferroni corrected). Statistical analysis between the 

three regimes of harmonics in a pairwise fashion and within every graph construction 

scheme showed significant differences for every pair and graph construction scheme 

( p < 0.01 x 10-12 , Bonferroni corrected). No significant difference was detected 

across the graph construction schemes for integrative and degenerate harmonics 

while group-averaged ELD was statistically lower for segregative harmonics for 9-m-

OMST graph construction scheme compared to the rest of graph construction 

schemes (p < 0.02 x 10-12 , Bonferroni corrected).  

Under the brain fingerprinting framework, the Laplacian eigenvalues and the 

topologies of SBN showed an absolute accuracy (100%). Laplacian eigenvectors 

reached an absolute accuracy only for the 9m-OMST graph construction scheme.  In 

parallel, the performance of brain fingerprinting employing five studying structural 

properties revealed the communities, and 3,4-motifs across the five construction 

schemes succeeding the highest performance for 9m-OMST (B), and NS-OMST (A) 

with the former to get higher accuracies. The combination of the outcome of brain 

identification strategy for communities,  3,4-motifs and odd-cycles of length (l) = 

3,5,7 (ensemble way) gave an absolute accuracy (100%) for the 9m-OMST (B) , and 

a 94.59 for the NS-OMST (A). These brain fingerprinting findings support the 
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individuality of the SBN, of the Laplacian spectrum and of the multi-scale resolution 

of network topology extended from 3,4-motifs and odd-cycles of length (l) = 3,5,7 up 

to communities. The outcome of alternative inputs on brain fingerprinting approach 

differed across graph construction schemes while 9m-OMST demonstrated the 

highest performance followed by the NS-OMST. 

In this study, I examined the relationship between Laplacian spectrum and 

topological patterns of SBN quantified by the exhaustive quantification of recursive 

motifs and odd cycles. The RF linked to λ = 1 was partially predicted by the total 

number of 3,4-motifs and the MIN only for the 9m-OMST and in both scans. 

Similarly, the λn was largely predicted by the total number of odd-cycles of length (l) 
= 3,5,7 and the bs for the 9m-OMST and to a less extent for the NS-OMST. These 

relationships between Laplacian spectrum and network topologies revealed to what 

extent recursive  

topological motif and odd-cycles, MIN and bs shaped graph Laplacian spectrum. 

Although graph Laplacian spectrum properties can now be captured by recursive 

topological motifs up to some extent, the graph Laplacian spectrum can reveal 

systems-level changes that cannot be described or detected by standard network 

metrics.  

I investigated also the repeatability and the influence of graph construction 

schemes on basic Laplacian properties apart from the three sub-ranges of Laplacian 

spectrum. The range of Synchronizability showed a higher dependency on the graph 

construction scheme compared to the Laplacian energy. The smallest group-mean 

between-scan difference for Synchronizability, and for Laplacian energy was shown 

for the 9m-OMST and NS-OMST graph construction schemes. Both observations 

were supported statistically by a direct comparison with the corresponding values 

estimated from the surrogate null networks. 

The spatial resolution of structural brain networks restricted by the adopted 

anatomical atlas, is likely to have a high impact on the network topology and the 

relevant Laplacian spectrum (Bullmore and Sporns, 2012, 2009). My findings can be 

considered only for reconstructed anatomical brain networks based on dMRI 

(Hagmann et al., 2008; Iturria-Medina et al., 2008; van den Heuvel and Hulshoff Pol, 

2010), the data-acquisition parameters, the algorithm performing the tractography 

analysis with its parameters, the atlas template (AAL) and the graph construction 

scheme. The combination of these choices across the whole analysis might alter the 
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constructed SBN which in turn have impact on the shape of graph Laplacian 

spectrum and any of the  recursive topological motif and odd-cycles (Chung et al., 

2003 ; van den Heuvel et al., 2016). 

The Laplacian Spectrum of functional brain networks using 

electroencephalography, magnetoencephalography, and functional magnetic 

resonance imaging (fMRI) might differ from structural brain networks from dMRI. 

Future studies should reveal the relationship between the Laplacian spectrum of 

functional and structural brain networks. Recent studies used atlas-free connectome 

harmonics dMRI as a dependent variable to predict the brain resting-state activity of 

fMRI (independent variables). They showed their findings in datasets across the 

landscape of consciousness with very interesting findings (Atasoy et al., 2018a, 

2016; Luppi et al., 2020) and  in psychedelic (Atasoy et al., 2018b) while they 

explored the robustness of connectome harmonics using local gray matter and long-

range white matter (Naze et al., 2021). It would be very important to explore the 

repeatability of the Laplacian spectrum on structural brain networks from dMRI in an 

atlas-free scenario. 

The structural brain networks microscopically showed a community structure as it 

has been observed in other species and other types of networks (de Lange et al., 

2014). Macroscopically, anatomical connectivity topology is shaped by evolutionary 

growth constraints that attempt to balance the optimal efficiency and robustness of 

the communication of various brain networks while simultaneously minimizing wiring 

cost (Bullmore and Sporns, 2012; Collin et al., 2014; van den Heuvel and Sporns, 

2013a, 2013b). The 9m-OMST graph construction scheme that integrates nine 

diffusion metric-based structural brain networks into one has at its core the OMST 

topological filtering methodology that optimizes efficiency routing via wiring cost 

(Dimitriadis et al., 2018, 2017b, 2017c, 2017a; Messaritaki et al., 2019).  

 

 

Limitations 

My study had a few limitations which is important to discuss. My results were 

extracted by analysing the HCP dataset, and for that reason it cannot be generalized 

to other datasets that are acquired with different protocols or scanners or analytic 

pipelines involving alternative tractography algorithms. It is highly recommended to 

every researcher to record a percentage of the original cohort across three or more 
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scanning sessions. Moreover, scanning the subjects at the same time of day would 

be also desirable (Trefler et al., 2016). Many alternative topological filtering schemes 

have been proposed so far. In my study, I fixed the sparsity of the thresholded 

networks such as to have the same sparsity as the OMST networks. Other 

alternative topological filtering schemes with arbitrary or data-driven approach could 

be also explored under the reproducibility framework. It is important to note here that 

many other variables can affect the repeatability of structural brain network analyses. 

There variables include: the parcellation scheme used, the time interval between the 

test-retest scans, and the resolution of the MR data. There variables should be 

considered when interpreting structural brain network studies, and a useful 

discussion of this subject is provided by Welton et al. (2015). It is important to 

underline here, that I investigated high-order interactions focusing on 3,4-motifs, and 

odd cycles derived from SBN. There are also alternatively high-order interactions like 

hypergraphs, and simplicial complexes (Battiston et al., 2020,2021) that weren’t 

explored here. It is important to underline here, that Interdependencies between 

brain areas can be explored either from anatomical (structural) perspective 

(structural connectivity) or by considering statistical interdependencies (functional 

connectivity). Structural connectivity is typically pairwise, where white-matter fiber 

tracts start in a certain region, and arrive at another brain area. So, by construction 

SBN tabulates pairwise associations compared to functional brain networks, which 

can be built upon high-order interactions (Herzog et al., 2024).  

 

5.Conclusions 

This study investigates the properties of graph Laplacian spectrum, the multiscale 

recursive topological patterns of the networks and their association over dMRI-based 

structural brain networks (SBN). All the aforementioned estimators and associations 

were explored for their repeatability (test-retest scans), their individuality (brain 

fingerprinting) and how they could be affected by the choice of graph construction 

scheme.  Finally, the evidences of this study were supported statistically but also 

through perturbations by comparing original values with surrogates ones estimated 

over random null network models (edge rewiring). Further analysis is needed by 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.05.31.543029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.543029
http://creativecommons.org/licenses/by/4.0/


61 

adopting a Multishell Diffusion MRI-Based Tractography, an atlas of higher resolution 

and a test-retest dataset from another site to evaluate the main findings of this study. 
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Data and code availability 

The HCP test-retest data is freely available as listed above.  
• Probabilistic tractography has been realized with MRtrix 

(https://www.mrtrix.org/)  
 

•  Network construction using ExploreDTI-4.8.6 (http://www.exploredti.com/) 
The code used to generate the graphs for the structural brain networks with 
the OMST schemes is available at: https://github.com/stdimitr/multi-group-
analysis-OMST-GDD .  
 

• Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) 
The construction of Surrogate null models and the estimation of weighted 
clustering coefficient and 3,4-motifs has been done with the following 
equations 
Surrogate null models: randmio_und_connected with iter = 10,  
Weighted clustering coefficient : clustering_coef_wu.m, 
3,4-motifs: motif3fstruct_wei.m; motif4struct_wei. 
Matching Index (MIN): matching_index_und.m 
 

• 3-odd-cycles : MATLAB :  
cycles = allcycles(G,'MaxCycleLength',l); % l = 3,5,7 
 

• Integrative, segregative, and degenerate harmonics of the structural 
connectome 
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The estimation of gap-spectrum for the definition of the three regimes of 
harmonics was realized with the following equation: 
Gap Spectrum Estimation : find_ev_IntDegSeg.m 
https://github.com/Raj-Lab-UCSF/IntDegSeg/tree/main 
 
 

• Multiscale Graph Comparison via the Embedded Laplacian Discrepancy 
(ELD) 
ELD metric is presented by the authors on the following github page 
implemented in python (ELD.py) 
https://github.com/edrictam/Embedded-Laplacian-Distance  
 

• I implemented ELD in MATLAB in my personal github webpage based on 
author’s definition in conjunction to the estimation of graph Laplacian 
spectrum and Brain Fingerprinting approach. 
  

• Violin Plots (Figures 9 and 14): 
https://zenodo.org/records/12749045 
Povilas Karvelis (2025). daviolinplot - violin and raincloud 
plots (https://github.com/povilaskarvelis/DataViz/releases/tag/v3.2.7), GitHub. 
Retrieved March 16, 2025. 
 
 
 

• Correlograms (Figures 10 and 11): 
SerhanYilmaz(2025). Correlogram (https://www.mathworks.com/matlabcentral
/fileexchange/133812-correlogram), MATLAB Central File Exchange. 
Retrieved March 14, 2025. 
 

• Portrait Divergence (PID): 
An information-theoretic, all-scales approach to comparing networks   
 
 https://github.com/bagrow/network-portrait-divergence  
 

• Embedded_Laplacian_Discrepancy (ELD) 
ELD is implemented in Python in the author’s website.  

             https://github.com/edrictam/Embedded-Laplacian-Distance 
            A MATLAB implementation of the ELD is provided in my personal github’s       
            website in a repository dedicated to this study (see below). 
 

• A list of MATLAB functions used in the current study is demonstrated in: 
https://github.com/stdimitr/graph_laplacian_dMRI_repeat_scans  
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