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Abbreviations:

Ml mutual information

ED Euclidean Distance

dMRI diffusion magnetic resonance imaging
Pcc Pearson’s correlation coefficient
OMST orthogonal-minimal-spanning-tree
SBN structural brain network

AAL Automated Anatomical Labeling

iIFOD2 Second-order Integration over Fiber Orientation Distributions
GFA general fractional anisotropy

ICVF Intra-Cellular Volume Fraction

ODI Orientation Dispersion Index

CSD constrained spherical deconvolution

NS the number of streamlines

FA fractional anisotropy
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MD mean diffusivity

RF relative frequency

SLD streamline density

DTI diffusion tensor imaging

DWI diffusion-weighting images

ELD Embedded Laplacian Discrepancy
MIN Matching Index

Abstract:

It has been proposed that the estimation of the normalized graph Laplacian over a
brain network's spectral decomposition can reveal the connectome harmonics
(eigenvectors) corresponding to certain frequencies (eigenvalues). Here, | used test-
retest dMRI data from the Human Connectome Project to explore the repeatability,
and the influence of graph construction schemes on a) graph Laplacian spectrum, b)
topological properties, c) high-order interactions (3,4-motifs,odd-cycles), and d) their
associations on structural brain networks (SBN). Additionally, | investigated the
performance of subject’s identification accuracy (brain fingerprinting) of the graph
Laplacian spectrum, the topological properties, and the high-order interactions.
Normalized Laplacian eigenvalues were found to be subject-specific and repeatable
across the five graph construction schemes. The repeatability of connectome
harmonics is lower than that of the Laplacian eigenvalues and shows a heavy
dependency on the graph construction scheme. A repeatable relationship between
specific topological properties of the SBN with the Laplacian spectrum was also
revealed. The identification accuracy of normalized Laplacian eigenvalues was
absolute (100%) across the graph construction schemes, while a similar
performance was observed for a combination of topological properties of SBN
(communities,3,4-motifs, odd-cycles) only for the 9m-OMST. Collectively, Laplacian
spectrum, topological properties, and high-order interactions characterized uniquely
SBN.

Keywords: brain network, connectome, Laplacian, eigenvalues, graph spectrum,
normalized Laplacian, diffusion magnetic resonance imaging, structural brain

network, brain fingerprinting
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1. Introduction

The human brain can be modeled as a graph G = (V, E), comprising of nodes, V,
representing brain regions and edges, E, referring to functional and anatomical
strengths (Bullmore and Sporns, 2012). A high repertoire of network metrics has
been adopted from social network analysis and applied to the analysis of human
brain networks. Those metrics quantify different global and local properties of nodes
such as the degree, the communication efficiency, etc (Boccaletti et al., 2006;
Newman, 2003). Complementary to trivial network metrics, researchers have
proposed a variety of qualitative measures for the examination of the global structure
of brain networks (Atay et al., 2006; Banerjee and Jost, 2007; Banerjee, 2012;
Varshney et al., 2011).

The eigenanalysis of the graph Laplacian operator over the structural brain
network reveals a set of graph Laplacian eigenvectors and eigenvalues. The graph
Laplacian eigenvectors, called connectome harmonics, is a set of frequency ordered
harmonic patterns arising from the cortex and can be seen as a connectome
extension of the well-known Fourier basis of a 1D signal to the 2D human brain
network. These connectome harmonics reported a relationship between low-
frequency harmonics (eigenvectors linked to smaller Laplacian eigenvalues) and the
resting-state brain activity mainly from the default mode network (DMN) measured by
functional magnetic resonance imaging (fMRI) recordings (Atasoy et al., 2016,
2018b).

The transformation of the original brain network to the normalized Laplacian
matrix gives us the opportunity to estimate the Laplacian eigenvalues which refer to
the global network structure (Banerjee, 2012; Chung, 1996). The advantage of the
normalized Laplacian spectrum over unnormalized is that all the relevant
eigenvalues range between 0 and up to a maximum of 2, which further enables the
comparison of networks across modalities, cohorts, age groups, and even sizes
(Banerjee, 2012).

Research studies have applied spectral graph theory to neural networks
(Banerjee and Jost, 2007; Varshney et al., 2011), proposing network metrics tailored

to the eigenvectors of the brain network, the node centrality (Bonacich, 2007, 1972;
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Page et al., 2001) and community detection methods (Fortunato, 2010; Harriger et
al., 2012; Liang et al., 2011; Newman, 2006). The eigenvectors of a network are
related to the local properties of a node over its neighborhood while the associated
eigenvalues contain important information about the graph structure (Banerjee and
Jost, 2007; Banerjee, 2012; McGraw and Menzinger, 2008; Vukadinovi¢ et al.,
2002).

Many researchers have already applied the graph Laplacian to brain
connectivity networks reporting the progression of neurodegenerative diseases (Raj
et al., 2012), brain malformation (Wang et al., 2017), attention switching period in a
cognitive task (Huang et al., 2018; Medaglia et al., 2018), macroscale coupling
gradient between brain regions (Preti and Van De Ville, 2019), structure-function
decoupling (Griffa et al., 2022), and an aberrant dynamic connectivity profile
constrained by structural brain network in patients with concussion (Sihag et al.,
2020). These studies focus on long-range and white-matter-based anatomical
connectivity employing brain networks of sizes from a few tens up to a few hundred
regions-of-interests (ROI) (Desikan et al., 2006; Destrieux et al., 2010). Recently,
Atasoy et al. proposed an alternative framework for the application of graph
Laplacian to the analysis of the human connectome. They combined assessment of
local connectivity of the gray matter cortical structure captured from the magnetic
resonance imaging (MRI) data with the assessment of long-range connectivity
mediated via the white-matter thalamocortical fibers captured from the diffusion MRI
(dMRI) data into a common anatomical network without the use of a template
(Atasoy et al., 2017, 2016; Naze et al., 2021).

After many years of reductionism in science, researchers understood that no
matter how accurate is our knowledge at the level of subsystem, we will miss the
linear, and nonlinear interactions between the system components (Anderson,
1972). This is the reason, why we cannot fully explain the starting point of epileptic
seizures just from the individual neurons of the human brain. Epilepsy is now
conceptualized as a network disease (Lehnertz et al., 2023). Over the past decades,
a variety of complex systems has been successfully described as networks whose
interacting pairs of nodes are connected by links (Barabasi,2011). Among these
complex systems that are modelled as networks are the brain networks (Stam,2014).
Breakthrough papers on networks were introduced to the scientific community close

to millennium building upon earlier work in social network analysis, and mathematics
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(Watts and Strogatz,1998 ; Barabéasi and Albert, 1999 ). These pioneer studies
triggered an exponential increment of published articles up to our days forming a

new multidisciplinary field called Network Science.

Up to now, the majority of research on network science, and its applications on
every discipline such as brain network analysis focused mostly on pairwise
interactions (Battiston et al.,2020). However, interactions in general, and specifically
in brain can often occur in groups of three or more nodes and cannot be described
simply in terms of dyads (Sporns and Kotter,2004). Only recently, the community has
devoted more attention to the high-order interactions introducing frameworks such as
motifs, cliques, hypergraphs, simplicial complexes etc (Battiston et al., 2021).

Here, | will focus on exploring high-order coordinated structural pattern encoded
with motifs. Motifs are small recurrent subgraphs with specific connectivity pattern
that are considered as a high-order structural signature of the underlying network’s
function (Milo et al., 2002). Motifs allow to extract additional information on the
properties of an interaction, while can be described of each edges (1-interactions)
between vertices that appear to be statistically significant in the network. However, a
drawback of the motifs’ research is that the whole set of possible motifs to explore
grows exponentially as the number of nodes involved in the whole analysis.
Considering high-order interactions in human brain neuroimaging can help us
understand many timeless mysteries of the human functionality such as
consciousness (Herzog et al., 2024).

The analysis of the relation between the spectrum of a graph, i.e., the eigenvalues
of its adjacency matrix, and the structural properties of a network is the main goal of
spectral graph theory. Graph Signal Processing (GSP) is a special area in signal
processing based on spectral graph theory where the data possess an intrinsic
graph structure here a SBN. GSP extends graph theoretical approaches, providing
an elegant and concrete mathematical framework to describe brain function as signal
diffusion through the structural connectivity (Lioi et al., 2021 ; Abdelnour et al., 2014).
At the centre of GSP lies the graph Laplacian matrix and its decomposition into
graph harmonics called eigenvectors or “gradients” (Margulies et al., 2016),
reflecting orthogonal spatial patterns of a signal in the network, while every harmonic

is associated to an eigenvalue reflecting its graph frequency (Chung, 1996 ;
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Deslauriers-Gauthier et al., 2020 ; Luppi et al., 2020). The harmonic decomposition
of the graph Laplacian matrix is similar to the Fourier transform of a signal. Laplacian
harmonics form the set of Fourier basis that describes how brain signals would
reflect in the structural brain networks, a transformation that link structural graph
topology to functional synchrony (Muller et al., 2017). Each harmonic is associated
with an eigenvalue, and conventionally harmonics are sorted by their ascending
eigenvalues.

Based on the aforementioned definitions, it is natural to employ the harmonic
“eigenspectrum” as the organizing principle that can link the integration and
segregation which are the two ends of a continuum from the synchrony to
asynchrony (Deco et al., 2015 ; Sipes et al.,, 2024). Integrative and segregative
harmonics occupy the ends of the continuum while degenerate harmonics are in the
middle of the continuum (Sipes et al., 2024).

In the present study, the general theme was then, firstly, to compute the
eigenvalues of such matrices, and secondly, to relate the eigenvalues to structural
properties of graphs such as: the synchronizability, the Laplacian energy, the relative
frequency (RF), the number of communities (modules), the bipartiteness, the high-
order interactions such as the motifs’ distribution and the distribution of odd-
cycles. In the present study, | investigated the repeatability: a) of the Laplacian
eigenvalue spectrum, b) of the Laplacian eigenvectors (connectome harmonics) of
the structural brain networks derived from diffusion magnetic resonance imaging
data (dMRI), c) of the structural properties of SBN including high-interactions
investigated via motifs, and d) of the association between Laplacian eigenvalue
spectrum and the structural properties of the dMRI-based brain networks. | analysed
the test-retest MRI and diffusion-MRI data set from the multimodal neuroimaging
database of the Human Connectome Project (HCP) (Glasser et al., 2013; S N
Sotiropoulos et al., 2013; Van Essen et al., 2013).

The main aims of the present study were unique in human brain network
neuroscience, and especially in dMRI-based SBN. It is the very first time in the
literature according to my knowledge, that the Laplacian spectrum, the relevant
properties of the SBD, and especially the high-order network interactions, and their
association are studying together in structural brain networks. On the top, the whole
investigation includes brain fingerprinting performance of Laplacian spectrum, and of

the adopted structural properties of the SBN. Additionally, the current study took the
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advantage of this valuable open test-retest study to explore the repeatability of my
findings (Dimitriadis et al., 2021; Messaritaki et al., 2019). As in our previous studies,
| demonstrated how all these observations were influenced by the different graph
construction schemes and the alternative network weighting schemes (Qi et al.,
2015).

| constructed structural brain networks from this test-retest diffusion MRI scan data
from the Human Connectome Project (HCP) using the b = 2000Ls/mm? data and
selecting five out of seven most reproducible graph-construction schemes as derived
from our previous study on the same data (Messaritaki et al., 2019a).

The major aim of this study was to investigate the associations of graph Laplacian
spectrum with topological descriptors of the architecture of SBN. Simultaneously, |
explored the repeatability of these observations and how could be influenced by
alternative graph construction schemes. Finally, | examined how graph Laplacian
spectrum and relevant brain network descriptors of SBN can produce a concrete
system-level fingerprint of brain networks following a brain fingerprinting approach
(de Lange et al., 2014,2016).

The rest of this manuscript is organized as follows: Section 2 (Methods) describes
briefly the cohort, the processing of dMRI test-retest dataset, the graph construction
schemes, the estimation of graph topological descriptors and their associations with
graph Laplacian spectrum. Section 3 (Results) reports our findings in terms of
repeatable normalized Laplacian eigenvalues and eigenvectors and their subject
specificity under the brain fingerprinting framework. Section 4 (Discussion)
summarises the major contribution of my study explaining its advantages, limitations,

and possible future directions.

2. Methods

All analyses were performed using MATLAB (2019a; The Mathworks, Inc., MA).

2.1. Data

My study adopted the test-retest MRI and diffusion-MRI dataset from the large
multimodal neuroimaging database of the Human Connectome Project (HCP)
(Glasser et al., 2013; S N Sotiropoulos et al., 2013; Stamatios N Sotiropoulos et al.,
2013; Van Essen et al., 2013). The cohort used in my study consists of 37 subjects

which were scanned twice with a time interval between the scans ranging between
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1.5 and 11 months. The age range of the participants was 22—41 years. It should be
noted that the test-retest time interval is shorter than the expected time over which
maturation-induced structural changes can be measured with the diffusion MRI
(dMRI) experiment reported in this study.

The diffusion-weighted images (DWIs) had a resolution of (1.25x1.25x1.25) mm?®
and were acquired at three different diffusion weightings (b-values: 1000L's/mm?,
2000Lis/mm? and 3000.Is/mm?) across 90 gradient orientations for each b-value.
The HCP acquisition details and pre-processing are described in (Feinberg et al.,
2010; Glasser et al., 2013; Moeller et al., 2010; Setsompop et al.,, 2012; S N
Sotiropoulos et al., 2013; Stamatios N Sotiropoulos et al., 2013; Xu et al., 2012).

2.2. Tractography

In our previous studies employing the same dataset, we performed
tractography using the constrained spherical deconvolution (CSD) algorithm
(Dimitriadis et al., 2021; Messaritaki et al., 2019). Here, | performed tractography
with a probabilistic, anatomically constrained streamline tractography using MRtrix
(Tournier et al., 2019), employing the iIFOD2 (Second-order Integration over Fiber
Orientation Distributions) algorithm (Smith et al., 2012, 2015; Tournier et al., 2010).
The selected parameters of the algorithm were : a) the minimum and maximum
streamline lengths were ranged between 30 mm and 250mm, b) the maximum angle
between successive steps was defined to 50°, and c) the FOD amplitude cut-off was
set-up to 0.06.

A total amount of two million streamlines were generated for each participant, and
in both scans, with the seed points to be set on the interface between grey matter
and white matter. | performed a visual inspection of the tractograms as a way to
secure that the white matter was covered, and streamlines didn't out of the white
matter space.

IFOD2 was applied to DWI data acquired with b=2000 s/mm? .

2.3. Graph generation

Different experimental protocols and researcher's methodological choices can
alter the final structural brain network (SBN) (Qi et al., 2015). SBN and the extracted
topological network measures can vary remarkably across different MRI gradient

schemes and orientation models (Zalesky et al. 2010). Bastiani et al. (2012) reported
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that CSD generates a higher edge density and global efficiency, and lower small-
worldness than diffusion tensor imaging (DTI). Tractography algorithms can also
affect the derived SBN. Bastiani et al. (2012) showed that probabilistic methods lead
to higher edge density than the deterministic ones. Global tractography also
generates a higher edge density than local tractography, likely due to a higher
number of longer connections. Moreover, many other factors such as the initial seed
point region, the number of seed points, and the tracking termination criteria also
affect the extracted SBN and the related network measures. Additionally, alternative
network weighting schemes have been proposed for the construction of weighted
SBN (Qi et al., 2015). For a nice review, an interested reader can check Qi et al.,
(2015). In the present study, | will focus only on how the different graph construction

schemes can alter the topology of SBN.

2.3.1. Parcellation, and Node definition

As in our previous studies, | adopted the Automated Anatomical Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002) to define 90 cortical and subcortical areas (45
areas per hemisphere) as nodes of the constructed structural brain graphs.
Structural brain networks (SBN) were generated for each participant, scan and for

each edge weight (see section 2.3.2) using ExploreDTI-4.8.6 (Leemans et al., 2009).

2.3.2. Alternative Network Weighting Schemes

SBN are originally weighted and capture the information of connectivity attributes
and strengths. Different weighting schemes can be employed for this scope. For
example, the most straightforward scheme might be to utilize the number of fibers (or
streamlines) connecting a pair of cortical regions as the weight, NS or the streamline
density, (SLD), which is defined as the number of streamlines between two brain
areas (nodes) divided by the mean volume of the two brain areas (Buchanan et al.,
2014). Furthermore, the weight of the streamline density can be corrected by
streamline length to generate WDL (Hagmann et al., 2008). A few important scalar
metrics are fractional anisotropy (FA), Radial Diffusivity (RD) and Mean Diffusivity
(MD) that have been interpreted as changes in the integrity of white matter
microstructure for brain diseases and age-related morbidities, where the dMRI data

are modelled by a locally anisotropic diffusion process (Jones et al., 2013).
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Correspondingly, these scalar metrics can be useful for weighting connectivity. For
instance, the weight of FA is adopted in a study by Buchanan et al. (2014).
Microstructural white-matter properties (e.g., general fractional anisotropy (GFA),
Intra-Cellular Volume Fraction (ICVF), Orientation Dispersion Index (ODI)
(Lemkaddem et al., 2014) and physical distance properties (e.g., stream-line length,
Euclidean distance between the nodes) (Bassett et al., 2011) can be estimated from
dMRI as alternative weighting metrics for constructing SBN.

The motivation of using a linear combination of various metrics as edge weights is
that the integration of the brain’s properties are affected by more than one attribute
of the white matter tracts. Previous studies have also employed various
combinations of metrics as network weighting schemes. Moreover, the edge-weight
in a SBN can be the combination of aforementioned various measures. For example,
the weight can be a product of the weight of the FN and the weight of the mean FA
along a fiber bundle connectivity a pair of brain areas (Zhang et al., 2011). Nigro
et al. (2016) used the product of NS and FA to weigh the edges in a study of
Parkinson's patients, and Taylor et al. (2015) used a combination of NS and TL in a
study of epilepsy patients.

In the present study, | weighted the edges of the SBN by adopting the five
most repeatable graph-construction schemes revealed previously with the same
dataset (Messaritaki et al., 2019b), which were based on alternative combinations of
the nine metrics listed in Table 1 (see Section 2.3.4). The edge weights of every
SBN were normalized to have a maximum edge weight of 1, while the elements in

the main diagonal were set to zero.

Table 1. Metrics used in connectivity matrices.

Metric Abbreviation
Fractional anisotropy FA
Mean diffusivity MD
Radial diffusivity RD

10
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Number of streamlines NS
Percentage of streamlines PS
Streamline density SLD
Tract volume TV
Tract length TL
Euclidean distance between nodes ED

2.3.3 Integrated Edge-Weights

Each metric shown in Table 1 conveys different information regarding the
tissue properties. We previously proposed an integrated edge weighting scheme
combining the metric-based SBN under a data-driven whole-brain algorithm
(Dimitriadis et al., 2017a,b,c). An integrated SBN was formed by the combination of
the nine metric-based SBNs for every participant and scan session.

An orthogonal-minimal-spanning-tree (OMST) algorithm was applied to every
metric-based SBN, selecting edges of both small and large weights that preserved
the efficiency of brain regions at a minimal wiring cost. The overall algorithm with the
OMST on its center down-weights the metrics with a higher global topological
similarity and up-weights the dissimilar metrics enhancing the complementarity of
topological information across the nine adopted metrics. More details on the OMST
algorithm and its implementation can be found in our previous work (Dimitriadis et
al.,, 2017b,c ,2021, 2017a) and the related code is freely available at
https://github.com/stdimitr/multi-group-analysis-OMST-GDD.

2.3.4 Graph Construction Schemes
I will briefly explain the five graph construction schemes used here as in our
previous studies.
The first category includes SBN constructed via the data-driven algorithm
(Dimitriadis et al., 2017b, 2017a, 2017c).

11
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A) NS-OMST: apply the OMST filtering algorithm (Dimitriadis et al., 2017b, 2017a,
2017c) to the NS-weighted matrix.

B) 9m-OMST: Integrate all nine diffusion metrics (as originally reported in
Dimitriadis et al. 2017b, see Table 2).

The second category includes SBNs with edges weighted by the number of
streamlines (NS), fractional anisotropy (FA), and mean diffusivity (MD) with various
combinations of applying absolute thresholding on one individual metric-based SBN
while keeping the same sparsity as the 9m-OMST that showed the highest
reproducibility (Messaritaki et al., 2019). Since, absolute thresholding cannot
guarantee the connectedness of the network, |1 first applied a minimal spanning tree
(MST) on the original SBN constructed by NS. Then, | applied an absolute threshold
on the rest of the NS weights (excluding the ones constitutes the MST) defined such
as to return a SBN with the same density as the one returned by the 9m-OMST.
After the MST and the absolute thresholding steps, the topology was either kept as it
was (C) or re-weighted with one of the remaining two metrics (D,E) (see Table 2).

C) NS-thr: MST plus keep the highest-NS edges to align the density to 9m-OMST

D) NS-t/FA-w: Threshold to keep the highest-NS edges, then reweight those
edges with their FA.

E) NS-t/MD-w: Keep the highest-NS edges, then reweight those edges with their
MD.

In previous studies, we ranked twenty-one graph construction schemes with
similarities ranging from 0.99 to 0.42 (Table 3 ; Messaritaki et al., 2019 ; Dimitriadis
et al., 2021). Here, | focused on the first five graph construction schemes with the
highest topological similarity (Table 2).

SBN built with 9m-OMST, NS-thr, NS-t/FA-w and NS-t/MD-w graph construction
schemes share the same density but a different topology while SBN constructed with
NS-thr, NS-t/FA-w and NS-t/MD-w graph construction schemes share the same
topology with different edge weights.

Fig.1A illustrates the five SBNs from the first scan of the first subject.

12


https://doi.org/10.1101/2023.05.31.543029
http://creativecommons.org/licenses/by/4.0/

available under aCC-BY 4.0 International license.

Table 2. Summary of the graph-construction schemes
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(number of streamlines (NS), fractional anisotropy (FA), and mean diffusivity (MD),

orthogonal minimal spanning trees (OMST))

Abbreviation | Initial Edge Weights Topology Final Edge |[Symbol
Weights
NS — OMST NS OMST Unchanged A
9-m OMST lin. comb. of all 9[{OMST Unchanged B
metrics in Table 1

NS-thr NS keep highest-NS | Unchanged C
edges

NS-t/FA-w NS keep highest-NS | re-weight  with D
edges FA

NS-t/MD-w NS keep highest-NS | re-weight  with E
edges MD

13
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2.4 Laplacian Spectrum
2.4.1 The normalized Laplacian matrix

In this paper, | considered the transformation of individual integrated SBNs from
the five graph construction schemes to the normalized Laplacian matrix L. The
Laplacian matrix L has the advantage that its eigenvalues range between 0 and 2,
enabling the direct comparison of SBN across modalities, subjects, cohorts, and of
different sizes (Chung, 1996).

The normalized Laplacian matrix is defined as:

(L ifu=vanddegG(v;) =0 \

1
nL(u,v) = { — , if uand v are connected ; (1)
degu
0, otherwise

with u and v representing two nodes of the network or brain regions, L(u,v) the
edge from node u to v and degu the degree of node u which is the total number of its
connections. Fig.1 illustrates the processing steps needed from the original SBN up
to the estimation of the normalized Laplacian spectrum given by the normalized
Laplacian eigenvalues. Rows correspond to the processing steps of extracting the
normalized Laplacian eigenvalues from SBN while columns refer to the five graph
construction schemes.

The normalized Laplacian matrix can be also estimated and expressed from its
relation with the adjacency matrix A as nL. = 1 — D~%/2 x L x D~%/2 (Fig.1D) where
the D is the degree matrix, where its diagonal elements encapsulate the degree of
every node (Fig.1B), L = D - A is the unnormalized Laplacian matrix (Fig.1C), and A
is the adjacency matrix. The eigenanalysis of the nL extracts a collection of
eigenvalues A for which a non-zero vector eigenvector v exists that satisfies the

equation Lv = Av.
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Eigenvalues share important properties. The multiplicity of the eigenvalues equal
to 0 (A = 0) is equal to the number of connected modules (Chung, 1996). The largest
eigenvalue is equal to or smaller than 2, sorting the range of eigenvalues as 0 < Al
<... SAn =2 ((Chung, 1996) ; Fig.1E).

1 SBN
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
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20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
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\
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0 0

0
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Fig.1 lllustration of preprocessing steps for the estimation of normalized
Laplacian eigenvalues. The data are derived from the first scan of the first
subject from the dMRI cohort. A-E in columns refer to the five graph
construction schemes tabulated in Table 2. Numbers refer to the processing
steps:

1. Original metric-based SBN for the five graph construction schemes as they are
reported in Table 2.
2. The D degree matrices of the five SBN shown in A

3.The unnormalized Laplacian matrix L of the five SBN
4. The normalized Laplacian matrices nL of the five SBN
5.The normalized Laplacian eigenvalues (nL) linked to the five SBN
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2.4.2 Repeatability of Laplacian Eigenvalues

I quantified the repeatability of Laplacian eigenvalues using Pearson’s correlation
coefficient (Pcc) accompanied by the relevant p-value. The Pcc was estimated
between Laplacian eigenvalues derived from the two scan-sessions from the same
graph construction scheme (within graph construction scheme) and also between
graph construction schemes (5x4/2 = 20 pairs) from the same or different scan
session (between graph construction schemes).

| then estimated the group-mean Pcc across the cohort related to within-session
and graph construction scheme and the group-mean Pcc linked to between-session
and graph construction scheme. The Pcc values for the between-session approach
were first averaged across the two scans for the 20 pairs and then across the 20
pairs of comparisons. Adopting a Wilcoxon Signed Rank-Sum test, | estimated the
significance level between the two sets of subject-specific Pcc values on the subject
level that will support at which degree the Laplacian eigenvalues are highly

dependent on the graph construction scheme.

2.4.3 Repeatability of Important nL-based properties

Network synchronizability of a variety of complex networks can be characterized
by the ratio of the second smallest eigenvalue A, to the largest eigenvalue of the
Laplacian matrix A, (Barahona and Pecora, 2002). So Synchronizability = A2/ A, .

The following formula (2)

LE(G) = zn [nL; —2m/n] (2)

=1
is called the Laplacian energy of the network G, where nL are the normalized
Laplacian eigenvalues, m is the number of edges and n is the number of vertices
(Hakimi-Nezhaad and Ashrafi, 2014).
The repeatability of the Synchronizability and Laplacian energy per graph
construction scheme and between the two scans was quantified with the absolute

difference between the two scans. The original values were compared with the
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surrogate ones per graph construction scheme and scans. A p-value is assigned to
the original values by a direct comparison with ten thousand surrogate values.
| applied a Wilcoxon Signed Rank-Sum test for both Synchronizability and

Laplacian Energy properties between the two scans.

2.4.4 Laplacian Spectrum Properties
Many important dynamical network models can be formulated as a linear

dynamical system which can be expressed by the following diffusion equation

dc_ Le (3
dt ale (3)

which is a continuous time version.

As | mentioned before, the Laplacian matrix of a network is expressed as L = D — A.
The Laplacian matrix is symmetric in which diagonal components are all non-
negative (representing node degrees) while the other components are all non-

positive.

A Laplacian matrix of an undirected network has the following interesting

properties:

1. At least one of its eigenvalues is zero.

2. All the other eigenvalues are either zero or positive.

3. The number of its zero eigenvalues corresponds to the number of connected

components in the network.

4. If the network is connected, the dominant eigenvector is a homogeneity
vector h=(11...1)".
5. The smallest non-zero eigenvalue is called the spectral gap of the network,

which determines how quickly the diffusion takes place on the network.

Smaller Eigenvalues

Laplacian eigenvalues and the relevant eigenvectors play an important role on the
studying of multiple aspects of complex network structures like resistance distance,
spanning trees and community structures (Newman,2006). According to Newman'’s
study, only the eigenvectors related to positive eigenvalues could contribute to the
partitioning of the network and to the modularity. This practically means that the

optimal graph partitioning could be achieved by selecting the number of
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communities/groups in a network to be equal with the number of positive
eigenvalues plus 1. In the normalized Laplacian graph, the important role of guiding
the spectral clustering of the network is supported by the smallest normalized
Laplacian eigenvalues. The k eigenvectors that correspond to the K smallest
eigenvalues of the normalized Laplacian graph create a n x K matrix (where the n
refers to vertices of the graph and K to the eigenvectors). Clustering the row
eigenvectors U using K-Means will give us the number of communities of the
network.

Given a graph Laplacian matrix L (here normalized L), spectral clustering
proceeds to compute the eigenvalue decomposition of L = UXU” .Then we choose
the K smallest eigenvalues and extract the matrix U which contains the K columns of
U corresponding to theses values. U is of dimension n x K. Finally, | applied K-
means algorithm to cluster the n row vectors of U . Node i is assigned to the cluster
of the i" row vector of U.

This is the famous spectral clustering with the following algorithmic steps:

A. Perform an eigenvalue decomposition of a graph Laplacian matrix, here the
normalized Laplacian matrix nL :nL = UXUT

B. Extract U by taking the K columns of U corresponding to the K smallest
eigenvalues

C. Cluster the row vectors of U using K-means algorithm

Performing a K-Means clustering on the n vertices in the K-dimensional
Euclidean space, one can reveal the communities of the graph. Based on the
aforementioned properties, the smallest eigenvalues of the Laplacian spectrum
reflect the modular organization of a network (Donetti, 2005; Fortunato, 2010; Shen
and Cheng, 2010; Shi and Malik, 2000).

The spectral gap is the smallest non-zero eigenvalue of L, which corresponds to
the largest non-zero eigenvalue of —aL and thus to the mode of the network state
that shows the slowest exponential decay over time. The spectral gap’s value
determines how quickly the diffusion takes place on the network. If the spectral gap
is close to zero, this decay takes a very long time, resulting in slow diffusion. If the
spectral gap is far above zero, the decay occurs quickly, and so does the diffusion.

The larger the value of the first nonzero eigenvalue of L the faster the convergence
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of the diffusive process. In that sense, the spectral gap of the Laplacian matrix
captures some topological aspects of the network, i.e., how well the nodes are
connected to each other from a dynamical viewpoint. The spectral gap of a
connected graph (or, the second smallest eigenvalue of a Laplacian matrix in
general) is called the algebraic connectivity of a network.

Every eigenvector v; informs us of a unique bisection of the nodes of a network
assigning to each one a positive or negative value and the associated eigenvalues A;
express the inverse diffusion time of this dichotomy to the stationary state. Smaller
eigenvalues are indicative of longer diffusion times, revealing a larger proportion of
inter-module connections and a smaller number of inter-module connections.

The A, eigenvalue provides the possible best division of nodes into two modules
and it is called Fiedler value while the corresponding eigenvector is called Fiedler
vector (Chung, 1996). One option that is proposed in the literature is the combination
of divisions derived from all eigenvectors up to v; to assign every node to i
communities. A possible optimal number of communities can be defined by the
largest eigen-difference (eigen-gap) between consecutive Laplacian eigenvalues (A +
1 — A) (Cheng and Shen, 2010; Shi and Malik, 2000). In summary, small
eigenvalues, their number, and the eigen-differences reflect important attributes of
the modular structure of a network (Fig.2A).

In the present study, | compared the methods of eigen-gap Laplacian differences
with the K-means clustering applied over the K eigenvectors that correspond to the K
smallest eigenvalues of the normalized Laplacian graph. The second approach
creates a n x K matrix (where the n refers to vertices of the graph and K to the
eigenvectors). The total sum of the normalized Laplacian eigenvalues in my study
equals to 90. | defined the smallest eigenvalues, the first ones where their sum
divided by the total sum overcomes the 10%. | ran the K-Means clustering 50 times
on the n vertices in the K-dimensional Euclidean space integrating the findings to
avoid the influence of the random initializations of the K-Means algorithm. | adopted
mutual information (MI) as in our previous study (Dimitriadis et al., 2021) to measure
the similarity of graph partitions per subject and graph construction scheme between
the two scans. The outcome of graph partitions affiliations with both the methods is
compared with the outcome of the best partition observed in our exploratory analysis
with a high number of graph partition algorithms applied in the same dataset
(Dimitriadis et al., 2021).
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| estimated group-mean A, (Fiedler value) and group-mean number of
communities defined by the eigen-difference of Laplacian eigenvalues (Eigengap
method) and by the K-Means clustering applied over the first eigenvectors. These
group-means were averaged first across scans and then across subjects. Group-
mean A; and the number of communities defined by the two methods were compared
with the surrogate number of communities. To quantify the similarity of graph
communities between the two scans (repeatability) per graph construction scheme
and in both methods, | employed MI as a proper measure. The original Ml values
were also compared with surrogate Ml values for both methods adopting a Wilcoxon

Rank-Sum test.

Medium Eigenvalues

Network motifs are statistically significant recurrent subgraphs. All networks like
brain networks, biological, social and technological networks can be represented as
graphs, which include a large variety of subgraphs. Practically, network motifs are
repeatable sub-graphs that are defined by a specific pattern of interactions between
vertices. They may also reflect a framework supporting particular functions to
achieved in an efficient way (Sporns, and Koétter, 2004). For that reason, the motifs
are of high importance to reveal the structural principles of complex networks
reflecting their functional properties (Fig.2B). Motifs are characterized by their size
that equals the number of vertices and by the repertoire of possible alternative ways
that nodes are connected. By defining the number of the studying vertices M, |
enumerated exhaustively the frequency of every single motif of size M across its
structural connectivity variance. The outcome of this procedure gives the motif
frequency spectra for structural motifs of size M. Usually, the size M is restricted
within the range of [3 - 5] due to the computational power needed to enumerate
exhaustively the motif frequency spectra of a network with a large number of vertices
e.g. a few hundreds. Fig.3.A illustrates the repertoire of 2,3,4 motifs for an undirected
graph.

It is well studied that repeated duplications and additions of nodes and motifs
in the construction of a network leave traces in the network’s Laplacian spectrum
(Banerjee and Jost, 2009, 2008). In a network, for example, two nodes with a similar
connectivity pattern will increase the eigenvalue A=1 of the spectrum (Banerjee and

Jost, 2008). Duplication of edge motifs, for example, duplication of two connected
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nodes n; and n; has been shown to produce symmetrical eigenvalues around 1 with
1

v dnldnz

better understand the relationship between motifs and eigenvalues, | give the

Laplacian eigenvalues 4, =1 % ( ), with d, being the degree of node n. To

following examples. An inclusion of a new triangle motif to a network results in the
addition of an eigenvalue A = 1.5 to the spectrum (Banerjee and Jost, 2008a). The
joining or duplication of a motif in a network produces specific eigenvalues in the
spectrum and repetition of these processes result in characteristic aggregated
eigenvalues observed as peaks of the Laplacian spectrum. For that reason, the
eigenvalues with high multiplicities e.g. high peak at A = 1 or eigenvalues at equal
distances around 1 are indicative of a local organization as a consequence of the
presence of recursive motifs in the network (Fig.2B).

In the present study, | exhaustively quantified the 3,4-motifs across subjects,
scans, and in the five graph construction schemes. The repertoire and the topology
of structural 3,4-motifs is demonstrated in Fig.3A (Sporns, O., and Koétter,2004). A
motif is a subnetwork consisting of N nodes and at least (N1-[11) edges linking the
nodes in a path. Network motifs are simple building blocks that characterized the
complexity of information transfer within a network across many fields of science and
their distributions deviates from those of random networks (Miro et al., 2002). |
guantified the total number of structural 3,4-motifs in the network and also the motif
frequency of occurrence around an individual node which is known as the motif
fingerprint of that node (Figs7,8). The estimation of the motifs has been realized with
proper functions of the brain connectivity toolbox (Rubinov and Sporns,2010).

Patterns of local connectivity are quantified by network motifs while simple
measures of segregation are defined based on the total number of triangles in the
whole network (global level). A high number of triangles implies strong segregation.
In the local level, the fraction of triangles around a node is known as the clustering
coefficient and is equivalent to the fraction of the node's neighbors that are also
neighbors of each other (Watts and Strogatz, 1998). | estimated the nodal weighted
clustering coefficient and | correlated (using Pearson’s correlation coefficient) it to
each of the two global 3-motif frequencies represented in Fig.7 (Rubinon and
Sporns,2010). | followed the same approach per graph construction scheme. This
approach will reveal the relationship between a segregation network metric

(weighted clustering coefficient) and patterns of local connectivity (motifs).
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A recent study proposed a measure to capture the global symmetry of a network
and showed in both empirical and network models that the main peak in the
Laplacian spectrum (A = 1) is related to network elements that exhibit similar wiring
patterns. The global symmetry of a network is quantified by the Matching Index
(MIN) (Hilgetag et al.,2002) that expressed the similarity between nodes i and | and
is inferred from the overlap between their connectivity pattern. De Lange et al.,
(2016) showed that global symmetry shaped neural spectra and the overlap in the
wiring pattern of brain regions measured with MIN can explain the large central peak
observed in spectra of neural networks (A = 1). To reveal a link between the peak(s)
of the Laplacian spectrum and the total number of 3,4-motifs, | adopted a multi-linear
regression analysis per graph construction scheme between the relative frequency
(RF) linked to peak at A = 1 and the total amount of every possible structural 3 or 4
motif plus the Matching Index (MIN) with (Fig.2).

In summary, | estimated the group-mean relative frequency (RF) linked to peak
around one (A = 1) across subjects for every graph construction scheme, at first
averaged between scans. The original RF values were compared with the surrogate
ones adopting a Wilcoxon Rank-Sum test. As | aforementioned, | applied a multi-
linear regression analysis between the RF and the total amount of each of the 3,4-
motif and the MIN across the SBN independently per scan. | estimated Pearson’s
correlation coefficient between the nodal weighted clustering coefficient and the
nodal 3-motifs distribution across graph construction schemes. Complementary, |
estimated Pearson’s correlation coefficient (Pcc) in a pairwise fashion between nodal
motif frequency of occurrence across the five graph construction schemes. | followed
this approach independently per subject, scan and for each of the two 3-motifs and
six 4-motifs. These Pcc correlations were averaged across scans first and afterwards
across subjects. To compare my findings with those present in de Lange et al.,
(2016), | estimated the Pearson’s correlation coefficient between the MIN and the RF
per graph construction scheme and scan and | presented the mean across graph

construction schemes averaged across scans.

Largest Eigenvalues
The largest eigenvalue of the Laplacian spectrum informs us of the level of
‘bipartiteness’ of the most bipartite subpart of the network, which is closely related to

the number of odd cyclic motifs in the network (Bauer and Jost, 2009). A subnetwork
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is fully bipartite when its nodes can be divided into two groups where nodes of the
same group are not connected.

A graph G = (V;E) is bipartite if the vertex set V can be patrtitioned into two sets A
and B (the bipartition) such that no edge in E has both endpoints in the same set of
the bipartition. A matching M € E is a collection of edges such that every vertex of V
is incident to at most one edge of M. If a vertex v has no edge of M incident to it then
v is said to be exposed (or unmatched). A matching is perfect if no vertex is
exposed; in other words, a matching is perfect if its cardinality is equal to |A| = |B|.
Fig.3C illustrates an example of perfect matchings and exposed edges.

The ‘bipartiteness’ is directly linked to the total number of odd cycle motifs in a
network (Fig.2C & Fig.3D). Here, | also estimated the bipartitenes of the SBN with
the following bipartivity index bs (Estrada, 2022)

_ trace(exp (—SBN))
~ trace(exp (SBN))

4)

The bipartivity index bs equals to 1 for a complete bipartite network while it
changes monotonically with the increase of the number of edges “frustrating” the
bipartition. The edges that if removed the network becomes bipartite are called
frustrated. Such frustrated edges are shown in Fig.3B. One can see how the
bipartivity index bs changes monotonically with the increase in the number of
‘frustrated’ edges in a complete bipartite graph (Fig. 3B).

A motif H can be decomposed into a set of disjoint small cycles and stars and this
decomposition is valid if all vertices of a motif H belong to either a star or an odd
cycle in the set (Fig.3D). A star is a subnetwork type where only a central node is
connected with the rest of the nodes while an odd cycle is a subnetwork with an odd
number of vertices that are connected between each other in a circular way (Fig.3D).
The degree of every node in an odd cycle is 2. It is important to underline here that
bipartite graphs (b, = 1) do not contain odd length cycles, or graphs with odd length
cycles are not bipartite (b, # 1). If a graph is bipartite it doesn’t contain any odd length
cycles, but, if a graph is non-bipartite it surely contains at least one odd length cycle.

| estimated the group-mean largest eigenvalue A, per graph construction
scheme and compared it with the surrogate ones. The group-mean largest
eigenvalue A, was at first averaged per scan across the graph construction schemes.

Here, | estimated odd-cycles of length = 3,5 and 7 in an exhaustive way. In a similar
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way, | estimated the group-mean number of odd-cycles of length = 3,5,7 and the
group-mean bs per graph construction scheme and compared it with the surrogate
ones. Both measurements were first averaged between scans.

In summary, | estimated the group-averaged of bipartivity index bs , of largest
eigenvalue An and of exhaustive estimation of odd-cycles of various lengths across
subjects for every graph construction scheme, at first averaged between scans. The
original values of bs , An and odd-cycles were compared with the surrogate ones by
adopting a Wilcoxon Rank-Sum test. Complementary, | applied a multi-linear
regression analysis between the largest eigenvalue An and the bs plus the total

number of odd-cycles of length 3, 5 and 7 across the SBN independently per scan.
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Fig.2 Topological properties of a network reflected in the Laplacian Spectrum.
Relative Frequency (RF) is linked to peak at A=1.

(A)  The first smaller Laplacian eigenvalues are indicative of stronger community
structures

(B) Recursive motifs in the complex network result in Laplacian eigenvalues of
high multiplicities, revealing characteristic peaks in the Laplacian spectrum (A=1)

(C) The largest eigenvalue reflects the level of *bipartiteness’ of the most bipartite

subgraph of the network which is alternatively linked to the total number of odd
cyclic motifs of the network.
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Fig.3. Motifs, bipartivitiy, odd cycles, and stars (Inspired and redesigned by
Fig.8 in Estrada, 2021, Fig.3A in Biswas et al., 2021 and Fig.1 in lecture notes
from Goemans, 2017).

(A) The repertoire of 2-3-4 structural motifs in an undirected graph

(B) lllustration of the monotonically change in the bipartivity index bs with the
increase in the number of ‘frustrated’ edges in a complete bipartite graph

(C) Theedges (1-6),(2-7) and (3 -8)forma matching. Vertices 4, 5,9 and 10
are exposed.

(D)  An example of an optimal decomposition of a motif H into odd cycles and
stars. O3 refers to an odd-cycle of length = 3 that connects three nodes while O5

denotes an odd-cycle of length = 5 that connects five nodes.
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2.4.5 Repeatability of Laplacian Eigenvectors
| estimated the repeatability of Laplacian eigenvectors (connectome harmonics)
per graph construction scheme between the two scans by adopting the signum

function (D"5).

noof ROIs

DLS — Z

i=1

Zno of ROIs

j=1 sign(LEigenvecto Y

J
Tscan 1

no of ROIs

e ij
LEigenvector,,,, ;)

(5)

where no of ROIs denotes the number of brain areas while the first sum runs across
Laplacian eigenvectors and the second sum across its vector size that equals the no
of ROIs. The original group-mean D"° values for every graph construction scheme

was compared with the surrogate ones.

2.4.6 Integrative, segregative, and degenerate harmonics of SBN

A recent study on SBN introduced a new framework that placed integration
and segregation on the end of a continuum of structural connectivity graph Laplacian
harmonics via the presentation of a gap-spectrum (Sipes et al., 2024). Gap-spectrum
is estimated over sorted eigenvalues and naturally partitions the harmonics into three
distinct regimes, the integrative harmonics that have low eigenvalues with high
spectral gaps, the segregative harmonics that have high eigenvalues and high
spectral gaps, and the “degenerate” harmonics that have intermediate eigenvalues
but with low spectral gaps.

Gap-spectrum was defined as the derivative of the ascending eigenvalues
accompanied with their index and presents a measure of harmonic degeneracy. The
authors first fit an order 10 spline with 3 knots to the structural connectivity Laplacian
eigenvalues to smooth the gap-spectrum due to the amplification of noise caused by
derivative. Then, they computed the first analytical spline derivative as the gap-
spectrum. They hypothesized that the first-order gap-spectrum (measuring harmonic
degeneracy) would be related to various properties of harmonics. The
implementation of the algorithm is presented on an open repository
(https://github.com/Raj-Lab-UCSF/IntDegSeg/tree/main). The algorithm estimates

the two main gaps that separate the Laplacian spectrum into the three regimes.
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In my study, | estimated the gap-spectrum and the relevant integrative,
segregative and degenerate harmonics on individual SBN and not on the consensus
SBN (average SBN). The reason of this choice is to investigate the repeatability of
these three regimes across subjects and graph construction scheme. Additionally,
the estimation of a consensus SBN (averaging SBN across subjects) is impossible
due to the individual network topology which involves weighted edges on subject-
specific pairs of ROIs not consistent across the cohort. Averaging can be solely
realized on fully-weighted brain networks that don't really exist in any neuroimaging
modality which is an old-fashioned methodology that made many assumptions while
destroying any individual network topology.

The repeatability of individual three regional harmonics across scans was
guantified with Embedded Laplacian Discrepancy (ELD), a newly introduced metric
for Multiscale Graph Comparison of different size (Tam and Dunson, 2023). For that
purpose, | introduced for the very first time on brain networks the use of a new metric
tailored to Laplacian eigenvectors and eigenvalues for comparing graphs of different
size, a property that is important in my study. There is no restriction on the
consistency of graph-spectrum across scans and this is the main purpose of
adopting such a metric that can compare the three defined harmonics of different
size across scans.

The authors proposed the Embedded Laplacian Discrepancy (ELD) as a
simple and fast approach to compare graphs (of potentially different sizes) based on
the similarity of the graphs’ community structures. The ELD represents graphs as
point clouds in a common, low-dimensional space, on which a natural Wasserstein-
based distance can be efficiently computed in a multiscale way. A main challenge in
comparing graphs through any eigenvector-based approaches is the potential
ambiguity that could arise due to sign-flips and basis symmetries. To overcome this
potential limitation, the ELD leverages a simple symmetrization trick to bypass any
sign ambiguities. The ELD becomes a nice metric that encapsulates many
interesting properties like invariance to graph isomorphism and invariance to signs
configurations.

The theory behind ELD definition is based on the seminal paper (Belkin and
Niyogi, 2003) where they showed that Laplacian decomposition provides a natural
Laplacian - spectral embedding of a graph’s vertices in Euclidean space. This

approach starts with the selection of the first K Eigenvectors that corresponds to the
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first K eigenvalues of nL (where k € N* is a hyperparameter), and continues with the
employment of these eigenvectors as Euclidean coordinates for embedding the
vertices in a common Euclidean space for comparisons. In other words, the i entry
of the K™ eigenvector vk(i) provides the K" coordinate of vertex i.
The Algorithmic steps of ELD estimation are the following:
1. Compute the top K Laplacian eigenvectors of the two graphs under

comparison.
2. Use the entries of the K Laplacian eigenvectors as well as their flipped counterpart
(for symmetrization) to represent the nodes of the two graphs as two point clouds in
a common K-dimensional Euclidean space.
3. Compute the 1-dimensional Wasserstein distance of the point clouds along each
of the K canonical Euclidean axes and average them.

Given the " eigenvector v¢ of a graph G with n nodes, the authors present it

a one-dimensional empirical measure

1 n
UG :ﬁz[a(aﬁvf(i)) + 8(-25vE )] (6)

where § is the Dirac measure and A¢ is the r" eigenvalue. The negative (-) of the
eigenvector is also included to symmetrize the embedding. In section 4 of (Tam and
Dunson, 2023), one can read how the embeddings are invariant to sign-flips of
eigenvectors. | employed u (eq. (4)) and analogously v to define the empirical
measures associated with the eigenvectors of the two different graphs.

The ELD is finally defined as. Consider two graphs G1 = (V1, E1,w) € G and G2 =
(V2, E2,wz) € G, with sizes ny = |V1 | and np = |V2 | and Laplacians Ls, and Lg,
,respectively. Without loss of generality we assume nl < n2. Given a dimension

hyperparameter K < nl, define the embedded Laplacian discrepancy as

K
1
p(Glﬁ GZ) = EZ Wl(“"lc‘;lJ H"IC‘;Z) (7)
r=1

Here, K refers to the min(ni,n2) where ni,n, are the number of eigenvalues within
every region of the spectrum defined by the gap-spectrum approach (Sipes et al.,
2024).
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ELD is estimated between brain scans independently for the three regimes
and graph construction scheme. | compared original ELD values with the surrogate
ones independently for the three regimes and across graph construction schemes. |
applied a Wilcoxon Rank-Sum test between the three regimes of harmonics in a
pairwise fashion (3 pairs) and within every graph construction scheme and also per

regime of harmonics across the graph construction schemes (5x4/2 = 10 pairs).

2.4.7 Laplacian Spectrum’s Convolution
We further processes the Laplacian spectrum not as the collection of the
eigenvalues A; , but their convolution with a smoothing kernel, here a Gaussian,

described by the following formula

_ 1 -l
f(x)—; Wexp( 202) ®

The particular smoothing value ¢ was set to 0.015. A discrete smoothed spectrum
was used in which f had steps of 0.001. Furthermore, the distribution was normalized
such that the total eigenvalue frequency was one. Relative Frequency (RF) linked to
peak at A=1 is estimated over the Laplacian spectrum after convolved with the above

formula (Fig.2).

2.5 Brain Fingerprinting

As | have already mentioned, the human brain can be modelled as a network
composed of brain regions (nodes) defined anatomically by a predefined brain atlas
which are interconnected by two types of links or edges (de Reus and van den
Heuvel, 2013). The structural connections can represent any attribute of white matter
tracts assessed by dMRI leading to the structural connectome (Sporns et al., 2005).
The functional connections represent statistical interdependencies between pairs of
brain regions’ signals while subjects are either at rest or performing a task leading to
the functional connectome (Friston, 2011). Structural and functional brain
connectomics have been proven useful in mapping structural and functional
properties between brain regions in large populations, but simultaneously in

exploring the association between individual connectome features (connectomics)
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and clinical, behavioural and genetic profiles (Fornito et al., 2019 ; Sareen et al.,
2020).

Fingerprinting is taking an ink impression of someone's fingerprints for the
purpose of identification. Brain fingerprinting was first used as an objective, scientific
method to detect concealed information stored in the brain by measuring
electroencephalographic (EEG) brain activity elicited non-invasively by sensors
placed over the scalp (Farwell, 2012). Scientists present salient details about a crime
or investigated situation as a way to place the subject to a crime scene via the
release of a specific brainwave patter called the P300-MERMER. In neuroimaging,
the determination of individual uniqueness of brain activity or connectivity is
known as 'brain fingerprinting'. Especially in cases where researchers employed
brain connectome, it is called ‘brain connectome fingerprinting’ (Amico and
Goni, 2018; Finn et al., 2015; Miranda-Dominguez et al., 2014). Brain connectome
fingerprinting is a new influential research field in brain connectomics that paves the
way of extracting individual features from structural and functional connectomes.
These connectome patterns and the extracted brain connectomic measures can be
leveraged for potential clinical translational research such as the precision medicine
(Fernandes et al., 2017; Hampel et al., 2019) linked to cognitive decline (Sorrentino,
Rucco, Lardone, et al., 2021) and to Parkinson’s disease (Romano et al., 2022).

Brain fingerprinting shows great promise as a predictor of mental health outcomes
and for that reason, it is explored under various neuroimaging modalities. Recently,
few studies have started to explore connectome fingerprinting in different functional
neuroimaging modalities, such as functional Near-Infrared Spectroscopy (fNIRS)
(Rodrigues et al., 2019), electroencephalography (EEG) (Demuru and
Fraschini, 2020), and magnetoencephalography (MEG) (Demuruetal., 2017 ;
Sareen et al., 2021). It is important to underline here that brain fingerprinting
research demands the access in a test-retest cohort (repeat scans) as a way to use
the feature dataset derived from the first scan as a baseline database with the
subject’s identity and the feature dataset extracted from the second scan for
validation purposes of subject’s identification.

Another aim of my study was to investigate the repeatability of the Laplacian
spectrum of SBN across alternative graph construction schemes. Complementary to
the repeatability of Laplacian eigenvalues, | performed an identification analysis

(brain fingerprinting) across pairs of scans where the second scan consists of the
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‘target’ session and the first scan the ‘database’ session (Fig.4). lteratively, one
individual's Laplacian eigenvalue was selected from the target set and compared
against the N subject-specific Laplacian eigenvalues profile in the database set to
find the Laplacian profile that was maximally similar. As a proper dissimilarity
distance, | adopted the X? statistics (Rubner, 2000). | followed a similar analysis on
the Laplacian eigenvectors (harmonics) employing X? statistics. The final outcome of
this process is an identity matrix with 1s if the identity had been predicted correctly
and Os if it did not. Finally, | summed up the total number of corrected identifications
per graph construction scheme and further divided by the total number of subjects to
express the accuracy (performance) of the whole brain fingerprinting process. For a
comparison purpose, | investigated the performance in terms of brain fingerprinting
of the structural properties of SBN across alternative graph construction schemes
separately for communities, 3,4-motifs, bipartiteness , and the total number of odd-
cycle motifs and also in an ensemble way. | adopted proper metrics for every
structural property such as normalized mutual information (MI) for the communities,
the X? statistics for the 3,4-motifs, the Euclidean distance (ED) for the bipartiteness
and the X? statistics for the total number of odd cycle motifs. For comparison
purposes of previous studies and the extracted aforementioned features, | followed
a brain connectome fingerprinting approach using Portrait Divergence metric as a
proper graph distance metric applied over individual SBN (Bagrow and Bollt, 2019).
We employed it in a previous systematic evaluation of fMRI data-processing

pipelines for consistent functional connectomics (Luppi et al., 2024).
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Fig.4 Identification analysis procedure

Identification procedure. Given a query Laplacian eigenvalue profile from the target
set, | estimated the Chi-square histogram distance between this Laplacian
eigenvalue profile and all the Laplacian eigenvalue profiles in the database. The
predicted identity ID* is the one with the highest Chi-square histogram distance value
(argmax) or the highest ED or the highest MI. In a similar way and with a proper

statistical measure, | followed this identification approach for multiple structural

properties.

2.6 Statistical Analysis
Below, | summarized the statistical analysis followed in my study.

Robustness of measurements with random rewired networks (surrogates)

To investigate the effect of adding small topological ‘noise’ to the structural brain
networks to the Laplacian spectrum, | randomly rewired 5% of the edges while
maintaining the degree and the strength of every node (Maslov and Sneppen, 2002).
Ten thousand surrogate null network models were generated per subject, scan, and
graph construction scheme (randmio_und_connected with iter = 10, Rubinov and

Sporns,2010). All the properties estimated over original SBN and the relevant graph
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Laplacian spectrum were compared those obtained from the surrogate SBN and the
related Laplacian spectrum.
Repeatability of Laplacian Eigenvalues
| employed Pcc between individual Laplacian eigenvalues between scans per
graph construction scheme (within graph construction schemes) and Pcc between
individual Laplacian eigenvalues across graph construction schemes in a pair-wise
fashion (between graph construction schemes). Also, | applied a Wilcoxon Signed
Rank-Sum test between the two sets of subject-specific Pcc values on the subject
level that will support at which degree the Laplacian eigenvalues are highly
dependent on the graph construction scheme.
Repeatability of Important nL-based properties
The repeatability of the Synchronizability and Laplacian energy per graph

construction scheme and between the two scans was quantified with the absolute
difference between the two scans. The original values were compared with the
surrogate ones per graph construction scheme and scans. A p-value is assigned to
the original values by a direct comparison with ten thousand surrogate values.

| applied a Wilcoxon Signed Rank-Sum test for both Synchronizability and
Laplacian Energy properties between the two scans.
Laplacian Spectrum Properties
Smaller Eigenvalues

| estimated group-mean A, (Fiedler value) and group-mean number of
communities defined by the eigen-difference of Laplacian eigenvalues (Eigengap
method) and by the k-Means clustering applied over the first eigenvectors. These
group-means were averaged first across scans and then across subjects. Group-
mean A, and the number of communities defined by the two methods were compared
with the surrogate number of communities. To quantify the similarity of graph
communities between the two scans (repeatability) per graph construction scheme
and in both methods, | employed MI as a proper measure. The original Ml values
were also compared with surrogate MI values for both methods by adopting a
Wilcoxon Rank-Sum test.
Medium Eigenvalues

| estimated the group-mean relative frequency (RF) linked to peak around one (A =
1) across subjects for every graph construction scheme, at first averaged between

scans. The original RF values were compared with the surrogate ones by adopting a
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Wilcoxon Rank-Sum test. As | aforementioned, | applied a multi-linear regression
analysis between the RF and the total amount of each of the 3,4-motif and the
Matching Index (MIN) across the SBN independently per scan. | estimated Pearson’s
correlation coefficient between the nodal weighted clustering coefficient and the
nodal 3-motifs distribution across graph construction schemes. Complementary, |
estimated Pearson’s correlation coefficient in a pairwise fashion between nodal motif
frequency of occurrence across the five graph construction schemes. | followed this
approach independently per subject, scan and for each of the two 3-motifs and six 4-
motifs. These Pcc correlations were averaged across scans first and afterwards
across subjects. To compare my findings with those present in de Lange et al.,
(2016), | estimated the Pearson’s correlation coefficient between the MIN and the RF
per graph construction scheme and scan and | presented the mean across graph
construction scheme averaged across scans.
Largest Eigenvalues
In summary, | estimated the group-averaged of bipartivity index bs , of largest

eigenvalue An and of odd-cycles of various lengths across subjects for every graph
construction scheme, at first averaged between scans. The original values of bs , of
An and of the exhaustive quantification of odd-cycles were compared with the
surrogate ones by adopting a Wilcoxon Rank-Sum test. Complementary, | applied a
multi-linear regression analysis between the largest eigenvalue An and the bs plus
the total number of odd-cycles of length 3, 5 and 7 across the SBN independently
per scan.
Repeatability of Laplacian Eigenvectors

D"® is estimated between scans and graph construction scheme. The original
group-mean D"® values for every graph construction scheme was compared with the
surrogate ones.
Integrative, segregative, and degenerate harmonics of SBN

ELD is estimated between brain scans independently for the three regimes
and graph construction scheme. | compared original ELD values with the surrogate
ones independently for the three regimes and across graph construction schemes. |
applied a Wilcoxon Rank-Sum test between the three regimes of harmonics in a
pairwise fashion (3 pairs) and within every graph construction scheme and also per
regime of harmonics across the graph construction schemes (5x4/2 = 10 pairs).

Multiple Comparison Correction
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| applied the false discovery rate (q = 0.01) to correct for multiple comparisons.

3. Results
3.1 High Repeatability of Laplacian Eigenvalues
Laplacian eigenvalues were highly repeatable across the five graph
construction schemes (within graph construction schemes; :
). The

with a

between graph construction
schemes correlation was

. The Wilcoxon Signed Rank-Sum test revealed a strong difference in
Pcc values derived from the within graph construction schemes with those Pcc
values extracted from the between graph construction schemes (p-value = 0.0021).
Fig.5 illustrates the Pcc values between all the combinations across the five graph
construction schemes and scan sessions for subject 1. In the main diagonal, one can
see the high Pcc values (repeatability level), and the relevant p-value between scans

derived from the same graph construction scheme. The off-diagonal Pcc values

refers to the between-session and graph construction schemes.
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Fig.5 Pcc values between all the combinations across the graph construction

schemes and scan sessions for subject 1. The main diagonal reports the
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repeatability estimations of the Laplacian eigenvalues (within-session and graph
construction scheme) while the off-diagonal refers to the between-session and graph

construction schemes.

3.2 Repeatability of the Laplacian Eigenvalue Properties

Fig.6 summarizes the group-mean and absolute between-scan differences of the
Synchronizability and the Laplacian Energy for every graph construction scheme.
Interestingly, the range of Synchronizability shows a higher dependency on the
graph construction scheme compared to the Laplacian energy. My observations are
supported by a direct comparison of original values with the surrogate-based
Laplacian properties. P-values for both Synchronizability and Normalized Laplacian
Energy were significant compared to surrogates across graph construction schemes
(p < 0.001). The smallest group-mean between-scan difference for Synchronizability
is shown for the 9m-OMST (p-value = 0.0041) and NS-OMST (p-value = 0.0021)
graph construction schemes and the Laplacian energy is shown for 9m-OMST (p-
value = 0.0032) and NS — OMST (p-value = 0.0022) graph construction schemes.
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Fig.6. lllustration of the group-mean Synchronizability and Laplacian Energy
for every graph construction scheme.

A. Group-mean Synchronizability, B. group-mean normalized Laplacian Energy,

C. Group-mean between-scan absolute difference of Synchronizability, and D

Group-mean between-scan absolute difference of Laplacian Energy. Letters

from A to E refer to the five graph construction schemes defined in Table 2. In
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A and B, blue/red colors refer to the first and second scan sessions,
correspondingly.

3.3 Laplacian Sub-spectrum findings
Smaller Eigenvalues

Table 3 summarizes the group-mean A, the group-mean number of modules
estimated with the method of eigen-difference of Laplacian eigenvalues (Eigengap
method) and by the K-Means clustering applied over the first eigenvectors. For the
first two graph construction schemes (NS-OMST, 9m-OMST) compared to the
surrogate null models, the average A, revealed that the original SBN can be
subdivided in two subnetworks, while the eigengap and the K-Means approaches for
the detection of communities showed significant different findings compared to the
surrogates (p < 0.001).

Table 4 tabulates the MI of between-scan communities affiliations extracted with
both methods and in every graph construction scheme. For the first two graph
construction schemes (NS-OMST, 9m-OMST), the MI values for the K-Means
algorithm are high, while the statistical comparison of the MI between the K-Means
and the eigengap algorithms (p < 0.001) untangled the K-Means algorithm as a
better approach compared to the eigengap. The communities extracted with K-
Means applied over the SBN constructed with the 9m-OMST method showed a high
similarity with our previous study (M = 0.91 + 0.04) where numerous graph partition

algorithms were applied on the same set (Dimitriadis et al., 2021).

Table 3. Group-mean A, ,group mean Eigengap and the number of
communities based on eigen-difference and K-Means clustering over the first
eigenvectors across subjects for every graph construction scheme. |
underlined with bold, the p-values that showed significant differences
compared to the surrogate-based p-values (Letters from A to E refer to the five

graph construction schemes defined in Table 2.
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0.39+0.04 0.40+0.05 0.3940.21 0.21+0.04 0.16x0.04
A3 (mean
+/-std)
(p= (p= (p=0.071) |(p=0.064) |(p=0.068)
0.00015) 0.00005)
Eigengap( |2.61+0.24 3.42+0.56 2.76x0.65 2.31+0.57 2.21+0.23
mean+/-
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Table 4. The between-scan MI of the communities extracted with eigen-

difference and K-Means clustering per

graph construction schemes.

underlined with bold, the p-values that showed significant differences

compared to the surrogate-based p-values (Letters from A to E refer to the five

graph construction schemes defined in Table 2.
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K- 0.78%0.06 0.88+0.04 0.46+0.11 0.24+0.06 0.37+0.11
Means(mea
n+/-std)
K- 0.39x0.06 0.45x0.08 0.33%0.13 0.20£0.07 0.24+0.10
Means®""
(mean+/-
std) (p= (p= (p=0.592) |(p=0.208) |(p=0.182)
0.0021) 0.0038)
Eigengap( | 0.42+0.08 0.62+0.09 0.2910.12 0.20+0.13 0.30+0.14
mean+/-
std)
0.26+0.11 0.32+0.12 0.274£0.15 0.18+0.14 0.20+0.13
Eigengap®"
"(mean+/- | (p= (p= (p=0.418) |[(p=0.672) |(p=0.386)
std) 0.0029) 0.0024)

Medium Eigenvalues

The Laplacian spectrum of the graph construction schemes showed a single
clear smooth peak as presented in Fig.2. This peak around 1 suggests a humber of
motif duplications where its height is relevant to this number. The relationship
between the relative frequency (RF) linked to peak at A = 1 and the total number of
unique 3 and 4 motifs and the Matching Index (MIN) is described below. The
Laplacian spectrum of structural brain networks across subjects, scans, and graph
construction schemes didn't show any other clear peaks indicative of recurrent
addition of motifs. My findings are supported by the surrogate analysis where peaks
of significant lower amplitude were observed in surrogated Laplacian spectrums. All
distributions showed a peak around 1 while the group-mean relative frequency (RF)
related to this peak didn't show differences across methods (p > 0.05, Bonferroni
correction) but showed difference between original and surrogate null models (Table
5).

Table 5. Group-mean relative frequency (RF) linked to peak at A = 1 across

subjects for every graph construction scheme. | underlined with bold, the p-
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values that showed significant differences compared to the surrogate-based p-
values (Letters from A to E refer to the five graph construction schemes defined in
Table 2.

A B C D E
RF(mean+/ | 2.36+0.05 2.67+0.06 |[2.59+0.13 |[2.54+0.12 |2.42+0.15
-std)

RFWT 1.29+0.12 1.65+0.08 1.65+0.14 | 1.63+0.15 1.55+0.14
(mean+/-
std)

= = ===
0.32x10"%) |0.83x10™) |0.64x10"% |[0.89x10™%) |0.42x10™"%)

The multi-linear regression analysis revealed a significant trend between the
RF and the motifs only for the 9m-OMST graph construction scheme. The following
equation described the relationship between the RF and the two 3-motifs, the first
four 4-motifs and the Matching Index (MIN) (see Fig.3A):

RF = 5.75 — 0.04xN,~™" 4 0.14xN; ™" 4 0.0017xN; "™ 4 0.0028xN, "™/
— 0.004xN;~ ™% 1 0.021xN, ™" — 9.85xMI, for the first scan R?
= 0.431,p = 0.038 (6)

RF = 5.34 — 0.04xN,.~™" 4 0.12xN; ™" 4 0.0021xN, "™ 4 0.0024xN, "™

— 0.004xN; ™% 1 0.022xN,} ™" — 9.67xMI, for the second scan R?
= 0.408,p = 0.031 (7)
Mean and standard deviations of motifs and Ml for each scan (first / second scan).

First scan :

NZTOM = 72,43 +17.31,

N MU = 1543 +4.72,
N} = 492,70 +175.23,
N} = 129.78 + 48.36,

Ny = 231.08 + 93.58,
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NSO =10.49 + 4.51,
MI = 0.24 + 0.0086

Second scan:

=

37motl — 70,81 + 15.33,

=

37motS — 1545 +4.26,
mmOtS — 470.36 + 148.35,

=

=

Aomotf = 123.76 + 42.13,
ATmOR = 227.01 + 82.63,

=

=

20N = 9,69 + 3.60,
MI = 0.24 + 0.0078

As per motifs, | encountered the total amount of either 3 or 4-motifs detected
across the individual structural connectome per scan. Typically, this is the sum of
distribution showed in Fig.7,8 in columns across graph construction schemes. Figs
7-8 show the averaged across subjects and scans motif fingerprint of every node
(ROI) across the five graph construction schemes for each of alternative 3,4-motifs.

The correlation of the MIN with the RF was 0.54 + 0.12 averaged across the
graph construction scheme. This finding underlines how network symmetry
guantified with MIN shapes the central peak of the graph Laplacian spectrum.

Fig.9 illustrates the group-averaged Pearson’s correlation coefficient between
the nodal weighted clustering coefficient and the nodal 3-motifs distribution (Fig.7)
across the five graph construction schemes. | first estimated the mean of correlations
between scans per subject across the graph construction schemes. A positive
correlation between the second 3-motif and weighted clustering coefficient was
consistently observed across graph construction schemes while a mixed sign of
correlation was detected for the first 3-motif (Fig.9).

Fig.10 illustrates the group-averaged Pearson’s correlation coefficient
between the motif frequency of occurrences across the graph constructions schemes
independently for each of the two 3-motifs (Fig.7). Similarly, Fig.11 illustrates the
group-averaged Pearson’s correlation coefficient between the motif frequency of
occurrences across the graph constructions schemes independently for each of the

six 4-motifs (Fig.7). | first estimated the mean of correlations between scans per
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subject across graph construction schemes. In both 3,4-motifs, a strong positive
correlation was consistently observed between the 9-m-OMST, NS-thr and NS-
t/MD-w. This means that the individual SBN shares a large number of common local

topologies that is reflected to the global network level.

e
o 2 8
e

s
- 8 8 8
x
l 2
) n i
ot

Fig.7. Group and scan averaged motif fingerprint of every ROI across the five graph

construction schemes (A-E) and the two 3,maotifs.

20 4 0 ®
ROis

Fig.8. Group and scan averaged motif fingerprint of every ROI across the five graph

construction schemes (A-E) and the two 4,maotifs.
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Fig.9. Group-averaged Pearson’s correlation coefficient between the nodal weighted
clustering coefficient and the two nodal 3-motifs distribution as shown in Fig.7 Mean
values and standard deviation refer to the group level (Pcc — Pearson’s Correlation

Coefficient).
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Fig.10. Group-averaged Pearson’s correlation coefficients of the motif frequency of
occurrence between pairs of graph construction schemes for each of the two 3-
motifs.

A and B refer to the two 3-motifs as demonstrated in Fig.7.
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Fig.11. Group-averaged Pearson’s correlation coefficients of the motif frequency of
occurrence between pairs of graph construction schemes for each of the six 4-
motifs.

A — F refer to the six 4-motifs as demonstrated in Fig.8.

Largest eigenvalues

Table 6 summarizes the group-mean largest eigenvalue A, across graph
construction schemes which differs significantly from the largest eigenvalue relevant
to the random networks. The largest eigenvalue of the Laplacian spectrum informs
us of the level of ‘bipartiteness’ of the most bipartite subpart of the network, which is
closely related to the number of odd cyclic motifs in the network. Visual inspection of
the associated eigenvector linked to the largest eigenvalue across the cohort, scans,
and in the first two graph construction schemes (NS-OMST, 9m-OMST) with respect
to communities as detected in (Dimitriadis et al., 2021; see Fig.5), is highly localized
in modules 8 and 9.

Table 7-9 shows the group-mean odd-cycles (odd-cycles of length 3,5 and 7)

fingerprint related to the total number of odd-cycles across the graph construction
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schemes. The odd-cycle fingerprint was significantly different for all the graph
construction schemes compared to the random networks for the three lengths.

Table 10 tabulates the group-mean bipartivity index bs across the graph
construction schemes. The bipartivity index bs was significantly different only for the
first two graph construction schemes (NS-OMST, 9m-OMST) compared to the
random networks. Interestingly, the first graph construction scheme (NS-OMST)
produced the highest bipartivity compared to the rest of graph construction schemes.

Multi-linear regression analysis between the An and the bs plus the three
exhaustive estimation of odd-cycles of length = 3,5,7 across the graph construction
schemes revealed interesting findings only for the first two graph construction
schemes (Table 11). The multi-linear regression model for the 9m-OMST showed
the highest R? and the lowest p-value compared to the NS — OMST uncovering a
relationship between RF and structural network properties expressed with bs and

odd-cycles. Findings were consistent in both scans.

Table 6. Group-mean large eigenvalue A,. (Letters from A to E refer to the five
graph construction schemes defined in Table 2). | underlined with bold, the p-
values that showed significant differences compared to the surrogate-based p-
values (Letters from A to E refer to the five graph construction schemes defined in
Table 2).

45


https://doi.org/10.1101/2023.05.31.543029
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.31.543029; this version posted March 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

An(mean+/- | 1.32+0.05 1.33+0.02 1.31+0.02 1.29+0.03 1.28+0.02

std)

1.09+0.06 |1.08+0.03 |[1.07+0.04 |1.05+0.05 |1.03+0.05
A" (mean
+/-std)

(p= (p=

0.53x10™) [0.32x10™) |(p = (p= (p=

0.37x10™°) |0.43x10™°) |0.62x10™%

Table 7. Group-mean total number of the odd-cycles of length (1) = 3. (Letters
from A to E refer to the five graph construction schemes defined in Table 2). |
underlined with bold, the p-values that showed significant differences
compared to the surrogate-based p-values (Letters from A to E refer to the five

graph construction schemes defined in Table 2).

A B C D E
odd 53.24+2.94 | 463.37+117 | 609.56+101 | 77.82+12.5 | 69.51+13.7
—cycles (1 .69 .79 1 8
=3)
(mean+/-
std)

31.51+2.37 | 294.72+75. | 472.83+92. | 33.77+13.6 |40.92+8.62

45 45 2

odd —
cycles(l= |(p= (p= (p= (p = (p =
3)or(mea |0.24x10%%) |0.51x10™"%) | 0.18x10™) |0.12x10*%) |0.23x10™)
n+/-std)

Table 8. Group-mean total number of the odd-cycles of length (I) = 5. (Letters
from A to E refer to the five graph construction schemes defined in Table 2). |
underlined with bold, the p-values that showed significant differences
compared to the surrogate-based p-values (Letters from A to E refer to the five

graph construction schemes defined in Table 2).
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A B C D E
odd 204+15 12.448+2.4 | 29.35045.1 | 26.127+4.3 |27.451+4.6
—cycles (1 70 27 56 21
=5)

(mean+/-
std)
67.85+6.78 |5.662+2.78 |6.723+1.93 | 5.932+2.08 |7.542+3.87
3 2 5 2
odd —
cycles(l= |(p= (p= (p= (p=
5)eurr(Mmea | 0.12x107%) | 0.32x10%") | 0.23x10™°) |0.15x10™°) | (p =
n+/-std) 0.18x10™"")

Table 9. Group-mean total number of the odd-cycles of length (1) = 7. (Letters
from A to E refer to the five graph construction schemes defined in Table 2). |
underlined with bold, the p-values that showed significant differences
compared to the surrogate-based p-values (Letters from A to E refer to the five

graph construction schemes defined in Table 2).

A B C D E
odd 798.10+88. |414.980+ |1.765.000+ |1.326.000+ |1.452.000+
—cycles (1 | 20 337.180 907.230 675.341 745.432
(mean+/-
std)

217.354+ 889.451+ 712.562+ 798.542+

417.56+ 168.931 392.753 294.431 334.231
odd — 59.14
cycles(l =
7)surr(mea
n+/-std) (p= (p= (p= (p= (p=

0.09x10™"") |0.21x10™) |0.11x10"") |0.12x10™"") |0.11x10)

Table 10. Group-mean bipartivity index bs. (Letters from A to E refer to the five
graph construction schemes defined in Table 2). We underlined with bold, the p-
values that showed significant differences compared to the surrogate-based p-
values (Letters from A to E refer to the five graph construction schemes defined in
Table 2).
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A B C D E
bs(mean+/- | 0.87+0.02 0.19x0.04 0.16x0.06 0.17x0.05 0.19+0.06
std)

0.15x0.05 0.06x0.05 0.09x0.04 0.10x0.04 0.10x0.07
bs*"(mean
+/-std)

(p= (p= (p =0.732) | (p=0.672) |(p =0.707)
0.46x10™*) |0.56x10™)

Table 11. Outcome of multi-linear regression analysis between the An and the
bs with the three odd-cycles (OC) of length (I) = 3,5,7. Every row corresponds
to each scan (with ‘X’ , | denote the arguments that didn’t overcome the

statistical threshold of p-value < 0.05)

Intercept | bs oc™ |oc™ oc™’ R* p-value
A 1.86 X - 0.00090 | - 0.312 | 0.0152
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1.85 X 0.0042 | 0.00085 | 0.000087 | 0.295 | 0.0245
-.0039 -
0.000077
B 1.81 -0.057 | 0.0012 | 0.00025 | - 0.844 | 1.71e-12
1.82 -0.061 | 0.0013 | 0.00027 | 0.000017 | 0.812 | 2.65e-11
0.000016
C 2.10 X X X X 0.222 | 0.0819
2.05 X X X X 0.213 | 0.0912
D 2.01 X X X X 0.204 | 0.0721
1.92 X X X X 0.187 | 0.0834
E 1.95 X X X X 0.192 | 0.0654
1.86 X X X X 0.167 | 0.0782

3.4 Repeatability of Laplacian Eigenvectors

Table 12 reports the group-mean between-scan D-° of the Laplacian
eigenvectors for every graph-construction scheme. 9m-OMST graph construction
scheme showed the smallest group-mean D" followed by the FA-t/NS-w but without
reaching the significant level (see Fig.12 ; p-value < 0.05, Bonferroni corrected). My
findings are supported also by the direct comparison of original D*° values with the
surrogate D"° values (p-value = 0.0057 & p-value = 0.0043, for 9m-OMST and NS-
OMST, -correspondingly). An overview of the two Laplacian eigenvectors
(connectomic harmonics) from both scan sessions for 9m-OMST are illustrated in
Fig.13.

Table 12. Group-mean between scan D"° of the Laplacian eigenvectors for
every graph construction scheme. | underlined with bold, the p-values that
showed significant differences compared to the surrogate-based p-values

(Letters from A to E refer to the five graph construction schemes defined in Table 2).
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A B C D E
D" *(mean+/- | 7.64+1.29 5.12+1.56 7.88+1.54 6.47+1.38 6.50+1.74
std)
5.12+1.42 3.62+1.42 6.42+1.61 5.56+1.62 5.62+1.58
(mean+/-
std)
(p =0.0059) | (p = 0.0006)
(p=0.185) |[(p=0.128) | (p=0.205)
10
8
w 8
-
(o
4
2
0

A B C D E
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Fig. 12. lllustration of the group-mean D° for every graph construction scheme. (*
denotes the statistical difference of D*° for the 9m-OMST method versus the four
methods).
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Fig.13. Overview of the two Laplacian eigenvectors (connectomic harmonics)

from both scan sessions for 9m-OMST method extracted from subject 1.

A. First eigenvector from scan 1 (left) and scan 2 (right)

B. Second eigenvector from scan 1 (left) and scan 2 (right)

3.5 Repeatability of the Integrative, segregative, and degenerate harmonics of
SBN using ELD

Fig.14 illustrates the group-averaged ELD values for every regime of
harmonics across the graph construction schemes. It is clear that the repeatability of

harmonics’ partitions is higher for the integrative harmonic, middle for the degenerate
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and lower for the segregative. Group-averaged ELD values for every regime of
harmonics and across graph construction schemes were significantly different
compared to the surrogate ELD values (p < 0.01 x 10, Bonferroni corrected).
Statistical analysis between the three regimes of harmonics in a pairwise fashion and
within every graph construction scheme showed significant differences for every pair
and graph construction scheme ( p < 0.01 x 10™ , Bonferroni corrected). The
comparison of ELD values per regime of harmonics across the graph construction
schemes revealed interesting trends. No significant difference was detected across
the graph construction schemes for integrative and degenerate harmonics while
group-averaged ELD was statistically lower for segregative harmonics for 9-m-OMST

graph construction scheme compared to the rest (p < 0.02 x 10™? , Bonferroni

corrected).
03[ BN Integrative
0.25 I Degenerate

1 [ Segregative

0.2 |

0 ot | )

—

m 0.1}

L]

Uﬁ*i 591 » ) ?$ %

05— : h . .
NS-OMST 9-m-OMST NS-thr NS-t/FA-w NS-t/MD-w
Fig. 14. Repeatability of harmonics’ partitions. Group-averaged ELD values for

every regime of harmonics across the graph construction schemes.

3.6 Brain Fingerprinting

| presented the various inputs in the brain fingerprinting approach underling in
parenthesis the adopted measure. My analysis succeeded in an accurate
identification of subjects id (100%) on the test set (second session) on every graph
construction scheme employing the Laplacian spectrum (Laplacian eigenvalues) as
a feature vector (X? statistics). However, the identification accuracy employing

Laplacian eigenvectors (harmonics) showed a 100% level only for the 9m-OMST.
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Similarly, |1 succeeded an absolute identification of subjects id (100%) across every
graph construction scheme using the whole structural connectome as a 2D tensor
using Portrait Divergence (PID) as a proper graph theoretic comparison metric.
Complementary, Table 13 shows the Identification accuracy of structural properties
of SBN across alternative graph construction schemes. Across the five studying
structural properties, the highest accuracies were detected for communities (M), and
3,4-motifs (X* statistics) across the five construction schemes while the highest
performance was detected for 9m-OMST (B), and NS-OMST (A) with the former to
get higher accuracies. The identification accuracy for Bipartiveness (ED) was too low
while and for the odd-cycle motifs (X? statistics) were high only for the 9m-OMST (B),
and NS-OMST (A). The combination of the outcome of brain identification strategy
for communities, 3,4-motifs and odd-cycles of length (1) = 3,5,7 (ensemble way)
gave an absolute accuracy (100%) for the 9m-OMST (B) , and a 94.59 for the NS-
OMST (A).

Table 13. Identification accuracy of structural properties of SBN across
alternative graph construction schemes. (Letters from A to E refer to the five
graph construction schemes defined in Table 2).

A B C D E

Laplacian 100 100 100 100 100
Eigenvalues

(X%

Laplacian 72.97 86.49 59.46 56.76 56.76
Eigenvectors

(X?)

SBN (PID) 100 100 100 100 100
Communities | 83.78 89.19 56.76 59.46 54.05
(MI)

3-motifs (X°) |86.49 97.30 71.62 71.62 71.62
4-motifs (X*) |89.19 94.59 64.86 62.16 67.57
Bipartiveness | 45.95 51.35 37.84 37.84 40.54
(ED)

Odd-cycles 75.68 86.49 56.76 54.05 54.05
motifs of
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length (1) =

3,57 (X%

Ensemble: 94.59 100 81.08 72.97 75.67
Communities,

3-motifs , 4-

motifs, odd-

cycles of

length (1) =

3,5,7

4. Discussion

This study investigates the properties of graph Laplacian spectrum, the
multiscale topological descriptors of the networks and their association over dMRI-
based structural brain networks (SBN). All the aforementioned estimators and
associations were explored for their repeatability (test-retest scans), their
individuality (brain fingerprinting) and how they could be affected by the choice of
graph construction scheme. Finally, the evidences of this study were supported
statistically but also through perturbations by comparing original values with
surrogates ones estimated over random null network models (edge rewiring). For
that purpose, | adopted and analyzed the test-retest diffusion-MRI data set from the
multimodal neuroimaging database of the Human Connectome Project (HCP)
(Glasser et al., 2013; S N Sotiropoulos et al., 2013; Van Essen et al., 2013).

Graph laplacian spectrum of SBN has been studied as a whole but also in
sub-ranges of low, middle and large eigenvalues. Every Laplacian eigenvalues
subrange has been associated with specific topological patterns covering various
spatial scales. The smallest eigenvalues of the Laplacian spectrum reflect the
modular organization of a network (Donetti, 2005; Fortunato, 2010; Shen and Cheng,
2010; Shi and Malik, 2000). Repeated duplications and additions of nodes and motifs
in the construction of a network leave traces in the network’s Laplacian spectrum in
the middle eigenvalues (Banerjee and Jost, 2009, 2008). De Lange et al., (2016)
revealed that global symmetry shaped neural spectra and the overlap in the wiring
pattern of brain regions measured with MIN can explain the large central peak

observed in spectra of neural networks (A=1). The largest eigenvalue of the
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Laplacian spectrum informs us of the level of ‘bipartiteness’ of the most bipartite
subpart of the network, which is closely related to the number of odd cyclic motifs in
the network (Bauer and Jost, 2009). A recent study on SBN introduced a new
framework that placed integration and segregation on the end of a continuum of
structural connectivity graph Laplacian harmonics via the presentation of a gap-
spectrum (Sipes et al., 2024). Their approach partitions graph Laplacian spectrum
into integrative, segregative, and degenerate harmonics. It is important to underline
here that the whole analysis focused on normalized Laplacian spectrum.

This study showed that normalized Laplacian eigenvalues of dMRI-based
structural brain networks are subject-specific, and therefore be used to ‘fingerprint’
an individual with absolute accuracy (100%). Normalized Laplacian eigenvalues are
also repeatable across the five graph construction schemes but their connectome-
related information of the studying SBN is highly dependent on the graph
construction scheme.

The repeatability of Laplacian eigenvectors (connectome harmonics ; Naze et al.,
2021) is highly dependent on the graph construction scheme. 9m-OMST graph
construction scheme showed the smallest group-mean D“° followed by the NS-
OMST but without reaching the significant level (p < 0.05, Bonferroni corrected).
These findings are supported also by the direct comparison of original Ml values with
the surrogate D"° values. However, the group-mean D"° even for the 9m-OMST
method is far away from characterized as repeatable.

Investigation of the small eigenvalues from the Laplacian spectrum untangled
a community structure for the first two graph construction schemes (NS-OMST, 9m-
OMST). For those graph construction schemes, the optimal division of the network
based on the eigen-difference is suggested to be between 7 and 9 communities
(Dimitriadis et al., 2021). My findings are supported by the direct comparison with the
surrogate null models. In a recent exploratory study on the same dataset comparing
thirty-three graph partition schemes and the same set of graph construction
schemes, we revealed a consensus set of 9 communities ( Dimitriadis et al., 2021;
Fig.5). My analysis showed that the K-Means clustering applied over the first
eigenvectors is a better approach compared to the eigen-difference (eigen-gap)
method applied over Laplacian eigenvalues. For the first two graph construction
schemes (NS-OMST, 9m-OMST), the MI values for the K-Means algorithm

demonstrated a high repeatability between the two scans, while the communities
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extracted with K-Means applied over SBN constructed with 9m-OMST method
showed a high similarity with our previous study (MI = 0.91 + 0.04) where a large
number of graph partition algorithms were applied on the same set (Dimitriadis et al.,
2021).

The Laplacian spectrum of the graph construction schemes showed a clear
smooth peak at the middle range as is shown in Fig.3. This peak around A =1
suggests a number of motif duplications where its height is relevant to this number.
The Laplacian spectrum didn’t show any other clear peaks indicative of recurrent
addition of motifs. The observation of this peak on the middle subpart of the
Laplacian spectrum was consistent across the graph construction schemes while it
was less peaked (lower amplitude) in the rewired surrogate networks. | explored a
possible relationship between the RF extracted from the Laplacian spectrum linked
to A = 1 and the total number of 3,4-motifs extracted from the SBN plus the MIN. The
adopted multilinear regression analysis untangled a significant trend between the RF
and the 3,4-motifs plus the MIN only for the 9m-OMST graph construction scheme
which was repeatable. These findings complement to the results of De Lange et al.,
(2016) showing that local recursive topological patterns expressed here with 3,4-
motifs and global symmetry measured with MIN shaped graph Laplacian spectrum
explaining partly the RF related to the large central peak observed in the Laplacian
spectrum of SBN (A = 1).

Complementary to the aforementioned analysis, | investigated how nodal
weighted clustering coefficient is correlated to the nodal 3-motifs distribution. A
positive correlation between the second 3-motif and weighted clustering coefficient
was consistently observed across graph construction schemes while a mixed sign of
correlation was detected for the first 3-motif with the five graph construction
schemes. Correlation between individual distributions of 3,4-motifs across graph
construction schemes revealed a strong positive correlation between the 9-m-OMST,
NS-thr and NS-t/MD-w. This means that the individual SBN share a large number of
common local topologies that is reflected to the global network level.

The largest Laplacian eigenvalues reflect the level of bipartiteness of the structural
brain networks. Bipartiteness is related to the odd cyclic motifs, and especially is
linked to the triangle motifs and high clustering coefficient observed in small-world
brain networks (Bassett and Bullmore, 2006; Bullmore and Sporns, 2009; Hagmann

et al., 2008; van den Heuvel et al., 2008). In the present study, bipartiteness which
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is linked to the largest Laplacian eigenvalue Ln was significantly different on the
original SBN compared to the surrogate null networks only for the two graph
construction schemes (NS-OMST, 9m-OMST). The exhaustive quantification of odd-
cycles with length = 3,5 and 7 over original SBN differed significantly from the ones
estimated over surrogate null models for every graph construction scheme. Multi-
linear regression analysis between the An and the bs plus the three total number of
odd-cycles (length = 3,5,7) revealed interesting findings only for the two graph
construction schemes (NS-OMST, 9m-OMST). Especially for the 9m-OMST, the
outcome of this analysis revealed a significant model with a high R? = 0.844 that
involved every independent variable, the bs and the three odd-cycles. It is the very
study that revealed such a trend between the An, the bs and the odd-cycles in
network science and especially in SBN.

The repeatability of harmonics’ partitions with the gap-spectrum method is higher
for the integrative harmonic, middle for the degenerate and lower for the segregative
regime. Group-averaged ELD values for every regime of harmonics and across
graph construction schemes were significantly different compared to the surrogate
ELD values (p < 0.01 x 10, Bonferroni corrected). Statistical analysis between the
three regimes of harmonics in a pairwise fashion and within every graph construction
scheme showed significant differences for every pair and graph construction scheme
( p < 0.01 x 102, Bonferroni corrected). No significant difference was detected
across the graph construction schemes for integrative and degenerate harmonics
while group-averaged ELD was statistically lower for segregative harmonics for 9-m-
OMST graph construction scheme compared to the rest of graph construction
schemes (p < 0.02 x 10™?, Bonferroni corrected).

Under the brain fingerprinting framework, the Laplacian eigenvalues and the
topologies of SBN showed an absolute accuracy (100%). Laplacian eigenvectors
reached an absolute accuracy only for the 9m-OMST graph construction scheme. In
parallel, the performance of brain fingerprinting employing five studying structural
properties revealed the communities, and 3,4-motifs across the five construction
schemes succeeding the highest performance for 9m-OMST (B), and NS-OMST (A)
with the former to get higher accuracies. The combination of the outcome of brain
identification strategy for communities, 3,4-motifs and odd-cycles of length (1) =
3,5,7 (ensemble way) gave an absolute accuracy (100%) for the 9m-OMST (B) , and
a 94.59 for the NS-OMST (A). These brain fingerprinting findings support the
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individuality of the SBN, of the Laplacian spectrum and of the multi-scale resolution
of network topology extended from 3,4-motifs and odd-cycles of length (I) = 3,5,7 up
to communities. The outcome of alternative inputs on brain fingerprinting approach
differed across graph construction schemes while 9m-OMST demonstrated the
highest performance followed by the NS-OMST.

In this study, | examined the relationship between Laplacian spectrum and
topological patterns of SBN quantified by the exhaustive quantification of recursive
motifs and odd cycles. The RF linked to A = 1 was partially predicted by the total
number of 3,4-motifs and the MIN only for the 9m-OMST and in both scans.
Similarly, the An was largely predicted by the total number of odd-cycles of length (1)
= 3,5,7 and the bs for the 9m-OMST and to a less extent for the NS-OMST. These
relationships between Laplacian spectrum and network topologies revealed to what
extent recursive
topological motif and odd-cycles, MIN and bs shaped graph Laplacian spectrum.
Although graph Laplacian spectrum properties can now be captured by recursive
topological motifs up to some extent, the graph Laplacian spectrum can reveal
systems-level changes that cannot be described or detected by standard network
metrics.

| investigated also the repeatability and the influence of graph construction
schemes on basic Laplacian properties apart from the three sub-ranges of Laplacian
spectrum. The range of Synchronizability showed a higher dependency on the graph
construction scheme compared to the Laplacian energy. The smallest group-mean
between-scan difference for Synchronizability, and for Laplacian energy was shown
for the 9m-OMST and NS-OMST graph construction schemes. Both observations
were supported statistically by a direct comparison with the corresponding values
estimated from the surrogate null networks.

The spatial resolution of structural brain networks restricted by the adopted
anatomical atlas, is likely to have a high impact on the network topology and the
relevant Laplacian spectrum (Bullmore and Sporns, 2012, 2009). My findings can be
considered only for reconstructed anatomical brain networks based on dMRI
(Hagmann et al., 2008; Iturria-Medina et al., 2008; van den Heuvel and Hulshoff Pal,
2010), the data-acquisition parameters, the algorithm performing the tractography
analysis with its parameters, the atlas template (AAL) and the graph construction

scheme. The combination of these choices across the whole analysis might alter the
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constructed SBN which in turn have impact on the shape of graph Laplacian
spectrum and any of the recursive topological motif and odd-cycles (Chung et al.,
2003 ; van den Heuvel et al., 2016).

The  Laplacian  Spectrum  of  functional brain  networks  using
electroencephalography, magnetoencephalography, and functional magnetic
resonance imaging (fMRI) might differ from structural brain networks from dMRI.
Future studies should reveal the relationship between the Laplacian spectrum of
functional and structural brain networks. Recent studies used atlas-free connectome
harmonics dMRI as a dependent variable to predict the brain resting-state activity of
fMRI (independent variables). They showed their findings in datasets across the
landscape of consciousness with very interesting findings (Atasoy et al., 2018a,
2016; Luppi et al.,, 2020) and in psychedelic (Atasoy et al., 2018b) while they
explored the robustness of connectome harmonics using local gray matter and long-
range white matter (Naze et al., 2021). It would be very important to explore the
repeatability of the Laplacian spectrum on structural brain networks from dMRI in an
atlas-free scenario.

The structural brain networks microscopically showed a community structure as it
has been observed in other species and other types of networks (de Lange et al.,
2014). Macroscopically, anatomical connectivity topology is shaped by evolutionary
growth constraints that attempt to balance the optimal efficiency and robustness of
the communication of various brain networks while simultaneously minimizing wiring
cost (Bullmore and Sporns, 2012; Collin et al., 2014; van den Heuvel and Sporns,
2013a, 2013b). The 9m-OMST graph construction scheme that integrates nine
diffusion metric-based structural brain networks into one has at its core the OMST
topological filtering methodology that optimizes efficiency routing via wiring cost
(Dimitriadis et al., 2018, 2017b, 2017c, 2017a; Messaritaki et al., 2019).

Limitations

My study had a few limitations which is important to discuss. My results were
extracted by analysing the HCP dataset, and for that reason it cannot be generalized
to other datasets that are acquired with different protocols or scanners or analytic
pipelines involving alternative tractography algorithms. It is highly recommended to

every researcher to record a percentage of the original cohort across three or more
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scanning sessions. Moreover, scanning the subjects at the same time of day would
be also desirable (Trefler et al., 2016). Many alternative topological filtering schemes
have been proposed so far. In my study, | fixed the sparsity of the thresholded
networks such as to have the same sparsity as the OMST networks. Other
alternative topological filtering schemes with arbitrary or data-driven approach could
be also explored under the reproducibility framework. It is important to note here that
many other variables can affect the repeatability of structural brain network analyses.
There variables include: the parcellation scheme used, the time interval between the
test-retest scans, and the resolution of the MR data. There variables should be
considered when interpreting structural brain network studies, and a useful
discussion of this subject is provided by Welton et al. (2015). It is important to
underline here, that | investigated high-order interactions focusing on 3,4-motifs, and
odd cycles derived from SBN. There are also alternatively high-order interactions like
hypergraphs, and simplicial complexes (Battiston et al., 2020,2021) that weren’t
explored here. It is important to underline here, that Interdependencies between
brain areas can be explored either from anatomical (structural) perspective
(structural connectivity) or by considering statistical interdependencies (functional
connectivity). Structural connectivity is typically pairwise, where white-matter fiber
tracts start in a certain region, and arrive at another brain area. So, by construction
SBN tabulates pairwise associations compared to functional brain networks, which

can be built upon high-order interactions (Herzog et al., 2024).

5.Conclusions

This study investigates the properties of graph Laplacian spectrum, the multiscale
recursive topological patterns of the networks and their association over dMRI-based
structural brain networks (SBN). All the aforementioned estimators and associations
were explored for their repeatability (test-retest scans), their individuality (brain
fingerprinting) and how they could be affected by the choice of graph construction
scheme. Finally, the evidences of this study were supported statistically but also
through perturbations by comparing original values with surrogates ones estimated

over random null network models (edge rewiring). Further analysis is needed by
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adopting a Multishell Diffusion MRI-Based Tractography, an atlas of higher resolution

and a test-retest dataset from another site to evaluate the main findings of this study.
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Data and code availability

The HCP test-retest data is freely available as listed above.
e Probabilistic  tractography has been realized with  MRtrix
(https://www.mrtrix.org/)

e Network construction using ExploreDTI-4.8.6 (http://www.exploredti.com/)
The code used to generate the graphs for the structural brain networks with
the OMST schemes is available at: https://github.com/stdimitr/multi-group-
analysis-OMST-GDD .

e Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/)
The construction of Surrogate null models and the estimation of weighted
clustering coefficient and 3,4-motifs has been done with the following
equations
Surrogate null models: randmio_und_connected with iter = 10,
Weighted clustering coefficient : clustering_coef wu.m,
3,4-motifs: motif3fstruct_wei.m; motif4struct_wei.
Matching Index (MIN): matching_index_und.m

e 3-odd-cycles : MATLAB :
cycles = allcycles(G,'MaxCycleLength',l); % | = 3,5,7

e Integrative, segregative, and degenerate harmonics of the structural
connectome
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The estimation of gap-spectrum for the definition of the three regimes of
harmonics was realized with the following equation:

Gap Spectrum Estimation : find_ev_IntDegSeg.m
https://github.com/Raj-Lab-UCSF/IntDegSeqg/tree/main

e Multiscale Graph Comparison via the Embedded Laplacian Discrepancy
(ELD)
ELD metric is presented by the authors on the following github page
implemented in python (ELD.py)
https://github.com/edrictam/Embedded-Laplacian-Distance

e |implemented ELD in MATLAB in my personal github webpage based on
author’s definition in conjunction to the estimation of graph Laplacian
spectrum and Brain Fingerprinting approach.

e Violin Plots (Figures 9 and 14):
https://zenodo.org/records/12749045
Povilas Karvelis (2025). daviolinplot - violin and raincloud
plots (https://github.com/povilaskarvelis/DataViz/releases/tag/v3.2.7), GitHub.
Retrieved March 16, 2025.

e Correlograms (Figures 10 and 11):
SerhanYilmaz(2025). Correlogram (https://www.mathworks.com/matlabcentral
[fileexchange/133812-correlogram), MATLAB Central File Exchange.
Retrieved March 14, 2025.

e Portrait Divergence (PID):
An information-theoretic, all-scales approach to comparing networks

https://github.com/bagrow/network-portrait-divergence

e Embedded_Laplacian_Discrepancy (ELD)
ELD is implemented in Python in the author’s website.
https://github.com/edrictam/Embedded-Laplacian-Distance

A MATLAB implementation of the ELD is provided in my personal github’s
website in a repository dedicated to this study (see below).

e Alist of MATLAB functions used in the current study is demonstrated in:
https://github.com/stdimitr/graph_laplacian_dMRI_repeat scans
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