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Abstract 

High-level vision is frequently studied at the level of either individual objects or whole scenes. An 

intermediate level of visual organisation that has received less attention is the “object constellation” – a 

familiar configuration of contextually-associated objects (e.g., plate + spoon). Recent behavioural studies 

have shown that information from multiple objects can be integrated to support observers’ high-level 

understanding of a “scene” and its constituent objects. Here we used EEG in human participants (both 

sexes) to test when the visual system integrates information across objects to support recognition, using 

representations of objects’ real-world size as a proxy for recognition. We briefly presented masked object 

constellations consisting of object silhouettes of either large (e.g., chair + table) or small (e.g., plate + spoon) 

real-world size, while independently varying retinal size. As a control, observers also viewed each silhouette 

in isolation. If object context facilitates object recognition, real-world size should be inferred more effectively 

when the objects appear in their contextually-associated pairs than in isolation, leading to the emergence of 

real-world size information in multivariate EEG patterns. Representational similarity analysis revealed that 

neural activity patterns captured information about the real-world size of object constellations from ~200 ms 

after stimulus onset. This representation was stronger for, and specific to, object pairs as compared to single 

objects, and remained significant after regressing out visual similarity models derived from computational 

models. These results provide evidence for inter-object facilitation of visual processing, leading to a 

qualitatively different high-level representation of object pairs than single objects. 

 

Significance Statement 

This study used electroencephalography decoding to reveal the neural timecourse of inter-object facilitation 

present for contextually-associated groups of objects (e.g., chair + table). Although ubiquitous in daily life, 

the 'object constellation' level of representation has rarely been examined compared to isolated objects or 

entire scenes. By shedding new light on facilitatory interactions between objects, arising before 200ms of 

visual processing, our results provide insight into the continuum along which objects and scenes exist. At the 

same time, this work advances the current understanding of the neural basis of real-world size, using strict 

visual controls to show that inferred information about objects’ spatial scale in the real world emerges around 

200 ms after stimulus onset.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2025. ; https://doi.org/10.1101/2023.05.30.542965doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542965
http://creativecommons.org/licenses/by-nc-nd/4.0/


THE TIMECOURSE OF INTER-OBJECT FACILITATION 
 

 
3 

Introduction 

Many scenes in daily life are meaningfully defined by the specific constellations of objects they contain (e.g., 

a knife and fork either side of a plate, or a sofa facing a television). Our encounters with such multi-object 

arrangements are so ubiquitous that the visual system is remarkably sensitive to statistical regularities within 

these groups, with both the likelihood of objects’ co-occurrence and their configural arrangement influencing 

the way we search for, attend to, and remember familiar objects (Biederman, 1972; Biederman et al., 1973; 

Kaiser et al., 2015; Võ et al., 2019; Nah and Geng, 2022). 

Notably, higher-level statistical regularities between objects also appear to influence object processing itself 

(Kaiser et al., 2019). Behavioural studies have shown that objects are recognized faster and more accurately 

when viewed together with one or more contextually-associated objects (Auckland et al., 2007; Davenport, 

2007). Furthermore, ambiguous objects that appear with an associated object in a familiar configuration 

(e.g., a keyboard in front of a monitor) are recognized more accurately than the same objects shown in 

isolation or in an unfamiliar configuration (Bar and Ullman, 1996; Green and Hummel, 2006). In the present 

study, we use time-sensitive decoding of electroencephalography (EEG) data to examine the timecourse of 

this inter-object facilitation effect. 

Previous EEG studies investigating the timecourse of contextual associations between objects, or between 

objects and scenes, measured the neural response to semantic violations by contrasting incongruent vs. 

congruent object associations. This contrast gives rise to reliable event-related potentials (ERPs; Ganis and 

Kutas, 2003; Mudrik et al., 2010; Võ and Wolfe, 2013; Coco et al., 2020; Quek and Peelen, 2020), including 

the domain-general N400 over centro-parietal electrodes (Kutas and Federmeier, 2011). Notably, these 

studies used clearly visible objects, as the interest was in measuring when neural signals reflected the 

violation. In contrast, here we were interested in how the processing of ambiguous objects is facilitated by 

object context.  

A similar question has been addressed for objects disambiguated by global scene context (Brandman and 

Peelen, 2017; Wischnewski and Peelen, 2021). In those studies, an object was degraded such that it was 

difficult to recognize when viewed in isolation, but readily identifiable in the context of its original scene. 

Multivariate decoding analysis showed that the visual representation of the object’s category (animate or 

inanimate) was facilitated by scene context from ~300 ms after stimulus onset. Subsequent fMRI and TMS 

studies revealed that this facilitation resulted from an interaction between processing in scene-selective and 
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object-selective cortex (Brandman and Peelen, 2017; Wischnewski and Peelen, 2021). One possibility is that 

inter-object facilitation follows the same timecourse as scene-object facilitation, for example because both 

scene-object and object-object facilitation result from the same feedback mechanism based on the activation 

of a common conceptual “schema” (Bar, 2004). Alternatively, however, we may expect inter-object facilitation 

to be faster than scene-object facilitation, as interactions are between representations within the same object 

processing pathway rather than between separate object and scene processing pathways (Peelen et al., 

2023). 

To reveal the timecourse of inter-object contextual facilitation, we took advantage of an object property that 

is rapidly and automatically retrieved following the recognition of objects – real-world size (Konkle and Oliva, 

2012b; Hagen et al., 2023). Observers in behavioural and EEG experiments viewed contextually-associated 

pairs of both small, manipulable objects (e.g., spoon + plate) and large, non-manipulable objects (e.g., desk 

+ chair). These categories evoke distinct responses in the visual cortex, with large objects activating scene-

selective cortex (Konkle and Oliva, 2012a; Coutanche and Thompson-Schill, 2019). However, in addition to 

reflecting a physical size continuum, this distinction has also been related to objects’ functional properties, 

reflecting a combination of size and portability (Mullally and Maguire, 2011). For example, large-stable 

objects evoke a sense of space, while small-manipulable objects do not. Conversely, small-manipulable 

objects afford grasping and manual actions that large-stable objects do not. Although interesting, exploring 

how these various conceptual/functional features contribute to the neural distinction between objects of small 

and large real-world size was not the focus of the present paper. Instead, since neural responses to small 

and large real-world sized objects are readily decodable using M/EEG (Cichy et al., 2017; Khaligh-Razavi et 

al., 2018; Wang et al., 2022), we used the presence/strength of real-world size information as a proxy 

through which to examine how an object’s processing is facilitated by its context. Our rationale was as 

follows: If object context facilitates object recognition, information about the objects’ real-world size 

(reflecting physical size/portability/affordances and more) should be inferred more effectively when they 

appear in contextually-associated pairs than in isolation. To this end, we examined both explicit judgements 

of objects’ real-world size (Experiments 1a & 1b) and the presence of real-world size information in 

multivariate EEG patterns (Experiment 2) evoked by viewing objects in silhouette against phase-scrambled 

noise. 
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Materials & Methods 

All experimental procedures were carried out with the approval of the Radboud University Faculty of Social 

Sciences Ethics Committee (ECSW2017–2306-517).  

Participants 

For Experiment 1a (behavioural), we recruited 75 online participants (40 female, 33 male, 2 not answered) 

aged between 18-35 years (M = 26.31, SD = 4.89) via Prolific (www.prolific.co). All were living in the 

Netherlands, had normal or corrected-to-normal vision, had prior experience in online research participation 

(>10 studies), and were monetarily compensated for their participation. After applying participant qualification 

criteria (see Analysis), the final sample for Experiment 1a was 64. For Experiment 1b (behavioural), 91 

undergraduate students from the University of Western Sydney (78 female, 12 male, 1 not answered) aged 

between 17-45 years (M = 21.2, SD = 5.76) participated in the online experiment in exchange for course 

credit. The final sample after applying participant qualification criteria was 60. For Experiment 2 (EEG), we 

used G*Power 3.1.9.2 (Faul et al., 2009) to compute the sample size required to give 80% power to detect a 

medium effect size (Cohen’s d = 0.5) in a one-sample test (α=0.05, two tailed). We used a one-sample test 

for this power analysis since we ultimately aimed to evaluate whether beta coefficients given by multiple 

regression were significantly greater than zero. This indicated a required final sample of N=34, which we 

achieved (after participant exclusion) by testing 41 English-speaking individuals (11 males) aged between 18 

and 35 years (M = 23.46, SD = 3.88) from the local region of Nijmegen, the Netherlands. All had normal or 

corrected-to-normal vision, with no history of neurological illness/concussion/brain surgery/migraine. Data 

from seven participants were discarded to reach the eventual N=34: this included one participant who 

terminated the experiment early due to discomfort, and six participants with very high noise/muscle artefact 

in the signal.  

Stimuli  

Stimuli were identical across the two experiments and were based on 20 pairs of contextually-associated 

objects, each denoting either a small- or large-scale object constellation (Figure 1A). ‘Small’ displays 

contained pairs of desktop-sized objects that could fit into a shoebox, typically with grasp/reach affordances 

(e.g., bottle + glass). ‘Large’ displays contained pairs of furniture-sized objects, typically with navigational 

affordances (e.g., table + chair). All objects appeared in silhouette, embedded in a noise mask, with no other 
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meaningful visual information (e.g., background). These sparse visual displays served to eliminate many of 

the inherent low- and mid-level visual differences between naturalistic scenes of different spatial scales. Note 

that such visual controls do not eliminate more conceptual differences between desktop-size and furniture-

size objects – for example, their respective manipulation and navigation affordances. Importantly, where 

these and other distinctions between large and small objects could be problematic for isolating neural signals 

corresponding to real-world size per se, they do not impede our ability to treat real-world size 

judgements/representations as a useful index of object processing and recognition.  

Inspired by previous work showing that relative spatial positioning modulates the extent to which observers 

group/integrate concurrently presented objects (Bar and Ullman, 1996; Baeck et al., 2013; Kaiser et al., 

2019; Xu et al., 2021), we varied the relative sizing of the objects within each pair as depicted in Figure 1B. 

We began with the stimuli shown in Figure 1A, wherein the proportional relative sizing of the object 

silhouettes within each pair implied them to be at the same distance or depth. We then created an identical 

‘depth-match’ version of the pair at a decreased retinal size (2:1 size decrease), and recombined the 

elements of these two versions to create two different ‘depth-mismatch’ pairs in which the objects’ 

disproportionate retinal sizes (e.g., large pillow + small bed) implied they were at different distances from the 

viewer. To ensure that the pixel distance between the two objects in a depth-mismatch pair was equivalent to 

the pixel distance between their depth-match counterparts, we randomly labelled the objects in each pair as 

object 1 and object 2. We then utilized the smaller distance whenever object 1 was the small object in the 

depth-mismatch pair and the large distance when it was the larger object. We maintained the surface 

alignment of the two-object scene as much as possible across versions, e.g., since desk and chair both rest 

on the floor, we aligned these items at their bottom edge regardless of whether their depths were matched or 

mismatched. Large/Small retinal size labels for the depth-mismatch pairs followed the retinal size category of 

the larger, more dominant object within the original pair. For example, depth-mismatch versions of the paper 

+ stapler pair were labelled according to the retinal size of paper, since this was the more dominant object in 

the original, depth-match pair (see Figure 1B). Thus, while depth-mismatch pairs were inherently comprised 

of one small version object and one large version object, mismatch pairs labelled as small retinal size had 

significantly fewer pixels (M = 26368 pixels, SD = 9500 pixels) than mismatch pairs labelled as large retinal 

size (M = 46109 pixels, SD = 15476 pixels), t(19) = 6.32, p < .00001. 

In addition to the four versions of each object pair, observers also saw the small and large retinal size 

versions of every silhouetted object in isolation (Figure 1C). The position of each isolated object at a given 
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retinal size was always halfway between where that object had appeared as part of the depth-match and 

depth-mismatch pair. This made for a total of 80 object pairs and 80 single objects (10 exemplars x 4 

versions representing each level of real-world size). There were 248 phase scrambled noise images, two of 

which were randomly selected to serve as masks on each trial.  

Trial structure was near identical across Experiments 1 and 2 (Figure 1D): The trial began with a central 

fixation cross (duration of 500 ms in Experiment 1; between 200-500 ms in Experiment 2). Following the 

fixation period, a phase-scrambled noise mask appeared for 400 ms, then the silhouette target appeared at 

40% contrast embedded within the mask for 100 ms. The trial concluded with a different phase-scrambled 

backward mask that lasted 300 ms. In both experiments, the trial sequence appeared against a uniform grey 

background. 
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Figure 1. Stimuli. A) The 20 base object pairs drawn from small (top row) and large (bottom row) real-world 

contexts. B) Each object pair had four versions: A large and small retinal size in which the objects’ relative 

sizing implied they were at the same depth (Depth-match). Recombining the elements of these versions 

produced two pairs where the objects were implied to be at different depths (Depth-mismatch). Retinal size 
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labelling for these Depth-mismatch pairs following the retinal size of the more dominant object in the pair 

(see Methods). C) Participants also saw each individual object in isolation. D) Basic trial structure for all three 

experiments. Following fixation, the target appeared at 40% contrast embedded in a phase-scrambled noise 

mask, and was immediately followed by a different phase-scrambled mask. In Experiments 1a & 1b, the 

fixation period was fixed at 500 ms.  

Design & Procedure 

In Experiment 1a (behavioural), we were interested in participants’ ability to explicitly categorise the real-

world size of object silhouettes presented in either contextually-associated pairs or as singletons. Our 

rationale was that the objects would be more readily recognised when they appeared in familiar 

constellations than when they appeared alone – and that this should result in faster/more accurate 

categorisation of their real-world size. The experiment was programmed in PsychoPy (jsPsych) and hosted 

online on Pavlovia (Open Science Tools Limited, 2021). Participants completed the experiment in a browser 

window on either a desktop or laptop computer. Before beginning, we instructed them to minimise any 

distractions in the environment (e.g., music, TV, other people), and to disconnect any external monitors to 

ensure the experiment appeared on their main screen. They were told that they would see briefly presented 

object silhouettes, and that the task was to decide how large those object(s) would be in the real world. On 

each trial (see Figure 1D), participants had 1000 ms from target onset to categorise the displayed object(s) 

as either large or small by pressing either the f (small) or j (large) key (response key labels appeared 

onscreen throughout the trial). Importantly, the task instructions included an explicit reference object to help 

participants delineate the boundary between objects of large and small real-world size: participants saw 

three example silhouette stimuli representing each real-world size, annotated with the labels “The objects 

could be relatively small, i.e., could fit in a shoe box” and “The objects could be relatively large, i.e., could not 

fit in a shoebox”, and could review these instructions for as long as they wished before pressing SPACE to 

continue. We also specifically instructed participants to focus on the size of the objects in the real world (not 

the size at which they appeared onscreen), and to fixate on the central cross whenever it appeared between 

trials. There were 16 practice trials where the target duration was set at 500 ms to facilitate learning; these 

training trials used an independent stimulus set to the main experiment. In the experiment proper, 80 object 

pairs and 80 single objects appeared in random, intermingled order for a total of 160 trials. Mask stimuli were 

sized at 560x560 pixels; we could not fully control the visual angle subtended by the stimuli owing to 
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conducting the study online. Total testing time for Experiment 1a was approximately 10 minutes including a 

self-paced break at the halfway point.  

Experiment 1b (behavioural) was identical to Experiment 1a in all respects, save that here half the trials 

comprised the large retinal size versions of the original object pairs (20 stimuli), while the other half 

comprised random pairings of objects drawn from the same real-world size category, but from different scene 

contexts (e.g., bed + stove). Each object pair was presented once for a total of 40 trials; the total testing time 

was approximately 5 minutes. 

Experiment 2 (EEG) was conducted in the lab. The trial sequence was programmed in Presentation® 

(Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com), and displayed on a BenQ XL2420Z 

computer monitor (120Hz refresh rate; 1920x1080 resolution). Mask stimuli were sized 14x14cm, with 

viewing distance set at 65cm such that each stimulus subtended 12.3 x 12.3 degrees of visual angle. 

Experiment 2 saw a 10-fold increase in the number of trials: each of the 160 unique stimuli appeared once 

per block, with 10 blocks in the full experiment. In contrast to Experiment 1, here participants were engaged 

in a 1-back task, monitoring the target from trial to trial and pressing the spacebar whenever they saw an 

exact image repeat (10 instances per block). Prior to the main experiment, observers performed 25 practice 

trials with a slightly longer target duration (300 ms); this included 5 repeat instances to enable them to learn 

the task. The full experimental session including EEG set up lasted around 2.5 hours. 

We recorded scalp EEG in Experiment 2 using a 64-channel BrainProducts actiCAP active electrode system 

with a sampling rate of 500Hz (Brain Products GmbH, Gilching, Germany). We used customized electrode 

positions adapted from the actiCAP 64Ch Standard-2 system (ground placed at AFz; TP10 placed on right 

mastoid). Impedances for individual scalp channels were held <40 kOhm, with data referenced online to the 

left mastoid and filtered between 0.016 and 125 Hz using BrainVision Recorder (Brain Products GmbH, 

Gilching, Germany). We monitored participants’ eye movements via external passive electrodes situated at 

the outer canthus of each eye, as well as immediately above and below the right eye. The ground electrode 

for passive ocular channels was placed on the tip of the nose. The experimenter visually monitored the EEG 

trace throughout the experiment, initiating each experimental block manually after ensuring there were no 

high amplitude deflections resulting from ocular/muscular artefacts. Stimulus onsets were marked in the EEG 

file using numeric triggers.  
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Analysis 

Experiment 1a & 1b 

For the behavioural real-world size categorisation task, we reached a final sample of 64 after removing 

participants who failed to provide a response on more than 30% of trials (n = 5), and subsequently any 

participant whose mean accuracy or response time (RT) on correct trials fell more than 2 standard deviations 

below the group mean (n = 6). We further discarded any trials on which the participant responded sooner 

than 200 ms following target onset (0.62% of trials), under the rationale that these early responses were 

unlikely to be informative. We then inspected i) response accuracy (treating trials with no response as 

incorrect responses) and ii) RT on correct trials. For the latter, we bounded each participant’s RT distribution 

at 2 standard deviations above and below the mean by replacing values outside this range with the top and 

bottom RTs respectively (4.6% of trials). For each metric, we ran a 2 x 2 repeated measures ANOVA with the 

factors Stimulus Type (Pair, Single) and Retinal Size (Large, Small). Note that for the depth-mismatch pair 

stimuli, the ‘large’ and ‘small’ retinal size labels were simply arbitrary labels, since each depth-mismatch pair 

necessarily comprised one large retinal size object and one small retinal size object (see Figure 1B). A 

subsequent analysis inspected the effect of Relative Depth (match, mismatch) for the Object Pairs data 

alone (since there was no relative depth manipulation for single objects).  

Analysis for Experiment 1b followed this model closely: the same exclusion criteria resulted in a final N of 60 

participants (27 removed due to >30% of trials without a response; 4 removed as outliers). After trial 

trimming, we compared responses to matched object pairings and random object pairings using a one-tailed 

paired samples t-test for i) response accuracy (treating trials with no response as incorrect responses) and ii) 

RT on correct trials.  

Experiment 2 

EEG pre-processing  

We pre-processed the EEG data in MATLAB 2016b using FieldTrip functions (Oostenveld, Fries, Maris & 

Schoffelen, 2011; http://fieldtriptoolbox.org). This included a bandpass filter between 0.05-100 Hz, a line 

noise filter at 50 Hz, 100 Hz, & 150 Hz, and downsampling the data to 250 Hz for easier storage and 

handling. A maximum of three artefact ridden channels were identified by eye and interpolated using the 

weighted average of neighbouring electrodes. To combat artefacts introduced by eyeblinks, we relied on an 

independent components analysis approach (runica decomposition), visually inspecting the components and 
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associated topographies for each participant to identify and remove the eye blink component. No trial or 

epoch rejection was applied. We then re-referenced each participant’s cleaned EEG trace to the average of 

all channels before segmenting an epoch from -200 ms to 500 ms around the onset of each target stimulus 

(excluding 1-back repeat instances). The resulting 800 single object epochs and 800 object pair epochs were 

then baseline-corrected using the 200 ms prior to stimulus onset.  

Representational Similarity Analysis (RSA) 

RSA using individual versions of each object pair 

For the object pair neural data, we used RSA (Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013) to 

build a pairwise representational dissimilarity matrix (RDM) at each 4 ms timepoint, for each participant 

separately. This involved pairwise decoding of every version of every object pair exemplar (i.e., 80 items) 

using Linear Discriminant Analysis (LDA) with 10 fold cross-validation (leave-one-block-out) as implemented 

in the CoSMoMVPA toolbox (Oosterhof et al., 2016; https://www.cosmomvpa.org/). We used multiple 

regression to relate the resulting time-varying RDM to four categorical predictors corresponding to the binary 

models given by our experimental design (see Figure 3B). These were Pair Identity (i.e., the specific real-

world context the objects were drawn from), Retinal Size (i.e., large or small version), Real-World Size (i.e., 

small- or large-scale objects), and Relative Depth (i.e., implied depth of the objects either matched or 

mismatched within the pair). Here and in all following analyses, we inspected the utility of each model as a 

predictor of the neural RDM at each timepoint between 0 and 500 ms via a Bayesian one sample t-test that 

examined whether the participant mean betas were greater than zero (Teichmann et al., 2022). The resulting 

Bayes Factors (BFs) centre around 1, with BF<1 comprising evidence for H₀ (mean beta equal to zero) and 

BF>1 comprising evidence for H1. Importantly, BFs can be directly interpreted as how much more likely the 

observed data are under this alternative hypothesis than the null (Morey et al., 2016). Thus, the larger the 

BF, the stronger the evidence for H1. Here we chose to depict timepoints where there is moderate evidence 

one way or the other, i.e., BF ≤ 1/3 (positive evidence for H0) or BF ≥ 3 (positive evidence for H1) 

(Andraszewicz et al., 2015). No further correction for multiple comparisons was implemented (see 

Teichmann et al., 2022). 

RSA using object pairs collapsed across version 

Next, we ran a simplified RSA that pooled the neural data for the four versions of each object pair (see 

Figure 1B) for pairwise decoding. This effectively collapsed across all design factors other than Real-World 

Size, which remained the primary model of interest. Here we aimed to inspect the predictive power of the 
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real-world size model while controlling for the inherent low-level differences between large and small object 

pairs (Robinson et al., 2023). To this end, we built four low-level visual control RDMs (see details below), 

each sized 80x80 (i.e., every version of every object pair treated individually). We then collapsed these into 

the reduced 20×20 RDMs by averaging values over the four versions of each object pair, e.g., collapsed 

dissimilarity value for Pair 1 vs. Pair 2 was the average of all RDM intersections of [1A, 1B, 1C, 1D] and [2A, 

2B, 2C, 2D]. The visual control models we considered were: 1) An image similarity model reflecting 1 minus 

the pixel-wise correlation between each of the 80 object pair images; 2) A silhouette overlap model (Jaccard, 

1901) comprising 1 minus the Jaccard similarity (ranges between 0 and 1) for each pairwise combination of 

the 80 object pair images; 3) A computational model of low-level visual processes, obtained by applying 

HMAX (Riesenhuber and Poggio, 1999; Serre et al., 2007; https://maxlab.neuro.georgetown.edu/hmax.html) 

to each of the 80 object pair images embedded in an example noise mask (just as they appeared in both 

experiments). RDM values were 1 minus the Spearman correlation between the vectorised responses on the 

final HMAX C2 layer; and 4) A mid-level feature model comprising the pairwise Euclidean distances between 

curvature indices for object pairs obtained using a computational model developed by Li and Bonner (2020; 

https://github.com/shipui2005/Curvature-Model). In this and the following multiple regressions, we inspected 

the Spearman rank-order correlations between all model RDMs, applying a significance criterion of p <.01, 

FDR corrected. Since the Pixel Correlation and Jaccard Similarity models were highly correlated (rho = 

0.9844, p <.0001) and displayed large Variance Inflation Factors (VIFs) (pix = 31.09, jac = 39.91), we elected 

to drop the Jaccard model from our multiple regression, leaving 1 categorical predictor (Real-world Size) and 

3 continuous control predictors (pixel correlation, HMAX C2, and curvature, see Figure 4). Since the 

intercorrelations between these predictors were not especially high (only Pixel Correlation and Curvature 

were significantly correlated, rho = 0.2587, p = .002), and since VIFs were all close to 1 (RwS = 1.0046, pix = 

1.0645, hmx = 1.0262, cur = 1.0884), we felt justified in including these models as independent predictors in 

the same multiple regression.  

Comparisons with Single Objects  

If recognising an object is facilitated by its inclusion in a familiar object constellation, then the representation 

of real-world size it evokes will be stronger than that evoked by the same object viewed in isolation. To 

enable this comparison, we duplicated the above collapsed RSA pipeline for the Single Object neural data, 

producing corresponding real-world size and low-level visual control models for the single object stimuli. For 

the singles objects, we found significant correlations between the real-world size and curvature models (rho 
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= 0.2516, p = .0028) and the curvature and pixel correlation models (rho = 0.2276, p = .0049). Importantly, 

VIFs for the predictors were all close to 1 (RwS = 1.0884, pix = 1.0885, hmx = 1.0251, cur = 1.1608), such 

that we felt confident interpreting the beta estimates from a multiple regression that included these models 

as independent variables. 

Comparisons with a Deep Convolutional Neural Network  

To further rule out the possibility that the neural distinction between large and small real-world size object 

pairs arises due to low-level featural differences between large and small objects, we examined 

representations of these sparse scenes in the layers of a deep convolutional neural network trained to label 

objects using 1.2 million naturalistic images (AlexNet, Krizhevsky et al., 2012). We obtained output 

activations corresponding to the 80 object pair images embedded in an example noise mask (i.e., as they 

appeared to human observers in the two experiments) on each of the 8 AlexNet layers (input layer, five 

convolutional layers, two fully connected layers), each of which was used to build an RDM. Just as for the 

low-level visual control models, we collapsed the resulting 80×80 RDMs down to 20×20 by averaging values 

over the four versions of each object pair. Using the same significance criterion as detailed above, we 

inspected the intercorrelation matrix for these eight AlexNet RDMs and the model of Real-world Size. If 

featural differences between our large/small stimuli account for the predictive power of real-world size, then 

we would expect strong correlations between this model and the earlier layers of AlexNet.  

Lastly, given that the upper layers of convolutional neural networks capture some important organising 

principles of object vision (e.g., animacy, Khaligh-Razavi and Kriegeskorte, 2014), we also asked whether 

the information about real-world size in our neural data could be accounted for by the representational 

structure evident in these layers of AlexNet (i.e., FC6 & FC7). To this end, we subjected the (reduced) neural 

RDM series for object pairs to separate multiple regressions that included Real-world Size as a categorical 

predictor alongside i) the FC6 RDM, and 2) the FC7 RDM (treated as continuous predictors). Although the 

Real-world Size model was significantly correlated with both AlexNet layer models (FC6: rho = 0.20, p = 

0.0079; FC7: rho = 0.24, p = 0.0016, FDR-corrected), Variance Inflation Factors (VIF) for these regressors 

were close to zero in both cases (RwS & FC6 = 1.0378; RwS & FC7 = 1.0391). As such, we felt justified in 

treating them as independent predictors in these multiple regressions. 
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Results 

Experiment 1a: Behavioural judgements of real-world size 

To verify that the object silhouettes were recognised better when presented in pairs than in isolation (Bar and 

Ullman, 1996), we compared participants’ ability to determine the real-world size of the silhouettes between 

these conditions. A 2x2 repeated measures ANOVA for conditional mean accuracies confirmed that 

participants could determine the real-world size of object silhouettes significantly better when the items 

appeared in contextually-related pairs that formed sparse scenes (M = 77.3% correct) rather than in isolation 

(M = 65.32% correct; main effect of Stimulus Type, F(1,63) = 194.72, p <.00001, ges = 0.512, see Figure 

2A). This was qualified by a significant interaction with Retinal Size, F(1,63) = 17.40, p <.0001, ges = .084, 

wherein the magnitude of the Pair > Single difference was larger for the small retinal size versions (Mdiff = 

.155, SD = .096) than the large retinal size versions (Mdiff = .084, SD = .098). The main effect of Retinal Size 

was not significant, F(1,63) = 0.25, p = .619, ges = .001. For RT (Figure 2B), we observed a similar main 

effect of Stimulus Type, F(1,63) = 8.16, p <.01, ges = .041. On average, participants were slower to 

categorise the real-world size of single objects (M = 595 ms, SD = 139 ms) compared to object pairs (M = 

590 ms, SD = 136 ms). Neither the main effect of Retinal Size, F(1,63) = 3.49, p = .467, ges = .003, nor the 

two way interaction, F(1,63) = 0.53, p = .066, ges = .016, reached significance in the case of RT. Together, 

these results indicate that observers recognised objects (and could therefore access information about their 

real-world size) better when the objects appeared as part of a familiar constellation than when they appeared 

alone, replicating previous work (Bar and Ullman, 1996). 

Contrary to our predictions, there was no evidence in accuracy or RT that participants’ real-world size 

judgements were affected by the relative size of objects within a pair (Figure 2). Paired t-tests of both 

accuracy, t(63) = 0.413, p = .681, and RT, t(63) = -0.62, p = .539, revealed no difference between responses 

to depth-match and depth-mismatch object pairs. Note that there was no such comparison for single objects, 

as relative depth does not apply to isolated objects.  
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Figure 2. Behavioural judgements of real-world size in Experiment 1a. Overlaid violin and box-and-whiskers 

plots of A) accuracy and B) RTs. Single Object data (in grey) appear at right, with Object Pair data (in green) 

split into depth-match and depth-mismatch versions (there was no significant difference between these 

conditions in either metric). Upper and lower box edges correspond to the first and third quartiles (capturing 

the interquartile range, IQF); whiskers encompass values less than 1.5*IQF from the box edges. Example 

stimuli for each condition appear below the x-axis labels. 

Experiment 1b: Control 

One possibility is that the advantage that object pairs enjoy over single objects has nothing to do with pairs 

comprising familiar object-constellations, but rather simply arises because pairs contain twice as much real-

world size information as single objects (i.e., ‘two objects are better than one’). If this were the case, then 

judgements of real-world size should be comparable for any pair of objects representing the same spatial 

scale, regardless of whether they form a contextually-associated constellation or not.     

To assess this, we ran an additional behavioural control experiment using novel small and large object pairs 

formed by randomly combining objects across scene contexts (e.g., cup + scarf; stove + curtain). Each of 

these 20 random object pairs (10 representing each RWS, only large retinal size versions included) and the 

original 20 contextually-associated object pairs (large retinal size versions) appeared once in an online 
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experiment (randomly intermingled). Experiment and task parameters were otherwise identical to Experiment 

1a. A one-tailed paired samples t-test indicated that participants did indeed judge the real-world size of 

object silhouettes more accurately when they appeared as part of a familiar object constellation (M = 

68.14%) than when they appeared alongside a random object from the same size category (M = 63.98%), 

t(59) = 2.33, p = .012. There was no evidence that RT differed significantly between the randomly combined 

pairs (M = 589 ms, SD = 102 ms) and contextually-associated pairs (M = 580 ms, SD = 103 ms), t(59) = -

1.33, p = .094.  

Experiment 2: The timecourse of inter-object facilitation 

In Experiment 2, we applied RSA to our EEG data to examine the temporal dynamics of neural 

representations evoked by large and small real-world size object silhouettes. As above, our primary interest 

was in understanding whether concurrently-presented objects facilitate each other during visual processing. 

Here we reasoned that if presenting objects in familiar constellations facilitates object processing, then the 

neural response to object pairs should carry information about their associated real-world size to a greater 

extent than the response to single objects.  

RSA for the individual versions of each object pair  

We began by inspecting how well the binary models based on our design factors (Figure 3B) could predict 

the neural RDM series for object pairs (Figure 3A). In this analysis, we treated the four versions of each 

object pair (e.g., stapler + paper) independently, building an 80×80 RDM for each timepoint (see Methods for 

details). Multiple regression beta estimates over time for each of the four predictor models are given in 

Figure 3C, together with Bayesian one-sample t-tests evaluating beta > 0. 

Two of these models predicted the neural RDM from a relatively early stage of stimulus processing: Retinal 

Size (onset = 84 ms, peak = 152 ms) and Pair Identity (onset = 88 ms, peak = 176 ms). This was expected, 

since both models capture visual features inherent to the stimuli such as pixel coverage and global shape. 

Notably, information about both the object identities and their display size was also present in the neural 

response at much later timepoints, suggesting that the visual system maintains representations of both of 

these dimensions for some 500 ms after the objects come into view. 
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Figure 3. RSA for 80 individual object pair stimuli in Experiment 2 (i.e., treating each of the 4 versions for the 

20 object pairs separately). A) The neural RDM averaged over the epoch between 180-250 ms. B) Binary 

RDMs for the stimulus design factors treated as categorical predictors in a multiple regression of the neural 

RDM series. C) Beta estimates for the four predictors included in the multiple regression, plotted as a 

function of time from stimulus onset. Shaded regions are within-subjects standard error. Lower panel shows 

colour coded Bayes Factors for Bayesian one-sample t-tests comparing beta against zero at each timepoint, 

for each predictor.  
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In contrast to the Pair Identity and Retinal Size models, the Real-world Size model requires similar neural 

responses across stimuli with both distinct object identities and visual features (i.e., the response to hat + 

scarf has to resemble that of stapler + paper, while also generalising across large and small versions of 

those pairs). This real-world size model emerged as a relevant predictor of the neural response at a 

comparatively later stage of stimulus processing (onset = 184 ms, peak = 224 ms), and remained a relevant 

predictor until as late as 400 ms. 

The other high-level model yielded by our design was Relative Depth, which captured whether the objects 

within a pair were implied to be at the same or different depth from the viewer. As is clear in Figure 3C, this 

model was not a significant predictor of the neural data at any timepoint, suggesting that the objects’ relative 

sizing in each display did not modulate the neural response. Relative Depth was also not a relevant predictor 

of the object pair neural data when considered as an isolated categorical predictor in a separate regression 

analysis (data not shown). This was consistent with behavioural observations from Experiment 1, where we 

found no evidence that the relative depth of objects within a pair influenced participants’ real-world size 

judgements.  

 

RSA for object pairs collapsed across version  

Since the relative depth of objects within a pair modulated neither the neural response to our object stimuli 

nor participants’ overt categorisations of real-world size (Experiment 1), we next ran a simplified RSA in 

which the depth-match and depth-mismatch versions of every object pair were treated as a group. 

Collapsing across version in this way had the effect of eliminating the Relative Depth, Retinal Size, and Pair 

Identity models (the latter becomes the RDM diagonal), leaving only the Real-world Size model. We 

evaluated the utility of this categorical predictor in a multiple regression analysis alongside three low-level 

visual control models included as continuous predictors (see Methods). Our rationale here was to isolate 

information about real-world size carried in the neural signal that could not be explained by inherent 

differences in visual features between the object constellations representing small and large spatial scales. 

Since information about objects’ real-world size should become accessible only after the objects are 

recognised, representations of real-world size that are controlled for visual feature differences serve as a 

useful proxy for object processing. 
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Figure 4 shows the results of this multiple regression analysis collapsing over the four versions of each 

object pair. Real-world Size did not correlate with any of the three low-level visual control models (pix: rho = 

-0.04, p = .608; hmx: rho = -0.05, p = .608; cur: rho = 0.05, p = .608, FDR-corrected). Bayesian one-sample 

t-tests indicated that the model which predicted the neural response earliest in time was Pixel Correlation 

(onset = 104 ms, peak = 156 ms), followed by the HMAX (C2) (onset = 148 ms, peak = 176 ms). These early 

onsets of predictive power were consistent with these models capturing perceptual features of the images, 

which should be relevant to the feed-forward sweep of visual processing. We did not find any evidence that 

the Curvature model contributed unique predictive power to the neural response, although it was a 

meaningful predictor when treated as the sole factor in a regression of the neural RDM series analysis (as 

were all the low-level visual control models; data not shown). 

Our primary interest in this analysis was to determine whether the Real-world Size model would offer any 

unique explanation of the neural response when evaluated in the context of various low-level visual control 

models. This was indeed the case, with Real-world Size remaining a significant predictor even when 

simultaneously regressing out three visual control models (Figure 4A). The timecourse was similar to that 

observed in the previous analysis (onset = 172 ms, peak = 200 ms), and remained intermittently relevant to 

the neural response throughout the period examined here (i.e., up to 500 ms).  
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Figure 4. RSA for the 20 object pairs pooled across the four versions (see Figure 1B). A) Multiple regression 

betas for Real-world Size (in green) and low-level visual control predictors (in grey) of the neural RDM series. 

Shaded region for the RWS model is within-subjects standard error. Lower panel shows colour coded Bayes 

Factors for one-tailed t-tests (mean beta > 0) at each timepoint, for each predictor. Inset: Model 

intercorrelation matrix; asterisks indicate Spearman correlations significant at p <.01 (FDR corrected). Real-

world Size was not significantly correlated with any of the low-level feature models. B) Models RDMs. Note 

that all models were confirmed as relevant predictors when treated as an isolated predictor of the neural 

RDM series (not shown here).  

 

Comparison with single objects 

In Experiment 1, observers were less able to judge the real-world size of objects when viewed in isolation 

compared to when they appeared in related pairs. Here we asked whether the neural response to single 
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objects contained information about their real-world size, once again controlling for visual feature differences 

between large and small objects. We ran the same multiple regression analysis as for Object Pairs, in which 

Real-world Size was a categorical predictor alongside three low-level visual control predictors derived from 

the single object stimuli (i.e., pixel correlation, HMAX (C2), & Curvature). Figure 5 shows the resulting beta-

timecourse for the Real-world Size model of Single Object data, with the corresponding beta-timecourse for 

object pair neural data overlaid in green. In summary, there was no evidence that Real-world Size was a 

relevant predictor for the single object neural response after controlling for low-level visual features of the 

objects (although this model was relevant when treated as single predictor in the regression, results not 

shown here). Real-world Size was also a significantly better predictor for object pairs than for single objects 

around 200 ms after stimulus onset (Figure 5), providing a possible neural correlate for the behavioural effect 

observed in Experiment 1.  

 

 

Figure 5. Beta values for Real-world Size included as a categorical predictor in (separate) multiple 

regression analyses for the single object (in grey) and object pair (in green) neural RDM series. Each 

regression also included three low-level visual control models as continuous predictors (see Figure 4). Note 

that the object pair betas here are identical to those in Figure 4 (green lines); shaded region is within-
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subjects standard error.  Lower panel shows colour coded Bayes Factors for each timepoint: circles are one-

sample Bayesian t-tests evaluating β > 0; triangles are paired Bayesian t-tests evaluating βpair > βsingle. 

 

Comparisons with a Deep Convolutional Neural Network 

Finally, we considered how real-world size information about our object pair stimuli emerged in the layers of 

a deep convolutional neural network (AlexNet, Krizhevsky et al., 2012). Here we inspected the correlations 

between the real-world size model and RDMs corresponding to the 5 convolutional and 2 fully-connected 

layers of AlexNet. As can be seen in Figure 6B, real-world size was significantly correlated with the upper, 

fully-connected layers (FC6: rho = 0.20, p = 0.0079; FC7: rho = 0.24, p = 0.0016, FDR-corrected), but had 

little representational overlap with the early layers of AlexNet. Since low-level features differences between 

the large and small stimuli should be well-captured by the lowest DNN layers, the fact that these layers did 

not correlate with Real-world Size once again suggests that this model did not simply reflect visual 

differences between the large and small stimuli. 

To further examine the overlap of the real-world size model with AlexNet, we next ran multiple regressions of 

the object pair neural RDM series using Real-world Size as a categorical predictor alongside the later RDMs 

for FC6 and FC7 of AlexNet (treated as continuous predictors, see Figure 6A). Figure 6C and 6D show that 

in both cases, Real-world Size contributes unique explanatory power for the neural response evoked by 

object pairs, indicating that representations of spatial scale evoked by Object Pairs are not accounted for by 

the high-level representations that the DNN gleaned from these stimuli. 
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Figure 6. Predicting the neural response to Object Pairs using Real-world Size and DNN activations. A) 

Model RDMs based on Real-world Size and activations on the final two fully-connected layers of AlexNet. B) 

Intercorrelation matrix for Real-world Size and AlexNet RDMs for all layers. Asterisks indicate correlations 

significant at p <.01, FDR adjusted. Where Real-world Size was significantly correlated with both fully-
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connected layers, this model bore little resemblance to the lower layers of AlexNet. C&D) Beta estimates 

from (separate) multiple regressions of the neural RDM series for object pairs that included Real-world Size 

as a categorical predictor alongside continuous predictors based on AlexNet layers FC6 (C) and FC7 (D). 

Shaded region is within-subjects standard error.  

 

Discussion  

To apprehend a familiar object is to rapidly and automatically appreciate its inherent ‘real-world’ size (Konkle 

and Oliva, 2012b; Hagen et al., 2023). Investigations of both isolated objects and entire scenes have 

revealed real-world size to be a key organising principle of the visual system, with the spatial scale of objects 

– and thus their associated portability and affordances – influencing both their neural representation and the 

way observers recognise and respond to them (Mullally and Maguire, 2011; Konkle and Oliva, 2012a). Here 

we exploited the automatic retrieval of real-world size information following object recognition to examine 

how object processing is facilitated when the object forms part of a contextually-associated pair (i.e., an 

object constellation).  

In Experiment 1a, we found that observers judged the real-world size of ambiguous (silhouetted) objects 

faster and more accurately when they appeared in contextually-associated pairs than when they appeared in 

isolation, suggesting that object recognition itself was more efficient when observers could integrate 

information across objects appearing in a familiar configuration. This inter-object contextual facilitation 

finding replicates that of Bar and Ullman (1996), whose participants recognised ambiguous objects better 

when they appeared in the context of another related object. In a follow-up experiment (1b), we verified that 

real-world size judgements of object pairs forming familiar object constellations (e.g., plate + spoon) were 

also more accurate than those of randomly combined objects within each size category (e.g., plate + 

paintbrush). This suggests that the object pair advantage observed in Experiment 1a did not arise simply 

because pair displays carry twice as much information as single object displays do, but was rather related to 

the presence of contextually-associated objects in a familiar configuration. Finally, our EEG experiment 

revealed that information about real-world size arose in the neural response to silhouetted object 

constellations around 170 ms after stimulus onset and peaked around 200 ms. These neural representations 

endured even when controlling for differences in large and small objects’ visual features, and were only 
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evident for contextually-associated pairs of objects, and not for the individual object elements presented 

alone. Furthermore, around 200ms after stimulus onset, information about real-world size was significantly 

stronger in the neural response to contextually-associated object pairs than it was in the response evoked by 

isolated objects. 

We interpret these results as reflecting inter-object facilitation of object recognition (Bar and Ullman, 1996). 

Here, integrating information across contextually-associated objects in a familiar constellation facilitated their 

recognition, thus making it easier to access information about the objects’ real-world size. On this 

interpretation, the facilitatory interaction between the processing of individual objects must have occurred 

shortly before 200 ms (when information about the objects’ real-world size was evident in the neural 

response). This is substantially earlier than facilitatory interactions between associated scenes and objects, 

which arise some 300 ms after stimulus onset (Brandman and Peelen, 2017, 2023). An explanation for this 

difference could relate to the finding that scenes and objects are processed in parallel ventral stream 

pathways (Levy et al., 2001; Park et al., 2011), such that interactions between scenes and objects require 

interactions across pathways. By contrast, interactions between objects could occur within the object 

processing pathway itself. 

An alternative explanation worth considering is that our results reflect the accumulation of evidence (about 

object identity, and thus also real-world size) for both objects, but without facilitatory inter-object interactions. 

For example, each object may provide weak evidence for either large or small real-world size, with this 

evidence accumulating for multiple objects presented together. The data here would suggest that such 

evidence accumulation is non-linear; for example, evidence may have been more likely to reach a critical 

real-world size recognition threshold (and associated neural representation) for two objects versus one 

object. This parallel evidence accumulation account is undermined, however, by our findings in the 

behavioural follow-up experiment, in which observers’ ability to judge objects’ real-world size was 

significantly better for pairs forming familiar object-constellations than for pairs comprising random 

recombinations of objects within each size condition (i.e., "shuffled" across pairs; Kaiser et al., 2014).  

We also manipulated objects’ relative depth, with the proportional retinal size of the two objects within the 

pair suggesting they were either at the same or different depth. We hypothesized that objects inferred to be 

at different depths to the viewer would be harder to integrate, similar to how disrupting objects’ relative 

spatial position impairs recognition (Bar and Ullman, 1996) and reduces neural measures of integration 
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(Quek and Peelen, 2020). However, there was no evidence that this manipulation influenced either overt 

recognition of real-world size or the neural representations of real-world size evoked by object pairs. This 

suggests that the visual system is tolerant to relative size when integrating information across objects. This 

may reflect the variability of objects’ relative sizes in daily life, where contextually-associated objects are 

encountered at different depths (and thus have non-proportional retinal sizes). For example, a stapler can be 

observed next to a piece of paper (Figure 1B), but is also frequently observed closer or farther away from 

this object. On the other hand, given that texture is a strong cue for distance (Gibson, 1950; Todd and 

Akerstrom, 1987), the silhouette stimuli used here may have impaired or reduced the degree to which 

observers perceived the depth of the objects. Relative-depth effects for contextually-associated objects could 

well be evident when texture and other internal object cues are preserved, as in photographs.  

Separately from the question of inter-object facilitation, the data here also speak to the literature on how real-

world size is itself encoded in the neural response to objects. Real-world size is a dimension that pertains to 

all stimuli along the object-scene continuum. At the level of individual objects, real-world size is an organising 

principle within ventral occipitotemporal cortex (Konkle and Oliva, 2012a; He et al., 2013; Konkle and 

Caramazza, 2013). When retinal size is fixed, lateral ventral temporal regions respond more strongly to 

objects of small real-world size (e.g., a tennis ball) compared to large (e.g., a desk), while medial temporal 

regions exhibit the opposite activation pattern (Konkle and Oliva, 2012a). Such effects appear to reflect 

regional sensitivity to both featural and functional characteristics that vary systematically between small and 

large objects (Mullally and Maguire, 2011; Konkle and Oliva, 2012a; Troiani et al., 2014; Bainbridge and 

Oliva, 2015; Julian et al., 2016; Long et al., 2018; Wang et al., 2022). Studies investigating the timecourse of 

real-world size using single objects have shown that information about real-world size is reflected in the 

neural response just 120 ms after stimulus onset (e.g., Khaligh-Razavi et al., 2018; Wang et al., 2022). Such 

early representations likely reflect visual feature differences between large and small objects, such as 

degree of rectilinearity (Long et al., 2018; Wang et al., 2022). In our case, we found no evidence that neural 

responses evoked by isolated object silhouettes contained information about their real-world size beyond 

what could be accounted for by visual feature differences. This almost certainly relates to the ‘degraded’ 

nature of our stimuli, whose silhouette composition significantly impedes object recognition.  

To our knowledge, we are the first to consider the timecourse over which information about real-world size 

arises for object constellations, showing that this property is encoded in the neural response to object pairs 

at around 200 ms after stimulus onset. Crucially, these results are unlikely to reflect low-or mid-level visual 
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feature differences between large and small constellations, for several reasons. First, we selected our stimuli 

to avoid obvious differences between large and small conditions and used silhouettes to remove texture and 

colour features. Second, we included the output of multiple computational models in the EEG analyses to 

show that visual feature differences could not account for the real-world size representation at 200 ms. 

Finally, the absence of information about real-world size in the neural response to the same objects 

presented in isolation further argues against a feature driven effect. 

If not the representation of size-covarying visual features, what drives the different neural activity patterns for 

large and small constellations? One possibility is that recognizing the constellations activated corresponding 

scene representations, such that the activity patterns reflect scene size (e.g., desktop vs. living room). Neural 

responses to scene images capture information about spatial scale as early as 100 ms after stimulus onset 

(Cichy et al., 2017), though as for objects, such early representations are likely driven by differences in low-

level features across small and large scenes (Stansbury et al., 2013). More abstract signals of scene size 

(i.e., representations that generalise across image-level changes in clutter, luminance, and contrast) appear 

to arise later, from around 250 ms (Cichy et al., 2017), and are evident even for auditory stimuli that capture 

the spatial extent of real-world spaces (Teng et al., 2017). However, as noted earlier, the neural separability 

of small and large real-world sized objects cannot be interpreted as a direct encoding of objects’ abstract 

size – since there are also inherent conceptual and functional distinctions between these object classes. In 

the case of our stimuli, these include categorical differences (small objects mostly comprise tools/manmade 

artefacts; large objects are mostly furniture, Magri et al., 2021; Almeida et al., 2023), action differences 

(objects within small pairs can often act on each other; objects within large pairs generally do not, Baeck et 

al., 2013), and affordance differences (large objects were non-manipulable/had navigational affordances, 

Bonner and Epstein, 2017; small objects were manipulable/had grasp affordances, Haddad et al., 2024).  

More generally, our results raise the question of how object and scene representations are related. By 

moving from single objects to object constellations, it becomes clear that the object-scene distinction is not 

so clear-cut. Indeed, even the processing of single objects may involve processing their real-world context – 

i.e., surrounding scene. Seeing a large object necessarily implies a large space, activating scene-selective 

cortex (Mullally and Maguire, 2011). Furthermore, object representations in scene-selective regions reflect 

the context within which objects are usually observed, including their co-occurrences with other objects 

(Aminoff et al., 2007; Bonner and Epstein, 2021; Fu et al., 2022). Our results align with these findings, 

showing that multiple objects viewed together activate the objects’ shared context within 200 ms. 
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To conclude, our results reveal the timecourse of object processing for objects comprising familiar 

constellations, showing that neural responses code for the objects’ real-world size around 200 ms after 

stimulus onset only when the objects appear in pairs, and not when they appear in isolation. We interpret 

these findings as reflecting inter-object facilitation between contextually-associated objects. Our study raises 

several new questions, including about the relationship between representations along the continuum from 

objects to scenes. 
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