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Abstract  24 

In uncertain environments, intelligent decision-makers exploit actions that have been rewarding 25 

in the past, but also explore actions that could be even better. Several neuromodulatory 26 

systems are implicated in exploration, based, in part, on work linking exploration to pupil size–a 27 

peripheral correlate of neuromodulatory tone and index of arousal. However, pupil size could 28 

instead track variables that make exploration more likely, like volatility or reward, without directly 29 

predicting either exploration or its neural bases. Here, we simultaneously measured pupil size, 30 

exploration, and neural population activity in the prefrontal cortex while two rhesus macaques 31 

explored and exploited in a dynamic environment. We found that pupil size under constant 32 

luminance specifically predicted the onset of exploration, the first exploratory trial in a sequence, 33 

beyond what could be explained by reward history. Pupil size also predicted disorganized 34 

patterns of prefrontal neural activity at both the single neuron and population levels, even within 35 

periods of exploitation. Ultimately, our results support a model in which pupil-linked mechanisms 36 

promote the onset of exploration via driving the prefrontal cortex through a critical tipping point 37 

where prefrontal control dynamics become disorganized and exploratory decisions are possible. 38 

Significance Statement 39 

Humans and other animals learn about the world through exploration: through making decisions 40 

that offer the opportunity to learn and discover, even when these decisions are not the best 41 

option in the moment. Neuroscience research has historically focused on understanding good 42 

choices, delivering many key insights into the neural mechanisms involved in these calculations. 43 

However, much less is known about how the brain generates exploratory decisions. This study 44 

identifies certain “early warning signs” of exploratory decisions in the brain and body, including 45 

certain signals in size of the pupil and the speed of neural activity in the prefrontal cortex. These 46 

early warning signs suggest that exploration may be the result of a critical tipping point in 47 

prefrontal brain states. 48 

Introduction 49 

Many decisions maximize immediate rewards. However, in uncertain or changing environments, 50 

it is important to sacrifice some immediate rewards in order to learn about the value of 51 

alternative options and discover new, more valuable strategies for interacting with the world. In 52 
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short, in complex environments, intelligent decision-makers exploit rewarding strategies, but 53 

also explore alternative strategies that could be even better. 54 

Because exploitation maximizes immediate reward, it can rely on the same value-based 55 

decision-making processes that have been the subject of neurobiological studies for decades 56 

(Ding and Hikosaka, 2006; Jurewicz et al., 2022; Platt and Glimcher, 1999; Roesch and Olson, 57 

2007; Schultz et al., 2008). However, we are only just beginning to understand the neural bases 58 

of exploration (Costa and Averbeck, 2020; Daw et al., 2006; Pearson et al., 2009; Wilson et al., 59 

2021, 2014). One clue is that many organisms seem to explore via random sampling 60 

(Gershman, 2019; Wilson et al., 2021, 2014). Randomness is a critical component of 61 

exploratory discovery in bird song and motor learning (Fiete et al., 2007; Wu et al., 2014), it can 62 

perform about as well as more sophisticated strategies in many environments (Dayan and Daw, 63 

2008), and humans and other primates tend to explore randomly even when more sophisticated 64 

strategies are available (Ebitz et al., 2018; Wilson et al., 2014). There is some neurobiological 65 

evidence linking random exploration to disorganized activity patterns in the prefrontal cortex 66 

(Ebitz et al., 2019, 2018; Muller et al., 2019; Wilson et al., 2021), but we still do not understand 67 

the proximate causes of random exploration and its neural correlates in the prefrontal cortex. 68 

One promising hypothesis is that exploration could be under the control of some process(es) 69 

linked to pupil size. Pupil size under constant luminance is a peripheral index of autonomic 70 

arousal (Bradley et al., 2008; Ebitz and Moore, 2019; Loewenfeld, 1999) that also predicts 71 

widespread changes in neural population activity (McGinley et al., 2015; Reimer et al., 2014)–72 

including in regions implicated in decision-making noise (Ebitz and Platt, 2015; Tervo et al., 73 

2014). Among other neuromodulators (Gilzenrat et al., 2010; Koss, 1986; Reimer et al., 2016), 74 

pupil size is correlated with central norepinephrine (Costa and Rudebeck, 2016; Joshi et al., 75 

2016): a catecholamine that flattens neuronal tuning functions (Martins and Froemke, 2015) and 76 

predicts “resets” in cortical networks (Aston-Jones and Cohen, 2005; Bouret and Sara, 2005). 77 

Behaviorally, pupil size predicts decision-making noise (Aston-Jones and Cohen, 2005; Ebitz et 78 

al., 2014; Eldar et al., 2013; Gilzenrat et al., 2010; O’Reilly et al., 2013; Wilson et al., 2021), 79 

especially errors of reward-maximization (Jepma and Nieuwenhuis, 2011a) and task 80 

performance (Ebitz et al., 2014; Ebitz and Platt, 2015). Some of these “errors” may be caused 81 

by exploratory processes (Ebitz et al., 2019; Jepma and Nieuwenhuis, 2011a; Pisupati et al., 82 

2021). 83 
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There is a plausible alternative interpretation of this data: perhaps pupil size only tracks the 84 

variables that make exploration more likely. Pupil size under constant luminance increases with 85 

the volatility of reward environments, the surprise of reward outcomes, novelty, uncertainty, and 86 

context changes (Clewett et al., 2020; Filipowicz et al., 2020; Graves et al., 2021; Preuschoff et 87 

al., 2011; Slooten et al., 2018; Yokoi and Weiler, 2022): all variables that make exploration more 88 

likely. However, it is often unclear whether the pupil is tracking these variables or instead 89 

directly predicting behavioral changes like increased learning, decision-noise or exploration 90 

(Nassar et al., 2012; O’Reilly et al., 2013; Urai et al., 2017). Fortunately, recent results suggest 91 

that at least some exploration appears to occur tonically, regardless of these variables (Ebitz et 92 

al., 2019; Pisupati et al., 2021; Wilson et al., 2021). Further, in parallel, new computational 93 

approaches allows us to determine when exploration is occurring independently of the reward-94 

based computations thought to drive it (Chen et al., 2021; Ebitz et al., 2020, 2019, 2018). This 95 

means that it is now possible to determine whether pupil size predicts exploration itself or 96 

instead simply tracks the variables that make exploration more likely. 97 

Here, we measured pupil size and recorded from populations of prefrontal neurons while two 98 

rhesus macaques performed a task that encouraged exploration and exploitation. We found that 99 

pupil size under constant luminance was larger during explore choices than exploit choices. 100 

However, the temporal relationship between pupil size and exploration was both precise and 101 

complex: spontaneous oscillations in pupil size entrained the onset of exploration. Together, 102 

these results support the hypothesis that pupil-linked processes drive the prefrontal cortex 103 

through a critical tipping point that permits exploratory decisions. 104 

Results 105 

Two male rhesus macaques performed a total of 28 sessions of a classic explore/exploit task: a 106 

restless three-armed bandit (subject B: 10 sessions, subject O: 18 sessions; a total of 21,793 107 

trials). Some analyses of this dataset have been reported previously (Ebitz et al., 2018), but the 108 

pupil data has not been analyzed previously and all analyses presented here are new. In this 109 

task, the reward probability (value) of three targets walks randomly and independently over time 110 

(Figure 1A). This means that the subjects have to take advantage of valuable options when 111 

they are available (exploit), but also occasionally sample alternative options to determine if they 112 

have become more valuable (explore). 113 
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Rather than instructing subjects to explore and exploit, this task takes advantage of the 114 

subjects’ natural tendency to alternate between exploration and exploitation in a changing 115 

environment. We have previously shown that both monkeys and mice exhibit 2 behavioral 116 

modes in this task: one exploitative mode in which they repeatedly choose the same option—117 

learning little but maximizing reward—and one exploratory mode in which they alternate rapidly 118 

between the options—choosing randomly with respect to rewards and learning rapidly (Chen et 119 

al., 2021; Ebitz et al., 2018). We infer which of these modes is driving behavior with a hidden 120 

Markov model (HMM; Figure 1B; see Methods). This approach models the exploratory and 121 

exploitative modes as latent goal states and the maximum a posteriori goal is taken as the state 122 

label for each choice. We have previously shown that this method identifies explore/exploit state 123 

labels that match normative definitions (Chen et al., 2021; Ebitz et al., 2018) and explain 124 

variance in prefrontal neural activity that cannot be explained by reward value, reward history, 125 

and switch/stay decisions (Ebitz et al., 2018). This task design naturally elicits exploration and 126 

exploitation, allowing us to investigate variability in pupil size and neural activity under both 127 

conditions. 128 

Some previous studies used a different method to identify exploratory choices (Daw et al., 2006; 129 

Jepma and Nieuwenhuis, 2011a; Pearson et al., 2009). These studies fit a reinforcement 130 

learning (RL) model to the behavior and identified the choices that are not consistent with the 131 

model’s subjective values as exploratory. However, this previous RL-based approach (1) 132 

equates exploration with errors of reward maximization, not a goal that is orthogonal to reward 133 

maximization, and (2) its accuracy depends on precise knowledge of the computations involved 134 

in the choice, which are highly variable, both across individuals and over time (Chen et al., 135 

2021, 2021; Kaske et al., 2022). The HMM approach, conversely, makes no assumptions about 136 

the computations involved in the choice and identifies choices that are orthogonal to reward 137 

value, not anti-correlated with it (Chen et al., 2021; Ebitz et al., 2018). Here, we found that state 138 

labels from the HMM method explained more variance in behavior and neural activity than 139 

choice labels from the previous, RL method (Figure 1C; response time: both subjects, paired t-140 

test: p < 0.005, t(27) = 3.41, the mean difference of beta weights = 0.004, 95% CI = 0.002 to 141 

0.007; scatter index [(Ebitz et al., 2018)]: both subjects, paired t-test: p < 0.001, t(27) = 3.84, the 142 

mean difference of beta weights = 0.15, 95% CI = 0.07 to 0.24: see Methods). In short, we find 143 

that the HMM approach is a more robust and accurate method, with better face validity, than the 144 

RL-based method for identifying explore choices. Therefore, here, we used this more precise 145 
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approach to determine whether physiological signals, like pupil size, reliably track exploratory 146 

behavior. 147 

 148 

Figure 1. Task design and pupil. A) Top: Subjects made saccadic choices between three 149 
identical options (T1, T2, and T3). One of the options (e.g., T1 in this example trial) was located 150 
in the receptive field of a neuron in the frontal eye field (FEF; dotted circle). Bottom: Reward 151 
probabilities for the 3 options (lines), with choices overlaid (dots) for 200 example trials. Gray 152 
bars = explore-labels. B) The HMM models exploration and exploitation as latent goal states 153 
underlying choice sequences. C) Comparison of regression coefficients for HMM-inferred and 154 
RL-inferred explore choices, predicting either the disorganization of neural population responses 155 
(“scatter index”; see Methods; Ebitz et al., 2018) or response time. Beta weights were obtained 156 
from session-level generalized linear models (GLMs) with explore state as the predictor (0 = 157 
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exploit, 1 = explore). Separate GLMs were fitted using explore labels from the HMM and from 158 
an RL-based model. D) Average pupil size on explore and exploit choices. Right: Same for 159 
individual subjects. E) The probability of explore choices as a function of pupil size quantile. 160 
Dotted line: linear GLM fit. Solid line: quadratic fit. Right: Same for individual subjects. F) 161 
Several behavior measures compared across median-split large- and small-pupil-size explore 162 
choices. Left to right: reward probability, a one-trial-back learning index (see Methods), saccadic 163 
peak velocity of saccades, the scatter index, and reaction time. No significant differences 164 
between pupil bins. The grey line is the mean ± SEM for exploit choices. Error bars depict ± 165 
SEM throughout. 166 

Pupil size is larger during exploratory states 167 

Having established that the HMM reliably distinguishes explore and exploit states, we next 168 

asked whether pupil size changes across these behavioral states. Previous work using RL-169 

based labels reported that pupil size under constant luminance is larger during exploration than 170 

exploitation (Jepma and Nieuwenhuis, 2011b). We therefore tested whether this pattern holds 171 

using HMM-based labels in our dataset. Indeed, we found that pupil size at fixation (see 172 

Methods) was larger on explore-labeled trials than exploit-labeled trials in both subjects (Figure 173 

1D; both subjects, paired t-test: p < 0.0001, t(27) = 4.95, mean offset = 0.23, 95% CI = 0.13 to 174 

0.32; subject B: p < 0.001, t(9) = 5.50, mean offset = 0.4, 95% CI = 0.24 to 0.57; subject O: p < 175 

0.02, t(17) = 2.85, mean offset = 0.13, 95% CI = 0.03 to 0.23). Thus, pupil size was larger 176 

during exploratory choices identified with the HMM method. 177 

However, the probability of exploration did not increase linearly as a function of pupil size 178 

(Figure 1E). A linear, first-order GLM confirmed that larger pupil size generally predicted more 179 

explore choices (both subjects: β = 0.084, p < 0.0001, AIC = –1053.70, n = 28 sessions). This 180 

relationship held when analyzed separately in each subject (subject B: β = 0.063, p = 0.002, AIC 181 

= –368.01, n = 10 sessions; subject O: β = 0.110, p < 0.0001, AIC = –249.46, n = 18 sessions). 182 

Yet the relationship was clearly nonlinear. A quadratic model provided a significantly better fit 183 

than the linear model for the combined dataset (2nd order GLM: β₁ = –0.081, p = 0.101; β₂ = 184 

0.166, p = 0.0006; AIC = –1063.62, AIC weight for the quadratic model = 0.993), consistent with 185 

a U-shaped relationship. This U-shape was especially prominent in subject O (β₁ = –0.13, p = 186 

0.090; β₂ = 0.240, p = 0.001; AIC = –258.01), although the quadratic model was not an 187 

improvement over the linear model in subject B (β₁ = –0.027, p = 0.709; β₂ = -0.091, p = 0.205; 188 

AIC = –367.63). 189 

In order to determine whether this pattern was also apparent in the raw data (i.e. not the HMM-190 

model labels), we next examined how pupil size predicted switching behavior—i.e., choosing a 191 
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different option than in the previous trial. We again observed a U-shaped relationship between 192 

pupil size and the probability of making a switch choice in both subjects (1st-order GLM: β = 193 

0.084, p < 0.0001, n = 28 sessions; subject B: β = 0.0800, p < 0.0001; subject O: β = 0.0807, p 194 

< 0.0001). A 2nd-order quadratic model provided a superior fit in both animals (both subjects: β₁ 195 

= –0.099, p = 0.023; β₂ = 0.184, p < 0.0001; subject B: β₁ = –0.069, p = 0.284, β₂ = 0.149, p = 196 

0.010; subject O: β₁ = –0.093, p = 0.103, β₂ = 0.174, p = 0.001). Model comparison strongly 197 

favored the quadratic model (linear AIC = –1195.05; quadratic AIC = –1211.95; AIC weight for 198 

quadratic model = 0.9998). Thus, although pupil size tended to be larger during exploration than 199 

exploitation, its relationship with both exploration and switching was clearly U-shaped. 200 

One possible explanation for the U-shaped pattern is that some “explore” choices—particularly 201 

those with small pupil size—reflect disengagement at low levels of arousal, rather than true 202 

exploration. However, if this were the case, then the valid, large-pupil explore choices would 203 

systematically differ from the false, small-pupil “explore” choices. They did not. To evaluate this 204 

possibility, we compared small- and large-pupil explore trials across several behavioral 205 

dimensions known to be sensitive to lapses in task engagement . These included reward rate, 206 

saccade velocity, the neural scatter index, a trial-wise learning index, reaction time—each 207 

previously associated with arousal, motivation, or task-related updating (Chen et al., 2021; Ebitz 208 

et al., 2018; Laurie et al., 2025). Small- and large-pupil explore choices (median split) were 209 

indistinguishable along several of the key dimensions that differentiate explore choices from 210 

exploit choices (Figure 1F). For example, both were equally likely to be rewarded (mean 211 

difference = 0.03 ± 0.24 STD) between large- and small pupil-explore choices (p > 0.4, t(1,27) = 212 

0.75, paired t-test; AUC for discriminating explore and exploit = 0.65 ± 0.05 STD across 213 

sessions). Both had similar peak saccadic velocities (mean difference = -0.05 ± 0.23 STD, p > 214 

0.2, t(27) = -1.08; explore/exploit AUC = 0.61 ± 0.10 STD) and both had more variability in 215 

neural population choice information (“scatter index”, mean difference = 0.03 ± 0.33 STD, p > 216 

0.6, t(27) = 0.45; explore/exploit AUC = 0.60 ± 0.07 STD). Both had similar levels of reward 217 

learning (see Methods; the mean difference = -0.03 ± 0.57 STD, p > 0.7, t(27) = 0.27): in both 218 

cases, learning was substantially enhanced relative to the exploit choices (small-pupil, the mean 219 

difference from exploit = 0.24 ± 0.48 STD, p < 0.02, t(27) = 2.69; large-pupil, the mean 220 

difference from exploit = 0.21 ± 0.39 STD, p < 0.01, t(27) = 2.91). Reaction times were also 221 

similar across small- and large-pupil explore choices (mean difference = 0.01 ± 0.02 STD, p > 222 

0.6, t(27) = 1.84; explore/exploit AUC = 0.58 ± 0.06 STD). These results are incompatible with 223 

the idea that either type of explore choice reflects disengagement in the task or that small- and 224 
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large-pupil explore choices have different causes. Instead, we will see that the U-shape was 225 

due to the complex temporal relationship between pupil size and exploration. 226 

Pupil size, but not other measures ramp up before exploration 227 

Pupil size ramped up across trials before exploration began in both subjects. After exploration, it 228 

shrank to below-baseline levels when exploitation resumed (Figure 2A). Here, "baseline" refers 229 

to a z-scored value of 0, computed by subtracting the session mean and dividing by the session 230 

standard deviation of pupil size (see Methods).This ramping meant that pupil size was larger 231 

not just during exploration, but also during the exploit choices immediately before exploration 232 

(both subjects, GLM slope = 0.01, p < 0.005, n = 28; subject B: beta = 0.02, p < 0.02, n = 10; 233 

subject O: beta = 0.01, p < 0.05, n = 18; average pupil size compared to the exploit choices, 234 

post-hoc paired t-tests, 1 trial before exploration mean = 0.12, p < 0.005, t(27) = 3.42; 2 trials 235 

mean = 0.09, p < 0.03, t(27) = 2.41; 3 trials mean = 0.03, p > 0.1, t(27) = 1.42; 4 trials mean = 236 

0.05, p < 0.05, t(27) = 2.07). By the first exploit choice after exploration, pupil size had already 237 

begun shrinking to below-baseline levels (post-hoc paired t-tests, 1 trial after exploration mean 238 

= 0.03, p = 0.09, t(27) = 1.73; 2 trials after mean = -0.11, p < 0.02, t(27) = -2.67; 3 trials after 239 

mean = -0.16, p < 0.02, t(27) = -2.72; 4 trials after mean = -0.08, p > 0.2, t(27) = -1.27; 5 trials 240 

after mean = -0.16, p < 0.001, t(27) = -3.94; p-values are significant with a Holm-Bonferroni 241 

correction). The shrinking to below-baseline levels could suggest a refractory mechanism that 242 

would prevent exploration from re-occurring immediately after it happened. 243 

To rule out potential confounds, we tested whether the pupil ramping and shrinking effects could 244 

be explained by misaligned labels or unrelated behavioral dynamics. We saw no evidence of 245 

ramping in peak saccadic velocity, another behavioral measure that differentiated explore trials 246 

and exploit trials (Figure 2B; no significant decrease from baseline 1 trial before, paired t-test: p 247 

> 0.7, t(27) = 0.42; a GLM was nonsignificant with the trend pointing in the opposite direction: 10 248 

trials preceding exploration, beta = 0.008, p > 0.1) and no significant change from baseline 249 

afterward (not greater than the baseline during the 5 trials after exploration, when pupil shrinking 250 

was maximal, mean = -0.47 ± 0.15 STD, p > 0.9, one-sided t(27) = -1.67). We previously 251 

reported similar results for decoded choice probability and the scatter index (see Methods) in 252 

neurons of the frontal eye field (FEF), a prefrontal cortex region involved in directing gaze and 253 

attention (Ebitz et al., 2018). Thus, while pupil size ramped before exploration began and shrank 254 

afterward, the same was not true of other behavioral and neural variables, suggesting that these 255 

dynamics were not some artifact of misalignment. 256 
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Pupil size generally ramps across trials, but resets with exploration 257 

To better understand whether pupil ramping was a general feature of arousal dynamics or 258 

specific to exploration, we examined how pupil size evolved across trials with and without 259 

exploratory transitions (see Methods). When the subjects did not explore the pupil size 260 

increased steadily across trials (Figure 2C; 261 

both subjects, GLM: beta = 0.004, p < 262 

0.0001; subject B: beta = 0.003, p < 0.0001; 263 

subject O: beta = 0.005, p < 0.0001, n = 25 264 

lags over 28 sessions). This implies that the 265 

ramping in pupil size before explore choices 266 

may be a general dynamic of how pupil size 267 

evolves in the absence of exploration. 268 

However, a different pattern emerged when 269 

we looked at how the pupil changed 270 

between exploit trials that were separated 271 

by exploration. When two exploit trials were 272 

separated by at least one explore choice, 273 

pupil size was smaller on the second exploit 274 

trial (both subjects, GLM: beta = -0.09, p < 275 

0.0001; subject B: beta = -0.14, p < 0.0001; 276 

subject O: beta = -0.07, p < 0.0001). 277 

Critically, passing through exploration only 278 

produced a baseline decrease in pupil size 279 

but did not alter the rate at which pupil size 280 

grew over trials (no significant interaction 281 

between slope and condition in both 282 

subjects, GLM: beta < -0.0001, p > 0.9; 283 

subject B: beta = 0.003, p < 0.05; subject O: 284 

beta = -0.002, p > 0.1; also nonsignificant 285 

on trials 5-25: both subjects: beta < 0.0005, 286 

p > 0.5). Therefore, pupil size tended to 287 

ramp across trials but exploratory choices 288 
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temporarily decreased pupil size without disrupting this ramping in the long term. 289 

Figure 2. Pupil size ramps up before exploration and shrinks down after. A) Average pupil 290 
size for 10 trials before and 10 trials after explore choices. Purple line: GLM fit. Right: Same for 291 
each subject separately. B) Same as Figures 1D and 2A but for peak velocity rather than pupil 292 
size. C) Change in pupil size between exploit trials that are either in a single bout of exploitation 293 
(gray) or separated by explore trials (purple). Right: Same for each subject separately. D) 294 
Change in pupil size over certain pairs of trials: starting (exploit to explore), during (explore to 295 
explore), and leaving (explore to exploit) exploration. *p < 0.001 E) The probability of starting to 296 
explore as a function of pupil size quantile. Solid line: Linear GLM fit. Error bars and shaded 297 
regions depict mean ± SEM. Insets: Same analysis shown separately for each monkey.  298 

Pupil size specifically predicts the onset—not the maintenance—of exploration 299 

Pupil size tends to be smaller after exploration, but this shrinkage could either be driven by the 300 

end of exploration (i.e. the start of exploitation) or it could begin shortly after the beginning of 301 

exploration itself. If the pupil starts to shrink only after exploration ends, it would support models 302 

that suggest that pupil size decreases with commitment to a new option or belief state (O’Reilly 303 

et al., 2013). Conversely, if the pupil shrinks immediately after exploration begins, it might 304 

suggest that pupil-linked mechanisms are important for initiating exploration, but not sustaining 305 

it. Our results were consistent with the latter hypothesis: the pupil immediately began shrinking 306 

as soon as exploration began, not when it ended (Figure 2D; mean change in pupil size 307 

between neighboring explore choices = -0.17, t-test, t(27) = -2.69, p < 0.02; 95% CI = -0.30 to -308 

0.04). This was essentially identical to the magnitude with which the pupil shrank on exploit 309 

trials that followed explore trials (mean change = -0.17, t-test, t(27) = -2.56, p < 0.02; 95% CI = -310 

0.31 to -0.03). Validating the ramping we observed with other methods, we also found that pupil 311 

size tended to grow on explore trials that followed exploit trials here (mean change = 0.14, t-312 

test, t(27) = 2.96, p < 0.01; 95% CI = 0.04 to 0.24). Together, these results suggest that pupil 313 

size and pupil-linked mechanisms specifically predict the “onset” of exploration—the first 314 

exploratory trial in a sequence—and may not be important for sustaining exploration after the 315 

first explore choice. 316 

 317 
The tendency of the pupil to shrink after the onset of exploration could explain the previously 318 

noted U-shaped relationship between pupil size and exploration. In this view, the small-pupil-319 

size explore choices would be the later explore choices in a sequence and the larger pupil size 320 

explore choices would tend to be the first explore choice(s). Indeed, pupil size had a primarily 321 

linear relationship with the onset of exploration in both subjects (Figure 2E; 1st order GLM: β = 322 

0.042, p < 0.0001, AIC = –1973.57). Adding a quadratic term did not substantially improve the 323 
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model fit (β₂ = 0.038, p = 0.073; quadratic model AIC = –1974.81; ΔAIC = –1.24; AIC weight of 324 

quadratic model = 0.65; see Methods). This linear relationship was also observed in both 325 

monkeys individually (see Figure 2E, right panels). For subject B, a first order GLM confirmed a 326 

significant positive association (β = 0.044, p < 0.0001, AIC = –699.13), and adding a quadratic 327 

term did not improve the model fit (β₂ = 0.049, p = 0.0878; ΔAIC = –0.96). Similarly, for subject 328 

O, pupil size showed a significant linear relationship with exploration onset (β = 0.034, p < 329 

0.0001, AIC = –460.29), and the quadratic model again provided no additional explanatory 330 

power (β₂ = 0.022, p = 0.402; ΔAIC = +1.30). These results confirm that the linear relationship 331 

between pupil size and the onset of exploration was robust across both subjects and not driven 332 

by outliers or subject-specific variability. Conversely, there was no special relationship between 333 

pupil size and probability of starting to exploit (1st order GLM: beta = 0.05, p > 0.05). Thus, pupil 334 

size specifically predicted the onset of exploration, rather than explore choices or state switches 335 

more generally. 336 

If the U-shaped relationship between pupil size and exploration (Figure 1E) were driven 337 

primarily by later explore trials, it should remain evident after excluding onset trials from the 338 

analysis. Moreover, removing onsets should substantially reduce the slope of the linear effect. 339 

To test this, we repeated the analysis using only later explore trials. As expected, the linear 340 

slope decreased in both subjects (Figure S1): for subject B, β1 dropped from 0.063 (all explore 341 

trials) to 0.018 (excluding onsets), and for subject O, from 0.110 to 0.075. In contrast, the 342 

quadratic terms remained relatively stable: for subject B, β2 was 0.091 for all explore trials and 343 

0.041 with onsets excluded; for subject O, β2 was 0.240 and 0.215, respectively. Importantly, 344 

the U-shaped relationship persisted when data were combined across both subjects (Figure 345 

S1), with the quadratic model significantly outperforming the linear model 346 

(β2=0.121,p=0.012\beta_2 = 0.121, p = 0.012β2=0.121,p=0.012; AIC = –878.78 vs. –874.55; 347 

AIC weight for the quadratic model = 0.893). These findings confirm that the nonlinearity 348 

observed in the original analysis (Figure 1E) was driven by the decrease in pupil size in later 349 

exploratory trials, whereas the onset of exploration had a largely linear relationship with pupil 350 

size. 351 

Exploration is gated by pupil-linked arousal, not just reward history 352 

Although pupil size predicted the onset of exploration, it remained possible that this relationship 353 

was driven by a shared sensitivity to recent reward outcomes, since both exploration (Daw et 354 

al., 2006; Ebitz et al., 2018; Wilson et al., 2014) and pupil dilation (Bijleveld et al., 2009; Jepma 355 
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and Nieuwenhuis, 2011b) tend to increase following reward omission. To determine if there was 356 

a direct effect of pupil-related processes on exploration, we compared pupil size across exploit 357 

trials before exploration with pupil size from matched trial sequences where exploration did not 358 

happen (see Methods). There was a significant increase in pupil size during the trials before 359 

exploration compared to “matched rewards” control trials (Figure 3B; GLM, beta = 0.025, p < 360 

0.01, n = 28), suggesting that pupil size predicted the onset of exploration beyond what could be 361 

explained by reward. Again, pupil size ramped up over time (GLM, beta = 0.119, p < 0.02, n = 362 

28), but this ramping did not differ between the traces (GLM, beta = 0.007, p > 0.5, n = 28). This 363 

implies that either reward history or time (i.e., the number of trials) may explain the pupil 364 

ramping before exploration, although there is still an offset in pupil size that predicts the onset of 365 

exploration above and beyond the effect of reward history. 366 

Visual inspection of Figure 3A suggested that there may be a phase difference in pupil size 367 

between trials where exploration began and matched reward trials where exploration did not 368 

begin. This led us to develop a novel hypothesis (Figure 3B): that rewards may interact with 369 

ongoing oscillations in pupil size. Due to delays in communication between the baroreceptor 370 

reflect and changes in heart rate, the sympathetic nervous system (Borjon et al., 2016; 371 

Japundzic et al., 1990; Julien, 2020, 2006; Kamiya et al., 2005; Liao et al., 2018) has a natural 372 

oscillation known as the Mayer wave, with a period of approximately 0.05–0.1 Hz (Borjon et al., 373 

2016b; Julien, 2006). Critically, transitions in other behavioral states can be entrained by this 374 

oscillation, with eliciting stimuli causing transitions only at certain phases of arousal. This view 375 

predicts that the previous trials most predictive of the onset of exploration may actually be 376 

several trials prior to onset itself—during the periods in which the signals are most out of phase. 377 

Indeed, the trials in which pupil size best predicted the onset of exploration were not those 378 

immediately preceding it (e.g., trial t–1 or t–2), but rather trials t–4 and t–5 (Figure 3C; trial t–4, 379 

mean difference = 0.117, p < 0.05, t(27) = 2.09; trial t–5 = 0.170, p < 0.01, t(27) = 2.84). 380 

The view that omitted rewards only evoke exploration when they coincide with particular phases 381 

of sympathetic arousal also implies that that the onset of exploration should be phase-locked to 382 

the Mayer wave frequency (see Methods). The median trial duration was ~3 seconds (range = 383 

[2.2, 3.2]), so a ~5-trial cycle would correspond to a 0.06–0.09 Hz oscillation, which aligns with 384 

the frequency range of the Mayer wave. We found that pupil phase at the onset of exploration 385 

was concentrated at the rising phase (Figure 3D; mean phase = 47.18°, Hodges-Ajne test, p < 386 

0.01; vector length = 0.075; null = 0.026, 95% CI = 0.004 to 0.057, p < 0.0001). In contrast, pupil 387 

phases during reward-matched trials pointed in the opposite direction (mean phase = 207.58°; 388 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2025. ; https://doi.org/10.1101/2023.05.24.541981doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.541981
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

significantly different from onsets, p < 0.02, Watson’s U² = 0.25, n = 2170 phases including 389 

1135 onsets). Together, these results support the hypothesis (Figure 3B) that slow, rhythmic 390 

fluctuations in arousal interact with reward history to determine the timing of exploration onset. 391 

 392 
 393 
Figure 3. The onset of exploration is phase-locked to pupil size. A) Average pupil size over 394 
sequences of exploit trials before the onset of exploration (black line) and sequences with 395 
matched rewards, but no exploration at the end (gray line). Lines: GLM fit. B) Cartoon illustrating 396 
how oscillations in arousal (top) could interact with reward history (middle), to regulate 397 
exploration. The bottom panel illustrates a hypothetical pupil trace that has an additive effect of 398 
reward omissions and by oscillating arousal. Exploration (diamond shapes) begins when pupil 399 
size reaches a threshold (dotted line). Note that identical patterns of reward delivery and 400 
omission have different outcomes, depending on how they align with the phase of arousal (gray 401 
= no exploration, blue = exploration). C) Difference in pupil size between the traces in A. D) 402 
Phase distribution of pupil size at the onset of exploration (blue) and bootstrapped null 403 
distribution (black). The vectors at the center indicate the mean vector direction and length for 404 
the trials before exploration (blue) and the matched reward trials (gray). Shaded areas ± SEM 405 
throughout.  406 
 407 

Pupil size predicts flattened neural tuning in prefrontal cortex during exploration 408 

To probe the neural mechanisms linking pupil size to exploration, we examined how pupil size 409 

predicts neural activity in the FEF (Bruce and Goldberg, 1985; Moore and Armstrong, 2003; 410 

Moore and Fallah, 2001; Schall and Hanes, 1993) (Figure 4A). We previously reported that 411 

exploration is associated with flattened tuning for choice in FEF neurons (Ebitz et al., 2018). 412 

While FEF neurons often predict upcoming choices during exploitation, many show reduced 413 

choice selectivity during exploration. Pupil size predicted similar changes in in FEF neurons and 414 
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did so beyond what could be explained by exploratory states themselves. Out of 155 recorded415 

single neurons, 88 (57%) were tuned for choice (Figure 4B; 57%, one sample proportion test: p416 

< 0.001). These are referred to as "tuned neurons," regardless of whether they were modulated417 

by pupil size. Among tuned neurons, 21 (24%) were also modulated by pupil size, and 16 (18%)418 

showed a significant interaction between choice and pupil size. On average, tuning curves419 

flattened as pupil size increased in both tuned and untuned neurons (Figure 4C-D). Among420 

untuned neurons, an additional 22% (15/67) were significantly modulated by pupil size (p <421 

0.05), with a median regression coefficient (β) of –0.0011 ± 0.063. This suggests that pupil-422 

linked mechanisms affect FEF activity even in neurons that are not directly involved in encoding423 

choice. This may suggest a more domain-general role for arousal in modulating prefrontal424 

network dynamics. 425 

  426 

427 

15

ed 

: p 

ed 

) 

es 

ng 

< 

-

ng 

tal 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2025. ; https://doi.org/10.1101/2023.05.24.541981doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.541981
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

Figure 4. Pupil size predicts choice tuning curves and population disorganization. A) 428 
Recordings were made in the FEF. Right: The cartoon illustrates the relative positions of the 429 
receptive field target (Tin, red) and the ipsilateral and contralateral targets (Tout, blue and green). 430 
B) Percent of neurons with significant tuning for choice target, pupil size, and the interaction. C) 431 
Tuning curve for an example neuron across target locations, separated by pupil size. Lighter = 432 
larger pupil. The dashed line indicates the number of neurons expected to be significant by 433 
chance at p < 0.05. D) Same for all tuned neurons, which refers to the 88 out of 155 FEF 434 
neurons that were significantly tuned for choice, regardless of their modulation by pupil size. E) 435 
Cartoon illustrating how neural population measures consider patterns of firing rates across 436 
neurons as vectors in neural state space. Targeted dimensionality reduction is used to find the 437 
hyperplane where the distribution of neural activity across trials best predicts choice. Vectors 438 
here are the coding dimensions that separate the choices. F) The decoded choice probability 439 
(projection onto the correct coding dimension) plotted as a function of pupil size quantile. Inset: 440 
Same for exploit trials alone. G) The scatter index, a measure of the variance in choice-441 
predictive population activity, plotted as a function of pupil size quantile. Inset: Same for exploit 442 
trials. H) Decoded choice probability for trials before the onset of exploration (in blue) and trials 443 
with matched rewards (in gray).I) Scatter index for trials before the onset of exploration (in blue) 444 
and trials with matched rewards (in gray). Error bars and shaded regions ± SEM. J) Mediation 445 
analysis between pupil size, scatter index, and the onset of exploration. Top: Direct model. 446 
Bottom: Indirect, mediated model. Asterisks marked significant paths (*p < 0.01 **p < 0.001).  447 

Because single neurons are noisy, it is difficult to dissociate the effects of pupil size and 448 

exploration at the level of individual cells. However, changes in tuning at the single-neuron level 449 

also imply shifts in the organization of the neural population and looking at the population level 450 

can allow us to estimate these effects within smaller subsets of the data (Ebitz and Hayden, 451 

2021); Figure 4E). Indeed, we found that pupil size also predicted changes in how accurately 452 

choice information could be decoded from simultaneously recorded populations of FEF neurons. 453 

Consistent with our prior results (Ebitz et al., 2018), decoded choice probability was significantly 454 

lower during exploration compared to exploitation (paired t-test: both subjects, p < 0.0001, 455 

Figure S2A). Critically, larger pupil size predicted weaker choice encoding both across all trials 456 

(Figure 4F; GLM: beta = -0.032, p < 0.0001). This was not driven by differences between the 457 

states because pupil size also predicted choice decoding accuracy within exploit trials alone 458 

(GLM: beta = -0.037, p < 0.005). There was no significant effect of pupil size on choice 459 

decoding within explore trials (GLM: β = –0.003, p = 0.77, Figure S2B), which could have been 460 

due to differences in trial counts (i.e., explore trials made up only ~15% of total trials) or to floor 461 

effects (decoding accuracy was already close to chance in these trials). These findings show 462 

that pupil-linked arousal predicts the strength of choice-predictive neural signals in FEF above 463 

and beyond what can be explained by differences between the states. 464 

In our previous work, we found that decreases in choice-predictive activity were accompanied 465 

by increases in variability in FEF population responses to the same choice (Ebitz et al., 2018). 466 
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We quantified this with the “scatter index”: a measure of the spread within clusters of same-467 

choice population activity (see Methods). A high scatter index indicates that neural activity on a 468 

given trial was dissimilar to other trials where the same choice was made, whereas a low scatter 469 

index indicates that neural activity was tightly clustered. We observed a higher scatter index 470 

during exploration compared to exploitation (paired t-test: both subjects, p < 0.0001, Figure 471 

S2C). Here, we also found that increasing pupil size predicted an increase in the scatter index in 472 

both subject B and subject O (Figure 4G; GLM: beta = 0.04, p < 0.0001). This effect remained 473 

significant and of similar magnitude within exploit trials alone (GLM: β = 0.03, p < 0.0005), again 474 

suggesting that the relationship between pupil size and scatter was not an artifact of state 475 

differences with pupil size. Pupil size again did not significantly predict the scatter index during 476 

explore trials (GLM: β = 0.0006, p = 0.94, Figure S2D). Thus, pupil size predicted 477 

disorganization of choice-predictive signals in the FEF, at both the level of single neurons and in 478 

the population. 479 

Neural disorganization mediates the relationship between pupil size and exploration 480 

To test whether neural population activity, like pupil size, also specifically predicted the onset of 481 

exploration, we compared its dynamics in the trials preceding exploration to those in matched-482 

reward control trials. While sudden changes in the decoded choice probability and scatter index 483 

were largely aligned with the onset of exploration (as reported previously), these neural 484 

measures were at a different average level on the trials preceding exploration, compared to 485 

reward-matched controls (Figure 4H-I; choice probability, offset = -0.611, p < 0.001, n = 28; 486 

scatter index = 0.258, p < 0.001). Reward information did not cause a change in either variable 487 

(choice probability, slope = -0.004, p > 0.5; scatter index = 0.002, p > 0.5), while small, but 488 

significant interaction terms suggested that both variables anticipated the onset of exploration 489 

(choice probability interaction = -0.058, p < 0.01; scatter index interaction: beta = 0.040, p < 490 

0.001). To determine if these neural measures might explain or mediate some of the 491 

relationship between pupil size and exploration, we turned to structural equation modeling 492 

(Preacher et al., 2007; Sobel, 1986). We found that the scatter index was a significant mediator 493 

of the relationship between pupil size and the onset of exploration (Figure 4J; effect of 494 

mediation, ab = 0.003, p < 0.005; full report in Table S1). Together, these results suggest that 495 

pupil size predicts disruptions in the organization of prefrontal neural activity that then mediate 496 

its relationship with the onset of exploration. 497 
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498 

Figure 5. Pupil size predicts behavioral and neural slowing. A) Response time on exploit499 
trials before the onset of exploration (blue) and trials with matched rewards but no exploration500 
(gray). B) Response time plotted as a function of pupil size quantile. Inset: Same for exploit501 
trials alone. C) Mediation analysis between pupil size, response time, and the onset of502 
exploration. Top: Direct model. Asterisks marked significant paths (*p < 0.01 ). Bottom: Indirect,503 
mediated model. D) Neural speed on exploit trials before the onset of exploration (in blue) and504 
trials with matched rewards (in gray). E-F) Same as B-C for neural speed. Shaded areas and505 
error bars ± SEM. 506 

 507 

Exploration may reflect a critical transition in brain state dynamics 508 

Neural systems, like other complex networks, can undergo tipping points—irreversible “critical509 

transitions” between stable operating regimes (O’Byrne and Jerbi, 2022; Scheffer, 2020;510 

Scheffer et al., 2009; Wang et al., 2012). Because exploration occurs as the brain passes from511 

exploiting one target to exploiting another, it is worth considering the possibility that exploration512 

may represent a critical transition in brain states. Indeed, during exploration, we previously513 

reported (Ebitz et al., 2018) several phenomena in the FEF and in behavior that are hallmarks of514 

critical transitions, including a rapid flickering back and forth between choices (Wang et al.,515 
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2012), an increase in the variance in neural activity (Scheffer et al., 2009), and a disruption of 516 

long-term neuronal autocorrelations that suggests that passing through exploration causes time-517 

irreversible changes in the FEF network (Scheffer, 2020). However, there is another classic 518 

feature of critical transitions that we did not consider: an early warning signal known as “critical 519 

slowing”. As the system nears the tipping point, the dynamics within the system begin to flatten 520 

out in preparation for the change. As a result, the systems’ processes slow down and take 521 

longer to trace the same paths (Scheffer et al., 2009). Therefore, we next asked if there was any 522 

evidence that decision-making slowed down in advance exploration in this dataset. 523 

 524 

To test for critical slowing, we examined two measures of decision speed: one behavioral and 525 

one neural. First, we looked at response time, a measure of how long it takes the brain to 526 

generate saccadic decisions. Response time was not only slower in the trials before exploration, 527 

compared to matched-reward control trials (Figure 5A-C; GLM offset = 0.39, p < 0.0001, n = 528 

28), but it slowed down over trials before the onset of exploration (interaction = 0.05, p < 0.001). 529 

Second, we looked at the mean rate of change in neural population choice signals during the 530 

decision process (“neural speed”, see Methods). Neural speed was only weakly correlated with 531 

response time across sessions (mean = -0.07, min = -0.36, max = 0.09, Pearson’s correlation), 532 

suggesting that the measures were complementary, rather than redundant. Like response time, 533 

neural speed was also significantly slower on average in the trials before exploration, compared 534 

to matched-reward controls (Figure 5D–F; GLM offset = -0.17, p < 0.0001, n = 28). However, 535 

unlike response time, neural speed did not show a significant slowing trend over trials 536 

(interaction = -0.01, p = 0.08). Although the notion that the brain may be subject to critical 537 

tipping points is controversial (O’Byrne and Jerbi, 2022), these results are consistent with the 538 

idea that exploration could reflect a critical transition between exploiting one option and 539 

exploiting another. 540 

 541 

We first asked whether slowing effects could be better explained by the typical reward histories 542 

that precede exploration, rather than internal states like arousal. However, reward history alone 543 

did not have a significant effect on either neural or behavioral slowing (response time: slope of 544 

matched-reward trials = 0.0002, p > 0.5; neural speed: slope = -0.018, p > 0.1). This suggests 545 

that some internal variable, like arousal, could be driving increased slowing and, perhaps, also 546 

the systems’ proximity to a tipping point. Indeed, increasing pupil size predicted slower 547 

response times (Figure 5B; GLM beta = 0.08, p < 0.0001, n = 28 sessions), even within periods 548 

of exploitation (beta = 0.05, p < 0.0001). The same was true of neural slowing (Figure 5E; all 549 
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trials: beta = -0.03, p < 0.0005; exploit only: beta = -0.09, p < 0.0001). Further, structural 550 

equation modeling revealed that both measures of slowing mediated the relationship between 551 

pupil size and the onset of exploration (Figure 5C and F; Table S2-3). In sum, the pupil-linked 552 

mechanisms that anticipated exploration included both a disorganization of neural activity and a 553 

slowing of decision-related computations in brain and behavior—hallmarks of a system 554 

approaching a critical transition. 555 

Discussion 556 

Random decision-making is a powerful strategy for exploration (Dayan and Daw, 2008; Ebitz et 557 

al., 2018; Gershman, 2019; Wilson et al., 2021, 2014) that is linked to disorganized patterns of 558 

neural activity in the prefrontal cortex (Ebitz et al., 2018; Muller et al., 2019; Wilson et al., 2021). 559 

Here, we sought to identify some of the neurobiological mechanisms that drive random 560 

exploration and its neural signatures. We found that pupil size, a peripheral correlate of 561 

autonomic arousal, predicted exploration and certain measures of neural population activity 562 

previously linked to exploration. Consistent with previous studies (Jepma and Nieuwenhuis, 563 

2011a), pupil size was generally larger during exploration, compared to exploitation. However, 564 

there was also a complex temporal relationship, where pupil size ramped up between periods of 565 

exploration and decreased during exploration. As a result, pupil size was largest at the 566 

beginning or “onset” of exploration and explained variance in the onset of exploration that could 567 

not be explained by other variables. Together, these results suggest that pupil-linked 568 

mechanisms may play a role in driving the brain into an exploratory state. 569 

 570 

Our behavioral results largely replicate previous findings linking exploration to increased pupil 571 

size (Jepma and Nieuwenhuis, 2011a). However, where we found gradual ramping before 572 

exploration and sudden constriction after, Jepma and Nieuwenhuis (2011) reported an abrupt (if 573 

modest) increase of pupil size at the onset of exploration and then a gradual decrease at the 574 

return to exploitation. The discrepancy may be due to differences in the operational definition of 575 

exploration. Jepma and Nieuwenhuis (2011) fit an RL model to behavior and defined “explore 576 

choices” as the choices that were not reward-maximizing according to the model. This definition 577 

conflates exploration with errors of reward maximization. A strategy that is non-reward-578 

maximizing would produce choices that are orthogonal to value, not consistently bad. Here, we 579 

used an HMM to identify latent explore and exploit states on the basis of the temporal profiles of 580 

choices alone, with no assumptions on the underlying value computations. This allowed us to 581 

dissociate the effects of reward history from the explore/exploit choice labels. We reported here 582 
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(Figure 1C), and in previous studies (Chen et al., 2021; Ebitz et al., 2018), that HMM labels 583 

outperform RL labels in explaining behavioral and neural measures, suggesting that the HMM 584 

may more accurately separate distinct neural and behavioral states. If the HMM allows for more 585 

precise identification of exploratory and exploitative choices, it would follow that it also allows for 586 

more precise reconstruction of the temporal relationship between the pupil and exploration. 587 

 588 

The precision of our explore/exploit labels revealed that the U-shaped relationship between 589 

pupil size and exploration was caused by a refractory constriction in the pupil. When exploration 590 

was plotted as a function of pupil size, the relationship appeared non-linear: both small- and 591 

large-pupil choices were more likely to be exploratory. This superficially resonated with the idea 592 

of a U-shaped relationship between arousal and task performance (i.e. the “Yerkes-Dodson 593 

curve”; (Aston-Jones and Cohen, 2005; Yerkes and Dodson, 1908): perhaps reliable exploitation 594 

is only possible at intermediate levels of arousal. However, when we examined the temporal 595 

relationship between exploration and pupil size, we found that pupil size only predicted the 596 

onset of exploration, the first explore choice in a sequence. Small-pupil explore choices 597 

happened because starting to explore seemed to “reset” the level of pupil-linked arousal, 598 

causing it to quickly fall below baseline. If increased pupil size promotes a transition to 599 

exploration, then it is possible that post-exploration constriction represents a refractory period 600 

for exploration. Given that uncertainty grows with time in this task (and in all dynamic 601 

environments), it may not be smart to start to explore again immediately after you have just 602 

explored. A refractory period could ensure that non-reward-maximizing explore choices are 603 

deployed only when needed. Future work is needed to test this hypothesis and to determine the 604 

cognitive and/or neurobiological mechanisms at play. 605 

 606 

Before exploration, we observed an oscillatory dynamic that was about twice as fast as the 10 607 

trials it took the pupil to recover after exploration. This 0.06-0.09 Hz oscillation entrained the 608 

onset of exploration: onsets tended to occur during the rising phase of pupil size, whereas 609 

identical trial sequences that did not result in exploration were on the opposite phase. This 610 

implies that it is the confluence of pupil size, pupil phase, and trial history that best predicts the 611 

onset of exploration. This result reinforces the idea that arousal or arousal-linked mechanisms 612 

help trigger random exploration (Ebitz and Moore, 2019; Gilzenrat et al., 2010; Reimer et al., 613 

2016), rather than just tracking the reward-linked variables that make exploration more 614 

probable. It is also notable that the period of the pupil oscillation was close to the frequency of 615 

the Mayer wave: an oscillation in blood pressure that entrains other autonomic measures, 616 
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including respiration and heart rate (Borjon et al., 2016a; Japundzic et al., 1990; Julien, 2020, 617 

2006; Kamiya et al., 2005). There is precedent for the idea that behavior can be entrained by 618 

the Mayer wave: in marmosets, fluctuations in arousal predict the spontaneous onset of a call 619 

(Borjon et al., 2016a). This paper argued that the Mayer wave may function to organize vocal 620 

communication by bringing the system closer to the threshold for transitioning from inaction to 621 

action. It is possible that oscillations in the pupil and pupil-linked mechanisms function the same 622 

way here, organizing important state changes in time. In parallel, pupil-linked mechanisms seem 623 

to anticipate other state transitions, including belief updating (Filipowicz et al., 2020; O’Reilly et 624 

al., 2013), task disengagement (Kane et al., 2017), and other behavioral state changes (Bouret 625 

and Sara, 2005). Together, these results suggest an important role for pupil-linked mechanisms 626 

in driving successful transitions between certain neural and behavioral states. 627 

 628 

Critically, pupil size and pupil oscillations did not predict all state transitions here, but only the 629 

transition into exploration. What kinds of state transitions might be entrained by pupil- linked 630 

arousal? It is possible that the pupil may have a special relationship with certain “critical” kinds 631 

of transitions. Critical transitions are abrupt, large-scale, and irreversible changes in the 632 

dynamics and behavior of complex systems, like the brain. As these systems go from being in 633 

one conformation (i.e. always choosing the left option) into another conformation (i.e. always 634 

choosing the right), the system dynamics that support the old state have to disappear and the 635 

new dynamics have to emerge. During this brief transitory period, when both dynamics co-exist 636 

in the system, certain signatures can be observed in the system. We previously reported that 637 

the exploration was accompanied by abrupt changes in neural population activity, certain 638 

patterns of noise in brain and behavior, and disruptions in long-term neuronal autocorrelations: 639 

all observations that could be interpreted as suggesting that exploration is a critical transition in 640 

the brain (Ebitz et al., 2018). Here, we found that pupil size predicts these features of neural 641 

activity and also an prominent ”early warning sign” of critical transitions: a slowing, in brain and 642 

behavior, of the decision process. While there are certain patterns of activity in FEF that predict 643 

response speed (Hauser et al., 2018; Yao and Vanduffel, 2023), here we identified independent 644 

neural and behavioral measures of decision speed that both mediated the relationship between 645 

pupil size and exploration. Notably, pupil size also predicted slower neural and behavioral 646 

responses within exploit-only trials, suggesting that these effects are not an artifact of 647 

differences between explore and exploit states. This suggests that these effects may reflect a 648 

domain-general influence of arousal on cognitive dynamics, consistent with the idea that 649 

fluctuations in pupil-linked neuromodulation shape the temporal structure of decision-making in 650 
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general, beyond any role in state transitions. In this view, the transition into exploration in FEF 651 

may reflect an extremum of these domain-general arousal effects—a tipping point—rather than 652 

signals that are highly specific to state transitions. Together these results suggest that pupil-653 

linked arousal pushes neural and behavioral states to a critical tipping point and highlights the 654 

crucial role of pupil-linked mechanisms in changing the dynamics of the brain. 655 

 656 

What underlying, pupil-linked mechanisms could support critical transitions? Changes in pupil 657 

diameter coincide with neuromodulator system activity, especially norepinephrine (NE) and 658 

acetylcholine (Breton-Provencher and Sur, 2019; de Gee et al., 2020; Joshi et al., 2016; Joshi 659 

and Gold, 2020; Murphy et al., 2014; Reimer et al., 2016). At the neuronal level, central NE 660 

flattens tuning curves, at least in the auditory cortex (Martins and Froemke, 2015), though it may 661 

have different effects in non-cortical structures (Manella et al., 2017). Here, we made a parallel 662 

observation: as pupil size increases, neuronal turning curves flattened and choice-predictive 663 

neural population activity became disorganized. These results resonate with a particularly 664 

influential theory of NE function: the idea that NE release may facilitate “resets” in cortical 665 

networks in order to effect long-lasting changes in brain and behavior (Aston-Jones and Cohen, 666 

2005; Bouret and Sara, 2005). More recent studies seem to consistently report that elevated 667 

levels of NE predict an increase in behavioral variability, while pharmacological blockade of NE 668 

receptors reduces variability (Chen et al., 2023; Kane et al., 2017; Sadacca et al., 2017; Tervo 669 

et al., 2014). In combination with the present study, these results could suggest that phasic NE 670 

signaling functions to push the brain towards a critical tipping point where it is better able to 671 

transition from one regime to another. In this view, behavioral variability would be linked to NE 672 

not because NE increases variability directly, but because the brain is more likely to transition 673 

into a high variability regime after it is released. Of course, pupil size is also associated with 674 

other neuromodulatory systems, cognitive factors, and other measures of arousal. Thus, future 675 

work is needed to identify the neurobiological mechanisms that underpin the relationship 676 

between pupil size and critical transitions that we report here. 677 

Materials and Methods 678 

Surgical and electrophysiological procedures. All procedures were approved by the Stanford 679 

University Institutional Animal Care and Use Committee. Subjects were two male rhesus 680 

macaques, surgically-prepared with head restraint prostheses, craniotomies, and recording 681 

chambers under isoflurane anesthesia via techniques described previously (Ebitz et al., 2018). 682 
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Following surgery, analgesics were used to minimize discomfort, and antibiotics were delivered 683 

prophylactically. After recovery, subjects were acclimated to the laboratory and head restraint, 684 

then placed on controlled access to fluids and trained to perform the task.  685 

In order to train the animals on the explore/exploit task a gradual procedure was used in which 686 

the two animals were first trained to make saccadic eye movements in exchange for liquid 687 

rewards. Once the animals reliably made controlled eye movements to a single target (generally 688 

within 1–2 days), a second target was introduced, and the animals were free to choose between 689 

them. At the outset, each target was associated with a probability of reward (initially 10% and 690 

90%), which was reversed in blocks at the experimenter’s discretion. Over a period of 2–4 691 

months, the difference in reward probabilities between the targets was gradually reduced, the 692 

blocks transitioned into gradual reward probability shifts (reward walks), and a third target was 693 

introduced. The speed and order of these changes depended on each animal’s performance 694 

and engagement with the task. One animal (monkey O) was naïve to laboratory tasks prior to 695 

this experiment, whereas the second (monkey B) had been previously trained on covert and 696 

overt attention tasks, but not on any prior value-based tasks. 697 

Recording sites were located within the FEF, which was identified via a combination of 698 

anatomical and functional criteria. The location of recording sites in the anterior bank of the 699 

arcuate sulcus was verified histologically in one subject and via microstimulation in both 700 

subjects (Ebitz et al., 2018). Recordings were conducted with 16-channel U-probes (Plexon), 701 

located such that each contact was within gray matter at an FEF site. An average of 20 units 702 

were recorded in each session (131 single units, 443 multi units; 576 total units across 28 703 

sessions). 704 

General behavioral procedures. Eye position and pupil size were monitored at 1000 Hz via an 705 

infrared eye tracking system (SR Research; Eyelink). The manufacturer's standard methods for 706 

calculating pupil area were used. MATLAB (Psychtoolbox-3; (Kleiner et al., 2007)) was used to 707 

display stimuli and record behavioral responses and pupil size measurements. Task stimuli 708 

were presented against a dark gray background (7 cd/m2) on a 47.5 cm wide LCD monitor 709 

(Samsung; 120 Hz refresh rate, 1680 x 1050 resolution), located 34 cm in front of the subject. 710 

Three-armed bandit task. The subjects performed a sequential decision-making task in which 711 

they chose between 3 targets whose values changed over time. The subject first fixated a 712 

central fixation square (0.5° stimulus, +/- 1.5-2° of error) for a variable interval (450-750ms). At 713 
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any point within 2s after the onset of the targets, subjects indicated their choice by making a 714 

saccade to one of the targets and fixating it (+/- 3°) for 150 ms. Reward magnitude was fixed 715 

within session (0.2-0.4 μL). Reward probability was determined by the current reward probability 716 

of the chosen target, which changed independently over trials for each of the three targets. On 717 

every correct trial, each target had a 10% chance of the reward parameter changing either up or 718 

down by a fixed step of 0.1, bounded at 0.1 and 0.9. Because rewards were variable, 719 

independent, and probabilistic, the subjects could only infer the values of the different targets by 720 

sampling them and integrating noisy experienced rewards over multiple trials. 721 

General analysis procedures. Data were analyzed with custom software in MATLAB. Unless 722 

otherwise noted, all t-tests were paired, two-sided t-tests, and generalized linear models were 723 

run on raw data, with session number coded as a dummy variable to account for session-to-724 

session variability. Model comparison was based on standard methods that involve calculating 725 

the likelihood of the data and Akaike information criteria (AIC) of each model, then using AIC 726 

weights to identify (1) the model that is most likely to minimize information loss, and (2) the 727 

relative likelihood of competing models to do the same (Burnham and Anderson, 2004). For 728 

analyses of any behavioral or neural variables on the trials before or after exploration, 729 

continuous runs of exploit trials were required. The values of behavioral and neural variables 730 

were z-scored within a session to facilitate comparisons across sessions. In the results section, 731 

we refer to a z-score of 0 as “baseline”. The 200 ms window immediately preceding target onset 732 

was chosen as the analysis epoch for all choice-predictive neural measures. A longer, whole-733 

trial epoch was chosen for neural speed analyses (0 to 500 ms) following target presentation. 734 

Firing rates were computed per trial. 735 

Pupil size. Pupil size was measured during the first 200 ms of fixation, a time at which the eye 736 

was fixed at a known point on the screen, illumination was identical across trials, and 737 

anticipatory changes in the pupil were minimal. To remove any blinks or movement artifacts, 738 

trials where pupil size or the change in pupil size from the first time bin of this epoch to the last 739 

was +/- 6 standard deviations from average were eliminated from further analyses. A total of 740 

178 trials (out of 21,793, approximately 0.8% of observations) were outliers. 741 

Hidden Markov Model. To identify when subjects were exploring versus exploiting, we employed 742 

a hidden Markov model (Chen et al., 2021; Ebitz et al., 2018). In this framework, choices Yt are 743 

treated as emissions from a latent decision-making state zt, which can either be an explore or 744 

one of the multiple exploit states. 745 
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The emission model for exploration assumed a uniform probability of selecting any option: 746 

 747 

Where Nk is the total number of options. In contrast, exploit states deterministically emitted748 

choices to the exploited option i: 749 

 750 

Latent state transitions followed a Markov process, such that the probability of the current state751 

depended only on the previous state: 752 

 753 

To reduce model complexity, parameters were shared across exploit states, and subjects were754 

assumed to begin in the explore state. The final HMM included only two free parameters: the755 

probability of persisting in exploration and the probability of persisting in exploitation. The model756 

was fit using expectation-maximization with 20 random restarts, and the solution maximizing the757 

observed data log-likelihood was selected. The most probable sequence of latent states was758 

recovered using the Viterbi algorithm. 759 

Reinforcement learning model. To compare goal state labels derived from an RL and HMM760 

model, we employed a Rescorla-Wagner model. This was fit using maximum likelihood761 

estimation. The value of each option is iteratively updated according to: 762 

 763 

Where Vi,t is the value of option i at time t, rt is the reward at time t, and α represents the fitted764 

learning rate, which determines how much the difference between the predicted and actual765 
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reward (the prediction error) influences value. To make a decision, the values are passed766 

through a softmax decision rule: 767 

 768 

Where n is the total number of available options, and β is the inverse temperature, which769 

controls the level of random noise in decision-making. After (Daw et al., 2006; Jepma and770 

Nieuwenhuis, 2011a; Pearson et al., 2009), decisions that were not reward maximizing were771 

labeled as exploratory (i.e. any decision where Vchosen,t was not the maximum V at time t). 772 

Generalized Linear Model (GLM). To examine the relationship between behavioral and neural773 

variables, we employed generalized linear models (GLMs). These models were fit using774 

maximum likelihood estimation. Each dependent variable  (i.e., scatter index, response time,775 

or choice probability) was modeled as a linear combination of predictors: 776 

777 

Where Yi is the dependent variable on trial i, β0 is the intercept, and β1, β2, β3 are regression778 

coefficients quantifying the influence of the corresponding predictors (e.g., explore state, pupil779 

size, and their interactions).εi is the residual error term. 780 

In analyses where categorical variables (e.g., explore state: 0 = exploit, 1 = explore) were used781 

as predictors, these were coded as binary dummy variables. Models were fit using the identity782 

link function and assumed normally distributed errors. 783 

Learning Index. To investigate whether learning differed with pupil size within the exploratory784 

choices, we calculated a learning index that captured the effect of rewards experienced during785 

exploration on future choices. Because reward effects decay exponentially quickly (Lau and786 

Glimcher, 2008), a 1-trial-ahead index should capture most of the variability in how much is787 

learned between trial types. The equation was:  788 
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 789 

Lagged change in pupil size. To determine whether exploration impacted pupil size, we790 

measured the change in pupil size (Δ pupil) between pairs of trials that either were or were not791 

separated by at least 1 explore trial. Segments of twenty-five consecutive trials were identified792 

that either included a single bout of exploration or did not include exploration. For each pair of793 

trials within these sequences, we then measured the change in pupil size between the first794 

exploit trial of the sequence (t1) and the remaining exploit trials in the sequence (t2:25). This795 

was repeated for all unique pairs of trials that met our selection criteria. 796 

 797 

Matched reward trials. To test whether the rising trend in pupil size before exploration is best798 

explained by reward history, we identified trial sequences with identical reward and state799 

histories that did not end in exploration (“matched rewards”). For each onset of exploration800 

preceded by at least 6 exploit trials, we searched for identical sequences of exploit trials, with801 

identical reward histories, that did not end in exploration. We chose 6 previous trials because802 

this was the longest sequence of reward history we could regularly match within the majority of803 

sessions (we could find at least 10 matched sequences in 96% [27/28] of sessions for 6 trials804 

sequences; that dropped to 75% [21/28] at 7 trials). Identical results were obtained with other805 

sequence lengths, though these analyses included fewer sessions. 806 

 807 

Mediation analysis. To determine if the predictive relationship between pupil size and808 

exploration was mediated by other variables, we used structural equation modeling to test for809 

mediation. Mediation analyses involve fitting three regression models. The first model measures810 

the total effect (c) of the independent variable (here, pupil size) on the independent variable811 

(here, onset of exploration):  812 

 813 
In these equations,  represents the intercept for each equation, while � represents the error of814 

the model. Note that the estimated parameter c will include both direct effects of pupil size on815 

exploration, but also indirect effects that may be mediated by other variables. Therefore, we816 
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also fit a second model that tests if the independent variable also predicts a potential mediator817 

variable (here, neural network scatter):  818 

 819 
Model parameter a thus captures the effect of pupil size on the mediator. Finally, a third model820 

estimates the unique contributions of both the potential mediator (scatter, b) and the821 

independent variable (pupil size, c’), now controlling for the mediator: 822 

 823 
A drop between c and c’ indicates that the effect of the independent variable (pupil) on the824 

dependent variable (exploration) is reduced when the mediating variable is considered. The825 

mediation effect (the indirect effect of the pupil size on the onset of exploration via the mediating826 

factor) can also be estimated directly, via taking the product of the coefficients a and b. Sobel’s827 

test is used to determine the significance of the mediation path (Sobel, 1986). 828 

 829 

Phase analysis. To determine if the onset of exploration happened at a specific phase of pupil830 

size over trials, we performed a wavelet analysis. Because this method only assumes local831 

stationarity, it is more suitable than other methods for analyzing pupil size, which tended to832 

ramp over trials. A wavelet was constructed by multiplying a complex sine wave (frequency = 5833 

trials) with a Gaussian envelope (μ = 0, σ = cycles / (2π*frequency), cycles = 5; (Cohen, 2014)).834 

The wavelet was convolved with the baseline pupil size time series and the phase of the signal835 

was calculated on each trial (Matlab; angle). Standard circular statistics were used to measure836 

the differences between phase distributions for explore onsets and reward-matched controls837 

(Zar, 1999) and the phase alignment within these trial types (Berens, 2009). The latter was also838 

verified via comparison with bootstrapped null distributions (1000 samples). 839 

Targeted dimensionality reduction. Neural state spaces have as many dimensions as there are840 

recorded neurons, but converging evidence suggests (1) that the neural states that are841 

observed in practice are generally confined to a lower-dimensional “manifold”, and (2) that task-842 

relevant information is encoded by a small number of dimensions in that manifold. Because we843 

wanted to isolate the effects of arousal on choice-related activity from well-known effects of844 

arousal on neural activity (Ebitz and Platt, 2015; McGinley et al., 2015; Pfeffer et al., 2022;845 

Podvalny et al., 2021; Reimer et al., 2016, 2014; van Kempen et al., 2019; Waschke et al.,846 
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2019), we focused all our neural population analyses on activity within the choice-predictive847 

subspace, rather than on neural activity more broadly. 848 

 849 

To do this, we used targeted dimensionality reduction to identify the choice-predictive850 

dimensions of the neural state space (Cohen and Maunsell, 2010; Cunningham and Yu, 2014;851 

Ebitz et al., 2018; Peixoto et al., 2021). Specifically, we used multinomial logistic regression852 

(Matlab; mnrfit, mnrval, (Hastie et al., 2009)) to identify the separating hyperplanes that best853 

discriminated each choice from the alternative choices. This is equivalent to fitting a system of854 

binary classifiers of the form: 855 

  856 

Where one classifier discriminates target 1 choices from targets 2 and 3 and a second857 

discriminates target 2 choices from targets 1 and 3. The classifier that discriminates target 3858 

from targets 1 and 2 is then just the negative of target 1 and target 2. These axes span the859 

subspace in which neural activity best predicts choice. Classifiers were trained on firing rates860 

from an epoch that began when the targets appeared and ended at the time of the saccade.861 

Mean imputation was used for the small number of occasions where a unit was not held for the862 

whole duration of the session (~3% of trials, ~12% of units) and a small fraction of units were863 

omitted from these analyses because their mean firing rates were less than 2 spikes/s, which864 

makes their weights difficult to identify (~8% of units). 865 

 866 

Choice Probability Decoding. Within the choice-predictive subspace, the distance from the867 

separating hyperplanes (the vectors illustrated in Figure 4E) are the decoding vectors: the868 

vectors along which we can project neural activity in order to decode the log odds of choice.869 

This projection is equivalent to the decoded choice probability from the multinomial logistic870 

regression model and this is the figure we took as the decoded choice probability in Figures 3F871 

and 3H. We evaluated decoding accuracy by measuring how often the most-likely choice872 

predicted by the model coincided with the choice the subject made. 873 

Scatter index. The scatter index measures how much choice-predictive population neural874 

activity is clustered between trials with the same choice (Ebitz et al., 2018). It is calculated by875 

measuring the average Euclidean distance of each trial from all other trials where the same876 
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choice was made and dividing it by the average Euclidean distance to all other trials where a877 

different choice was made: 878 

 879 

Each trial thus has its own scatter index value, with a value of 1 indicating no difference in880 

clustering between same-choice and different-choice trials, and a value less than 1 indicating881 

greater clustering with same-choice trials compared to different-choice trials. 882 

Neural speed. To determine how the speed of the decision-making process changed before and883 

during exploration, we calculated the rate of change in neural states within the choice-predictive884 

subspace during the first 400 ms following target presentation. Each trial’s neural activity was885 

sampled in non-overlapping 20 ms bins and then projected into the choice-predictive subspace.886 

The change in neural activity within the subspace was then calculated between each pair of887 

samples. Finally, the changes were averaged together across the trial and normalized to the bin888 

width to produce an average rate of change in choice-predictive activity for that trial. 889 
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Table S1 896 

Regression coefficients and p values for the mediation analysis testing whether the scatter 897 
index mediates the relationship between pupil size and the onset of exploration. Related to 898 
Figure 4J. 899 

  pupilt-1 → scattert-1 → exploret 

  est. coefficient p value < 

Total effect c 0.090 0.005 

Effect on mediator a 0.036 0.0005 

Unique mediator effect b 0.092 0.005 

Indirect effect ab 0.003 (z = 2.70*) 0.005 

Direct effect c’ 0.086 0.005 

*Sobel’s test 900 

 901 

Table S2 902 

Regression coefficients and p values for the mediation analysis testing whether response time 903 
slowing mediates the relationship between pupil size and the onset of exploration on the next 904 
trial. Related to Figure 5C. 905 

  pupilt-1 → RT slowingt-1 → exploret 

  est. coefficient p value < 

Total effect c 0.090 0.005 

Effect on mediator a 0.078 0.0001 

Unique mediator effect b 0.106 0.0005 

Indirect effect ab 0.008 (z = 3.48*) 0.0005 

Direct effect c’ 0.080 0.01 

*Sobel’s test  906 
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Table S3 907 

Regression coefficients and p values for the mediation analysis testing whether neural slowing 908 
mediates the relationship between pupil size and the onset of exploration on the next trial. 909 
Related to Figure 5F. 910 

  pupilt-1 → neural slowingt-1 → exploret 

  est. coefficient p value < 

Total effect c 0.095 0.005 

Effect on mediator a -0.025 0.0005 

Unique mediator effect b -0.059 0.06 

Indirect effect ab 0.001 (z = 1.69*) 0.05 

Direct effect c’ 0.093 0.005 

*Sobel’s test 911 
 912 
  913 
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Figure S1 914 
 915 

 916 
Figure S1. Same as Figure 1E, but without first explore trials.   917 
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Figure S2 918 

 919 
Figure S2. Decoded choice probability and scatter index across behavioral states and pupil 920 
size. (A) Decoded choice probability (projection onto the correct coding dimension) for exploit 921 
and explore states. Dots represent individual sessions, with lines connecting values from the 922 
same session across states. (B) Decoded choice probability plotted as a function of pupil size 923 
quantile for explore trials alone. (C) Scatter index, a measure of variance in choice-predictive 924 
population activity, for exploit and explore states, with lines connecting values from the same 925 
session across states. (D) The scatter index plotted as a function of pupil size quantile for 926 
explore trials. 927 
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