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Abstract

In uncertain environments, intelligent decision-makers exploit actions that have been rewarding
in the past, but also explore actions that could be even better. Several neuromodulatory
systems are implicated in exploration, based, in part, on work linking exploration to pupil size—a
peripheral correlate of neuromodulatory tone and index of arousal. However, pupil size could
instead track variables that make exploration more likely, like volatility or reward, without directly
predicting either exploration or its neural bases. Here, we simultaneously measured pupil size,
exploration, and neural population activity in the prefrontal cortex while two rhesus macaques
explored and exploited in a dynamic environment. We found that pupil size under constant
luminance specifically predicted the onset of exploration, the first exploratory trial in a sequence,
beyond what could be explained by reward history. Pupil size also predicted disorganized
patterns of prefrontal neural activity at both the single neuron and population levels, even within
periods of exploitation. Ultimately, our results support a model in which pupil-linked mechanisms
promote the onset of exploration via driving the prefrontal cortex through a critical tipping point

where prefrontal control dynamics become disorganized and exploratory decisions are possible.
Significance Statement

Humans and other animals learn about the world through exploration: through making decisions
that offer the opportunity to learn and discover, even when these decisions are not the best
option in the moment. Neuroscience research has historically focused on understanding good
choices, delivering many key insights into the neural mechanisms involved in these calculations.
However, much less is known about how the brain generates exploratory decisions. This study
identifies certain “early warning signs” of exploratory decisions in the brain and body, including
certain signals in size of the pupil and the speed of neural activity in the prefrontal cortex. These
early warning signs suggest that exploration may be the result of a critical tipping point in

prefrontal brain states.
Introduction

Many decisions maximize immediate rewards. However, in uncertain or changing environments,
it is important to sacrifice some immediate rewards in order to learn about the value of

alternative options and discover new, more valuable strategies for interacting with the world. In
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short, in complex environments, intelligent decision-makers exploit rewarding strategies, but

also explore alternative strategies that could be even better.

Because exploitation maximizes immediate reward, it can rely on the same value-based
decision-making processes that have been the subject of neurobiological studies for decades
(Ding and Hikosaka, 2006; Jurewicz et al., 2022; Platt and Glimcher, 1999; Roesch and Olson,
2007; Schultz et al., 2008). However, we are only just beginning to understand the neural bases
of exploration (Costa and Averbeck, 2020; Daw et al., 2006; Pearson et al., 2009; Wilson et al.,
2021, 2014). One clue is that many organisms seem to explore via random sampling
(Gershman, 2019; Wilson et al., 2021, 2014). Randomness is a critical component of
exploratory discovery in bird song and motor learning (Fiete et al., 2007; Wu et al., 2014), it can
perform about as well as more sophisticated strategies in many environments (Dayan and Daw,
2008), and humans and other primates tend to explore randomly even when more sophisticated
strategies are available (Ebitz et al., 2018; Wilson et al., 2014). There is some neurobiological
evidence linking random exploration to disorganized activity patterns in the prefrontal cortex
(Ebitz et al., 2019, 2018; Muller et al., 2019; Wilson et al., 2021), but we still do not understand

the proximate causes of random exploration and its neural correlates in the prefrontal cortex.

One promising hypothesis is that exploration could be under the control of some process(es)
linked to pupil size. Pupil size under constant luminance is a peripheral index of autonomic
arousal (Bradley et al., 2008; Ebitz and Moore, 2019; Loewenfeld, 1999) that also predicts
widespread changes in neural population activity (McGinley et al., 2015; Reimer et al., 2014)—
including in regions implicated in decision-making noise (Ebitz and Platt, 2015; Tervo et al.,
2014). Among other neuromodulators (Gilzenrat et al., 2010; Koss, 1986; Reimer et al., 2016),
pupil size is correlated with central norepinephrine (Costa and Rudebeck, 2016; Joshi et al.,
2016): a catecholamine that flattens neuronal tuning functions (Martins and Froemke, 2015) and
predicts “resets” in cortical networks (Aston-Jones and Cohen, 2005; Bouret and Sara, 2005).
Behaviorally, pupil size predicts decision-making noise (Aston-Jones and Cohen, 2005; Ebitz et
al., 2014, Eldar et al., 2013; Gilzenrat et al., 2010; O'Reilly et al., 2013; Wilson et al., 2021),
especially errors of reward-maximization (Jepma and Nieuwenhuis, 201la) and task
performance (Ebitz et al., 2014; Ebitz and Platt, 2015). Some of these “errors” may be caused
by exploratory processes (Ebitz et al., 2019; Jepma and Nieuwenhuis, 2011a; Pisupati et al.,
2021).
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84  There is a plausible alternative interpretation of this data: perhaps pupil size only tracks the
85 variables that make exploration more likely. Pupil size under constant luminance increases with
86 the volatility of reward environments, the surprise of reward outcomes, novelty, uncertainty, and
87 context changes (Clewett et al., 2020; Filipowicz et al., 2020; Graves et al., 2021; Preuschoff et
88 al., 2011; Slooten et al., 2018; Yokoi and Weiler, 2022): all variables that make exploration more
89 likely. However, it is often unclear whether the pupil is tracking these variables or instead
90 directly predicting behavioral changes like increased learning, decision-noise or exploration
91 (Nassar et al., 2012; O'Reilly et al., 2013; Urai et al., 2017). Fortunately, recent results suggest
92 that at least some exploration appears to occur tonically, regardless of these variables (Ebitz et
93 al., 2019; Pisupati et al., 2021; Wilson et al., 2021). Further, in parallel, new computational
94  approaches allows us to determine when exploration is occurring independently of the reward-
95 based computations thought to drive it (Chen et al., 2021; Ebitz et al., 2020, 2019, 2018). This
96 means that it is now possible to determine whether pupil size predicts exploration itself or

97 instead simply tracks the variables that make exploration more likely.

98 Here, we measured pupil size and recorded from populations of prefrontal neurons while two
99 rhesus macaques performed a task that encouraged exploration and exploitation. We found that
100  pupil size under constant luminance was larger during explore choices than exploit choices.
101  However, the temporal relationship between pupil size and exploration was both precise and
102 complex: spontaneous oscillations in pupil size entrained the onset of exploration. Together,
103 these results support the hypothesis that pupil-linked processes drive the prefrontal cortex

104  through a critical tipping point that permits exploratory decisions.
105 Results

106  Two male rhesus macaques performed a total of 28 sessions of a classic explore/exploit task: a
107  restless three-armed bandit (subject B: 10 sessions, subject O: 18 sessions; a total of 21,793
108 trials). Some analyses of this dataset have been reported previously (Ebitz et al., 2018), but the
109 pupil data has not been analyzed previously and all analyses presented here are new. In this
110 task, the reward probability (value) of three targets walks randomly and independently over time
111  (Figure 1A). This means that the subjects have to take advantage of valuable options when
112 they are available (exploit), but also occasionally sample alternative options to determine if they

113  have become more valuable (explore).
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114 Rather than instructing subjects to explore and exploit, this task takes advantage of the
115 subjects’ natural tendency to alternate between exploration and exploitation in a changing
116  environment. We have previously shown that both monkeys and mice exhibit 2 behavioral
117 modes in this task: one exploitative mode in which they repeatedly choose the same option—
118 learning little but maximizing reward—and one exploratory mode in which they alternate rapidly
119 between the options—choosing randomly with respect to rewards and learning rapidly (Chen et
120 al., 2021; Ebitz et al., 2018). We infer which of these modes is driving behavior with a hidden
121  Markov model (HMM; Figure 1B; see Methods). This approach models the exploratory and
122  exploitative modes as latent goal states and the maximum a posteriori goal is taken as the state
123 label for each choice. We have previously shown that this method identifies explore/exploit state
124  labels that match normative definitions (Chen et al., 2021; Ebitz et al., 2018) and explain
125 variance in prefrontal neural activity that cannot be explained by reward value, reward history,
126  and switch/stay decisions (Ebitz et al., 2018). This task design naturally elicits exploration and
127  exploitation, allowing us to investigate variability in pupil size and neural activity under both
128 conditions.

129 Some previous studies used a different method to identify exploratory choices (Daw et al., 2006;
130 Jepma and Nieuwenhuis, 2011a; Pearson et al., 2009). These studies fit a reinforcement
131 learning (RL) model to the behavior and identified the choices that are not consistent with the
132 model’'s subjective values as exploratory. However, this previous RL-based approach (1)
133  equates exploration with errors of reward maximization, not a goal that is orthogonal to reward
134  maximization, and (2) its accuracy depends on precise knowledge of the computations involved
135 in the choice, which are highly variable, both across individuals and over time (Chen et al.,
136 2021, 2021; Kaske et al., 2022). The HMM approach, conversely, makes no assumptions about
137 the computations involved in the choice and identifies choices that are orthogonal to reward
138 value, not anti-correlated with it (Chen et al., 2021; Ebitz et al., 2018). Here, we found that state
139 labels from the HMM method explained more variance in behavior and neural activity than
140 choice labels from the previous, RL method (Figure 1C; response time: both subjects, paired t-
141  test: p < 0.005, t(27) = 3.41, the mean difference of beta weights = 0.004, 95% CI = 0.002 to
142  0.007; scatter index [(Ebitz et al., 2018)]: both subjects, paired t-test: p < 0.001, t(27) = 3.84, the
143  mean difference of beta weights = 0.15, 95% CI = 0.07 to 0.24: see Methods). In short, we find
144  that the HMM approach is a more robust and accurate method, with better face validity, than the

145 RL-based method for identifying explore choices. Therefore, here, we used this more precise
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approach to determine whether physiological signals, like pupil size, reliably track exploratory
behavior.
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Figure 1. Task design and pupil. A) Top: Subjects made saccadic choices between three
identical options (T1, T2, and T3). One of the options (e.g., T1 in this example trial) was located
in the receptive field of a neuron in the frontal eye field (FEF; dotted circle). Bottom: Reward
probabilities for the 3 options (lines), with choices overlaid (dots) for 200 example trials. Gray
bars = explore-labels. B) The HMM models exploration and exploitation as latent goal states
underlying choice sequences. C) Comparison of regression coefficients for HMM-inferred and
RL-inferred explore choices, predicting either the disorganization of neural population responses
(“scatter index”; see Methods; Ebitz et al., 2018) or response time. Beta weights were obtained
from session-level generalized linear models (GLMs) with explore state as the predictor (0 =
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158 exploit, 1 = explore). Separate GLMs were fitted using explore labels from the HMM and from
159 an RL-based model. D) Average pupil size on explore and exploit choices. Right: Same for
160 individual subjects. E) The probability of explore choices as a function of pupil size quantile.
161 Dotted line: linear GLM fit. Solid line: quadratic fit. Right: Same for individual subjects. F)
162  Several behavior measures compared across median-split large- and small-pupil-size explore
163  choices. Left to right: reward probability, a one-trial-back learning index (see Methods), saccadic
164 peak velocity of saccades, the scatter index, and reaction time. No significant differences
165 between pupil bins. The grey line is the mean + SEM for exploit choices. Error bars depict +
166  SEM throughout.

167  Pupil sizeis larger during exploratory states

168 Having established that the HMM reliably distinguishes explore and exploit states, we next
169 asked whether pupil size changes across these behavioral states. Previous work using RL-
170 based labels reported that pupil size under constant luminance is larger during exploration than
171  exploitation (Jepma and Nieuwenhuis, 2011b). We therefore tested whether this pattern holds
172  using HMM-based labels in our dataset. Indeed, we found that pupil size at fixation (see
173  Methods) was larger on explore-labeled trials than exploit-labeled trials in both subjects (Figure
174  1D; both subjects, paired t-test: p < 0.0001, t(27) = 4.95, mean offset = 0.23, 95% CI = 0.13 to
175 0.32; subject B: p < 0.001, t(9) = 5.50, mean offset = 0.4, 95% CI = 0.24 to 0.57; subject O: p <
176 0.02, t(17) = 2.85, mean offset = 0.13, 95% CI = 0.03 to 0.23). Thus, pupil size was larger
177  during exploratory choices identified with the HMM method.

178 However, the probability of exploration did not increase linearly as a function of pupil size
179 (Figure 1E). A linear, first-order GLM confirmed that larger pupil size generally predicted more
180 explore choices (both subjects: B = 0.084, p < 0.0001, AIC = -1053.70, n = 28 sessions). This
181 relationship held when analyzed separately in each subject (subject B: § = 0.063, p = 0.002, AIC
182 =-368.01, n = 10 sessions; subject O: = 0.110, p < 0.0001, AIC = —249.46, n = 18 sessions).
183  Yet the relationship was clearly nonlinear. A quadratic model provided a significantly better fit
184 than the linear model for the combined dataset (2nd order GLM: 3; = —0.081, p = 0.101; B, =
185 0.166, p = 0.0006; AIC = —-1063.62, AIC weight for the quadratic model = 0.993), consistent with
186 a U-shaped relationship. This U-shape was especially prominent in subject O (B; = -0.13, p =
187 0.090; B, = 0.240, p = 0.001; AIC = -258.01), although the quadratic model was not an
188 improvement over the linear model in subject B (3; = -0.027, p = 0.709; 3, = -0.091, p = 0.205;
189 AIC =-367.63).

190 In order to determine whether this pattern was also apparent in the raw data (i.e. not the HMM-

191 model labels), we next examined how pupil size predicted switching behavior—i.e., choosing a
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192 different option than in the previous trial. We again observed a U-shaped relationship between
193  pupil size and the probability of making a switch choice in both subjects (1st-order GLM: B =
194  0.084, p < 0.0001, n = 28 sessions; subject B: § = 0.0800, p < 0.0001; subject O: B = 0.0807, p
195 < 0.0001). A 2nd-order quadratic model provided a superior fit in both animals (both subjects: B,
196 =-0.099, p = 0.023; B, = 0.184, p < 0.0001; subject B: B; = —0.069, p = 0.284, B, = 0.149, p =
197  0.010; subject O: B; = -0.093, p = 0.103, 3, = 0.174, p = 0.001). Model comparison strongly
198 favored the quadratic model (linear AIC = —1195.05; quadratic AIC = —1211.95; AIC weight for
199 quadratic model = 0.9998). Thus, although pupil size tended to be larger during exploration than

200 exploitation, its relationship with both exploration and switching was clearly U-shaped.

201 One possible explanation for the U-shaped pattern is that some “explore” choices—particularly
202 those with small pupil size—reflect disengagement at low levels of arousal, rather than true
203 exploration. However, if this were the case, then the valid, large-pupil explore choices would
204  systematically differ from the false, small-pupil “explore” choices. They did not. To evaluate this
205 possibility, we compared small- and large-pupil explore trials across several behavioral
206 dimensions known to be sensitive to lapses in task engagement . These included reward rate,
207 saccade velocity, the neural scatter index, a trial-wise learning index, reaction time—each
208 previously associated with arousal, motivation, or task-related updating (Chen et al., 2021; Ebitz
209 et al., 2018; Laurie et al., 2025). Small- and large-pupil explore choices (median split) were
210 indistinguishable along several of the key dimensions that differentiate explore choices from
211  exploit choices (Figure 1F). For example, both were equally likely to be rewarded (mean
212  difference = 0.03 £ 0.24 STD) between large- and small pupil-explore choices (p > 0.4, t(1,27) =
213 0.75, paired t-test; AUC for discriminating explore and exploit = 0.65 + 0.05 STD across
214  sessions). Both had similar peak saccadic velocities (mean difference = -0.05 + 0.23 STD, p >
215 0.2, t(27) = -1.08; explore/exploit AUC = 0.61 + 0.10 STD) and both had more variability in
216 neural population choice information (“scatter index”, mean difference = 0.03 + 0.33 STD, p >
217 0.6, t(27) = 0.45; explore/exploit AUC = 0.60 + 0.07 STD). Both had similar levels of reward
218 learning (see Methods; the mean difference = -0.03 £ 0.57 STD, p > 0.7, t(27) = 0.27): in both
219 cases, learning was substantially enhanced relative to the exploit choices (small-pupil, the mean
220 difference from exploit = 0.24 + 0.48 STD, p < 0.02, t(27) = 2.69; large-pupil, the mean
221  difference from exploit = 0.21 + 0.39 STD, p < 0.01, t(27) = 2.91). Reaction times were also
222  similar across small- and large-pupil explore choices (mean difference = 0.01 + 0.02 STD, p >
223 0.6, t(27) = 1.84; explore/exploit AUC = 0.58 + 0.06 STD). These results are incompatible with

224  the idea that either type of explore choice reflects disengagement in the task or that small- and
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225 large-pupil explore choices have different causes. Instead, we will see that the U-shape was

226  due to the complex temporal relationship between pupil size and exploration.
227 Pupil size, but not other measures ramp up before exploration

228  Pupil size ramped up across trials before exploration began in both subjects. After exploration, it
229  shrank to below-baseline levels when exploitation resumed (Figure 2A). Here, "baseline" refers
230 to a z-scored value of 0, computed by subtracting the session mean and dividing by the session
231 standard deviation of pupil size (see Methods).This ramping meant that pupil size was larger
232 not just during exploration, but also during the exploit choices immediately before exploration
233  (both subjects, GLM slope = 0.01, p < 0.005, n = 28; subject B: beta = 0.02, p < 0.02, n = 10;
234 subject O: beta = 0.01, p < 0.05, n = 18; average pupil size compared to the exploit choices,
235 post-hoc paired t-tests, 1 trial before exploration mean = 0.12, p < 0.005, t(27) = 3.42; 2 trials
236 mean = 0.09, p < 0.03, t(27) = 2.41; 3 trials mean = 0.03, p > 0.1, t(27) = 1.42; 4 trials mean =
237 0.05, p < 0.05, t(27) = 2.07). By the first exploit choice after exploration, pupil size had already
238  begun shrinking to below-baseline levels (post-hoc paired t-tests, 1 trial after exploration mean
239 =0.03, p =0.09, t(27) = 1.73; 2 trials after mean = -0.11, p < 0.02, t(27) = -2.67; 3 trials after
240 mean =-0.16, p < 0.02, t(27) = -2.72; 4 trials after mean = -0.08, p > 0.2, t(27) = -1.27; 5 trials
241  after mean = -0.16, p < 0.001, t(27) = -3.94; p-values are significant with a Holm-Bonferroni
242  correction). The shrinking to below-baseline levels could suggest a refractory mechanism that

243  would prevent exploration from re-occurring immediately after it happened.

244  To rule out potential confounds, we tested whether the pupil ramping and shrinking effects could
245  be explained by misaligned labels or unrelated behavioral dynamics. We saw no evidence of
246  ramping in peak saccadic velocity, another behavioral measure that differentiated explore trials
247  and exploit trials (Figure 2B; no significant decrease from baseline 1 trial before, paired t-test: p
248 > 0.7,1(27) = 0.42; a GLM was nonsignificant with the trend pointing in the opposite direction: 10
249  trials preceding exploration, beta = 0.008, p > 0.1) and no significant change from baseline
250 afterward (not greater than the baseline during the 5 trials after exploration, when pupil shrinking
251 was maximal, mean = -0.47 + 0.15 STD, p > 0.9, one-sided t(27) = -1.67). We previously
252  reported similar results for decoded choice probability and the scatter index (see Methods) in
253 neurons of the frontal eye field (FEF), a prefrontal cortex region involved in directing gaze and
254  attention (Ebitz et al., 2018). Thus, while pupil size ramped before exploration began and shrank
255  afterward, the same was not true of other behavioral and neural variables, suggesting that these

256  dynamics were not some artifact of misalignment.
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257  Pupil size generally ramps across trials, but resets with exploration

258 To better understand whether pupil ramping was a general feature of arousal dynamics or
259  specific to exploration, we examined how pupil size evolved across trials with and without
260  exploratory transitions (see Methods). When the subjects did not explore the pupil size
261 increased steadily across trials (Figure 2C;
262  both subjects, GLM: beta = 0.004, p <
263  0.0001; subject B: beta = 0.003, p < 0.0001;
264  subject O: beta = 0.005, p < 0.0001, n = 25

265 lags over 28 sessions). This implies that the

pupl size (z5cored)
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289  temporarily decreased pupil size without disrupting this ramping in the long term.

290 Figure 2. Pupil size ramps up before exploration and shrinks down after. A) Average pupil
291  size for 10 trials before and 10 trials after explore choices. Purple line: GLM fit. Right: Same for
292  each subject separately. B) Same as Figures 1D and 2A but for peak velocity rather than pupil
293 size. C) Change in pupil size between exploit trials that are either in a single bout of exploitation
294  (gray) or separated by explore trials (purple). Right: Same for each subject separately. D)
295 Change in pupil size over certain pairs of trials: starting (exploit to explore), during (explore to
296 explore), and leaving (explore to exploit) exploration. *p < 0.001 E) The probability of starting to
297  explore as a function of pupil size quantile. Solid line: Linear GLM fit. Error bars and shaded
298 regions depict mean + SEM. Insets: Same analysis shown separately for each monkey.

299  Pupil size specifically predicts the onset—not the maintenance—of exploration

300 Pupil size tends to be smaller after exploration, but this shrinkage could either be driven by the
301 end of exploration (i.e. the start of exploitation) or it could begin shortly after the beginning of
302  exploration itself. If the pupil starts to shrink only after exploration ends, it would support models
303 that suggest that pupil size decreases with commitment to a new option or belief state (O'Reilly
304 et al.,, 2013). Conversely, if the pupil shrinks immediately after exploration begins, it might
305  suggest that pupil-linked mechanisms are important for initiating exploration, but not sustaining
306 it. Our results were consistent with the latter hypothesis: the pupil immediately began shrinking
307 as soon as exploration began, not when it ended (Figure 2D; mean change in pupil size
308 between neighboring explore choices = -0.17, t-test, t(27) = -2.69, p < 0.02; 95% CI = -0.30 to -
309 0.04). This was essentially identical to the magnitude with which the pupil shrank on exploit
310 trials that followed explore trials (mean change = -0.17, t-test, t(27) = -2.56, p < 0.02; 95% ClI = -
311 0.31to -0.03). Validating the ramping we observed with other methods, we also found that pupil
312 size tended to grow on explore trials that followed exploit trials here (mean change = 0.14, t-
313 test, t(27) = 2.96, p < 0.01; 95% CI = 0.04 to 0.24). Together, these results suggest that pupil
314 size and pupil-linked mechanisms specifically predict the “onset” of exploration—the first
315 exploratory trial in a sequence—and may not be important for sustaining exploration after the
316 first explore choice.

317
318 The tendency of the pupil to shrink after the onset of exploration could explain the previously

319 noted U-shaped relationship between pupil size and exploration. In this view, the small-pupil-
320 size explore choices would be the later explore choices in a sequence and the larger pupil size
321  explore choices would tend to be the first explore choice(s). Indeed, pupil size had a primarily
322 linear relationship with the onset of exploration in both subjects (Figure 2E; 1st order GLM: B =
323 0.042, p < 0.0001, AIC = -1973.57). Adding a quadratic term did not substantially improve the
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324  model fit (B, = 0.038, p = 0.073; quadratic model AIC = -1974.81; AAIC = —1.24; AIC weight of
325 quadratic model = 0.65; see Methods). This linear relationship was also observed in both
326  monkeys individually (see Figure 2E, right panels). For subject B, a first order GLM confirmed a
327  significant positive association (8 = 0.044, p < 0.0001, AIC = —699.13), and adding a quadratic
328 term did not improve the model fit (3, = 0.049, p = 0.0878; AAIC = —-0.96). Similarly, for subject
329 O, pupil size showed a significant linear relationship with exploration onset (3 = 0.034, p <
330 0.0001, AIC = —-460.29), and the quadratic model again provided no additional explanatory
331 power (B, = 0.022, p = 0.402; AAIC = +1.30). These results confirm that the linear relationship
332  between pupil size and the onset of exploration was robust across both subjects and not driven
333 by outliers or subject-specific variability. Conversely, there was no special relationship between
334  pupil size and probability of starting to exploit (1st order GLM: beta = 0.05, p > 0.05). Thus, pupil
335  size specifically predicted the onset of exploration, rather than explore choices or state switches

336  more generally.

337 If the U-shaped relationship between pupil size and exploration (Figure 1E) were driven
338  primarily by later explore trials, it should remain evident after excluding onset trials from the
339 analysis. Moreover, removing onsets should substantially reduce the slope of the linear effect.
340 To test this, we repeated the analysis using only later explore trials. As expected, the linear
341 slope decreased in both subjects (Figure S1): for subject B, B, dropped from 0.063 (all explore
342 trials) to 0.018 (excluding onsets), and for subject O, from 0.110 to 0.075. In contrast, the
343 quadratic terms remained relatively stable: for subject B, f, was 0.091 for all explore trials and
344  0.041 with onsets excluded; for subject O, 8, was 0.240 and 0.215, respectively. Importantly,
345 the U-shaped relationship persisted when data were combined across both subjects (Figure
346 S1), with the quadratic model significantly outperforming the linear model
347 (B2=0.121,p=0.012\beta_2 = 0.121, p = 0.01232=0.121,p=0.012; AIC = —878.78 vs. —874.55;
348 AIC weight for the quadratic model = 0.893). These findings confirm that the nonlinearity
349 observed in the original analysis (Figure 1E) was driven by the decrease in pupil size in later
350 exploratory trials, whereas the onset of exploration had a largely linear relationship with pupil
351 size.

352 Exploration is gated by pupil-linked arousal, not just reward history

353  Although pupil size predicted the onset of exploration, it remained possible that this relationship
354  was driven by a shared sensitivity to recent reward outcomes, since both exploration (Daw et
355 al, 2006; Ebitz et al., 2018; Wilson et al., 2014) and pupil dilation (Bijleveld et al., 2009; Jepma
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356 and Nieuwenhuis, 2011b) tend to increase following reward omission. To determine if there was
357 adirect effect of pupil-related processes on exploration, we compared pupil size across exploit
358 trials before exploration with pupil size from matched trial sequences where exploration did not
359 happen (see Methods). There was a significant increase in pupil size during the trials before
360 exploration compared to “matched rewards” control trials (Figure 3B; GLM, beta = 0.025, p <
361 0.01, n = 28), suggesting that pupil size predicted the onset of exploration beyond what could be
362  explained by reward. Again, pupil size ramped up over time (GLM, beta = 0.119, p < 0.02, n =
363  28), but this ramping did not differ between the traces (GLM, beta = 0.007, p > 0.5, n = 28). This
364 implies that either reward history or time (i.e., the number of trials) may explain the pupil
365 ramping before exploration, although there is still an offset in pupil size that predicts the onset of

366  exploration above and beyond the effect of reward history.

367  Visual inspection of Figure 3A suggested that there may be a phase difference in pupil size
368 between trials where exploration began and matched reward trials where exploration did not
369  begin. This led us to develop a novel hypothesis (Figure 3B): that rewards may interact with
370 ongoing oscillations in pupil size. Due to delays in communication between the baroreceptor
371 reflect and changes in heart rate, the sympathetic nervous system (Borjon et al., 2016;
372  Japundzic et al., 1990; Julien, 2020, 2006; Kamiya et al., 2005; Liao et al., 2018) has a natural
373 oscillation known as the Mayer wave, with a period of approximately 0.05-0.1 Hz (Borjon et al.,
374  2016b; Julien, 2006). Critically, transitions in other behavioral states can be entrained by this
375 oscillation, with eliciting stimuli causing transitions only at certain phases of arousal. This view
376 predicts that the previous trials most predictive of the onset of exploration may actually be
377  several trials prior to onset itself—during the periods in which the signals are most out of phase.
378 Indeed, the trials in which pupil size best predicted the onset of exploration were not those
379 immediately preceding it (e.g., trial t-1 or t—2), but rather trials t-4 and t-5 (Figure 3C; trial t—4,
380 mean difference = 0.117, p < 0.05, t(27) = 2.09; trial t-5 = 0.170, p < 0.01, t(27) = 2.84).

381 The view that omitted rewards only evoke exploration when they coincide with particular phases
382  of sympathetic arousal also implies that that the onset of exploration should be phase-locked to
383 the Mayer wave frequency (see Methods). The median trial duration was ~3 seconds (range =
384 [2.2, 3.2]), so a ~5-trial cycle would correspond to a 0.06-0.09 Hz oscillation, which aligns with
385 the frequency range of the Mayer wave. We found that pupil phase at the onset of exploration
386  was concentrated at the rising phase (Figure 3D; mean phase = 47.18°, Hodges-Ajne test, p <
387  0.01; vector length = 0.075; null = 0.026, 95% CI = 0.004 to 0.057, p < 0.0001). In contrast, pupil

388 phases during reward-matched trials pointed in the opposite direction (mean phase = 207.58°;
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389  significantly different from onsets, p < 0.02, Watson’s U2 = 0.25, n = 2170 phases including
390 1135 onsets). Together, these results support the hypothesis (Figure 3B) that slow, rhythmic

391 fluctuations in arousal interact with reward history to determine the timing of exploration onset.

A B hypothesis € i
aroussl
matched rewarss 2o 2
~ na explore f [ |
03 — batore explors \V /N k
s 0 . e Wl
10 1 20 29 ) . % .

024 D2 . , "

. rirwand histony & Z 2 st explore
= X "+ e oo @c e o o exploit trials, bafore explore
& A
= Y A iagrated
:}-“jc 1 \ /| oovesons
N il | \ v '
ey 1ssa & & ane a8 & @8 LT
8 . 10 1 20 25 3 D
o
s 0 pugil = rewand + arcusal
2 L . ___ explom 150"

A 7y Mreshold
0.1 \ N7 ot \
" W 180*
'. |.:I '-' ;" 2“. Z}-\'I
triad numbar
" 210°
. 4 —— overlay
g - T s exphore s F i ur o 300°
0
exploit iriaks, before explare palfems / \/‘ 270
phase of pupd size

394  Figure 3. The onset of exploration is phase-locked to pupil size. A) Average pupil size over
395 sequences of exploit trials before the onset of exploration (black line) and sequences with
396 matched rewards, but no exploration at the end (gray line). Lines: GLM fit. B) Cartoon illustrating
397 how oscillations in arousal (top) could interact with reward history (middle), to regulate
398 exploration. The bottom panel illustrates a hypothetical pupil trace that has an additive effect of
399 reward omissions and by oscillating arousal. Exploration (diamond shapes) begins when pupil
400 size reaches a threshold (dotted line). Note that identical patterns of reward delivery and
401 omission have different outcomes, depending on how they align with the phase of arousal (gray
402 = no exploration, blue = exploration). C) Difference in pupil size between the traces in A. D)
403 Phase distribution of pupil size at the onset of exploration (blue) and bootstrapped null
404  distribution (black). The vectors at the center indicate the mean vector direction and length for
405 the trials before exploration (blue) and the matched reward trials (gray). Shaded areas + SEM
406  throughout.

407

408 Pupil size predicts flattened neural tuning in prefrontal cortex during exploration

409 To probe the neural mechanisms linking pupil size to exploration, we examined how pupil size
410 predicts neural activity in the FEF (Bruce and Goldberg, 1985; Moore and Armstrong, 2003;
411 Moore and Fallah, 2001; Schall and Hanes, 1993) (Figure 4A). We previously reported that
412  exploration is associated with flattened tuning for choice in FEF neurons (Ebitz et al., 2018).
413  While FEF neurons often predict upcoming choices during exploitation, many show reduced

414  choice selectivity during exploration. Pupil size predicted similar changes in in FEF neurons and
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415 did so beyond what could be explained by exploratory states themselves. Out of 155 recorded
416  single neurons, 88 (57%) were tuned for choice (Figure 4B; 57%, one sample proportion test: p
417 < 0.001). These are referred to as "tuned neurons," regardless of whether they were modulated
418 by pupil size. Among tuned neurons, 21 (24%) were also modulated by pupil size, and 16 (18%)
419 showed a significant interaction between choice and pupil size. On average, tuning curves
420 flattened as pupil size increased in both tuned and untuned neurons (Figure 4C-D). Among
421  untuned neurons, an additional 22% (15/67) were significantly modulated by pupil size (p <
422  0.05), with a median regression coefficient (8) of —0.0011 + 0.063. This suggests that pupil-
423 linked mechanisms affect FEF activity even in neurons that are not directly involved in encoding
424  choice. This may suggest a more domain-general role for arousal in modulating prefrontal
425  network dynamics.
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428  Figure 4. Pupil size predicts choice tuning curves and population disorganization. A)
429 Recordings were made in the FEF. Right: The cartoon illustrates the relative positions of the
430 receptive field target (Ti,, red) and the ipsilateral and contralateral targets (T, blue and green).
431 B) Percent of neurons with significant tuning for choice target, pupil size, and the interaction. C)
432  Tuning curve for an example neuron across target locations, separated by pupil size. Lighter =
433 larger pupil. The dashed line indicates the number of neurons expected to be significant by
434  chance at p < 0.05. D) Same for all tuned neurons, which refers to the 88 out of 155 FEF
435 neurons that were significantly tuned for choice, regardless of their modulation by pupil size. E)
436  Cartoon illustrating how neural population measures consider patterns of firing rates across
437 neurons as vectors in neural state space. Targeted dimensionality reduction is used to find the
438 hyperplane where the distribution of neural activity across trials best predicts choice. Vectors
439 here are the coding dimensions that separate the choices. F) The decoded choice probability
440  (projection onto the correct coding dimension) plotted as a function of pupil size quantile. Inset:
441  Same for exploit trials alone. G) The scatter index, a measure of the variance in choice-
442  predictive population activity, plotted as a function of pupil size quantile. Inset: Same for exploit
443  trials. H) Decoded choice probability for trials before the onset of exploration (in blue) and trials
444  with matched rewards (in gray).l) Scatter index for trials before the onset of exploration (in blue)
445  and trials with matched rewards (in gray). Error bars and shaded regions + SEM. J) Mediation
446  analysis between pupil size, scatter index, and the onset of exploration. Top: Direct model.
447  Bottom: Indirect, mediated model. Asterisks marked significant paths (*p < 0.01 **p < 0.001).

448 Because single neurons are noisy, it is difficult to dissociate the effects of pupil size and
449  exploration at the level of individual cells. However, changes in tuning at the single-neuron level
450 also imply shifts in the organization of the neural population and looking at the population level
451 can allow us to estimate these effects within smaller subsets of the data (Ebitz and Hayden,
452  2021); Figure 4E). Indeed, we found that pupil size also predicted changes in how accurately
453  choice information could be decoded from simultaneously recorded populations of FEF neurons.
454  Consistent with our prior results (Ebitz et al., 2018), decoded choice probability was significantly
455 lower during exploration compared to exploitation (paired t-test: both subjects, p < 0.0001,
456  Figure S2A). Critically, larger pupil size predicted weaker choice encoding both across all trials
457  (Figure 4F; GLM: beta = -0.032, p < 0.0001). This was not driven by differences between the
458 states because pupil size also predicted choice decoding accuracy within exploit trials alone
459 (GLM: beta = -0.037, p < 0.005). There was no significant effect of pupil size on choice
460  decoding within explore trials (GLM: B = —0.003, p = 0.77, Figure S2B), which could have been
461 due to differences in trial counts (i.e., explore trials made up only ~15% of total trials) or to floor
462  effects (decoding accuracy was already close to chance in these trials). These findings show
463 that pupil-linked arousal predicts the strength of choice-predictive neural signals in FEF above

464  and beyond what can be explained by differences between the states.

465 In our previous work, we found that decreases in choice-predictive activity were accompanied

466 by increases in variability in FEF population responses to the same choice (Ebitz et al., 2018).
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467  We quantified this with the “scatter index”: a measure of the spread within clusters of same-
468 choice population activity (see Methods). A high scatter index indicates that neural activity on a
469 given trial was dissimilar to other trials where the same choice was made, whereas a low scatter
470 index indicates that neural activity was tightly clustered. We observed a higher scatter index
471  during exploration compared to exploitation (paired t-test: both subjects, p < 0.0001, Figure
472  S2C). Here, we also found that increasing pupil size predicted an increase in the scatter index in
473  both subject B and subject O (Figure 4G; GLM: beta = 0.04, p < 0.0001). This effect remained
474  significant and of similar magnitude within exploit trials alone (GLM: B = 0.03, p < 0.0005), again
475  suggesting that the relationship between pupil size and scatter was not an artifact of state
476  differences with pupil size. Pupil size again did not significantly predict the scatter index during
477  explore trials (GLM: B = 0.0006, p = 0.94, Figure S2D). Thus, pupil size predicted
478  disorganization of choice-predictive signals in the FEF, at both the level of single neurons and in

479  the population.
480 Neural disorganization mediates the relationship between pupil size and exploration

481 To test whether neural population activity, like pupil size, also specifically predicted the onset of
482  exploration, we compared its dynamics in the trials preceding exploration to those in matched-
483  reward control trials. While sudden changes in the decoded choice probability and scatter index
484  were largely aligned with the onset of exploration (as reported previously), these neural
485 measures were at a different average level on the trials preceding exploration, compared to
486 reward-matched controls (Figure 4H-I; choice probability, offset = -0.611, p < 0.001, n = 28;
487  scatter index = 0.258, p < 0.001). Reward information did not cause a change in either variable
488 (choice probability, slope = -0.004, p > 0.5; scatter index = 0.002, p > 0.5), while small, but
489 significant interaction terms suggested that both variables anticipated the onset of exploration
490 (choice probability interaction = -0.058, p < 0.01; scatter index interaction: beta = 0.040, p <
491 0.001). To determine if these neural measures might explain or mediate some of the
492  relationship between pupil size and exploration, we turned to structural equation modeling
493  (Preacher et al., 2007; Sobel, 1986). We found that the scatter index was a significant mediator
494  of the relationship between pupil size and the onset of exploration (Figure 4J; effect of
495  mediation, ab = 0.003, p < 0.005; full report in Table S1). Together, these results suggest that
496  pupil size predicts disruptions in the organization of prefrontal neural activity that then mediate

497 its relationship with the onset of exploration.
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499  Figure 5. Pupil size predicts behavioral and neural slowing. A) Response time on exploit
500 trials before the onset of exploration (blue) and trials with matched rewards but no exploration
501 (gray). B) Response time plotted as a function of pupil size quantile. Inset: Same for exploit
502 trials alone. C) Mediation analysis between pupil size, response time, and the onset of
503 exploration. Top: Direct model. Asterisks marked significant paths (*p < 0.01 ). Bottom: Indirect,
504 mediated model. D) Neural speed on exploit trials before the onset of exploration (in blue) and
505 trials with matched rewards (in gray). E-F) Same as B-C for neural speed. Shaded areas and
506  error bars = SEM.

507
508 Exploration may reflect a critical transition in brain state dynamics

509 Neural systems, like other complex networks, can undergo tipping points—irreversible “critical
510 transitions” between stable operating regimes (O’'Byrne and Jerbi, 2022; Scheffer, 2020;
511  Scheffer et al., 2009; Wang et al., 2012). Because exploration occurs as the brain passes from
512  exploiting one target to exploiting another, it is worth considering the possibility that exploration
513 may represent a critical transition in brain states. Indeed, during exploration, we previously
514  reported (Ebitz et al., 2018) several phenomena in the FEF and in behavior that are hallmarks of

515 critical transitions, including a rapid flickering back and forth between choices (Wang et al.,
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516 2012), an increase in the variance in neural activity (Scheffer et al., 2009), and a disruption of
517 long-term neuronal autocorrelations that suggests that passing through exploration causes time-
518 irreversible changes in the FEF network (Scheffer, 2020). However, there is another classic
519 feature of critical transitions that we did not consider: an early warning signal known as “critical
520 slowing”. As the system nears the tipping point, the dynamics within the system begin to flatten
521 out in preparation for the change. As a result, the systems’ processes slow down and take
522 longer to trace the same paths (Scheffer et al., 2009). Therefore, we next asked if there was any
523 evidence that decision-making slowed down in advance exploration in this dataset.

524

525 To test for critical slowing, we examined two measures of decision speed: one behavioral and
526 one neural. First, we looked at response time, a measure of how long it takes the brain to
527 generate saccadic decisions. Response time was not only slower in the trials before exploration,
528 compared to matched-reward control trials (Figure 5A-C; GLM offset = 0.39, p < 0.0001, n =
529  28), but it slowed down over trials before the onset of exploration (interaction = 0.05, p < 0.001).
530 Second, we looked at the mean rate of change in neural population choice signals during the
531 decision process (“neural speed”, see Methods). Neural speed was only weakly correlated with
532 response time across sessions (mean = -0.07, min = -0.36, max = 0.09, Pearson’s correlation),
533 suggesting that the measures were complementary, rather than redundant. Like response time,
534  neural speed was also significantly slower on average in the trials before exploration, compared
535 to matched-reward controls (Figure 5D—F; GLM offset = -0.17, p < 0.0001, n = 28). However,
536 unlike response time, neural speed did not show a significant slowing trend over trials
537 (interaction = -0.01, p = 0.08). Although the notion that the brain may be subject to critical
538 tipping points is controversial (O’'Byrne and Jerbi, 2022), these results are consistent with the
539 idea that exploration could reflect a critical transition between exploiting one option and
540 exploiting another.

541

542  We first asked whether slowing effects could be better explained by the typical reward histories
543 that precede exploration, rather than internal states like arousal. However, reward history alone
544  did not have a significant effect on either neural or behavioral slowing (response time: slope of
545  matched-reward trials = 0.0002, p > 0.5; neural speed: slope = -0.018, p > 0.1). This suggests
546  that some internal variable, like arousal, could be driving increased slowing and, perhaps, also
547 the systems’ proximity to a tipping point. Indeed, increasing pupil size predicted slower
548 response times (Figure 5B; GLM beta = 0.08, p < 0.0001, n = 28 sessions), even within periods
549  of exploitation (beta = 0.05, p < 0.0001). The same was true of neural slowing (Figure 5E; all
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550 trials: beta = -0.03, p < 0.0005; exploit only: beta = -0.09, p < 0.0001). Further, structural
551 equation modeling revealed that both measures of slowing mediated the relationship between
552  pupil size and the onset of exploration (Figure 5C and F; Table S2-3). In sum, the pupil-linked
553 mechanisms that anticipated exploration included both a disorganization of neural activity and a
554  slowing of decision-related computations in brain and behavior—hallmarks of a system

555  approaching a critical transition.

556 Discussion

557  Random decision-making is a powerful strategy for exploration (Dayan and Daw, 2008; Ebitz et
558 al., 2018; Gershman, 2019; Wilson et al., 2021, 2014) that is linked to disorganized patterns of
559 neural activity in the prefrontal cortex (Ebitz et al., 2018; Muller et al., 2019; Wilson et al., 2021).
560 Here, we sought to identify some of the neurobiological mechanisms that drive random
561 exploration and its neural signatures. We found that pupil size, a peripheral correlate of
562 autonomic arousal, predicted exploration and certain measures of neural population activity
563 previously linked to exploration. Consistent with previous studies (Jepma and Nieuwenhuis,
564  2011a), pupil size was generally larger during exploration, compared to exploitation. However,
565 there was also a complex temporal relationship, where pupil size ramped up between periods of
566 exploration and decreased during exploration. As a result, pupil size was largest at the
567  beginning or “onset” of exploration and explained variance in the onset of exploration that could
568 not be explained by other variables. Together, these results suggest that pupil-linked
569 mechanisms may play a role in driving the brain into an exploratory state.

570

571  Our behavioral results largely replicate previous findings linking exploration to increased pupil
572 size (Jepma and Nieuwenhuis, 2011a). However, where we found gradual ramping before
573 exploration and sudden constriction after, Jepma and Nieuwenhuis (2011) reported an abrupt (if
574  modest) increase of pupil size at the onset of exploration and then a gradual decrease at the
575  return to exploitation. The discrepancy may be due to differences in the operational definition of
576  exploration. Jepma and Nieuwenhuis (2011) fit an RL model to behavior and defined “explore
577 choices” as the choices that were not reward-maximizing according to the model. This definition
578 conflates exploration with errors of reward maximization. A strategy that is non-reward-
579 maximizing would produce choices that are orthogonal to value, not consistently bad. Here, we
580 used an HMM to identify latent explore and exploit states on the basis of the temporal profiles of
581 choices alone, with no assumptions on the underlying value computations. This allowed us to

582 dissociate the effects of reward history from the explore/exploit choice labels. We reported here
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583  (Figure 1C), and in previous studies (Chen et al., 2021; Ebitz et al., 2018), that HMM labels
584  outperform RL labels in explaining behavioral and neural measures, suggesting that the HMM
585 may more accurately separate distinct neural and behavioral states. If the HMM allows for more
586 precise identification of exploratory and exploitative choices, it would follow that it also allows for
587  more precise reconstruction of the temporal relationship between the pupil and exploration.

588

589 The precision of our explore/exploit labels revealed that the U-shaped relationship between
590 pupil size and exploration was caused by a refractory constriction in the pupil. When exploration
591 was plotted as a function of pupil size, the relationship appeared non-linear: both small- and
592 large-pupil choices were more likely to be exploratory. This superficially resonated with the idea
593 of a U-shaped relationship between arousal and task performance (i.e. the “Yerkes-Dodson
594  curve”; (Aston-Jones and Cohen, 2005; Yerkes and Dodson, 1908): perhaps reliable exploitation
595 is only possible at intermediate levels of arousal. However, when we examined the temporal
596 relationship between exploration and pupil size, we found that pupil size only predicted the
597 onset of exploration, the first explore choice in a sequence. Small-pupil explore choices
598 happened because starting to explore seemed to “reset” the level of pupil-linked arousal,
599 causing it to quickly fall below baseline. If increased pupil size promotes a transition to
600 exploration, then it is possible that post-exploration constriction represents a refractory period
601 for exploration. Given that uncertainty grows with time in this task (and in all dynamic
602 environments), it may not be smart to start to explore again immediately after you have just
603 explored. A refractory period could ensure that non-reward-maximizing explore choices are
604  deployed only when needed. Future work is needed to test this hypothesis and to determine the
605 cognitive and/or neurobiological mechanisms at play.

606

607  Before exploration, we observed an oscillatory dynamic that was about twice as fast as the 10
608 trials it took the pupil to recover after exploration. This 0.06-0.09 Hz oscillation entrained the
609 onset of exploration: onsets tended to occur during the rising phase of pupil size, whereas
610 identical trial sequences that did not result in exploration were on the opposite phase. This
611 implies that it is the confluence of pupil size, pupil phase, and trial history that best predicts the
612 onset of exploration. This result reinforces the idea that arousal or arousal-linked mechanisms
613 help trigger random exploration (Ebitz and Moore, 2019; Gilzenrat et al., 2010; Reimer et al.,
614 2016), rather than just tracking the reward-linked variables that make exploration more
615 probable. It is also notable that the period of the pupil oscillation was close to the frequency of

616 the Mayer wave: an oscillation in blood pressure that entrains other autonomic measures,
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617 including respiration and heart rate (Borjon et al., 2016a; Japundzic et al., 1990; Julien, 2020,
618 2006; Kamiya et al., 2005). There is precedent for the idea that behavior can be entrained by
619 the Mayer wave: in marmosets, fluctuations in arousal predict the spontaneous onset of a call
620 (Borjon et al., 2016a). This paper argued that the Mayer wave may function to organize vocal
621 communication by bringing the system closer to the threshold for transitioning from inaction to
622  action. It is possible that oscillations in the pupil and pupil-linked mechanisms function the same
623  way here, organizing important state changes in time. In parallel, pupil-linked mechanisms seem
624  to anticipate other state transitions, including belief updating (Filipowicz et al., 2020; O'Reilly et
625 al., 2013), task disengagement (Kane et al., 2017), and other behavioral state changes (Bouret
626 and Sara, 2005). Together, these results suggest an important role for pupil-linked mechanisms
627  indriving successful transitions between certain neural and behavioral states.

628

629 Critically, pupil size and pupil oscillations did not predict all state transitions here, but only the
630 transition into exploration. What kinds of state transitions might be entrained by pupil- linked
631 arousal? It is possible that the pupil may have a special relationship with certain “critical” kinds
632 of transitions. Critical transitions are abrupt, large-scale, and irreversible changes in the
633 dynamics and behavior of complex systems, like the brain. As these systems go from being in
634 one conformation (i.e. always choosing the left option) into another conformation (i.e. always
635 choosing the right), the system dynamics that support the old state have to disappear and the
636 new dynamics have to emerge. During this brief transitory period, when both dynamics co-exist
637 in the system, certain signatures can be observed in the system. We previously reported that
638 the exploration was accompanied by abrupt changes in neural population activity, certain
639 patterns of noise in brain and behavior, and disruptions in long-term neuronal autocorrelations:
640 all observations that could be interpreted as suggesting that exploration is a critical transition in
641 the brain (Ebitz et al., 2018). Here, we found that pupil size predicts these features of neural
642  activity and also an prominent "early warning sign” of critical transitions: a slowing, in brain and
643 behavior, of the decision process. While there are certain patterns of activity in FEF that predict
644  response speed (Hauser et al., 2018; Yao and Vanduffel, 2023), here we identified independent
645 neural and behavioral measures of decision speed that both mediated the relationship between
646  pupil size and exploration. Notably, pupil size also predicted slower neural and behavioral
647 responses within exploit-only trials, suggesting that these effects are not an artifact of
648  differences between explore and exploit states. This suggests that these effects may reflect a
649 domain-general influence of arousal on cognitive dynamics, consistent with the idea that

650 fluctuations in pupil-linked neuromodulation shape the temporal structure of decision-making in
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651 general, beyond any role in state transitions. In this view, the transition into exploration in FEF
652 may reflect an extremum of these domain-general arousal effects—a tipping point—rather than
653 signals that are highly specific to state transitions. Together these results suggest that pupil-
654 linked arousal pushes neural and behavioral states to a critical tipping point and highlights the
655 crucial role of pupil-linked mechanisms in changing the dynamics of the brain.

656

657  What underlying, pupil-linked mechanisms could support critical transitions? Changes in pupil
658 diameter coincide with neuromodulator system activity, especially norepinephrine (NE) and
659 acetylcholine (Breton-Provencher and Sur, 2019; de Gee et al., 2020; Joshi et al., 2016; Joshi
660 and Gold, 2020; Murphy et al., 2014; Reimer et al., 2016). At the neuronal level, central NE
661 flattens tuning curves, at least in the auditory cortex (Martins and Froemke, 2015), though it may
662 have different effects in non-cortical structures (Manella et al., 2017). Here, we made a parallel
663 observation: as pupil size increases, neuronal turning curves_flattened and choice-predictive
664 neural population activity became disorganized. These results resonate with a particularly
665 influential theory of NE function: the idea that NE release may facilitate “resets” in cortical
666 networks in order to effect long-lasting changes in brain and behavior (Aston-Jones and Cohen,
667  2005; Bouret and Sara, 2005). More recent studies seem to consistently report that elevated
668 levels of NE predict an increase in behavioral variability, while pharmacological blockade of NE
669 receptors reduces variability (Chen et al., 2023; Kane et al., 2017; Sadacca et al., 2017; Tervo
670 etal., 2014). In combination with the present study, these results could suggest that phasic NE
671 signaling functions to push the brain towards a critical tipping point where it is better able to
672 transition from one regime to another. In this view, behavioral variability would be linked to NE
673 not because NE increases variability directly, but because the brain is more likely to transition
674 into a high variability regime after it is released. Of course, pupil size is also associated with
675 other neuromodulatory systems, cognitive factors, and other measures of arousal. Thus, future
676 work is needed to identify the neurobiological mechanisms that underpin the relationship

677  between pupil size and critical transitions that we report here.
678 Materials and Methods

679  Surgical and electrophysiological procedures. All procedures were approved by the Stanford
680  University Institutional Animal Care and Use Committee. Subjects were two male rhesus
681 macaques, surgically-prepared with head restraint prostheses, craniotomies, and recording

682 chambers under isoflurane anesthesia via techniques described previously (Ebitz et al., 2018).
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683  Following surgery, analgesics were used to minimize discomfort, and antibiotics were delivered
684  prophylactically. After recovery, subjects were acclimated to the laboratory and head restraint,

685 then placed on controlled access to fluids and trained to perform the task.

686 In order to train the animals on the explore/exploit task a gradual procedure was used in which
687 the two animals were first trained to make saccadic eye movements in exchange for liquid
688 rewards. Once the animals reliably made controlled eye movements to a single target (generally
689  within 1-2 days), a second target was introduced, and the animals were free to choose between
690 them. At the outset, each target was associated with a probability of reward (initially 10% and
691 90%), which was reversed in blocks at the experimenter’s discretion. Over a period of 2-4
692 months, the difference in reward probabilities between the targets was gradually reduced, the
693  blocks transitioned into gradual reward probability shifts (reward walks), and a third target was
694 introduced. The speed and order of these changes depended on each animal’s performance
695 and engagement with the task. One animal (monkey O) was naive to laboratory tasks prior to
696 this experiment, whereas the second (monkey B) had been previously trained on covert and

697  overt attention tasks, but not on any prior value-based tasks.

698 Recording sites were located within the FEF, which was identified via a combination of
699 anatomical and functional criteria. The location of recording sites in the anterior bank of the
700 arcuate sulcus was verified histologically in one subject and via microstimulation in both
701  subjects (Ebitz et al., 2018). Recordings were conducted with 16-channel U-probes (Plexon),
702 located such that each contact was within gray matter at an FEF site. An average of 20 units
703  were recorded in each session (131 single units, 443 multi units; 576 total units across 28

704  sessions).

705  General behavioral procedures. Eye position and pupil size were monitored at 1000 Hz via an
706 infrared eye tracking system (SR Research; Eyelink). The manufacturer's standard methods for
707  calculating pupil area were used. MATLAB (Psychtoolbox-3; (Kleiner et al., 2007)) was used to
708 display stimuli and record behavioral responses and pupil size measurements. Task stimuli
709  were presented against a dark gray background (7 cd/m2) on a 47.5 cm wide LCD monitor
710  (Samsung; 120 Hz refresh rate, 1680 x 1050 resolution), located 34 cm in front of the subject.

711 Three-armed bandit task. The subjects performed a sequential decision-making task in which
712 they chose between 3 targets whose values changed over time. The subject first fixated a

713  central fixation square (0.5° stimulus, +/- 1.5-2° of error) for a variable interval (450-750ms). At
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714  any point within 2s after the onset of the targets, subjects indicated their choice by making a
715 saccade to one of the targets and fixating it (+/- 3°) for 150 ms. Reward magnitude was fixed
716  within session (0.2-0.4 pL). Reward probability was determined by the current reward probability
717  of the chosen target, which changed independently over trials for each of the three targets. On
718  every correct trial, each target had a 10% chance of the reward parameter changing either up or
719 down by a fixed step of 0.1, bounded at 0.1 and 0.9. Because rewards were variable,
720 independent, and probabilistic, the subjects could only infer the values of the different targets by

721  sampling them and integrating noisy experienced rewards over multiple trials.

722  General analysis procedures. Data were analyzed with custom software in MATLAB. Unless
723 otherwise noted, all t-tests were paired, two-sided t-tests, and generalized linear models were
724  run on raw data, with session number coded as a dummy variable to account for session-to-
725  session variability. Model comparison was based on standard methods that involve calculating
726 the likelihood of the data and Akaike information criteria (AIC) of each model, then using AIC
727  weights to identify (1) the model that is most likely to minimize information loss, and (2) the
728  relative likelihood of competing models to do the same (Burnham and Anderson, 2004). For
729 analyses of any behavioral or neural variables on the trials before or after exploration,
730  continuous runs of exploit trials were required. The values of behavioral and neural variables
731  were z-scored within a session to facilitate comparisons across sessions. In the results section,
732  we refer to a z-score of 0 as “baseline”. The 200 ms window immediately preceding target onset
733 was chosen as the analysis epoch for all choice-predictive neural measures. A longer, whole-
734  trial epoch was chosen for neural speed analyses (0 to 500 ms) following target presentation.

735  Firing rates were computed per trial.

736  Pupil size. Pupil size was measured during the first 200 ms of fixation, a time at which the eye
737 was fixed at a known point on the screen, illumination was identical across trials, and
738 anticipatory changes in the pupil were minimal. To remove any blinks or movement artifacts,
739 trials where pupil size or the change in pupil size from the first time bin of this epoch to the last
740 was +/- 6 standard deviations from average were eliminated from further analyses. A total of

741 178 trials (out of 21,793, approximately 0.8% of observations) were outliers.

742  Hidden Markov Model. To identify when subjects were exploring versus exploiting, we employed
743  a hidden Markov model (Chen et al., 2021; Ebitz et al., 2018). In this framework, choices Y; are
744  treated as emissions from a latent decision-making state z;, which can either be an explore or

745  one of the multiple exploit states.
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746  The emission model for exploration assumed a uniform probability of selecting any option:

1
p(y, = k| z, = explore) = —
Ny
747
748 Where Ny is the total number of options. In contrast, exploit states deterministically emitted

749  choices to the exploited option i:

p(y: =k | z; = exploit,k=i)= 1

p(y, = k | z, = exploit,k # i) = 0
750

751 Latent state transitions followed a Markov process, such that the probability of the current state

752  depended only on the previous state:

P(Zt | ze—1,Ye—1 121, Y1 ) = P(Zt |Zt—1)
753

754  To reduce model complexity, parameters were shared across exploit states, and subjects were
755 assumed to begin in the explore state. The final HMM included only two free parameters: the
756  probability of persisting in exploration and the probability of persisting in exploitation. The model
757  was fit using expectation-maximization with 20 random restarts, and the solution maximizing the
758 observed data log-likelihood was selected. The most probable sequence of latent states was

759  recovered using the Viterbi algorithm.

760  Reinforcement learning model. To compare goal state labels derived from an RL and HMM
761 model, we employed a Rescorla-Wagner model. This was fit using maximum likelihood

762  estimation. The value of each option is iteratively updated according to:

Vittr = Vip +a(re — Vig)
763

764  Where Vi, is the value of option i at time t, r is the reward at time t, and a represents the fitted

765 learning rate, which determines how much the difference between the predicted and actual
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766 reward (the prediction error) influences value. To make a decision, the values are passed

767  through a softmax decision rule:

exp(8Viy)
Dix = .
B exp(BViy)

768

769  Where n is the total number of available options, and 8 is the inverse temperature, which
770  controls the level of random noise in decision-making. After (Daw et al., 2006; Jepma and
771  Nieuwenhuis, 2011a; Pearson et al., 2009), decisions that were not reward maximizing were

772 labeled as exploratory (i.e. any decision where V¢nosent Was not the maximum V at time t).

773  Generalized Linear Model (GLM). To examine the relationship between behavioral and neural
774 variables, we employed generalized linear models (GLMs). These models were fit using
775 maximum likelihood estimation. Each dependent variable (i.e., scatter index, response time,

776  or choice probability) was modeled as a linear combination of predictors:

Y; = Bo + B, .explore state; + B, . pupile size; + B3 . (explore state; x pupile size;) + ¢;
777

778  Where Y; is the dependent variable on trial i, Bo is the intercept, and B;, B2, Bz are regression
779  coefficients quantifying the influence of the corresponding predictors (e.g., explore state, pupil

780 size, and their interactions).g; is the residual error term.

781 In analyses where categorical variables (e.g., explore state: 0 = exploit, 1 = explore) were used
782  as predictors, these were coded as binary dummy variables. Models were fit using the identity

783 link function and assumed normally distributed errors.

784  Learning Index. To investigate whether learning differed with pupil size within the exploratory
785 choices, we calculated a learning index that captured the effect of rewards experienced during
786  exploration on future choices. Because reward effects decay exponentially quickly (Lau and
787  Glimcher, 2008), a 1-trial-ahead index should capture most of the variability in how much is

788 learned between trial types. The equation was:
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p(switchyy, | reward;) — p(switchys+; | no rewardy)

p(switchy )

learning index, =
789

790 Lagged change in pupil size. To determine whether exploration impacted pupil size, we
791 measured the change in pupil size (A pupil) between pairs of trials that either were or were not
792  separated by at least 1 explore trial. Segments of twenty-five consecutive trials were identified
793 that either included a single bout of exploration or did not include exploration. For each pair of
794  trials within these sequences, we then measured the change in pupil size between the first
795  exploit trial of the sequence (t1) and the remaining exploit trials in the sequence (t2:25). This
796  was repeated for all unique pairs of trials that met our selection criteria.

797

798 Matched reward trials. To test whether the rising trend in pupil size before exploration is best
799 explained by reward history, we identified trial sequences with identical reward and state
800 histories that did not end in exploration (“matched rewards”). For each onset of exploration
801 preceded by at least 6 exploit trials, we searched for identical sequences of exploit trials, with
802 identical reward histories, that did not end in exploration. We chose 6 previous trials because
803 this was the longest sequence of reward history we could regularly match within the majority of
804  sessions (we could find at least 10 matched sequences in 96% [27/28] of sessions for 6 trials
805 sequences; that dropped to 75% [21/28] at 7 trials). Identical results were obtained with other
806 sequence lengths, though these analyses included fewer sessions.

807

808 Mediation analysis. To determine if the predictive relationship between pupil size and
809 exploration was mediated by other variables, we used structural equation modeling to test for
810 mediation. Mediation analyses involve fitting three regression models. The first model measures
811 the total effect (c) of the independent variable (here, pupil size) on the independent variable

812 (here, onset of exploration):

Explore, = 1 + ¢(Pupil, ;) + €1

813
814 In these equations, represents the intercept for each equation, while I represents the error of

815 the model. Note that the estimated parameter c will include both direct effects of pupil size on

816  exploration, but also indirect effects that may be mediated by other variables. Therefore, we
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817 also fit a second model that tests if the independent variable also predicts a potential mediator

818 variable (here, neural network scatter):

Scattery.y = v2 + a(Pupil, ;) + €

819
820 Model parameter a thus captures the effect of pupil size on the mediator. Finally, a third model

821 estimates the unique contributions of both the potential mediator (scatter, b) and the

822 independent variable (pupil size, c’), now controlling for the mediator:

Explore, = 3 + b(Scattery_1) + ¢/ (Pupil, ;) + €3
823
824 A drop between ¢ and c’ indicates that the effect of the independent variable (pupil) on the

825 dependent variable (exploration) is reduced when the mediating variable is considered. The
826  mediation effect (the indirect effect of the pupil size on the onset of exploration via the mediating
827  factor) can also be estimated directly, via taking the product of the coefficients a and b. Sobel’s
828 testis used to determine the significance of the mediation path (Sobel, 1986).

829

830 Phase analysis. To determine if the onset of exploration happened at a specific phase of pupil
831 size over trials, we performed a wavelet analysis. Because this method only assumes local
832  stationarity, it is more suitable than other methods for analyzing pupil size, which tended to
833 ramp over trials. A wavelet was constructed by multiplying a complex sine wave (frequency = 5
834 trials) with a Gaussian envelope (u = 0, ¢ = cycles / (2mr*frequency), cycles = 5; (Cohen, 2014)).
835 The wavelet was convolved with the baseline pupil size time series and the phase of the signal
836  was calculated on each trial (Matlab; angle). Standard circular statistics were used to measure
837 the differences between phase distributions for explore onsets and reward-matched controls
838  (Zar, 1999) and the phase alignment within these trial types (Berens, 2009). The latter was also

839 verified via comparison with bootstrapped null distributions (1000 samples).

840 Targeted dimensionality reduction. Neural state spaces have as many dimensions as there are
841 recorded neurons, but converging evidence suggests (1) that the neural states that are
842  observed in practice are generally confined to a lower-dimensional “manifold”, and (2) that task-
843 relevant information is encoded by a small number of dimensions in that manifold. Because we
844  wanted to isolate the effects of arousal on choice-related activity from well-known effects of
845 arousal on neural activity (Ebitz and Platt, 2015; McGinley et al., 2015; Pfeffer et al., 2022;
846  Podvalny et al., 2021; Reimer et al., 2016, 2014; van Kempen et al., 2019; Waschke et al.,
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847  2019), we focused all our neural population analyses on activity within the choice-predictive
848  subspace, rather than on neural activity more broadly.

849

850 To do this, we used targeted dimensionality reduction to identify the choice-predictive
851 dimensions of the neural state space (Cohen and Maunsell, 2010; Cunningham and Yu, 2014;
852 Ebitz et al., 2018; Peixoto et al., 2021). Specifically, we used multinomial logistic regression
853 (Matlab; mnrfit, mnrval, (Hastie et al., 2009)) to identify the separating hyperplanes that best
854  discriminated each choice from the alternative choices. This is equivalent to fitting a system of

855  binary classifiers of the form:

1

1 — exp— X

p(choice = k | X) =
856
857 Where one classifier discriminates target 1 choices from targets 2 and 3 and a second
858  discriminates target 2 choices from targets 1 and 3. The classifier that discriminates target 3
859 from targets 1 and 2 is then just the negative of target 1 and target 2. These axes span the
860 subspace in which neural activity best predicts choice. Classifiers were trained on firing rates
861 from an epoch that began when the targets appeared and ended at the time of the saccade.
862  Mean imputation was used for the small number of occasions where a unit was not held for the
863  whole duration of the session (~3% of trials, ~12% of units) and a small fraction of units were
864  omitted from these analyses because their mean firing rates were less than 2 spikes/s, which
865  makes their weights difficult to identify (~8% of units).
866
867  Choice Probability Decoding. Within the choice-predictive subspace, the distance from the
868  separating hyperplanes (the vectors illustrated in Figure 4E) are the decoding vectors: the
869 vectors along which we can project neural activity in order to decode the log odds of choice.
870  This projection is equivalent to the decoded choice probability from the multinomial logistic
871 regression model and this is the figure we took as the decoded choice probability in Figures 3F
872 and 3H. We evaluated decoding accuracy by measuring how often the most-likely choice

873  predicted by the model coincided with the choice the subject made.

874  Scatter index. The scatter index measures how much choice-predictive population neural
875 activity is clustered between trials with the same choice (Ebitz et al., 2018). It is calculated by

876 measuring the average Euclidean distance of each trial from all other trials where the same
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877  choice was made and dividing it by the average Euclidean distance to all other trials where a

878 different choice was made:

dwithin
scatter = —————
between

879

880 Each trial thus has its own scatter index value, with a value of 1 indicating no difference in
881 clustering between same-choice and different-choice trials, and a value less than 1 indicating

882  greater clustering with same-choice trials compared to different-choice trials.

883  Neural speed. To determine how the speed of the decision-making process changed before and
884  during exploration, we calculated the rate of change in neural states within the choice-predictive
885  subspace during the first 400 ms following target presentation. Each trial's neural activity was
886  sampled in non-overlapping 20 ms bins and then projected into the choice-predictive subspace.
887  The change in neural activity within the subspace was then calculated between each pair of
888 samples. Finally, the changes were averaged together across the trial and normalized to the bin

889  width to produce an average rate of change in choice-predictive activity for that trial.
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896 Table S1

897 Regression coefficients and p values for the mediation analysis testing whether the scatter
898 index mediates the relationship between pupil size and the onset of exploration. Related to
899  Figure 4J.

pupil.; — scatter.; — explore;

est. coefficient p value <
Total effect c [0.090 0.005
Effect on mediator a |0.036 0.0005
Unique mediator effect | b |0.092 0.005
Indirect effect ab [0.003 (z=2.70*) |0.005
Direct effect ¢ |0.086 0.005

900 *Sobel’s test

901

902 Table S2

903 Regression coefficients and p values for the mediation analysis testing whether response time

904 slowing mediates the relationship between pupil size and the onset of exploration on the next
905 trial. Related to Figure 5C.

pupil.; — RT slowing.; — explore;
est. coefficient p value <
Total effect c [0.090 0.005
Effect on mediator a |0.078 0.0001
Unique mediator effect | b |0.106 0.0005
Indirect effect ab (0.008 (z = 3.48%) 0.0005
Direct effect c’ |0.080 0.01

906 *Sobel's test
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907 Table S3

908 Regression coefficients and p values for the mediation analysis testing whether neural slowing
909 mediates the relationship between pupil size and the onset of exploration on the next trial.
910 Related to Figure 5F.

pupil.; — neural slowing.; — explore;
est. coefficient p value <
Total effect c |0.095 0.005
Effect on mediator a [-0.025 0.0005
Unique mediator effect | b [-0.059 0.06
Indirect effect ab (0.001 (z =1.69%) 0.05
Direct effect ¢’ 10.093 0.005
911 *Sobel’s test
912
913
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914 Figure S1
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917  Figure S1. Same as Figure 1E, but without first explore trials.
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Figure S2. Decoded choice probability and scatter index across behavioral states and pupil
size. (A) Decoded choice probability (projection onto the correct coding dimension) for exploit
and explore states. Dots represent individual sessions, with lines connecting values from the
same session across states. (B) Decoded choice probability plotted as a function of pupil size
guantile for explore trials alone. (C) Scatter index, a measure of variance in choice-predictive
population activity, for exploit and explore states, with lines connecting values from the same
session across states. (D) The scatter index plotted as a function of pupil size quantile for
explore trials.
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