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Abstract  

Physical exercise acutely improves hippocampus-dependent memory. Whereas animal studies 

have offered cellular- and synaptic-level accounts of these effects, human neuroimaging 

studies show that exercise improves hippocampal-cortical connectivity at the macroscale 

level. However, the neurophysiological basis of exercise-induced effects on 

hippocampal-cortical circuits remains unknown. Experimental evidence supports that 

hippocampal sharp wave-ripples (SWR) play a critical role in learning and memory. Coupling 

between SWRs in the hippocampus and neocortex may reflect modulations in inter-regional 

connectivity required by mnemonic processes. Here, we examine the hypothesis that exercise 

modulates hippocampal-cortical ripple dynamics in the human brain. We performed 

intracranial recordings in epilepsy patients undergoing pre-surgical evaluation, during awake 

resting state, before and after an exercise session. Exercise increased ripple rate in the 

hippocampus. Exercise also enhanced the coupling and phase-synchrony between cortical 

ripples in the limbic and the default mode (DM) cortical networks and hippocampal SWRs. 

Further, higher heart rate during exercise, reflecting exercise intensity, was related to a 

subsequent increase in resting state ripples across specific cortical networks including the 

DMN. These results offer the first direct evidence that a single exercise session elicits 

changes in ripple events, a well-established neurophysiological marker of mnemonic 

processing. The characterization and anatomical distribution of the described modulation 

points to hippocampal ripples as a potential mechanism by which exercise elicits its reported 

short-term effects in cognition. 
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Introduction 

Physical exercise improves memory and learning in rodents and humans1,2. Recent data 

highlight the importance of hippocampal circuits to these cognitive benefits3,4. Animal studies 

have focused on the molecular, histological and endocrine mechanisms by which exercise 

drives synaptic plasticity and neurogenesis in the hippocampus5–7. Human neuroimaging 

studies have shown that exercise increases hippocampal-cortical and medial temporal lobe 

functional connectivity in the Default Mode Network (DMN) both acutely8,9 and after months 

of training4,10,11. However, all human data to date rely exclusively on hemodynamic measures 

of hippocampal function, which in the scale of seconds, offers only indirect inference about 

neural function. For instance, at a sluggish pace, the blood oxygen level-dependent (BOLD) 

signal cannot speak to the millisecond circuit-level changes underlying functional 

connectivity and ultimately cognition. Moreover, differences in hippocampal and neocortical 

neural dynamics between rodents, non-human and human primates have been a matter of 

debate. In regard to exercise, rodent studies are limited in the translation of exercise intensity 

based on their unique vascular physiology12. Examining the acute effects of exercise on 

electrophysiological measures of neural function, with direct recordings from the human 

brain, offers a rare opportunity to bridge animal and human findings, resolve 

millisecond-scale circuit dynamics, and advance understanding of how exercise influences 

human brain function. 

 

There is a growing understanding of the neurophysiological mechanisms supporting 

hippocampal-dependent learning and memory13. For instance, during periods of quiescence or 

non-rapid-eye-movement (NREM) sleep, slow field potential deflections accompanied by 

high frequency oscillations (HFOs), known as sharp wave-ripple (SWR) complexes, occur in 

the hippocampus and play a critical role in memory consolidation14,15.Occurrence of 
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hippocampal SWR is linked to widespread patterns of cortical activation and simultaneous 

subcortical deactivation16,17. Furthermore, the occurrence of ripples in the neocortex18 and 

their functional role19–21 has gained attention recently. In both rodents and humans, the 

coupling between hippocampal and neocortical ripples has been functionally associated with 

memory retrieval and learning19–21. Overall, recent evidence indicates that 

hippocampal-cortical ripple coupling is a neurophysiological marker of transient functional 

connectivity22. 

 

These findings invite the hypothesis that exercise modulates ripple dynamics in the 

hippocampus, medial temporal lobe, and cortical networks such as the DMN. Here, we 

obtained intracranial electroencephalographic (iEEG) recordings in patients with drug 

resistant epilepsy undergoing pre-surgical evaluation using stereo and subdural EEG, during 

awake resting state sessions, before and acutely after physical exercise. Our central 

hypothesis was that exercise would acutely increase ripple rate in the hippocampus, and 

enhance hippocampal-cortical interactions in the ripple frequency band (70-160 Hz).  

 

Our results confirm and extend those predictions. Across patients, exercise selectively 

enhanced ripple-associated hippocampal connectivity with the limbic (LIM) network and the 

DMN, as evidenced by enhanced ripple coupling and ripple phase synchrony. Crucially, 

higher heart rates during exercise, reflecting higher exercise intensity, predicted greater 

enhancement of resting state ripple dynamics in specific neural networks such as the DMN.  

 

Overall, we show that a single session of light to moderate intensity physical exercise triggers 

changes in human ripple hippocampal-cortical dynamics. The characterization and 

anatomical distribution of those changes, predominant in limbic and DM networks, advances 

the possibility that these modulations account for the previously described effects of exercise 

on learning and memory. 
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Materials and methods  

Participants  

A total of 17 patients with drug resistant epilepsy undergoing pre-surgical evaluation using 

stereo and subdural EEG, completed the acute exercise paradigm, all while being monitored 

with chronic intracranial EEG recordings. Two of these patients were excluded from the 

analysis because of severe anatomical anomalies (antecedents of intrauterine stroke and 

previous left ATL). Another patient was excluded because of reported and evident severe 

cognitive deficits. Patient demographics and seizure onset zone for the remaining 14 patients 

are described in Table 1. Research protocols aligned with best practices recently aggregated 

in Feinsinger et al.23 The University of Iowa Human Subjects Review Board approved the 

research protocol and written informed consent was obtained from each subject before the 

study.  

Acute exercise paradigm  

Prior to the acute exercise paradigm, all participants were screened using the Physical 

Activity Readiness Questionnaire (PAR-Q, Canadian Society for Exercise Physiology). 

Weekly physical activity was also assessed using the Paffenbarger Physical Activity 

Questionnaire (PPAQ). After a first rest period of approximately 20 minutes, participants had 

a guided exercise session on a MagneTrainer-ER mini-bike (MagneTrainer) placed on the 

ground beside their bed or at the foot of a chair next to the bed. This session was followed 

again by a post-exercise rest period of similar duration (Fig 1A). 

Participants were explained the structure of the whole paradigm before starting the 

recordings. They were specifically instructed to lie on the bed with eyes closed after finishing 

the exercise session. Participants were asked to relax and avoid talking during the pre and 

post exercise resting state periods. An experimenter in the room documented if the 

experimental conditions were not satisfied. Audio recordings were used to further verify the 

start and end of the resting state periods to be analyzed. 

In the exercise session, participants started with a 5-minute warm-up and then cycled at a 

light-to-moderate intensity of 50-60% of their age-predicted maximum heart rate (HR). 

Participants were given their target HR zone, so that they could monitor their pacing and 
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adjust effort as needed. At the start of the warm-up period, bike resistance was set to half of 

the maximum resistance, and all participants were asked to start pedaling at a rate of 15 mph. 

Resistance was then adjusted until reaching a level that increased HR to the target HR zone 

and which the participants thought they could maintain for 20 minutes. Ratings of perceived 

exertion (RPE 6-20) were recorded following the warm-up and at 10-minute increments 

during exercise. The ECG read-out for HR was documented by the experimenter at the start 

of the pre- and post-exercise rest periods. Average RPE and relative HR (%HRmax) for each 

participant during exercise is shown in Table 1.  

Recording of iEEG data 

Recordings were made using subdural and depth electrodes, manufactured by PMT 

Corporation, Chanhassen, MN (participants S01-S09) or Ad-Tech Medical, Racine, WI (all 

other participants). Electrodes were implanted solely on the basis of clinical requirements, as 

determined by a team of epileptologists and neurosurgeons . Details of electrode 

implantation, recording and iEEG data analysis have been previously described in detail 24–26. 

In brief, subdural arrays consisted of platinum-iridium discs (2.3 mm diameter, 5–10 mm 

inter-electrode distance), embedded in a silicon membrane. These arrays provided coverage 

of frontal, parietal, temporal, and occipital cortex over the convexity of the cerebral 

hemispheres. Depth arrays (8–12 electrodes, 5 mm inter-electrode distance) targeted the 

amygdala, hippocampus, cingulate, insular cortex and the superior temporal plane. A 

subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all 

participants.  

In participants S01 through S09 data acquisition was controlled by a TDT RZ2 real-time 

processor (Tucker-Davis Technologies, Alachua, FL); in S10 through S14 data acquisition 

was performed using a Neuralynx Atlas System (Neuralynx, Bozeman, MT). Recorded data 

were amplified, filtered (0.1–500 Hz bandpass, 5 dB/octave rolloff for TDT-recorded data; 

0.7–800 Hz bandpass, 12 dB/octave rolloff for Neuralynx-recorded data), digitized at a 

sampling rate of 2034.5 Hz (TDT) or 2000 Hz (Neuralynx) and stored for subsequent offline 

analysis.  
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Anatomical reconstruction and ROI parcellation 

All patients underwent whole-brain high-resolution T1-weighted structural magnetic 

resonance imaging (MRI) scans (1mm3 isotropic resolution) before electrode implantation. 

After electrode implantation, patients underwent MRI and thin-slice volumetric computerized 

tomography (CT) scans (1mm3 isotropic resolution). Locations of the depth and subdural 

electrode contacts were extracted from post-implantation MRI and CT scans, based on 

localized magnetic susceptibility artifacts and metallic hyperintensities, respectively. 

Anatomical locations estimated from postoperative scans were then projected onto 

preoperative MRI scans using non-linear three-dimensional thin-plate spline warping to 

account for geometric distortions, guided by manually selected control points throughout 

each individual brain (typically numbering 50-100) until satisfactory alignment was achieved, 

with a target residual displacement no greater than 2-3 mm. Data across participants were 

pooled by transforming the electrode locations into a standard coordinate space referenced to 

the Montreal Neurological Institute (MNI) 152 template. This was done for each participant 

using automated volumetric nonlinear co-registration to the MNI152 aligned CIT168 

template brain 27. Volumetric co-registration used the ANTs software tool28.  

Recording sites were assigned an anatomical label based on the Destrieux atlas implemented 

as individualized and automated parcellation of cortical gyri using the Freesurfer software 

package29,30. Further, cortical recording sites were also assigned a brain network label based 

on the Yeo7 network parcellation available in standard MNI space31 (Fig 1B). For depth 

electrodes, anatomical assignment was informed by MRI sections along sagittal, coronal and 

axial planes, and review from the Neurosurgical team (Table 2). 

Signal pre-processing 

Recording sites in the reported SOZ (n=145) and those exhibiting epileptiform activity (n = 

430, seizure or interictal) at any time during the paradigm recording were excluded. Channels 

were further rejected if they exhibited voltage values exceeding 5 standard deviations in more 

than 5% of the samples. Out of the 2,415 recorded electrode contacts across patients, a total 

of 2310 remained for further analyses, resulting in the mesial and Yeo7 network-parcellation 

electrode coverage (number of contacts) shown in  Table 2. Remaining iEEG signals were 

denoised using the demodulated band transform (DBT) method32.To deal with high frequency 

noise common across channels we applied SVD (singular value decomposition) to the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


high-pass (250 Hz) filtered signals of all recorded channels and the first component was 

further extracted.  

Ripple detection 

For the purpose of ripple detection, iEEG signals were bipolar-referenced to white matter20,33. 

Our rationale for using white matter activity as re-referencing procedure is that white matter 

presents lower intrinsic electrical activity as compared to the gray matter, while also carrying 

common-mode artifacts. Furthermore, similar to standard bipolar montages, white matter 

reference electrode contacts within the same grid or depth electrode often share similar 

impedance and noise profiles with their gray matter counterparts. This makes white matter 

electrode contacts suitable for reducing shared noise while preserving relevant signals (in our 

case, ripples).  

White-matter (WM) signals were visually inspected to guarantee they did not exhibit 

pathological activity or residual noise. Mesial channels (HC, AMY and PHG) were 

re-referenced to the closest viable WM contact, preferentially in the same strip or electrode. 

Signals from other brain areas were re-referenced to an average signal calculated from 

non-mesial WM sites. Crucially, the WM channels used for HC re-referencing were not used 

to re-reference other signals. In order to verify the rejection of potential artifacts by WM 

iEEG referencing, we compared the detection of neural events after using common average 

and Gram-Schmidt referencing methods34,35 (Fig. S3A).  Event detection by each referencing 

method was in good agreement (Fig. S3B, C), providing further confidence that the detected 

events reflect physiological activity, rather than noise arising from common sources. 

After re-referencing, iEEG signals were filtered in the human ripple (70-160 Hz) frequency 

band 20,36 with a 4th order infinite-impulse response (IIR) Butterworth filter. This 

band-limited signal was then rectified, filtered below 25 Hz and z-scored. Candidate events 

were detected as epochs exceeding a threshold proportional to the standard deviation of the 

signal, calculated including the pre- and post-exercise periods (4 SD in this case). When the 

instantaneous power of the z-scored signal exceeded 20 SD, events were considered noise 

and were discarded. We compared the output of this standard ripple detection methodology to 

a non-negative matrix factorization (NMF) algorithm18 (Fig. S4) which offers a 

computationally efficient, and more unsupervised alternative. This method was applied to 

broadband spectral estimates (10-180 Hz) of the iEEG signals, yielding a low-rank 
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decomposition of the peri-event spectra into a user-defined number of clusters. After 

applying this procedure, only events with a spectral support localized within the ripple band 

(70-160 Hz) were retained for cross-checking ripple detection. Both the standard and the 

NMF methodologies yielded similar event rates, with satisfactory mean event co-labeling 

proportion (83.91±5.47% mean with 95% confidence interval, Fig. S4). We additionally 

confirmed the reliability of our event detection in the hippocampus by visual inspection by 

experienced neurophysiologists.  

Ripple features 

Three distinct features were computed for all detected ripple episodes (rate, duration and peak 

frequency). The rate estimate was computed as the total number of ripple events over the total 

recording time of each resting behavioral epoch (pre- or post-exercise). Ripple duration was 

computed as the full-width at half-maximum of the peri-event filtered (70-160 Hz) and 

rectified iEEG signal. Spectral analysis was performed using Morlet-wavelet spectrograms, 

unless otherwise specified. Spectrograms were z-scored with respect to baseline surrogate 

spectrograms computed using the same number of events with randomized inter-event 

intervals. Ripple peak frequency was then computed as the frequency corresponding to the 

maximum power of the Morlet-wavelet spectrogram, averaged in a time window of 50 ms 

centered at each event occurrence. 

Heart rate correlations 

We first averaged the values of each ripple feature across contacts located in each region or 

network of interest. Then, we calculated the change in ripple features between the two resting 

state periods (Post Exercise – Pre Exercise). Thus, per subject, we had one single value that 

represents the average exercise-elicited change per region or network of interest during 

resting state. We then computed a Pearson correlation coefficient per region between such 

change in ripple features (rate, duration and peak-frequency) and each HR measurement (HR 

during pre-exercise RS, HR during the exercise session, HR during post-exercise RS, or HR 

difference between pre- and post-exercise RS). It is worth noting that in Fig. 3 we have one 

data point per subject. We excluded one subject from the correlation analyses (S04) as their 

HR measurements are outliers and we could not corroborate those measurements in the 

exercise and post-exercise period from the original source. For transparency, we depict the 

data point(s) corresponding to that subject in the corresponding plots with a cross. 
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Statistical coupling between ripple time stamps 

We estimated the statistical coupling between ripple events detected individually from HC 

and cortical iEEG signals. For that purpose, we defined hippocampal-cortical channel pairs 

using one ‘anchor’ hippocampal site per subject. When more than one HC site was viable, 

anatomical location was used as selection criteria. Specifically, HC sites contralateral to the 

SOZ and putatively closer to CA1/CA3 were preferred17,20,37.  

Following 38 we obtained a histogram-type estimate of the cross-correlation functions of the 

(bivariate) point-processes corresponding to paired event types. For a set of ripple events 

occurring in the interval [0,T] of type S={s1,s2,…,sn} and type K={t1,t2,…,tm}, the 

cross-correlation estimates are based on counts in the following set: 

​(1) 𝑊
𝑆𝐾

𝑢( ) = 𝑗, 𝑘( )|𝑢 − β < 𝑠
𝑗

− 𝑡
𝑘

< 𝑢 + β{ },    ∀  𝑠
𝑗

≠ 𝑡
𝑘

​ ​ (2) 𝐽
𝑆𝐾

𝑢( ) =
𝑗,𝑘
∑{ 1 𝑗, 𝑘( ) ∈ 𝑊

𝑆𝐾
  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where 2β and u correspond to the histogram bin size and the center of the bin. Using JSK(.), 

we get the rate of coinciding events (in events/s) for a single experiment block as follows: 

 ​ ​ (3) 𝑝
𝑆𝐾

𝑢( ) =
𝐽

𝑆𝐾
𝑢( )

𝑇

Statistical testing for the significance of the ripple coupling between areas was assessed by 

generating null-hypothesis distributions of the cross-correlation values in the time window of 

±250ms around zero lag. These correlation values were computed from 400-point processes 

of the same rate, drawn at random from a uniform distribution. The ground-truth 

cross-correlation values were then compared with that of the null-hypothesis distributions, 

from which a p-value was computed 37. Correlation values of p<0.01 were considered 

statistically significant. For the group-level statistical analysis (LME model), to avoid effects 

induced by baseline correlation values, cross-correlograms were baseline-corrected using the 

average of the above null-hypothesis distribution across time lags.  

Amplitude-weighted phase locking (awPLV) analysis 

Amplitude-weighted phase locking (awPLV) is an estimate based on the cross-spectrum Sxy 

between two signals x and y. In order to factor out the influence of amplitude covariance, the 
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cross spectrum is normalized with , where AX(t) and AY(t) correspond to the ∫ 𝐴
𝑋

𝑡( )𝐴
𝑌

𝑡( )[ ]𝑑𝑡

instantaneous amplitudes of the signals x and y in a time window around the event 

occurrence. This normalization results in a weighted-average phase coherence (hence the 

name “amplitude-weighted”): 

  ​ (4) Υ
𝑋𝑌

^
=

𝑡
∑ 𝑤

𝑡
𝑒

∆ϕ
𝑋𝑌

𝑡( )

with weights wt, given by: 

       ​ ​ (5) 𝑤
𝑡

=
𝐴

𝑋
𝐴

𝑌

𝑡
∑𝐴

𝑋
𝐴

𝑌

Like the standard PLV, the magnitude of this measure will be 1 if the signals x and y are 

perfectly phase locked, regardless of their amplitudes. In the absence of locking, the expected 

value of PLV is related to effective sample size 39. Thus, in order to compute pair-contact 

averages (here, across detected ripple events), effective sample size was approximated as: 

 ​ ​ ​ (6) υ = 𝑡
∑𝑤

𝑡( )2

𝑡
∑𝑤

𝑡
2

with sample bias: 

​ ​ ​ ​ (7) ϵ = 1
υ

Therefore, the sample bias-corrected awPLV measure writes: 

 ​ ​  (8) |Υ
𝑋𝑌
* |
^

=
|Υ

𝑋𝑌
|

^
−ϵ

1−ϵ

Spectral estimates of this analysis were performed using the demodulated band transform 

(DBT) across mesial-cortical contact pairs for frequency values below 200 Hz. As for the 

coupling (cross-correlation) analysis, we used one ‘anchor’ hippocampal contact per subject. 

Peri-ripple magnitude awPLV was computed in a time window of ±250 ms around the 

occurrence of hippocampal ripples to account for the trade-off between spectral and temporal 

resolution of the spectral estimate32. Estimates of awPLV across detected events were then 

averaged. Finally, an average of the resulting awPLV in the ripple frequency band (70-160 

Hz) per channel pair was then used for further statistical analysis across brain regions and 
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subjects (see Mixed-effects statistical model). Only for visualization purposes in Fig. 5B, 

sample bias-corrected awPLV was computed using complex Morlet-wavelet time-frequency 

spectrograms.  

Statistical Analysis 

Effects of exercise on ripple features, ripple coupling, and peri-ripple awPLV were examined 

separately. To this end, we used linear mixed-effects models (LMEM). This method provides 

a principled way to account for both participant-level variability and heterogeneity in 

electrode coverage, while testing for region-specific effects of exercise on ripple dynamics. 

By modeling subject- and channel-level random effects, the approach increases robustness 

and generalizability of the findings despite the constraints of our intracranial datasets. Each 

model included experimental epoch (pre-, post-exercise) and anatomical region of interest 

(ROI) entered as within-subject factors. Random effects included an intercept and epoch 

effect (slope) modeled by subject ID (1 + epoch | SubjectID) and channel ID nested within 

subject ID (1 + epoch | SubjectID:ChanID), which accounted for variability unique to 

participants and their specific recording montage. Fixed effects of interest included the 

interaction between epoch and ROI for each level of the ROI factor (e.g., epoch:ROI 

interaction). Statistical significance was determined based on an interaction term having a 

p-value of p<0.05 within each model. Multiple statistical tests (e.g. across networks) were 

corrected for multiple comparisons when indicated. In the mesial temporal parcellation, we 

defined three anatomical ROIs: HC, AMY, and PHG. For the neocortical parcellation we used 

seven canonical networks33: Visual (VIS), Somatomotor (SM), Dorsal Attention (DA), 

Ventral Attention (VA), Limbic (LIM), Frontoparietal (FP), Default-mode (DM) network (Fig 

1B).  

Results  

Physical activity and exercise 

Participants (N=14, 10 males) were patients with drug resistant epilepsy being monitored for 

epileptic seizure localization with chronic intracranial electroencephalography (iEEG) 

recordings. Patients completed an acute exercise paradigm while neural activity was 
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continuously monitored. The paradigm consisted of a pre-exercise resting state period (~20 

min), followed by a period of guided exercise on a pedal exerciser (~20 min), and then by a 

post-exercise resting state period (~20 min) (Fig. 1A). During resting periods, participants 

were instructed to relax with their eyes closed. During exercise, participants started with a 

warm-up (~5 min), and then cycled at a target range of light-to-moderate intensity aerobic 

exercise [50-60% of their age-predicted maximum heart rate (HR%)]. Participant 

demographics and physiological response to exercise are summarized in Table 1. Participants 

(median age = 23.5, range 17 to 50) reported an average of 7.6 hours (SD = 3, min-max 3-14) 

of non-sedentary physical activity per day, including both light and moderate-to-vigorous 

intensity activity. Compliance to the exercise protocol was satisfactory, with an average HR% 

during exercise of 57.7% (SD = 5.7), with most participants within or near the target range 

and as a group were elevated compared to the pre-exercise rest (t(12)=7.12, p<0.001; Fig. 

1A). Similarly, self-reported RPE was an average of 11.9 (SD=1.5), corresponding to a 

subjective intensity of “light” to “somewhat hard” on the scale matching their target intensity 

zone, and was significantly elevated compared to the pre-exercise rest (t(11)=7.57, p<0.001). 

Age, sex, and self-reported physical activity were not correlated with acute exercise intensity 

(p’s all >.05), and therefore were not entered as covariates in analyses reported in this study. 

Electrode coverage and neural signals 

Electrode coverage across patients is summarized in Fig. 1B. Signals from 2415 recording 

sites were collected from the 14 patients included in this study. Cortical recording sites were 

grouped into 7 canonical networks using the Yeo-parcellation40 according to their anatomical 

location. Contacts out of the brain, in the seizure onset zone (SOZ), or exhibiting interictal 

epileptiform discharges (IEDs; Fig. S1) during the recordings were excluded from the 

analysis. Automated noise rejection and denoising steps were subsequently applied to the 

remaining signals (Materials and Methods; Fig. S2). The findings described in the following 

sections result from the comparison between the pre- and post-exercise resting state periods, 

while subjects stayed quiescent, silent, and with closed eyes. 

Acute exercise modulates ripple properties 

Ripples were reliably identified in the iEEG signals recorded from depth electrodes targeting 

HC19,20, PHG36,41, and AMY42 (Fig. 1C-E). Briefly, these oscillatory events were detected as 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


peaks exceeding 4 SD threshold in the z-scored envelope of the iEEG signal filtered in the 

70-160 Hz frequency range (Materials and Methods).  

The rate of hippocampal ripples and their electrophysiological features are known to vary 

across behavioral states and to predict memory performance43,44. We hypothesized that 

exercise would be associated with an increase in hippocampal ripple occurrence and 

modulation of electrophysiological features. Fig. 2A shows exemplary raw traces of 

peri-ripple iEEG of HC, where variability in duration and power spectral density are 

apparent. To investigate whether exercise modulates ripple features, a LMEM was deployed 

separately for ripple rate, duration and peak frequency (Materials and Methods). We found 

statistically significant pre-to-post exercise ripple rate increases in the HC (b=0.06, SE=0.02, 

t(170)=3.02, p=0.002; Fig. 2B, left boxplot). However, exercise did not significantly affect 

hippocampal ripple duration or peak frequency (Fig. 2B, middle and right boxplots). 

In light of these observations, we investigated whether the electrophysiological features of 

ripple events were also modulated in the rest of the brain as a putative consequence of acute 

physical activity. To examine this possibility, after ripple detection and feature computation, 

cortical sites were grouped according to seven canonical networks31. Between-subjects 

statistical analysis was again performed using the same LMEM, which treated subjects and 

recording sites as random effects. Consistent with our previous results, exercise increased 

ripple event rate and duration in the limbic network (rate: b=0.065, SE=0.014, t(3330)=4.59, 

p=0.00000441; duration: b=0.000545, SE=0.000256, t(3327)=2.12, p=0.0000426; Fig. 2C). 

Notably, the DMN exhibited significant exercise-related increases in ripple rate, duration, and 

peak frequency (rate: b=0.030, SE=0.013, t(3330)=2.23, p=0.025; duration: b=0.00047, 

SE=0.00023, t(3327)=1.99, p=0.045; peak frequency: b=1.84, SE=0.87, t(3327)=2.11, 

p=0.034). No other canonical networks showed exercise-related change in ripple features 

(Fig. 2C).  

To further guarantee that these results do not rely on pathological activity, we repeated the 

LMEM analyses using only the contacts from subjects with bilateral coverage (N = 6) from 

the hemisphere contralateral to the SOZ. In this subset of contacts our main results remained 

consistent, reaching higher statistical significance in some cases (Fig. S5).  

These results indicate that acute exercise elicits an increase in the rate of ripple events and 

modulates their properties (duration and peak frequency) in limbic areas and the DMN.  
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Modulation of resting-state ripple properties correlates with heart 

rate during exercise  

We investigated whether and how HR during exercise predicts the observed changes in 

resting state ripple rate and ripple electrical properties. To this end, we performed correlation 

analyses (Materials and Methods). We found positive correlations between the HR during 

exercise and the subsequent change in resting state ripple rate (i.e., from the pre-exercise to 

the post-exercise periods). This was the case for the DM (r=0.68, p=0.01), the VA (r=0.67, 

p=0.01) and the FP (r=0.65, p=0.02) networks (Fig. 3A). In contrast, neither the HR values in 

the pre- or post-exercise period, nor the difference between them, were significantly 

correlated with ripple rate or properties in any brain network. Next, we explore whether 

exercise elicited changes in hippocampal-neocortical interactions. 

Acute exercise increases hippocampal-cortical ripple coupling 

Ripples in mesial areas often co-occurred with similar short-lived high-frequency events in 

other brain areas during pre- and post-exercise resting state (Fig. 4 and Fig. 5; see also Fig. 

S1). To test whether exercise modulates ripple hippocampal-cortical coupling, we performed 

cross-correlation analyses between the time stamps of ripples in the hippocampus (anchor 

events) and other sub-cortical and cortical sites. To this end, we paired one hippocampal 

recording site per subject (selected based on its anatomical location) with the other sites of 

interest. To guarantee an unbiased coupling estimate, cross-correlation values per pair were 

corrected for potential ripple-rate baseline effects by subtracting baseline values obtained by 

a permutation procedure (Materials and Methods).  

Hippocampal-cortical ripple statistical coupling is significant, but occurs selectively across 

cortical channels (Fig. 4A). Fig. 4B shows pre- and post-peri-event zero-lag correlation 

values (Materials and Methods) across all hippocampal-cortical channel pairs in an 

exemplary patient. The average hippocampal-cortical ripple cross-correlation across the 

seven canonical networks in this exemplary patient are shown in Fig. 4C, with 

exercise-induced hippocampal-cortical ripple coupling effects occurring in VA, LIM, FP and 

DM (VA  p=4.6e-07, LIM  p=7.66e-07, FP  p=4.00e-05 and DM  p=7.84e-07, 

Bonferroni-corrected sign test).  

As in the previous section, the influence of exercise in hippocampal-other mesial areas ripple 

coupling, and hippocampal-cortical ripple coupling at the population level was tested using a 
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LMEM. In this case, the dependent variable was the average cross-correlation around ripple 

occurrence in the hippocampus (Materials and Methods; Fig. 5A-B). We found that exercise 

significantly increased HC-AMY (b=0.000342, SE=0.0000878, t(144)=3.89, p=0.00015; Fig. 

5C, middle subpanel), and HC-PHG ripple coupling (b=0.000296, SE=0.000106, 

t(144)=2.78, p=0.006; Fig. 5C, right subpanel).  

Hippocampal-cortical group-level LMEM-based analysis shows that, after exercise, ripple 

coupling increases between the HC and the limbic network, and between the HC and DMN 

(limbic: b=0.000242, SE=0.000103, t(2752)=2.34, p=0.019; DMN: b= 0.000231, 

SE=0.000102, t(2752)=2.26, p=0.023; Fig. 5D). Additionally, the VA network exhibits 

enhancement in coupling with hippocampal ripples (b=0.000219, SE=0.000104, 

t(2752)=2.09, p=0.035). In contrast, the effect was not significant in the remaining four 

networks (VIS, SM, DA and FP, p>0.05). These results were consistent across peri-ripple 

windows of different lengths, confirming the robustness of the effect in the limbic and DM 

networks. Thus, hippocampal ripples selectively co-occur with ripples in these networks, and 

this coupling is larger during post-exercise resting state, as compared to pre-exercise resting 

state. Altogether, our results indicate that exercise not only modulates hippocampal ripple 

properties, but also enhances hippocampo-neocortical and intra-mesial ripple coupling. 

Hippocampal-cortical ripple phase synchrony is enhanced by 

exercise 

Recent studies have shown that high frequency oscillations are synchronized between 

distributed brain regions and reliably exhibit a network organization21,22. As ripples are a 

manifestation of volleys of spiking neurons, ripples (and hence population spike discharges) 

may be phase-locked across distinct, yet functionally connected brain areas. Given the 

increase in ripple coupling we observed after exercise, we explored whether exercise also 

modulated ripple phase synchronization. 

To this end, the time stamps of ripples detected in the hippocampus were used as triggers to 

build peri-ripple iEEG traces across all recorded sites. The phase synchrony between 

hippocampal and cortical ripples was measured by computing an amplitude-weighted 

phase-locking value (awPLV). Briefly, this quantity measures the degree to which two 

oscillatory signals are phase-locked, regardless of their amplitude39 (Materials and Methods).  

Ripple-triggered awPLV responses were computed separately for pre-exercise and 
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post-exercise resting state blocks in a ±250 ms window around the events’ occurrence, the 

averaged awPLV in the ripple frequency band (70-160 Hz) was then used for statistical 

analysis (Fig. 6A-B displays this quantity for an exemplary subject; see also Fig. 7A). After 

exercise, hippocampal-cortical ripple phase coupling increases selectively in the ripple 

frequency band for one exemplary patient in Fig. 6C (phase locking peaks around 100 Hz). 

This modulation is also network-specific; for example, in the exemplary patient, 

hippocampal-cortical ripple coupling effects occurred significantly in LIM, FP and DM 

networks (LIM p=2.85e-08, FP  p=0.01, and DM p=0.003, Bonferroni-corrected sign test).  

To illustrate that the awPLV increases are localized in frequency and peri-ripple time, the 

averaged HC-MFG time-frequency awPLV for an exemplary contact pair (one MFG contact 

belonging to the DMN) is shown in Fig. 7B (in line with the 1D estimates of Fig. 6, and Fig. 

7C). Notably, consistent with Fig. 6, post-exercise peri-ripple awPLV was larger than its 

pre-exercise counterpart, indicating a higher ripple-band phase coupling of the former with 

respect to the latter. Analogously to the former ripple cross-correlation analysis, statistical 

comparison at the group level between pre- and post-exercise blocks over cortical areas was 

performed using a LMEM to account for differences in participant electrode coverage. The 

dependent variable of this analysis was the pre- and post-exercise awPLV (Materials and 

Methods).  

Whereas no significant effects were found for other mesial areas (Fig. 7D), we found that the 

limbic, FP, and DM networks showed a significant effect for awPLV across subjects (Fig. 7E; 

LIM: b=0.0085, SE=0.0027, t(2754)=3.11, p=0.001; FPN: b=0.0062, SE=0.0027, 

t(2754)=2.24, p=0.024; DMN: b=0.0056, SE=0.0027, t(2754)=2.09, p=0.036). These results 

indicate that hippocampal and neocortical high-frequency ripples are phase locked, and this 

coupling is modulated by exercise in some canonical networks but not others, with the largest 

effect in the limbic network.  

Discussion  

In this investigation, we examined how acute exercise modulates hippocampal ripple 

properties and hippocampal-cortical ripple dynamics. We found that, after a session of acute 

exercise, ripples occur at higher rates in the hippocampus, and limbic and DM networks. We 

also found positive correlations between HR during exercise and exercise-induced change in 

resting state cortical ripple rate in several cortical networks including the DM, possibly 
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pointing to a link between ripples21 and sympathetic response to physical exercise. 

Furthermore, we quantified the coupling between ripples in the hippocampus and ripples in 

neocortical sites, before and after the exercise session. Whereas hippocampal and neocortical 

ripples were both temporally- and phase-coupled in the pre-exercise resting state period, 

physical exercise enhanced the extent of this coupling, predominantly in the limbic and DM 

networks.  

Post-exercise modulation of ripple features  

The rate of hippocampal ripples and their physiological features are known to vary across 

states and correlate with memory performance43,44. For example, in rodents, ripple duration 

increases as a result of mnemonically demanding situations, such as spatial learning43. 

Moreover, animal studies have also shown that aging is associated with reduced ripple rate 

during sleep and awake resting state, which may contribute to age-associated memory 

impairment45. In the context of these studies, an increase in hippocampal ripple rate elicited 

by exercise could explain, at least partly, the beneficial effects of physical activity in memory 

function. Our results advance the hypothesis of hippocampal ripples as a mechanism through 

which physical activity bouts may counteract age-related memory impairments. Future 

investigations could address whether and how these exercise-induced acute modulations 

contribute to long-term changes in neural plasticity. 

Exercise effects on hippocampal-cortical interactions  

In line with animal studies21,46, we showed that hippocampal ripples co-occur with ripples in 

neocortical and other mesial areas. Mesial areas are functionally and anatomically connected 

with other structures of the limbic network (e.g. inferotemporal, orbital gyri)47–49 and 

associative cortices16,21,31,50. For example, hippocampal activity propagates to distinct 

neocortical targets following excitation of the output layers of the entorhinal cortex (EC)51, 

and/or via retrosplenial cortex46. Furthermore, EC and neocortical activity may also modulate 

mesial activity across several brain states49,52–55.  

Furthermore, our results contribute to the growing literature showing that ripple coupling is a 

widely distributed phenomenon. Ripples occur simultaneously and phase-lock across multiple 

brain regions, even between hemispheres22,56. In the present study, across-subject comparisons 

between pre- and post-exercise epochs pointed to the limbic and the DM networks as 

consistently impacted by physical exercise. In this respect, we suggest that ripple dynamics 
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may underlie the changes in hippocampal, limbic, and DMN functional connectivity observed 

in fMRI studies57. 

The DMN is classically considered a resting-state network that supports inwardly oriented 

attention during episodic memory and future planning, as opposed to sensory-driven 

processing. Furthermore, non-human primate studies have shown that endogenous resting 

state DMN fluctuations detected in BOLD-fMRI correlate with the occurrence of 

hippocampal ripples16,17,58. In humans, the strongest ripple-coupled activations during 

autobiographic mnemonic recollection were found in the DMN20. In line with this evidence, it 

has been hypothesized that the DM59 and FP60 networks could trigger high-frequency 

oscillation (HFO) cascades spreading the reactivation of mnemonic and other representational 

content (e.g. semantic content)59. Altogether, this evidence advances a view of the DMN as a 

central hub in a bursting network (high synchrony neural events) that spreads information, 

possibly as reactivation or replay, across broad cortical areas20,22,59,60. 

While enhanced post-exercise ripple coupling in specific brain networks suggests a potential 

positive effect of exercise on mnemonic processing, this hypothesis demands further 

investigation. Our study provides a first description of how physical activity influences 

hippocampal-cortical ripple dynamics, but does not directly test the deployment of 

exercise-induced ripples in cognition. Future studies should explore the connection between 

exercise-induced changes in hippocampal ripples and subjects’ performance in specific 

mnemonic tasks known to improve after acute exercise61. 

A neural substrate linking body state and cognition  

Besides their role in cognition, hippocampal ripples play a role in glucose regulation and 

interoceptive signaling between the brain and the body. Specifically, in freely behaving rats, 

bursts of clustered hippocampal ripples are followed by decreased peripheral interstitial 

glucose after about 10 minutes, with ripple rate having the most impact on glucose compared 

to ripple frequency and duration62. Our finding that resting ripple rate increases in the human 

hippocampus after exercise presents an opportunity to test whether and how human 

hippocampal-cortical network ripple dynamics relates to reductions in peripheral glucose 

within and across individuals following exercise. Experimental conditions such as a fasted 

state and real-time measurement of peripheral glucose are feasible in this patient population63.  
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Whereas the results of the present study suggest that the modulation of ripple dynamics is a 

mechanism by which exercise affects cognitive function, the role of metabolic changes (i.e. 

glucose) deserves further investigation and discussion. Crucially, the dual cognitive and 

metabolic roles of ripples are complementary rather than mutually exclusive. Ripples are then 

proposed as a metabolic marker embedded in hippocampal function, enabling the use of past 

experiences –stored in memory– to anticipate future metabolic demands according to 

predicted stimuli and planned behavior64,65.   

 

Finally, further experiments are required to disentangle how exercise-associated metabolic 

changes account for the observed ripple effects, and to investigate how those bodily factors 

contribute to cognitive performance. 

 

Limitations of this study 
Whereas our study provides novel mechanistic insights into how acute exercise modulates 

hippocampal-cortical communication in humans, it faces challenges common to invasive 

neurophysiological studies (iEEG) in human patients19,33,36,66,67. Given the size of the 

participant cohort (N=14) and the inclusion of patients with drug resistant epilepsy, we 

caution against overinterpretation of our findings. In this type of study, electrode coverage is 

determined by individual clinical needs and therefore varies across subjects. Whereas our 

analysis pipeline accounts for many of these factors (e.g. exclusion of SOZ contacts, signal 

denoising, LMEMs etc.), these methodological constraints remain important to acknowledge. 

Furthermore, although we report the results of our statistical models across canonical 

networks with uncorrected p-values, it is worth emphasizing that the observed neural activity 

patterns and exercise effects were consistent across patients, brain regions and measures, and 

thus unlikely to reflect chance findings. 
 

Finally, the spatial resolution of extracellular field potentials depends on electrode type and 

electrical properties (e.g., impedance). Most intracranial clinical electrodes still yield 

relatively coarse field measurements, yet can capture high-frequency ripple activity. 

Importantly, electrode diameter influences impedance and thus the ability to detect high 

frequencies68, which constrains the resolution achievable in human iEEG compared to 

microelectrode recording methodologies. In addition, the specifics of human anatomy render 

the access to deep mesial structures such as the amygdala and the hippocampus cumbersome. 
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Hippocampal depth electrode contacts must target the cornu ammonis (or nearby 

hippocampal substructures) in order to reliably detect bona fide sharp wave-ripple activity. 

The curved anatomical organization of the human cornu ammonis poses additional challenges 

for interpreting extracellular measurements and their potential translation to other 

experimental models, as such measurements in humans most likely reflect the summed 

contribution of cellular activities arising from both open- and close-field configurations17,69. 

In contrast, experimental animal models –specifically rodents– allow for precise and 

consistent targeting of hippocampal subregions in an open-field configuration. These models 

offer complementary opportunities to test the hypotheses investigated in this work, and those 

raised by our findings. 

Table 1 

Patient Age Sex Seizure focus Avg HR 

(% max) 

Avg RPE 

(6-20) 

S01 30 M L ITG including PHG 62 11 

S02 18 M R parietal med 59 12 

S03 50 F L ant mesial temporal 59 12 

S04 18 M R frontal ant 45 13 

S05 29 M L insula lesion 52 12 

S06 28 F R frontal ant 54 15 

S07 20 M R orbitofrontal 56 11 

S08 33 M L mesial temporal 62 11 

S09 17 M R sup and mid temporal 60 11 

S10 22 F R superior temporal 51 10 

S11 19 M L frontal 68 11 

S12 32 M L temporal (fusiform, 

lingual) 

59 15 

S13 25 F R temporoparietal 59 NA 

S14 18 M L mesial temporal 62 11 

N 14 10 M    

Mean 25.6   57.7 11.9 

Median 23.5   58.9 11 

Range 17-50   45-68 10-15 

Table 1. Patient Demographics. Included patients experimental IDs (N=14), accompanied 
by their age (mean, median, and range are provided at the bottom of the table); sex (M: Male; 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


F: Female; 4 females, 10 males); anatomical location of the seizure onset zone; and average 
heart rate as a percentage of the age-related maximum (mean, median, and range are provided 
at the bottom of the table). RPE: Ratings of Perceived Exertion. NA: RPE for one participant 
was not available due to missing self-report during exercise. PHG: Parahippocampal gyrus; 
ITG: Inferior temporal gyrus. 

Table 2 

 
Patient AMY HC PHG VIS SM DA VA LIM FP DM 

S01 2 5 0 17 53 16 33 35 25 43 

S02 0 0 0 8 21 19 14 0 20 27 

S03 2 1 6 5 36 9 17 23 18 46 

S04 3 4 0 10 35 14 14 18 50 51 

S05 3 3 4 2 59 9 22 27 19 73 

S06 2 1 0 0 3 1 11 0 37 36 

S07 0 0 0 0 12 4 14 19 57 34 

S08 8 10 3 3 31 4 12 63 5 36 

S09 2 0 6 3 41 7 16 20 32 26 

S10 7 4 3 6 47 5 23 49 42 46 

S11 14 1 5 2 29 1 15 35 20 52 

S12 3 11 5 35 22 38 9 9 22 31 

S13 3 2 0 16 17 6 12 18 14 19 

S14 8 6 0 4 35 2 12 10 28 27 

Table 2. Electrode coverage across patients. Included patients experimental IDs (N=14), 
and number of electrode contacts for each mesial temporal anatomical region, and 7 
canonical networks using the Yeo-parcellation. The number of sites used for analysis is 
displayed. AMY: amygdala; HC: hippocampus; PHG: parahippocampal gyrus; VIS: visual 
(Yeo 1); SM: somatomotor (Yeo 2); DA: dorsal attention (Yeo 3); VA: ventral attention (Yeo 
4); LIM: limbic (Yeo 5); FP: frontoparietal (Yeo 6); DM: default mode (Yeo 7). 

 

Data availability  

The data and code supporting the findings of this article will be available upon request to the 

lead contact, Prof. Dr. Michelle Voss (michelle-voss@uiowa.edu).  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

mailto:michelle-voss@uiowa.edu
https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


Acknowledgements  

We acknowledge the generosity of the patients, who contributed time and effort to take part 

in this study. 

Funding  

No funding was received towards this work. 

Competing interests  

The authors report no competing interests. 

References  

1.​ Roig M, Nordbrandt S, Geertsen SS, Nielsen JB. The effects of cardiovascular exercise 
on human memory: a review with meta-analysis. Neurosci Biobehav Rev. 
2013;37(8):1645-1666. doi:10.1016/j.neubiorev.2013.06.012 

2.​ Hatchard T, Ting JJ, Messier C. Translating the impact of exercise on cognition: 
Methodological issues in animal research. Behav Brain Res. 2014;273:177-188. 
doi:10.1016/j.bbr.2014.06.043 

3.​ Vivar C, Peterson BD, van Praag H. Running rewires the neuronal network of adult-born 
dentate granule cells. NeuroImage. 2016;131:29-41. 
doi:10.1016/j.neuroimage.2015.11.031 

4.​ Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H. Exercise and Hippocampal 
Memory Systems. Trends Cogn Sci. 2019;23(4):318-333. doi:10.1016/j.tics.2019.01.006 

5.​ van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, 
learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 
1999;96(23):13427-13431. doi:10.1073/pnas.96.23.13427 

6.​ Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary 
exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male 
Sprague-Dawley rats in vivo. Neuroscience. 2004;124(1):71-79. 
doi:10.1016/j.neuroscience.2003.09.029 

7.​ Dao AT, Zagaar MA, Levine AT, Alkadhi KA. Comparison of the Effect of Exercise on 
Late-Phase LTP of the Dentate Gyrus and CA1 of Alzheimer’s Disease Model. Mol 
Neurobiol. 2016;53(10):6859-6868. doi:10.1007/s12035-015-9612-5 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


8.​ Weng TB, Pierce GL, Darling WG, Falk D, Magnotta VA, Voss MW. The Acute Effects 
of Aerobic Exercise on the Functional Connectivity of Human Brain Networks. Brain 
Plast Amst Neth. 2017;2(2):171-190. doi:10.3233/BPL-160039 

9.​ Suwabe K, Byun K, Hyodo K, et al. Rapid stimulation of human dentate gyrus function 
with acute mild exercise. Proc Natl Acad Sci. 2018;115(41):10487-10492. 
doi:10.1073/pnas.1805668115 

10.​Voss MW, Prakash RS, Erickson KI, et al. Plasticity of Brain Networks in a Randomized 
Intervention Trial of Exercise Training in Older Adults. Front Aging Neurosci. 2010;2:32. 
doi:10.3389/fnagi.2010.00032 

11.​Flodin P, Jonasson LS, Riklund K, Nyberg L, Boraxbekk CJ. Does Aerobic Exercise 
Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old 
Adults. Front Aging Neurosci. 2017;9. Accessed September 27, 2022. 
https://www.frontiersin.org/articles/10.3389/fnagi.2017.00267 

12.​Milani-Nejad N, Janssen PML. Small and large animal models in cardiac contraction 
research: Advantages and disadvantages. Pharmacol Ther. 2014;141(3):235-249. 
doi:10.1016/j.pharmthera.2013.10.007 

13.​Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory 
and planning. Hippocampus. 2015;25(10):1073-1188. doi:10.1002/hipo.22488 

14.​Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of 
hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12(10):1222-1223. 
doi:10.1038/nn.2384 

15.​Gridchyn I, Schoenenberger P, O’Neill J, Csicsvari J. Assembly-Specific Disruption of 
Hippocampal Replay Leads to Selective Memory Deficit. Neuron. 
2020;106(2):291-300.e6. doi:10.1016/j.neuron.2020.01.021 

16.​Logothetis NK, Eschenko O, Murayama Y, et al. Hippocampal–cortical interaction during 
periods of subcortical silence. Nature. 2012;491(7425):547-553. 
doi:10.1038/nature11618 

17.​Ramirez-Villegas JF, Logothetis NK, Besserve M. Diversity of sharp-wave–ripple LFP 
signatures reveals differentiated brain-wide dynamical events. Proc Natl Acad Sci. 
2015;112(46). doi:10.1073/pnas.1518257112 

18.​Frauscher B, Ellenrieder N von, Zelmann R, et al. High-Frequency Oscillations in the 
Normal Human Brain. Ann Neurol. 2018;84(3):374-385. doi:10.1002/ana.25304 

19.​Vaz AP, Inati SK, Brunel N, Zaghloul KA. Coupled ripple oscillations between the 
medial temporal lobe and neocortex retrieve human memory. Science. 
2019;363(6430):975-978. doi:10.1126/science.aau8956 

20.​Norman Y, Yeagle EM, Khuvis S, Harel M, Mehta AD, Malach R. Hippocampal 
sharp-wave ripples linked to visual episodic recollection in humans. Science. 
2019;365(6454). doi:10.1126/science.aax1030 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


21.​Khodagholy D, Gelinas JN, Buzsáki G. Learning-enhanced coupling between ripple 
oscillations in association cortices and hippocampus. Science. 2017;358(6361):369-372. 
doi:10.1126/science.aan6203 

22.​Arnulfo G, Wang SH, Myrov V, et al. Long-range phase synchronization of 
high-frequency oscillations in human cortex. Nat Commun. 2020;11(1):5363. 
doi:10.1038/s41467-020-18975-8 

23.​Feinsinger A, Pouratian N, Ebadi H, et al. Ethical commitments, principles, and practices 
guiding intracranial neuroscientific research in humans. Neuron. 2022;110(2):188-194. 
doi:10.1016/j.neuron.2021.11.011 

24.​Howard MA, Volkov IO, Mirsky R, et al. Auditory cortex on the human posterior 
superior temporal gyrus. J Comp Neurol. 2000;416(1):79-92. 
doi:10.1002/(sici)1096-9861(20000103)416:1%3C79::aid-cne6%3E3.0.co;2-2 

25.​Reddy CG, Dahdaleh NS, Albert G, et al. A method for placing Heschl gyrus depth 
electrodes. J Neurosurg. 2010;112(6):10.3171/2009.7.JNS09404. 
doi:10.3171/2009.7.JNS09404 

26.​Nourski KV, Howard MA. Invasive recordings in the human auditory cortex. Handb Clin 
Neurol. 2015;129:225-244. doi:10.1016/B978-0-444-62630-1.00013-5 

27.​Tyszka JM, Pauli WM. In vivo delineation of subdivisions of the human amygdaloid 
complex in a high-resolution group template. Hum Brain Mapp. 2016;37(11):3979-3998. 
doi:10.1002/hbm.23289 

28.​Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image 
registration with cross-correlation: evaluating automated labeling of elderly and 
neurodegenerative brain. Med Image Anal. 2008;12(1):26-41. 
doi:10.1016/j.media.2007.06.004 

29.​Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri 
and sulci using standard anatomical nomenclature. NeuroImage. 2010;53(1):1-15. 
doi:10.1016/j.neuroimage.2010.06.010 

30.​Destrieux C, Terrier LM, Andersson F, et al. A practical guide for the identification of 
major sulcogyral structures of the human cortex. Brain Struct Funct. 
2017;222(4):2001-2015. doi:10.1007/s00429-016-1320-z 

31.​Thomas Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral 
cortex estimated by intrinsic functional connectivity. J Neurophysiol. 
2011;106(3):1125-1165. doi:10.1152/jn.00338.2011 

32.​Kovach CK, Gander PE. The demodulated band transform. J Neurosci Methods. 
2016;261:135-154. doi:10.1016/j.jneumeth.2015.12.004 

33.​Norman Y, Raccah O, Liu S, Parvizi J, Malach R. Hippocampal ripples and their 
coordinated dialogue with the default mode network during recent and remote 
recollection. Neuron. 2021;109(17):2767-2780.e5. doi:10.1016/j.neuron.2021.06.020 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


34.​Parish GM, Michelmann S, Hanslmayr S. How Should I Re-reference My Intracranial 
EEG Data? In: Axmacher N, ed. Intracranial EEG: A Guide for Cognitive 
Neuroscientists. Springer International Publishing; 2023:451-473. 
doi:10.1007/978-3-031-20910-9_28 

35.​Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open Source Software for 
Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput 
Intell Neurosci. 2011;2011(1):156869. doi:10.1155/2011/156869 

36.​Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for 
human memory consolidation. Brain. 2008;131(7):1806-1817. doi:10.1093/brain/awn103 

37.​Ramirez-Villegas JF, Besserve M, Murayama Y, Evrard HC, Oeltermann A, Logothetis 
NK. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. 
Nature. 2021;589(7840):96-102. doi:10.1038/s41586-020-2914-4 

38.​Brillinger DR. Estimation of the Second-Order Intensities of a Bivariate Stationary Point 
Process. J R Stat Soc Ser B Methodol. 1976;38(1):60-66. 

39.​Kovach CK. A Biased Look at Phase Locking: Brief Critical Review and Proposed 
Remedy. IEEE Trans Signal Process. 2017;65(17):4468-4480. 
doi:10.1109/TSP.2017.2711517 

40.​Yeo BTT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex 
estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125-1165. 
doi:10.1152/jn.00338.2011 

41.​Sakon JJ, Kahana MJ. Hippocampal ripples signal contextually mediated episodic recall. 
Proc Natl Acad Sci. 2022;119(40):e2201657119. doi:10.1073/pnas.2201657119 

42.​Cox R, Rüber T, Staresina BP, Fell J. Sharp Wave-Ripples in Human Amygdala and Their 
Coordination with Hippocampus during NREM Sleep. Cereb Cortex Commun. 
2020;1(1):tgaa051. doi:10.1093/texcom/tgaa051 

43.​Fernández-Ruiz A, Oliva A, Fermino de Oliveira E, Rocha-Almeida F, Tingley D, 
Buzsáki G. Long-duration hippocampal sharp wave ripples improve memory. Science. 
2019;364(6445):1082-1086. doi:10.1126/science.aax0758 

44.​Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ. Sustained increase in hippocampal 
sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem. 
2008;15(4):222-228. doi:10.1101/lm.726008 

45.​Cowen SL, Gray DT, Wiegand JPL, Schimanski LA, Barnes CA. Age-associated changes 
in waking hippocampal sharp-wave ripples. Hippocampus. 2020;30(1):28-38. 
doi:10.1002/hipo.23005 

46.​Nitzan N, McKenzie S, Beed P, et al. Propagation of hippocampal ripples to the 
neocortex by way of a subiculum-retrosplenial pathway. Nat Commun. 2020;11(1):1947. 
doi:10.1038/s41467-020-15787-8 

47.​Riches IP, Wilson FA, Brown MW. The effects of visual stimulation and memory on 
neurons of the hippocampal formation and the neighboring parahippocampal gyrus and 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


inferior temporal cortex of the primate. J Neurosci. 1991;11(6):1763-1779. 
doi:10.1523/JNEUROSCI.11-06-01763.1991 

48.​Tanaka K. Inferotemporal cortex and higher visual functions. Curr Opin Neurobiol. 
1992;2(4):502-505. doi:10.1016/0959-4388(92)90187-P 

49.​Witter MP, Naber PA, van Haeften T, et al. Cortico-hippocampal communication by way 
of parallel parahippocampal-subicular pathways. Hippocampus. 2000;10(4):398-410. 
doi:10.1002/1098-1063(2000)10:4%3C398::AID-HIPO6%3E3.0.CO;2-K 

50.​Karimi Abadchi J, Nazari-Ahangarkolaee M, Gattas S, et al. Spatiotemporal patterns of 
neocortical activity around hippocampal sharp-wave ripples. Deshmukh S, Colgin LL, 
Deshmukh S, eds. eLife. 2020;9:e51972. doi:10.7554/eLife.51972 

51.​Chrobak JJ, Buzsáki G. High-Frequency Oscillations in the Output Networks of the 
Hippocampal–Entorhinal Axis of the Freely Behaving Rat. J Neurosci. 
1996;16(9):3056-3066. doi:10.1523/JNEUROSCI.16-09-03056.1996 

52.​Isomura Y, Sirota A, Özen S, et al. Integration and Segregation of Activity in 
Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations. Neuron. 
2006;52(5):871-882. doi:10.1016/j.neuron.2006.10.023 

53.​Hahn TTG, McFarland JM, Berberich S, Sakmann B, Mehta MR. Spontaneous persistent 
activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo. Nat 
Neurosci. 2012;15(11):1531-1538. doi:10.1038/nn.3236 

54.​O’Neill J, Boccara CN, Stella F, Schoenenberger P, Csicsvari J. Superficial layers of the 
medial entorhinal cortex replay independently of the hippocampus. Science. 
2017;355(6321):184-188. doi:10.1126/science.aag2787 

55.​Fernández-Ruiz A, Oliva A, Nagy GA, Maurer AP, Berényi A, Buzsáki G. 
Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by 
Theta-Gamma Coupling. Neuron. 2017;93(5):1213-1226.e5. 
doi:10.1016/j.neuron.2017.02.017 

56.​Dickey CW, Verzhbinsky IA, Jiang X, et al. Widespread ripples synchronize human 
cortical activity during sleep, waking, and memory recall. Proc Natl Acad Sci. 
2022;119(28):e2107797119. doi:10.1073/pnas.2107797119 

57.​Weng TB, Pierce GL, Darling WG, Falk D, Magnotta VA, Voss MW. The Acute Effects 
of Aerobic Exercise on the Functional Connectivity of Human Brain Networks. Brain 
Plast. 2016;2(2):171-190. doi:10.3233/BPL-160039 

58.​Kaplan R, Adhikari MH, Hindriks R, et al. Hippocampal Sharp-Wave Ripples Influence 
Selective Activation of the Default Mode Network. Curr Biol. 2016;26(5):686-691. 
doi:10.1016/j.cub.2016.01.017 

59.​Kaefer K, Stella F, McNaughton BL, Battaglia FP. Replay, the default mode network and 
the cascaded memory systems model. Nat Rev Neurosci. 2022;23(10):628-640. 
doi:10.1038/s41583-022-00620-6 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


60.​Higgins C, Liu Y, Vidaurre D, et al. Replay bursts in humans coincide with activation of 
the default mode and parietal alpha networks. Neuron. 2021;109(5):882-893.e7. 
doi:10.1016/j.neuron.2020.12.007 

61.​Loprinzi PD, Roig M, Etnier JL, Tomporowski PD, Voss M. Acute and Chronic Exercise 
Effects on Human Memory: What We Know and Where to Go from Here. J Clin Med. 
2021;10(21):4812. doi:10.3390/jcm10214812 

62.​Tingley D, McClain K, Kaya E, Carpenter J, Buzsáki G. A metabolic function of the 
hippocampal sharp wave-ripple. Nature. 2021;597(7874):82-86. 
doi:10.1038/s41586-021-03811-w 

63.​Huang Y, Wang JB, Parker JJ, Shivacharan R, Lal RA, Halpern CH. Spectro-spatial 
features in distributed human intracranial activity proactively encode peripheral 
metabolic activity. Nat Commun. 2023;14(1):2729. doi:10.1038/s41467-023-38253-7 

64.​Buzsáki G, Tingley D. Cognition from the Body-Brain Partnership: Exaptation of 
Memory. Annu Rev Neurosci. 2023;46(1):191-210. 
doi:10.1146/annurev-neuro-101222-110632 

65.​Dimakou A, Pezzulo G, Zangrossi A, Corbetta M. The predictive nature of spontaneous 
brain activity across scales and species. Neuron. Published online March 17, 2025. 
doi:10.1016/j.neuron.2025.02.009 

66.​Silva M, Wu X, Sabio M, et al. Movie-watching evokes ripple-like activity within events 
and at event boundaries. Nat Commun. 2025;16(1):5647. 
doi:10.1038/s41467-025-60788-0 

67.​Zhang H, Skelin I, Ma S, et al. Awake ripples enhance emotional memory encoding in the 
human brain. Nat Commun. 2024;15(1):215. doi:10.1038/s41467-023-44295-8 

68.​Whittingstall K, Logothetis NK. Physiological Foundations of Neural Signals. In: 
Quiroga RQ, Panzeri S, eds. Principles of Neural Coding. CRC Press; 2013:3-14. 

69.​Ramirez-Villegas JF, Willeke KF, Logothetis NK, Besserve M. Dissecting the Synapse- 
and Frequency-Dependent Network Mechanisms of In Vivo Hippocampal Sharp 
Wave-Ripples. Neuron. 2018;100(5):1224-1240.e13. doi:10.1016/j.neuron.2018.09.041 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2023.05.19.541461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541461
http://creativecommons.org/licenses/by/4.0/


Figures 

 

Figure 1. Paradigm, electrode coverage and ripple detection. (A) Left: Illustration of the 
experimental paradigm. Neurosurgical patients (a total of 14 included) were instructed to 
complete an acute exercise paradigm while intracranial EEG activity was continuously 
recorded. A pre-exercise resting period (~20 min), was followed by exercise on a mini-bike 
(~20 min), then followed by a postexercise resting period (~20 min). Right: pre-, during, and 
post-exercise heart rate (percentage of age-predicted maximum) showing that compliance to 
the acute exercise protocol was satisfactory (50-60% target range) across subjects (individual 
dots). *p<0.001 paired-samples t-test for the comparison between pre-exercise resting state 
HR% and exercise HR%. (B) Cortical electrode coverage across participants. Contacts were 
grouped into 7 canonical networks using the Yeo-parcellation according to their anatomical 
location, as indicated by colors (visual, somatomotor, dorsal attention, ventral attention, 
limbic, frontoparietal, and default-mode). (C) One exemplary contact (filled circle) located in 
hippocampus shown overlayed in anatomical MRI T1 image. The nearest white matter 
contact (empty circle in the MRI image) was used for re-referencing. (D) Raw (<300 Hz) and 
filtered (70-160 Hz) iEEG (top/middle), together with the spectral decomposition of the raw 
iEEG (bottom), show that ripple events can be reliably identified in the electrical activity of 
the hippocampus. (E) Top: Single-channel first principal component of the peri-ripple iEEG 
traces (<300 Hz); Bottom: Averaged z-scored peri-ripple spectrogram.  
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Figure 2. Effect of acute exercise on ripple properties. (A) Exemplary raw (<300 Hz) and 
filtered (70-160 Hz) peri-ripple iEEG traces with spectrograms showing that ripples in the 
human hippocampus vary in duration and peak frequency. White, dotted lines in the 
spectrograms indicate ripple frequency peak at time zero. Two traces of the raw iEEG per 
anatomical structure are displayed to show the variability across contiguous sites. (B) 
Across-subjects distributions of ripple rate, duration and peak frequency in the resting state 
pre- and post-exercise in the hippocampus (HC), and (C) in the 7 canonical networks, 
illustrating the modulation of ripple characteristics by acute exercise. In box plots, lines 
crossing the boxes indicate the median, box edges indicate 25th and 75th percentiles, and data 
points beyond the whiskers are outliers. Each dot represents one recording site. *p<0.05, 
**p<0.01 according to a LMEM treating subject and recording sites as random effects. 
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Figure 3. Modulation of neocortical ripple properties is correlated with 
exercise-associated heart rate across subjects. Across-subjects scatter plots in the 7 
canonical networks illustrating the correlation between change in ripple properties (RS 
PostExercise – RS PreExercise) and HR during the exercise period. (A) Ripple rate, (B) 
Ripple duration, and (C) Ripple peak frequency. Each dot corresponds to one subject. The 
subject marked by “X” was depicted in the plot for transparency but excluded from the 
calculation as it represents an outlier and we were not able to verify the measurements from 
the source records. Asterisks indicate statistically significant correlations, *p<0.05, ** 
p<0.001. In contrast, neither the HR values in the pre- or post-exercise resting state periods, 
nor the difference between them were significantly correlated with ripple rate or electrical 
properties. 
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Figure 4.  Hippocampal-cortical ripple statistical coupling in an exemplary subject. (A) 
Recording contacts’ distribution in the neocortex classified into 7 canonical networks 
according to their anatomical locations (top). Pre- (bottom, left) and post-exercise (bottom, 
right) resting state cross-correlation values between hippocampal ripples and ripples detected 
across all cortical contacts, overlaid in the same brain template. (B) Same as (A), but the 
averaged pre- (left) and post-exercise (right) resting state cross-correlation values are 
presented as bars, and sorted according to the 7 canonical networks. In this subject there is 
overall larger coupling between hippocampus and the VA, limbic, FP and DM networks 
during post-exercise resting state. Note that across subjects only limbic, DM and VA reached 
significance. (C) Cross-correlograms between hippocampal and cortical ripples, averaged 
across cortical contacts associated with each canonical network. Exercise-induced 
hippocampal-cortical ripple coupling effects were observed in networks 4 to 7 (VA  
p=4.6e-07, LM  p=7.66e-07, FP  p=4.00e-05 and DM  p=7.84e-07, Bonferroni-corrected sign 
test). Shadings indicate standard error of the mean (SEM). 
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Figure 5. Effect of exercise on hippocampal-cortical peri-ripple coupling. (A) Recording 
contacts’ distribution in the neocortex of the subject displayed in Fig. 4. Blue dots indicate 
contacts shown in panel B. (B) Exemplary cross-correlograms between hippocampal ripples 
and ripples from distinct extra-hippocampal sites (MFG: middle frontal gyrus; IFG: inferior 
frontal gyrus; HG: Heschl’s gyrus; mOC: middle occipital gyrus). Asterisks indicate 
significant coupling around lag zero (p<0.01, permutation t-test). (D) Across-subjects pre- 
and post-exercise resting state coupling values between hippocampal ripples and ripples 
detected in other mesial areas (i.e., HC, AMY, and PHG). (E) Across-subjects pre- and 
post-exercise resting state coupling values between hippocampal ripples and ripples detected 
across 7 canonical networks: visual (VIS), somatomotor (SM), dorsal attention (DA), ventral 
attention (VA), limbic (LIM), frontoparietal (FP) and default-mode (DM). (D and E) LME 
models for the comparison between pre- and post-exercise resting state blocks. In box plots, 
lines crossing the boxes indicate the median, box edges indicate 25th and 75th percentiles, 
and data points beyond the whiskers are outliers. Asterisks indicate an statistically significant 
effect, *p<0.05, ** p<0.001. 
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Figure 6. Hippocampal-cortical ripple phase synchrony in an exemplary subject. (A) 
Recording contacts’ distribution in the neocortex classified into 7 canonical networks 
according to their anatomical locations (top). Pre- (bottom, left) and post-exercise (bottom, 
right) resting state amplitude-weighted phase locking value (awPLV) in the ripple frequency 
band (70-160 Hz) between hippocampal and neocortical peri-event activity, overlaid in the 
same brain template. (B) Same as (A), but the averaged pre- (left) and post-exercise (right) 
resting state awPLV in the ripple frequency band is presented as bars, and sorted according to 
the 7 canonical networks. In this subject there is overall larger ripple phase coupling between 
hippocampus and the LIM, FP and DM networks during post-exercise resting state. (C) 
awPLV between hippocampal and cortical ripples estimated via demodulated band transform 
(DBT). Values were averaged across cortical contacts associated with each canonical 
network. Exercise-induced hippocampal-cortical ripple coupling effects were observed in 
networks 5 to 7 (LM – p=2.85e-08, FP – p=0.01, and DM – p=0.003, Bonferroni-corrected 
sign test). Shadings indicate standard error of the mean (SEM). 
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Figure 7. Effect of exercise on hippocampal-cortical peri-ripple phase synchrony. (A) 
For phase synchrony calculation, hippocampal ripple timestamps are used to compute a 
peri-event amplitude-weighted phase locking value (awPLV) between hippocampal-cortical 
site pairs. The ripple band (70-160 Hz) averaged awPLV estimate per site pair is then used for 
group-level statistical analysis using a LMEM. (B) 2-D awPLV estimated from complex 
Morlet-wavelet spectrograms between the hippocampus and middle frontal gyrus (MFG) 
(top), and between the hippocampus and amygdala (bottom), shows that awPLV between 
hippocampus and other brain areas increases during post-exercise (right), relative to 
pre-exercise resting state (left). (C) Same as panel (B), but the awPLV estimate is 1-D and 
calculated via demodulated band transform (DBT). (D) Across-subjects pre- and 
post-exercise resting state awPLV at the time of hippocampal ripples between hippocampus 
and other mesial areas (i.e., HC, AMY, and PHG). (E) Across-subjects pre- and post-exercise 
resting state awPLV at the time of hippocampal ripples, between hippocampus and 7 
canonical networks: visual, somatomotor, dorsal attention, ventral attention, limbic, 
frontoparietal and default-mode. (D and E) LME models for the comparison between pre- 
and post-exercise resting state blocks. In box plots, lines crossing the boxes indicate the 
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median, box edges indicate 25th and 75th percentiles, and data points beyond the whiskers 
are outliers. *p<0.05, **p<0.001. 
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