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Riboswitches are structured allosteric RNA molecules that change conformation upon metabolite
binding, triggering a regulatory response. Here we focus on the de novo design of riboswitch-
like aptamers, the core part of the riboswitch undergoing structural changes. We use Restricted
Boltzmann machines (RBM) to learn generative models from homologous sequence data. We first
verify, on four different riboswitch families, that RBM-generated sequences correctly capture the
conservation, covariation and diversity of natural aptamers. The RBM model is then used to design
new SAM-I riboswitch aptamers. To experimentally validate the properties of the structural switch
in designed molecules, we resort to chemical probing (SHAPE and DMS), and develop a tailored
analysis pipeline adequate for high-throughput tests of diverse sequences. We probe a total of 476
RBM-designed and 201 natural sequences. Designed molecules with high RBM scores, with 20%
to 40% divergence from any natural sequence, display ≈ 30% success rate of responding to SAM
with a structural switch similar to their natural counterparts. We show how the capability of the
designed molecules to switch conformation is connected to fine energetic features of their structural
components.

INTRODUCTION13

Riboswitches are regulatory RNA elements found14

mostly in bacterial and in some eukaryotic messenger15

RNAs. Usually located upstream of coding sequences,16

they modulate the expression of the downstream gene17

at the transcriptional or translation level in the pres-18

ence of a specific metabolite [48, 66, 75, 77]; some ri-19

boswitches placed within genes even regulate alternative20

splicing [42]. In order to perform their function, these21

RNA motifs switch between two stable conformations in22

response to binding of their cognate metabolite to the ap-23

tamer domain of the riboswitch (Figure 1). This change24

of conformation, in turn, affects the expression platform,25

where the regulation signals are located. Understanding26

how the aptamer domain by itself is able to implement a27

structural switch in response to the ligand, and how this28

is encoded in the sequence, is an important step towards29

the characterization of the full riboswitch regulation.30

The sequence-to-function mapping of structured RNAs31

is a complex problem. In the course of evolution, se-32

quence patterns necessary for function are conserved,33

suggesting that large sequence datasets can shed light34

on this mapping. Comparative analysis of homologous35

RNA sequences collected in Multiple Sequence Align-36

ments (MSA) [56] have been successful to predict sec-37

ondary RNA structures, tertiary structural motifs, and38

even the entire three dimensional architecture of complex39

RNA [11, 23, 28, 51, 64, 79]. Covariation analysis has40

also been used to predict pseudoknots and other tertiary41

contacts from statistical couplings inferred from conser-42

vation and covariation across the MSA columns [19, 92],43

or by including positive and negative evolutionary infor-44

mation such as in the Cascade covariation Folding Al-45

gorithm (CacoFold) [63]. Machine learning approaches46

have recently shown promising results in RNA structure47

prediction. Among them Rosetta FARFAR2 [89] uses48

Monte-Carlo-based fragment assembly methods and can49

be aided by geometric deep learning approaches such as50

ARES [84] to score putative structures. DeepFoldRNA51

[59] significantly outperformed the state-of-the-art ter-52

tiary structure prediction from sequence only. Although53

these approaches look promising, AlphaFold-level accura-54

cies [39] (for proteins) are not yet reached in RNA struc-55

ture prediction [61, 81].56

The mirroring problem of designing RNA sequences57

capable of folding in a particular target structure or of58

performing a desired function has also long been inves-59

tigated. One successful approach is based on directed60

evolution (SELEX). RNA sequences are selected from61

an initial random library to optimize a target function,62

such as the switching dynamics for bistable aptamers63

[49]. Models trained on such data are capable of clas-64

sifying sequences according to their functionality and of65

extracting key sequence-features for the desired function66

[1, 21, 24, 26, 37]. Classifiers have been used downstream67

of random mutagenesis to filter out good sequences, but68

this approach only works if the libraries already contain69

good candidates. In parallel, much effort has been de-70

voted to the rational design of secondary structures, in71
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particular with minimum free energy approaches [25, 93].72

However, due to algorithmic complexity [64, 88], those73

approaches often ignore pseudoknots and other tertiary74

contacts known to be essential for the function of some75

RNAs, such as riboswitches or ribozymes.76

To date, building generative models effective in de-77

signing RNA sequences with tertiary structural targets78

remains a challenging problem. From this point of view,79

riboswitches, in addition to their fundamental interest80

in biology and relevance for the RNA world hypoth-81

esis [42], offer a difficult design problem, as their se-82

quences encode not only two conformational structures83

but also a metabolite-mediated switching mechanism be-84

tween them. In the present work, we address this chal-85

lenging issue and show how to design functional RNA86

switches (albeit devoid of expression platform) from nat-87

ural sequence data.88

One of the largest identified groups of riboswitches89

recognize S-adenosyl-methionine (SAM) as their effec-90

tor metabolite [27, 60]. While six different SAM binding91

structural motifs have been identified, this study focuses92

on those harbouring type I SAM aptamers (SAM-I) [3].93

Figure 1A shows the secondary structure of the aptamer94

domain in absence of SAM, where transcription is al-95

lowed (ON state), while panel B depicts the structure96

when SAM is bound and transcription continuation is97

prevented (OFF state). Upon SAM binding, the aptamer98

cooperatively folds into the closed structure characterised99

by the stabilisation of P1, three triple base pairs and a100

pseudoknot (red in the figure) [67]. The closed state of101

the aptamer is stabilized by direct tertiary contacts be-102

tween SAM and specific nucleotides forming the SAM103

binding pocket [53, 60].104

Hereafter we employ Restricted Boltzmann machines105

(RBM), a two-layer generative neural network to design106

new SAM aptamers (Fig. 2A). RBMs have recently been107

shown to provide interpretable models of proteins in var-108

ious contexts [7, 8, 50, 86], with application to design109

[21, 47]. By learning the sequence statistics of the SAM-I110

riboswitch family, the RBM models the constraints that111

enable aptamers to adopt the correct secondary struc-112

ture, form tertiary contacts and effect a conformational113

switch in response to SAM presence.114

The RBM model was used to design 476 sequences,115

which we experimentally tested with SHAPE-MaP and116

DMS, two chemical probing methods giving information117

about paired and unpaired residues in the structures.118

Comparison of the reactivity profiles in the presence or119

absence of SAM allows us to assess the effectiveness of120

the structural switch for each tested molecule. This high-121

throughput analysis is made possible by the introduction122

of an automated Bayesian analysis of the SHAPE and123

DMS reactivity profiles. Our results for RBM-generated124

aptamers are compared to experiments on 201 natural125

sequences, and 58 sequences designed by RFAM Covari-126

ance Models, another generative model capturing local127

conservation and secondary-structure covariation only.128

RESULTS129

Our pipeline is described in Fig. 2 and includes: se-130

quence data acquisition from Rfam [41], training and131

sampling the RBM to design artificial SAM-I aptamers,132

experimental characterization of SAM-induced confor-133

mational switch in natural and designed sequences by134

chemical probing (SHAPE [18, 73] and DMS [52]), and135

statistical analysis of the measured reactivities.136

A. Generative models of SAM riboswitch aptamers137

We train an RBM (Figs. 2A,B) on a multiple sequence138

alignment (MSA) of natural homologues of the aptamer139

domain of SAM-I riboswitches, gathered from the Rfam140

[41] database (Rfam ID: RF00162). RBM are energy-141

based generative models, that once trained, define a142

score, −Eeff(v), over all possible sequences v. Sequences143

with high scores (equivalently, low energies) are then144

“good” fits to the family, according to the model. Artifi-145

cial sequences of high score can be generated by sampling146

the resulting Boltzmann measure, PRBM(v) ∝ e−Eeff (v),147

see Fig. 2C and Methods for details.148

The weights between visible units, carrying the RNA149

sequence, and hidden units, extract latent factors of vari-150

ation in the data, Fig. 2D). After marginalization over151

those latent variables, effective interactions between pairs152

of residues can be computed [86], defining epistatic scores153

between sites (Fig. 2E and Supplementary Eq. (S12)154

for precise definition). Pairs of sites with large epistatic155

scores correspond to major secondary and tertiary con-156

tacts in folded aptamers, see heatmap in Fig. 3A. Inter-157

estingly, epistatic scores at P1 are weaker than in other158

helices, reflecting the flexibility of P1, which is able to159

open or close in concert with SAM binding (Fig. 1). The160

pseudoknot is also correctly identified (red in Fig. 3A),161

proving the capability of RBM to identify tertiary mo-162

tifs. Besides structural contacts, the RBM hidden units163

capture extended motifs, most likely relevant for tertiary164

structure formation and SAM binding, see weights in165

Figs. 3B,C.166

We then evaluate the sequences designed by the RBM167

by comparing their scores to the ones of natural sequences168

and sequences designed by Covariance Models (CM). CM169

capture the conservation of residues along the sequence,170

as well as correlations due to the complementarity of171

base pairs in the secondary structure [22], but are un-172

able to model tertiary motifs (such as pseudoknots). As173

Rfam sequence alignments [40] are based on CM [56], our174

first baseline model for RF00162 was directly downloaded175

from Rfam (Methods), and will be referred to as Rfam176

CM (rCM) in the following.177

In Fig. 4A, we show a scatter plot of rCM vs RBM178

scores for natural, RBM- and CM-generated sequences.179

RBM-generated sequences have rCM scores comparable180

to the natural ones, indicating that RBM samples satisfy181

the constraints imposed by the rCM model to the same182
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FIG. 1. Structure, regulatory function, and sequence conservation of the aptamer domain of the SAM-I riboswitch, acting at
a transcriptional level. A) In absence of SAM, the P1 helix of the aptamer domain is unpaired, leaving the 3’-end free to pair
with the anti-terminator segment of the expression platform. This conformation is incompatible with the terminator motif,
resulting in transcription of the downstream gene (ON state). B) SAM (represented by the purple hexagon) is captured in a
groove contacting several sites around the central four-way junction. In the bound-state conformation, the P1 helix is fully
base-paired. The expression platform is then free to form a Rho-independent terminator hairpin, which stops transcription of
the nascent RNA, thus blocking the expression of a downstream gene (OFF state). The figure also shows several structural
elements of the consensus secondary structure of the aptamer domain, including helices P1, P2, P3, P4, and a pseudoknot
(Pk) in red. Other sites of interest participating in tertiary contacts (dashed lines) in response to SAM are highlighted in bold,
including SAM contacts and base-triples. Secondary structure plots are obtained with VARNA [17]. C) Sequence conservation
logo of aligned homologs of the SAM-I riboswitch aptamer domain family (RF00162 on Rfam). Gaps are indicated by the
character ‘⊟’.

extent as natural sequences. Moreover, RBM samples183

have RBM scores comparable to natural sequences, while184

rCM samples have significantly smaller scores, suggesting185

that the RBM impose further constraints beyond those186

captured by rCM, such as tertiary contacts (e.g. pseudo-187

knot), which could be important for the aptamer func-188

tion. We also check that R-scape [64] supports significant189

covariation across pseudoknot sites for RBM samples,190

contrary to rCM samples as expected (see Supplementary191

Section E for details). In addition, RBM recapitulates192

several statistical properties of natural sequences in the193

MSA, including conservation, covariation, distribution of194
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FIG. 2. RNA generative modeling with RBM and experimental validation. A) A Restricted Boltzmann machines (RBM),
with the visible layer carrying nucleotides A, C, G, U, or – (alignment gap symbol), and a hidden layer extracting features.
The two layers are connected by weights. B) The RBM is trained by maximization of a regularized likelihood, see Eq. (S4).
A gradient term increases the probability of regions in sequence space populated by data, automatically discovering features
desirable for functional sequences (blue), while an opposite gradient term lowers the probability of regions void of data (red).
The RBM may also assign large probability to potentially interesting sequences not covered by data (teal). C) The model can
be sampled to generate novel sequences that may significantly differ from the natural ones (teal). D) Hidden units extract
latent features (nucleic-acid motifs) through the weights. Weight values, either positive or negative, are shown above or below
the zero-weight horizontal bar in the logo plots, see Methods. Combining these motifs together allows RBM to design functional
RNA sequences. E) The RBM is able to model complex interactions along the RNA sequence. Here, a hidden unit interacting
with three visible units is highlighted. After marginalizing over hidden-unit configurations, effective interactions arise between
the visible sites, see Eq. (5). Here we represent schematically a three-body interaction, arising from the three weights onto the
marginalized hidden unit. F) Designed sequences are tested experimentally with chemical probing approaches. Reactivities
of sites to the probes may differ when SAM is absent or present (top); difference in reactivities between the two conditions is
informative about structural changes (bottom). G) Distributions of reactivities obtained with SHAPE-MaP slightly differ for
paired and unpaired nucleotides. Statistical resolution of global structural changes triggered by SAM can then be enhanced by
aggregating multiple sites. Inset: distributions over 24 sites, see Methods, Section I and Supplementary Figures S25, S39.

lengths, and distributions of Hamming distances between195

sequences (see Supplementary Section B and Supplemen-196

tary Figs. S2 and S3).197

Next, we carry out principal component analysis198

(PCA) of the natural MSA. The top principal component199

(PC) captures a mode of variation associated to deletion200

of the P4 helix, as can be seen from the large number201

of gaps in this region (Supplementary Fig. S5). Figure202

4B shows the projections of the natural sequences, an-203

notated by their taxonomic class, onto the top two PCs.204

The PCs appreciably separate taxonomic clusters of nat-205

ural sequences. In particular, a group of Actinomycetota,206

in the top left corner, have very short or no P4 helix seg-207

ments. SAM aptamers can function in the absence of P4208

[85], although the affinity for SAM decays with decreas-209

ing length of P4 [34].210

RBM-generated sequences also span the PC space, cov-211

ering all the taxonomic clusters (Fig. 4C and Supplemen-212

tary Fig. S5). In contrast, rCM-generated sequences,213

shown in Fig. 4D remain confined to a central region.214

The capability of RBM to capture complex constraints215

in the sequence distribution allows them to model the full216

variability present in homologues.217

We then select a fraction of the generated sequences for218

experimental validation, see Methods for details about219

the selection criteria. Their PCA projections are shown220

in Fig. 4E, colored by their origin (Natural, rCM, RBM),221

and span a wide range of the natural variability.222

B. Reactivity profiles of natural and generated223

aptamers with SHAPE and DMS224

We resort to high-throughput chemical probing to225

characterize the structure of generated aptamers and226

their possible changes upon SAM addition. DMS mainly227
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loop at P3 (sites 50–64), consistently with a negative activation of h.u. #2.
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FIG. 4. Sequence generative models. A) Scatter plot of rCM scores (x-axis) vs. RBM scores (y-axis), for natural sequences
(gray), rCM sampled sequences (red), and RBM sampled sequences (blue). A threshold at RBM score = 300 (orange dashed
line) separates the majority of rCM generated sequences from the majority of RBM and natural sequences. B) Projection
of natural MSA sequences (seed + hits) onto the top two principal components of the MSA correlation matrix (gray). The
largest taxonomic groups (with > 100 member sequences) are highlighted in colors. Taxonomic annotations were obtained
from NCBI. C) Projection of RBM generated sequences (in blue) on the top two principal components of the MSA, with the
natural sequences in the background (gray). D) Projection of rCM generated sequences (in red) on the top two principal
components of the MSA, with the natural sequences in the background (gray). E) Projection of all probed sequences on the
top two principal components of the MSA, with the natural sequences shown in background (gray). The 301 probed sequences
in the first experimental batch are colored by their origin: Natural (black), rCM (red), and RBM (blue).

focuses on single-stranded A and C nucleotides, while228

SHAPE is sensitive to the conformational flexibility of in-229

dividual nucleotides [73]. Generally speaking, paired nu-230

cleotides tend to show lower reactivities than residues left231

single stranded. Similarly, aptamer nucleotides bound to232

SAM are expected to be less reactive. SHAPE and DMS233

probing are routinely used to monitor aptamer structure,234

complexion with their ligand and structural rearrang-235

ment [4, 29–31, 33, 45, 58, 62, 70, 83].236

The general result of an experiment for an aptamer is237

two profiles of site-dependent reactivities, one in the ab-238

sence and the other in the presence of SAM (Fig. 2F).239

Changes in reactivities between the two conditions are240

expected to be informative about sites involved in inter-241

actions with SAM and in the structural switch, see Fig.242

2G. However, because of the delicate nature of reactivity243
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FIG. 5. Reactivity profiles of natural aptamers with chemical probing. Key sites, involved in direct or indirect SAM interactions
according to the consensus secondary structure (RF00162), are shown with black triangles. Sites 10, 11, 46, 47, 103 are in
direct contact with SAM, while the remaining highlighted sites are involved in tertiary motifs that stabilize in presence of
SAM: a pseudoknot (pk), kink-turn (kt), and base-triples. A, B) yitJ B subtilis aptamer. A. SHAPE reactivities ri with and
without SAM. B. SHAPE differential reactivities ∆ri. C,D) Same as A,B for the Deltaproteobacteria bacterium aptamer.
E) Average SHAPE differential reactivity profile ⟨∆ri⟩ over all tested natural aptamers. The thickness of the bands indicates
the standard deviations. F) Same as E for DMS differential reactivities. G) Sum of A and C site-frequencies computed over
natural aptamers along the sequence.

measurements, it is useful to benchmark the approach244

with natural aptamers, before turning to the analysis of245

the generated aptamers.246

We probe a set of 208 natural sequences with SHAPE247

and a subset of 152 sequences with DMS in the pres-248

ence or absence of SAM. These sequences are represen-249

tative of Rfam ID RF00162 (Methods) and are shown250

by black crosses in Fig. 4E. We first present our ap-251

proach and results for SHAPE-MaP. After standard pro-252

cessing [73], we obtain the reactivity values ri,n,c as-253

signed to each site i, for each aptamer n, and in each254

condition tested c (with or without SAM). We can then255

compute the difference in reactivities with and without256

SAM, ∆ri,n = ri,n,SAM − ri,n,no SAM. Figure 5 shows re-257

activity profiles from our experiments for two selected258

aptamers. Panel A displays the profiles obtained for259

yitJ aptamer from B. subtilis, for which a ligand-bound260

crystal structure was reported in [45] (PDB id: 4KQY).261

Interaction with SAM is confirmed by strong reactiv-262

ity changes (Fig. 5B) due to the ligand at various key263

sites, such as SAM contacts, and sites involved in a base-264

triple (Fig. 1B). The T. tengcongensis aptamer [53] (PDB265
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FIG. 6. Reactivity profiles of generated aptamers with chemical probing. Black triangles refer to highlighted key sites, see
Fig. 5. A,B) SHAPE reactivity and differential reactivity profiles for one RBM-generated aptamer with RBM score 321.41.
C,D) Same as A,B for one RBM-generated aptamer with RBM score 357.79. E) Average differential reactivities in response
to SAM of 54 RBM generated sequences with high RBM scores (> 300) (blue), across the 108 sites of the alignment. For
comparison, the average differential reactivities for 204 natural sequences are shown in the background (gray). High-RBM
score sequences recapitulate protection of sites involved in the structural switch in response to SAM binding (highlighted in
green). F) Average differential reactivities in response to SAM of rCM generated sequences (red). Natural sequences are shown
in background for comparison. rCM sequences fail to recapitulate the expected protections associated to the structural switch
(red arrows). In both panels (E,F), the thickness of the bands indicates the standard deviation. The correlations between the
site-dependent differential reactivities are 0.84 between Natural and RBM (score>300) (E) and 0.18 between Natural and rCM
(F) with an empirical bootstrap p-value < 10−6, see Supplementary Fig. S24.

id: 2GIS) shows a similar behavior (Supplementary Fig.266

S26). In both cases, reactivity is low along the pseudo-267

knot in absence of SAM, consistent with previous stud-268

ies [76] that report this element is already stable in the269

apo form (requiring only Mg+ for its formation). Figure270

5C, D show another aptamer (from Deltaproteobacteria),271

where SAM response is evidenced by reactivity drops at272

SAM contacts, the base-triple and also the kink-turn and273

the pseudoknot. Our data may thus reveal the existence274

of variable responses to SAM across aptamers, in terms275

of which sites (e.g., the pseudoknot) become more pro-276

tected when SAM is present or not.277

The difference in reactivities with and without SAM,278

∆ri,n, once averaged over all probed natural sequences n,279

to better extract functional sites at the level of the fam-280

ily [73], defines a site-dependent ∆-reactivity template,281

⟨∆ri⟩nat., shown in Fig. 5E. We observe reactivity de-282

creases (also called protection) for the pseudoknot (sites283

25-28, 77, 79), sites involved in base triples (24, 76, 100,284

73, 74) or flanking them (75), and for some of the sites285
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directly in contact with SAM (10, 11, 46, 103). These286

hallmark sites, listed in Supplementary Table S2, were287

previously recognized for their relevance to the structural288

switch by previous studies using crystal structures, chem-289

ical probing, and mutagenesis experiments [33, 45, 53],290

see Fig. 1B. Supplementary Section Q summarizes the291

literature supporting these choices.292

Results for DMS probing are compatible with the293

above findings. We report in Supplementary Fig. S34 the294

reactivity profiles ri,n,c of the same natural sequences as295

in Fig. 5A-D obtained with DMS. The profiles are sparser296

due to the generally low reactivities of sites carrying G297

or U nucleotides.298

Figure 5F shows the site-dependent differential reactiv-299

ity profile, ⟨∆ri⟩nat., averaged over all 152 probed natural300

sequences. Contrary to its SHAPE counterpart (Fig. 5E),301

this differential profile vanishes on most sites along the302

sequence. This is expected from the fact that sites may303

often be occupied by G or U nucleotides (Fig. 5G) and304

therefore weakly sensitive to DMS probing. As a result,305

DMS data are often less informative about SAM-induced306

changes than their SHAPE counterparts. However, we307

also observe that the few sites on which DMS differen-308

tial reactivities are non zero show finer spatial resolution,309

e.g. on site i = 100, and lower sequence-to-sequence vari-310

ability around the average profile (gray band around the311

average DMS signal), see for instance site i = 28 and its312

neighborhood. Interestingly, this latter site, which car-313

ries mostly G’s and U’s, is sensitive to DMS probing, as314

it is located at the junction of a stem and a loop [70].315

In summary, both SHAPE and DMS average differen-316

tial profiles confirm that the natural sequences probed317

in our experiments are mostly SAM binders and, more-318

over, recapitulate expected structural changes upon bind-319

ing. Sequences in the seed alignment (a manually curated320

subset [41]) show the same average reactivity responses321

(Supplementary Fig. S16).322

The reactivity profiles of two representative RBM gen-323

erated sequences are reported in Figure 6A-D. Panels A,324

B show an example of a RBM-generated sequence for325

which the differential reactivity profiles are compatible326

with a global structural switch, as evidenced by reactiv-327

ity changes (highlighted by arrows) in most of the hall-328

mark sites (Supplementary Table S2), including sites in329

direct contact with SAM, but also the pseudoknot, the330

kink-turn and a base-triple motif that are known to be331

stabilized by the presence of SAM.332

Figure 6C, D shows another RBM generated aptamer333

for which the differential reactivity is localized to fewer334

hallmark sites. In contrast to the previous example, sites335

at the kink-turn and pseudoknot do not exhibit signifi-336

cant reactivity changes in response to SAM. Reactivity337

changes in the base-triple and SAM contact sites strongly338

suggest a ligand-binding event, and are compatible with339

a global structural switch from an open to a closed con-340

formation.341

We emphasize that the variety in the patterns of re-342

sponse to SAM seen across generated aptamers is rem-343

iniscent of what is observed in natural ones. Man-344

ual inspection of all experimentally tested 201 natural345

aptamers, reveals that some molecules rearrange struc-346

turally upon binding SAM, others bind without signifi-347

cant conformational shift, and some showing no evidence348

of binding (no reactivity change). Examples are shown349

in Supplementary Figures S11 and S12. Global results of350

this manual inspection are summarized below.351

We report in Fig. 6E the average differential reactivity352

profile of RBM-generated sequences having high scores353

(> 300). An excellent match with the differential reac-354

tivity profile of natural sequences is observed. In partic-355

ular, protections compatible with SAM binding and the356

expected structural switch are found at hallmark sites.357

We also check that these RBM-generated sequences re-358

produce the reactivity response to magnesium of natural359

sequences (Supplementary Fig. S17). In contrast, RBM360

sequences with lower scores (< 300) show clear discrep-361

ancies (Supplementary Fig. S18) with the average profile362

of natural sequences.363

For the sake of comparison, we show in Fig. 6F the av-364

erage differential reactivities of sequences sampled from365

rCM (in red). Contrary to high-score RBM-generated366

sequences, this group of sequences shows an appreciable367

lack of protection at key sites, such as 10-11 (SAM con-368

tact), 25-28 (pseudoknot), 73-76 (base triples), and 103369

(SAM contact in P1). Differential reactivity profiles for370

DMS are shown in Supplementary Fig. S35.371

In summary, RBM-generated sequences with high372

scores exhibit, on average, the same structural response373

to SAM as natural aptamers. In contrast, aptamers gen-374

erated by the rCM and RBM sequences with lower scores375

do not reproduce the characteristic features associated376

with structural switch (Supplementary Fig. S18).377

C. Statistical evaluation and properties of378

generated aptamers379

Reactivity profiles are notoriously variable at the380

single-site level, with small differences between the distri-381

butions of reactivities expected for paired and unpaired382

sites. This variability can be ignored when looking at383

average effects over a large class of many molecules, e.g.384

natural or generated sequences, as done above. However,385

predictions for single sequences require the introduction386

of a proper statistical framework that integrates reactiv-387

ities over a set of multiple hallmark sites and enhances388

the statistical signal.389

SHAPE and DMS reactivities are intrinsically stochas-390

tic, and the distinction between closed and open bases391

should be understood in probabilistic terms. We show in392

Figure 7A the histogram of SHAPE reactivities of sites393

expected to be base-paired (teal) or unpaired (gold) in394

presence of SAM according to the consensus secondary395

structure. Unpaired sites are characterized by a different396

distribution of reactivities with a longer tail on high val-397

ues than base-paired sites; further validating the consen-398
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FIG. 7. Statistical analysis of SHAPE and DMS reactivities for natural and generated aptamers. A,B) Empirical density
histograms of SHAPE (A) and DMS (B) reactivities of base-paired (teal) and unpaired sites (gold) for the probed natural
sequences in presence of SAM. C,D) Empirical density histogram of SHAPE (B) and DMS (D) reactivities for the pseudoknot
sites (black) in the absence of SAM (left), and in the presence of SAM (right). Inset: consensus secondary structure of the
SAM-I riboswitch aptamer domain, highlighting base-paired (teal) and unpaired (gold) sites. The sites forming the pseudoknot
in presence of SAM (black in the inset) are not included in these histograms. E,F) SHAPE protection scores S vs. RBM scores
for all probed sequences. Panels: E) without SAM, F) with SAM. Responsive aptamers are shown with filled circles. Colors
refer to the sequence origin: Natural, rCM, or RBM. Dashed orange vertical lines locate thresholds ±S0. See Supplementary
Fig. S38 for the protection scores computed from DMS data. G) Numbers of responsive and non-responsive aptamers in
each class based on SHAPE protection scores. Error bars reflect the uncertainty in the estimated fractions based on the
limited numbers of conclusive aptamers in each case (Methods). H) Comparison of manual (columns) and automatic (rows)
classification of natural aptamers with SHAPE protection scores. The bottom two rows show how globally non-responsive
(N-r.) aptamers are classified according to the protection scores of the SAM binding pocket sites only. I) Classification of
natural, RBM-generated (all and high scores only), rCM-generated aptamers according to protection scores computed from
SHAPE alone and SHAPE+DMS combined data. Yes: responsive, No: non-responsive, Inc.: inconclusive.

sus secondary structure [3] obtained by the covariation in399

the alignment and the large epistatic scores in Fig. 3 for400

secondary contacts. This picture also holds for DMS re-401

activity distributions, see histograms for base-paired and402

unpaired nucleotides in Fig. 7B.403

A clear confirmation that structural information can404

be extracted at the distribution level is presented in405

Figs. 7C and D corresponding to, respectively SHAPE406

and DMS data. The histogram of the reactivities of the407

sites associated with the pseudoknot (black) in the ab-408

sence of SAM is compatible with the histogram of un-409

paired sites, consistently with the expected conformation410

of most aptamers in this condition (Fig. 1). In the pres-411

ence of SAM, the histogram of pseudoknot reactivities412

shifts towards the distribution of paired sites. This is413

consistent with the occurrence of a conformational switch414
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in most aptamers, leading to formation of the pseudoknot415

upon SAM addition. Similar observations can be made416

for the P1 helix (Supplementary Fig. S15).417

Based on the findings above, we introduce a statis-418

tical approach to capture the information about struc-419

tural changes present at the distribution-level in reactiv-420

ity data. Let M be the set of hallmark sites showing421

significant reactivity changes in natural aptamers in re-422

sponse to SAM (Fig. 5E). This set includes the pseu-423

doknot, SAM contacts, a kink turn and sites involved in424

base triples (see Supplementary Table S2).425

We then define, for each aptamer and each condition426

(with or without SAM), a Protection Score S for the427

propensity that sites in M are paired. Formally, S is a428

log-likelihood ratio between these sites being all paired429

and all unpaired [23, 79] computed from the histograms430

of paired and unpaired sites in Figs. 7A (SHAPE) & B431

(DMS). The score S also accounts for sampling noise aris-432

ing from limitations on the sequencing depth [73], which433

may strongly impact some experiments, see Methods. We434

emphasize that aggregating multiple sites in the score is435

crucial to reduce the statistical noise intrinsic to chemical436

probing measurements (see Fig. 2G and Supplementary437

Figures S25, S39). Furthermore, when SHAPE and DMS438

data are available for the same aptamer, the two protec-439

tion scores can be summed up to obtain a more robust440

predictor, which we refer to as DMS+SHAPE below.441

Figure 7E reports the SHAPE protection scores with-442

out (left) and with (right) SAM for natural aptamers.443

For aptamers switching in response to SAM, we observe444

that S shifts from negative values in the absence of SAM445

(indicating the hallmark sites are likely to be unpaired)446

to positive values in the presence of SAM (indicating that447

these sites are involved in an interaction). Hereafter, we448

will call449

• responsive every aptamer, whose protection score S450

is lower than −S0 in the absence of SAM and larger451

than +S0 in the presence of SAM;452

• non-responsive every aptamer, whose protection453

score S is larger than −S0 in the absence of SAM454

or lower than +S0 in the presence of SAM;455

• inconclusive if either score (with or without SAM)456

is smaller than S0 in absolute value.457

We adopt a 5-fold significance threshold S0 = ln(5), see458

Methods.459

As shown in Fig. 7G, aptamers responsive according to460

SHAPE protection scores (both natural and generated)461

tend to have high RBM scores. In particular, 35% of462

RBM-designed aptamers with RBM score > 300 struc-463

turally switch in response to SAM, exhibiting significant464

responses in the hallmark sites. These sequences differ465

by 10 to 30 residues from the closest natural sequences466

(Supplementary Fig. S4). In the case of failing RBM-467

generated sequences, the structural motifs (pseudoknot,468

P1, etc.) remain either protected even in the absence469

of SAM, or reactive in the presence of SAM. We find470

that most of the 45 RBM non-responsive sequences fail471

in the second manner: they do not have the necessary472

contacts even in presence of SAM. Non-responsive nat-473

ural sequences can fail in both ways. None of the se-474

quences generated with rCM is functional, possibly due475

to the inability of rCM to model tertiary motifs [22, 56].476

Let us stress that the number of inconclusive sequences is477

deeply affected by the read depth of the experiment, with478

lower depth leading to more inconclusive sequences, see479

Methods Section I for a detailed analysis of this effect.480

The outcomes of the manual and automated analy-481

sis based on protection scores are compared in Fig. 7H.482

The two analyses are in agreement for 110 out of the483

142 (77.5%) aptamers where they are both conclusive.484

Out of the 32 disagreements, 27 (19% of conclusives for485

both) are responsive in the manual analysis but not in486

the automated one. Manual inspection focuses on local-487

ized responses that are evidence of SAM binding. The488

protection-score-based analysis is more stringent, requir-489

ing a global response compatible with a structural switch490

across most hallmark sites. The automated analysis can491

also detect local responses, by focusing on smaller sub-492

sets of the hallmark sites (see last two rows of Fig. 7H,493

and Supplementary Section N).494

To provide evidence for the reproducibility of our re-495

sults, we perform two replicates of the experiment, the496

first one on the total set of 301 natural and artificial se-497

quences and the second one on the 201 natural sequences498

only, see Supplementary Section K for a detailed descrip-499

tion. Although some aptamers in the first replicate ex-500

hibit an overall lower response to SAM (natural and arti-501

ficial), the fractions of responsive sequences in each group502

are consistent with the results reported in Fig. 7. More-503

over, 80% of identified responders in the replicates were504

also responsive in the first experiment, confirming the ro-505

bustness of the automated analysis (Supplementary Fig.506

S19).507

The results above, obtained from SHAPE data, are508

corroborated by chemical probing with DMS. Using Eq.509

(11), we compute protection scores combining SHAPE510

and DMS reactivity data for enhanced discrimination.511

Fig. 7I compares the results from SHAPE alone and com-512

bined DMS+SHAPE. Let us focus on natural sequences513

first. SHAPE and DMS+SHAPE provide the same clas-514

sification (responsive, non-responsive, or inconclusive)515

for about 86% of the aptamers. Among the remaining516

14%, more than 12% are inconclusive for one of the two517

approaches, and SHAPE and DMS+SHAPE disagree on518

less than 2% of the aptamers only.519

Similar patterns are observed for RBM-generated ap-520

tamers. For RBMscore > 300, we obtain consistent re-521

sponsive rates (ratio of the numbers of responsive and522

conclusive sequences) of 35%, whether estimated from523

SHAPE or DMS+SHAPE data. Interestingly, 48% of524

RBM sequences that were inconclusive with SHAPE525

alone can be classified with DMS+SHAPE, with one526

quarter responding and three quarters not responding.527

No rCM-generated aptamer is considered as responsive528
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Resp. Pk closed Pk open Pk switch
Yes 14 12 29
No 9 74 3

Total P1 conclusive: 133 

Total Pk conclusive: 141
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B)

RBM samples no SAM

SAM

SAM

with SAM

frequency

FIG. 8. Local responses along P1 and the pseudoknot (Pk) require intermediate pairing energies. A) Left panel shows the
histogram of Turner pairing energies for P1 (computed with the ViennaRNA package [44]) of a random sample of RBM-designed
sequences. The following panels show the pairing energies without (middle) and with (right) SAM for the aptamers probed in
the first batch vs. the protection scores S(P1) obtained by choosing for the hallmark set M the sites in P1 only. Aptamers are
colored according to their response: if S(P1)> S0 in both conditions, P1 is always closed (open black circle); if S(P1)< −S0 in
both conditions, P1 is always open (open gray circle); if S(P1) crosses from one side to the other, the motif switches in response
to SAM (filled light blue disks). Note that only aptamers for which the P1 response is conclusive are shown (133 aptamers).
The table then lists the numbers of aptamers that are responsive to SAM, compared to a local response in P1 only. B) Same
as A), but for pseudoknot (Pk) sites.

by either SHAPE nor DMS+SHAPE. A complete com-529

parison of the analysis of the SHAPE and DMS data is530

reported in Supplementary Fig. S37.531

Inspired by previous experimental observations for532

other riboswitches [36, 90] and Sabatier’s principle for533

enzymes, which require intermediate substrate binding534

energies for proper function [65], we compute the thermo-535

dynamic energies brought by P1 helix formation using the536

Turner energy model as implemented in the ViennaRNA537

package [44] (Methods). Figure 8A shows that the se-538

quences that respond to SAM through P1 helix stabili-539

sation are confined to a thermodynamic energy window540

ranging from -10 to 0 kcal/mol. Similarly, pseudoknot541

(Pk) formation in response to SAM tends to occur for542

aptamers having a Pk pairing energy comprised between543

-8 and -3 kcal/mol (Fig. 8B). As P1 and Pk consists544

of, respectively, 8 and 4 base pairs, the flexible energetic545

window spans a range of 1.25 kcal/mol per base pair in546

both cases, close to a weak base-pairing energy [13, 44].547

The leftmost panels in Fig. 8 show that RBM samples548

preferentially have pairing energies in this intermediate549

band for both P1 and Pk, and are thus compatible with550

the structural switch required for riboswitch function.551

The tables in Fig. 8 give a summary of these results.552

Interestingly, 25 out of the 27 aptamers that stabilize P1553

in response to SAM are also responsive, in the sense of554

Fig. 7E,F, and show broad structural responses in other555

Hallmark sites (Supplementary Table S2). Similarly, 29556

out of 32 aptamers that stabilize Pk are also responsive.557

On the other hand, out of 112 identified responsive ap-558

tamers, in natural and artificial sequences, only 19 do559

not stabilize P1 significantly after binding SAM. These560

aptamers must exhibit significant compensatory stabi-561

lization of other structural Hallmark motifs from Supple-562

mentary Table S2. It is important to note that P1 can563

have a more flexible behavior in the full riboswitch due564

to competitive interaction with the expression platform,565

compared with the aptamer only. As shown in Supple-566

mentary Fig. S41 the P1 helix can be destabilized in the567

full riboswitch context, whereas other helices like P2 or568
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P4 are not affected, see Supplementary Figs. S42 and569

S43. Taken together, these results are consistent with570

the known importance of the pseudoknot and P1 in the571

response of the aptamer.572

Notice that, in the central panels of Fig. 8, we show573

only aptamers for which the the statistical analysis yields574

a conclusive response for P1 or Pk. Inconclusive ap-575

tamers also tend to have intermediate pairing energies576

for P1 and Pk, consistent with structural flexibility (e.g.577

breathing).578

D. Further explorations of RNA switch diversity579

through design580

We then perform a second batch of design and ex-581

perimental validation to further assess the limits of our582

generative models. We probe a total of 450 generated583

aptamers, whose sequences are projected onto the MSA584

PCs in Fig. 9A.585

First, we sample sequences with the RBM model ex-586

hibiting higher distances from their closest natural coun-587

terpart, focusing on RBM scores > 300. In addition,588

as some natural sequences lack P4, we retain a subset of589

RBM generated sequences having severely diminished P4590

lengths. These are clearly seen in Fig. 9A, clustered at591

the top-left corner of the plot (recall the top PC1 repre-592

sents P4 deletion). We also sample more RBM sequences593

of high scores (> 300 and > 310) to obtain better statis-594

tics on the fractions of working aptamers.595

Second, we consider two variations of rCM, which is596

over-regularized to capture distant sequences in Rfam597

alignments [40]. We rebuild a non-regularized CM598

trained on the same MSA, which we call Denoised CM,599

or dCM for short (Supplementary Fig. S8 and Methods).600

Furthermore, as CM are unable to model pseudoknots,601

we devise a permutation of the MSA columns that un-602

does the pseudoknot, see Fig. 9B. We trained a new CM603

variant on the permuted MSA, that we call Unknotted604

CM (uCM), properly taking into account covariations in605

the pseudoknot. We generate sequences with such model606

and permute back the pseudoknot columns (Methods).607

Interestingly, both dCM and uCM share some of the608

properties of rCM noted previously. First, CM-generated609

sequences from all variants have predominantly low RBM610

scores < 300, see Supplementary Fig. S9. Second, CM611

generated sequences exhibit restricted diversity, concen-612

trating in a central region of the PCA plot, as in Fig. 4D.613

In particular, all CM are unable to generate sequences614

without the P4 helix. Sequences sampled from uCM have615

better complementarity and Turner energies favorable for616

base-pairing along the pseudoknot.617

We then perform SHAPE-MaP experiments and anal-618

ysis. Results are summarized in Fig. 9C, and show the619

RBM scores of the probed aptamers against the Ham-620

ming distances to the closest natural sequence.621

Out of the 248 conclusive RBM sequences in the second622

batch, 22% switch in response to SAM (Table in Fig.623

9D). The percentage of responsive among the sequences624

closer to the natural ones is higher and compatible to625

what obtained in replicate 1 considering the error bars,626

see Table 7G.627

Moreover, 25% of the RBM aptamers having P4 length628

≤ 1, respond to SAM; an example reactivity profile is629

shown in Fig. 9E. We also find a few switching aptamers630

differing by 30 to 50 sites from any natural sequence. An631

example reactivity profile for such sequence is shown in632

Fig. 9F. The reactivity profile is compatible with the con-633

sensus secondary structure, with most reactivity peaks634

tending to occur in unpaired loops (except a portion of635

P3 that remains reactive), and an overall protection in636

response to SAM compatible with binding and stabiliza-637

tion of the aptamer. Notice that RBM generate diversity638

not only in highly variable parts of the sequence, but also639

in more conserved sites (Supplementary Fig. S4).640

These results support the generalization ability of the641

RBM. In contrast, only 3 out of 20 conclusive dCM sam-642

ples switch in response to SAM (15%), and only 1 out of643

16 from uCM (≈ 6%). Thus the dCM and uCM perform644

better than rCM, but not as good as RBM.645

DISCUSSION646

In this work, we focused on the design of small molec-647

ular RNA switches, capable of changing conformation648

upon binding to a metabolite. Building such aptamers649

is a first step in the design of functional switching RNA,650

with many potential applications in developing labora-651

tory tools for gene function studies, metabolic engineer-652

ing or drug design, as they can be used to regulate gene653

expression [1, 26, 37]. The design of allosteric and reg-654

ulatory RNA is also key to DNA-RNA computing, and655

to the investigation of possible scenarios for the origin of656

life [12, 38, 71].657

State-of-the-art design methods for RNA are based on658

computational frameworks to fold sequences in a given659

secondary structure from the knowledge of thermody-660

namic parameters for the pairing energies [87], possi-661

bly including tertiary elements such as pseudoknots [93].662

Such methods have been used to obtain sequences with663

bistable secondary structures [25] and extended to take664

into account both positive and negative design elements665

[63, 93], as well as to community-based rational design666

[43]. Our design method, based on the unsupervised gen-667

erative architecture of Restricted Boltzmann Machines,668

differs in two key ingredients: i) it exploits the sequences669

(of SAM-I riboswitch aptamers) sampled through evolu-670

tion and collected in databases, building upon the frame-671

works introduced in homology and covariation detection672

[19, 51, 57, 63, 92]; ii) it encompasses, through learning673

of a unique parametric model, the arrangements of nu-674

cleotide motifs allowing natural sequences to acquire ad-675

equate secondary and tertiary structures and to undergo676

an allosteric response to metabolite binding.677

We have verified that the RBM model learned from se-678
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FIG. 9. Additional generation of sequences. A) Projection of sequences probed in second set of designed sequences along
the PCs of the natural MSA, colored by origin: RBM, Denoised and Unknotted CM (dCM, uCM). The full natural MSA is
shown in background (gray) for comparison. B) Diagram explaining the uCM, where the pseudoknot is undone by permuting a
specific set of columns in the MSA. In this manner, a CM can model covariation along a pseudoknot. See Methods for details.
C) Divergence from closest natural sequence in the MSA (fraction of sites that differ) vs. the RBM score, for all sequences
probed in the second experiment. Colored circles correspond to aptamers that switch in response to SAM (fill color) or not
(empty), with the color indicating the sequence origin: RBM (blue), dCM (red), and uCM (orange). Sequences for which
our analysis is inconclusive are shown in light cyan. D) The table summarizes the numbers of switching sequences in each
group. E) Reactivity profile of example responsive RBM generated sequence with no P4 (indicated by teal triangle in A,C).
F) Reactivity profile of example responsive RBM generated sequence at large distance from natural sequences (indicated by
black triangle in A,C).

quence data encode nucleotide-nucleotide contacts in the679

secondary structure and in the pseudoknot, performing680

at the same level as pairwise Potts/DCA models previ-681

ously introduced to this aim [19, 92]. In contradistinc-682

tion with those pairwise interaction-based models, RBM683

are capable of extracting extended nucleotide motifs, e.g.684

overlapping one or more structural elements. A major685

advantage of the shallowness of the RBM architecture686

is that these motifs can be readily accessed and inter-687

preted through inspection of the weights (Fig. 2D and688

Fig. 3B&C).689

To assess the sequences designed by our computational690

models, as well as the natural sequences belonging to the691

SAM-I riboswitch aptamer family, we have carried out692

high-throughput SHAPE and DMS screening. We have693

introduced and implemented a statistical pipeline to an-694

alyze the measured reactivities, based on a likelihood ra-695

tio between reactivity distributions of paired/unpaired696

nucleotides, called protection score [23, 79]. Our analy-697

sis takes advantage of the closely related statistics of the698
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ensemble of tested sequences and their shared consensus699

secondary structure. As it does not rely on a biophysical700

implementation of the Turner model [44], tertiary con-701

tacts such as pseudoknots, which are essential to model702

complex conformational changes such as those occurring703

in riboswitches, are fully accounted for. Last of all, our704

pipeline is fully automatic and does not require manual705

annotation, which is time consuming for high-throughput706

screening.707

Our analysis of SHAPE and DMS data shows that708

RBM are able to successfully design artificial SAM-I-709

riboswitch-like aptamers. Of the sequences generated710

with high RBM scores for which our conservative statis-711

tical analysis could reach a clear conclusion, 35% could712

be classified as responding to SAM in the first replicate.713

This fraction is significant, and shows that RBM are ef-714

fective as generative models of complex RNAs. It is,715

however, lower than the one (70%) of natural sequences716

deemed as responsive according to the same criterion. We717

emphasize that the fraction quoted above varies with the718

constraints considered during the generation process. For719

instance, up to 50% of RBM-generated sequences were720

recognized as responsive when the fraction of mutated721

residues with respect to the closest natural sequences is722

of 20% (over 108 nucleotides). Pushing generation to the723

limits as in the second experiment made the global frac-724

tion drop down to 22%, but allowed us to generate func-725

tional aptamers with as many as 46% of mutations with726

respect to the closest known natural aptamers. More-727

over, RBM can design responsive aptamers lacking the728

P4 helix (as in some natural variants), whereas CM are729

unable to generate such sequences.730

The success of our design approach crucially relies on731

the capability of RBM to capture nucleotide motifs re-732

sponsible for tertiary structural elements. This state-733

ment is supported by the fact that CM, while capturing734

the local conservation and secondary structure of the Ri-735

boswitch family, has significantly lower generative per-736

formance (≃ 11%, Denoised & Unknotted). In addition,737

RBM generate flexible structural elements, with inter-738

mediate pairing energy values, permitting them to open739

and close depending on the metabolite presence. From740

this point of view, while RBM have already been used to741

generate functional proteins [47] or DNA aptamers [21],742

this is the first time they are shown to be able to design743

allosteric biomolecules.744

Besides the responsive/non-responsive classification745

based on protection scores, a pattern of phenotypes is746

observed in the generated sequences through manual in-747

spection of the reactivity profiles and of their changes748

with SAM presence. Among the natural sequences that749

fail to qualify as fully responsive with our automatic750

statistical pipeline, many are manually seen to exhibit751

local reactivity responses to SAM indicative of binding752

(Fig. 6C,D).This response can manifest itself as a change753

in the reactivities of the sites related to the SAM bind-754

ing pocket, or involved in P1, in the pseudoknot, or in755

any of the three base triples. Similar patterns are en-756

countered in RBM-generated sequences, see Supplemen-757

tary Section N. The distinction between binding to SAM758

and being able of undergoing conformational change we759

observe here agrees with recent directed evolution ex-760

periments. It was reported that evolving RNA for lig-761

and binding alone often failed to produce functional reg-762

ulatory RNAs [36, 90], highlighting the importance of763

the structural switch. More recently, Capture-SELEX,764

in which conformational change triggered by the ligand765

and optimal switching time are selected for was proposed766

for this purpose [1, 6, 26]. Supervised classifiers, learned767

from the experimental sequences were shown to be able768

to predict the functionality of the molecules [1, 26, 37].769

Since this paper was posted on the archive, two works770

have developed generative models of structured RNA:771

[10] proposes a parsimonious DCA-like model, which pro-772

motes sparsity of model weights and validated experi-773

mentally generation of a tRNA family; [80] introduced a774

combination of Variational AutoEncoders with CM and775

showed that their model was generative over various ri-776

bozyme families. Our work differs in that it presents777

the first example of design of RNA molecules exhibit-778

ing structural switching upon metabolite binding. We779

have further performed a comparative analysis of the780

two-layer RBM-based generative model to the deep vari-781

ational autoencoder (VAE) models of [80] on our data.782

RBM seems to detect key features in natural sequence783

data not extracted by VAE: VAE give similar scores784

to RBM-generated and natural sequences, while RBM785

scores are higher for natural than for VAE-generated se-786

quences (Supplementary Fig. S7). Further investiga-787

tions, in particular experimental tests, would be neces-788

sary to better understand these preliminary results.789

We plan to investigate more deeply the mechanisms for790

conformational switching in different subfamilies of the791

SAM-riboswitches family. We emphasize that the RBM-792

based design of artificial RNA sequences can be carried793

out for any RNA family for which homologous sequences794

are available. As shown in SI, Section L, we have also795

learned RBM models on the aptamer domains of three796

other riboswitch families: cyclic di-AMP[2], Cyclic di-797

GMP-I[78], and Glycine riboswitches [48]. The designed798

sequences are of high computational quality, as proven by799

the similarity of the scores assigned by the RBM and the800

CM models and of their statistics with respect to natural801

sequences, see Supplementary Fig. S10.802

In addition, our approach could be extended to the803

modeling of complete SAM riboswitches by including the804

expression platform. In this context, it would be interest-805

ing to perform functional tests of the designed aptamer,806

e.g. in yeast constructs with a GFP reporter protein807

[26]. It would be in particular interesting to check if the808

increased flexibility of P1 helix in presence of the ex-809

pression platform increases the percentage of molecules810

responding to SAM among the tested ones. Due to the811

strong interactions between the latter and P1 (Supple-812

mentary Fig. S41), the RBM should be trained on full ri-813

boswitch sequences, including both the aptamer and the814
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expression platform. However, full riboswitch sequences815

exhibit significant length variability, with hard-to-align816

regions, which would require some modifications in our817

model such as introduction of a convolutional layer.818

Lastly, RBM could also be used to design other RNAs,819

including longer and more complex ribosomal RNA.820

METHODS821

A. Multiple sequence alignment of SAM-I822

riboswitches823

The RF00162 family from the Rfam database [41]824

groups sequence homologs of the aptamer domain of825

the SAM-I riboswitch. We downloaded a manually cu-826

rated seed alignment from Rfam (version 14.7), contain-827

ing 457 aptamer sequences supported by literature evi-828

dence. These seed sequences are aligned to a consensus829

secondary structure (shown in Fig. 1B) that has been830

informed by the holo-form of SAM-I riboswitch crystal831

structures [45, 53]. After removing extended stems and832

variable loops, labeled as insertions in the alignment, we833

obtain 108 matched positions (including gaps that mark834

deletions) spanning four helices that interleave around835

a central four-way junction. We trained a covariance836

model (CM) [22] on this seed alignment using Infernal837

[56] with default settings. Following standard protocols838

[40], we acquired 6161 additional sequences from Rfam,839

collected from genome databases and filtered for signifi-840

cant matches to the CM. We constructed a multiple se-841

quence alignment (MSA) with these sequences, that we842

refer to as the full MSA, to distinguish it from the seed843

MSA consisting only of the 457 manually curated seed se-844

quences. The sequence conservation logo of the full MSA845

is shown in Fig. 1C.846

B. Infernal pipeline847

Infernal [56] is a set of computational tools to fa-848

cilitate modelling RNA sequence families under a pro-849

file stochastic context-free grammar (pSCFG) formalism,850

also known as covariance models (CM) [22]. A CM is851

capable of modelling the conservation profile of impor-852

tant sites along the sequence, as well as correlations be-853

tween distant sites required by the complementarity of854

base-pairs in a given secondary structure. Infernal is rou-855

tinely used in the maintenance of alignments in the Rfam856

database [40, 41]. We employed Infernal to construct the857

RF00162 full MSA, that we use to train the RBM.858

By restricting to covariations in the secondary-859

structure, CM can be efficiently implemented with dy-860

namical programming algorithms [22]. However, these861

assumptions also imply that CM is unable to include ad-862

ditional constraints in the probabilistic sequence model,863

such as pseudoknots and other tertiary contacts in the864

3-dimensional fold of the RNA molecule.865

1. Rfam CM.866

The Rfam database associates a CM model to each867

family, trained on the seed alignment, that is used to868

scan large genomes for significant sequence matches to869

the family (hits). The raw CM model downloaded from870

Rfam is significantly regularized so that it is more effec-871

tive in fetching far homologs of a family in deep genome872

searches [55]. We will refer to this CM model as Rfam873

CM, or rCM for short.874

2. Denoised CM.875

Since rCM is strongly regularized, in this work, we also876

trained a CM model variant on the full MSA, with no877

regularization, which we call Denoised CM, or dCM for878

short. This model reproduces more closely some statis-879

tics of the full MSA (conservation and covariances asso-880

ciated with the secondary structure).881

3. Unknotted CM.882

A CM model cannot model pseudoknots and other ter-883

tiary contacts. Based on our knowledge of the consen-884

sus secondary structure of the SAM-I riboswitch aptamer885

(Fig. 1B), we devised a third CM model able to account886

for sequence covariation in pseudoknot sites constructed887

as follows. Columns 77–80 of the MSA, corresponding888

to the sites on the 3’-end part of the pseudoknot, were889

moved and inserted after site 28, right next to the the890

sites at the 5’-end of the pseudoknot. In this way, the891

pseudoknot is “unknotted”, and is now representable in892

the CM model as part of a pseudo-secondary structure893

corresponding to the permuted MSA. Accordingly, we894

proceeded to train a CM model on the rearranged full895

MSA. We call the resulting model Unknotted CM, or896

uCM for short.897

4. Sampling the CM.898

To better understand the limitations of CM models899

and the advantages of RBM, we sampled 10000 sequences900

from each of the three CM described above. For the901

uCM, the rearranged columns are permuted back to their902

original positions after sampling. We used Infernal’s903

cmemit program with default parameters, and without904

insertions. Infernal computes a score of sequences aligned905

to the CM, related to the likelihood of the CM to emit906

a given sequence (also called bit-scores). We computed907

this score using cmalign, with -g (global) option to avoid908

local approximations [55].909
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C. Restricted Boltzmann machines910

Restricted Boltzmann Machines (RBM) [35] are bi-911

partite graphical models over N visible variables v =912

{v1, v2, ..., vN} and M hidden (or latent) variables h =913

{h1, h2, ..., hM}, see Fig. 2A. Here N = 108 corresponds914

to the sequence length of the RF00162 alignment, and915

vi encodes the nucleotide present at position i of a se-916

quence. For RNA, vi can take one of q = 5 possible val-917

ues, corresponding to the nucleotides A, C, G, U, and the918

alignment gap symbol (⊟). The hidden variables hµ are919

here real-valued. The two layers are connected through920

the interaction weights wiµ. An RBM defines a joint921

probability distribution over v and h through922

P (v,h) =
1

Z
e−E(v,h), (1)

where Z is a normalization factor, known as the partition923

function, and the energy E(v,h) is given by924

E(v,h) =

N∑
i=1

Vi(vi) +

M∑
µ=1

Uµ(hµ)−
N∑
i=1

M∑
µ=1

wiµ(vi)hµ

(2)
The functions Vi(vi), Uµ(hµ) are potentials biasing the925

distributions of single units. The visible units vi can take926

a finite number of possible values, and therefore the quan-927

tities Vi(vi), also called ‘fields’, can be stored as a q×N928

matrix. Similarly, the weights wiµ(vi) can be stored as a929

q × N × M three-dimensional tensor. The hidden vari-930

ables, on the other hand, are continuous, and we chose931

to parameterize their potentials with the double Rectified932

Linear Units (dReLU) form proposed in [86],933

Uµ(hµ) =

{
γ+
µ h2

µ/2− θ+µ hµ hµ ≥ 0

γ−
µ h2

µ/2− θ−µ hµ hµ ≤ 0
(3)

with real parameters γ±
µ , θ±µ , satisfying γ±

µ > 0. The934

dReLU is an attractive choice because it is expressive935

enough to cover several interesting settings. When γ+
µ =936

γ−
µ and θ+µ = θ−µ , Eq. (3) becomes a quadratic (i.e.,937

Gaussian) potential, and is closely related to Direct-938

Coupling Analysis models popular in protein sequence939

modelling [14, 19, 54, 68, 72, 91]. However, the Gaussian940

choice is unable to parameterize more than two-body in-941

teractions, which can be a limitation in RNA structure942

where some interactions are known to involve more than943

two sites (e.g. stacking interactions [13, 94]), as well as944

functional interactions that can span complex, extended945

structural and sequence motifs. dReLU can also adopt946

a bimodal form when θ+µ > 0 > θ−µ , which is helpful for947

clustering.948

The likelihood of visible configurations under the RBM949

can be obtained by marginalizing over the states of the950

hidden units:951

P (v) =
1

Z

∫
e−E(v,h)dh =

1

Z
e−Eeff (v) (4)

where −Eeff(v) is the resulting RBM score that incorpo-952

rates effective interactions arising from the marginalized953

latent variables (see Fig. 2C):954

Eeff(v) =
N∑
i=1

Vi(vi)−
M∑
µ=1

ln

∫
e
∑

i wiµ(vi)hµ−Uµ(hµ)dhµ

(5)
Although evaluating P (v) is computationally difficult955

(because the partition function Z is intractable), Eq.956

(5) shows that the score −Eeff(v) can be computed effi-957

ciently.958

The computation of epistatic scores follows [86]. Fur-959

ther details about our RBM implementation for training960

and sampling are given in Supplementary Section A.961

D. Biophysical energy calculations962

We computed biophysical pairing energy predictions963

for the formation of P1 and the pseudoknot of various se-964

quences using the Turner energy model, as implemented965

in the ViennaRNA package [44], with the RNAeval pro-966

gram.967

• For the P1 helix, we computed the energy difference968

of each sequence in the consensus secondary struc-969

ture of the aptamer domain, where P1 is paired970

(Fig. 1B), and in a conformation where P1 is un-971

paired (Fig. 1A).972

• To estimate the pairing energy associated to pseu-973

doknot formation, we used RNAeval on a virtual974

secondary structure where only the pseudoknot975

sites are base-paired, and all other sites are un-976

paired. We then considered only interior loop con-977

tributions to the resulting folding energy.978

Note that, in both cases, intrinsic limitations of the Vien-979

naRNA algorithmic implementation imply that we can-980

not model the pseudoknot together with other structural981

elements (and other tertiary contacts).982

E. Selection of sequences for first batch983

We probed a total of 306 sequences, breaking down as984

follows.985

RBM sequences. We generated sequences from the986

RBM by Gibbs sampling. Equilibration was assessed by987

monitoring the average score of the sample. We found988

that 5000 steps were more than sufficient. We then sorted989

these sequences by their RBM score (−Eeff), and selected990

70 sequences at random, uniformly spanning the range of991

scores observed in the sample. The table of sequences and992

their associated RBM scores is reported in the Supple-993

mentary Code listing [15], see Section N.994
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Infernal sequences. We then sampled sequences from995

the rCM of the RF00162 family, downloaded from Rfam.996

We used the Infernal cmemit program (see Methods) to997

sample a large batch of sequences. We selected 30 se-998

quences uniformly spanning the range of bit-scores of the999

samples.1000

Natural sequences. We selected 151 sequences mem-1001

bers of the seed MSA and 55 sequences members of the1002

full MSA, as described in SectionA. The selected nat-1003

ural sequences are diverse, spanning various taxonomic1004

classes (see Fig. 4B). A listing of probed sequences can1005

be found in Supplementary Data 2.1006

F. Selection of sequences for second batch1007

In the second experiment, we generated a total of 4501008

sequences to be probed, of different origins. We consid-1009

ered:1010

• 58 CM sequences, with 29 from uCM and 29 from1011

dCM (see Section B for definitions of these CM1012

variants).1013

• 392 sequences sampled from the RBM, filtered to1014

have RBM scores > 300. In particular, 49 of them1015

were selected because they had no P4 helix, while1016

100 of them were selected because they had larger1017

Hamming distances from any natural sequences.1018

The full list of designed sequences is provided as part of1019

the Supplementary Code listing, see Section N.1020

G. Selection of sequences for DMS probing1021

We selected a subset of aptamers from batches 1 and1022

2 for DMS probing. From batch 1,1023

• 84 sequences generated by RBM;1024

• 16 sequences generated by rCM;1025

• 152 natural sequences.1026

From batch 2,1027

• 102 sequences generated by RBM;1028

• 10 sequences generated by uCM or dCM.1029

The full list of sequences probed by DMS is provided as1030

part of the Supplementary Code listing, see Section N.1031

H. Chemical probing experiments1032

1. RNA preparation.1033

DNA oligonucleotides representing the 206 SAM-I1034

natural sequences, and the two batches (100 and 450)1035

of artificial sequences, preceded by the T7 promoter1036

(5’CGGCGAATCTAATACGACTCACTATAGG3’) and1037

followed by a tag sequence representing a 10 nucleotide1038

barcode unique for each aptamer and a primer binding1039

site, were purchased as an oligonucleotide pool (Twist1040

bioscience). The Tag sequence was designed to avoid1041

interference with the aptamer secondary structure using1042

RNAFold [44] (see [32] for the tag design method). The1043

oligo pool was PCR amplified using the T7 promoter1044

as forward primer and five different reverse primers1045

(5’GGAAGGAGGCGGGCAGACG3’, 5’CGTATTAC-1046

CGCGGCTGCTGG3’, 5’CGACGAGATAGGCGGA-1047

CACTGG3’, 5’CGACGAGATAGGCGGACACTGG3’,1048

5’GAAGTCGTAACAAGGTAGCCGAT3’), provided in1049

Supplementary Data 1. RNA was transcribed, prepared,1050

and checked for the absence of aberrant products on1051

a 1% agarose gel [20]. See Supplementary Sec. S for1052

details.1053

Read depths vary with the choice of the primer, see1054

Supplementary Figs. S27, S28, S29. As explained in1055

Methods Section I we have verified that our statisti-1056

cal analysis give consistent rates of responsive aptamers,1057

even for primers with lower coverage.1058

2. SHAPE and DMS probing.1059

SHAPE chemical probing was performed as described1060

previously [73]. Briefly, 10 pmol of RNA were diluted1061

in 12 µL of water and denatured for 3 min at 85°C.1062

Then, 6µL of 3X pre-warmed folding buffer with or with-1063

out magnesium (0.3M HEPES pH 7.5, 0.3M KCl, 15mM1064

MgCl2) were added and the solution was allowed to cool1065

down to room temperature. Samples were then incu-1066

bated at 30°C for 5 min. S-adenosyl-methionine (SAM)1067

was added at final concentrations of 0, 0.1 or 1mM and1068

samples were incubated 15 min at 30°C. 9 µL (corre-1069

sponding to 5 pmoles) were aliquoted and 2 µL of 501070

mM 1M7 (1-Methyl-7-nitroisatoic anhydride) or DMSO1071

(Mock reaction) was added and allowed to react for 61072

min at 30°C. For dimethyl-sulfate (DMS) probing, 0.9µL1073

of 600mM DMS stock solution (or 0.9µL of ethanol for1074

mock reactions) was added and allowed to react for 101075

min at 30°C. DMS probing reaction was then quenched1076

by adding Tris pH8.0 at 400mM final.1077

RNAs were then reverse transcribed with the Super-1078

script III reverse transcriptase (Invitrogen®) and NGS1079

libraries were prepared using NEBNext Ultra II DNA1080

Library Prep Kit (New England Biolabs®). Final prod-1081

ucts were sequenced by using the Illumina technology1082

(NextSeq 500/500 Mid 2x150 flow cell). Sequencing data1083

were analyzed and reactivity maps were derived using1084

ShapeMapper2 [9]. In the end, the 306 selected sequences1085

were probed in the following conditions:1086

• 30°C, without Mg2+ and without SAM.1087

• 30°C, with magnesium (Mg2+).1088
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• 30°C, with magnesium and two concentrations (0.11089

and 1mM) of SAM.1090

Each probing reaction was repeated in triplicate. The1091

two SAM concentrations were analyzed together to im-1092

prove statistics, since we found no significant effect of1093

varying the SAM concentration in the reactivity re-1094

sponses of the aptamers (see Supplementary Fig. S21).1095

The reading efficiency per site (read depths reported1096

by Shapemapper) is plotted for the tested aptamers as1097

grouped by primers in Supplementary Figs. S27, S28 and1098

S29.1099

3. Manual inspection of reactivity profiles.1100

IPANEMAP [69] was used to generate RNA secondary1101

structure models for each sequences. For manual in-1102

spection, we considered the reactivity of the nucleotides1103

known to be directly involved in SAM binding (U7, G11,1104

A46, U69, G70, U103) and of those known to be pro-1105

tected from shape reactivity in the closed stated, i.e.,1106

nucleotides in P1 (1-8; 101-108), in the pseudoknot (25-1107

28; 77-80), those involved in the three base triple interac-1108

tions (24, 73, 74, 76, 100). Nucleotide numbering follows1109

the profile shown in Fig. 1C. An aptamer was consid-1110

ered to bind SAM if at least three of these elements are1111

noticeably less reactive upon SAM addition, and if none1112

of the binding determinant remain highly reactive. Note1113

that P1 and the Pk are each considered as one element,1114

and that some of the elements may be unreactive even in1115

absence of SAM.1116

I. Statistical analysis of reactivities1117

1. Reactivity definition.1118

SHAPE-MaP experiments result in measurements of1119

sequencing error rates at each site of the RNA sequence,1120

that correlate to the locations where the SHAPE probe1121

has reacted with the RNA. For each site i = 1, . . . , N of1122

a sequence n, the reactivity is defined by [73]:1123

rin =
min − uin

din
(6)

wheremin is the mutation rate in presence of the reagent,1124

uin is the mutation rate in its absence accounting for mu-1125

tational background of the experiment, and din is the mu-1126

tation rate in a denaturating condition where the RNA1127

is expected to be unfolded, intended to cancel sequence-1128

dependent biases. Working with rin is usually better1129

since this form should cancel site-dependent biases in1130

the raw SHAPE mutation rates, min. The basis of the1131

SHAPE-MaP procedure relies on differences in the dis-1132

tribution of reactivities in base-paired and unpaired sites1133

[73]. We have confirmed such differences are observed in1134

our data in Fig. 7 (and also Supplementary Fig. S13).1135

2. Statistical analysis.1136

The finite number of sequencing reads collected at a1137

site implies a statistical error in the reactivity computed1138

by Eq. (6). Therefore, we cannot directly access the1139

true reactivity rin at a site, but rather an experimental1140

measurement r̃in that fluctuates according to the number1141

of reads taken at the site. To model this uncertainty, we1142

make the simplifying assumption that the ideal reactivity1143

of a site, rin, depends only on whether the site is base-1144

paired (bp) or not (np). Under this assumption, we can1145

write:1146

Pin(r̃in|bp)
Pin(r̃in|np)

=

∫
P (r|bp)Pin(r̃in|r)dr∫
P (r|np)Pin(r̃in|r)dr

(7)

where:1147

• Pin(r̃in|bp) is the probability of measuring reactiv-1148

ity r̃in at site i of sequence n, given that the site is1149

base-paired and conditioned on the finite number1150

of reads taken at this position.1151

• Pin(r̃in|r) is the probability of measuring reactivity1152

r̃in at site i of sequence n, on account of fluctuations1153

due to a finite number of reads, conditioned on this1154

site having a real reactivity of r.1155

• P (r|bp) is the probability distribution of reactivi-1156

ties of base-paired sites, at infinite read-depth, as-1157

sumed to be homogeneous across sites.1158

• Pin(r̃in|np) and P (r|np) are defined in a similar1159

manner for non-paired sites.1160

We approximate the distributions P (r|bp) and P (r|np)1161

by kernel density estimators fit on the corresponding em-1162

pirical histograms (shown in Fig. 7A for the first ex-1163

periment). The kernel function used corresponds to a1164

standard normal, with a bandwidth set according to the1165

Silverman rule [74]. To better estimate the histograms,1166

we use the experimental conditions with SAM, where1167

the secondary structure of the aptamer is expected to1168

be more stable. We also find that these histograms can1169

depend on the particular experiment, and therefore we1170

fitted P (r|bp), P (r|np) for each replicate.1171

Applying Bayes theorem [46] in Eq. (7), we can write:1172

Pin(r̃in|bp)
Pin(r̃in|np)

=

∫
(P (r|bp)/P (r))Pin(r|r̃in)dr∫
(P (r|np)/P (r))Pin(r|r̃in)dr

(8)

where P (r) is the histogram of real reactivities, regard-1173

less of whether a site is paired or not. The posterior1174

Pin(r|r̃in) quantifies the uncertainty of the real reactiv-1175

ity r at site i of sequence n, conditioned on our infor-1176

mation of the measurement taken at this site. This un-1177

certainty arises from the finite sequencing reads available,1178

which induce an experimental error in our estimate of the1179

quantities m,u, d appearing in Eq. (6). Since the muta-1180

tion count at a site can be modeled by a Poisson distri-1181

bution [73], the posteriors of the mutation rates m,u, d1182
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are Gamma distributions, with a convenient choice of1183

conjugate prior [46]. Then, we can produce a Monte-1184

Carlo estimate of Pin(r|r̃in) by sampling the posterior1185

Gamma distributions of m,u, d, and computing the re-1186

activity through Eq. (6). If the sampled reactivities fall1187

predominantly far in the tails of the histograms P (r|bp)1188

or P (r|np), respectively, the reactivity measurement is1189

discarded as an outlier. In practice, we find that 10001190

samples for each site are sufficient. These samples can1191

then be used to approximate the numerator and denom-1192

inator of the right-hand side of Eq. (8). In this way, we1193

produce estimates of the ratios Pin(r̃in|bp)/Pin(r̃in|np),1194

quantifying the odds that a site is paired. Supplemen-1195

tary Fig. S23B shows a scatter plot of reactivities in our1196

dataset, with the standard-error estimated by the stan-1197

dard SHAPE-Mapper pipeline [73] (which does a first-1198

order error propagation through the Poisson count statis-1199

tics), with each point colored according to the value of1200

the log-odds-ratio Eq. (8). Dashed lines are approximate1201

contours separating points that are over twice more likely1202

to be paired (blue) or unpaired (red). The fact that these1203

contours are not straight vertical lines indicates that, us-1204

ing Eq. (8), we are considering both the reactivity value1205

and its uncertainty in assessing the plausibility that a site1206

is paired or not. A similar approach has been proposed1207

by [23, 79]. See also Supplementary Section I for further1208

discussion and tests.1209

3. Protection scores1210

We can exploit the likelihood ratios1211

Pin(r̃in|bp)/Pin(r̃in|np) computed above to estimate the1212

probability of the presence of a structural motif in a1213

sequence. We define a motif of length 2L as a set of base-1214

paired sites, M = {i1, j1, . . . , iL, jL}. For example, the1215

P1 helix motif corresponds to {1, 108, 2, 107, . . . , 8, 101}.1216

We then probabilistically assess the presence or absence1217

of the motif M in molecule n by comparing the value of1218

the protection score1219

Sn(M) =
∑
i∈M

ln

(
Pin(r̃in|bp)
Pin(r̃in|np)

)
(9)

to some thresholds ±S′, see Section C. This approach al-1220

lows us to combine multiple reactivity measurements into1221

a robust probabilistic measure, achieving more statisti-1222

cal power than when site reactivities are analyzed one by1223

one.1224

This approach can be applied to SHAPE or DMS re-1225

activity data. As DMS probing is efficient in detecting1226

interactions involving nucleotides A or C predominantly,1227

we only consider DMS reactivities obtained at sites where1228

the aptamer sequence has an A or C. The base-pairing1229

histograms P (r|bp) and P (r|np) for DMS, shown Fig. 7B,1230

are estimated using only reactivities measured at sites1231

with A or C nucleotides.1232

4. Combining SHAPE and DMS data1233

When both SHAPE and DMS data are available for1234

the same aptamer, we can combine them to obtain bet-1235

ter predictions about the base-pairing status of a site.1236

Since the SHAPE and DMS reactivities are obtained in1237

independent experiments,1238

P (r̃in,SHAPE, r̃in,DMS|bp)
= P (r̃in,SHAPE|bp)× P (r̃in,DMS|bp) (10)

where r̃in,SHAPE and r̃in,DMS denote SHAPE and DMS1239

reactivity data at the same site i of aptamer n. This in-1240

dependence implies that the log-odds ratio of the pairing1241

status of a site or a structural motif (as in Eq. (9)), in1242

presence of both kinds of data, can be computed by sim-1243

ply adding the protection scores obtained from each kind1244

of probing alone:1245

Stot.(M) = SSHAPE(M) + SDMS(M) (11)

where SSHAPE is the protection score obtained from1246

SHAPE data, and SDMS the protection score obtained1247

from DMS data.1248

5. Error bars on the rates of responsive aptamers1249

Given Nconc. conclusive probed sequences, Nresp. of1250

which are found to be globally responsive, we estimate1251

the response rate by p = Nresp./Nconc.. The uncer-1252

tainly over p is, according to the binomial law, err =1253 √
p(1− p)/Nconc.. The response rates in Figs. 7, 9 are1254

reported as (p± err)× 100%.1255

We have investigated the dependence of these uncer-1256

tainties on the SHAPE-Mapper read depths, which varies1257

with the primers. Supplementary Fig. S32 shows that the1258

inconclusive rate is strongly anti-correlated with the read1259

depth. Both rates of responsive and non-responsive se-1260

quences increase with the read depth, a consequence of1261

the decrease of the statistical noise. To mitigate this sta-1262

tistical effect, throughout this work, the response rate is1263

computed as the ratio of responsive molecules over the1264

number of conclusive ones, compare top and bottom pan-1265

els in Supplementary Fig. S32. The dispersion due to this1266

statistical noise are accounted for by the error bars in the1267

results shown in Fig. 7G as explained above. We have1268

also investigated the dependence of DMS results on the1269

read depth (Supplementary Fig. S33). As with SHAPE,1270

the inconclusive rate increases with the read depth.1271

J. SHAPE protection scores are in agreement with1272

consensus secondary structure1273

Sequence homologs in the RF00162 family are collected1274

based on similarity to a group of manually curated se-1275

quences in the seed. Overall, for many of these sequences1276
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(both in the seed and in the full alignment), direct exper-1277

imental evidence of their actual behavior and structure1278

is limited, except for specific cases, such as the Ther-1279

moanaerobacter teng- congensis and the Bacillus sub-1280

tilis yitJ SAM riboswitches, which have been extensively1281

studied in the literature fueled by detailed knowledge of1282

their published crystalized structures [45, 53]. For many1283

other sequences in the MSA, their actual behavior is at1284

most hypothesized based on indirect evidence.1285

We have here obtained detailed SHAPE data of1286

Bseed = 151 sequences of the seed alignment. Our data1287

shows that, in average, these sequences are compatible1288

with the consensus secondary structure of the RF001621289

family, shown in Fig. 1B. Indeed, we have computed the1290

average protection scores ⟨S(i)⟩ for each site i, over the1291

sequences in the seed alignment probed in our experi-1292

ments,1293

⟨S(i)⟩seed =
1

Bseed

∑
n∈seed

ln

(
Pin(r̃in|bp)
Pin(r̃in|np)

)
(12)

Figure 10B plots ⟨S(i)⟩ in the conditions with SAM and1294

without SAM. Overall, the averaged protection scores1295

are in detailed agreement with the consensus secondary1296

structure of the aptamer, depicted in Fig. 10A. Helices1297

P2, P3, P4 are seen to be base-paired in average in all1298

conditions, with a mild overall increase in the values of S1299

with the addition of magnesium and then SAM, indicat-1300

ing overal structural stabilization. The central junction1301

loop (CL), and the loops on the second helix L2, the1302

third helix L3, and the fourth helix L4, are consistently1303

measured as reactive when SAM is not present, indicat-1304

ing that these sites are unpaired, as expected. Besides1305

these major structural motifs, we also appreciate finer1306

details such as the reactivity of single isolated bulge sites1307

in positions 46 and 65 in absence of SAM. Next, compar-1308

ing the behavior across different conditions, we appreci-1309

ate the effect of magnesium and SAM on the structure.1310

We highlight (in green) sites that change significantly in1311

response to SAM. These include sites in direct contact1312

with SAM (as known from the crystal structure [53]),1313

and other tertiary motifs known to form in response to1314

SAM. We discuss these next.1315

K. Selection of Hallmark sites1316

We selected 24 hallmark sites across the aptamer se-1317

quence, for which we could rationalize observed reactivity1318

changes in response to SAM binding, and which are con-1319

sistent with expectations from previous chemical probing1320

studies on SAM-I riboswitches and previous structural1321

data. These sites also exhibit significant reactivity re-1322

sponses across natural sequences in our data, see Fig.1323

10. They are listed in Supplementary Table S2. In Sup-1324

plementary Section Q we include further discussion and1325

references to several previous literature reports justifying1326

the choices of each of these sites.1327

Our results are robust to minor variations in the selec-1328

tion of Hallmark sites used to evaluate the response of1329

aptamers to SAM. For example, although we could not1330

find previous reports of reactivity responses in J4/1, we1331

find in some cases that sites 98 and 99 exhibit protec-1332

tion upon SAM binding (see Fig. 10). We tried adding1333

few selected sites (such as 98, 99), or excluding some,1334

and confirmed that our main results (such as numbers1335

of responsive sequences) remain unchanged. Additional1336

results are reported in Supplementary Section Q.1337

L. Principal component analysis1338

We carried out a principal component analysis (PCA)1339

of the natural MSA. First, we one-hot encode the natural1340

sequences in a q × N × B binary tensor D, where B =1341

6161 is the number of sequences in the full MSA collected1342

above. The tensor has Da
in = 1 if sequence n of the1343

alignment has symbol a ∈ {1, ..., 5} at position i, and1344

otherwiseDa
in = 0. We then compute a covariance tensor,1345

defined as follows1346

Cab
ij =

1

B

∑
n

Da
inD

b
jn −

(
1

B

∑
n

Da
in

)(
1

B

∑
n

Db
jn

)
(13)

We flatten the tensor Cab
ij into a qN × qN matrix, and1347

then perform a standard eigenvalue decomposition on it.1348

Individual sequences are then projected along the two1349

top components (with largest eigenvalue) of the decom-1350

position.1351

M. Data availability1352

Sequencing data and processed reactivity has1353

been deposited to the Gene Expression Omnibus1354

(GEO) database, under the accession GSE2662631355

[https://www.ncbi.nlm.nih.gov/geo/query/acc.1356

cgi?acc=GSE266263]. All processed data and pro-1357

cessing code is available on the accompanying Github1358

repository [15] (see Code Availability).1359

N. Code availability1360

The code used to develop the model, perform the1361

analyses and generate results in this study is publicly1362

available and has been deposited in Github at https:1363

//github.com/cossio/SamApp2025.jl, under MIT li-1364

cense. The specific version of the code associated with1365

this publication is archived in Zenodo and is accessible1366

via https://doi.org/10.5281/zenodo.17232573 [15].1367

The main repository (https://github.com/1368

cossio/SamApp2025.jl) is provided as an open-1369

source Julia [5, 16] package. We also pro-1370

vide an implementation of RBM in Python1371

at https://github.com/cossio/SamApp2024Py1372
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FIG. 10. A) Annotated consensus secondary structure of the aptamer domain of the SAM-I riboswitch family (Rfam ID
RF00162). B) Average protection scores, ⟨S(i)⟩ (see Eq. (12)) per site, of the natural probed sequences, for the two conditions:
with SAM and no SAM. Error bars (standard deviation) are also shown. Both statistics are computed over the Bseed = 151
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and an example Google Colab notebook at1373

https://colab.research.google.com/drive/1374

1nOfFLWCwLy7a0aZ52cFHKUfF7erAMp5f?usp=sharing.1375
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FIGURE LEGENDS1762

FIG. 1. Structure, regulatory function, and sequence conservation of the aptamer domain of the SAM-I riboswitch, acting at
a transcriptional level. A) In absence of SAM, the P1 helix of the aptamer domain is unpaired, leaving the 3’-end free to pair
with the anti-terminator segment of the expression platform. This conformation is incompatible with the terminator motif,
resulting in transcription of the downstream gene (ON state). B) SAM (represented by the purple hexagon) is captured in a
groove contacting several sites around the central four-way junction. In the bound-state conformation, the P1 helix is fully
base-paired. The expression platform is then free to form a Rho-independent terminator hairpin, which stops transcription of
the nascent RNA, thus blocking the expression of a downstream gene (OFF state). The figure also shows several structural
elements of the consensus secondary structure of the aptamer domain, including helices P1, P2, P3, P4, and a pseudoknot
(Pk) in red. Other sites of interest participating in tertiary contacts (dashed lines) in response to SAM are highlighted in bold,
including SAM contacts and base-triples. Secondary structure plots are obtained with VARNA [17]. C) Sequence conservation
logo of aligned homologs of the SAM-I riboswitch aptamer domain family (RF00162 on Rfam). Gaps are indicated by the
character ‘⊟’.

FIG. 2. RNA generative modeling with RBM and experimental validation. A) A Restricted Boltzmann machines (RBM),
with the visible layer carrying nucleotides A, C, G, U, or – (alignment gap symbol), and a hidden layer extracting features.
The two layers are connected by weights. B) The RBM is trained by maximization of a regularized likelihood, see Eq. (S4).
A gradient term increases the probability of regions in sequence space populated by data, automatically discovering features
desirable for functional sequences (blue), while an opposite gradient term lowers the probability of regions void of data (red).
The RBM may also assign large probability to potentially interesting sequences not covered by data (teal). C) The model can
be sampled to generate novel sequences that may significantly differ from the natural ones (teal). D) Hidden units extract
latent features (nucleic-acid motifs) through the weights. Weight values, either positive or negative, are shown above or below
the zero-weight horizontal bar in the logo plots, see Methods. Combining these motifs together allows RBM to design functional
RNA sequences. E) The RBM is able to model complex interactions along the RNA sequence. Here, a hidden unit interacting
with three visible units is highlighted. After marginalizing over hidden-unit configurations, effective interactions arise between
the visible sites, see Eq. (5). Here we represent schematically a three-body interaction, arising from the three weights onto the
marginalized hidden unit. F) Designed sequences are tested experimentally with chemical probing approaches. Reactivities
of sites to the probes may differ when SAM is absent or present (top); difference in reactivities between the two conditions is
informative about structural changes (bottom). G) Distributions of reactivities obtained with SHAPE-MaP slightly differ for
paired and unpaired nucleotides. Statistical resolution of global structural changes triggered by SAM can then be enhanced by
aggregating multiple sites. Inset: distributions over 24 sites, see Methods, Section I and Supplementary Figures S25, S39.

FIG. 3. Interpretation of RBM extracted features. A) Contact map based on the epistatic scores for nucleotide pairs computed
with the RBM [86]. The highest epistatic scores correspond to major secondary and tertiary contacts of the SAM-bound aptamer
structure, shown in the inset. B,C) Sequence logos of the weights wiµ(vi) attached to exemplary hidden units (#1 and #2)
of the RBM, selected by having the highest weight norms. Each letter size in the logo is proportional to the corresponding
weight, see Figure 2D and [82, 86]). Sites are colored according to the secondary structure element they belong to, including
the paired (P) helices P1 (light purple), P2 (green), P3 (yellow), and P4 (teal). Sites participating in the pseudoknot (Pk)
are also highlighted (red dashed box). In hidden unit #1, Watson-Crick complementarity along P1 (e.g., site 8 with 101) is
favored, in agreement with base pairing of these positions at the 5’ and 3’ ends of the P1 helix. The same unit also puts weights
on complementarity along the pseudoknot (e.g. sites 25-28 with 77-80), helping stabilize this tertiary contact. The fact that
these complementarity constraints, belonging to different structural motifs, are enforced by the same unit, suggests that P1
and the pseudoknot stabilize in a concerted manner (c.f. Fig. 1) in response to SAM. Hidden unit #2, on the other hand,
places significant weight in the complementarity between sites 81 and 97, stabilizing P4 and along various P3 sites, favouring
a dichotomy between stabilizing complementarity or deletions in this segment. Indeed, some natural sequences lack a hairpin
loop at P3 (sites 50–64), consistently with a negative activation of h.u. #2.
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FIG. 4. Sequence generative models. A) Scatter plot of rCM scores (x-axis) vs. RBM scores (y-axis), for natural sequences
(gray), rCM sampled sequences (red), and RBM sampled sequences (blue). A threshold at RBM score = 300 (orange dashed
line) separates the majority of rCM generated sequences from the majority of RBM and natural sequences. B) Projection
of natural MSA sequences (seed + hits) onto the top two principal components of the MSA correlation matrix (gray). The
largest taxonomic groups (with > 100 member sequences) are highlighted in colors. Taxonomic annotations were obtained
from NCBI. C) Projection of RBM generated sequences (in blue) on the top two principal components of the MSA, with the
natural sequences in the background (gray). D) Projection of rCM generated sequences (in red) on the top two principal
components of the MSA, with the natural sequences in the background (gray). E) Projection of all probed sequences on the
top two principal components of the MSA, with the natural sequences shown in background (gray). The 301 probed sequences
in the first experimental batch are colored by their origin: Natural (black), rCM (red), and RBM (blue).

FIG. 5. Reactivity profiles of natural aptamers with chemical probing. Key sites, involved in direct or indirect SAM interactions
according to the consensus secondary structure (RF00162), are shown with black triangles. Sites 10, 11, 46, 47, 103 are in
direct contact with SAM, while the remaining highlighted sites are involved in tertiary motifs that stabilize in presence of
SAM: a pseudoknot (pk), kink-turn (kt), and base-triples. A, B) yitJ B subtilis aptamer. A. SHAPE reactivities ri with and
without SAM. B. SHAPE differential reactivities ∆ri. C,D) Same as A,B for the Deltaproteobacteria bacterium aptamer.
E) Average SHAPE differential reactivity profile ⟨∆ri⟩ over all tested natural aptamers. The thickness of the bands indicates
the standard deviations. F) Same as E for DMS differential reactivities. G) Sum of A and C site-frequencies computed over
natural aptamers along the sequence.

FIG. 6. Reactivity profiles of generated aptamers with chemical probing. Black triangles refer to highlighted key sites, see
Fig. 5. A,B) SHAPE reactivity and differential reactivity profiles for one RBM-generated aptamer with RBM score 321.41.
C,D) Same as A,B for one RBM-generated aptamer with RBM score 357.79. E) Average differential reactivities in response
to SAM of 54 RBM generated sequences with high RBM scores (> 300) (blue), across the 108 sites of the alignment. For
comparison, the average differential reactivities for 204 natural sequences are shown in the background (gray). High-RBM
score sequences recapitulate protection of sites involved in the structural switch in response to SAM binding (highlighted in
green). F) Average differential reactivities in response to SAM of rCM generated sequences (red). Natural sequences are shown
in background for comparison. rCM sequences fail to recapitulate the expected protections associated to the structural switch
(red arrows). In both panels (E,F), the thickness of the bands indicates the standard deviation. The correlations between the
site-dependent differential reactivities are 0.84 between Natural and RBM (score>300) (E) and 0.18 between Natural and rCM
(F) with an empirical bootstrap p-value < 10−6, see Supplementary Fig. S24.

FIG. 7. Statistical analysis of SHAPE and DMS reactivities for natural and generated aptamers. A,B) Empirical density
histograms of SHAPE (A) and DMS (B) reactivities of base-paired (teal) and unpaired sites (gold) for the probed natural
sequences in presence of SAM. C,D) Empirical density histogram of SHAPE (B) and DMS (D) reactivities for the pseudoknot
sites (black) in the absence of SAM (left), and in the presence of SAM (right). Inset: consensus secondary structure of the
SAM-I riboswitch aptamer domain, highlighting base-paired (teal) and unpaired (gold) sites. The sites forming the pseudoknot
in presence of SAM (black in the inset) are not included in these histograms. E,F) SHAPE protection scores S vs. RBM scores
for all probed sequences. Panels: E) without SAM, F) with SAM. Responsive aptamers are shown with filled circles. Colors
refer to the sequence origin: Natural, rCM, or RBM. Dashed orange vertical lines locate thresholds ±S0. See Supplementary
Fig. S38 for the protection scores computed from DMS data. G) Numbers of responsive and non-responsive aptamers in
each class based on SHAPE protection scores. Error bars reflect the uncertainty in the estimated fractions based on the
limited numbers of conclusive aptamers in each case (Methods). H) Comparison of manual (columns) and automatic (rows)
classification of natural aptamers with SHAPE protection scores. The bottom two rows show how globally non-responsive
(N-r.) aptamers are classified according to the protection scores of the SAM binding pocket sites only. I) Classification of
natural, RBM-generated (all and high scores only), rCM-generated aptamers according to protection scores computed from
SHAPE alone and SHAPE+DMS combined data. Yes: responsive, No: non-responsive, Inc.: inconclusive.
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FIG. 8. Local responses along P1 and the pseudoknot (Pk) require intermediate pairing energies. A) Left panel shows the
histogram of Turner pairing energies for P1 (computed with the ViennaRNA package [44]) of a random sample of RBM-designed
sequences. The following panels show the pairing energies without (middle) and with (right) SAM for the aptamers probed in
the first batch vs. the protection scores S(P1) obtained by choosing for the hallmark set M the sites in P1 only. Aptamers are
colored according to their response: if S(P1)> S0 in both conditions, P1 is always closed (open black circle); if S(P1)< −S0 in
both conditions, P1 is always open (open gray circle); if S(P1) crosses from one side to the other, the motif switches in response
to SAM (filled light blue disks). Note that only aptamers for which the P1 response is conclusive are shown (133 aptamers).
The table then lists the numbers of aptamers that are responsive to SAM, compared to a local response in P1 only. B) Same
as A), but for pseudoknot (Pk) sites.

FIG. 9. Additional generation of sequences. A) Projection of sequences probed in second set of designed sequences along
the PCs of the natural MSA, colored by origin: RBM, Denoised and Unknotted CM (dCM, uCM). The full natural MSA is
shown in background (gray) for comparison. B) Diagram explaining the uCM, where the pseudoknot is undone by permuting a
specific set of columns in the MSA. In this manner, a CM can model covariation along a pseudoknot. See Methods for details.
C) Divergence from closest natural sequence in the MSA (fraction of sites that differ) vs. the RBM score, for all sequences
probed in the second experiment. Colored circles correspond to aptamers that switch in response to SAM (fill color) or not
(empty), with the color indicating the sequence origin: RBM (blue), dCM (red), and uCM (orange). Sequences for which
our analysis is inconclusive are shown in light cyan. D) The table summarizes the numbers of switching sequences in each
group. E) Reactivity profile of example responsive RBM generated sequence with no P4 (indicated by teal triangle in A,C).
F) Reactivity profile of example responsive RBM generated sequence at large distance from natural sequences (indicated by
black triangle in A,C).

FIG. 10. A) Annotated consensus secondary structure of the aptamer domain of the SAM-I riboswitch family (Rfam ID
RF00162). B) Average protection scores, ⟨S(i)⟩ (see Eq. (12)) per site, of the natural probed sequences, for the two conditions:
with SAM and no SAM. Error bars (standard deviation) are also shown. Both statistics are computed over the Bseed = 151
probed sequences in the seed alignment. Hallmark sites (Supplementary Table S2) are indicated with black triangles. C)
Average site reactivities with error bars (standard deviation).
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