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Riboswitches are structured allosteric RNA molecules that change conformation upon metabolite
binding, triggering a regulatory response. Here we focus on the de movo design of riboswitch-
like aptamers, the core part of the riboswitch undergoing structural changes. We use Restricted
Boltzmann machines (RBM) to learn generative models from homologous sequence data. We first
verify, on four different riboswitch families, that RBM-generated sequences correctly capture the
conservation, covariation and diversity of natural aptamers. The RBM model is then used to design
new SAM-I riboswitch aptamers. To experimentally validate the properties of the structural switch
in designed molecules, we resort to chemical probing (SHAPE and DMS), and develop a tailored
analysis pipeline adequate for high-throughput tests of diverse sequences. We probe a total of 476
RBM-designed and 201 natural sequences. Designed molecules with high RBM scores, with 20%
to 40% divergence from any natural sequence, display ~ 30% success rate of responding to SAM
with a structural switch similar to their natural counterparts. We show how the capability of the
designed molecules to switch conformation is connected to fine energetic features of their structural

components.
INTRODUCTION

Riboswitches are regulatory RNA elements found
mostly in bacterial and in some eukaryotic messenger
RNAs. Usually located upstream of coding sequences,
they modulate the expression of the downstream gene
at the transcriptional or translation level in the pres-
ence of a specific metabolite [48, [66] [75] [77]; some ri-
boswitches placed within genes even regulate alternative
splicing [42]. In order to perform their function, these
RNA motifs switch between two stable conformations in
response to binding of their cognate metabolite to the ap-
tamer domain of the riboswitch (Figure . This change
of conformation, in turn, affects the expression platform,
where the regulation signals are located. Understanding
how the aptamer domain by itself is able to implement a
structural switch in response to the ligand, and how this
is encoded in the sequence, is an important step towards
the characterization of the full riboswitch regulation.

The sequence-to-function mapping of structured RNAs
is a complex problem. In the course of evolution, se-
quence patterns necessary for function are conserved,
suggesting that large sequence datasets can shed light
on this mapping. Comparative analysis of homologous
RNA sequences collected in Multiple Sequence Align-
ments (MSA) [56] have been successful to predict sec-
ondary RNA structures, tertiary structural motifs, and
even the entire three dimensional architecture of complex
RNA [11, 23], 28, 61, 64, [79]. Covariation analysis has
also been used to predict pseudoknots and other tertiary
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contacts from statistical couplings inferred from conser-
vation and covariation across the MSA columns [19] [92],
or by including positive and negative evolutionary infor-
mation such as in the Cascade covariation Folding Al-
gorithm (CacoFold) [63]. Machine learning approaches
have recently shown promising results in RNA structure
prediction. Among them Rosetta FARFAR2 [89] uses
Monte-Carlo-based fragment assembly methods and can
be aided by geometric deep learning approaches such as
ARES [84] to score putative structures. DeepFoldRNA
[59] significantly outperformed the state-of-the-art ter-
tiary structure prediction from sequence only. Although
these approaches look promising, AlphaFold-level accura-
cies [39] (for proteins) are not yet reached in RNA struc-
ture prediction [611 [§1].

The mirroring problem of designing RNA sequences
capable of folding in a particular target structure or of
performing a desired function has also long been inves-
tigated. Ome successful approach is based on directed
evolution (SELEX). RNA sequences are selected from
an initial random library to optimize a target function,
such as the switching dynamics for bistable aptamers
[49]. Models trained on such data are capable of clas-
sifying sequences according to their functionality and of
extracting key sequence-features for the desired function
[1 211, 241, 26|, [37]. Classifiers have been used downstream
of random mutagenesis to filter out good sequences, but
this approach only works if the libraries already contain
good candidates. In parallel, much effort has been de-
voted to the rational design of secondary structures, in
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particular with minimum free energy approaches [25] 93].
However, due to algorithmic complexity [64] [88], those
approaches often ignore pseudoknots and other tertiary
contacts known to be essential for the function of some
RNAs, such as riboswitches or ribozymes.

To date, building generative models effective in de-
signing RNA sequences with tertiary structural targets
remains a challenging problem. From this point of view,
riboswitches, in addition to their fundamental interest
in biology and relevance for the RNA world hypoth-
esis [42], offer a difficult design problem, as their se-
quences encode not only two conformational structures
but also a metabolite-mediated switching mechanism be-
tween them. In the present work, we address this chal-
lenging issue and show how to design functional RNA
switches (albeit devoid of expression platform) from nat-
ural sequence data.

One of the largest identified groups of riboswitches
recognize S-adenosyl-methionine (SAM) as their effec-
tor metabolite [27, [60]. While six different SAM binding
structural motifs have been identified, this study focuses
on those harbouring type I SAM aptamers (SAM-I) [3].
Figure [TJA shows the secondary structure of the aptamer
domain in absence of SAM, where transcription is al-
lowed (ON state), while panel B depicts the structure
when SAM is bound and transcription continuation is
prevented (OFF state). Upon SAM binding, the aptamer
cooperatively folds into the closed structure characterised
by the stabilisation of P1, three triple base pairs and a
pseudoknot (red in the figure) [67]. The closed state of
the aptamer is stabilized by direct tertiary contacts be-
tween SAM and specific nucleotides forming the SAM
binding pocket [53], 60].

Hereafter we employ Restricted Boltzmann machines
(RBM), a two-layer generative neural network to design
new SAM aptamers (Fig. [2A). RBMs have recently been
shown to provide interpretable models of proteins in var-
ious contexts [7, [8, B0, 86], with application to design
[21L[47]. By learning the sequence statistics of the SAM-I
riboswitch family, the RBM models the constraints that
enable aptamers to adopt the correct secondary struc-
ture, form tertiary contacts and effect a conformational
switch in response to SAM presence.

The RBM model was used to design 476 sequences,
which we experimentally tested with SHAPE-MaP and
DMS, two chemical probing methods giving information
about paired and unpaired residues in the structures.
Comparison of the reactivity profiles in the presence or
absence of SAM allows us to assess the effectiveness of
the structural switch for each tested molecule. This high-
throughput analysis is made possible by the introduction
of an automated Bayesian analysis of the SHAPE and
DMS reactivity profiles. Our results for RBM-generated
aptamers are compared to experiments on 201 natural
sequences, and 58 sequences designed by RFAM Covari-
ance Models, another generative model capturing local
conservation and secondary-structure covariation only.
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2
RESULTS

Our pipeline is described in Fig. [2] and includes: se-
quence data acquisition from Rfam [4I], training and
sampling the RBM to design artificial SAM-I aptamers,
experimental characterization of SAM-induced confor-
mational switch in natural and designed sequences by
chemical probing (SHAPE [I8, [73] and DMS [52]), and
statistical analysis of the measured reactivities.

A. Generative models of SAM riboswitch aptamers

We train an RBM (Figs. 7B) on a multiple sequence
alignment (MSA) of natural homologues of the aptamer
domain of SAM-I riboswitches, gathered from the Rfam
[41] database (Rfam ID: RF00162). RBM are energy-
based generative models, that once trained, define a
score, —Eeg(v), over all possible sequences v. Sequences
with high scores (equivalently, low energies) are then
“good” fits to the family, according to the model. Artifi-
cial sequences of high score can be generated by sampling
the resulting Boltzmann measure, Prp(v) oc e~ Fert (V)
see Fig. and Methods for details.

The weights between visible units, carrying the RNA
sequence, and hidden units, extract latent factors of vari-
ation in the data, Fig. ) After marginalization over
those latent variables, effective interactions between pairs
of residues can be computed [86], defining epistatic scores
between sites (Fig. and Supplementary Eq.
for precise definition). Pairs of sites with large epistatic
scores correspond to major secondary and tertiary con-
tacts in folded aptamers, see heatmap in Fig. [BA. Inter-
estingly, epistatic scores at P1 are weaker than in other
helices, reflecting the flexibility of P1, which is able to
open or close in concert with SAM binding (Fig. . The
pseudoknot is also correctly identified (red in Fig. [3JA),
proving the capability of RBM to identify tertiary mo-
tifs. Besides structural contacts, the RBM hidden units
capture extended motifs, most likely relevant for tertiary
structure formation and SAM binding, see weights in
Figs. 3B,C.

We then evaluate the sequences designed by the RBM
by comparing their scores to the ones of natural sequences
and sequences designed by Covariance Models (CM). CM
capture the conservation of residues along the sequence,
as well as correlations due to the complementarity of
base pairs in the secondary structure [22], but are un-
able to model tertiary motifs (such as pseudoknots). As
Rfam sequence alignments [40] are based on CM [56], our
first baseline model for RF00162 was directly downloaded
from Rfam (Methods), and will be referred to as Rfam
CM (rCM) in the following.

In Fig. A, we show a scatter plot of rCM vs RBM
scores for natural, RBM- and CM-generated sequences.
RBM-generated sequences have rCM scores comparable
to the natural ones, indicating that RBM samples satisfy
the constraints imposed by the rCM model to the same
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FIG. 1. Structure, regulatory function, and sequence conservation of the aptamer domain of the SAM-I riboswitch, acting at
a transcriptional level. A) In absence of SAM, the P1 helix of the aptamer domain is unpaired, leaving the 3’-end free to pair
with the anti-terminator segment of the expression platform. This conformation is incompatible with the terminator motif,
resulting in transcription of the downstream gene (ON state). B) SAM (represented by the purple hexagon) is captured in a
groove contacting several sites around the central four-way junction. In the bound-state conformation, the P1 helix is fully
base-paired. The expression platform is then free to form a Rho-independent terminator hairpin, which stops transcription of
the nascent RNA, thus blocking the expression of a downstream gene (OFF state). The figure also shows several structural
elements of the consensus secondary structure of the aptamer domain, including helices P1, P2, P3, P4, and a pseudoknot
(Pk) in red. Other sites of interest participating in tertiary contacts (dashed lines) in response to SAM are highlighted in bold,
including SAM contacts and base-triples. Secondary structure plots are obtained with VARNA [I7]. C) Sequence conservation
logo of aligned homologs of the SAM-I riboswitch aptamer domain family (RF00162 on Rfam). Gaps are indicated by the
character ‘H’.

183 extent as natural sequences. Moreover, RBM samples
18« have RBM scores comparable to natural sequences, while
165 TCM samples have significantly smaller scores, suggesting
16 that the RBM impose further constraints beyond those
157 captured by rCM, such as tertiary contacts (e.g. pseudo-
188 knot), which could be important for the aptamer func-

10 tion. We also check that R-scape [64] supports significant
covariation across pseudoknot sites for RBM samples,
w1 contrary to rCM samples as expected (see Supplementary
> Section [E[ for details). In addition, RBM recapitulates
103 several statistical properties of natural sequences in the
11e MSA, including conservation, covariation, distribution of
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FIG. 2. RNA generative modeling with RBM and experimental validation. A) A Restricted Boltzmann machines (RBM),
with the visible layer carrying nucleotides A, C, G, U, or — (alignment gap symbol), and a hidden layer extracting features.
The two layers are connected by weights. B) The RBM is trained by maximization of a regularized likelihood, see Eq. .
A gradient term increases the probability of regions in sequence space populated by data, automatically discovering features
desirable for functional sequences (blue), while an opposite gradient term lowers the probability of regions void of data (red).
The RBM may also assign large probability to potentially interesting sequences not covered by data (teal). C) The model can
be sampled to generate novel sequences that may significantly differ from the natural ones (teal). D) Hidden units extract
latent features (nucleic-acid motifs) through the weights. Weight values, either positive or negative, are shown above or below
the zero-weight horizontal bar in the logo plots, see Methods. Combining these motifs together allows RBM to design functional
RNA sequences. E) The RBM is able to model complex interactions along the RNA sequence. Here, a hidden unit interacting
with three visible units is highlighted. After marginalizing over hidden-unit configurations, effective interactions arise between
the visible sites, see Eq. . Here we represent schematically a three-body interaction, arising from the three weights onto the
marginalized hidden unit. F) Designed sequences are tested experimentally with chemical probing approaches. Reactivities
of sites to the probes may differ when SAM is absent or present (top); difference in reactivities between the two conditions is
informative about structural changes (bottom). G) Distributions of reactivities obtained with SHAPE-MaP slightly differ for
paired and unpaired nucleotides. Statistical resolution of global structural changes triggered by SAM can then be enhanced by
aggregating multiple sites. Inset: distributions over 24 sites, see Methods, Section [I|and Supplementary Figures

Frequency
o

reactivity

0.0
-20 -10 0 10
Total protection score

pK
IlI III II = base paired
not paired ‘: d \/

-2 0 2 4 6
position SHAPE reactivity

frequency

sybiam

reactivity diff.

105 lengths, and distributions of Hamming distances between 23 tary Fig. . In contrast, rCM-generated sequences,
196 sequences (see Supplementary Sectlon.and Supplemen- 2. shown in Fig. [gD remain confined to a central region.
w7 tary Figs. E and. 25 The capability of RBM to capture complex constraints
18 Next, we carry out principal component analysis 26 in the sequence distribution allows them to model the full
100 (PCA) of the natural MSA. The top principal component 217 variability present in homologues.

20 (PC) captures a mode of variation associated to deletion 2s ~ We then select a fraction of the generated sequences for
2o of the P4 helix, as can be seen from the large number 210 experimental validation, see Methods for details about
22 of gaps in this region (Supplementary Fig. [S5). Figure =20 the selection criteria. Their PCA projections are shown
203 [B shows the projections of the natural sequences, an- 2a in Fig. , colored by their origin (Natural, rCM, RBM),
204 notated by their taxonomic class, onto the top two PCs. 22 and span a wide range of the natural variability.

20 The PCs appreciably separate taxonomic clusters of nat-

206 ural sequences. In particular, a group of Actinomycetota,

207 in the top left corner, have very short or no P4 helix seg- 22 B. Reactivity profiles of natural and generated

=

IN]

208 ments. SAM aptamers can function in the absence of P4 224 aptamers with SHAPE and DMS
200 [85], although the affinity for SAM decays with decreas-
20 ing length of P4 [34]. 25 We resort to high-throughput chemical probing to

i RBM-generated sequences also span the PC space, cov- 26 characterize the structure of generated aptamers and
> ering all the taxonomic clusters (Fig. and Supplemen- 2 their possible changes upon SAM addition. DMS mainly
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FIG. 3. Interpretation of RBM extracted features. A) Contact map based on the epistatic scores for nucleotide pairs computed
with the RBM [86]. The highest epistatic scores correspond to major secondary and tertiary contacts of the SAM-bound aptamer
structure, shown in the inset. B,C) Sequence logos of the weights w;,(v;) attached to exemplary hidden units (#1 and #2)
of the RBM, selected by having the highest weight norms. Each letter size in the logo is proportional to the corresponding
weight, see Figure and [82] 86]). Sites are colored according to the secondary structure element they belong to, including
the paired (P) helices P1 (light purple), P2 (green), P3 (yellow), and P4 (teal). Sites participating in the pseudoknot (Pk)
are also highlighted (red dashed box). In hidden unit #1, Watson-Crick complementarity along P1 (e.g., site 8 with 101) is
favored, in agreement with base pairing of these positions at the 5’ and 3’ ends of the P1 helix. The same unit also puts weights
on complementarity along the pseudoknot (e.g. sites 25-28 with 77-80), helping stabilize this tertiary contact. The fact that
these complementarity constraints, belonging to different structural motifs, are enforced by the same unit, suggests that P1
and the pseudoknot stabilize in a concerted manner (c.f. Fig. in response to SAM. Hidden unit #2, on the other hand,
places significant weight in the complementarity between sites 81 and 97, stabilizing P4 and along various P3 sites, favouring
a dichotomy between stabilizing complementarity or deletions in this segment. Indeed, some natural sequences lack a hairpin
loop at P3 (sites 50-64), consistently with a negative activation of h.u. #2.
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FIG. 4. Sequence generative models. A) Scatter plot of rCM scores (z-axis) vs. RBM scores (y-axis), for natural sequences
(gray), rCM sampled sequences (red), and RBM sampled sequences (blue). A threshold at RBM score = 300 (orange dashed
line) separates the majority of rCM generated sequences from the majority of RBM and natural sequences. B) Projection
of natural MSA sequences (seed + hits) onto the top two principal components of the MSA correlation matrix (gray). The
largest taxonomic groups (with > 100 member sequences) are highlighted in colors. Taxonomic annotations were obtained
from NCBI. C) Projection of RBM generated sequences (in blue) on the top two principal components of the MSA, with the
natural sequences in the background (gray). D) Projection of rCM generated sequences (in red) on the top two principal
components of the MSA, with the natural sequences in the background (gray). E) Projection of all probed sequences on the
top two principal components of the MSA, with the natural sequences shown in background (gray). The 301 probed sequences
in the first experimental batch are colored by their origin: Natural (black), rTCM (red), and RBM (blue).

28 focuses on single-stranded A and C nucleotides, while 23
29 SHAPE is sensitive to the conformational flexibility of in-
20 dividual nucleotides [73]. Generally speaking, paired nu-
an cleotides tend to show lower reactivities than residues left
23 single stranded. Similarly, aptamer nucleotides bound to
23 SAM are expected to be less reactive. SHAPE and DMS
23 probing are routinely used to monitor aptamer structure,
235 complexion with their ligand and structural rearrang-

237

ment [4, 29-31} 133 45} 58, 62, [70, B3)].

The general result of an experiment for an aptamer is

238 two profiles of site-dependent reactivities, one in the ab-
o sence and the other in the presence of SAM (Fig. 2F).
20 Changes in reactivities between the two conditions are
a1 expected to be informative about sites involved in inter-
22 actions with SAM and in the structural switch, see Fig.
23 [2G. However, because of the delicate nature of reactivity
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Example 1: yitJ from B. subtilis (PDB id: 4KQY)
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FIG. 5. Reactivity profiles of natural aptamers with chemical probing. Key sites, involved in direct or indirect SAM interactions
according to the consensus secondary structure (RF00162), are shown with black triangles. Sites 10, 11, 46, 47, 103 are in
direct contact with SAM, while the remaining highlighted sites are involved in tertiary motifs that stabilize in presence of
SAM: a pseudoknot (pk), kink-turn (kt), and base-triples. A, B) yitJ B subtilis aptamer. A. SHAPE reactivities r; with and
without SAM. B. SHAPE differential reactivities Ar;. C,D) Same as A,B for the Deltaproteobacteria bacterium aptamer.
E) Average SHAPE differential reactivity profile (Ar;) over all tested natural aptamers. The thickness of the bands indicates
the standard deviations. F) Same as E for DMS differential reactivities. G) Sum of A and C site-frequencies computed over

natural aptamers along the sequence.

measurements, it is useful to benchmark the approach
with natural aptamers, before turning to the analysis of
the generated aptamers.

We probe a set of 208 natural sequences with SHAPE
and a subset of 152 sequences with DMS in the pres-
ence or absence of SAM. These sequences are represen-
tative of Rfam ID RF00162 (Methods) and are shown
by black crosses in Fig. HE. We first present our ap-
proach and results for SHAPE-MaP. After standard pro-
cessing [73], we obtain the reactivity values r;, . as-
signed to each site i, for each aptamer n, and in each

255
256
257
258
250 aptamers.
260
261
262

26,

@

264

condition tested ¢ (with or without SAM). We can then
compute the difference in reactivities with and without
SAM, Ari,n = Tin,SAM — Ti,n,no SAM- Figure shows re-
activity profiles from our experiments for two selected
Panel A displays the profiles obtained for
yitJ aptamer from B. subtilis, for which a ligand-bound
crystal structure was reported in [45] (PDB id: 4KQY).
Interaction with SAM is confirmed by strong reactiv-
ity changes (Fig. ) due to the ligand at various key
sites, such as SAM contacts, and sites involved in a base-

xs triple (Fig.[IB). The T. tengcongensis aptamer [53] (PDB


https://doi.org/10.1101/2023.05.10.540155
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.10.540155; this version posted October 19, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY

4.0 International license.

8
SAM RBM example 1 )
A) pk SAM base-triple . _ with SAM
- v kink-turn Il ¢p — no SAM | SAM
= 2] *
=
9_33 0
B _ i P2 pk P2 A pk P4 Py
E 0 —l-- - =g gE—g—= ——mp"ggu= =cap—a-gg--ugg g = gm=———— mg” E T EmE=—-— g T Tm-g=m—
-] '|||"' g mEr T
g 2
q A AAAA AAAA AA AAAAA A AAAAAA
SAM RBM =xamp|e2 base-trlple
C) 4 1 * SAM base- tr|ple
=
22 v
O
oA _F|_|=.:|-"E1|-|:|—.I_|-FL|-|-F\
D
) ? 07 -m A __l,, ~“m="-g= g =" —-*-'*-*‘--*I.—'---'I'l -g=—ug=—="nmm I IIII T ""III =
S |
(9]
a _2- AA AAAA AAAA AA AAAAA A AAAAA
ink- base- base-
k  kink-turn " k AM
E _ SAM i i S/i'\/' triple_ triple i g
> - S K \
£0 : s A A | INAE
2 2
-1
% — Natural E
o — RBM (RBMscore>300)
— rCM
F)
2 0
=
[$]
8 -1- A Vol
3 % P p
_2- T T T T T T T T T T T T T T T T T T T T 1
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100 105
site

FIG. 6. Reactivity profiles of generated aptamers with chemical probing. Black triangles refer to highlighted key sites, see
Fig. A,B) SHAPE reactivity and differential reactivity profiles for one RBM-generated aptamer with RBM score 321.41.
C,D) Same as A,B for one RBM-generated aptamer with RBM score 357.79. E) Average differential reactivities in response
to SAM of 54 RBM generated sequences with high RBM scores (> 300) (blue), across the 108 sites of the alignment. For
comparison, the average differential reactivities for 204 natural sequences are shown in the background (gray). High-RBM
score sequences recapitulate protection of sites involved in the structural switch in response to SAM binding (highlighted in
green). F) Average differential reactivities in response to SAM of rCM generated sequences (red). Natural sequences are shown
in background for comparison. rCM sequences fail to recapitulate the expected protections associated to the structural switch
(red arrows). In both panels (E,F), the thickness of the bands indicates the standard deviation. The correlations between the
site-dependent differential reactivities are 0.84 between Natural and RBM (score>300) (E) and 0.18 between Natural and rCM

(F) with an empirical bootstrap p-value < 107°, see Supplem

6 1d: 2GIS) shows a similar behavior (Supplementary Fig.
27 [926)). In both cases, reactivity is low along the pseudo-
28 knot in absence of SAM, consistent with previous stud-
0 ies [76] that report this element is already stable in the
2 apo form (requiring only Mg™ for its formation). Figure
mn , D show another aptamer (from Deltaproteobacteria),
o where SAM response is evidenced by reactivity drops at
a3 SAM contacts, the base-triple and also the kink-turn and
o the pseudoknot. Our data may thus reveal the existence
s of variable responses to SAM across aptamers, in terms

entary Fig. |S24

26 of which sites (e.g., the pseudoknot) become more pro-
a7 tected when SAM is present or not.

as The difference in reactivities with and without SAM,
a9 Ar; p,, once averaged over all probed natural sequences n,
20 to better extract functional sites at the level of the fam-
s ily [73], defines a site-dependent A-reactivity template,
282 (Ari)nat., shown in Fig. . We observe reactivity de-
283 creases (also called protection) for the pseudoknot (sites
28¢ 25-28, 77, 79), sites involved in base triples (24, 76, 100,
285 73, 74) or flanking them (75), and for some of the sites
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directly in contact with SAM (10, 11, 46, 103). These
hallmark sites, listed in Supplementary Table were
previously recognized for their relevance to the structural
switch by previous studies using crystal structures, chem-
ical probing, and mutagenesis experiments [33, 45} 53],
see Fig. [IB. Supplementary Section [Q] summarizes the
literature supporting these choices.

Results for DMS probing are compatible with the
above findings. We report in Supplementary Fig.[S34] the
reactivity profiles r; ,, . of the same natural sequences as
in Fig.[5JA-D obtained with DMS. The profiles are sparser
due to the generally low reactivities of sites carrying G
or U nucleotides.

Figure[fJF shows the site-dependent differential reactiv-
ity profile, (Ar;)nat., averaged over all 152 probed natural
sequences. Contrary to its SHAPE counterpart (Fig. )7
this differential profile vanishes on most sites along the
sequence. This is expected from the fact that sites may
often be occupied by G or U nucleotides (Fig. ) and
therefore weakly sensitive to DMS probing. As a result,
DMS data are often less informative about SAM-induced
changes than their SHAPE counterparts. However, we
also observe that the few sites on which DMS differen-
tial reactivities are non zero show finer spatial resolution,
e.g. on site ¢ = 100, and lower sequence-to-sequence vari-
ability around the average profile (gray band around the
average DMS signal), see for instance site i = 28 and its
neighborhood. Interestingly, this latter site, which car-
ries mostly G’s and U’s, is sensitive to DMS probing, as
it is located at the junction of a stem and a loop [70].

In summary, both SHAPE and DMS average differen-
tial profiles confirm that the natural sequences probed
in our experiments are mostly SAM binders and, more-
over, recapitulate expected structural changes upon bind-
ing. Sequences in the seed alignment (a manually curated
subset [41]) show the same average reactivity responses
(Supplementary Fig. [S16).

The reactivity profiles of two representative RBM gen-
erated sequences are reported in Figure [A-D. Panels A,
B show an example of a RBM-generated sequence for
which the differential reactivity profiles are compatible
with a global structural switch, as evidenced by reactiv-
ity changes (highlighted by arrows) in most of the hall-
mark sites (Supplementary Table , including sites in
direct contact with SAM, but also the pseudoknot, the
kink-turn and a base-triple motif that are known to be
stabilized by the presence of SAM.

Figure [IC, D shows another RBM generated aptamer
for which the differential reactivity is localized to fewer
hallmark sites. In contrast to the previous example, sites
at the kink-turn and pseudoknot do not exhibit signifi-
cant reactivity changes in response to SAM. Reactivity
changes in the base-triple and SAM contact sites strongly
suggest a ligand-binding event, and are compatible with
a global structural switch from an open to a closed con-
formation.

We emphasize that the variety in the patterns of re-
sponse to SAM seen across generated aptamers is rem-
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iniscent of what is observed in natural ones. Man-
ual inspection of all experimentally tested 201 natural
aptamers, reveals that some molecules rearrange struc-
turally upon binding SAM, others bind without signifi-
cant conformational shift, and some showing no evidence
of binding (no reactivity change). Examples are shown
in Supplementary Figures and Global results of
this manual inspection are summarized below.

We report in Fig. [6E the average differential reactivity
profile of RBM-generated sequences having high scores
(> 300). An excellent match with the differential reac-
tivity profile of natural sequences is observed. In partic-
ular, protections compatible with SAM binding and the
expected structural switch are found at hallmark sites.
We also check that these RBM-generated sequences re-
produce the reactivity response to magnesium of natural
sequences (Supplementary Fig. . In contrast, RBM
sequences with lower scores (< 300) show clear discrep-
ancies (Supplementary Fig. with the average profile
of natural sequences.

For the sake of comparison, we show in Fig. [(F the av-
erage differential reactivities of sequences sampled from
rCM (in red). Contrary to high-score RBM-generated
sequences, this group of sequences shows an appreciable
lack of protection at key sites, such as 10-11 (SAM con-
tact), 25-28 (pseudoknot), 73-76 (base triples), and 103
(SAM contact in P1). Differential reactivity profiles for
DMS are shown in Supplementary Fig.

In summary, RBM-generated sequences with high
scores exhibit, on average, the same structural response
to SAM as natural aptamers. In contrast, aptamers gen-
erated by the rCM and RBM sequences with lower scores
do not reproduce the characteristic features associated
with structural switch (Supplementary Fig. [S18).

C.

Statistical evaluation and properties of
generated aptamers

Reactivity profiles are notoriously variable at the
single-site level, with small differences between the distri-
butions of reactivities expected for paired and unpaired
sites. This variability can be ignored when looking at
average effects over a large class of many molecules, e.g.
natural or generated sequences, as done above. However,
predictions for single sequences require the introduction
of a proper statistical framework that integrates reactiv-
ities over a set of multiple hallmark sites and enhances
the statistical signal.

SHAPE and DMS reactivities are intrinsically stochas-
tic, and the distinction between closed and open bases
should be understood in probabilistic terms. We show in
Figure the histogram of SHAPE reactivities of sites
expected to be base-paired (teal) or unpaired (gold) in
presence of SAM according to the consensus secondary
structure. Unpaired sites are characterized by a different
distribution of reactivities with a longer tail on high val-
ues than base-paired sites; further validating the consen-
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H no SAM with SAM
: Nat.(Seed) 111 0f 151  75(67.6 +4.4%) 36 (32.4 + 4.4%)
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=
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O Nat. (x) Total 126 26 49 201 &
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FIG. 7. Statistical analysis of SHAPE and DMS reactivities for natural and generated aptamers. A,B) Empirical density
histograms of SHAPE (A) and DMS (B) reactivities of base-paired (teal) and unpaired sites (gold) for the probed natural
sequences in presence of SAM. C,D) Empirical density histogram of SHAPE (B) and DMS (D) reactivities for the pseudoknot
sites (black) in the absence of SAM (left), and in the presence of SAM (right). Inset: consensus secondary structure of the
SAM-I riboswitch aptamer domain, highlighting base-paired (teal) and unpaired (gold) sites. The sites forming the pseudoknot
in presence of SAM (black in the inset) are not included in these histograms. E,F) SHAPE protection scores S vs. RBM scores
for all probed sequences. Panels: E) without SAM, F) with SAM. Responsive aptamers are shown with filled circles. Colors
refer to the sequence origin: Natural, rCM, or RBM. Dashed orange vertical lines locate thresholds +Sg. See Supplementary
Fig. for the protection scores computed from DMS data. G) Numbers of responsive and non-responsive aptamers in
each class based on SHAPE protection scores. Error bars reflect the uncertainty in the estimated fractions based on the
limited numbers of conclusive aptamers in each case (Methods). H) Comparison of manual (columns) and automatic (rows)
classification of natural aptamers with SHAPE protection scores. The bottom two rows show how globally non-responsive
(N-r.) aptamers are classified according to the protection scores of the SAM binding pocket sites only. I) Classification of
natural, RBM-generated (all and high scores only), rCM-generated aptamers according to protection scores computed from
SHAPE alone and SHAPE+DMS combined data. Yes: responsive, No: non-responsive, Inc.: inconclusive.

and DMS data. The histogram of the reactivities of the
sites associated with the pseudoknot (black) in the ab-

sus secondary structure [3] obtained by the covariation in 4
the alignment and the large epistatic scores in Fig. [3| for
secondary contacts. This picture also holds for DMS re- 0 sence of SAM is compatible with the histogram of un-
activity distributions, see histograms for base-paired and a0 paired sites, consistently with the expected conformation
unpaired nucleotides in Fig. [7B. a1 of most aptamers in this condition (Fig. . In the pres-
ence of SAM, the histogram of pseudoknot reactivities
shifts towards the distribution of paired sites. This is
consistent with the occurrence of a conformational switch

<

I3

©

S)

41
A clear confirmation that structural information can

be extracted at the distribution level is presented in ,,
Figs. [7IC and D corresponding to, respectively SHAPE
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a5 in most aptamers, leading to formation of the pseudoknot
upon SAM addition. Similar observations can be made
for the P1 helix (Supplementary Fig. .

Based on the findings above, we introduce a statis-
tical approach to capture the information about struc-
tural changes present at the distribution-level in reactiv-
ity data. Let M be the set of hallmark sites showing
significant reactivity changes in natural aptamers in re-
sponse to SAM (Fig. [FE). This set includes the pseu-
doknot, SAM contacts, a kink turn and sites involved in
base triples (see Supplementary Table .

We then define, for each aptamer and each condition
(with or without SAM), a Protection Score S for the
propensity that sites in M are paired. Formally, S is a
log-likelihood ratio between these sites being all paired
and all unpaired [23| [79] computed from the histograms
of paired and unpaired sites in Figs. (SHAPE) & B
(DMS). The score S also accounts for sampling noise aris-
ing from limitations on the sequencing depth [73], which
may strongly impact some experiments, see Methods. We
emphasize that aggregating multiple sites in the score is
crucial to reduce the statistical noise intrinsic to chemical
probing measurements (see Fig. and Supplementary
Figures[S25] [S39)). Furthermore, when SHAPE and DMS
data are available for the same aptamer, the two protec-
tion scores can be summed up to obtain a more robust
predictor, which we refer to as DMS+SHAPE below.

Figure [7[E reports the SHAPE protection scores with-
out (left) and with (right) SAM for natural aptamers.
For aptamers switching in response to SAM, we observe
that S shifts from negative values in the absence of SAM
(indicating the hallmark sites are likely to be unpaired)
to positive values in the presence of SAM (indicating that
these sites are involved in an interaction). Hereafter, we
will call

416

41

=)

418

419

420

421

422

423

424

42!

G

426

427

428

429

430

431

432

433

434

435

436

437

43;

&

439
440
441
442
443
444
445
446
447
448

449

e responsive every aptamer, whose protection score &
is lower than —&y in the absence of SAM and larger
than +& in the presence of SAM,;

450
451

452

e non-responsive every aptamer, whose protection
score S is larger than —Sy in the absence of SAM
or lower than 4+8&p in the presence of SAM;

453
454

455

456 o inconclusive if either score (with or without SAM)

as7 is smaller than Sy in absolute value.

»ss We adopt a 5-fold significance threshold Sy = In(5), see
a0 Methods.

As shown in Fig. [7JG, aptamers responsive according to
w1 SHAPE protection scores (both natural and generated)
w2 tend to have high RBM scores. In particular, 35% of
w63 RBM-designed aptamers with RBM score > 300 struc-
a4 turally switch in response to SAM, exhibiting significant
w5 responses in the hallmark sites. These sequences differ
w6 by 10 to 30 residues from the closest natural sequences
s (Supplementary Fig. [S4). In the case of failing RBM-
w8 generated sequences, the structural motifs (pseudoknot,
w0 P1, etc.) remain either protected even in the absence
a0 of SAM, or reactive in the presence of SAM. We find

460

11

an that most of the 45 RBM non-responsive sequences fail
in the second manner: they do not have the necessary
contacts even in presence of SAM. Non-responsive nat-
ural sequences can fail in both ways. None of the se-
quences generated with rCM is functional, possibly due
to the inability of rCM to model tertiary motifs [22] [56].
Let us stress that the number of inconclusive sequences is
deeply affected by the read depth of the experiment, with
lower depth leading to more inconclusive sequences, see
Methods Section [T for a detailed analysis of this effect.

The outcomes of the manual and automated analy-
sis based on protection scores are compared in Fig. [TH.
The two analyses are in agreement for 110 out of the
142 (77.5%) aptamers where they are both conclusive.
Out of the 32 disagreements, 27 (19% of conclusives for
both) are responsive in the manual analysis but not in
the automated one. Manual inspection focuses on local-
ized responses that are evidence of SAM binding. The
protection-score-based analysis is more stringent, requir-
ing a global response compatible with a structural switch
across most hallmark sites. The automated analysis can
also detect local responses, by focusing on smaller sub-
sets of the hallmark sites (see last two rows of Fig. [7H,
and Supplementary Section .

To provide evidence for the reproducibility of our re-
sults, we perform two replicates of the experiment, the
first one on the total set of 301 natural and artificial se-
quences and the second one on the 201 natural sequences
only, see Supplementary Section [K]for a detailed descrip-
tion. Although some aptamers in the first replicate ex-
hibit an overall lower response to SAM (natural and arti-
ficial), the fractions of responsive sequences in each group
are consistent with the results reported in Fig. [ More-
over, 80% of identified responders in the replicates were
also responsive in the first experiment, confirming the ro-
bustness of the automated analysis (Supplementary Fig.
S19)).

The results above, obtained from SHAPE data, are
corroborated by chemical probing with DMS. Using Eq.
, we compute protection scores combining SHAPE
and DMS reactivity data for enhanced discrimination.
Fig.[7[ compares the results from SHAPE alone and com-
bined DMS+SHAPE. Let us focus on natural sequences
first. SHAPE and DMS+SHAPE provide the same clas-
sification (responsive, non-responsive, or inconclusive)
for about 86% of the aptamers. Among the remaining
14%, more than 12% are inconclusive for one of the two
approaches, and SHAPE and DMS+SHAPE disagree on
less than 2% of the aptamers only.

Similar patterns are observed for RBM-generated ap-
tamers. For RBMscore > 300, we obtain consistent re-
sponsive rates (ratio of the numbers of responsive and
conclusive sequences) of 35%, whether estimated from
SHAPE or DMS+SHAPE data. Interestingly, 48% of
RBM sequences that were inconclusive with SHAPE
s alone can be classified with DMS+SHAPE, with one
s7 quarter responding and three quarters not responding.
s No rCM-generated aptamer is considered as responsive
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A) RBM samples no SAM with SAM
= O P1 closed
% O P1open
_________ g ® P1 switch
>
2
2
g Resp. P1 closed P1 open P1 switch
£ Yes 18 19 25
3 No 13 56 2
- Total P1 conclusive: 133
T T T T T T T
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Protect. score(P1) Protect. score(P1)
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= O OO @] (0) O Pkclosed
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£ ® Pk switch
>
2
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g Resp. Pk closed Pk open Pk switch
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T
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Protect. score(Pk)

Protect. score(Pk)

FIG. 8. Local responses along P1 and the pseudoknot (Pk) require intermediate pairing energies. A) Left panel shows the
histogram of Turner pairing energies for P1 (computed with the ViennaRNA package [44]) of a random sample of RBM-designed
sequences. The following panels show the pairing energies without (middle) and with (right) SAM for the aptamers probed in
the first batch vs. the protection scores S(P1) obtained by choosing for the hallmark set M the sites in P1 only. Aptamers are
colored according to their response: if S(P1)> Sp in both conditions, P1 is always closed (open black circle); if S(P1)< —&p in
both conditions, P1 is always open (open gray circle); if S(P1) crosses from one side to the other, the motif switches in response
to SAM (filled light blue disks). Note that only aptamers for which the P1 response is conclusive are shown (133 aptamers).
The table then lists the numbers of aptamers that are responsive to SAM, compared to a local response in P1 only. B) Same

as A), but for pseudoknot (Pk) sites.

by either SHAPE nor DMS+SHAPE. A complete com-
parison of the analysis of the SHAPE and DMS data is
reported in Supplementary Fig. [S37]

Inspired by previous experimental observations for
other riboswitches [36, @0] and Sabatier’s principle for
enzymes, which require intermediate substrate binding
energies for proper function [65], we compute the thermo-
dynamic energies brought by P1 helix formation using the
Turner energy model as implemented in the ViennaRNA
package [44] (Methods). Figure shows that the se-
quences that respond to SAM through P1 helix stabili-
sation are confined to a thermodynamic energy window
ranging from -10 to 0 kcal/mol. Similarly, pseudoknot
(Pk) formation in response to SAM tends to occur for
aptamers having a Pk pairing energy comprised between
-8 and -3 kcal/mol (Fig. [8B). As P1 and Pk consists
of, respectively, 8 and 4 base pairs, the flexible energetic
window spans a range of 1.25 kcal/mol per base pair in
both cases, close to a weak base-pairing energy [13] [44].
The leftmost panels in Fig. [§] show that RBM samples
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preferentially have pairing energies in this intermediate
band for both P1 and Pk, and are thus compatible with
the structural switch required for riboswitch function.

The tables in Fig. |8 give a summary of these results.
Interestingly, 25 out of the 27 aptamers that stabilize P1
in response to SAM are also responsive, in the sense of
Fig. [7E,F, and show broad structural responses in other
Hallmark sites (Supplementary Table . Similarly, 29
out of 32 aptamers that stabilize Pk are also responsive.
On the other hand, out of 112 identified responsive ap-
tamers, in natural and artificial sequences, only 19 do
not stabilize P1 significantly after binding SAM. These
aptamers must exhibit significant compensatory stabi-
lization of other structural Hallmark motifs from Supple-
mentary Table It is important to note that P1 can
have a more flexible behavior in the full riboswitch due
to competitive interaction with the expression platform,
compared with the aptamer only. As shown in Supple-
mentary Fig. the P1 helix can be destabilized in the
full riboswitch context, whereas other helices like P2 or
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P4 are not affected, see Supplementary Figs. and

570 Taken together, these results are consistent with
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the known importance of the pseudoknot and P1 in the
response of the aptamer.

Notice that, in the central panels of Fig. [8] we show
only aptamers for which the the statistical analysis yields
a conclusive response for P1 or Pk. Inconclusive ap-
tamers also tend to have intermediate pairing energies
for P1 and Pk, consistent with structural flexibility (e.g.
breathing).

D. Further explorations of RNA switch diversity
through design

We then perform a second batch of design and ex-
perimental validation to further assess the limits of our
generative models. We probe a total of 450 generated
aptamers, whose sequences are projected onto the MSA
PCs in Fig. [9A.

First, we sample sequences with the RBM model ex-
hibiting higher distances from their closest natural coun-
terpart, focusing on RBM scores > 300. In addition,
as some natural sequences lack P4, we retain a subset of
RBM generated sequences having severely diminished P4
lengths. These are clearly seen in Fig. [JJA, clustered at
the top-left corner of the plot (recall the top PC1 repre-
sents P4 deletion). We also sample more RBM sequences
of high scores (> 300 and > 310) to obtain better statis-
tics on the fractions of working aptamers.

Second, we consider two variations of rCM, which is
over-regularized to capture distant sequences in Rfam
alignments [40]. We rebuild a non-regularized CM
trained on the same MSA, which we call Denoised CM,
or dCM for short (Supplementary Fig. [S§land Methods).
Furthermore, as CM are unable to model pseudoknots,
we devise a permutation of the MSA columns that un-
does the pseudoknot, see Fig. [JB. We trained a new CM
variant on the permuted MSA, that we call Unknotted
CM (uCM), properly taking into account covariations in
the pseudoknot. We generate sequences with such model
and permute back the pseudoknot columns (Methods).

Interestingly, both dCM and uCM share some of the
properties of rCM noted previously. First, CM-generated
sequences from all variants have predominantly low RBM
scores < 300, see Supplementary Fig. [S9 Second, CM
generated sequences exhibit restricted diversity, concen-
trating in a central region of the PCA plot, as in Fig. [D.
In particular, all CM are unable to generate sequences
without the P4 helix. Sequences sampled from uCM have
better complementarity and Turner energies favorable for
base-pairing along the pseudoknot.

We then perform SHAPE-MaP experiments and anal-
ysis. Results are summarized in Fig. [OC, and show the
RBM scores of the probed aptamers against the Ham-
ming distances to the closest natural sequence.

Out of the 248 conclusive RBM sequences in the second
batch, 22% switch in response to SAM (Table in Fig.
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closer to the natural ones is higher and compatible to
what obtained in replicate 1 considering the error bars,
see Table [1G.

Moreover, 25% of the RBM aptamers having P4 length
< 1, respond to SAM; an example reactivity profile is
shown in Fig. [OE. We also find a few switching aptamers
differing by 30 to 50 sites from any natural sequence. An
example reactivity profile for such sequence is shown in
Fig. [9F. The reactivity profile is compatible with the con-
sensus secondary structure, with most reactivity peaks
tending to occur in unpaired loops (except a portion of
P3 that remains reactive), and an overall protection in
response to SAM compatible with binding and stabiliza-
tion of the aptamer. Notice that RBM generate diversity
not only in highly variable parts of the sequence, but also
in more conserved sites (Supplementary Fig. .

These results support the generalization ability of the
RBM. In contrast, only 3 out of 20 conclusive dCM sam-
ples switch in response to SAM (15%), and only 1 out of
16 from uCM (= 6%). Thus the dCM and uCM perform
better than rCM, but not as good as RBM.

DISCUSSION

In this work, we focused on the design of small molec-
ular RNA switches, capable of changing conformation
upon binding to a metabolite. Building such aptamers
is a first step in the design of functional switching RNA,
with many potential applications in developing labora-
tory tools for gene function studies, metabolic engineer-
ing or drug design, as they can be used to regulate gene
expression [II, 26 37]. The design of allosteric and reg-
ulatory RNA is also key to DNA-RNA computing, and
to the investigation of possible scenarios for the origin of
life [12] 38, [71].

State-of-the-art design methods for RNA are based on
computational frameworks to fold sequences in a given
secondary structure from the knowledge of thermody-
namic parameters for the pairing energies [87], possi-
bly including tertiary elements such as pseudoknots [93].
Such methods have been used to obtain sequences with
bistable secondary structures [25] and extended to take
into account both positive and negative design elements
[63, @3], as well as to community-based rational design
[43]. Our design method, based on the unsupervised gen-
erative architecture of Restricted Boltzmann Machines,
differs in two key ingredients: i) it exploits the sequences
(of SAM-I riboswitch aptamers) sampled through evolu-
tion and collected in databases, building upon the frame-
works introduced in homology and covariation detection
[19, 511, 57, [63] [92]; ii) it encompasses, through learning
of a unique parametric model, the arrangements of nu-
cleotide motifs allowing natural sequences to acquire ad-
equate secondary and tertiary structures and to undergo
an allosteric response to metabolite binding.

We have verified that the RBM model learned from se-
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14
A) Probed sequences B) Removing the Pk. by permuting MSA columns
A A
GCACGUGU GCGCAUGU
Red sites participate in Pk. Pk. disappears after permutation
D) Conclusive Responsive Non-responsive
RBM(RBMscore>300) 248 of 392 55(22.2 + 2.6%) 193 (77.8 +£2.6%)
RBM(RBMscore>310) 172 of 287 47 (27.3 £ 3.4%) 125(72.7 + 3.4%)
RBM(no P4) 31 of 70 8(25.8+7.9%) 23 (74.2 +7.9%)
RBM(div.<0.3) 205 of 337 53(25.9+3.1%) 152 (74.1 +3.1%)
RBM(div.>0.3) 43 of 55 2(4.7+£3.2%) 41 (95.3 + 3.2 %)
Denoised CM 20 of 29 3(15.0 £ 8%) 17 (85.0 + 8.0%)
Unknotted CM 16 of 29 1(6.2+6.1%) 15 (93.8 + 6.1%)
All 284 of 450 59 (20.8 £ 2.4%) 225 (79.2 £ 2.4%)
All(RBMscore>300) 249 of 393 55(22.1 +2.6%) 194 (77.9 +2.6%)
T T T T All(RBMscore>310) 172 of 287 47 27.3 £3.4%) 125(72.7 + 3.4%)
4 2 0 2 4
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Divergence from closest natural site

FIG. 9. Additional generation of sequences. A) Projection of sequences probed in second set of designed sequences along
the PCs of the natural MSA, colored by origin: RBM, Denoised and Unknotted CM (dCM, uCM). The full natural MSA is
shown in background (gray) for comparison. B) Diagram explaining the uCM, where the pseudoknot is undone by permuting a
specific set of columns in the MSA. In this manner, a CM can model covariation along a pseudoknot. See Methods for details.
C) Divergence from closest natural sequence in the MSA (fraction of sites that differ) vs. the RBM score, for all sequences
probed in the second experiment. Colored circles correspond to aptamers that switch in response to SAM (fill color) or not
(empty), with the color indicating the sequence origin: RBM (blue), dCM (red), and uCM (orange). Sequences for which
our analysis is inconclusive are shown in light cyan. D) The table summarizes the numbers of switching sequences in each
group. E) Reactivity profile of example responsive RBM generated sequence with no P4 (indicated by teal triangle in A,C).
F) Reactivity profile of example responsive RBM generated sequence at large distance from natural sequences (indicated by

black triangle in A,C).

quence data encode nucleotide-nucleotide contacts in the
secondary structure and in the pseudoknot, performing
at the same level as pairwise Potts/DCA models previ-
ously introduced to this aim [I9, [02]. In contradistinc-
tion with those pairwise interaction-based models, RBM
are capable of extracting extended nucleotide motifs, e.g.
overlapping one or more structural elements. A major
advantage of the shallowness of the RBM architecture
is that these motifs can be readily accessed and inter-
preted through inspection of the weights (Fig. and
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Fig. BB&C).

To assess the sequences designed by our computational
models, as well as the natural sequences belonging to the
SAM-I riboswitch aptamer family, we have carried out
high-throughput SHAPE and DMS screening. We have
introduced and implemented a statistical pipeline to an-
alyze the measured reactivities, based on a likelihood ra-
tio between reactivity distributions of paired/unpaired
nucleotides, called protection score [23] [79]. Our analy-
sis takes advantage of the closely related statistics of the
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ensemble of tested sequences and their shared consensus
secondary structure. As it does not rely on a biophysical
implementation of the Turner model [44], tertiary con-
tacts such as pseudoknots, which are essential to model
complex conformational changes such as those occurring
in riboswitches, are fully accounted for. Last of all, our
pipeline is fully automatic and does not require manual
annotation, which is time consuming for high-throughput
screening.

Our analysis of SHAPE and DMS data shows that
RBM are able to successfully design artificial SAM-I-
riboswitch-like aptamers. Of the sequences generated
with high RBM scores for which our conservative statis-
tical analysis could reach a clear conclusion, 35% could
be classified as responding to SAM in the first replicate.
This fraction is significant, and shows that RBM are ef-
fective as generative models of complex RNAs. It is,
however, lower than the one (70%) of natural sequences
deemed as responsive according to the same criterion. We
emphasize that the fraction quoted above varies with the
constraints considered during the generation process. For
instance, up to 50% of RBM-generated sequences were
recognized as responsive when the fraction of mutated
residues with respect to the closest natural sequences is
of 20% (over 108 nucleotides). Pushing generation to the
limits as in the second experiment made the global frac-
tion drop down to 22%, but allowed us to generate func-
tional aptamers with as many as 46% of mutations with
respect to the closest known natural aptamers. More-
over, RBM can design responsive aptamers lacking the
P4 helix (as in some natural variants), whereas CM are
unable to generate such sequences.

The success of our design approach crucially relies on
the capability of RBM to capture nucleotide motifs re-
sponsible for tertiary structural elements. This state-
ment is supported by the fact that CM, while capturing
the local conservation and secondary structure of the Ri-
boswitch family, has significantly lower generative per-
formance (~ 11%, Denoised & Unknotted). In addition,
RBM generate flexible structural elements, with inter-
mediate pairing energy values, permitting them to open
and close depending on the metabolite presence. From
this point of view, while RBM have already been used to
generate functional proteins [47] or DNA aptamers [21],
this is the first time they are shown to be able to design
allosteric biomolecules.

Besides the responsive/non-responsive classification
based on protection scores, a pattern of phenotypes is
observed in the generated sequences through manual in-
spection of the reactivity profiles and of their changes
with SAM presence. Among the natural sequences that
fail to qualify as fully responsive with our automatic
statistical pipeline, many are manually seen to exhibit
local reactivity responses to SAM indicative of binding
(Fig. @p,D).This response can manifest itself as a change
in the reactivities of the sites related to the SAM bind-
ing pocket, or involved in P1, in the pseudoknot, or in
any of the three base triples. Similar patterns are en-
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countered in RBM-generated sequences, see Supplemen-
tary Section [N The distinction between binding to SAM
and being able of undergoing conformational change we
observe here agrees with recent directed evolution ex-
periments. It was reported that evolving RNA for lig-
and binding alone often failed to produce functional reg-
ulatory RNAs [36], [90], highlighting the importance of
the structural switch. More recently, Capture-SELEX,
in which conformational change triggered by the ligand
and optimal switching time are selected for was proposed
for this purpose [1} [6, 26]. Supervised classifiers, learned
from the experimental sequences were shown to be able
to predict the functionality of the molecules [I], 26] [37].

Since this paper was posted on the archive, two works
have developed generative models of structured RNA:
[10] proposes a parsimonious DCA-like model, which pro-
motes sparsity of model weights and validated experi-
mentally generation of a tRNA family; [80] introduced a
combination of Variational AutoEncoders with CM and
showed that their model was generative over various ri-
bozyme families. Our work differs in that it presents
the first example of design of RNA molecules exhibit-
ing structural switching upon metabolite binding. We
have further performed a comparative analysis of the
two-layer RBM-based generative model to the deep vari-
ational autoencoder (VAE) models of [80] on our data.
RBM seems to detect key features in natural sequence
data not extracted by VAE: VAE give similar scores
to RBM-generated and natural sequences, while RBM
scores are higher for natural than for VAE-generated se-
quences (Supplementary Fig. . Further investiga-
tions, in particular experimental tests, would be neces-
sary to better understand these preliminary results.

We plan to investigate more deeply the mechanisms for
conformational switching in different subfamilies of the
SAM-riboswitches family. We emphasize that the RBM-
based design of artificial RNA sequences can be carried
out for any RNA family for which homologous sequences
are available. As shown in SI, Section L, we have also
learned RBM models on the aptamer domains of three
other riboswitch families: cyclic di-AMP[2], Cyclic di-
GMP-I[78], and Glycine riboswitches [48]. The designed
sequences are of high computational quality, as proven by
the similarity of the scores assigned by the RBM and the
CM models and of their statistics with respect to natural
sequences, see Supplementary Fig.

In addition, our approach could be extended to the
modeling of complete SAM riboswitches by including the
expression platform. In this context, it would be interest-
ing to perform functional tests of the designed aptamer,
e.g. in yeast constructs with a GFP reporter protein
[26]. It would be in particular interesting to check if the
increased flexibility of P1 helix in presence of the ex-
pression platform increases the percentage of molecules
responding to SAM among the tested ones. Due to the
strong interactions between the latter and P1 (Supple-
mentary Fig. , the RBM should be trained on full ri-
boswitch sequences, including both the aptamer and the
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expression platform. However, full riboswitch sequences
exhibit significant length variability, with hard-to-align
regions, which would require some modifications in our
model such as introduction of a convolutional layer.
Lastly, RBM could also be used to design other RNAs,
including longer and more complex ribosomal RNA.

METHODS

A. Multiple sequence alignment of SAM-I
riboswitches

The RF00162 family from the Rfam database [4I]
groups sequence homologs of the aptamer domain of
the SAM-I riboswitch. We downloaded a manually cu-
rated seed alignment from Rfam (version 14.7), contain-
ing 457 aptamer sequences supported by literature evi-
dence. These seed sequences are aligned to a consensus
secondary structure (shown in Fig. [IB) that has been
informed by the holo-form of SAM-I riboswitch crystal
structures [45] [53]. After removing extended stems and
variable loops, labeled as insertions in the alignment, we
obtain 108 matched positions (including gaps that mark
deletions) spanning four helices that interleave around
a central four-way junction. We trained a covariance
model (CM) [22] on this seed alignment using Infernal
[56] with default settings. Following standard protocols
[40], we acquired 6161 additional sequences from Rfam,
collected from genome databases and filtered for signifi-
cant matches to the CM. We constructed a multiple se-
quence alignment (MSA) with these sequences, that we
refer to as the full MSA, to distinguish it from the seed
MSA consisting only of the 457 manually curated seed se-
quences. The sequence conservation logo of the full MSA
is shown in Fig. [IC.

B. Infernal pipeline

Infernal [56] is a set of computational tools to fa-
cilitate modelling RNA sequence families under a pro-
file stochastic context-free grammar (pSCFG) formalism,
also known as covariance models (CM) [22]. A CM is
capable of modelling the conservation profile of impor-
tant sites along the sequence, as well as correlations be-
tween distant sites required by the complementarity of
base-pairs in a given secondary structure. Infernal is rou-
tinely used in the maintenance of alignments in the Rfam
database [40, 41]. We employed Infernal to construct the
RF00162 full MSA, that we use to train the RBM.

By restricting to covariations in the secondary-
structure, CM can be efficiently implemented with dy-
namical programming algorithms [22]. However, these
assumptions also imply that CM is unable to include ad-
ditional constraints in the probabilistic sequence model,
such as pseudoknots and other tertiary contacts in the
3-dimensional fold of the RNA molecule.
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1. Rfam CM.

The Rfam database associates a CM model to each
family, trained on the seed alignment, that is used to
scan large genomes for significant sequence matches to
the family (hits). The raw CM model downloaded from
Rfam is significantly regularized so that it is more effec-
tive in fetching far homologs of a family in deep genome
searches [55]. We will refer to this CM model as Rfam
CM, or rCM for short.

2. Denoised CM.

Since rCM is strongly regularized, in this work, we also
trained a CM model variant on the full MSA, with no
regularization, which we call Denoised CM, or dCM for
short. This model reproduces more closely some statis-
tics of the full MSA (conservation and covariances asso-
ciated with the secondary structure).

3. Unknotted CM.

A CM model cannot model pseudoknots and other ter-
tiary contacts. Based on our knowledge of the consen-
sus secondary structure of the SAM-I riboswitch aptamer
(Fig. [[B), we devised a third CM model able to account
for sequence covariation in pseudoknot sites constructed
as follows. Columns 77-80 of the MSA, corresponding
to the sites on the 3’-end part of the pseudoknot, were
moved and inserted after site 28, right next to the the
sites at the 5’-end of the pseudoknot. In this way, the
pseudoknot is “unknotted”, and is now representable in
the CM model as part of a pseudo-secondary structure
corresponding to the permuted MSA. Accordingly, we
proceeded to train a CM model on the rearranged full
MSA. We call the resulting model Unknotted CM, or
uCM for short.

4. Sampling the CM.

To better understand the limitations of CM models
and the advantages of RBM, we sampled 10000 sequences
from each of the three CM described above. For the
uCM, the rearranged columns are permuted back to their
original positions after sampling. We used Infernal’s
cmemit program with default parameters, and without
insertions. Infernal computes a score of sequences aligned
to the CM, related to the likelihood of the CM to emit
a given sequence (also called bit-scores). We computed
this score using cmalign, with -g (global) option to avoid
local approximations [55].
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C. Restricted Boltzmann machines

Restricted Boltzmann Machines (RBM) [35] are bi-
partite graphical models over N visible variables v
{v1,v2,...,un} and M hidden (or latent) variables h =
{h1,ha,...;hpr}, see Fig. . Here N = 108 corresponds
to the sequence length of the RF00162 alignment, and
v; encodes the nucleotide present at position 7 of a se-
quence. For RNA, v; can take one of ¢ = 5 possible val-
ues, corresponding to the nucleotides A, C, G, U, and the
alignment gap symbol (H). The hidden variables h,, are
here real-valued. The two layers are connected through
the interaction weights w;,. An RBM defines a joint
probability distribution over v and h through

1
P(v,h) = —e PR, (1)
Z
where Z is a normalization factor, known as the partition
function, and the energy E(v,h) is given by

N M
Zzwm(vi)hu

=1 p=1
@)
The functions V;(v;), U, (h,) are potentials biasing the
distributions of single units. The visible units v; can take
a finite number of possible values, and therefore the quan-
tities V;(v;), also called ‘fields’, can be stored as a ¢ x N
matrix. Similarly, the weights w;,(v;) can be stored as a
q X N x M three-dimensional tensor. The hidden vari-
ables, on the other hand, are continuous, and we chose
to parameterize their potentials with the double Rectified
Linear Units (dReLU) form proposed in [86],

N

E(v,h)=>"

=1

M
Vi(vi) + Zuu(hu) -

+p2 +

ViR )2 — 0% h, h, >0
Up(hy) = "% " 3)
S {7/L hi/z - 0/1, hli h’ll < 0

with real parameters 'yf,@ff, satisfying 'yj[ > 0. The
dReLU is an attractive choice because it is expressive
enough to cover several interesting settings. When v, =
v, and 6F = 6., Eq. becomes a quadratic (i.e.,
Gaussian) potential, and is closely related to Direct-
Coupling Analysis models popular in protein sequence
modelling [I4, 19 [54] [68, [72], 9T]. However, the Gaussian
choice is unable to parameterize more than two-body in-
teractions, which can be a limitation in RNA structure
where some interactions are known to involve more than
two sites (e.g. stacking interactions [I3] ©94]), as well as
functional interactions that can span complex, extended
structural and sequence motifs. dReL.U can also adopt
a bimodal form when 67 > 0 > 6, which is helpful for
clustering.

The likelihood of visible configurations under the RBM
can be obtained by marginalizing over the states of the
hidden units:

1 1
P = / e POy = ¢ ) (4)
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where — Eog(v) is the resulting RBM score that incorpo-
rates effective interactions arising from the marginalized

latent variables (see Fig. [2C):

N M
Vi(vi) — Z 1n/ezz‘ “’iu(”i)hu*%(hu)dh#

p=1
(5)
Although evaluating P(v) is computationally difficult
(because the partition function Z is intractable), Eq.
shows that the score —FEqg(v) can be computed effi-
ciently.
The computation of epistatic scores follows [86]. Fur-
ther details about our RBM implementation for training
and sampling are given in Supplementary Section [A]

=1

D. Biophysical energy calculations

We computed biophysical pairing energy predictions
for the formation of P1 and the pseudoknot of various se-
quences using the Turner energy model, as implemented
in the ViennaRNA package [44], with the RNAeval pro-
gram.

e For the P1 helix, we computed the energy difference
of each sequence in the consensus secondary struc-
ture of the aptamer domain, where P1 is paired
(Fig. [[B), and in a conformation where P1 is un-

paired (Fig. [JA).

e To estimate the pairing energy associated to pseu-
doknot formation, we used RNAeval on a virtual
secondary structure where only the pseudoknot
sites are base-paired, and all other sites are un-
paired. We then considered only interior loop con-
tributions to the resulting folding energy.

Note that, in both cases, intrinsic limitations of the Vien-
naRNA algorithmic implementation imply that we can-
not model the pseudoknot together with other structural
elements (and other tertiary contacts).

E. Selection of sequences for first batch

We probed a total of 306 sequences, breaking down as
follows.

RBM sequences. We generated sequences from the
RBM by Gibbs sampling. Equilibration was assessed by
monitoring the average score of the sample. We found
that 5000 steps were more than sufficient. We then sorted
these sequences by their RBM score (—FEeg ), and selected
70 sequences at random, uniformly spanning the range of
scores observed in the sample. The table of sequences and
their associated RBM scores is reported in the Supple-
mentary Code listing [15], see Section
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Infernal sequences. We then sampled sequences from
the rCM of the RF00162 family, downloaded from Rfam.
We used the Infernal cmemit program (see Methods) to
sample a large batch of sequences. We selected 30 se-
quences uniformly spanning the range of bit-scores of the
samples.

Natural sequences. We selected 151 sequences mem-
bers of the seed MSA and 55 sequences members of the
full MSA, as described in Section{A] The selected nat-
ural sequences are diverse, spanning various taxonomic
classes (see Fig. [B). A listing of probed sequences can
be found in Supplementary Data 2.

F. Selection of sequences for second batch

In the second experiment, we generated a total of 450
sequences to be probed, of different origins. We consid-
ered:

e 58 CM sequences, with 29 from uCM and 29 from
dCM (see Section [B| for definitions of these CM

variants).

e 392 sequences sampled from the RBM, filtered to
have RBM scores > 300. In particular, 49 of them
were selected because they had no P4 helix, while
100 of them were selected because they had larger
Hamming distances from any natural sequences.
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the Supplementary Code listing, see Section

G. Selection of sequences for DMS probing

We selected a subset of aptamers from batches 1 and
2 for DMS probing. From batch 1,

e 84 sequences generated by RBM;
e 16 sequences generated by rCM;
e 152 natural sequences.
From batch 2,
e 102 sequences generated by RBM;
e 10 sequences generated by uCM or dCM.

The full list of sequences probed by DMS is provided as
part of the Supplementary Code listing, see Section

H. Chemical probing experiments
1. RNA preparation.

DNA oligonucleotides representing the 206 SAM-I
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of artificial sequences, preceded by the T7 promoter
(5’CGGCGAATCTAATACGACTCACTATAGG3’) and
followed by a tag sequence representing a 10 nucleotide
barcode unique for each aptamer and a primer binding
site, were purchased as an oligonucleotide pool (Twist
bioscience). The Tag sequence was designed to avoid
interference with the aptamer secondary structure using
RNAFold [44] (see [32] for the tag design method). The
oligo pool was PCR amplified using the T7 promoter
as forward primer and five different reverse primers
(5’ GGAAGGAGGCGGGCAGACG3, 5 CGTATTAC-
CGCGGCTGCTGGY, 5 CGACGAGATAGGCGGA-
CACTGG3’, 5’'CGACGAGATAGGCGGACACTGG3,
5’GAAGTCGTAACAAGGTAGCCGATS), provided in
Supplementary Data 1. RNA was transcribed, prepared,
and checked for the absence of aberrant products on
a 1% agarose gel [20]. See Supplementary Sec. |9 for
details.

Read depths vary with the choice of the primer, see
Supplementary Figs. As explained in
Methods Section [0l we have verified that our statisti-
cal analysis give consistent rates of responsive aptamers,
even for primers with lower coverage.

2. SHAPE and DMS probing.

SHAPE chemical probing was performed as described
previously [73]. Briefly, 10 pmol of RNA were diluted
in 12 pL of water and denatured for 3 min at 85°C.
Then, 6uL of 3X pre-warmed folding buffer with or with-
out magnesium (0.3M HEPES pH 7.5, 0.3M KCl, 15mM
MgCl2) were added and the solution was allowed to cool
down to room temperature. Samples were then incu-
bated at 30°C for 5 min. S-adenosyl-methionine (SAM)
was added at final concentrations of 0, 0.1 or ImM and
samples were incubated 15 min at 30°C. 9 pL (corre-
sponding to 5 pmoles) were aliquoted and 2 pL of 50
mM 1M7 (1-Methyl-7-nitroisatoic anhydride) or DMSO
(Mock reaction) was added and allowed to react for 6
min at 30°C. For dimethyl-sulfate (DMS) probing, 0.9puL
of 600mM DMS stock solution (or 0.9pL of ethanol for
mock reactions) was added and allowed to react for 10
min at 30°C. DMS probing reaction was then quenched
by adding Tris pH8.0 at 400mM final.

RNAs were then reverse transcribed with the Super-
script IIT reverse transcriptase (Invitrogen®)) and NGS
libraries were prepared using NEBNext Ultra II DNA
Library Prep Kit (New England Biolabs®)). Final prod-
ucts were sequenced by using the Illumina technology
(NextSeq 500/500 Mid 2x150 flow cell). Sequencing data
were analyzed and reactivity maps were derived using
ShapeMapper2 [9]. In the end, the 306 selected sequences
were probed in the following conditions:

e 30°C, without Mg?* and without SAM.

e 30°C, with magnesium (Mg?").
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e 30°C, with magnesium and two concentrations (0.1
and 1mM) of SAM.

Each probing reaction was repeated in triplicate. The
two SAM concentrations were analyzed together to im-

varying the SAM concentration in the reactivity re-
sponses of the aptamers (see Supplementary Fig. [S21]).
The reading efficiency per site (read depths reported
by Shapemapper) is plotted for the tested aptamers as

grouped by primers in Supplementary Figs. and
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8. Manual inspection of reactivity profiles.

IPANEMAP [69] was used to generate RNA secondary
structure models for each sequences. For manual in-
spection, we considered the reactivity of the nucleotides
known to be directly involved in SAM binding (U7, G11,
A46, U69, G70, U103) and of those known to be pro-
tected from shape reactivity in the closed stated, i.e.,
nucleotides in P1 (1-8; 101-108), in the pseudoknot (25-
28; 77-80), those involved in the three base triple interac-
tions (24, 73, 74, 76, 100). Nucleotide numbering follows
the profile shown in Fig. [[IC. An aptamer was consid-
ered to bind SAM if at least three of these elements are
noticeably less reactive upon SAM addition, and if none
of the binding determinant remain highly reactive. Note
that P1 and the Pk are each considered as one element,
and that some of the elements may be unreactive even in
absence of SAM.

I. Statistical analysis of reactivities

1. Reactivity definition.
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SHAPE-MaP experiments result in measurements of 1166

sequencing error rates at each site of the RNA sequence,
that correlate to the locations where the SHAPE probe
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has reacted with the RNA. For each site ¢ = 1,..., N of 16

a sequence n, the reactivity is defined by [73]:

Min — Uin

din

where m;,, is the mutation rate in presence of the reagent,
Uiy 1S the mutation rate in its absence accounting for mu-
tational background of the experiment, and d;,, is the mu-
tation rate in a denaturating condition where the RNA
is expected to be unfolded, intended to cancel sequence-
dependent biases. Working with r;, is usually better
since this form should cancel site-dependent biases in
the raw SHAPE mutation rates, m;,. The basis of the
SHAPE-MaP procedure relies on differences in the dis-
tribution of reactivities in base-paired and unpaired sites
[73]. We have confirmed such differences are observed in
our data in Fig. [7| (and also Supplementary Fig. .
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2. Statistical analysis.

The finite number of sequencing reads collected at a
site implies a statistical error in the reactivity computed
by Eq. @ Therefore, we cannot directly access the
true reactivity r;, at a site, but rather an experimental
measurement 7;, that fluctuates according to the number
of reads taken at the site. To model this uncertainty, we
make the simplifying assumption that the ideal reactivity
of a site, r;,, depends only on whether the site is base-
paired (bp) or not (np). Under this assumption, we can
write:

(7)

J P(r|np) P (Fip |1)dr
where:

o P, (7:n|bp) is the probability of measuring reactiv-
ity 7, at site i of sequence n, given that the site is
base-paired and conditioned on the finite number
of reads taken at this position.

e P, (Tin|r) is the probability of measuring reactivity
Tin at site ¢ of sequence n, on account of fluctuations
due to a finite number of reads, conditioned on this
site having a real reactivity of r.

e P(r|bp) is the probability distribution of reactivi-
ties of base-paired sites, at infinite read-depth, as-
sumed to be homogeneous across sites.

® P, (Tin|np) and P(r|np) are defined in a similar
manner for non-paired sites.

We approximate the distributions P(r|bp) and P(r|np)
by kernel density estimators fit on the corresponding em-
pirical histograms (shown in Fig. for the first ex-
periment). The kernel function used corresponds to a
standard normal, with a bandwidth set according to the
Silverman rule [74]. To better estimate the histograms,
we use the experimental conditions with SAM, where
the secondary structure of the aptamer is expected to
be more stable. We also find that these histograms can
depend on the particular experiment, and therefore we
fitted P(r|bp), P(r|np) for each replicate.

Applying Bayes theorem [46] in Eq. (7)), we can write:

Pin(Finlbp) — [(P(r|bp)/P(r)) Pin (r|Fin)dr
Pin(Fin‘np)

(8)

J(P(rnp) /P (r)) P (r|Fin ) dr

where P(r) is the histogram of real reactivities, regard-
less of whether a site is paired or not. The posterior
Pin(r|Fin) quantifies the uncertainty of the real reactiv-
ity r at site ¢ of sequence n, conditioned on our infor-
mation of the measurement taken at this site. This un-
certainty arises from the finite sequencing reads available,
which induce an experimental error in our estimate of the
quantities m, u, d appearing in Eq. @ Since the muta-
tion count at a site can be modeled by a Poisson distri-
bution [73], the posteriors of the mutation rates m,u,d
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are Gamma distributions, with a convenient choice of
conjugate prior [46]. Then, we can produce a Monte-
Carlo estimate of P;,(r|7;,) by sampling the posterior
Gamma distributions of m,u,d, and computing the re-
activity through Eq. @ If the sampled reactivities fall
predominantly far in the tails of the histograms P(r|bp)
or P(r|np), respectively, the reactivity measurement is
discarded as an outlier. In practice, we find that 1000
samples for each site are sufficient. These samples can
then be used to approximate the numerator and denom-
inator of the right-hand side of Eq. . In this way, we
produce estimates of the ratios Py, (7in|bp)/Pin(Fin|np),
quantifying the odds that a site is paired. Supplemen-
tary Fig. shows a scatter plot of reactivities in our
dataset, with the standard-error estimated by the stan-
dard SHAPE-Mapper pipeline [73] (which does a first-
order error propagation through the Poisson count statis-
tics), with each point colored according to the value of
the log-odds-ratio Eq. ‘ Dashed lines are approximate
contours separating points that are over twice more likely
to be paired (blue) or unpaired (red). The fact that these
contours are not straight vertical lines indicates that, us-
ing Eq. , we are considering both the reactivity value
and its uncertainty in assessing the plausibility that a site
is paired or not. A similar approach has been proposed
by [23,[79]. See also Supplementary Sectionfor further
discussion and tests.

3. Protection scores

We can exploit the likelihood ratios
Py (7in |bD)/ Pin(7in |np) computed above to estimate the
probability of the presence of a structural motif in a
sequence. We define a motif of length 2L as a set of base-
paired sites, M = {iy,j1,...,ir,jr}. For example, the
P1 helix motif corresponds to {1,108,2,107,...,8,101}.
We then probabilistically assess the presence or absence
of the motif M in molecule n by comparing the value of
the protection score

to some thresholds +8,, see Section[C] This approach al-
lows us to combine multiple reactivity measurements into
a robust probabilistic measure, achieving more statisti-
cal power than when site reactivities are analyzed one by
one.

This approach can be applied to SHAPE or DMS re-
activity data. As DMS probing is efficient in detecting
interactions involving nucleotides A or C predominantly,
we only consider DMS reactivities obtained at sites where
the aptamer sequence has an A or C. The base-pairing
histograms P(r|bp) and P(r|np) for DMS, shown Fig.[7B,
are estimated using only reactivities measured at sites
with A or C nucleotides.

'm Tzn|bp)

Py, Tzn|np)

=Y I

ieM
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4. Combining SHAPE and DMS data

When both SHAPE and DMS data are available for
the same aptamer, we can combine them to obtain bet-
ter predictions about the base-pairing status of a site.
Since the SHAPE and DMS reactivities are obtained in
independent experiments,

P(Fin,SHAPE; Tin,DMs|bP)

= P(Tin,suapre|bp) X P(Fin,pms|bp)  (10)
where fin,SHAPE and fin,DMS denote SHAPE and DMS
reactivity data at the same site i of aptamer n. This in-
dependence implies that the log-odds ratio of the pairing
status of a site or a structural motif (as in Eq. @), in
presence of both kinds of data, can be computed by sim-
ply adding the protection scores obtained from each kind
of probing alone:

Stot. (M) = Ssaare(M) + Spms(M) (11)
where Sspapg is the protection score obtained from
SHAPE data, and Spys the protection score obtained
from DMS data.

5. Error bars on the rates of responsive aptamers

Given Neone. conclusive probed sequences, Nyesp. Of
which are found to be globally responsive, we estimate
the response rate by p = Nyesp./Neone.. The uncer-
tainly over p is, according to the binomial law, err =

—D)/Neone.- The response rates in Figs. |§| are
reported as (p & err) x 100%.

We have investigated the dependence of these uncer-
tainties on the SHAPE-Mapper read depths, which varies
with the primers. Supplementary Fig. shows that the
inconclusive rate is strongly anti-correlated with the read
depth. Both rates of responsive and non-responsive se-
quences increase with the read depth, a consequence of
the decrease of the statistical noise. To mitigate this sta-
tistical effect, throughout this work, the response rate is
computed as the ratio of responsive molecules over the
number of conclusive ones, compare top and bottom pan-
els in Supplementary Fig. The dispersion due to this
statistical noise are accounted for by the error bars in the
results shown in Fig. [7|G as explained above. We have
also investigated the dependence of DMS results on the
read depth (Supplementary Fig. . As with SHAPE,
the inconclusive rate increases with the read depth.

J. SHAPE protection scores are in agreement with

consensus secondary structure

Sequence homologs in the RF00162 family are collected
based on similarity to a group of manually curated se-
quences in the seed. Overall, for many of these sequences
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(both in the seed and in the full alignment), direct exper-
imental evidence of their actual behavior and structure
is limited, except for specific cases, such as the Ther-
moanaerobacter teng- congensis and the Bacillus sub-
tilis yitJ SAM riboswitches, which have been extensively

1328

1329

1330

1331

1332

studied in the literature fueled by detailed knowledge of 113

their published crystalized structures [45] [53]. For many
other sequences in the MSA, their actual behavior is at
most hypothesized based on indirect evidence.

We
Bgseeda = 151 sequences of the seed alignment. Our data
shows that, in average, these sequences are compatible
with the consensus secondary structure of the RF00162
family, shown in Fig. [[B. Indeed, we have computed the
average protection scores (S(4)) for each site 4, over the
sequences in the seed alignment probed in our experi-

ments,

Figure plots (S(¢)) in the conditions with SAM and
without SAM. Overall, the averaged protection scores
are in detailed agreement with the consensus secondary
structure of the aptamer, depicted in Fig. [I0A. Helices
P2, P3, P4 are seen to be base-paired in average in all
conditions, with a mild overall increase in the values of S
with the addition of magnesium and then SAM, indicat-
ing overal structural stabilization. The central junction
loop (CL), and the loops on the second helix L2, the
third helix L3, and the fourth helix L4, are consistently
measured as reactive when SAM is not present, indicat-
ing that these sites are unpaired, as expected. Besides
these major structural motifs, we also appreciate finer
details such as the reactivity of single isolated bulge sites
in positions 46 and 65 in absence of SAM. Next, compar-
ing the behavior across different conditions, we appreci-
ate the effect of magnesium and SAM on the structure.
We highlight (in green) sites that change significantly in
response to SAM. These include sites in direct contact
with SAM (as known from the crystal structure [53]),
and other tertiary motifs known to form in response to
SAM. We discuss these next.

(8(i))seca =

Bseea Py, (fin |np)

neEseed

K. Selection of Hallmark sites

We selected 24 hallmark sites across the aptamer se-
quence, for which we could rationalize observed reactivity
changes in response to SAM binding, and which are con-
sistent with expectations from previous chemical probing
studies on SAM-I riboswitches and previous structural
data. These sites also exhibit significant reactivity re-
sponses across natural sequences in our data, see Fig.

1324 They are listed in Supplementary Table In Sup-
125 plementary Section Q] we include further discussion and 17
1326 references to several previous literature reports justifying n

1327

the choices of each of these sites.
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Our results are robust to minor variations in the selec-
tion of Hallmark sites used to evaluate the response of
aptamers to SAM. For example, although we could not
find previous reports of reactivity responses in J4/1, we
find in some cases that sites 98 and 99 exhibit protec-
tion upon SAM binding (see Fig. [10). We tried adding
few selected sites (such as 98, 99), or excluding some,
and confirmed that our main results (such as numbers
of responsive sequences) remain unchanged. Additional
results are reported in Supplementary Section

L. Principal component analysis

We carried out a principal component analysis (PCA)
of the natural MSA. First, we one-hot encode the natural
sequences in a ¢ X N X B binary tensor D, where B =
6161 is the number of sequences in the full MSA collected
above. The tensor has Df, 1 if sequence n of the
alignment has symbol a € {1,...,5} at position i, and
otherwise Dy, = 0. We then compute a covariance tensor,
defined as follows

ngb = % ZD;I’ILD?TL - (; Z D?n) <; ZD?n>
n n n

(13)
We flatten the tensor C’fjb into a ¢N x gN matrix, and
then perform a standard eigenvalue decomposition on it.
Individual sequences are then projected along the two
top components (with largest eigenvalue) of the decom-
position.

M. Data availability

Sequencing data and processed reactivity has
been deposited to the Gene FExpression Omnibus
(GEO) database, under the accession GSE266263
[https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE266263|. All processed data and pro-
cessing code is available on the accompanying Github
repository [15] (see Code Availability).

N. Code availability

The code used to develop the model, perform the
analyses and generate results in this study is publicly
available and has been deposited in Github at https:
//github.com/cossio/SamApp2025. 31, under MIT li-
cense. The specific version of the code associated with
this publication is archived in Zenodo and is accessible
via https://doi.org/10.5281/zenodo.17232573 [15].

The main  repository  (https://github.com/
cossio/SamApp2025.j1) is provided as an open-
source Julia [B, [16] package. We also pro-
vide an implementation of RBM in Python
at https://github.com/cossio/SamApp2024Py
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A) Annotated consensus secondary structure of the aptamer domain of the SAM-I riboswitch family (Rfam ID

RF00162). B) Average protection scores, (S(i)) (see Eq. ) per site, of the natural probed sequences, for the two conditions:
with SAM and no SAM. Error bars (standard deviation) are also shown. Both statistics are computed over the Bseeqa = 151
probed sequences in the seed alignment. Hallmark sites (Supplementary Table are indicated with black triangles. C)

Average site reactivities with error bars (standard deviation).
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FIGURE LEGENDS

FIG. 1. Structure, regulatory function, and sequence conservation of the aptamer domain of the SAM-I riboswitch, acting at
a transcriptional level. A) In absence of SAM, the P1 helix of the aptamer domain is unpaired, leaving the 3’-end free to pair
with the anti-terminator segment of the expression platform. This conformation is incompatible with the terminator motif,
resulting in transcription of the downstream gene (ON state). B) SAM (represented by the purple hexagon) is captured in a
groove contacting several sites around the central four-way junction. In the bound-state conformation, the P1 helix is fully
base-paired. The expression platform is then free to form a Rho-independent terminator hairpin, which stops transcription of
the nascent RNA, thus blocking the expression of a downstream gene (OFF state). The figure also shows several structural
elements of the consensus secondary structure of the aptamer domain, including helices P1, P2, P3, P4, and a pseudoknot
(Pk) in red. Other sites of interest participating in tertiary contacts (dashed lines) in response to SAM are highlighted in bold,
including SAM contacts and base-triples. Secondary structure plots are obtained with VARNA [I7]. C) Sequence conservation
logo of aligned homologs of the SAM-I riboswitch aptamer domain family (RF00162 on Rfam). Gaps are indicated by the
character ‘B’.

FIG. 2. RNA generative modeling with RBM and experimental validation. A) A Restricted Boltzmann machines (RBM),
with the visible layer carrying nucleotides A, C, G, U, or — (alignment gap symbol), and a hidden layer extracting features.
The two layers are connected by weights. B) The RBM is trained by maximization of a regularized likelihood, see Eq. .
A gradient term increases the probability of regions in sequence space populated by data, automatically discovering features
desirable for functional sequences (blue), while an opposite gradient term lowers the probability of regions void of data (red).
The RBM may also assign large probability to potentially interesting sequences not covered by data (teal). C) The model can
be sampled to generate novel sequences that may significantly differ from the natural ones (teal). D) Hidden units extract
latent features (nucleic-acid motifs) through the weights. Weight values, either positive or negative, are shown above or below
the zero-weight horizontal bar in the logo plots, see Methods. Combining these motifs together allows RBM to design functional
RNA sequences. E) The RBM is able to model complex interactions along the RNA sequence. Here, a hidden unit interacting
with three visible units is highlighted. After marginalizing over hidden-unit configurations, effective interactions arise between
the visible sites, see Eq. . Here we represent schematically a three-body interaction, arising from the three weights onto the
marginalized hidden unit. F) Designed sequences are tested experimentally with chemical probing approaches. Reactivities
of sites to the probes may differ when SAM is absent or present (top); difference in reactivities between the two conditions is
informative about structural changes (bottom). G) Distributions of reactivities obtained with SHAPE-MaP slightly differ for
paired and unpaired nucleotides. Statistical resolution of global structural changes triggered by SAM can then be enhanced by
aggregating multiple sites. Inset: distributions over 24 sites, see Methods, Section [I|and Supplementary Figures

FIG. 3. Interpretation of RBM extracted features. A) Contact map based on the epistatic scores for nucleotide pairs computed
with the RBM [86]. The highest epistatic scores correspond to major secondary and tertiary contacts of the SAM-bound aptamer
structure, shown in the inset. B,C) Sequence logos of the weights w;,(v;) attached to exemplary hidden units (#1 and #2)
of the RBM, selected by having the highest weight norms. Each letter size in the logo is proportional to the corresponding
weight, see Figure and [82], [86]). Sites are colored according to the secondary structure element they belong to, including
the paired (P) helices P1 (light purple), P2 (green), P3 (yellow), and P4 (teal). Sites participating in the pseudoknot (Pk)
are also highlighted (red dashed box). In hidden unit #1, Watson-Crick complementarity along P1 (e.g., site 8 with 101) is
favored, in agreement with base pairing of these positions at the 5’ and 3’ ends of the P1 helix. The same unit also puts weights
on complementarity along the pseudoknot (e.g. sites 25-28 with 77-80), helping stabilize this tertiary contact. The fact that
these complementarity constraints, belonging to different structural motifs, are enforced by the same unit, suggests that P1
and the pseudoknot stabilize in a concerted manner (c.f. Fig. in response to SAM. Hidden unit #2, on the other hand,
places significant weight in the complementarity between sites 81 and 97, stabilizing P4 and along various P3 sites, favouring
a dichotomy between stabilizing complementarity or deletions in this segment. Indeed, some natural sequences lack a hairpin
loop at P3 (sites 50-64), consistently with a negative activation of h.u. #2.
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FIG. 4. Sequence generative models. A) Scatter plot of rCM scores (z-axis) vs. RBM scores (y-axis), for natural sequences
(gray), rCM sampled sequences (red), and RBM sampled sequences (blue). A threshold at RBM score = 300 (orange dashed
line) separates the majority of rCM generated sequences from the majority of RBM and natural sequences. B) Projection
of natural MSA sequences (seed + hits) onto the top two principal components of the MSA correlation matrix (gray). The
largest taxonomic groups (with > 100 member sequences) are highlighted in colors. Taxonomic annotations were obtained
from NCBI. C) Projection of RBM generated sequences (in blue) on the top two principal components of the MSA, with the
natural sequences in the background (gray). D) Projection of rCM generated sequences (in red) on the top two principal
components of the MSA, with the natural sequences in the background (gray). E) Projection of all probed sequences on the
top two principal components of the MSA, with the natural sequences shown in background (gray). The 301 probed sequences
in the first experimental batch are colored by their origin: Natural (black), rCM (red), and RBM (blue).

FIG. 5. Reactivity profiles of natural aptamers with chemical probing. Key sites, involved in direct or indirect SAM interactions
according to the consensus secondary structure (RF00162), are shown with black triangles. Sites 10, 11, 46, 47, 103 are in
direct contact with SAM, while the remaining highlighted sites are involved in tertiary motifs that stabilize in presence of
SAM: a pseudoknot (pk), kink-turn (kt), and base-triples. A, B) yitJ B subtilis aptamer. A. SHAPE reactivities r; with and
without SAM. B. SHAPE differential reactivities Ar;,. C,D) Same as A,B for the Deltaproteobacteria bacterium aptamer.
E) Average SHAPE differential reactivity profile (Ar;) over all tested natural aptamers. The thickness of the bands indicates
the standard deviations. F) Same as E for DMS differential reactivities. G) Sum of A and C site-frequencies computed over
natural aptamers along the sequence.

FIG. 6. Reactivity profiles of generated aptamers with chemical probing. Black triangles refer to highlighted key sites, see
Fig. A,B) SHAPE reactivity and differential reactivity profiles for one RBM-generated aptamer with RBM score 321.41.
C,D) Same as A,B for one RBM-generated aptamer with RBM score 357.79. E) Average differential reactivities in response
to SAM of 54 RBM generated sequences with high RBM scores (> 300) (blue), across the 108 sites of the alignment. For
comparison, the average differential reactivities for 204 natural sequences are shown in the background (gray). High-RBM
score sequences recapitulate protection of sites involved in the structural switch in response to SAM binding (highlighted in
green). F) Average differential reactivities in response to SAM of rCM generated sequences (red). Natural sequences are shown
in background for comparison. rCM sequences fail to recapitulate the expected protections associated to the structural switch
(red arrows). In both panels (E,F), the thickness of the bands indicates the standard deviation. The correlations between the
site-dependent differential reactivities are 0.84 between Natural and RBM (score>300) (E) and 0.18 between Natural and rCM
(F) with an empirical bootstrap p-value < 107%, see Supplementary Fig. [S24

FIG. 7. Statistical analysis of SHAPE and DMS reactivities for natural and generated aptamers. A,B) Empirical density
histograms of SHAPE (A) and DMS (B) reactivities of base-paired (teal) and unpaired sites (gold) for the probed natural
sequences in presence of SAM. C,D) Empirical density histogram of SHAPE (B) and DMS (D) reactivities for the pseudoknot
sites (black) in the absence of SAM (left), and in the presence of SAM (right). Inset: consensus secondary structure of the
SAM-I riboswitch aptamer domain, highlighting base-paired (teal) and unpaired (gold) sites. The sites forming the pseudoknot
in presence of SAM (black in the inset) are not included in these histograms. E,F) SHAPE protection scores S vs. RBM scores
for all probed sequences. Panels: E) without SAM, F) with SAM. Responsive aptamers are shown with filled circles. Colors
refer to the sequence origin: Natural, rCM, or RBM. Dashed orange vertical lines locate thresholds +Sp. See Supplementary
Fig. for the protection scores computed from DMS data. G) Numbers of responsive and non-responsive aptamers in
each class based on SHAPE protection scores. Error bars reflect the uncertainty in the estimated fractions based on the
limited numbers of conclusive aptamers in each case (Methods). H) Comparison of manual (columns) and automatic (rows)
classification of natural aptamers with SHAPE protection scores. The bottom two rows show how globally non-responsive
(N-r.) aptamers are classified according to the protection scores of the SAM binding pocket sites only. I) Classification of
natural, RBM-generated (all and high scores only), rCM-generated aptamers according to protection scores computed from
SHAPE alone and SHAPE+DMS combined data. Yes: responsive, No: non-responsive, Inc.: inconclusive.
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FIG. 8. Local responses along P1 and the pseudoknot (Pk) require intermediate pairing energies. A) Left panel shows the
histogram of Turner pairing energies for P1 (computed with the ViennaRNA package [44]) of a random sample of RBM-designed
sequences. The following panels show the pairing energies without (middle) and with (right) SAM for the aptamers probed in
the first batch vs. the protection scores S(P1) obtained by choosing for the hallmark set M the sites in P1 only. Aptamers are
colored according to their response: if S(P1)> Sy in both conditions, P1 is always closed (open black circle); if S(P1)< —&o in
both conditions, P1 is always open (open gray circle); if S(P1) crosses from one side to the other, the motif switches in response
to SAM (filled light blue disks). Note that only aptamers for which the P1 response is conclusive are shown (133 aptamers).
The table then lists the numbers of aptamers that are responsive to SAM, compared to a local response in P1 only. B) Same
as A), but for pseudoknot (Pk) sites.

FIG. 9. Additional generation of sequences. A) Projection of sequences probed in second set of designed sequences along
the PCs of the natural MSA, colored by origin: RBM, Denoised and Unknotted CM (dCM, uCM). The full natural MSA is
shown in background (gray) for comparison. B) Diagram explaining the uCM, where the pseudoknot is undone by permuting a
specific set of columns in the MSA. In this manner, a CM can model covariation along a pseudoknot. See Methods for details.
C) Divergence from closest natural sequence in the MSA (fraction of sites that differ) vs. the RBM score, for all sequences
probed in the second experiment. Colored circles correspond to aptamers that switch in response to SAM (fill color) or not
(empty), with the color indicating the sequence origin: RBM (blue), dCM (red), and uCM (orange). Sequences for which
our analysis is inconclusive are shown in light cyan. D) The table summarizes the numbers of switching sequences in each
group. E) Reactivity profile of example responsive RBM generated sequence with no P4 (indicated by teal triangle in A,C).
F) Reactivity profile of example responsive RBM generated sequence at large distance from natural sequences (indicated by
black triangle in A,C).

FIG. 10. A) Annotated consensus secondary structure of the aptamer domain of the SAM-I riboswitch family (Rfam ID
RF00162). B) Average protection scores, (S(i)) (see Eq. (I2))) per site, of the natural probed sequences, for the two conditions:
with SAM and no SAM. Error bars (standard deviation) are also shown. Both statistics are computed over the Bgeea = 151
probed sequences in the seed alignment. Hallmark sites (Supplementary Table are indicated with black triangles. C)
Average site reactivities with error bars (standard deviation).
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