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Abstract

Retinoblastoma (RB), the most aggressive pediatric intraocular malignancy,
urgently requires mechanistic insights to overcome limitations of current clinical
interventions. Through integrated single-cell multi-omics analysis, we constructed
a comprehensive epigenetic-transcriptomic atlas of photoreceptor subpopulations
in RB. Pseudotemporal trajectory analysis revealed the differentiation cascade
from retinal progenitor cells (RPCs) to malignant cone-like tumor cells (Cone-T),
orchestrated by dynamic regulation of tumor suppressors (FEZ1) and oncogenic
drivers (CITEDZ2) within the MAPK pathway. Notably, we identified three
photoreceptor subtype-specific transcription factors (EBF1, SOX15, NFIL3)
exhibiting concordant overexpression and chromatin accessibility. Cell-cell
communication analysis uncovered PPIA-BSG ligand-receptor interactions
potentially driving tumor progression, while drug screening prioritized nine
therapeutic candidates targeting transitional proliferative photoreceptors (P-p).
Our findings establish a mechanistic framework for photoreceptor transformation
and provide actionable targets for precision therapies.
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1 Introduction

Retinoblastoma (RB) remains a highly invasive intraocular malignancy
primarily affecting infants and young children, with an incidence of approximately
1in 16,000 and a median age of onset at 18 months[1] . Characterized by biallelic
mutations in the RB1 gene within developing retinal cells [2] [3] , untreated RB can
invade the optic nerve, leading to blindness. The degree of histopathological
invasion is a strong predictor of metastasis risk [4] [5] . With advances in medical
technology, therapeutic options for retinoblastoma have diversified to include
chemotherapy, laser photocoagulation, and thermotherapy [6] , enucleation
remains unavoidable in the absence of early intervention or in cases with severe
complications such as edema, conjunctival cysts, pyogenic granulomas, ptosis,
and superior sulcus defects [7] .

Current studies on retinal development have proposed three hypotheses
regarding the cellular origin of retinoblastoma, which include retinal progenitor
cells, cone photoreceptors, and either horizontal cells or Miiller glial cells[8] .
Recent evidence increasingly supports G2/M cone precursors as the likely cells of
origin for RB [9] [10] [11] . However, these hypotheses primarily focus on the
origins and developmental progression of retinoblastoma, leaving the underlying
mechanisms of invasion, metastasis, and specific regulatory pathways largely
undefined. Further investigation is thus crucial to refine and validate these
models.

Single-cell RNA sequencing (scRNA-seq) has become an invaluable tool for
dissecting gene expression at single-cell resolution, facilitating the exploration of
cellular heterogeneity and early embryonic development [12] . . Complementarily,
single-cell ATAC sequencing (scATAC-seq) analyzes accessible chromatin
regions to identify active DNA regulatory elements, proving particularly useful in
studies of developmental regulation [13] [14] . To enhance regulatory analysis, the
GLUE algorithm [15] explicitly models regulatory interactions, bridging distinct
feature spaces across omics layers. Furthermore, algorithms like SIMBA [16] [17]
enable the integration of omics-defining features into a shared latent space,
providing novel insights into tumor regulatory mechanisms and the identification of
potential therapeutic targets.

In this study, we present a single-cell resolution transcriptomic and chromatin
accessibility landscape of retinal development in the context of retinoblastoma.
Our findings reveal that proliferative photoreceptor cells are developmental
precursors to Cone-T cells and represent potential cells of tumor origin. We
demonstrate that genes including HSPA1A, RP1, DMD, and transcription factors
such as EBF1, SOX15, and NFIL3, play significant regulatory roles during
tumorigenesis in these cells. This discovery provides a critical theoretical
foundation for developing effective treatment and prevention strategies, marking a
significant stride towards individualized therapy.


https://doi.org/10.1101/2023.05.10.540147
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.10.540147; this version posted March 2, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.


https://doi.org/10.1101/2023.05.10.540147
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.10.540147; this version posted March 2, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

2 Results
2.1 The Single-Cell Multi-Omics Atlas of the Retina and

Retinoblastoma.

To comprehensively characterize cellular heterogeneity in both the normal retina
and retinoblastoma, we analyzed scRNA-seq data from 71,746 cells and scATAC-seq
data from 85,418 cells. These datasets comprised normal retinal samples collected
across nine developmental stages, ranging from 9 to 26 post-conceptional weeks
(PCW) (9, 10, 11, 14, 15, 18, 20, 23, 26 weeks)[18] , and retinoblastoma patient
samples from two time points (4 months and 2 years)[19] (Fig.1A) Following
rigorous quality control and batch effect correction, we identified 17 distinct cell types
in the scRNA-seq dataset using canonical retinal cell type markers[20] , Amacrine
cells (AC, high PAX6 and MALAT1 expression); Bipolar cells (BC, high VSX1 and
CA10 expression); Cone photoreceptor cells (Cone, high PDE6H and GNB3
expression); Cone-like tumor cells (Cone-T, high MCM3 and PCNA expression);
Fibroblasts (FB, high COL1A1 and COL3A1 expression); Horizontal cells (HC, high
STMNZ2 expression); Lens cells (LC, high LIM2 and CRYAB expression); Melanocytes
(MC, high CD44 expression); Microglia (MG, high C1QA and HLA-DRA expression);
Muller glia cells (Muller, high VIM expression); Red blood cells (RBC, high HBA2 and
HBA1 expression); Retinal ganglion cells (RGC, high ISL1 and NEFL expression);
Retinal progenitor cells (RPC, high SOX2 and SFRP2 expression); Retinal pigment
epithelial cells (RPE, high PMEL and SERPINF1 expression); Rod photoreceptor cells
(Rod, high NRL and NR2E3 expression); Rod precursor cells (Rod-P, high NRL and
RCVRN expression); and Vascular endothelial cells (VC, high TM4SF1 and CLDN5
expression) (Fig.1C-D,sfig.1A,E)

To annotate the scATAC-seq profiles, we performed integration of scRNA-seq
and scATAC-seq datasets using Graph-linked Unified Embedding (GLUE)[15] , and
we trained k-nearest neighbors (KNN) model to tranfer the cell type annotation from
scRNA-seq to scATAC-seq using embedding of cells(Fig.1B,sif.1C). We also
calculated gene activity matrices from scATAC-seq profiles and evaluated the activity
of scRNA-seq's marker genes in scATAC-seq to validate the accuracy of our cell type
labeling transfers (Fig.1E,sfig.1B).

Analysis of cell subtype distribution across tissue types (tumor vs. non-tumor)
and developmental stages revealed that BC and HC were exclusively present in
normal samples, while Cone-T cells were specific to retinoblastoma samples.
Furthermore, Cone cell proportions were markedly increased, whereas RPC
proportions were notably reduced in retinoblastoma samples (Fig.1F-G,sfig.1D).

Finally, we analyzed correlations between retinal and retinoblastoma cell types
based on RNA expression profiles, gene activity levels, and transcription factor
binding motifs. Notably, five photoreceptor-associated cell subtypes (RPC, Rod-P,
Rod, Cone, and Cone-T) exhibited strong correlations (scores > 0.8) across all three
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matrices, suggesting that photoreceptor cells possess a regulatory modularity distinct
from other retinal cell types (Fig.1H).
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Fig. 1. Multi-Omics Landscape of the Retina and Retinoblastoma from
scRNA-seq and scATAC-seq Data. A, Schematic diagram of sample collection,
data combination , and experimental design. B, Uniform manifold approximation
and projection (UMAP) visualization of integrated multi-omics data with omics layer.
C, UMAP representation of multi-omics data, with cells categorized by cell type. D,
Dot plot showing selected marker genes for each cell type. (Fig.1C). Dot size
represents the proportion of cells expressing each gene, and color intensity
indicates standardized gene expression levels. E, Dot plot showing the activity
levels of marker genes in major cell types. Dot size represents the proportion of
cells with detectable gene activity, and color intensity represents standardized gene
activity values. F, Stacked area graph displaying the distribution of domains(top)
and celltypes(bottom) across developmental time points (weeks). G, The heatmap
illustrates the Ro/e values for major cell types across various tissue types. Ro/e >
1.5 indicates that the major cell type is preferred to distribute in the corresponding
sample type. More details could be found in the ‘Methods’ section. H, Correlation
matrix showing RNA expression, ATAC-seq activity, and motif enrichment across
different cell types, with color indicating the magnitude of subtype correlation.
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2.2 Transcriptional Dynamics in the Development of Tumor

and Non-Tumor Photoreceptor Cells.

During postnatal development, Rb is expressed in RPC and differentiating Rod
[21] . To analyze transcriptional changes in photoreceptor cells from normal retinas
versus tumor tissues following retinal degeneration, we investigated the
transcriptional dynamics of photoreceptor development in both contexts. We
incorporated scRNA-seq data from four additional invasive and non-invasive
retinoblastoma samples to broaden the representation of photoreceptor development
[22] (sFig.2A). We extracted photoreceptor cells from the retinal and retinoblastoma
scRNA-seq datasets, yielding a total of 30,072 and 20,843 cells, respectively. Using
scVI [23] to correct for batch effects, we re-annotated the subtypes of retinal
photoreceptor cells (Fig.2A). Based on subtype-specific marker genes, we identified
seven major subtypes: cone precursor cells (CPC: RXRG, PDEGH); cone
photoreceptor cells (Cone: PDE6H, GNAT?2); proliferative photoreceptor cells (P-p:
APOLD1, CENPF); retinal progenitor cells (RPC: CCND1, SFRP2); retinal stem cells
(RSC: RBP1); rod photoreceptor cells (Rod: GNAT1, NR2E3); and rod precursor cells
(Rod-P: CRX, RCVRN) (sFig.2B). Within retinoblastoma samples, we similarly
identified nine photoreceptor subtypes, including tumor-like cone cells (Cone-T:
MCM3) and intermediate cells (Middle: EGFLAM). T-cell receptor-like photoreceptor
cells (TCR: ZFAS1, USPL1) were also identified, with other subtypes sharing
similarities to those in the retina, with the exception of CPC and RPC.

To enhance trajectory inference for photoreceptor cells, we employed the
SEACells [24] algorithm to compute metacells and selected 300 and 200 metacells
from the retina and retinoblastoma datasets, respectively, at a 100:1 cell ratio (Fig.2A,
sFig.2C). All metacells exhibited high purity for their respective cell subtypes (Fig. 2B).
We then utilized the pyVIA algorithm [25] to infer scalable cell differentiation
trajectories and identify lineage fates in photoreceptor cells from both the retina and
retinoblastoma samples. In the retina, the developmental trajectory initiates with
RSCs and proceeds along three differentiation pathways: 1. RSC — RPC — P-p; 2.
RSC — Rod-P — Rod;and 3. RSC — CPC — Cone. These pathways
converge at three endpoints: P-p, Rod, and Cone, consistent with known
developmental trajectories (Fig.2C, sFig.4A). In retinoblastoma, the trajectory similarly
begins with RSCs, differentiating into P-p, which further develops into Cone/Cone-T
and Rod subtypes. Thus, the trajectory diverges into two primary paths: 1. RSC —
P-p — Cone and 2. RSC — P-p — Rod (Fig.2C, sFig.4A). Analysis of
developmental trajectories and a fitted ridge regression model (sFig.2D) revealed that
P-p serves as both the terminal stage in normal photoreceptor development and the
starting point for malignant differentiation, highlighting their pivotal role in
retinoblastoma onset and the emergence of malignant Cone-T cells.
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To identify key genes associated with the developmental trajectory of
photoreceptor cells, we used the Mellon algorithm [26] to compute gene density
scores and their expression trends along pseudotime, thereby revealing driving genes
in development (Fig.2D,sfig.3B-E, Methods). Notably, CCND1 (Cyclin D1), a driver
gene, is crucial for regulating the RPC cell cycle and retinal tissue formation, and its
regulatory functions within the retinoblastoma pathway are well-established [27] . In
retinoblastoma, we identified driving genes such as HSPA1A [28] , RP1 [29], and
DMD [30], all recognized as critical factors in cancer progression. Furthermore, the
gene ROM1 [31], a predictor of retinoblastoma progression, is significantly
upregulated in Cone-T cells, suggesting its role in tumor initiation and exacerbation
(Fig.2D,sfig.3E).

To further validate the deterioration trajectory from P-p to Cone-T, we utilized
microglia as a reference to assess copy number variation (CNV) [32] scores for all
cells in the samples. Our analysis indicated that Cone-T cells exhibited the highest
CNV scores, reflecting the greatest malignancy (Fig.2E-F, sFig.4A-B). Consequently,
we concluded that the trajectory of tumor progression and deterioration proceeds from
P-p to Cone and subsequently to Cone-T. By comparing and selecting differentially
expressed genes across the differentiation processes of the three subtypes, we
observed that during this transformation, the expression of tumor suppressor genes
such as FEZ1 [33] and proliferation-associated genes such as HTRA1[34] and
CITEDZ2[35] [36] was upregulated (Fig.2G). In summary, during the differentiation
from P-p to Cone, the upregulation of tumor suppressor genes may modulate cell
proliferation and the rate of malignant transformation. Conversely, the upregulation
of oncogenes during the conversion from Cone to Cone-T accelerates cell
proliferation and differentiation, ultimately promoting tumor development.

Further investigation into the biological functions of these two groups of
differentially expressed genes was conducted through pathway enrichment analysis.
(Fig.2H). The analysis revealed that highly expressed genes in Cone-T cells were
enriched in pathways directly related to cancer cell proliferation and differentiation,
including pathways in cancer, cell cycle, and the MAPK signaling pathway [37] [38]
[39] , further substantiatingthe link between differentiation from P-p to cone and the
occurrence and progression of retinoblastoma. Additionally, Gene Ontology (GO)
enrichment analysis revealed significant enrichment in the biological process of gene
expression regulation and the molecular function of cis-regulatory regions/RNA
polymerase Il transcription regulatory region sequence-specific DNA binding,
suggesting that the expression and regulatory functions of relevant genes are
disrupted during the development from Cone to Cone-T.
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Fig.2. Transcriptional Dynamics Atlas of Retina and Retinoblastoma. A, UMAP
visualizations showing the extraction of photoreceptor cells (left), projection clustering,
re-annotated mapping (middle), and metacell computation (right) for retina (top) and
retinoblastoma (rb) (bottom) samples.. B, Purity of cell types within metacells. C,
Pseudotemporal trajectories of photoreceptor cells in the retina (top) and rb (bottom): the
left panel displays differentiation trajectories based on subtypes nodes, while the right
panel illustrates the trajectories colored by pseudotime. Red circles mark potential
differentiation endpoints. D, Heatmap of key density driver genes along the
developmental trajectories of photoreceptor cells in the retina(P-p) (left) and rb(Cone-T)
(right). More details could be found in the ‘Methods’ section. E-F, UMAP and violin plots
showing copy number variations (CNVs) in different photoreceptor subtypes within rb. G,
Volcano plots illustrating differential gene expression between P-p and Cone in rb (top),
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and between Cone and Cone-T cells (bottom). H, Enrichment analysis of biological
pathways for upregulated genes: visualization of cancer-related pathways in Cone (top)
and biological process enrichment for upregulated genes in Cone-T(bottom).
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2.3 Analysis the regulation of transcription factors in key

nodes of tumor development

To identify the transcription regulatory module involved in the development of
photoreceptor cells, we paired the scRNA-seq and scATAC-seq profiles using
GLUE embedding of cells. Among these, the 729 photoreceptor cells sequenced
by scRNA-seq and the 729 sequenced by scATAC-seq are regarded as the same
cells, allowing us to indirectly obtain information on two histological layers of a cell
(Fig.3A and sFig.5A-B). We then inferred transcription factor-associated
accessibility using the chromVAR algorithm [40] and identified the top ten
transcription factors with the highest activity for the P-p, Cone, and Cone-T
subtypes, suggesting that cell differentiation is linked to the regulation of these
highly active transcription factors (Supplementary Table1).

To pinpoint subtype-specific regulatory factors, we first selected transcription
factors that overlap with highly variable genes (Fig. 3B) and then narrowed it down
to the top 50 based on their activity levels. By integrating data from four
perspectives—transcription factor activity, gene expression, chromatin accessibility,
and gene expression from 13 post-conception week (pcw) retinal tissue
sections—we identified three highly specific transcription factors: EBF1, SOX15,
and NFIL3 (Fig. 3C-F, sFig. 6A-B), corresponding to the P-p, Cone, and Cone-T
subtypes, respectively. We propose that the subtype specificity and regulatory
functions of these transcription factors are significant and closely linked to the
developmental processes of photoreceptors.

To further refine the regulatory network and determine the target genes of
these transcription factors, we employed the SIMBA algorithm [41] to integrate
gene data, open chromatin peak information, transcription factor motifs, and k-mer
(short DNA fragments derived from sequencing reads) information into a unified
graph embedding. After obtaining the SIMBA embedding features, we calculated
the unified neighborhood graph for the cells and performed dimensionality
reduction visualization. We visualized the locations of the ten inferred fate genes
alongside the three specific regulatory transcription factors (Fig. 3G).

Based on spatial positional relationships, we calculated the potential target
genes regulated by the three transcription factors (TFs). In the SIMBA spatial map,
genes located closer to the TFs are regarded as potential target genes. By
calculating a composite score, we identified a total of 6, 50, and 33 potential target
genes, respectively (Supplementary Tables2), which were utilized for subsequent
enrichment analysis (Fig. 3G). Enrichment analysis of these target genes using
WikiPathways (metabolic pathways) revealed that the target genes corresponding
to TF_EBF1 are enriched in pathways related to the Cell
Differentiation-Index/Differentiation =~ Pathway and NO/cGMP/PKG-mediated
neuroprotection, while those corresponding to TF_SOX15 are enriched in the
Mevalonate pathway (WP3963) [42] and Eukaryotic Transcription Initiation
(WP405) pathways (Fig. 3H). The target genes corresponding to TF_NFIL3 are
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enriched in the EGF/EGFR signaling pathway [43] . According to the enrichment
results, TF_EBF1 primarily mediates the differentiation of photoreceptor cells and
the protection of the optic nerve during the precancerous phase, whereas the
enrichment pathways of the target genes corresponding to TF_SOX15 and NFIL3
are associated with cancer cell proliferation and metastasis, indicating their
regulatory roles in tumorigenesis.
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Fig.3. Key Transcription Factor Regulatory Landscape of Retinal and
Retinoblastoma Development and Differentiation. A, UMAP showing scRNA-seq data
(left) and scATAC-seq data (right) of rb, colored by celltypes. B, Venn diagrams showing
the number of transcription factors (TF) and highly variable genes, as well as their
overlaps. C, Genomic accessibility tracks of EBF1(left), SOX15(middle), and NFIL3(right)
across different rb photoreceptor celltypes. D, UMAP showing expression levels of the
corresponding genes for the three transcription factors. E, UMAP showing the activity
scores of three transcription factors. F, Spatially resolved expression of three transcription
factors in the 13 post-conceptional week (PCW) human retina section. G, UMAP plots
showing multi-omics data of retinal and retinoblastoma photoreceptor cells, colored by cell
subtypes, gene, K-mers, motif, and peak information. Locations of ten temporally
regulated genes and three key transcription factors are marked. H,Pathway enrichment
analysis of the target genes for transcription factors EBF1 (left), SOX15 (middle), and
NFIL3 (right) using WikiPathways.
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2.4 The analysis of intercellular interactions among

photoreceptor cells in retinoblastoma.

To further explore the cell-to-cell communication during the P-p to Cone
tumorigenesis trajectory, we used CellPhoneDB to reveal the rich intercellular
communication between photoreceptor cells(Fig4.A), which also provided a
premise for us to further study the deterioration trajectory. As we expected, P-p,
Cone, and Cone-T cells all have many receptors and ligands(Fig4.B), which also
indicates that there is a lot of intercellular communication in this deterioration
process.

Furthermore, in order to explore the effects of P-p and Cone on tumor
formation, we used P-p and Cone as sources and Cone-T as targets, focusing on
ligand expression in the source and receptor expression in the target. Interestingly,
we found a pair of ligand receptors that were highly expressed in P-p, Cone, and
Cone-T: PPIA (Cyclophilin A) and BSG (CD147). (Fig4.C-D)The interaction
between this pair of ligand receptors has been shown to play a vital role in the
progression of various diseases such as inflammatory diseases, coronavirus
infection, and cancer by activating CD147-mediated intracellular downstream
signaling pathways, and is associated with poor prognosis in cancer patients[44]
[45] , suggesting that the formation of retinoblastoma may also be related to this
interaction.

We used omicverse to extract highly significant ligand-receptor pairs from
these ligand-receptor pairs and performed functional enrichment(Fig4.E), revealing
that positive regulation of phosphorylation may play an important role in the
progression of retinoblastoma. role, as mentioned in other cancers[46] .

Next, we further conducted drug screening for P-p. Due to the transitional role
of P-p in the carcinogenesis of RB, we calculated the drug score for RB (Fig4.F)
and intersected the drugs with high specificity scores with the cell-specific drugs of
P-p. Finally, we obtained nine possible potential drugs targeting P-p (Fig4.G),
hoping to provide some suggestions for inhibiting the RB process from a molecular
mechanism perspective.
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Fig.4. Photoreceptor cell-cell interactions and targeted drug analysis. A, Diagram of
the intercellular regulatory network. Different colors indicate different cell types, and the
thickness of the thread indicates the strength of the connection. B, Plot of the average
number of ligands and receptors for different cell types. Different colors indicate different
cell types, and numbers indicate the average number of ligands for different cell types. C,
P-p, Cone, Cone-T ligand receptor interaction diagram. The red ones are ligands, the gray
ones are the receptors, and the wires indicate the existence of interactions. D, Heat map
of P-p, Cone, Cone-T ligand receptor interactions. P-p and Cone are the Source, Cone-T
is the Target, and the shade of the dot color indicates the intensity of the interaction. E, Go
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enrichment results of highly significant ligand receptors for P-p, Cone, and Cone-T ligands.
F, Differential drug analysis of cancer cells relative to normal cells. G, Intersection of
drugs targeting P-p cell types and differential drugs for cancer cells relative to normal cells
obtained in Fig4.F.
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Discussion

Retinoblastoma, the most prevalent intraocular tumor in children, accounts for 11%
of neonatal cancers [47] . Current retinoblastoma (RB) treatment paradigms are
progressively evolving toward advanced personalized therapies [48] , aimed at
preserving vision and mitigating treatment-related risks[49] [50] . Therefore, a
comprehensive understanding of RB developmental trajectories and transcriptional
regulatory mechanisms is paramount for identifying novel therapeutic targets and
designing effective treatment strategies.

This study elucidates the developmental and deteriorative trajectory of
photoreceptor cells as RSC — RPC — P-p — Cone — Cone-T, wherein RSCs
represent the progenitor cells of retinal photoreceptors[51] . While the association of
Cone and Cone-T cells with RB origin and development is well-documented [9] [10],
we independently discovered the transitional role of P-p cells, an intermediate
developmental state between normal and malignant retinal photoreceptors. This
finding further clarifies the process of malignant cone cell generation and offers a
novel perspective for preventative RB treatments.

Furthermore, we identified driver genes HSPA1A, RP1, and DMD along the
photoreceptor developmental trajectory, and significantly upregulated regulatory
genes FEZ1, HTRA1, and CITED2 in Cone and Cone-T cells. Studies have
demonstrated that FEZ1 can inhibit cancer cell growth, with its expression inversely
correlated with abnormal cell proliferation [33] . CITED2 plays a critical role in
fundamental cellular processes including proliferation, differentiation, and migration
[35] . Consistent with these findings, our screening of developmental regulatory
transcription factors identified subtype-specific transcription factors EBF1, SOX15,
and NFIL3 for P-p, Cone, and Cone-T cells, respectively. The literature indicates
that EBF1 can suppress transcriptional reactivation of the cancer-associated
telomerase catalytic subunit (TERT) at both genomic and epigenomic levels[52] , ,
while SOX15 promotes AOC1 expression and reduces cancer cell proliferation and
migration; both transcription factors function as tumor suppressors, impeding cancer
development [53] . Conversely, NFIL3 is reported to be highly expressed in various
cancers associated with poor prognosis and can inhibit apoptosis induction in cancer
cells [54] . In retinoblastoma, the significant expression of EBF1 and SOX15 at early
tumor photoreceptor developmental stages suggests enhanced tumor suppressor
gene regulation, thereby inhibiting early-stage cancer cell proliferation.
Subsequently, in Cone-T cells, the upregulation of transcription factors such as NFIL3
further modulates cone cell differentiation towards malignancy.

Research confirms that CITED2 can interact with other transcription factors and
cofactors to promote cell proliferation [36] , and TF_NFIL3 can bind and inhibit
pro-apoptotic genes (such as TRAIL)[54] . Both factors are specifically regulated in
Cone-T cells and favor tumor proliferation. We hypothesize a potential synergistic
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interaction between CITED2 and NFIL3, wherein CITED2 might enhance tumor cell
survival by upregulating NFIL3 expression or activity, consequently suppressing the
expression of pro-apoptotic genes like TRAIL.

A limitation of our study is the relatively small sample size. Therefore, our findings
are preliminary and require further validation in larger, independent patient cohorts.
Additionally, the absence of spatial transcriptomic data from retinoblastoma patients
limited our ability to capture spatial information regarding tumor cell heterogeneity. To
address this, future studies could utilize engineered mouse models and spatial
transcriptomics techniques to further investigate the role of P-p cells in photoreceptor
conversion during retinoblastoma development. Furthermore, functional
experiments are warranted to validate the identified therapeutic targets, confirming
their authenticity and reliability.

In conclusion, this study, leveraging a dual-omics framework of scRNA-seq and
scATAC-seq, provides, to our knowledge, the first comprehensive exploration of
photoreceptor developmental differentiation and key regulatory factors in
retinoblastoma. Our findings offer potential transcriptional regulatory therapeutic
targets and guide the development of novel RB treatment strategies and measures to
inhibit RB invasion.
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Methods

Data extraction

The raw expression matrices of scRNA-seq and scATAC-seq of the
retinoblastoma were retrieved from National Center for Biotechnology Information
Gene Expression Omnibus under accession number GSE166173 and GSE166174[19]

The raw expression matrices of scRNA-seq and scATAC-seq of the human
embryonic developing retina were retrieved from National Center for Biotechnology
Information Gene Expression Omnibus under accession number GSE228370[18] .

scRNA-seq preprocessing

We performed alignment to this amended reference using 10x Cellranger
(Version 6.0.0),which employs the STAR [55] sequence aligner. The reference
genome was the human genome GRCh38. The processed matrices of different
samples were merged and the following analyses were finished by Omicverse [56]
and Scanpy [57] . We removed cells with less than 200 informative genes expressed,
cells with more than 4300 genes expressed and cells with more than 25% of counts
corresponding to mitochondrial genes. We removed genes with less than 3 cells
expressed. We performed doublet analysis using the 'Scrublet' Python package from
scanpy [58] , and apply doublet filtering to remove doublets biasing. Count data was
log-normalized and scaled to 10, 000. We performed high variable gene analysis
based parameter setting: 'min_ mean=0.0125', 'max_mean=3', 'min_disp=0.5". Then
using PCA embedding to calculate a UMAP layout[59] . Clusters were identified using
the Leiden algorithms[60] based on the nearest neighbor graph.

scATAC-seq preprocessing

Raw sequencing data were converted to fastq format using 'cellranger-atac
mkfastq' (10x Genomics, v.1.2.0). scATAC-seq reads were aligned to the GRCh38
(hg38) reference genome and quantified using 'cellranger-atac count' (10x Genomics,
v.1.2.0). Fragment data was further processed using the 'ChrAccR' R package
(v.dev.0.9.11+). We filtered out cells with less than 1,000 or more than 50,000
sequencing fragments. TSS enrichment was computed as a metric of signal-to-noise
ratio using methods described in [61] and we discarded cells with a TSS enrichment
less than 4. Fragments on sex chromosomes and mitochondrial DNA were excluded
from downstream analysis.

Data preprocessing for cell paired

To preprocess the scRNA-seq for cell paired, we annotated cell types from
scRNA-seq data. To preprocess the scATAC-seq for cell paired, we apply the latent
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semantic indexing (LSI) for dimension reduction and first encoder transformation.
Then we constructed the prior regulatory graph to utilized the multi-omics alignment
by GLUE (version 0.3.2)[15] .

Pairing the scRNA-seq and scATAC-seq data by scglue

After constructed the prior regulatory graph from scRNA-seq and scATAC-seq,
we specify the probabilistic generative model negative binomial distribution(NB) for
the omics-layer to be integrated. Next, we initialize a GLUE model for scRNA-seq and
sCATAC-seq layers. With the trained GLUE model, eigenvectors for each cell (feature
embeddings) were obtained by parameter 'X_glue'. Subsequently, Pearson
coefficients were used to find the two most similar feature vectors in scRNA-seq and
scATAC-seq. Duplicate paired cells are discarded in this process.The cell annotations
of scRNA-seq were transferred to the corresponding scATAC-seq cells.

Calculate the ratio of observed to expected cell numbers

The ratio of observed to expected cell numbers (Ro/e) was determined for each
cell types cross various samples using the omicverse.utils.roe function with default
parameters. This analysis aimed to reveal the preferential distribution of each cell type
among the samples. The expected cell numbers of each combination of samples and
cell types were obtained from the chi-square test. In brief, we defined that one cell
type was identified as being enrichment in a specific sample if Ro/e was greater than
1.5. For visualization, the symbol '+++' denotes instances where the Ro/e exceeds 2,
'++' signifies Ro/e greater than 1.5, '+' indicates Ro/e above 1, and '+/-' is utilized to
designate Ro/e that is less than or equal to 1.

Calculation of motif score

We used scbasset (v.0.0.0) [62] to score motifs on a per cell basis using motif
injection method. For motif injection, we first generated dinucleotides shuffled
background sequences, and inserted motif of interest to the center of those
sequences.

Trajectory inference and pseudotime analysis

Trajectory inference of photoreceptor cells was conducted by using the
omicverse.single.pyVIA function in Omicverse. This method is grounded in the VIA
Python package, which provides a scalable algorithm for trajectory inference within
single-cell RNA sequencing analysis. In addition, trajectory roots were selected based
on the RSC score. Furthermore, the pseudotime was depicted as streamlines using
the vO.plot_stream function, gene trends were calculated and visualized with the
v0.plot_gene_trend function, and the automated detection of terminal states was
performed using the v0.plot_trajectory _gams function with default parameters.

Gene Density Analysis
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Gene expression density was computed using the Mellon algorithm[26] , which
applies a Gaussian kernel to estimate spatial gene distribution based on transcript
counts across tissue regions. The algorithm integrates spatial coordinates and
normalizes gene expression levels to ensure comparability. Heatmaps were
generated to visualize z-score normalized gene densities, highlighting differential
expression patterns between tissue regions.

Differential gene expression analysis

To identify the differentially expressed genes between two groups we specified,
we adhered to the 'Differential Expression Analysis in Single Cell' tutorial provided by
Omicverse on GitHub and employed the omicverse.bulk[56] .pyDEG function to
evaluate the significance of each gene. The log2 fold change (log2FC) for each gene
was determined by calculating the difference between the log2-transformed mean
counts of each group. To remove the influence of low expression genes, we selected
the top 3000 highly variable genes as the input data. Genes with adjusted P value
less than 0.05 (the Wilcoxon rank-sum test) and greater than the threshold of the
log2FC were considered as significant differentially expressed genes. Furthermore,
the specific threshold for log2FC was clearly indicated in the legend of the respective
figures.

Gene Ontology (GO) and Network-based Analyses of cell

subpopulations

We performed gene set enrichment analysis of GO terms using gseapy (v.0.10. 8)
[63] with default parameters (adjusted p-values<0.05) and select geneset
'GO_Biological_Process_2021"' and 'GO_Molecular_Function_2021' [64] . We also
calculated the fraction of each GO term using 'Overlap' based on the results of the
enrichment analysis, and logarithmized the adjusted P-value. To distinguish the
different Go terms, we transformed the gene of each term into a one-hot code and
clustered the terms using 'clustermap' of Python package seaborn (v.0.11.2) [65] to
find similar term modules. For network-based analyses, protein lists were submitted to
the STRIN G-db tool [66] (all active interaction sources, interaction score > 0.8). The
network was exported into a simple tabular output, reformatt ed to display desired
parameters (e.g., K-means clusters)

Putative interactions between cell types

To enable a systematic analysis of cell-cell communication, we used
CellPhoneDB [67] . CellPhoneDB is a manual curated repository of ligands, receptors
and their interactions, integrated with a statistical framework for inferring cell-cell
communication networks from single cell transcriptome data. Briefly, in order to
identify the most relevant interactions between cell types, we looked for the cell-type
specific interactions between ligands and receptors. Only receptors and ligands
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expressed in more than 10% of the cells in the specific cluster were considered. We
performed pairwise comparisons between all cell types. First, we randomly permuted
the cluster labels of all cells 1000 times and determined the mean of the average
receptor expression level of a cluster and the average ligand expression level of the
interacting cluster. For each receptor-ligand pair in each pairwise comparison
between two cell types, this generated a null distribution. By calculating the proportion
of the means which are as or higher than the actual mean, we obtained a p-value for
the likelihood of cell type-specificity of a given receptor-ligand complex. We then
prioritized interactions that are highly enriched between cell types based on the
number of significant pairs and manually selected biologically relevant ones. For the
multi-subunit heteromeric complexes, we required that all subunits of the complex are
expressed (using a threshold of 10%), and therefore we used the member of the
complex with the minimum average expression to perform the random shuffling.

Data availability

All data were obtained from publicly available datasets.

Code availability

All codes used in this manuscript are available in
https://github.com/Starlitnightly/Analysis_RB
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