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Abstract 

Retinoblastoma (RB), the most aggressive pediatric intraocular malignancy, 
urgently requires mechanistic insights to overcome limitations of current clinical 
interventions. Through integrated single-cell multi-omics analysis, we constructed 
a comprehensive epigenetic-transcriptomic atlas of photoreceptor subpopulations 
in RB. Pseudotemporal trajectory analysis revealed the differentiation cascade 
from retinal progenitor cells (RPCs) to malignant cone-like tumor cells (Cone-T), 
orchestrated by dynamic regulation of tumor suppressors (FEZ1) and oncogenic 
drivers (CITED2) within the MAPK pathway. Notably, we identified three 
photoreceptor subtype-specific transcription factors (EBF1, SOX15, NFIL3) 
exhibiting concordant overexpression and chromatin accessibility. Cell-cell 
communication analysis uncovered PPIA-BSG ligand-receptor interactions 
potentially driving tumor progression, while drug screening prioritized nine 
therapeutic candidates targeting transitional proliferative photoreceptors (P-p). 
Our findings establish a mechanistic framework for photoreceptor transformation 
and provide actionable targets for precision therapies. 
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1 Introduction 

Retinoblastoma (RB) remains a highly invasive intraocular malignancy 
primarily affecting infants and young children, with an incidence of approximately 
1 in 16,000 and a median age of onset at 18 months[1] . Characterized by biallelic 
mutations in the RB1 gene within developing retinal cells [2] [3] , untreated RB can 
invade the optic nerve, leading to blindness. The degree of histopathological 
invasion is a strong predictor of metastasis risk [4] [5] . With advances in medical 
technology, therapeutic options for retinoblastoma have diversified to include 
chemotherapy, laser photocoagulation, and thermotherapy [6] , enucleation 
remains unavoidable in the absence of early intervention or in cases with severe 
complications such as edema, conjunctival cysts, pyogenic granulomas, ptosis, 
and superior sulcus defects [7] . 

Current studies on retinal development have proposed three hypotheses 
regarding the cellular origin of retinoblastoma, which include retinal progenitor 
cells, cone photoreceptors, and either horizontal cells or Müller glial cells[8] . 
Recent evidence increasingly supports G2/M cone precursors as the likely cells of 
origin for RB [9] [10] [11] . However, these hypotheses primarily focus on the 
origins and developmental progression of retinoblastoma, leaving the underlying 
mechanisms of invasion, metastasis, and specific regulatory pathways largely 
undefined.  Further investigation is thus crucial to refine and validate these 
models. 

Single-cell RNA sequencing (scRNA-seq) has become an invaluable tool for 
dissecting gene expression at single-cell resolution, facilitating the exploration of 
cellular heterogeneity and early embryonic development [12] . . Complementarily, 
single-cell ATAC sequencing (scATAC-seq) analyzes accessible chromatin 
regions to identify active DNA regulatory elements, proving particularly useful in 
studies of developmental regulation [13] [14] . To enhance regulatory analysis, the 
GLUE algorithm [15]  explicitly models regulatory interactions, bridging distinct 
feature spaces across omics layers. Furthermore, algorithms like SIMBA [16] [17]  
enable the integration of omics-defining features into a shared latent space, 
providing novel insights into tumor regulatory mechanisms and the identification of 
potential therapeutic targets. 

In this study, we present a single-cell resolution transcriptomic and chromatin 
accessibility landscape of retinal development in the context of retinoblastoma. 
Our findings reveal that proliferative photoreceptor cells are developmental 
precursors to Cone-T cells and represent potential cells of tumor origin.  We 
demonstrate that genes including HSPA1A, RP1, DMD, and transcription factors 
such as EBF1, SOX15, and NFIL3, play significant regulatory roles during 
tumorigenesis in these cells. This discovery provides a critical theoretical 
foundation for developing effective treatment and prevention strategies, marking a 
significant stride towards individualized therapy. 
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2 Results 

2.1 The Single-Cell Multi-Omics Atlas of the Retina and 

Retinoblastoma. 

To comprehensively characterize cellular heterogeneity in both the normal retina 
and retinoblastoma, we analyzed scRNA-seq data from 71,746 cells and scATAC-seq 
data from 85,418 cells.  These datasets comprised normal retinal samples collected 
across nine developmental stages, ranging from 9 to 26 post-conceptional weeks 
(PCW) (9, 10, 11, 14, 15, 18, 20, 23, 26 weeks)[18] , and retinoblastoma patient 
samples from two time points (4 months and 2 years)[19]  (Fig.1A) Following 
rigorous quality control and batch effect correction, we identified 17 distinct cell types 
in the scRNA-seq dataset using canonical retinal cell type markers[20] , Amacrine 
cells (AC, high PAX6 and MALAT1 expression); Bipolar cells (BC, high VSX1 and 
CA10 expression); Cone photoreceptor cells (Cone, high PDE6H and GNB3 
expression); Cone-like tumor cells (Cone-T, high MCM3 and PCNA expression); 
Fibroblasts (FB, high COL1A1 and COL3A1 expression); Horizontal cells (HC, high 
STMN2 expression); Lens cells (LC, high LIM2 and CRYAB expression); Melanocytes 
(MC, high CD44 expression); Microglia (MG, high C1QA and HLA-DRA expression); 
Müller glia cells (Müller, high VIM expression); Red blood cells (RBC, high HBA2 and 
HBA1 expression); Retinal ganglion cells (RGC, high ISL1 and NEFL expression); 
Retinal progenitor cells (RPC, high SOX2 and SFRP2 expression); Retinal pigment 
epithelial cells (RPE, high PMEL and SERPINF1 expression); Rod photoreceptor cells 
(Rod, high NRL and NR2E3 expression); Rod precursor cells (Rod-P, high NRL and 
RCVRN expression); and Vascular endothelial cells (VC, high TM4SF1 and CLDN5 
expression)（Fig.1C-D,sfig.1A,E） 

 To annotate the scATAC-seq profiles, we performed integration of scRNA-seq 
and scATAC-seq datasets using Graph-linked Unified Embedding (GLUE)[15] , and 
we trained k-nearest neighbors (KNN) model to tranfer the cell type annotation from 
scRNA-seq to scATAC-seq using embedding of cells(Fig.1B,sif.1C). We also 
calculated gene activity matrices from scATAC-seq profiles and evaluated the activity 
of scRNA-seq's marker genes in scATAC-seq to validate the accuracy of our cell type 
labeling transfers (Fig.1E,sfig.1B). 

Analysis of cell subtype distribution across tissue types (tumor vs. non-tumor) 
and developmental stages revealed that BC and HC were exclusively present in 
normal samples, while Cone-T cells were specific to retinoblastoma samples.  
Furthermore, Cone cell proportions were markedly increased, whereas RPC 
proportions were notably reduced in retinoblastoma samples (Fig.1F-G,sfig.1D). 

Finally, we analyzed correlations between retinal and retinoblastoma cell types 
based on RNA expression profiles, gene activity levels, and transcription factor 
binding motifs.  Notably, five photoreceptor-associated cell subtypes (RPC, Rod-P, 
Rod, Cone, and Cone-T) exhibited strong correlations (scores > 0.8) across all three 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2025. ; https://doi.org/10.1101/2023.05.10.540147doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.10.540147
http://creativecommons.org/licenses/by-nc-nd/4.0/


matrices, suggesting that photoreceptor cells possess a regulatory modularity distinct 
from other retinal cell types (Fig.1H). 
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Fig. 1. Multi-Omics Landscape of the Retina and Retinoblastoma from 
scRNA-seq and scATAC-seq Data. A, Schematic diagram of sample collection, 
data combination , and experimental design. B, Uniform manifold approximation  
and projection (UMAP) visualization of integrated multi-omics data with omics layer. 
C, UMAP representation of multi-omics data, with cells categorized by cell type. D, 
Dot plot showing selected marker genes for each cell type. (Fig.1C). Dot size 
represents the proportion of cells expressing each gene, and color intensity 
indicates standardized gene expression levels. E, Dot plot showing the activity 
levels of marker genes in major cell types. Dot size represents the proportion of
cells with detectable gene activity, and color intensity represents standardized gene 
activity values. F, Stacked area graph displaying the distribution of domains(top) 
and celltypes(bottom) across developmental time points (weeks). G, The heatmap 
illustrates the Ro/e values for major cell types across various tissue types. Ro/e > 
1.5 indicates that the major cell type is preferred to distribute in the corresponding 
sample type. More details could be found in the ‘Methods’ section.  H, Correlation 
matrix showing RNA expression, ATAC-seq activity, and motif enrichment across 
different cell types, with color indicating the magnitude of subtype correlation.  
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2.2 Transcriptional Dynamics in the Development of Tumor 

and Non-Tumor Photoreceptor Cells. 

During postnatal development, Rb is expressed in RPC and differentiating Rod 
[21] . To analyze transcriptional changes in photoreceptor cells from normal retinas 
versus tumor tissues following retinal degeneration, we investigated the 
transcriptional dynamics of photoreceptor development in both contexts. We 
incorporated scRNA-seq data from four additional invasive and non-invasive 
retinoblastoma samples to broaden the representation of photoreceptor development  
[22] (sFig.2A). We extracted photoreceptor cells from the retinal and retinoblastoma 
scRNA-seq datasets, yielding a total of 30,072 and 20,843 cells, respectively. Using 
scVI [23]  to correct for batch effects, we re-annotated the subtypes of retinal 
photoreceptor cells (Fig.2A). Based on subtype-specific marker genes, we identified 
seven major subtypes: cone precursor cells (CPC: RXRG, PDE6H); cone 
photoreceptor cells (Cone: PDE6H, GNAT2); proliferative photoreceptor cells (P-p: 
APOLD1, CENPF); retinal progenitor cells (RPC: CCND1, SFRP2); retinal stem cells 
(RSC: RBP1); rod photoreceptor cells (Rod: GNAT1, NR2E3); and rod precursor cells 
(Rod-P: CRX, RCVRN) (sFig.2B). Within retinoblastoma samples, we similarly 
identified nine photoreceptor subtypes, including tumor-like cone cells (Cone-T: 
MCM3) and intermediate cells (Middle: EGFLAM). T-cell receptor-like photoreceptor 
cells (TCR: ZFAS1, USPL1) were also identified, with other subtypes sharing 
similarities to those in the retina, with the exception of CPC and RPC. 

To enhance trajectory inference for photoreceptor cells, we employed the 
SEACells [24]  algorithm to compute metacells and selected 300 and 200 metacells 
from the retina and retinoblastoma datasets, respectively, at a 100:1 cell ratio (Fig.2A, 
sFig.2C). All metacells exhibited high purity for their respective cell subtypes (Fig. 2B). 
We then utilized the pyVIA algorithm [25]  to infer scalable cell differentiation 
trajectories and identify lineage fates in photoreceptor cells from both the retina and 
retinoblastoma samples. In the retina, the developmental trajectory initiates with 
RSCs and proceeds along three differentiation pathways: 1. RSC → RPC → P-p; 2. 
RSC → Rod-P → Rod; and 3. RSC → CPC → Cone.  These pathways 
converge at three endpoints: P-p, Rod, and Cone, consistent with known 
developmental trajectories (Fig.2C, sFig.4A). In retinoblastoma, the trajectory similarly 
begins with RSCs, differentiating into P-p, which further develops into Cone/Cone-T 
and Rod subtypes.  Thus, the trajectory diverges into two primary paths: 1. RSC → 
P-p → Cone and 2. RSC → P-p → Rod (Fig.2C, sFig.4A). Analysis of 
developmental trajectories and a fitted ridge regression model (sFig.2D) revealed that 
P-p serves as both the terminal stage in normal photoreceptor development and the 
starting point for malignant differentiation, highlighting their pivotal role in 
retinoblastoma onset and the emergence of malignant Cone-T cells. 
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To identify key genes associated with the developmental trajectory of 
photoreceptor cells, we used the Mellon algorithm [26]  to compute gene density 
scores and their expression trends along pseudotime, thereby revealing driving genes 
in development (Fig.2D,sfig.3B-E, Methods). Notably, CCND1 (Cyclin D1), a driver 
gene, is crucial for regulating the RPC cell cycle and retinal tissue formation, and its 
regulatory functions within the retinoblastoma pathway are well-established [27] . In 
retinoblastoma, we identified driving genes such as HSPA1A [28] , RP1 [29] , and 
DMD [30] , all recognized as critical factors in cancer progression. Furthermore, the 
gene ROM1 [31] , a predictor of retinoblastoma progression, is significantly 
upregulated in Cone-T cells, suggesting its role in tumor initiation and exacerbation 
(Fig.2D,sfig.3E). 

To further validate the deterioration trajectory from P-p to Cone-T, we utilized 
microglia as a reference to assess copy number variation (CNV) [32]  scores for all 
cells in the samples. Our analysis indicated that Cone-T cells exhibited the highest 
CNV scores, reflecting the greatest malignancy (Fig.2E-F, sFig.4A-B). Consequently, 
we concluded that the trajectory of tumor progression and deterioration proceeds from 
P-p to Cone and subsequently to Cone-T. By comparing and selecting differentially 
expressed genes across the differentiation processes of the three subtypes, we 
observed that during this transformation, the expression of tumor suppressor genes 
such as FEZ1 [33]  and proliferation-associated genes such as HTRA1[34]  and 
CITED2[35] [36]  was upregulated (Fig.2G). In summary, during the differentiation 
from P-p to Cone, the upregulation of tumor suppressor genes may modulate cell 
proliferation and the rate of malignant transformation.  Conversely, the upregulation 
of oncogenes during the conversion from Cone to Cone-T accelerates cell 
proliferation and differentiation, ultimately promoting tumor development. 

Further investigation into the biological functions of these two groups of 
differentially expressed genes was conducted through pathway enrichment analysis. 
(Fig.2H). The analysis revealed that highly expressed genes in Cone-T cells were 
enriched in pathways directly related to cancer cell proliferation and differentiation, 
including pathways in cancer, cell cycle, and the MAPK signaling pathway [37] [38] 
[39]  , further substantiatingthe link between differentiation from P-p to cone and the 
occurrence and progression of retinoblastoma. Additionally, Gene Ontology (GO) 
enrichment analysis revealed significant enrichment in the biological process of gene 
expression regulation and the molecular function of cis-regulatory regions/RNA 
polymerase II transcription regulatory region sequence-specific DNA binding, 
suggesting that the expression and regulatory functions of relevant genes are 
disrupted during the development from Cone to Cone-T. 
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Fig.2. Transcriptional Dynamics Atlas of Retina and Retinoblastoma. A, UMAP 
visualizations showing the extraction of photoreceptor cells (left), projection clustering, 
re-annotated mapping (middle), and metacell computation (right) for retina (top) and 
retinoblastoma (rb) (bottom) samples.. B, Purity of cell types within metacells. C, 
Pseudotemporal trajectories of photoreceptor cells in the retina (top) and rb (bottom): the 
left panel displays differentiation trajectories based on subtypes nodes, while the right 
panel illustrates the trajectories colored by pseudotime. Red circles mark potential 
differentiation endpoints. D, Heatmap of key density driver genes along the 
developmental trajectories of photoreceptor cells in the retina(P-p) (left) and rb(Cone-T) 
(right). More details could be found in the ‘Methods’ section. E-F, UMAP and violin plots 
showing copy number variations (CNVs) in different photoreceptor subtypes within rb. G, 
Volcano plots illustrating differential gene expression between P-p and Cone in rb (top), 
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and between Cone and Cone-T cells (bottom). H, Enrichment analysis of biological 
pathways for upregulated genes: visualization of cancer-related pathways in Cone (top) 
and biological process enrichment for upregulated genes in Cone-T(bottom). 
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2.3 Analysis the regulation of transcription factors in key 

nodes of tumor development 

To identify the transcription regulatory module involved in the development of 
photoreceptor cells, we paired the scRNA-seq and scATAC-seq profiles using 
GLUE embedding of cells. Among these, the 729 photoreceptor cells sequenced 
by scRNA-seq and the 729 sequenced by scATAC-seq are regarded as the same 
cells, allowing us to indirectly obtain information on two histological layers of a cell 
(Fig.3A and sFig.5A-B). We then inferred transcription factor-associated 
accessibility using the chromVAR algorithm [40]  and identified the top ten 
transcription factors with the highest activity for the P-p, Cone, and Cone-T 
subtypes, suggesting that cell differentiation is linked to the regulation of these 
highly active transcription factors (Supplementary Table1). 

To pinpoint subtype-specific regulatory factors, we first selected transcription 
factors that overlap with highly variable genes (Fig. 3B) and then narrowed it down 
to the top 50 based on their activity levels. By integrating data from four 
perspectives—transcription factor activity, gene expression, chromatin accessibility, 
and gene expression from 13 post-conception week (pcw) retinal tissue 
sections—we identified three highly specific transcription factors: EBF1, SOX15, 
and NFIL3 (Fig. 3C-F, sFig. 6A-B), corresponding to the P-p, Cone, and Cone-T 
subtypes, respectively. We propose that the subtype specificity and regulatory 
functions of these transcription factors are significant and closely linked to the 
developmental processes of photoreceptors. 

To further refine the regulatory network and determine the target genes of 
these transcription factors, we employed the SIMBA algorithm [41]  to integrate 
gene data, open chromatin peak information, transcription factor motifs, and k-mer 
(short DNA fragments derived from sequencing reads) information into a unified 
graph embedding. After obtaining the SIMBA embedding features, we calculated 
the unified neighborhood graph for the cells and performed dimensionality 
reduction visualization. We visualized the locations of the ten inferred fate genes 
alongside the three specific regulatory transcription factors (Fig. 3G). 

Based on spatial positional relationships, we calculated the potential target 
genes regulated by the three transcription factors (TFs). In the SIMBA spatial map, 
genes located closer to the TFs are regarded as potential target genes. By 
calculating a composite score, we identified a total of 6, 50, and 33 potential target 
genes, respectively (Supplementary Tables2), which were utilized for subsequent 
enrichment analysis (Fig. 3G). Enrichment analysis of these target genes using 
WikiPathways (metabolic pathways) revealed that the target genes corresponding 
to TF_EBF1 are enriched in pathways related to the Cell 
Differentiation-Index/Differentiation Pathway and NO/cGMP/PKG-mediated 
neuroprotection, while those corresponding to TF_SOX15 are enriched in the 
Mevalonate pathway (WP3963) [42]  and Eukaryotic Transcription Initiation 
(WP405) pathways (Fig. 3H). The target genes corresponding to TF_NFIL3 are 
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enriched in the EGF/EGFR signaling pathway [43] . According to the enrichment 
results, TF_EBF1 primarily mediates the differentiation of photoreceptor cells and 
the protection of the optic nerve during the precancerous phase, whereas the 
enrichment pathways of the target genes corresponding to TF_SOX15 and NFIL3 
are associated with cancer cell proliferation and metastasis, indicating their 
regulatory roles in tumorigenesis. 
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Fig.3. Key Transcription Factor Regulatory Landscape of Retinal and 
Retinoblastoma Development and Differentiation. A, UMAP showing scRNA-seq data 
(left) and scATAC-seq data (right) of rb, colored by celltypes. B, Venn diagrams showing 
the number of transcription factors (TF) and highly variable genes, as well as their 
overlaps. C, Genomic accessibility tracks of EBF1(left), SOX15(middle), and NFIL3(right) 
across different rb photoreceptor celltypes. D, UMAP showing expression levels of the 
corresponding genes for the three transcription factors. E, UMAP showing the activity 
scores of three transcription factors. F, Spatially resolved expression of three transcription 
factors in the 13 post-conceptional week (PCW) human retina section. G, UMAP plots 
showing multi-omics data of retinal and retinoblastoma photoreceptor cells, colored by cell 
subtypes, gene, K-mers, motif, and peak information. Locations of ten temporally 
regulated genes and three key transcription factors are marked. H,Pathway enrichment 
analysis of the target genes for transcription factors EBF1 (left), SOX15 (middle), and 
NFIL3 (right) using WikiPathways. 
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2.4 The analysis of intercellular interactions among 

photoreceptor cells in retinoblastoma. 

To further explore the cell-to-cell communication during the P-p to Cone 
tumorigenesis trajectory, we used CellPhoneDB to reveal the rich intercellular 
communication between photoreceptor cells(Fig4.A), which also provided a 
premise for us to further study the deterioration trajectory. As we expected, P-p, 
Cone, and Cone-T cells all have many receptors and ligands(Fig4.B), which also 
indicates that there is a lot of intercellular communication in this deterioration 
process. 

Furthermore, in order to explore the effects of P-p and Cone on tumor 
formation, we used P-p and Cone as sources and Cone-T as targets, focusing on 
ligand expression in the source and receptor expression in the target. Interestingly, 
we found a pair of ligand receptors that were highly expressed in P-p, Cone, and 
Cone-T: PPIA (Cyclophilin A) and BSG (CD147). (Fig4.C-D)The interaction 
between this pair of ligand receptors has been shown to play a vital role in the 
progression of various diseases such as inflammatory diseases, coronavirus 
infection, and cancer by activating CD147-mediated intracellular downstream 
signaling pathways, and is associated with poor prognosis in cancer patients[44] 
[45] , suggesting that the formation of retinoblastoma may also be related to this 
interaction. 

We used omicverse to extract highly significant ligand-receptor pairs from 
these ligand-receptor pairs and performed functional enrichment(Fig4.E), revealing 
that positive regulation of phosphorylation may play an important role in the 
progression of retinoblastoma. role, as mentioned in other cancers[46] . 

Next, we further conducted drug screening for P-p. Due to the transitional role 
of P-p in the carcinogenesis of RB, we calculated the drug score for RB (Fig4.F) 
and intersected the drugs with high specificity scores with the cell-specific drugs of 
P-p. Finally, we obtained nine possible potential drugs targeting P-p (Fig4.G), 
hoping to provide some suggestions for inhibiting the RB process from a molecular 
mechanism perspective. 
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Fig.4. Photoreceptor cell-cell interactions and targeted drug analysis. A, Diagram of 
the intercellular regulatory network. Different colors indicate different cell types, and the 
thickness of the thread indicates the strength of the connection. B, Plot of the average 
number of ligands and receptors for different cell types. Different colors indicate different 
cell types, and numbers indicate the average number of ligands for different cell types. C, 
P-p, Cone, Cone-T ligand receptor interaction diagram. The red ones are ligands, the gray 
ones are the receptors, and the wires indicate the existence of interactions. D, Heat map 
of P-p, Cone, Cone-T ligand receptor interactions. P-p and Cone are the Source, Cone-T 
is the Target, and the shade of the dot color indicates the intensity of the interaction. E, Go 
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enrichment results of highly significant ligand receptors for P-p, Cone, and Cone-T ligands. 
F, Differential drug analysis of cancer cells relative to normal cells. G, Intersection of 
drugs targeting P-p cell types and differential drugs for cancer cells relative to normal cells 
obtained in Fig4.F. 
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Discussion 

Retinoblastoma, the most prevalent intraocular tumor in children, accounts for 11% 
of neonatal cancers [47] . Current retinoblastoma (RB) treatment paradigms are 
progressively evolving toward advanced personalized therapies [48] , aimed at 
preserving vision and mitigating treatment-related risks[49] [50] . Therefore, a 
comprehensive understanding of RB developmental trajectories and transcriptional 
regulatory mechanisms is paramount for identifying novel therapeutic targets and 
designing effective treatment strategies. 

This study elucidates the developmental and deteriorative trajectory of 
photoreceptor cells as RSC → RPC → P-p → Cone → Cone-T, wherein RSCs 
represent the progenitor cells of retinal photoreceptors[51] . While the association of 
Cone and Cone-T cells with RB origin and development is well-documented [9] [10] , 
we independently discovered the transitional role of P-p cells, an intermediate 
developmental state between normal and malignant retinal photoreceptors.  This 
finding further clarifies the process of malignant cone cell generation and offers a 
novel perspective for preventative RB treatments. 

Furthermore, we identified driver genes HSPA1A, RP1, and DMD along the 
photoreceptor developmental trajectory, and significantly upregulated regulatory 
genes FEZ1, HTRA1, and CITED2 in Cone and Cone-T cells.  Studies have 
demonstrated that FEZ1 can inhibit cancer cell growth, with its expression inversely 
correlated with abnormal cell proliferation [33] . CITED2 plays a critical role in 
fundamental cellular processes including proliferation, differentiation, and migration 
[35] . Consistent with these findings, our screening of developmental regulatory 
transcription factors identified subtype-specific transcription factors EBF1, SOX15, 
and NFIL3 for P-p, Cone, and Cone-T cells, respectively.  The literature indicates 
that EBF1 can suppress transcriptional reactivation of the cancer-associated 
telomerase catalytic subunit (TERT) at both genomic and epigenomic levels[52] , , 
while SOX15 promotes AOC1 expression and reduces cancer cell proliferation and 
migration; both transcription factors function as tumor suppressors, impeding cancer 
development [53] . Conversely, NFIL3 is reported to be highly expressed in various 
cancers associated with poor prognosis and can inhibit apoptosis induction in cancer 
cells [54] . In retinoblastoma, the significant expression of EBF1 and SOX15 at early 
tumor photoreceptor developmental stages suggests enhanced tumor suppressor 
gene regulation, thereby inhibiting early-stage cancer cell proliferation.  
Subsequently, in Cone-T cells, the upregulation of transcription factors such as NFIL3 
further modulates cone cell differentiation towards malignancy. 

Research confirms that CITED2 can interact with other transcription factors and 
cofactors to promote cell proliferation [36]  , and TF_NFIL3 can bind and inhibit 
pro-apoptotic genes (such as TRAIL)[54] .  Both factors are specifically regulated in 
Cone-T cells and favor tumor proliferation.  We hypothesize a potential synergistic 
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interaction between CITED2 and NFIL3, wherein CITED2 might enhance tumor cell 
survival by upregulating NFIL3 expression or activity, consequently suppressing the 
expression of pro-apoptotic genes like TRAIL. 

A limitation of our study is the relatively small sample size.  Therefore, our findings 
are preliminary and require further validation in larger, independent patient cohorts.  
Additionally, the absence of spatial transcriptomic data from retinoblastoma patients 
limited our ability to capture spatial information regarding tumor cell heterogeneity. To 
address this, future studies could utilize engineered mouse models and spatial 
transcriptomics techniques to further investigate the role of P-p cells in photoreceptor 
conversion during retinoblastoma development.  Furthermore, functional 
experiments are warranted to validate the identified therapeutic targets, confirming 
their authenticity and reliability. 

In conclusion, this study, leveraging a dual-omics framework of scRNA-seq and 
scATAC-seq, provides, to our knowledge, the first comprehensive exploration of 
photoreceptor developmental differentiation and key regulatory factors in 
retinoblastoma.  Our findings offer potential transcriptional regulatory therapeutic 
targets and guide the development of novel RB treatment strategies and measures to 
inhibit RB invasion.  
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Methods 
Data extraction 

The raw expression matrices of scRNA-seq and scATAC-seq of the 
retinoblastoma were retrieved from National Center for Biotechnology Information 
Gene Expression Omnibus under accession number GSE166173 and GSE166174[19] 
. 

The raw expression matrices of scRNA-seq and scATAC-seq of the human 
embryonic developing retina were retrieved from National Center for Biotechnology 
Information Gene Expression Omnibus under accession number GSE228370[18] . 

scRNA-seq preprocessing 

We performed alignment to this amended reference using 10x Cellranger 
(Version 6.0.0),which employs the STAR [55]  sequence aligner. The reference 
genome was the human genome GRCh38. The processed matrices of different 
samples were merged and the following analyses were finished by Omicverse [56]  
and Scanpy [57] . We removed cells with less than 200 informative genes expressed, 
cells with more than 4300 genes expressed and cells with more than 25% of counts 
corresponding to mitochondrial genes. We removed genes with less than 3 cells 
expressed. We performed doublet analysis using the 'Scrublet' Python package from 
scanpy [58] , and apply doublet filtering to remove doublets biasing. Count data was 
log-normalized and scaled to 10, 000. We performed high variable gene analysis 
based parameter setting: 'min_ mean=0.0125', 'max_mean=3', 'min_disp=0.5'. Then 
using PCA embedding to calculate a UMAP layout[59] . Clusters were identified using 
the Leiden algorithms[60]  based on the nearest neighbor graph. 

scATAC-seq preprocessing 

Raw sequencing data were converted to fastq format using 'cellranger-atac 
mkfastq' (10x Genomics, v.1.2.0). scATAC-seq reads were aligned to the GRCh38 
(hg38) reference genome and quantified using 'cellranger-atac count' (10x Genomics, 
v.1.2.0). Fragment data was further processed using the 'ChrAccR' R package 
(v.dev.0.9.11+). We filtered out cells with less than 1,000 or more than 50,000 
sequencing fragments. TSS enrichment was computed as a metric of signal-to-noise 
ratio using methods described in [61]  and we discarded cells with a TSS enrichment 
less than 4. Fragments on sex chromosomes and mitochondrial DNA were excluded 
from downstream analysis. 

Data preprocessing for cell paired 

To preprocess the scRNA-seq for cell paired, we annotated cell types from 
scRNA-seq data. To preprocess the scATAC-seq for cell paired, we apply the latent 
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semantic indexing (LSI) for dimension reduction and first encoder transformation. 
Then we constructed the prior regulatory graph to utilized the multi-omics alignment 
by GLUE (version 0.3.2)[15] . 

Pairing the scRNA-seq and scATAC-seq data by scglue 

After constructed the prior regulatory graph from scRNA-seq and scATAC-seq, 
we specify the probabilistic generative model negative binomial distribution(NB) for 
the omics-layer to be integrated. Next, we initialize a GLUE model for scRNA-seq and 
scATAC-seq layers. With the trained GLUE model, eigenvectors for each cell (feature 
embeddings) were obtained by parameter 'X_glue'. Subsequently, Pearson 
coefficients were used to find the two most similar feature vectors in scRNA-seq and 
scATAC-seq. Duplicate paired cells are discarded in this process.The cell annotations 
of scRNA-seq were transferred to the corresponding scATAC-seq cells. 

Calculate the ratio of observed to expected cell numbers 

The ratio of observed to expected cell numbers (Ro/e) was determined for each 
cell types cross various samples using the omicverse.utils.roe function with default 
parameters. This analysis aimed to reveal the preferential distribution of each cell type 
among the samples. The expected cell numbers of each combination of samples and 
cell types were obtained from the chi-square test. In brief, we defined that one cell 
type was identified as being enrichment in a specific sample if Ro/e was greater than 
1.5. For visualization, the symbol '+++' denotes instances where the Ro/e exceeds 2, 
'++' signifies Ro/e greater than 1.5, '+' indicates Ro/e above 1, and '+/-' is utilized to 
designate Ro/e that is less than or equal to 1. 

Calculation of motif score 

We used scbasset (v.0.0.0) [62]  to score motifs on a per cell basis using motif 
injection method. For motif injection, we first generated dinucleotides shuffled 
background sequences, and inserted motif of interest to the center of those 
sequences. 

Trajectory inference and pseudotime analysis 

Trajectory inference of photoreceptor cells was conducted by using the 
omicverse.single.pyVIA function in Omicverse. This method is grounded in the VIA 
Python package, which provides a scalable algorithm for trajectory inference within 
single-cell RNA sequencing analysis. In addition, trajectory roots were selected based 
on the RSC score. Furthermore, the pseudotime was depicted as streamlines using 
the v0.plot_stream function, gene trends were calculated and visualized with the 
v0.plot_gene_trend function, and the automated detection of terminal states was 
performed using the v0.plot_trajectory_gams function with default parameters. 

Gene Density Analysis 
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  Gene expression density was computed using the Mellon algorithm[26] , which 
applies a Gaussian kernel to estimate spatial gene distribution based on transcript 
counts across tissue regions. The algorithm integrates spatial coordinates and 
normalizes gene expression levels to ensure comparability. Heatmaps were 
generated to visualize z-score normalized gene densities, highlighting differential 
expression patterns between tissue regions. 

Differential gene expression analysis 

To identify the differentially expressed genes between two groups we specified, 
we adhered to the 'Differential Expression Analysis in Single Cell' tutorial provided by 
Omicverse on GitHub and employed the omicverse.bulk[56] .pyDEG function to 
evaluate the significance of each gene. The log2 fold change (log2FC) for each gene 
was determined by calculating the difference between the log2-transformed mean 
counts of each group. To remove the influence of low expression genes, we selected 
the top 3000 highly variable genes as the input data. Genes with adjusted P value 
less than 0.05 (the Wilcoxon rank-sum test) and greater than the threshold of the 
log2FC were considered as significant differentially expressed genes. Furthermore, 
the specific threshold for log2FC was clearly indicated in the legend of the respective 
figures. 

Gene Ontology (GO) and Network-based Analyses of cell 

subpopulations 

We performed gene set enrichment analysis of GO terms using gseapy (v.0.10. 8) 
[63]  with default parameters (adjusted p-values<0.05) and select geneset 
'GO_Biological_Process_2021' and 'GO_Molecular_Function_2021' [64] . We also 
calculated the fraction of each GO term using 'Overlap' based on the results of the 
enrichment analysis, and logarithmized the adjusted P-value. To distinguish the 
different Go terms, we transformed the gene of each term into a one-hot code and 
clustered the terms using 'clustermap' of Python package seaborn (v.0.11.2) [65]  to 
find similar term modules. For network-based analyses, protein lists were submitted to 
the STRIN G-db tool [66]  (all active interaction sources, interaction score > 0.8). The 
network was exported into a simple tabular output, reformatt ed to display desired 
parameters (e.g., K-means clusters) 

Putative interactions between cell types 

To enable a systematic analysis of cell-cell communication, we used 
CellPhoneDB [67] . CellPhoneDB is a manual curated repository of ligands, receptors 
and their interactions, integrated with a statistical framework for inferring cell-cell 
communication networks from single cell transcriptome data. Briefly, in order to 
identify the most relevant interactions between cell types, we looked for the cell-type 
specific interactions between ligands and receptors. Only receptors and ligands 
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expressed in more than 10% of the cells in the specific cluster were considered. We 
performed pairwise comparisons between all cell types. First, we randomly permuted 
the cluster labels of all cells 1000 times and determined the mean of the average 
receptor expression level of a cluster and the average ligand expression level of the 
interacting cluster. For each receptor-ligand pair in each pairwise comparison 
between two cell types, this generated a null distribution. By calculating the proportion 
of the means which are as or higher than the actual mean, we obtained a p-value for 
the likelihood of cell type-specificity of a given receptor-ligand complex. We then 
prioritized interactions that are highly enriched between cell types based on the 
number of significant pairs and manually selected biologically relevant ones. For the 
multi-subunit heteromeric complexes, we required that all subunits of the complex are 
expressed (using a threshold of 10%), and therefore we used the member of the 
complex with the minimum average expression to perform the random shuffling. 

 

Data availability 

All data were obtained from publicly available datasets. 
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