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Local Genetic Sex Differences

Abstract

Many traits show small global sex differences in genetic correlations and heritability.
However, how these differences are distributed across the genome remains unknown.
Here, we use LAVA to test for local genetic sex differences in genetic correlations,
heritabilities, and the magnitude of genetic effects across 157 quantitative traits in the
UK Biobank. Nearly every trait shows evidence for sex-dimorphic effects in at least one
locus. We find that such loci can flag biological differences between the sexes. Moreover,
we test for differences in the magnitude of genetic effects on the raw and the
standardized scale. We show these have complementary interpretations, where only the
latter scale is informative for heritability. Our results show how average metrics of
genetic correlation and heritability across the whole genome can mask important
variability between loci and that the scale of genetic effects needs to be considered

carefully when comparing their magnitudes.
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Introduction

Males and females differ in prevalence, severity, and age of onset across a wide range of
diseasesl2. Similarly, many quantitative traits are sexually dimorphic in their means
and variances3+. These observed sex differences may partly be due to differences in the
external environment (e.g., societal gender norms>?) or the cellular environment (e.g.,
hormone and gene expression levels’:8). As such, sex may be regarded as an
environmental variable that interacts with genetic variants (GxS) to produce partially
dimorphic phenotypes3.

Male and female autosomal allele frequencies do not differ due to Mendel’s law
of segregation, which is independent of the sex chromosomes®. Therefore, genetic sex
differences are expected to manifest biologically only in causal variant effect sizes.
Importantly, the effect size scales must be considered when comparing males and
females because they can have different interpretations. For example, sex-divergent
heritability estimates can only occur if effect sizes differ on the standardized scale.

Genome-wide association studies (GWASs) typically analyze males and females
together while including sex as a covariate, thereby potentially masking sex-specific
genetic effects. Recently, large-scale sex-stratified GWASs have been conducted that
compare global heritabilities (h2giobal) and estimate global genetic correlations (rg, giobai)
between males and females#10-13, These studies have identified many traits that show
genetic sex differences on a global level. However, such global analyses cannot elucidate
the local architecture of genetic sex differences4. Commonly, studies rely on comparing
the presence and absence of genome-wide significant loci between males and
females!>16, However, a locus that is just below the significance threshold for one sex
and hovers just above the threshold for the other may not point to a meaningful
difference between the sexes. This is because the difference between “significant” and
“not significant” may not itself be significant?’.

Furthermore, a recent study suggests that GxS mainly acts through differences in
the magnitude of effect sizes between males and females and not in the identity of
causal variants18, While this marks an important advance in the study of GxS, the
magnitude of effect sizes was only considered on the raw scale. The scale of effect sizes
needs to be considered because it can have different yet equally important
interpretations. For example, only the standardized scale is informative for the

heritability.
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To address these gaps and gain insight into local (dis-)similarities in genetic
signals between males and females, we estimated local genetic correlations and tested
whether these differed from one, compared local heritability estimates, and tested for
equality of genetic effects on aregional (i.e.,, 1Mb regions) and a gene level in 157
quantitative traits. While the vast majority of loci do not significantly differ between
males and females, almost every trait we studied had at least one locus that did. We
show that these loci can highlight trait-relevant biology. Lastly, the equality of local
genetic effects was evaluated on the raw phenotypic, as well as on the standardized
scale. While the results from both scales correlated strongly, discrepancies exist that

can be informative in interpreting observed sex differences.
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Results

Data overview.
Sex-stratified GWAS summary statistics were downloaded from the Nealelab

(https://github.com/Nealelab/UK Biobank GWAS); sex was genetically inferred®. We

analyzed 157 quantitative traits across 13 ICD/ICF domains with a combined maximum
sample size of 360,564 (sample size varies across traits; see Supplementary Table 1).

Subjects were of British ancestry (see Methods for details).

Local heritability.

The autosomal genome was divided into 2495 semi Linkage Disequilibrium (LD)-
independent loci of approximately 1Mb in size (see Methods and ref 20). We computed
local heritability estimates (h?local) for all traits with LAVAZ20, We found 146 loci across
47 traits to significantly differ between males and females at a Bonferroni-corrected
significance threshold of p < 0.05 / (2495 x 157) = 1.28e-07 (see Figure 1, Methods for a
description of the test of equal heritabilities, and Supplementary Table 2 for type-1
error simulation results). 55% of these loci (80/146) had larger h%ocais in females,
which was not significantly different from 50% (p = 0.28). Across all traits, h%jocais for
loci that were significant in both males and females correlated strongly (rpearson = 0.98, p
< 1.00e-300). After the exclusion of loci with very large h2iocais (i.e., > 0.2, for lipoprotein
A, direct bilirubin, and total bilirubin; see Supplementary Figure 1), the correlation
estimate decreased but remained high (rpearson = 0.89, p < 1.00e-300).

Approximately 62% of all significant h?iocais are significant in only one of the
sexes. Across all traits, we identify more loci with significant h2iocals in females than
males (10614 loci across 153 traits vs. 8767 loci across 151 traits). This is at least partly
due to the sex-stratified GWASs' sample sizes being mostly larger in females, increasing
the power of h2i0cal analyses in females relative to males. Specifically, 153 out of 157
traits have larger sample sizes in females with a median female:male sample size ratio
of 1.16 (see Supplementary Figure 2 and Supplementary Table 1 for exact sample sizes).
This is a consequence of the female sampling bias in the UK Biobank. Simulations show
that this can result in power asymmetries at large sample size differences (see
Supplementary Figure 3 and Methods), with somewhat greater power to detect

differences in heritability if the larger heritability is for the sex with the smaller sample
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rather than the other way around. However, this power asymmetry is largely negligible
for the sample size differences typical of the UK Biobank.

Mostly blood biomarker traits show strong h2iecal differences in magnitude for
individual loci. For example, locus 2181 (17:7264459:8554763) for testosterone has a
hZi0ca1 0f 4.3% (p < 1.00e-300) for males but 0.06% (p = 3.79e-05) for females. Locus 963
for Rheumatoid factor (6:32454578:32539567) has a h2iocal of 1% (p = 3.19e-19) for
females, but 0.02% (p = 0.4) for males. For Urate, four neighboring loci
(4:8882617:11050119) have significant and large h?iocais for both males and females,
but the female estimates are 4-5 times larger (female range: 0.5% - 10%; male range:
0.1% - 2.7%). SLC2A9, a Urate solute carrier and main GWAS hit1¢, is located within
these loci, which suggests sex differences in the relative importance of this gene for

Urate blood levels.
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Figure 1. Local heritability estimates for 2495 loci across 157 traits in males and females. To test for
significantly different heritability estimates, a Bonferroni-corrected threshold of p = 0.05 / (2495 x
157) = 1.28e-07 was used.

Local genetic correlations.
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To test for local genetic sex differences, we computed local genetic correlations (rg ioca)
with LAVA for every trait and locus with sufficient genetic signal (i.e., we used a h2iocal p-
value threshold of p < 1.00e-04; see Methods) for both males and females (Nioci =
11259) and tested if the rg iocal is significantly different from one (i.e., we tested for
deviation from perfect correlation) at a Bonferroni-corrected significance threshold of p
<0.05/11259 = 4.44e-06. We found 118 traits with at least one locus where the rg 1ocal
is significantly different from one (see Figure 2 and Supplementary Figure 4). Moreover,
we found 205 loci across 103 traits to be significantly different from one and with
negative rg local. Again, we found blood biomarker traits (metabolic and immunological
traits) exhibited the largest number of differences between the sexes. IGF-1 and
testosterone had the largest number of loci whose correlation was significantly
different from one, namely 12 and 11, respectively (Supplementary Figure 4). For some
traits, such as urate, total and direct bilirubin, and lipoprotein A, we found loci where
the rg 1ocal was significantly different from one while being very close to one (see Figure
2). These loci explain much of the total h?iocal in both males and females, thus having
more precise rg local €stimates, and higher statistical power to detect subtle deviations
from one. We note that 8% (942 / 11,935) and 7% (842 / 12,246) of cross-trait pairs
have significant Bonferroni-corrected global genetic correlations (rg, gioba) for females
and males, respectively (see Supplementary Figures 5 & 6). These mostly cluster within
weight- and fat-distribution-related phenotypes, and some loci with significant rg, iocal
between males and females are expected to repeat across these phenotypes. Indeed,
locus 2310 (19:3085447:3893909) has a significant rg 1ocal for 14 metabolic traits.
However, this is not the norm, and 80% of loci with at least one significant rg,1ocal are

found for at most two traits.
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Figure 2. Density plots of I'g, localS. Depicted are all traits with at least three loci that are significantly
different from one at a Bonferroni-corrected significance threshold of p < 0.05 / 11259 = 4.44e-06 (this
minimum number of significaaAnt loci was chosen to aid visualization; see Supplementary Figure 4 for
the number of significant loci for all traits). Grey dots are loci not significantly different from one and
orange dots are loci significantly different from one.
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In addition to local genetic correlations, we computed global genetic correlations
(rg global) using LD Score Regression2! and compared them to the weighted mean of ryg,
locals across all loci for which rg 10cais could be computed using LAVA (see Figure 3 and
Methods). While 20.13% (30/149) of traits had LDSC-rg globais significantly different
from one, most were very close to one, with the notable exception of testosterone. To
ensure some reliability of LAVA mean rg, 1ocaiS, we only considered traits for which at
least ten rg 1ocais could be computed. Overall, both methods have good agreement (mean
absolute difference = 0.12). Out of 119 traits with LDSC-rg global not significantly
different from one, 84 had at least one rg 10cal that was significantly different from 1.
Body Mass Index (BMI) has an LDSC-rg global of 0.93, but locus 1727
(11:122589225:123398882) has a rg 1ocal 0f -0.12 (p = 4.03e-06) (see Figure 4).
Reversely, testosterone has an LDSC-rg, giobal of zero but has several loci that are strongly
positive and negative. For example, locus 2020 (14:93386329:94892240) has a rg l1ocal of
-0.67 and is significantly different from one (p < 1.00e-300), while locus 963
(6:32454578:32539567) has a rg 1ocal 0f 0.85 which is significantly different from zero (p
= 2.37e-08) but not from one (p = 0.17).
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Figure 3. Global genetic correlations (rg giobal) estimated with LD Score Regression and the variance-
weighted mean of local genetic correlations estimated for LAVA. The error bars for LDSC estimates
depict standard errors. The depicted LAVA weighted means are not true estimates of rg giobals and
therefore have no associated p-values or standard errors.

* nominal significance at p < 0.05

** Bonferroni-corrected significance at 0.05 / 149 = 3.34e-04.
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Figure 4. I'g, 1ocal results for BMI and testosterone. While the LDSC- rg, global €stimate for BMI is close to
one, many loci have g, localS that strongly and significantly diverge from one (e.g.,, locus 1727). In
contrast, the testosterone LDSC- ryg giobal €Stimate is close to zero, while some loci are strongly negative
and others positive (e.g., locus 963 and 2020). Similar plots for all other traits can be found in our
Zenodo repository (https://doi.org/10.5281/zenodo.15213372).

Equality of genetic effects.

A recent study suggested that differences in the absolute magnitude of genetic effects
could strongly contribute to phenotypic sex differences!8. As such, we extended LAVA to
test for equality of genetic effects (see Methods for details). This is a more specific test
for differences in genetic architecture because it not only tests for equality of the
direction of genetic effects and their relative magnitudes (i.e., correlations) but also for
equality of their absolute magnitude. For example, a locus with SNP effects with the
same direction and pattern of effects between the sexes but where the effects are twice
as large in males would have a rg 1ocal of one, even though the SNP effects all differ.
Equality of genetic effects implies that the rg 1ocal is one and that the SNP effects are the
same. As such, a test of equality of genetic effects is more specific than testing rg,ocal
equal to one. The equality test is performed on two effect-size scales, the raw scale of

the phenotype (equalityraw) and a standardized scale (equalitystd), where the effect sizes
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are scaled by the standard deviation of the phenotype. When the genetic correlation in a
tested locus is not significantly different from one, it is possible to make inferences
about the h2i0cal and phenotypic variance differences between the sexes based on the
results of the two scales of the equality test (see Figure 5). This is not the case when rg,
local is significantly different from one because, in that instance, the equality test will
tend to be significant even if no difference in h%0cal or phenotypic variance exists (i.e.,
the individual SNP effects differ, even though the total genetic variance is the same).
Moreover, as seen in the two middle columns, the two scales can only diverge if the

phenotypic variances differ between the sexes.

Braw, M= Braw, F ﬁraw, M= Braw, F Braw, MF Braw, F Braw, MF Braw, F
Bsta, m = Bsta, r Bsta,m # Bsta,r Bsta, m = Bsta, F Bsta,m # Bsta,r
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Figure 5. [llustration of the scales of genetic effects when rg local = 1. When genetic effects are the same
on both the raw and standardized scale, the phenotypic and genetic variance will be equal between
males and females (first column). When genetic effects differ on the standardized scale, but not the raw
scale, phenotypic variances and heritabilities differ (second column). When genetic effects differ on the
raw, but not the standardized scale, phenotypic variances differ while heritabilities are the same (third
column). When both the raw and standardized genetic effects differ, heritabilities differ while

phenotypic variances may or may not differ (fourth column). We note that when I'g local # 1, genetic
effects may differ under any of these scenarios.
Out of 157 traits, 151 and 152 had at least one locus that significantly (p < 0.05 /

(2495 x 157) = 1.28e-07) differed between males and females in the equalityraw and
equalitystd test, respectively. Out of these, 45 loci across 23 phenotypes had rg ocal not
significantly different from one. The median number of significant loci per trait was 3.5.
Not all significant loci in the equality tests overlap with GWAS hits. Out of 606
significant equalityraw loci, 89 contained genome-wide significant SNPs in females and
130 in males. Out of 512 significant equalitystd loci, 64 contained genome-wide

significant SNPs in females and 69 in males.
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Because the equality test can be applied to arbitrarily small loci, we repeated the
analysis using gene boundaries as locus definitions to improve their biological
interpretation. However, we note that applying it to smaller loci while increasing the
Bonferroni correction using the number of genes (i.e., 0.05 / (18576 x 157) = 1.7e-08)
comes at the expense of power. Of all 157 traits, 55 had at least one gene that
significantly differed between males and females on at least one scale. Of these 55 traits,
the median number of significant genes was 2. The correlation of p-values between
equalityraw and equalitysta across all traits and genes was 0.98, likely because most
genes did not differ between the sexes on either scale and because the phenotypic
variances were mostly similar (mean female-to-male ratio: 0.95 * SE 0.03), except for
testosterone (female-to-male ratio: 0.03) and oestradiol (female-to-male ratio: 36.42).
However, we identified 85 genes across 10 traits with divergent results in the
equalityraw and equalitystd test (i.e., one test was significant at p < 1.7e-08, while the
other had p > 0.01). For Sex Hormone Binding Globulin (SHBG), three neighboring genes
(i.e, NRBF2,JM]JD1C, and REEP3) showed very similar and strong sex differences with
equalitystd (p < 1.3e-34), but not with equalityraw (p >= 0.7). The phenotypic variance of
SHBG was 3.6 times larger in females. Therefore, the heritability was expected to be
larger in males (see column 2 in Figure 5). Indeed, the heritability was significantly
different (p < 1e-08) and more than 3 times larger in males for all three genes (hZiocal,
females = 0.3%), h21ocal, males = 1.1%). JMJD1C has been hypothesized to impact SHBG levels
via thyroid hormones that affect HNF4A 22, and while this seems to apply to both males
and females, our results suggest this to be a much stronger effect in males. Reversely,
for HDL cholesterol, the gene CETP showed strong sex differences with equalityraw (p =
3.62e-32) but not with equalitysta (p = 0.02). As expected (see column 3 in Figure 5), the
heritabilities did not significantly differ (p = 0.07, hZfemales = 4.6%, h?males = 4.3%). The
phenotypic variance in females was 1.5 times larger than in males, which explains the
observed difference with equalityraw.

Next, we tested whether significant loci in the equality test can highlight
biological differences between the sexes for testosterone, diastolic blood pressure and
low-density lipoprotein (LDL) levels. We also applied FLAMES to predict the most likely
causal gene for each risk locus in males and females for these three traits. As a positive
control, we highlighted results for testosterone because its biology is well-understood

and known to be markedly different between males and females3.16, Whether or not a
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gene has a known function in testosterone biology strongly predicted association
strength in the equality test (p = 8.13e-09). Reversely, nearly every significant locus in
the gene-based equality test highlighted known biological differences in testosterone
biology (see Figure 6). Most testosterone GWAS hits did not overlap between males and
femalesé: Out of 47 loci in the female GWAS and 112 loci in the male GWAS, four loci
overlapped. Differences may also exist for overlapping loci. For one of the overlapping
loci, we found AKR1C3, a gene associated with testosterone synthesis and metabolism,
to map to a GWAS hit in males (10:5012267:5512267) and females
(10:4812752:5312752). However, the lead SNPs differ and are on opposite sides of
AKR1C3, and both equalityraw (p = 5.19e-12) and equalitysta (p = 1.52e-14) showed
significant differences for this gene. There was no difference in h2iocal (p = 0.24), but the
1Mb locus that contained AKR1C3 had a rg 10cal of 0.18, which was significantly different
from 1 (p < 1e-8) but not from 0 (p = 0.17). As such, while AKR1C3 contains signals in
both males and females, the pattern of SNP associations is markedly different.
Moreover, the gene prioritization tool FLAMES?3 predicted different causal genes at this
locus, namely AKR1C2 for females and AKR1C4 for males, which we also found to be
significantly different in the equality test (see Figure 6). FLAMES predicted the same
causal gene for the other three overlapping loci.

The major female sex hormone, oestradiol, has a very different genetic
architecture from the major male hormone, testosterone. The sex-stratified GWASs of
oestradiol contain little genetic signal, each identifying only one genome-wide
significant risk locus and with h;lobal estimates of ~2%. Moreover, the rg, giobal was not
significantly different from one.

For diastolic blood pressure, we replicated a recent study that found the
COL4A1/COL4A2 locus to be sexually dimorphic?* (see Figure 6). This locus is
significant in the male GWAS but not the female GWAS. FLAMES?3 predicted COL4A1 to
be the most likely causal gene for males. The equality test flags this gene to differ the
most on both scales. However, we do not find evidence for differential effects of three
other loci (i.e., PECAM1, NT5C2, MSTN) identified in the same study?4. These loci did not
reach statistical significance in an additional sex-by-genotype interaction analysis in the
same study24 and may thus be false positives. Furthermore, out of 101 female GWAS loci
and 45 male GWAS loci, 26 loci overlapped. Of these 26 overlapping loci, 22 were

predicted to have the same causal gene, while 4 were predicted to have different causal
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genes between males and females. However, none of these discordant genes were
significant in the equality test.

Lastly, APOE, which FLAMES predicted to be the causal gene at a GWAS hit for
low-density lipoprotein (LDL) levels in both males and females, shows a pronounced
sex difference with both equalityraw (p = 6.78e-81) and equalitysta (p = 7.60e-82) (see
Figure 6). While the rg 1ocal 0of the locus (19:45040933:45893307) is 0.996, the h?iocal of
APOE, while large in both, is twice larger in females (h2iocal = 6%) than in males (h%iocal =
3%). Similarly, we found APOE to be sexually dimorphic for high-density lipoprotein
(HDL) levels, Apolipoprotein B, and Total Cholesterol with the equality test on both
scales, and Triglycerides on the raw scale, and the h2ocal are considerably larger in
females (see Supplementary Figure 7).

Lastly, out of 85 female GWAS loci and 56 male GWAS loci for LDL-direct levels,
we found 32 that overlapped between both. FLAMES predicted the same causal gene for
25 of these, and different causal genes for the other seven. However, only SUGP1
significantly differed between males and females in equalityraw (p = 8.22e-13) and
equalitystd (p = 9.62e-13). Interestingly, SUGP1 has previously been shown to be

associated with coronary artery disease and cholesterol metabolism?25.
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Figure 6. Miami plots for the test of equal genetic effects for three traits. The top part of the plots
depict results for the raw scale, while the bottom part shows results for the standardized scale. The x-
axis depicts chromosomal base-pair positions and the y-axis -logio(p-values). For testosterone, all
genes that are significant after Bonferroni correction (p < 0.05 / (2495 x 157) = 1.28e-07) and have a
known function in testosterone biology are highlighted. For diastolic blood pressure, all genes that
have been found to be sexually dimorphic in a recent study are highlighted. For LDL direct, all genes
that are significant after Bonferroni correction are highlighted.
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Discussion

Early twin-based studies of genetic differences in heritability found few traits to be
sexually dimorphic2é. However, as GWAS sample sizes increase and some traits become
saturated for genetic associations??, an opportunity arises for sex-stratified analyses of
common variants. Consequently, a recent large-scale analysis of hundreds of traits has
found widespread, if small, differences across the genome#. Some traits, however, are
particularly dimorphic, such as waist-to-hip ratio?8 and testosteronele.

Many studies of genetic sex differences focus on rg, global and h2giobal estimates+10.11
or manually compare the presence and absence of significant locil>16. Such approaches
may work well for traits with genome-wide sex differences but may miss traits with
localized ones. Indeed, we found that 70% of traits for which LDSC estimates a rg, global
close to one, have at least one locus with a rg 1ocal different from one. Moreover, many of
these had loci with negative rg 1ocal, Which is rarely observed on a global level. This
shows that rg, giobais between the sexes are not evenly distributed across the genome, but
that loci of varying rg 1ocals, Some in opposite directions, combine to produce genome-
wide correlations. This is particularly evident for testosterone, which has a rg giobal of
zero but several negative and positive rg locals.

A recent study has found that most observed genetic sex differences are not due
to the direction and pattern of genetic effects (as measured with rg) but due to the
magnitude of genetic effects18. We built on this work by developing the equality of
genetic effects test. Using this test, we provided novel insights chiefly in two ways. First,
we tested for differences in the magnitude of genetic effects on the raw phenotypic, as
well as the standardized scale. Comparing the scales can be informative for localized
differences in genetic and phenotypic variances. We showed that differences in raw
genetic effects can simply scale with differences in phenotypic variances, in which case
heritabilities are expected to be the same between males and females. If the relative
contribution of genetic effects on a phenotype is of interest, the standardized effects
need to be considered. Secondly, we applied it to clearly defined genomic loci, and could
thus test for differences in the magnitude of genetic effects within genes in addition to
1Mb loci. Almost every trait we studied had at least one 1Mb loci that differed between
males and females. On a gene level, approximately a third of traits showed sex

differences in at least one gene.
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Combining LAVA bivariate rg 1ocal and univariate h?iocal analyses with the test of
equal heritabilities, perfect rg 1ocal and equality of genetic effects allows for very detailed
descriptions of local genetic sex differences. In this way, we found APOE to have
different magnitudes of genetic effects on the raw and standardized scales for several
lipid-related phenotypes while the rg 10cal was not different from one, leading to hZiocal
estimates that are up to twice as large in females. As such, APOE must interact with
male or female hormones or with external environmental variables (e.g., diet) to result
in these divergent genetic effects. Future studies could compare whether these
differences mediate sex-dimorphic effects of APOE on Alzheimer’s Disease2°-33 and
Cardiovascular Disease3435 risk. Moreover, we show for the AKR1C testosterone GWAS
hit, how a rg 10cal of Zero and significant equality tests can point to two different causal
genes for males and females.

While for most overlapping GWAS loci of LDL cholesterol, testosterone, and
diastolic blood pressure between males and females, the same causal gene was
predicted with FLAMES, some loci had divergent gene predictions. On a variant level, it
is expected that the identity of causal variants does not differ between the sexes and
that genetic sex differences are due to causal variant effect sizes only. On a gene level,
we would therefore expect the same, namely that the same genes are causal and that
merely the h?, .., per gene may differ. However, several scenarios can give rise to
diverging causal gene predictions. First, if GxS interactions are sufficiently strong, the
effect of genes may start to appear qualitatively different. This seems to be the case for
testosterone, which appears to be two separate phenotypes altogether in males and
females with few overlapping risk loci, global genetic correlations of zero, and many
genes significantly different in the equality test. Second, different causal genes may be
predicted when a locus contains more than one causal gene, but the relative importance
differs by sex, such that the top-ranking genes are not the same. Third, a locus may only
reach genome-wide significance in one sex and may thus not yield a predicted causal
gene in our analysis with FLAMES for the other sex (such as COL4A1 for diastolic blood
pressure). Lastly, FLAMES selects the top-ranking gene as the most likely causal one,
while the second- and third-ranking genes may be only slightly less likely. This may
explain why most of these genes were not significantly different in the equality test.
Moreover, FLAMES is expected to have 75% precision3® and, as such, some uncertainty

in the predictions is expected.
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While nearly every trait showed some evidence for localized genetic sex
differences, most loci for most traits did not differ. As such, while not tested in this
study, we expect that genome-wide and additive polygenic predictions based on sex-
stratified GWASs will not outperform those based on sex-combined GWASs. This is
because sample sizes would be halved, thus drastically reducing power. However, other
approaches that directly model GxS and polygenic covariance structures between males
and females can improve risk prediction, particularly for traits with genome-wide sex
differences such as testosterone and waist-to-hip ratiol8.

There are several limitations to this study. First, LAVA computes local genetic
correlations for relatively large genomic loci, which may contain multiple genes.
Whether the genetic correlation is consistent across all or some genes is unknown. This
is because genetic correlations cannot be reliably computed for small loci with
insufficient genetic variance. However, compared to global genome-wide genetic
correlations computed with methods such as LDSC?1, the 1Mb loci in LAVA provide
much more granularity. Second, we have only considered quantitative traits as work
validating the newly developed tests for binary traits is still ongoing. Third, we only
considered data from the UK Biobank. This is because it is the only large biobank we
know for which sex-stratified GWAS summary statistics for quantitative traits have
been computed and made publicly available for hundreds of traits. We urge the authors
of future GWASs to release sex-stratified summary statistics. Lastly, loci that are
significantly different between males and females do not necessarily contain significant
GWAS hits. As such, these loci may contribute only minimally to phenotypic differences.
Heritability estimates of the given locus can be evaluated to mitigate this, or loci may be

filtered to those containing genome-wide significant SNPs.
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Methods

Quality control of summary statistics
Summary statistics for 157 traits (see Supplementary Table 1) were downloaded from

the Nealelab (https://github.com/Nealelab/UK Biobank GWAS). Only summary

statistics for untransformed (i.e., raw) and quantitative phenotypes were downloaded.
Phenotypes that were deemed too similar were filtered out, such that only one
phenotype remained (e.g., hand grip strength left vs. right; see Supplementary Table 1
for a full list of traits that were considered and those that have been selected).
Additionally, phenotypes that were suspected of having a minimal genetic basis were
removed (e.g., ‘age at recruitment’). Details on how the GWAS was conducted and which
quality control filters were applied can be found on the Nealelab website

(https://github.com/Nealelab/UK Biobank GWAS). Briefly, sex-combined and sex-

stratified GWASs were performed in 337,199 individuals of British ancestry using a
linear regression model in Hail3?. For the sex-stratified analyses, the first 20 principal
components, age, and age? were included as covariates. For initial quality control, all
SNPs with imputation quality score below 0.8, minor allele frequency (MAF) below
0.1% (except for VEP38 annotated SNPs), and Hardy-Weinberg-Equilibrium p-values
below 1.00e-10 (except for VEP38 annotated SNPs with MAFs below 0.1%) were
removed. Considering that this database includes summary statistics that were
generated on a large scale without trait-specific quality control procedures, we
additionally applied a strict minor allele frequency filter of 10% to ensure only well-
imputed and reliable SNPs went into the analysis. This resulted in approximately five
million SNPs for each trait. Manhattan and qq-plots, as well as LDSC Regression
intercepts and Genomic Control statistics, were additionally inspected to ensure high-

quality summary statistics.

Genome partitioning

The genome was partitioned into blocks in the same way as in 29, the method for which
is described there in full. In brief, this partitioning method aims to divide the genome
into smaller blocks of roughly equal size while minimizing the level of LD between
them. It does so by recursively splitting the genome (starting at whole chromosomes),
each time selecting the breakpoint for which the local LD between SNPs across that

break point is lowest. This process is repeated until no further valid breakpoints can be
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found; a breakpoint is invalid if it results in blocks containing fewer than the minimum
number of SNPs specified (in the reference data) or if the level of LD across the
breakpoint is too high.

The European panel of 1,000 Genomes (phase 3)32 was used to compute this
partitioning, filtering out SNPs with a MAF lower than 1%. The minimum number of
SNPs per block was set to 2,500, resulting in 2,495 blocks of, on average, about 1Mb in
size. Note that although the method aims to minimize the LD between blocks, some level
of LD will generally still exist between adjacent blocks, and as such, they cannot be

considered fully independent of each other.

Local heritability, genetic correlation, and equality of genetic effects analysis

LAVA v0.0.7 scripts (https://github.com/josefin-werme/LAVA) were used to process all

loci and compute univariate h2iocal and bivariate rg local estimates. All LAVA analyses
were performed on 2495 semi-linkage disequilibrium independent blocks of

approximately 1Mb in size (https://github.com/josefin-werme/LAVA). Local genetic

correlations were only estimated for loci with sufficient evidence of heritability in both
males and females. This is because a genetic correlation cannot exist if no genetic
variance is present, and filtering loci with little to no heritability improves
computational efficiency while reducing the multiple testing burden. To this end, we
applied a h2iocal threshold of p < 1.00e-04. Using this threshold reduced the number of
loci by 93% while retaining 82% of loci with genome-wide significant SNPs in both
males and females (see Supplementary Table 3). Because the summary statistics were
based on individuals of British ancestry, we used the European sample of phase 3 of
1000 Genomes3? as the Linkage Disequilibrium reference sample

(https://ctg.cncr.nl/software/lava). All genomic coordinates refer to human genome

build 37. Finally, it was tested if the hZocais differed, if rg 1ocais significantly differed from

one, and if the genetic effects significantly differed between the sexes.

LAVA model
A brief overview of the LAVA model is given here, a full description can be found in

Werme et al. (2022)20. LAVA assumes a linear model of the form Y, = Xa,, + ¢, =
Wé, + ¢, for each continuous phenotype p, with standardized genotype matrix X of

SNPs in the locus being analysed, standardized phenotype vector Y,,, and residual
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variance n; = var(ep). The predictor matrix W contains standardized principal
components obtained from X, and these are used to deal with the high degree of
collinearity in X. In practice, estimates for §,, and 77,2, are obtained by reconstructing the
linear regression model from GWAS summary statistics and the LD structure of X from

genotype reference data. Under the model, the estimates $p are distributed as

~ 2
6p ~ MVN((Sp, USIK), with sampling variance ag = N::' sample size Ny, and with K the

number of principal components.

The local genetic component G, = Xa,, = W, is defined for each phenotype,

which are combined into a matrix G of local genetic components for all phenotypes in
the analysis. In the context of this study, the same phenotype for each sex is treated as

two separate phenotypes. The quantity of interest is the local genetic covariance matrix

Q1 = cov(G), from which the local genetic components can be computed as p,, = 2pq_

2.,2
wpwq

for each pair of phenotypes p and q. Since the phenotype vectors are assumed to be
standardized, the local heritability for each phenotype p, which is the explained

variance of the linear regression model, is equal to the variance of Gy, which are the

diagonal elements of 0. A method of moments estimator is used to obtain an estimate (.

Testing equality of genetic effects

Strict homogeneity of the local genetic structure of the phenotype across sexes can be
tested using a null hypothesis H: §,; = 6, with §,, and 6 the genetic effect vectors for
men and women for that phenotype respectively (this is also equivalent to testing

Hy: @ty = ag). Under this null model, the difference D = §,, — & is distributed

. 5TDH
D ~MVN(O0, (62 + 02)I), and it, therefore, follows that the test statistic % has a y2
F

47
distribution, which can be used to obtain a p-value.

Because these genetic effect vectors are defined on a standardized scale, the null
hypothesis H,: §,; = 6 implies that the correlations of all of the SNPs in X with the
phenotype (as well as the local heritabilities generally) are the same for each gender.
However, homogeneity of genetic effects can also be defined on the natural scale of the
phenotype instead, which implies that a change in genotypes results in the same

amount of change (on the natural scale) in the phenotype. Writing Y, = ¥,,S,,, with ¥/
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the phenotype on its natural scale and S,, its standard deviation, the corresponding

genetic effects on this scale would be §, = §,,S,,, and equality on this scale can be tested
using the null hypothesis Hy: §,; = &, which is equivalent to testing Hy: Sy 6y = Sp65.

The corresponding difference vector D* = Sy,8,; — Sg is distributed

T

D* ~ MVN(O0, (SZ0Z + S2a2)I) under this null, and the test statistic L;zz again
M M FOF

has a )(,% distribution. We note that, at present, this test has only been evaluated for
quantitative phenotypes. Simulations showed that type-1 error rates were well

controlled (see Supplementary Table 2 and Methods: Type-1 error simulations).

Testing equality of local heritability
As the local heritability h2 of a phenotype p equals the variance of G,, it can be

shwTws
expressed as h2 = var(G,) = % 876,. Moreover, n2 = 1 — h2. Since
-

8, ~ MVN(8,, 021y), the statistic T, = 02 (zlvphz1) 578, has a noncentral x3
p

Ts. h3
2= (M= )58 = (% - 1)

the expected value of T, can be expressed as E[T,| = K + 4, = K +

distribution with noncentrality parameter 4,, =

. h3
Defining C, = -
(N, — 1)C,.

Under the null hypothesis Hy: h%, = h% = h? for a shared h?, the expected value

of the difference in test statistics is E[Ty, — Tr] = E[Ty] — E[Tz] = K + (N, — 1)C —

2
(K + (Ng — 1)C) = C(Ny — Np), with € = =
estimate the shared h? parameter as the sample size weighted mean of the sex-specific

estimates, ie. h? = h% + NghZ). We then define the test statistic T\°"> =

T0PS) _ 7. (0bs) # ((NM —1)67.8, — (N — 1)5‘,?6}), and generate draws of T,4"™")
by separately sampling T."*") and T\ from yZ distributions with noncentrality
'\2
parameters of (N, — 1)C and (Nr — 1)C with € = P , and taking their difference. An
.. . (draw) (obs)y : ¢ (0bs) A
empirical p-value is then computed as 2 X Pr (T, <T, 7)ifT, < C(Ny — Ng),

and 2 x Pr (T\%*") > T7(°*9)) otherwise. An adaptive sampling procedure was used for
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this, starting at an initial 10,000 draws of T,4"")

, and increasing these up to a
maximum of 100 million draws for lower p-values.

We note that, at present, this test has only been evaluated for quantitative
phenotypes. Simulations showed that type-1 error rates were well controlled (see
Supplementary Table 2 and Methods: Type-1 error simulations). Further simulations
also indicate that if sample sizes differ, power to detect a difference in local heritability
will be somewhat greater if the higher local heritability is in the smaller of the two
samples, rather than in the larger sample (see Supplementary Figure 3 and Methods:
Power simulations).

Note that the null hypothesis of equal local heritabilities, Hy: h%, = h%, is also
implied by the null hypothesis Hy: §,; = 6 of equality of standardized genetic effects,

though the reverse is not true. By contrast, under the null hypothesis Hy: Sy, = Sror

of equality of natural scale genetic effects, heritabilities can only be equal if S,; = Sp.

Testing perfect correlation of local genetic signal

To test the null hypothesis Hy: p,q, = po of a perfect local genetic correlation (where
po = 1) between two phenotypes, we generalized the base LAVA model (which tests
Hy: ppq = 0 by default). To do so, we defined the test statistic T, = @y, — 1/ DFDZ o, ie.
the estimate of the local genetic covariance @,, minus its estimated expected value

given a specific null value p, for the local genetic correlation. This reverts to the T, =

~

@p,q used in the original LAVA implementation when p, = 0. The full matrix estimate Q

has a noncentral Wishart distribution with K degrees of freedom, scale parameter £ =

g 0
( P 2) and noncentrality parameter A = £7%°Q 27%5 (see also Werme (2022)320).

0 op

Filling in these parameters with the null value p, and the sample estimates, draws of T,

can therefore be generated by sampling values of {l and computing the corresponding

values of T,. An empirical p-value can then be computed as Pr (|Tp(dmw)| > |T p("bs) ) An

adaptive sampling procedure was used for this, starting at an initial 1,000 draws of Tp,
and increasing these up to a maximum of 100 million draws for lower p-values.

For this study, we specifically tested the null hypothesis Hy: pyr = 1, to
determine whether the sex-stratified local genetic signals for a phenotype were

perfectly correlated. This null hypothesis is true if §,;, = cdp for any arbitrary value ¢ >
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0, and is therefore implied by the null hypothesis of equal genetic effects at both the

standardized (¢ = 1) as well as natural (¢ = j—F) scale, which shows that the py;r = 1
M

test can be seen as a generalization of the equality of genetic effect tests. There is no
logical relationship between this null hypothesis and the null hypothesis of equal local
heritability since a local genetic correlation of one does not require local heritabilities to
be equal, and equality of local heritabilities can exist at any value of the local genetic
correlation. We note that, at present, this test has only been evaluated for quantitative
phenotypes. Simulations showed that type-1 error rates were slightly deflated at low
sample sizes but well controlled at higher sample sizes and heritabilities (see

Supplementary Table 2 and Methods: Type-1 error simulations).

Type-1 error simulations

Type 1 error simulations were performed by first generating 250 independent principal
components W for the desired sample size (with 250 being generally representative of
the number of genetic principal components per block in the LAVA analyses).
Continuous phenotypes were then simulated by first setting the true (raw scale) genetic
effect vectors 6, and &, for each of the two phenotypes p and g according to the desired
null model, computing the genetic components G, = W, and G; = W&, and adding
normally distributed noise to these with variance set to obtain a specified phenotypic

variance to obtain simulated phenotypes Y, and Y. These were each standardized and

then regressed on W to obtain the estimates Sp and Sq of the standardized effects §,, =

* *

o) 1) . . .
—~—and §, = —_~, which were then used as input for the test being evaluated.
SD(Yp) T sp(vg)

For each condition, 10,000 repeats were generated, and type 1 error rates were
computed for a values of 0.05 and 0.001 as the proportion of repeats for which p < a.
For each of the four evaluated tests, for the first phenotype, the variance Var(Yp) was
always set to one, and the heritability hf, was varied across 0%, 0.1%, 0.5%, and 1%.
Sample sizes were set to either 10,000 or 50,000.

For the test of equality of genetic effects, simulations were performed for equality under

the raw scale (Hy: 8, = §,4) as well as the standardized scale (Hy: §,, = §,), with the

variance of the second phenotype was set either to var(Y,) = var(Y,) = 1 or to
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var(Y,) = 2 x var(Y,). For the test of equality of local heritabilities, the null model was
setto Hy: h3 = h2, with 6, # &, and var(Y,) = var(¥,) = 1.

Finally, for the test of perfect local genetic correlations, the null model
Hy: cor(Gp, Gq) = 1 was used. This is equivalent to Hy: §, = ¢, for an arbitrary positive
value of ¢, which implies hy = c®hj. The parameter ¢ was set to either 1 or V2, and
Var(Yq) = var(Yp) = 1. For these simulations, the h% = 0 conditions were omitted, as
the local genetic correlation is not defined if no local genetic variance is present for

either of the phenotypes. Exact type-1 error rates for each test and condition can be

found in Supplementary Table 2.

Power simulations
Additional simulations were performed for the test of equal heritabilities to evaluate
possible asymmetry in power due to differences in sample sizes. For each simulation
condition, a base sample size N, for the first sample was set (using values 10,000,
20,000, 100,000, and 200,000). The sample size for the second sample was then set to
N, = RN,, setting the sample size ratio R at either 1.25 or 2. As in the type 1 error rate
simulations, the number of genetic principal components K was set to 250. A non-zero
heritability value h? was then specified for one of the two samples (using values 0.01%
to 0.1% (increments of 0.01), 0.12%, 0.15%, 0.2%, 0.5%, and 1%), while setting the
heritability in the other sample to zero.

To perform the actual simulations, values were generated by simulating a

hp

random variable D, ~ x7 2 with non-centrality parameter 4, = (Np - 1) P then

setting 676, = D,07 and h% = 874, — Ko with sampling variance 02 = ;;—h%’. Values
for S;Sq and ﬁé were generated in the same way. The equality test was then performed
for these simulated values as specified above in Methods: Testing equality of local
heritability, using a fixed 10,000 draws to compute the p-value.

For each condition, 100,000 values were simulated with h = h* (and hZ = 0),
and the power was computed using significance thresholds of 0.05 and 0.001. This was

then repeated with hZ = h? (and h = 0). Results for these simulations are shown in

Supplementary Figure 3.
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Global genetic correlations

We used LDSC Regression v1.0.121 to compute rg global between males and females for
157 traits to describe the average effect of pleiotropy across the whole genome. LD
scores based on the European sample of 1000 Genomes were used. Out of 157 traits, 8
had insufficient h? estimates for correlations to be computed. As such, we used a

Bonferroni-corrected significance threshold of 0.05 / 149 = 3.34e-04. We computed the

Tg,global — 1

following t-statistic to test the null hypothesis of a perfect correlation*: t = £

where SE is the LDSC-estimated standard error of 1 4;5pq;- With LAVA, we computed

the inverse-variance weighted mean of rg 1ocals. Only loci that exceeded a h?iocal p-value

threshold of 1.00e-04 were used to compute this mean.

FLAMES

We used the SusieR#0 implementation in PolyFun#! to fine-map FUMA-defined risk
loci#2. We allowed for a single causal variant per locus. Fine-mapping results were
transformed to 95% credible sets by including the smallest number of variants whose
posterior inclusion probability sum to at least 0.95. We generated MAGMA#3-Z scores
using a UK Biobank LD reference panel and the gene annotations used in the original
PoPS publication#*. PoPS scores were generated using the previously generated MAGMA
Z-scores using PoPS v0.2. We created gene-level annotations using FLAMES?Z3 annotate,
with the generated MAGMA Z-scores, PoPS scores, and 95% credible sets as input. Gene
prioritization was performed using FLAMES v1.0.0. We prioritized genes with a
FLAMES score above the recommended threshold of 0.05. FLAMES prioritizes a single

gene per locus.
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Data availability

Sex-stratified GWAS summary statistics:
https://github.com/Nealelab/UK Biobank GWAS
LAVA locus definition file: https://github.com/josefin-werme/LAVA

1000 Genomes LD reference file for LAVA: https://ctg.cncr.nl/software/lava

Scripts, plots, and results for all LAVA analyses and all 157 traits, and FLAMES results
for Testosterone, Diastolic blood pressure, and LDL direct:

https://doi.org/10.5281 /zenodo.15213372
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Code availability
Scripts for testing equality of genetic effects, equality of local heritability, and perfect

correlation of local genetic signal can be downloaded from:

https://doi.org/10.5281 /zenodo.15213372
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