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Abstract 

Many traits show small global sex differences in genetic correlations and heritability. 

However, how these differences are distributed across the genome remains unknown. 

Here, we use LAVA to test for local genetic sex differences in genetic correlations, 

heritabilities, and the magnitude of genetic effects across 157 quantitative traits in the 

UK Biobank. Nearly every trait shows evidence for sex-dimorphic effects in at least one 

locus. We find that such loci can flag biological differences between the sexes. Moreover, 

we test for differences in the magnitude of genetic effects on the raw and the 

standardized scale. We show these have complementary interpretations, where only the 

latter scale is informative for heritability. Our results show how average metrics of 

genetic correlation and heritability across the whole genome can mask important 

variability between loci and that the scale of genetic effects needs to be considered 

carefully when comparing their magnitudes.   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2025. ; https://doi.org/10.1101/2023.05.04.539410doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539410
http://creativecommons.org/licenses/by-nc-nd/4.0/


Local Genetic Sex Differences 

3 

    

Introduction 

Males and females differ in prevalence, severity, and age of onset across a wide range of 

diseases1,2. Similarly, many quantitative traits are sexually dimorphic in their means 

and variances3,4. These observed sex differences may partly be due to differences in the 

external environment (e.g., societal gender norms5,6) or the cellular environment (e.g., 

hormone and gene expression levels7,8). As such, sex may be regarded as an 

environmental variable that interacts with genetic variants (GxS) to produce partially 

dimorphic phenotypes3.  

Male and female autosomal allele frequencies do not differ due to Mendel’s law 

of segregation, which is independent of the sex chromosomes9. Therefore, genetic sex 

differences are expected to manifest biologically only in causal variant effect sizes. 

Importantly, the effect size scales must be considered when comparing males and 

females because they can have different interpretations. For example, sex-divergent 

heritability estimates can only occur if effect sizes differ on the standardized scale.  

Genome-wide association studies (GWASs) typically analyze males and females 

together while including sex as a covariate, thereby potentially masking sex-specific 

genetic effects. Recently, large-scale sex-stratified GWASs have been conducted that 

compare global heritabilities (h2global) and estimate global genetic correlations (rg, global) 

between males and females4,10–13. These studies have identified many traits that show 

genetic sex differences on a global level. However, such global analyses cannot elucidate 

the local architecture of genetic sex differences14. Commonly, studies rely on comparing 

the presence and absence of genome-wide significant loci between males and 

females15,16. However, a locus that is just below the significance threshold for one sex 

and hovers just above the threshold for the other may not point to a meaningful 

difference between the sexes. This is because the difference between “significant” and 

“not significant” may not itself be significant17.  

Furthermore, a recent study suggests that GxS mainly acts through differences in 

the magnitude of effect sizes between males and females and not in the identity of 

causal variants18. While this marks an important advance in the study of GxS, the 

magnitude of effect sizes was only considered on the raw scale. The scale of effect sizes 

needs to be considered because it can have different yet equally important 

interpretations. For example, only the standardized scale is informative for the 

heritability. 
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To address these gaps and gain insight into local (dis-)similarities in genetic 

signals between males and females, we estimated local genetic correlations and tested 

whether these differed from one, compared local heritability estimates, and tested for 

equality of genetic effects on a regional (i.e., 1Mb regions) and a gene level in 157 

quantitative traits. While the vast majority of loci do not significantly differ between 

males and females, almost every trait we studied had at least one locus that did. We 

show that these loci can highlight trait-relevant biology. Lastly, the equality of local 

genetic effects was evaluated on the raw phenotypic, as well as on the standardized 

scale. While the results from both scales correlated strongly, discrepancies exist that 

can be informative in interpreting observed sex differences. 
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Results 

Data overview.  

Sex-stratified GWAS summary statistics were downloaded from the Nealelab 

(https://github.com/Nealelab/UK_Biobank_GWAS); sex was genetically inferred19. We 

analyzed 157 quantitative traits across 13 ICD/ICF domains with a combined maximum 

sample size of 360,564 (sample size varies across traits; see Supplementary Table 1). 

Subjects were of British ancestry (see Methods for details). 

 

Local heritability. 

The autosomal genome was divided into 2495 semi Linkage Disequilibrium (LD)-

independent loci of approximately 1Mb in size (see Methods and ref 20). We computed 

local heritability estimates (h2local) for all traits with LAVA20. We found 146 loci across 

47 traits to significantly differ between males and females at a Bonferroni-corrected 

significance threshold of p < 0.05 / (2495 × 157) = 1.28e-07 (see Figure 1, Methods for a 

description of the test of equal heritabilities, and Supplementary Table 2 for type-1 

error simulation results). 55% of these loci (80/146) had larger h2locals in females, 

which was not significantly different from 50% (p = 0.28). Across all traits, h2locals for 

loci that were significant in both males and females correlated strongly (rpearson = 0.98, p 

< 1.00e-300). After the exclusion of loci with very large h2locals (i.e., > 0.2, for lipoprotein 

A, direct bilirubin, and total bilirubin; see Supplementary Figure 1), the correlation 

estimate decreased but remained high (rpearson = 0.89, p < 1.00e-300). 

Approximately 62% of all significant h2locals are significant in only one of the 

sexes. Across all traits, we identify more loci with significant h2locals in females than 

males (10614 loci across 153 traits vs. 8767 loci across 151 traits). This is at least partly 

due to the sex-stratified GWASs' sample sizes being mostly larger in females, increasing 

the power of h2local analyses in females relative to males. Specifically, 153 out of 157 

traits have larger sample sizes in females with a median female:male sample size ratio 

of 1.16 (see Supplementary Figure 2 and Supplementary Table 1 for exact sample sizes). 

This is a consequence of the female sampling bias in the UK Biobank. Simulations show 

that this can result in power asymmetries at large sample size differences (see 

Supplementary Figure 3 and Methods), with somewhat greater power to detect 

differences in heritability if the larger heritability is for the sex with the smaller sample 
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rather than the other way around. However, this power asymmetry is largely negligible 

for the sample size differences typical of the UK Biobank. 

Mostly blood biomarker traits show strong h2local differences in magnitude for 

individual loci. For example, locus 2181 (17:7264459:8554763) for testosterone has a 

h2local of 4.3% (p < 1.00e-300) for males but 0.06% (p = 3.79e-05) for females. Locus 963 

for Rheumatoid factor (6:32454578:32539567) has a h2local of 1% (p = 3.19e-19) for 

females, but 0.02% (p = 0.4) for males. For Urate, four neighboring loci 

(4:8882617:11050119) have significant and large h2locals for both males and females, 

but the female estimates are 4-5 times larger (female range: 0.5% - 10%; male range: 

0.1% - 2.7%). SLC2A9, a Urate solute carrier and main GWAS hit16, is located within 

these loci, which suggests sex differences in the relative importance of this gene for 

Urate blood levels.  

 

Figure 1. Local heritability estimates for 2495 loci across 157 traits in males and females. To test for 
significantly different heritability estimates, a Bonferroni-corrected threshold of p = 0.05 / (2495 x 
157) = 1.28e-07 was used. 
 

 

 

Local genetic correlations. 
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To test for local genetic sex differences, we computed local genetic correlations (rg, local) 

with LAVA for every trait and locus with sufficient genetic signal (i.e., we used a h2local p-

value threshold of p < 1.00e-04; see Methods) for both males and females (Nloci = 

11259) and tested if the rg, local is significantly different from one (i.e., we tested for 

deviation from perfect correlation) at a Bonferroni-corrected significance threshold of p 

< 0.05 / 11259 = 4.44e-06. We found 118 traits with at least one locus where the rg, local 

is significantly different from one (see Figure 2 and Supplementary Figure 4). Moreover, 

we found 205 loci across 103 traits to be significantly different from one and with 

negative rg, local. Again, we found blood biomarker traits (metabolic and immunological 

traits) exhibited the largest number of differences between the sexes. IGF-1 and 

testosterone had the largest number of loci whose correlation was significantly 

different from one, namely 12 and 11, respectively (Supplementary Figure 4). For some 

traits, such as urate, total and direct bilirubin, and lipoprotein A, we found loci where 

the rg, local was significantly different from one while being very close to one (see Figure 

2). These loci explain much of the total h2local in both males and females, thus having 

more precise rg, local estimates, and higher statistical power to detect subtle deviations 

from one. We note that 8% (942 / 11,935) and 7% (842 / 12,246) of cross-trait pairs 

have significant Bonferroni-corrected global genetic correlations (rg, global) for females 

and males, respectively (see Supplementary Figures 5 & 6). These mostly cluster within 

weight- and fat-distribution-related phenotypes, and some loci with significant rg, local 

between males and females are expected to repeat across these phenotypes. Indeed, 

locus 2310 (19:3085447:3893909) has a significant rg, local for 14 metabolic traits. 

However, this is not the norm, and 80% of loci with at least one significant rg, local are 

found for at most two traits. 
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Figure 2. Density plots of rg, locals. Depicted are all traits with at least three loci that are significantly 
different from one at a Bonferroni-corrected significance threshold of p < 0.05 / 11259 = 4.44e-06 (this 

minimum number of significa3,4nt loci was chosen to aid visualization; see Supplementary Figure 4 for 
the number of significant loci for all traits). Grey dots are loci not significantly different from one and 
orange dots are loci significantly different from one. 
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In addition to local genetic correlations, we computed global genetic correlations 

(rg, global) using LD Score Regression21 and compared them to the weighted mean of rg, 

locals across all loci for which rg, locals could be computed using LAVA (see Figure 3 and 

Methods). While 20.13% (30/149) of traits had LDSC-rg, globals significantly different 

from one, most were very close to one, with the notable exception of testosterone. To 

ensure some reliability of LAVA mean rg, locals, we only considered traits for which at 

least ten rg, locals could be computed. Overall, both methods have good agreement (mean 

absolute difference = 0.12). Out of 119 traits with LDSC-rg, global not significantly 

different from one, 84 had at least one rg, local that was significantly different from 1. 

Body Mass Index (BMI) has an LDSC-rg, global of 0.93, but locus 1727 

(11:122589225:123398882) has a rg, local of -0.12 (p = 4.03e-06) (see Figure 4). 

Reversely, testosterone has an LDSC-rg, global of zero but has several loci that are strongly 

positive and negative. For example, locus 2020 (14:93386329:94892240) has a rg, local of 

-0.67 and is significantly different from one (p < 1.00e-300), while locus 963 

(6:32454578:32539567) has a rg, local of 0.85 which is significantly different from zero (p 

= 2.37e-08) but not from one (p = 0.17). 
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Figure 3. Global genetic correlations (rg, global) estimated with LD Score Regression and the variance-
weighted mean of local genetic correlations estimated for LAVA. The error bars for LDSC estimates 
depict standard errors. The depicted LAVA weighted means are not true estimates of rg, globals and 
therefore have no associated p-values or standard errors. 
*   nominal significance at p < 0.05 
** Bonferroni-corrected significance at 0.05 / 149 = 3.34e-04. 
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Figure 4. rg, local results for BMI and testosterone. While the LDSC- rg, global estimate for BMI is close to 

one, many loci have rg, locals that strongly and significantly diverge from one (e.g., locus 1727). In 
contrast, the testosterone LDSC- rg, global estimate is close to zero, while some loci are strongly negative 
and others positive (e.g., locus 963 and 2020). Similar plots for all other traits can be found in our 
Zenodo repository (https://doi.org/10.5281/zenodo.15213372). 

 

 

Equality of genetic effects. 

A recent study suggested that differences in the absolute magnitude of genetic effects 

could strongly contribute to phenotypic sex differences18. As such, we extended LAVA to 

test for equality of genetic effects (see Methods for details). This is a more specific test 

for differences in genetic architecture because it not only tests for equality of the 

direction of genetic effects and their relative magnitudes (i.e., correlations) but also for 

equality of their absolute magnitude. For example, a locus with SNP effects with the 

same direction and pattern of effects between the sexes but where the effects are twice 

as large in males would have a rg, local of one, even though the SNP effects all differ. 

Equality of genetic effects implies that the rg, local is one and that the SNP effects are the 

same. As such, a test of equality of genetic effects is more specific than testing rg, local 

equal to one. The equality test is performed on two effect-size scales, the raw scale of 

the phenotype (equalityraw) and a standardized scale (equalitystd), where the effect sizes 
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are scaled by the standard deviation of the phenotype. When the genetic correlation in a 

tested locus is not significantly different from one, it is possible to make inferences 

about the h2local and phenotypic variance differences between the sexes based on the 

results of the two scales of the equality test (see Figure 5). This is not the case when rg, 

local is significantly different from one because, in that instance, the equality test will 

tend to be significant even if no difference in h2local or phenotypic variance exists (i.e., 

the individual SNP effects differ, even though the total genetic variance is the same). 

Moreover, as seen in the two middle columns, the two scales can only diverge if the 

phenotypic variances differ between the sexes. 

 Out of 157 traits, 151 and 152 had at least one locus that significantly (p < 0.05 / 

(2495 x 157) = 1.28e-07) differed between males and females in the equalityraw and 

equalitystd test, respectively. Out of these, 45 loci across 23 phenotypes had rg, local not 

significantly different from one. The median number of significant loci per trait was 3.5. 

Not all significant loci in the equality tests overlap with GWAS hits. Out of 606 

significant equalityraw loci, 89 contained genome-wide significant SNPs in females and 

130 in males. Out of 512 significant equalitystd loci, 64 contained genome-wide 

significant SNPs in females and 69 in males. 

 

Figure 5. Illustration of the scales of genetic effects when rg, local = 1. When genetic effects are the same 

on both the raw and standardized scale, the phenotypic and genetic variance will be equal between 

males and females (first column). When genetic effects differ on the standardized scale, but not the raw 

scale, phenotypic variances and heritabilities differ (second column). When genetic effects differ on the 

raw, but not the standardized scale, phenotypic variances differ while heritabilities are the same (third 

column). When both the raw and standardized genetic effects differ, heritabilities differ while 

phenotypic variances may or may not differ (fourth column). We note that when rg, local  1, genetic 

effects may differ under any of these scenarios. 
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Because the equality test can be applied to arbitrarily small loci, we repeated the 

analysis using gene boundaries as locus definitions to improve their biological 

interpretation. However, we note that applying it to smaller loci while increasing the 

Bonferroni correction using the number of genes (i.e., 0.05 / (18576 x 157) = 1.7e-08) 

comes at the expense of power. Of all 157 traits, 55 had at least one gene that 

significantly differed between males and females on at least one scale. Of these 55 traits, 

the median number of significant genes was 2. The correlation of p-values between 

equalityraw and equalitystd across all traits and genes was 0.98, likely because most 

genes did not differ between the sexes on either scale and because the phenotypic 

variances were mostly similar (mean female-to-male ratio: 0.95 ± SE 0.03), except for 

testosterone (female-to-male ratio: 0.03) and oestradiol (female-to-male ratio: 36.42). 

However, we identified 85 genes across 10 traits with divergent results in the 

equalityraw and equalitystd test (i.e., one test was significant at p < 1.7e-08, while the 

other had p > 0.01). For Sex Hormone Binding Globulin (SHBG), three neighboring genes 

(i.e., NRBF2, JMJD1C, and REEP3) showed very similar and strong sex differences with 

equalitystd (p < 1.3e-34), but not with equalityraw (p >= 0.7). The phenotypic variance of 

SHBG was 3.6 times larger in females. Therefore, the heritability was expected to be 

larger in males (see column 2 in Figure 5). Indeed, the heritability was significantly 

different (p < 1e-08) and more than 3 times larger in males for all three genes (h2local, 

females = 0.3%, h2local, males = 1.1%). JMJD1C has been hypothesized to impact SHBG levels 

via thyroid hormones that affect HNF4A 22, and while this seems to apply to both males 

and females, our results suggest this to be a much stronger effect in males. Reversely, 

for HDL cholesterol, the gene CETP showed strong sex differences with equalityraw (p = 

3.62e-32) but not with equalitystd (p = 0.02). As expected (see column 3 in Figure 5), the 

heritabilities did not significantly differ (p = 0.07, h2females = 4.6%, h2males = 4.3%). The 

phenotypic variance in females was 1.5 times larger than in males, which explains the 

observed difference with equalityraw. 

Next, we tested whether significant loci in the equality test can highlight 

biological differences between the sexes for testosterone, diastolic blood pressure and 

low-density lipoprotein (LDL) levels. We also applied FLAMES to predict the most likely 

causal gene for each risk locus in males and females for these three traits. As a positive 

control, we highlighted results for testosterone because its biology is well-understood 

and known to be markedly different between males and females13,16. Whether or not a 
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gene has a known function in testosterone biology strongly predicted association 

strength in the equality test (p = 8.13e-09). Reversely, nearly every significant locus in 

the gene-based equality test highlighted known biological differences in testosterone 

biology (see Figure 6). Most testosterone GWAS hits did not overlap between males and 

females16: Out of 47 loci in the female GWAS and 112 loci in the male GWAS, four loci 

overlapped. Differences may also exist for overlapping loci. For one of the overlapping 

loci, we found AKR1C3, a gene associated with testosterone synthesis and metabolism, 

to map to a GWAS hit in males (10:5012267:5512267) and females 

(10:4812752:5312752). However, the lead SNPs differ and are on opposite sides of 

AKR1C3, and both equalityraw (p = 5.19e-12) and equalitystd (p = 1.52e-14) showed 

significant differences for this gene. There was no difference in h2local (p = 0.24), but the 

1Mb locus that contained AKR1C3 had a rg, local of 0.18, which was significantly different 

from 1 (p < 1e-8) but not from 0 (p = 0.17). As such, while AKR1C3 contains signals in 

both males and females, the pattern of SNP associations is markedly different. 

Moreover, the gene prioritization tool FLAMES23 predicted different causal genes at this 

locus, namely AKR1C2 for females and AKR1C4 for males, which we also found to be 

significantly different in the equality test (see Figure 6). FLAMES predicted the same 

causal gene for the other three overlapping loci.  

The major female sex hormone, oestradiol, has a very different genetic 

architecture from the major male hormone, testosterone. The sex-stratified GWASs of 

oestradiol contain little genetic signal, each identifying only one genome-wide 

significant risk locus and with ℎ𝑔𝑙𝑜𝑏𝑎𝑙
2  estimates of ~2%. Moreover, the rg, global was not 

significantly different from one. 

For diastolic blood pressure, we replicated a recent study that found the 

COL4A1/COL4A2 locus to be sexually dimorphic24 (see Figure 6). This locus is 

significant in the male GWAS but not the female GWAS. FLAMES23 predicted COL4A1 to 

be the most likely causal gene for males. The equality test flags this gene to differ the 

most on both scales. However, we do not find evidence for differential effects of three 

other loci (i.e., PECAM1, NT5C2, MSTN) identified in the same study24. These loci did not 

reach statistical significance in an additional sex-by-genotype interaction analysis in the 

same study24 and may thus be false positives. Furthermore, out of 101 female GWAS loci 

and 45 male GWAS loci, 26 loci overlapped. Of these 26 overlapping loci, 22 were 

predicted to have the same causal gene, while 4 were predicted to have different causal 
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genes between males and females. However, none of these discordant genes were 

significant in the equality test. 

Lastly, APOE, which FLAMES predicted to be the causal gene at a GWAS hit for 

low-density lipoprotein (LDL) levels in both males and females, shows a pronounced 

sex difference with both equalityraw (p = 6.78e-81) and equalitystd (p = 7.60e-82) (see 

Figure 6). While the rg, local of the locus (19:45040933:45893307) is 0.996, the h2local of 

APOE, while large in both, is twice larger in females (h2local = 6%) than in males (h2local = 

3%). Similarly, we found APOE to be sexually dimorphic for high-density lipoprotein 

(HDL) levels, Apolipoprotein B, and Total Cholesterol with the equality test on both 

scales, and Triglycerides on the raw scale, and the h2local are considerably larger in 

females (see Supplementary Figure 7).  

Lastly, out of 85 female GWAS loci and 56 male GWAS loci for LDL-direct levels, 

we found 32 that overlapped between both. FLAMES predicted the same causal gene for 

25 of these, and different causal genes for the other seven. However, only SUGP1 

significantly differed between males and females in equalityraw (p = 8.22e-13) and 

equalitystd (p = 9.62e-13). Interestingly, SUGP1 has previously been shown to be 

associated with coronary artery disease and cholesterol metabolism25.  
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Figure 6. Miami plots for the test of equal genetic effects for three traits. The top part of the plots 
depict results for the raw scale, while the bottom part shows results for the standardized scale. The x-
axis depicts chromosomal base-pair positions and the y-axis -log10(p-values). For testosterone, all 
genes that are significant after Bonferroni correction (p < 0.05 / (2495 x 157) = 1.28e-07) and have a 
known function in testosterone biology are highlighted. For diastolic blood pressure, all genes that 
have been found to be sexually dimorphic in a recent study are highlighted. For LDL direct, all genes 
that are significant after Bonferroni correction are highlighted. 
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Discussion 

Early twin-based studies of genetic differences in heritability found few traits to be 

sexually dimorphic26. However, as GWAS sample sizes increase and some traits become 

saturated for genetic associations27, an opportunity arises for sex-stratified analyses of 

common variants. Consequently, a recent large-scale analysis of hundreds of traits has 

found widespread, if small, differences across the genome4. Some traits, however, are 

particularly dimorphic, such as waist-to-hip ratio28 and testosterone16.  

Many studies of genetic sex differences focus on rg, global and h2global estimates4,10,11 

or manually compare the presence and absence of significant loci15,16. Such approaches 

may work well for traits with genome-wide sex differences but may miss traits with 

localized ones. Indeed, we found that 70% of traits for which LDSC estimates a rg, global 

close to one, have at least one locus with a rg, local different from one. Moreover, many of 

these had loci with negative rg, local, which is rarely observed on a global level. This 

shows that rg, globals between the sexes are not evenly distributed across the genome, but 

that loci of varying rg, locals, some in opposite directions, combine to produce genome-

wide correlations. This is particularly evident for testosterone, which has a rg, global of 

zero but several negative and positive rg, locals. 

A recent study has found that most observed genetic sex differences are not due 

to the direction and pattern of genetic effects (as measured with rg) but due to the 

magnitude of genetic effects18. We built on this work by developing the equality of 

genetic effects test. Using this test, we provided novel insights chiefly in two ways. First, 

we tested for differences in the magnitude of genetic effects on the raw phenotypic, as 

well as the standardized scale. Comparing the scales can be informative for localized 

differences in genetic and phenotypic variances. We showed that differences in raw 

genetic effects can simply scale with differences in phenotypic variances, in which case 

heritabilities are expected to be the same between males and females. If the relative 

contribution of genetic effects on a phenotype is of interest, the standardized effects 

need to be considered. Secondly, we applied it to clearly defined genomic loci, and could 

thus test for differences in the magnitude of genetic effects within genes in addition to 

1Mb loci. Almost every trait we studied had at least one 1Mb loci that differed between 

males and females. On a gene level, approximately a third of traits showed sex 

differences in at least one gene. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2025. ; https://doi.org/10.1101/2023.05.04.539410doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539410
http://creativecommons.org/licenses/by-nc-nd/4.0/


Local Genetic Sex Differences 

18 

    

Combining LAVA bivariate rg, local and univariate h2local analyses with the test of 

equal heritabilities, perfect rg, local and equality of genetic effects allows for very detailed 

descriptions of local genetic sex differences. In this way, we found APOE to have 

different magnitudes of genetic effects on the raw and standardized scales for several 

lipid-related phenotypes while the rg, local was not different from one, leading to h2local 

estimates that are up to twice as large in females. As such, APOE must interact with 

male or female hormones or with external environmental variables (e.g., diet) to result 

in these divergent genetic effects. Future studies could compare whether these 

differences mediate sex-dimorphic effects of APOE on Alzheimer’s Disease29–33 and 

Cardiovascular Disease34,35 risk. Moreover, we show for the AKR1C testosterone GWAS 

hit, how a rg, local of zero and significant equality tests can point to two different causal 

genes for males and females. 

While for most overlapping GWAS loci of LDL cholesterol, testosterone, and 

diastolic blood pressure between males and females, the same causal gene was 

predicted with FLAMES, some loci had divergent gene predictions. On a variant level, it 

is expected that the identity of causal variants does not differ between the sexes and 

that genetic sex differences are due to causal variant effect sizes only. On a gene level, 

we would therefore expect the same, namely that the same genes are causal and that 

merely the ℎ𝑙𝑜𝑐𝑎𝑙
2  per gene may differ. However, several scenarios can give rise to 

diverging causal gene predictions. First, if GxS interactions are sufficiently strong, the 

effect of genes may start to appear qualitatively different. This seems to be the case for 

testosterone, which appears to be two separate phenotypes altogether in males and 

females with few overlapping risk loci, global genetic correlations of zero, and many 

genes significantly different in the equality test. Second, different causal genes may be 

predicted when a locus contains more than one causal gene, but the relative importance 

differs by sex, such that the top-ranking genes are not the same. Third, a locus may only 

reach genome-wide significance in one sex and may thus not yield a predicted causal 

gene in our analysis with FLAMES for the other sex (such as COL4A1 for diastolic blood 

pressure). Lastly, FLAMES selects the top-ranking gene as the most likely causal one, 

while the second- and third-ranking genes may be only slightly less likely. This may 

explain why most of these genes were not significantly different in the equality test. 

Moreover, FLAMES is expected to have 75% precision36 and, as such, some uncertainty 

in the predictions is expected. 
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While nearly every trait showed some evidence for localized genetic sex 

differences, most loci for most traits did not differ. As such, while not tested in this 

study, we expect that genome-wide and additive polygenic predictions based on sex-

stratified GWASs will not outperform those based on sex-combined GWASs. This is 

because sample sizes would be halved, thus drastically reducing power. However, other 

approaches that directly model GxS and polygenic covariance structures between males 

and females can improve risk prediction, particularly for traits with genome-wide sex 

differences such as testosterone and waist-to-hip ratio18. 

There are several limitations to this study. First, LAVA computes local genetic 

correlations for relatively large genomic loci, which may contain multiple genes. 

Whether the genetic correlation is consistent across all or some genes is unknown. This 

is because genetic correlations cannot be reliably computed for small loci with 

insufficient genetic variance. However, compared to global genome-wide genetic 

correlations computed with methods such as LDSC21, the 1Mb loci in LAVA provide 

much more granularity. Second, we have only considered quantitative traits as work 

validating the newly developed tests for binary traits is still ongoing. Third, we only 

considered data from the UK Biobank. This is because it is the only large biobank we 

know for which sex-stratified GWAS summary statistics for quantitative traits have 

been computed and made publicly available for hundreds of traits. We urge the authors 

of future GWASs to release sex-stratified summary statistics. Lastly, loci that are 

significantly different between males and females do not necessarily contain significant 

GWAS hits. As such, these loci may contribute only minimally to phenotypic differences. 

Heritability estimates of the given locus can be evaluated to mitigate this, or loci may be 

filtered to those containing genome-wide significant SNPs.  
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Methods 

Quality control of summary statistics 

Summary statistics for 157 traits (see Supplementary Table 1) were downloaded from 

the Nealelab (https://github.com/Nealelab/UK_Biobank_GWAS). Only summary 

statistics for untransformed (i.e., raw) and quantitative phenotypes were downloaded. 

Phenotypes that were deemed too similar were filtered out, such that only one 

phenotype remained (e.g., hand grip strength left vs. right; see Supplementary Table 1 

for a full list of traits that were considered and those that have been selected). 

Additionally, phenotypes that were suspected of having a minimal genetic basis were 

removed (e.g., ‘age at recruitment’). Details on how the GWAS was conducted and which 

quality control filters were applied can be found on the Nealelab website 

(https://github.com/Nealelab/UK_Biobank_GWAS). Briefly, sex-combined and sex-

stratified GWASs were performed in 337,199 individuals of British ancestry using a 

linear regression model in Hail37. For the sex-stratified analyses, the first 20 principal 

components, age, and age2 were included as covariates. For initial quality control, all 

SNPs with imputation quality score below 0.8, minor allele frequency (MAF) below 

0.1% (except for VEP38 annotated SNPs), and Hardy-Weinberg-Equilibrium p-values 

below 1.00e-10 (except for VEP38 annotated SNPs with MAFs below 0.1%) were 

removed. Considering that this database includes summary statistics that were 

generated on a large scale without trait-specific quality control procedures, we 

additionally applied a strict minor allele frequency filter of 10% to ensure only well-

imputed and reliable SNPs went into the analysis. This resulted in approximately five 

million SNPs for each trait. Manhattan and qq-plots, as well as LDSC Regression 

intercepts and Genomic Control statistics, were additionally inspected to ensure high-

quality summary statistics.  

 

Genome partitioning  

The genome was partitioned into blocks in the same way as in 20, the method for which 

is described there in full. In brief, this partitioning method aims to divide the genome 

into smaller blocks of roughly equal size while minimizing the level of LD between 

them. It does so by recursively splitting the genome (starting at whole chromosomes), 

each time selecting the breakpoint for which the local LD between SNPs across that 

break point is lowest. This process is repeated until no further valid breakpoints can be 
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found; a breakpoint is invalid if it results in blocks containing fewer than the minimum 

number of SNPs specified (in the reference data) or if the level of LD across the 

breakpoint is too high.  

 The European panel of 1,000 Genomes (phase 3)39 was used to compute this 

partitioning, filtering out SNPs with a MAF lower than 1%. The minimum number of 

SNPs per block was set to 2,500, resulting in 2,495 blocks of, on average, about 1Mb in 

size. Note that although the method aims to minimize the LD between blocks, some level 

of LD will generally still exist between adjacent blocks, and as such, they cannot be 

considered fully independent of each other. 

 

Local heritability, genetic correlation, and equality of genetic effects analysis 

LAVA v0.0.7 scripts (https://github.com/josefin-werme/LAVA) were used to process all 

loci and compute univariate h2local and bivariate rg, local estimates. All LAVA analyses 

were performed on 2495 semi-linkage disequilibrium independent blocks of 

approximately 1Mb in size (https://github.com/josefin-werme/LAVA). Local genetic 

correlations were only estimated for loci with sufficient evidence of heritability in both 

males and females. This is because a genetic correlation cannot exist if no genetic 

variance is present, and filtering loci with little to no heritability improves 

computational efficiency while reducing the multiple testing burden. To this end, we 

applied a h2local threshold of p < 1.00e-04. Using this threshold reduced the number of 

loci by 93% while retaining 82% of loci with genome-wide significant SNPs in both 

males and females (see Supplementary Table 3). Because the summary statistics were 

based on individuals of British ancestry, we used the European sample of phase 3 of 

1000 Genomes39 as the Linkage Disequilibrium reference sample 

(https://ctg.cncr.nl/software/lava). All genomic coordinates refer to human genome 

build 37. Finally, it was tested if the h2locals differed, if rg, locals significantly differed from 

one, and if the genetic effects significantly differed between the sexes. 

 

LAVA model 

A brief overview of the LAVA model is given here, a full description can be found in 

Werme et al. (2022)20. LAVA assumes a linear model of the form 𝑌𝑝 = 𝑋𝛼𝑝 + 𝜀𝑝 =

𝑊𝛿𝑝 + 𝜀𝑝 for each continuous phenotype 𝑝, with standardized genotype matrix 𝑋 of 

SNPs in the locus being analysed, standardized phenotype vector 𝑌𝑝, and residual 
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variance 𝜂𝑝
2 = var(𝜀𝑝). The predictor matrix 𝑊 contains standardized principal 

components obtained from 𝑋, and these are used to deal with the high degree of 

collinearity in 𝑋. In practice, estimates for 𝛿𝑝 and 𝜂𝑝
2  are obtained by reconstructing the 

linear regression model from GWAS summary statistics and the LD structure of 𝑋 from 

genotype reference data. Under the model, the estimates 𝛿𝑝 are distributed as 

𝛿𝑝 ~ MVN(𝛿𝑝, 𝜎𝑝
2𝐼𝐾), with sampling variance 𝜎𝑝

2 =
𝜂𝑝

2

𝑁𝑝−1
, sample size 𝑁𝑝, and with 𝐾 the 

number of principal components. 

The local genetic component 𝐺𝑝 = 𝑋𝛼𝑝 = 𝑊𝛿𝑝 is defined for each phenotype, 

which are combined into a matrix 𝐺 of local genetic components for all phenotypes in 

the analysis. In the context of this study, the same phenotype for each sex is treated as 

two separate phenotypes. The quantity of interest is the local genetic covariance matrix 

Ω = cov(𝐺), from which the local genetic components can be computed as 𝜌𝑝𝑞 =
𝜔𝑝𝑞

√𝜔𝑝
2𝜔𝑞

2
, 

for each pair of phenotypes 𝑝 and 𝑞. Since the phenotype vectors are assumed to be 

standardized, the local heritability for each phenotype 𝑝, which is the explained 

variance of the linear regression model, is equal to the variance of 𝐺𝑝, which are the 

diagonal elements of Ω. A method of moments estimator is used to obtain an estimate Ω̂. 

 

Testing equality of genetic effects 

Strict homogeneity of the local genetic structure of the phenotype across sexes can be 

tested using a null hypothesis 𝐻0: 𝛿𝑀 = 𝛿𝐹, with 𝛿𝑀 and 𝛿𝐹 the genetic effect vectors for 

men and women for that phenotype respectively (this is also equivalent to testing 

𝐻0: 𝛼𝑀 = 𝛼𝐹). Under this null model, the difference 𝐷̂ = 𝛿𝑀 − 𝛿𝐹 is distributed 

𝐷̂ ~ MVN(0, (𝜎𝑀
2 + 𝜎𝐹

2)𝐼𝐾), and it, therefore, follows that the test statistic 
𝐷̂𝑇𝐷̂

𝜎𝑀
2 +𝜎𝐹

2 has a 𝜒𝐾
2  

distribution, which can be used to obtain a p-value. 

 Because these genetic effect vectors are defined on a standardized scale, the null 

hypothesis 𝐻0: 𝛿𝑀 = 𝛿𝐹 implies that the correlations of all of the SNPs in 𝑋 with the 

phenotype (as well as the local heritabilities generally) are the same for each gender. 

However, homogeneity of genetic effects can also be defined on the natural scale of the 

phenotype instead, which implies that a change in genotypes results in the same 

amount of change (on the natural scale) in the phenotype. Writing 𝑌𝑝
∗ = 𝑌𝑝𝑆𝑝 , with 𝑌𝑝

∗ 
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the phenotype on its natural scale and 𝑆𝑝 its standard deviation, the corresponding 

genetic effects on this scale would be 𝛿𝑝
∗ = 𝛿𝑝𝑆𝑝, and equality on this scale can be tested 

using the null hypothesis 𝐻0: 𝛿𝑀
∗ = 𝛿𝐹

∗ , which is equivalent to testing 𝐻0: 𝑆𝑀𝛿𝑀 = 𝑆𝐹𝛿𝐹. 

The corresponding difference vector 𝐷∗̂ = 𝑆𝑀𝛿𝑀 − 𝑆𝐹𝛿𝐹 is distributed 

𝐷∗̂ ~ MVN(0, (𝑆𝑀
2 𝜎𝑀

2 + 𝑆𝐹
2𝜎𝐹

2)𝐼𝐾) under this null, and the test statistic 
𝐷∗̂𝑇

𝐷∗̂

𝑆𝑀
2 𝜎𝑀

2 +𝑆𝐹
2𝜎𝐹

2 again 

has a 𝜒𝐾
2  distribution. We note that, at present, this test has only been evaluated for 

quantitative phenotypes. Simulations showed that type-1 error rates were well 

controlled (see Supplementary Table 2 and Methods: Type-1 error simulations). 

 

Testing equality of local heritability 

As the local heritability ℎ𝑝
2 of a phenotype 𝑝 equals the variance of 𝐺𝑝, it can be 

expressed as ℎ𝑝
2 = var(𝐺𝑝) =

𝛿𝑝
𝑇𝑊𝑇𝑊𝛿𝑝

𝑁𝑝−1
= 𝛿𝑝

𝑇𝛿𝑝. Moreover, 𝜂𝑝
2 = 1 − ℎ𝑝

2 . Since 

𝛿𝑝 ~ MVN(𝛿𝑝, 𝜎𝑝
2𝐼𝐾), the statistic 𝑇𝑝 =

𝛿̂𝑝
𝑇𝛿̂𝑝

𝜎𝑝
2 =

(𝑁𝑝−1)

1−ℎ𝑝
2 𝛿𝑝

𝑇𝛿𝑝 has a noncentral 𝜒𝐾
2  

distribution with noncentrality parameter 𝜆𝑝 =
𝛿𝑝

𝑇𝛿𝑝

𝜎𝑝
2 = (𝑁𝑝 − 1)

ℎ𝑝
2

𝜂𝑝
2 = (𝑁𝑝 − 1)

ℎ𝑝
2

1−ℎ𝑝
2. 

Defining 𝐶𝑝 =
ℎ𝑝

2

1−ℎ𝑝
2, the expected value of 𝑇𝑝 can be expressed as 𝐸[𝑇𝑝] = 𝐾 + 𝜆𝑝 = 𝐾 +

(𝑁𝑝 − 1)𝐶𝑝. 

 Under the null hypothesis 𝐻0: ℎ𝑀
2 = ℎ𝐹

2 = ℎ2 for a shared ℎ2, the expected value 

of the difference in test statistics is 𝐸[𝑇𝑀 − 𝑇𝐹] = 𝐸[𝑇𝑀] − 𝐸[𝑇𝐹] = 𝐾 + (𝑁𝑀 − 1)𝐶 −

(𝐾 + (𝑁𝐹 − 1)𝐶) = 𝐶(𝑁𝑀 − 𝑁𝐹), with 𝐶 =
ℎ2

1−ℎ2
. To test this null hypothesis, we first 

estimate the shared ℎ2 parameter as the sample size weighted mean of the sex-specific 

estimates, ie. ℎ̂2 =
1

𝑁𝑀+𝑁𝐹
(𝑁𝑀ℎ̂𝑀

2 + 𝑁𝐹ℎ̂𝐹
2). We then define the test statistic 𝑇𝐷

(obs)
=

𝑇𝑀
(obs)

− 𝑇𝐹
(obs)

=
1

1−ℎ̂2 ((𝑁𝑀 − 1)𝛿𝑀
𝑇 𝛿̂𝑀 − (𝑁𝐹 − 1)𝛿𝐹

𝑇𝛿𝐹), and generate draws of 𝑇𝐷
(draw)

 

by separately sampling 𝑇𝑀
(draw)

 and 𝑇𝐹
(draw)

 from 𝜒𝐾
2  distributions with noncentrality 

parameters of (𝑁𝑀 − 1)𝐶̂ and (𝑁𝐹 − 1)𝐶̂ with 𝐶̂ =
ℎ̂2

1−ℎ̂2, and taking their difference. An 

empirical p-value is then computed as 2 × Pr (𝑇𝐷
(draw)

< 𝑇𝐷
(obs)

) if 𝑇𝐷
(obs)

< 𝐶̂(𝑁𝑀 − 𝑁𝐹), 

and 2 × Pr (𝑇𝐷
(draw)

> 𝑇𝐷
(obs)

) otherwise. An adaptive sampling procedure was used for 
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this, starting at an initial 10,000 draws of 𝑇𝐷
(draw)

, and increasing these up to a 

maximum of 100 million draws for lower p-values.  

We note that, at present, this test has only been evaluated for quantitative 

phenotypes. Simulations showed that type-1 error rates were well controlled (see 

Supplementary Table 2 and Methods: Type-1 error simulations). Further simulations 

also indicate that if sample sizes differ, power to detect a difference in local heritability 

will be somewhat greater if the higher local heritability is in the smaller of the two 

samples, rather than in the larger sample (see Supplementary Figure 3 and Methods: 

Power simulations). 

 Note that the null hypothesis of equal local heritabilities, 𝐻0: ℎ𝑀
2 = ℎ𝐹

2, is also 

implied by the null hypothesis 𝐻0: 𝛿𝑀 = 𝛿𝐹 of equality of standardized genetic effects, 

though the reverse is not true. By contrast, under the null hypothesis 𝐻0: 𝑆𝑀𝛿𝑀 = 𝑆𝐹𝛿𝐹 

of equality of natural scale genetic effects, heritabilities can only be equal if 𝑆𝑀 = 𝑆𝐹. 

 

Testing perfect correlation of local genetic signal 

To test the null hypothesis 𝐻0: 𝜌𝑝𝑞 = 𝜌0 of a perfect local genetic correlation (where 

𝜌0 = 1) between two phenotypes, we generalized the base LAVA model (which tests 

𝐻0: 𝜌𝑝𝑞 = 0 by default). To do so, we defined the test statistic 𝑇𝜌 = 𝜔̂𝑝𝑞 − √𝜔̂𝑝
2𝜔̂𝑞

2𝜌0, ie. 

the estimate of the local genetic covariance 𝜔̂𝑝𝑞  minus its estimated expected value 

given a specific null value 𝜌0 for the local genetic correlation. This reverts to the 𝑇𝜌 =

𝜔̂𝑝𝑞  used in the original LAVA implementation when 𝜌0 = 0. The full matrix estimate Ω̂ 

has a noncentral Wishart distribution with 𝐾 degrees of freedom, scale parameter Σ =

(
𝜎𝑝

2 0

0 𝜎𝑞
2) and noncentrality parameter Λ = Σ−0.5Ω Σ−0.5 (see also Werme (2022)20). 

Filling in these parameters with the null value 𝜌0 and the sample estimates, draws of 𝑇𝜌 

can therefore be generated by sampling values of Ω̂ and computing the corresponding 

values of 𝑇𝜌. An empirical p-value can then be computed as Pr (|𝑇𝜌
(𝑑𝑟𝑎𝑤)

| > |𝑇𝜌
(𝑜𝑏𝑠)

|). An 

adaptive sampling procedure was used for this, starting at an initial 1,000 draws of 𝑇𝐷, 

and increasing these up to a maximum of 100 million draws for lower p-values.  

 For this study, we specifically tested the null hypothesis 𝐻0: 𝜌𝑀𝐹 = 1, to 

determine whether the sex-stratified local genetic signals for a phenotype were 

perfectly correlated. This null hypothesis is true if 𝛿𝑀 = 𝑐𝛿𝐹 for any arbitrary value 𝑐 >
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0, and is therefore implied by the null hypothesis of equal genetic effects at both the 

standardized (𝑐 = 1) as well as natural (𝑐 =
𝑆𝐹

𝑆𝑀
) scale, which shows that the 𝜌𝑀𝐹 = 1 

test can be seen as a generalization of the equality of genetic effect tests. There is no 

logical relationship between this null hypothesis and the null hypothesis of equal local 

heritability since a local genetic correlation of one does not require local heritabilities to 

be equal, and equality of local heritabilities can exist at any value of the local genetic 

correlation. We note that, at present, this test has only been evaluated for quantitative 

phenotypes. Simulations showed that type-1 error rates were slightly deflated at low 

sample sizes but well controlled at higher sample sizes and heritabilities (see 

Supplementary Table 2 and Methods: Type-1 error simulations). 

 

Type-1 error simulations 

Type 1 error simulations were performed by first generating 250 independent principal 

components 𝑊 for the desired sample size (with 250 being generally representative of 

the number of genetic principal components per block in the LAVA analyses). 

Continuous phenotypes were then simulated by first setting the true (raw scale) genetic 

effect vectors 𝛿𝑝
∗ and 𝛿𝑞

∗ for each of the two phenotypes 𝑝 and 𝑞 according to the desired 

null model, computing the genetic components 𝐺𝑝 = 𝑊𝛿𝑝
∗ and 𝐺𝑞 = 𝑊𝛿𝑞

∗, and adding 

normally distributed noise to these with variance set to obtain a specified phenotypic 

variance to obtain simulated phenotypes 𝑌𝑝 and 𝑌𝑞. These were each standardized and 

then regressed on 𝑊 to obtain the estimates 𝛿𝑝 and 𝛿𝑞 of the standardized effects 𝛿𝑝 =

𝛿𝑝
∗

SD(𝑌𝑝)
 and 𝛿𝑞 =

𝛿𝑞
∗

SD(𝑌𝑞)
, which were then used as input for the test being evaluated.  

For each condition, 10,000 repeats were generated, and type 1 error rates were 

computed for 𝛼 values of 0.05 and 0.001 as the proportion of repeats for which 𝑝 < 𝛼. 

For each of the four evaluated tests, for the first phenotype, the variance var(𝑌𝑝) was 

always set to one, and the heritability ℎ𝑝
2 was varied across 0%, 0.1%, 0.5%, and 1%. 

Sample sizes were set to either 10,000 or 50,000. 

For the test of equality of genetic effects, simulations were performed for equality under 

the raw scale (𝐻0: 𝛿𝑝
∗ = 𝛿𝑞

∗) as well as the standardized scale (𝐻0: 𝛿𝑝 = 𝛿𝑞), with the 

variance of the second phenotype was set either to var(𝑌𝑞) = var(𝑌𝑝) = 1 or to 
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var(𝑌𝑞) = 2 × var(𝑌𝑝). For the test of equality of local heritabilities, the null model was 

set to 𝐻0: ℎ𝑝
2 = ℎ𝑞

2, with 𝛿𝑝 ≠ 𝛿𝑞 and var(𝑌𝑞) = var(𝑌𝑝) = 1.  

Finally, for the test of perfect local genetic correlations, the null model 

𝐻0: cor(𝐺𝑝, 𝐺𝑞) = 1 was used. This is equivalent to 𝐻0: 𝛿𝑞 = 𝑐𝛿𝑝 for an arbitrary positive 

value of 𝑐, which implies ℎ𝑞
2 = 𝑐2ℎ𝑝

2. The parameter 𝑐 was set to either 1 or √2, and 

var(𝑌𝑞) = var(𝑌𝑝) = 1. For these simulations, the ℎ𝑝
2 = 0 conditions were omitted, as 

the local genetic correlation is not defined if no local genetic variance is present for 

either of the phenotypes. Exact type-1 error rates for each test and condition can be 

found in Supplementary Table 2.  

 

Power simulations 

Additional simulations were performed for the test of equal heritabilities to evaluate 

possible asymmetry in power due to differences in sample sizes. For each simulation 

condition, a base sample size 𝑁𝑝 for the first sample was set (using values 10,000, 

20,000, 100,000, and 200,000). The sample size for the second sample was then set to 

𝑁𝑞 = 𝑅𝑁𝑝, setting the sample size ratio 𝑅 at either 1.25 or 2. As in the type 1 error rate 

simulations, the number of genetic principal components 𝐾 was set to 250. A non-zero 

heritability value ℎ2 was then specified for one of the two samples (using values 0.01% 

to 0.1% (increments of 0.01), 0.12%, 0.15%, 0.2%, 0.5%, and 1%), while setting the 

heritability in the other sample to zero. 

 To perform the actual simulations, values were generated by simulating a 

random variable 𝐷𝑝 ~ 𝜒𝐾,𝜆𝑝

2  with non-centrality parameter 𝜆𝑝 = (𝑁𝑝 − 1)
ℎ𝑝

2

1−ℎ𝑝
2, then 

setting 𝛿𝑝
𝑇𝛿𝑝 = 𝐷𝑝𝜎𝑝

2 and ℎ̂𝑝
2 = 𝛿𝑝

𝑇𝛿𝑝 − 𝐾𝜎𝑝
2 with sampling variance 𝜎𝑝

2 =
1−ℎ𝑝

2

𝑁𝑝−1
. Values 

for 𝛿𝑞
𝑇𝛿𝑞 and ℎ̂𝑞

2 were generated in the same way. The equality test was then performed 

for these simulated values as specified above in Methods: Testing equality of local 

heritability, using a fixed 10,000 draws to compute the p-value.  

For each condition, 100,000 values were simulated with ℎ𝑝
2 = ℎ2 (and ℎ𝑞

2 = 0), 

and the power was computed using significance thresholds of 0.05 and 0.001. This was 

then repeated with ℎ𝑞
2 = ℎ2 (and ℎ𝑝

2 = 0). Results for these simulations are shown in 

Supplementary Figure 3. 
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Global genetic correlations 

We used LDSC Regression v1.0.121 to compute rg, global between males and females for 

157 traits to describe the average effect of pleiotropy across the whole genome. LD 

scores based on the European sample of 1000 Genomes were used. Out of 157 traits, 8 

had insufficient h2 estimates for correlations to be computed. As such, we used a 

Bonferroni-corrected significance threshold of 0.05 / 149 = 3.34e-04. We computed the 

following t-statistic to test the null hypothesis of a perfect correlation4: 𝑡 =  
𝑟𝑔,𝑔𝑙𝑜𝑏𝑎𝑙 − 1

𝑆𝐸
, 

where SE is the LDSC-estimated standard error of 𝑟𝑔,𝑔𝑙𝑜𝑏𝑎𝑙 . With LAVA, we computed 

the inverse-variance weighted mean of rg, locals. Only loci that exceeded a h2local p-value 

threshold of 1.00e-04 were used to compute this mean. 

 

FLAMES 

We used the SusieR40 implementation in PolyFun41 to fine-map FUMA-defined risk 

loci42. We allowed for a single causal variant per locus. Fine-mapping results were 

transformed to 95% credible sets by including the smallest number of variants whose 

posterior inclusion probability sum to at least 0.95. We generated MAGMA43-Z scores 

using a UK Biobank LD reference panel and the gene annotations used in the original 

PoPS publication44. PoPS scores were generated using the previously generated MAGMA 

Z-scores using PoPS v0.2. We created gene-level annotations using FLAMES23 annotate, 

with the generated MAGMA Z-scores, PoPS scores, and 95% credible sets as input. Gene 

prioritization was performed using FLAMES v1.0.0. We prioritized genes with a 

FLAMES score above the recommended threshold of 0.05. FLAMES prioritizes a single 

gene per locus. 
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Data availability 

Sex-stratified GWAS summary statistics: 

https://github.com/Nealelab/UK_Biobank_GWAS 

LAVA locus definition file: https://github.com/josefin-werme/LAVA  

1000 Genomes LD reference file for LAVA: https://ctg.cncr.nl/software/lava  

Scripts, plots, and results for all LAVA analyses and all 157 traits, and FLAMES results 

for Testosterone, Diastolic blood pressure, and LDL direct: 

https://doi.org/10.5281/zenodo.15213372  
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Code availability 

Scripts for testing equality of genetic effects, equality of local heritability, and perfect 

correlation of local genetic signal can be downloaded from: 

https://doi.org/10.5281/zenodo.15213372 
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