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Al-Enhanced Adaptive Virtual Screening Platform Enabling
Exploration of 69 Billion Molecules Discovers Structurally
Validated FSP1 Inhibitors

Christoph Gorgulla!>32%*%* Domiziana Cecchini’®*, AkshatKumar Nigam*>**, Ming Tang?6>72%* Joana Reis>*, Matt
Koop’, Andrea Gottinger’, Callum Robert Nicoll*?, Abhilash Jayaraj!-3, Siileyman Selim Cinaroglu?!-3?, Ricarda T6rner>-°,
Yehor Malets??, Minko Gehev'?, Krishna M. Padmanabha Das'?°, Kelly Churion?’, Jongwan Kim?°, Hyuk-Soo Seo?, Sirano
Dhe-Paganon?, Christopher Secker®!®, Mohammad Haddadnia'®, Alexander Hasson?*2%, Minkai Li?®, Abhishek Kumar?3-?%,

Roni Levin-Konigsberg*, Eun-Bee Choi**, Geoffrey I. Shapiro*, Huel Cox 3rd?, Luke Sebastian®, Chelsea Braithwaite?,
Puspalata Bashyal®, Dmytro S. Radchenko®, Aditya Kumar!?, Pierre-Yves Aquilanti®3>, Henry Gabb!!, Amr Alhossary'3-33,
Gerhard Wagner1 , Alan Aspuru-GuZik14'17, Yurii S. Moroz>%7, Charalampos G. Kalodimos??, Konstantin Fackeldeyg’m,
Andrea Mattevi*0* Haribabu Arthanari!--*

Identifying potent lead molecules for specific targets remains a major bottleneck in drug discovery. As structural information
about proteins becomes increasingly available, ultra-large virtual screenings (ULVSs) which computationally evaluate billions of
molecules offer a powerful way to accelerate early-stage drug discovery. Here, we introduce AdaptiveFlow, an open-source platform
designed to make ULVSs more accessible, scalable, and efficient. AdaptiveFlow provides free access to a screening-ready version of
the Enamine REAL Space (1), the largest library of ready-to-dock, drug-like molecules, containing 69 billion compounds that we
prepared using the ligand preparation module of the platform. A key innovation of the platform is its use of a multi-dimensional grid
of molecular properties, which helps researchers explore and prioritize chemical space more effectively and reduce the computational
costs by a factor of approximately 1000. This grid forms the basis of a new method for identifying promising regions of chemical
space, enabling systematic exploration and prioritization of compound libraries. An optional active learning component can further
accelerate this process by adaptively steering the search toward molecules most likely to bind a given target. To support a broad range
of applications, AdaptiveFlow is compatible with over 1,500 docking methods. The platform achieves near-linear scaling on up to 5.6
million CPUs in the AWS Cloud, setting a new benchmark for large-scale cloud computing in drug discovery. Using this approach,
we identified nanomolar inhibitors of two disease-relevant targets: ferroptosis suppressor protein 1 (FSP1) and poly(ADP-ribose)
polymerase 1 (PARP-1) (2, 3). By leveraging newly solved crystal structures of FSP1 in complex with NAD*, FAD, and coenzyme
Qj, we validated these hits experimentally and determined the first co-crystal structures of FSP1 bound to small-molecule inhibitors,
enabling insights into inhibitor binding mechanisms previously unknown. With its high scalability, flexibility, and open accessibility,
AdaptiveFlow offers a powerful new resource for discovering and optimizing drug candidates at an unprecedented scale and speed.

Introduction

A central challenge in early-stage drug discovery is the identification and optimization of initial hit and lead compounds that
bind specifically and potently to biological macromolecules. Historically, experimental high-throughput screening (HTS) has
served as the primary method for discovering such hits (4). While these approaches have yielded many successful leads, they are
inherently constrained by high costs, long timelines, and the need for robust, scalable assays. These limitations are further com-
pounded by the vastness of chemical space: the number of synthetically accessible, drug-like small molecules is estimated to
exceed 1090 (5), yet typical HTS campaigns screen only hundreds of thousands of compounds. This minuscule sampling poses
a major bottleneck - particularly for challenging targets such as protein—protein interaction interfaces or allosteric sites, where
binding pockets are often shallow, dynamic, or poorly defined. Virtual screenings have emerged as a compelling alternative,
offering the ability to computationally evaluate extremely large numbers of molecules. Virtual screening surpassed millions of
compounds over a decade ago (6) and, in recent years, has expanded to hundreds of millions to billions of molecules in silico,
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giving rise to ultra-large virtual screens (ULVSs). Compared to traditional HTS, ULVSs dramatically reduce cost and time,
while expanding the scope of chemical space that can be explored. In addition to identifying potent candidate compounds, vir-
tual screening can provide insights into binding mechanisms and structure—activity relationships, making it especially valuable
for targets that are difficult to modulate using conventional experimental approaches.

In recent years, multiple studies have demonstrated the remarkable effectiveness of ULVSs in identifying potent hits
across a wide range of protein targets, including enzymatic active sites, orthosteric sites of GPCRs, and protein—protein inter-
action interfaces. In 2019, Lyu and colleagues (7) targeted the D4 dopamine receptor and AmpC in a pioneering work using
ULVSs and obtained picomolar binders directly from the screen. In 2020, the melatonin receptor MT 1 was successfully targeted
with ULVS, resulting in compounds with sub-nanomolar potency (8). In the same year, ULVSs were used for the first time to
target protein—protein interactions. That study performed the first screen of one billion compounds to target the KEAP1-NRF2
interaction, leading to the identification of inhibitors in the sub-micromolar range (9). In 2021, the o2 receptor was targeted
by ULVSs, leading to low-nanomolar ligands (10). Notably, in 2020, the first open-source, fully automated platform dedicated
to ULVSs called VirtualFlow was published (9, 11). This platform allows users to routinely perform ULVS with a library of
approximately 1.4 billion compounds in a "ready-to-dock format". In 2020, there were approximately 2 billion on-demand
molecules available. Driven by the success of billion-compound screens and advancements in synthesis and computational
technologies, the number of available on-demand molecules, with an established synthetic route, has expanded rapidly, with
current estimates reaching up to 3 trillion compounds across multiple vendors (1).

While ultra-large virtual screenings (ULVSs) enable the exploration of vast chemical libraries, significant challenges
remain in making these searches efficient, affordable, and intelligent. Navigating such immense chemical space to rapidly
identify promising hits requires new strategies that go beyond brute-force docking. The financial cost alone is a major bottleneck
- docking one billion compounds using standard cloud-based CPU providers typically costs $20,000-30,000, (9) rendering it
impractical as chemical databases continue to grow exponentially, with newer libraries exceeding one trillion compounds, and
growing (7). Moreover, effective virtual screening requires the ability to flexibly integrate a wide range of docking algorithms,
each built on different theoretical foundations and requiring distinct input formats, to better match the characteristics of diverse
target classes. Compounding these challenges is the need to fully leverage modern computational infrastructure: while many
existing platforms are limited to CPUs, there is increasing demand to exploit both CPU clusters and GPU architectures to
scale performance and reduce turnaround time. These limitations - high cost, limited flexibility, and insufficient scalability
- highlight the urgent need for a new solution. To end this, we developed AdaptiveFlow, an open-source platform designed
to intelligently navigate ultra-large chemical spaces, seamlessly incorporate diverse docking methods, and operate efficiently
across heterogeneous computing environments, including cloud-scale CPU and GPU resources.

AdaptiveFlow is a next-generation, open-source platform purpose-built for navigating ultra-large chemical libraries
comprising 69 billion drug-like molecules with scale, speed, and intelligence. A key innovation of the platform is the imple-
mentation of Adaptive Target-Guided Virtual Screens (ATG-VSs), which use an 18-dimensional grid of molecular properties
to identify and hone in on the most promising regions of chemical space, favorable for a chosen target site, substantially re-
ducing computational cost relative to exhaustive docking. An optional active learning layer can be added to further refine and
accelerate this process by iteratively selecting the most promising compounds of each tranche. To demonstrate the utility of
AdaptiveFlow, we applied it to two therapeutically relevant targets: ferroptosis suppressor protein 1 (FSP1), a key regulator
of lipid peroxidation and ferroptotic cell death with emerging roles in cancer resistance (2), and poly(ADP-ribose) polymerase
1 (PARP-1), a well-established DNA repair enzyme and clinical target in oncology (3). In both cases, the platform identi-
fied nanomolar inhibitors, which were experimentally validated through high-resolution co-crystal structures confirming target
engagement.

AdaptiveFlow

Deploying ultra-large virtual screenings (ULV Ss) at the scale of billions of compounds requires not only massive computational
resources but also software systems that can efficiently coordinate the preparation, management, and docking of libraries across
heterogeneous high-performance computing (HPC) environments. To meet these requirements, we developed AdaptiveFlow,
an open-source platform built to streamline, scale, and intelligently guide ULVS workflows from end to end. AdaptiveFlow
combines deep flexibility with performance, offering support for diverse ligand and receptor types, GPU acceleration, and
modular integration of classical and machine learning-based docking methods.

AdaptiveFlow introduces major enhancements across three core components: the AdaptiveFlow Ligand Preparation
(AFLP) module for efficient preprocessing of massive libraries; the AdaptiveFlow for Virtual Screening (AFVS) engine, which
supports over 1,500 docking methods; and the AdaptiveFlow Unity (AF Unity) module, which integrates these components
into a unified, modular workflow adaptable to both CPU and GPU-based infrastructures (overview in Fig. 1 and in Extended
Data Table 1). These modules have been engineered to support both traditional and emerging use cases, while optimizing for
large-scale parallel execution on cloud and on-premise infrastructures. AdaptiveFlow is natively compatible with cloud services
such as AWS (Extended Data Fig. 1), where it demonstrates near-linear scaling up to 5.6 million virtual CPUs (Extended Fig.
2), enabling efficient exploration of ultra-large libraries. The use of spot (preemptible) instances further reduces the costs.

2 Christoph Gorgulla « AdaptiveFlow
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Fig. 1. Overview of features of AdaptiveFlow. AdaptiveFlow introduces several key advances that significantly expand the capabilities of ULVS, including, i) curation of
the Enamine REAL Space library, comprising 69 billion molecules in a ready-to-dock format compatible in multiple chemical file formats, ii) integration of an extensive suite
of approximately 1,500 docking methods, enabling the targeting of a broad range of receptor types, including RNA and DNA, iii) support for emerging hardware architectures
such as ARM CPUs, along with GPU acceleration to enhance computational performance, iv) advanced ligand preparation features, including stereoisomer enumeration and
the calculation of 28 molecular properties, to enable the creation of more comprehensive screening libraries, and v) built-in support for machine learning and deep learning
approaches, including compatibility with SELFIES and neural network—based docking methods. The integrated module, AdaptiveFlow Unity, further streamlines workflows by
combining ligand preparation and docking into a single environment. Importantly, AdaptiveFlow also introduces a novel screening paradigm known as Adaptive Target-Guided
Virtual Screens (ATG-VSs), which enables efficient, target-focused exploration of ultra-large compound libraries at a fraction of the computational cost typically associated
with conventional ULVSs.

The AFLP module provides a powerful pipeline for preparing massive compound libraries for docking. In addition
to generating 3D conformers, it enumerates stereoisomers and tautomers, validates geometries, and calculates 28 molecular
properties (see Extended Data Table 2, 3; Supplementary Fig. 1, 2, 3). These properties are used to disperse the molecules
within a multidimensional grid—up to 18 dimensions—based on physicochemical descriptors. This grid-based representation
forms the foundation for Adaptive Target-Guided Virtual Screens (ATG-VSs), which allow users to intelligently select and
prioritize chemically diverse subspaces relevant to a given target, thereby optimizing computational resources focusing on the
most promising regions of chemical space. Furthermore, an optional active learning component can be layered on top of ATG-
VSs to iteratively refine the search using data-driven feedback, dynamically selecting molecules predicted to yield the highest
information gain or binding likelihood (Extended Data Fig. 3, 4, 5, 6, 7).

The AFVS module enables large-scale docking campaigns using over 1,500 distinct docking methods, assembled from
more than 40 individual docking programs, pose prediction algorithms , and scoring functions. AFVS supports a wide range of
ligand and target types, including peptides, DNA, and RNA, and includes recent advances in machine learning-based docking
such as DiffDock and TANKBind (12, 13), which have shown promise in speed and accuracy, especially for blind or flexible
docking scenarios (Extended Data Table 4, 5, 6; Supplementary Table 1, 2; Supplementary Fig. 4).

To unify and simplify large-scale workflows, we developed AdaptiveFlow Unity (AFU), a new module that integrates
the functionalities of AFLP and AFVS into a cohesive interface. AFU enables users to perform ligand preparation and docking
within a single automated pipeline, dramatically reducing setup complexity and increasing accessibility for non-specialists.
This streamlined design supports rapid iteration and facilitates integration with other tools in computational drug discovery and
Al-driven design workflows (Supplementary Fig. 5, 6, 7, 8, 9, 10, and Methods: AdaptiveFlow Unity).

Enamine REAL Space
Virtual screening performance scales significantly with library size, because larger screening sizes tend to yield both higher

potencies and improved hit rates (i.e., the number of confirmed hits divided by the number of tested compounds) (7, 9-11).
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Fig. 2. AdaptiveFlow version of the Enamine REAL Space. The initial version of the REAL Space (enumerated release, 2022q1-2) comprised approximately 31 billion
molecules represented as SMILES strings in an unprocessed format—e.g., without full stereoisomer enumeration or structural standardization. A selected subset of 18 of
these properties was used to partition the library into an 18-dimensional property matrix, where each dimension was discretized into multiple intervals. In this figure, the
high-dimensional matrix is illustrated as a 3D schematic for clarity, with three representative properties each split into 6—10 intervals, resulting in 8 - 6 - 6 = 288 tranches.
Each box represents a tranche that contains ligands sharing the corresponding property ranges. This structure enables flexible selection of compound subsets and serves
as the foundation for adaptive, target-guided virtual screens (ATG-VSs) that are introduced in this work.

Until recently, the largest publicly available ready-to-dock libraries, including the 2018 version of the REAL Database (9)
and the ZINC20 library (14), each contained approximately 1.5 billion molecules. To enable virtual screens of an order of
magnitude larger scale, we prepared the 2022 version of the Enamine REAL Space into a ready-to-dock format, comprising
68.7 billion commercially available on-demand small molecules.

The current version of the Enamine REAL Space (2022ql1-2, accessed November 15, 2022 (15)) contains
31,507,987,117 enumerated molecules (becoming 69 billion after ligand preparation, e.g. due to stereoisomer and tautomer
enumeration). These compounds are synthetically accessible derivatives of 137,000 established building blocks, assembled us-
ing 167 internally validated one-pot synthetic protocols developed at Enamine (16-25). This combinatorial framework enables
high-throughput compound generation with a reported synthetic success rate of 82%, based on 386,000 experimental reactions
conducted in 2021. The library is highly drug-like, with 99% of molecules satisfying Lipinski’s Rule of Five (26). Structurally,
it offers exceptional chemical diversity, comprising 1,098,811,629 unique Murcko scaffolds.

Following ligand preparation with AFLP, the number of ready-to-dock molecules expanded to 68.7 billion in the REAL
Space. This transformation involved a comprehensive set of preprocessing steps, including stereoisomer and tautomer enumer-
ation, desalting, neutralization, protonation state prediction, 3D conformer generation, and conversion into formats compatible
with a broad range of docking programs. In addition, 28 physicochemical properties and cheminformatic descriptors were
calculated for each compound (Extended Data Table 2). To organize this vast chemical space and enable efficient navigation, a
subset of 18 key molecular properties was selected to construct an 18-dimensional matrix, in which each axis corresponds to a
discrete descriptor such as molecular weight, logP, hydrogen bond donor and acceptor counts, rotatable bond count, topological
polar surface area (TPSA), aqueous solubility (logS), aromatic ring count, molecular refractivity (MR), formal charge, posi-
tive and negative charge counts, fraction of sp3-hybridized carbons (fsp®), number of chiral centers, halogen and sulfur atom
counts, and stereoisomer count. Each dimension was discretized into multiple property intervals, resulting in a combinatorial
matrix of 24.4 billion potential tranches (i.e., matrix elements). Molecules from the REAL Space occupy approximately 12
million of these tranches, allowing for highly granular, property-based selection of compound subsets. The 18 properties were
chosen to balance chemical relevance for drug discovery with computational efficiency, as excessive dimensionality would lead
to sparsity and reduce practical tractability. The binning schemes and occupancy statistics for each dimension are provided in
Extended Data Fig. 3.

The REAL Space is not only vast, but also chemically rich and structurally diverse, particularly in its representation of
three-dimensional and stereochemically complex molecules (14, 27). Notably, over 50.5 billion molecules (74 %) contain at
least one chiral center, contributing to what is often referred to as “nonflat” chemical space—a feature increasingly associated
with favorable pharmacological properties (28, 29). Ligand-receptor binding is inherently three-dimensional, and the presence
of multiple stereoisomers allows subtle shape complementarity to be exploited. In this context, differences in docking scores
across stereoisomers can serve as a proxy for specific target engagement, aiding in the prioritization of high-affinity binders.
The REAL Space also includes a substantial number of halogenated compounds—20.2 billion in total, including 17.4 billion
containing fluorine atoms—which are well suited for '“F-NMR-based binding assays that do not require isotopically labeled
proteins. Despite its breadth, the 18-dimensional matrix remains sparsely populated, revealing large underexplored regions of
chemical space. These unoccupied tranches present compelling opportunities for prospective synthesis campaigns to populate
novel chemical spaces, enabling the development of molecules to selectively target previously undruggable regions of the
proteome.

To facilitate exploration of this high-dimensional chemical library, we developed two interactive web interfaces (Ex-
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Fig. 3. Conceptual overview of Adaptive Target-Guided Virtual Screens (ATG-VSs). The REAL Space, divided into an 18-dimensional grid, populates over 12 million
individual tranches (cells) represented in the figure schematically as a 3-dimensional matrix and each of these tranches has on average 5600 molecules. During the first
step of ATG-VSs, the AFVS module of AdaptiveFlow selects a few (1-10) representative molecules in each tranche and docks these molecules to the target receptor. This
screening mode (and stage) is referred to as a prescreen and allows AdaptiveFlow to detect the tranches of the library that contain molecules of high potential binding affinity
to the given target receptor/binding site. AdaptiveFlow then selects these tranches and screens them fully against the target receptor. In addition, an optional machine
learning (ML) model can be trained on the ATG Prescreen results, which can evaluate the molecules of the selected tranches during the ATG Primary Screen.

tended Data Fig. 5 and 6), each built with different rendering frameworks to optimize performance across devices and browsers.
These interfaces present the 18-dimensional matrix as a dynamic two-dimensional projection, allowing users visualize the ma-
trix. Each of these two axes of the two dimensional projection is based on one of the 18 properties that define the full matrix,
and the user can select the two properties. Although the visualization is limited to 2D projections, the range of the 18 properties
(of the corresponding 18 dimensions) can be selected interactively independently of the visualization. Selected subsets can
then be used directly for virtual screens via AFVS. The REAL Space is available in PDB, PDBQT, MOL2, and SDF formats,
ensuring compatibility with most structure-based docking programs. Additionally, the library is distributed in SMILES, SELF-
IES, and Parquet formats to support cheminformatics, generative modeling, and large-scale analytics. Both the full library
and user-defined subsets can be accessed via the AdaptiveFlow project homepage or through the AWS Open Data repository,
enabling direct use in the cloud without the need for local storage.

Adaptive Ultra-Large Virtual Screenings

Screening ultra-large ligand libraries containing billions of molecules is computationally intensive, especially when using
classical physics-based docking programs. As the number of compounds in the library increases into the tens of billions, the
cost of screening the library becomes prohibitively expensive.

Virtual screening is a process of searching a vast chemical space for the best candidate that matches the structural and
biophysical properties of the target site in a given receptor. However, the fraction of compounds in an ultra-large screen that will
optimally engage a specific site in the receptor is often very small and share specific molecular characteristics. To be cost- and
time-effective, it is desirable to focus the screen on the optimal chemical space that is likely to contain hits for a given target.
To rapidly narrow the search space for a given target, we introduce the Adaptive Target-Guided Virtual Screening (ATG-VS)
technique. This approach consists of the following steps:

1. Library Decomposition. On average, a tranche in the current library has approximately 5600 molecules, and for each
tranche up to ten representative ligands are selected for a pilot screen. The number of representatives per tranche (1-10)
can be selected by the user. Since there are approximately 12 million tranches (that contain molecules from the REAL
Space), if one representative per tranche is selected, the total number of molecules screened in the prescreen would be
approximately 12 million for the entire library. If more than one representative molecule, per tranche, is chosen by the
user then these additional molecules are automatically selected to be diverse from each other within the given tranche.

2. Screening Representative Molecules (ATG Prescreen). Instead of screening the entire library, a prescreen of only
the selected representative ligands is performed. In addition, instead of screening representative ligands from all the
12 million tranches, users can apply an optional dynamic filtering procedure that corresponds to the 18-dimensional
properties of the ligands. Here, users can manually apply criteria that the molecules/tranches need to satisfy, e.g. based on
the properties of the targeted site, which can significantly reduce the number of dockings required in the prescreen. After
the prescreen, the sub-space (tranches) of the ligand library that have the best docking scores among the representative
ligands are selected for the next screening stage.

3. Selection of Active Tranches. AdaptiveFlow automatically selects the most promising tranches based on docking scores
of the ATG Prescreen. The total number of ligands to be screened in the next stage can be specified by the user.

Christoph Gorgulla + AdaptiveFlow 5
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4. Active Cell Screening (ATG Primary Screen). In the next stage, the tranches that were selected after the prescreen
are fully screened (e.g., in Fig. 3, the three tranches that contain the best ligands are marked purple). To further re-
fine this selection, a machine learning classification model (see Methods: Machine Learning Classifier for Tranche
Prioritization) is employed to identify the most promising molecules within each tranche. The model is trained on
Morgan fingerprints (size 1024) of the prescreened compounds, using the docking scores obtained during the prescreen
as labels. It applies a threshold-based classification approach, where the 75th percentile of docking scores serves as the
decision boundary. Only molecules classified as high-confidence binders are prioritized for full docking, ensuring that
computational resources are allocated efficiently to the most promising candidates.

ATG-VSs significantly reduce the dimension of the chemical space to be screened, thereby reducing the required com-
putation time. AFVS can also prepare new and/or proprietary ligand libraries with ATG-VS support, which requires that the
prepared ligand libraries are structured into a multidimensional tranche matrix with pre-assigned representative molecules for
each tranche. An optional third-stage screen can be performed to rescore the best hits with higher accuracy, such as by including
receptor flexibility. AdaptiveFlow can carry out all three stages in a fully automated workflow.

To investigate the effectiveness of the various parameters including the number of representative molecules from each
tranche, and the docking exhaustiveness (which is a measure of how extensively the ligands’ conformational space is sampled),
we carried out multiple ATG prescreens on an array of targets. We examined the following scenarios, i) one representative
molecule per tranche and exhaustiveness of 1, ii) 10 representative molecules and exhaustiveness of 1, and iii) 1 representative
molecule with exhaustiveness of 10. The higher the exhaustiveness parameter the more thoroughly the conformational space
is searched, but also the more computation time is needed. The results of these trials can be seen in Extended Data Fig. 8.
As shown in the figure, the results (based on the distribution of the top docking scores, and the ranking of the tranches within
each property category) are relatively similar for all three scenarios. Therefore, ATG prescreens with exhaustiveness 1 and one
representative molecule per tranche are expected to be sufficient for many applications. In this case, an ATG prescreen involves
docking 12 million molecules to explore the 69 billion compound library, which is over 5000 times less computational effort
than screening all molecules of the library. If a second stage screen with higher accuracy is added in the context of multistaging,
it can be beneficial to increase the exhaustiveness (9).

To systematically evaluate the performance of Adaptive Target-Guided Virtual Screens (ATG-VSs) relative to standard
ultra-large virtual screens (ULVSs), we conducted benchmarking experiments across ten diverse protein targets, including
kinases, phosphatases, GPCRs, and protein—protein interaction interfaces (Extended Data Table 7). These evaluations were
performed in two settings: (1) test-based benchmarks using a 5-million-compound subset of chemical space (Fig. 4), and
(2) large-scale production runs using the full 69-billion—compound Enamine REAL Space (Extended Data Figs. 9, 10). The
production-scale benchmarks compared standard ULVSs to ATG-VS without the optional active learning component, while the
subset-based studies also assessed ATG-VS with active learning enabled. Across these targets, we evaluated performance under
three key scenarios:

(i) Comparison to standard ULVSs (production-scale benchmarks): We evaluated performance at full production scale
(Extended Data Figs. 9, 10) by comparing the top 50 docking scores obtained from two approaches: (1) a standard ULVS
involving 100 million randomly selected compounds from the full Enamine REAL Space, and (2) the ATG-VS method without
active learning. For ATG-VS, we conducted a prescreen of 12 million compounds—comprising 10 representative ligands per
tranche across the entire library—followed by a primary screen of up to 1 million compounds. To assess the impact of screening
depth, we systematically varied the number of compounds in the primary screen (10K, 100K, and 1M) across ten targets.
Active learning was not applied in this setting to isolate and evaluate the impact of tranche prioritization alone; however, based
on the test-based benchmarks we expect that incorporating active learning could yield further improvements in efficiency and
enrichment. We found that ATG-VS achieves comparable or superior top docking scores to standard ULVSs while requiring
dramatically fewer docking evaluations—highlighting its effectiveness and scalability in production-scale virtual screening
campaigns.

(ii) Impact of machine learning (test-based benchmarks): To further evaluate the benefit of incorporating an ML classi-
fier into the ATG workflow, we conducted experiments using a sub-sampled version of the REAL Space comprising 5 million
compounds. We compared three approaches: (1) a random screen of 1 million compounds ("IM Random" in Fig. 4); (2)
the ATG-VS method, which involved decomposing the library based on 18 molecular properties, performing a prescreen, and
selecting compounds for a primary screen—with a total of 100,000 docking evaluations across both stages ("100K ATG"); and
(3) an enhanced ATG-VS approach in which a machine learning model, trained on docking scores and Morgan fingerprints
from the prescreen, was used to prioritize compounds for the primary screen ("100K ATG+AL"). It should be noted that in
the case of ATG and ATG+AL scenarios the total number of docking evaluations including the prescreen was 100K, compared
to a million in the random screen. As shown in Fig. 4, the ML-augmented ATG-VS consistently improved the enrichment of
high-affinity binders relative to the standard ATG-VS. Though both version of the ATG screeen sampled only 100K molecules
they outperformed the random screen sampling 1 million molecules.

While ATG-based screens consistently outperformed random screening, the extent of improvement varied depending on
the biophysical properties of the target. Proteins with complex, feature-rich binding pockets, particularly those combining ex-
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tensive hydrophobic surfaces with well-defined polar subpockets, derived the greatest benefit from ATG-based prioritization and
ML enhancement. Taken together, these findings underscore the scalability, efficiency, and adaptability of ATG-VS. By intel-
ligently narrowing the search space—and optionally integrating machine learning for compound prioritization—AdaptiveFlow
enables high-performance virtual screening at the scale of tens of billions of molecules.

Fig. 4. Benchmarks Involving Adaptive Target-Guided (ATG) Primary Virtual Screens and Standard ULVSs. Violin plots of the docking scores (the more negative,
the better) of the top 50 virtual screening hits obtained using three approaches: (i) standard ultra-large virtual screening (ULVS) of 1 million random compounds (blue),
(i) adaptive target-guided (ATG) screening with 100,000 molecules (rose), and (iii) ATG screening augmented with an additional active learning step (purple). Black dots
represent individual data points, and the numbers above the violin plots indicate the mean docking scores of the top 50 hits. For most target proteins, ATG primary screens
(100,000 molecules) with or without active learning performed comparably to standard ULVS (1 million random compounds), achieving a 10-fold reduction in the number of
compounds screened while maintaining similar docking performance.

Machine Learning and Cloud Support

AdaptiveFlow introduces expanded capabilities designed to support artificial intelligence (AI) and machine learning (ML)
workflows across molecular biology and drug discovery. In addition to integrating state-of-the-art ML-based docking pro-
grams—including EquiBind (30), DiffDock (13), and TANKBind (12)—the platform offers several features aimed at facilitat-
ing the development and application of ML models. The AFLP module computes a wide range of physicochemical properties
commonly used as features or optimization targets in ML pipelines, including the Quantitative Estimate of Druglikeness (QED)
(31) and octanol-water partition coefficient (logP) (32). AFLP also supports the generation of SELFIES (Self-Referencing
Embedded Strings) molecular representations (33, 34), which are widely adopted in generative modeling due to their syntactic
robustness and ability to encode valid molecules across arbitrary token sequences (35) (Extended Data Table 2, 3, 3, 4, 5, 6,
7; Supplementary Table 1, 2). Additionally, AFVS introduces numerous deep learning-based docking approaches by mod-
ularly assembling scoring functions and pose prediction tools into comprehensive docking workflows. To further streamline
ML-driven workflows the AFU module provides a fully integrated pipeline for ligand preparation and docking. This unified
interface simplifies data generation for model training and enables seamless incorporation of docking scores as objective func-
tions in generative or optimization-based ML models (36). With support for approximately 1,500 docking methods accessible
through a single command-line interface, AFU eliminates the need for users to individually configure and learn multiple dock-
ing programs, thus significantly lowering the barrier to entry for ML and drug discovery communities alike. Together, these
features position AdaptiveFlow as a versatile platform not only for applying ML methods to virtual screening but also for
developing new ML architectures and pipelines for structure-based drug discovery (Extended Data Fig. 11, 12).

In parallel with its support for machine learning, AdaptiveFlow is optimized for efficient deployment in cloud computing
environments. The platform runs natively on the popular workload manager Slurm (37), widely supported across providers like
Google Cloud and Microsoft Azure, and AWS Batch (38). In this study, we demonstrate near-linear scalability on AWS using
over 5.6 million virtual CPUs, setting a new global benchmark for parallelization in cloud-based drug discovery. This level of
scalability enables the completion of ultra-large virtual screens involving billions of compounds within hours—timelines that
would otherwise require weeks or months on traditional on-premise compute clusters. By combining cloud-native performance
with ML-native features, AdaptiveFlow serves as a high-performance and accessible foundation for next-generation Al-driven
drug discovery.

Christoph Gorgulla « AdaptiveFlow 7
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Experimental validation of AdaptiveFlow

To experimentally validate the capabilities and performance of AdaptiveFlow, we selected two therapeutically significant target
proteins, ferroptosis suppressor protein 1 (FSP1) and poly(ADP-ribose) polymerase 1 (PARPI). FSPI is a recently charac-
terized oxidoreductase that plays a central role in protecting cells from ferroptosis—an iron-dependent form of regulated cell
death triggered by membrane lipid peroxidation (39—42). FSP1 maintains pools of reduced coenzyme Q¢ and vitamin K hydro-
quinone using NAD(P)H, operating independently of GPX4 to suppress oxidative membrane damage. Inhibiting FSP1 disrupts
this defense, sensitizing cells—especially redox-imbalanced cancer cells (43)—to ferroptosis. Despite its importance, only a
few FSP1 inhibitors have been described and none of their binding to FSP1 has been structurally characterized (2, 44, 45),
making it an ideal target for exploring novel inhibitor space using AdaptiveFlow. We also targeted PARP1, a well-established
target involved in DNA single-strand break repair, for benchmarking AdaptiveFlow on a mechanistically distinct, clinically
validated enzyme class.

Structural Studies of FSP1. To streamline hit discovery and structural studies, we employed ancestral sequence reconstruc-
tion—a method known to yield highly stable proteins while preserving functional and structural fidelity to modern homologs
(46, 47). Using this approach, we reconstructed the tetrapod ancestor of human FSP1, which shares 76% sequence identity
and retains all active-site residues (Supplementary Fig. 11, 12). The ancestral FSP1 variant expressed efficiently in E. coli
(~100 mg/L culture), bound FAD, exhibited high thermostability (7},, = 62 °C; Supplementary Fig. 12B), and retained full
enzymatic activity (Supplementary Table 3; Supplementary Fig. 13 and 14). Crucially, it yielded high-quality, well-diffracting
crystals (Supplementary Table 4), enabling detailed structural analyses.

We determined high-resolution crystal structures of FSP1 bound to FAD, to FAD and NAD*, and in complex with FAD,
NAD* and coenzyme Q; (Fig. 5; Supplementary Fig. 15a; Supplementary Table 4). The overall structure of the ancestral
protein is very similar to that of the human enzyme (Supplementary Fig. 15b). NAD" triggers a 2 A shift of the flavin ring
and its binding mode is fully consistent with a hydride transfer mechanism for flavin reduction as the nicotinamide C4 atom
is located right in front of the isoalloxazine N5 (Fig. 5B). Coenzyme Q; binds between two aromatic side chains of Phe354
and Y290, with its quinone moiety at the edge of the pyrimidine ring of the flavin in a canyon leading from the protein surface
(Fig. 5C-D). Specifically, quinone oxygen engages the N(3)H group of the flavin through a hydrogen bond. This geometry and
the proximity between the two molecules can enable the facile electron transfer from the flavin to coenzyme Q. Comparison
between the FSP1-FAD-NAD* and FSP1-FAD-NAD™"-coenzyme Q; complexes shows that NAD* binding is unaffected by the
presence of coenzyme Q. Thus, it is demonstrated that coenzyme Q and NAD(P)* can simultaneously bind to the protein and
this structural attribute perfectly aligns with the ternary-complex mechanism evidenced by the kinetics data (Supplementary
Fig. 14). The structure also suggests that there is ample space for the oxygen to access the flavin N5 locus where its reaction
with the flavin is known to take place. This feature explains why FSP1 can also operate as a NAD(P)H oxidase (48). This
detailed experimental visualization of the NAD(P)H and quinone binding modes and their interactions provided the foundation
for inhibitor discovery through in silico screenings targeting the substrate binding sites.

Targeting FSP1 with AdaptiveFlow. To assess the effectiveness of AdaptiveFlow, we screened FSP1 inhibitors targeting its
coenzyme Q site using AdaptiveFlow. Our high-resolution crystal structure of FSP1 in complex with FAD and NAD* (PDB
code: 9IFT) was used as receptor. Maestro from Schrodinger (51) was applied to prepare the receptor’s structure for screening,
by removing solvent molecules, assigning missing hydrogen bonds, correcting protonation states at pH 7.4, and assigning
correct bond orders. AutoDockTools (v.1.5.7) (52) was utilized to convert the prepared structure from the PDB format to the
PDBQT format. The coenzyme Q site of FSP1 (with FAD and NAD™ bound to the corresponding sites) was targeted. In
the ATG Prescreen, 1 representative compound was used per tranche (resulting in 12 million dockings), and based on these
results 10 million compounds were chosen for the primary screen using the ATG-VS method (without ML feature). Basic
filters were applied to the top hit candidates, such as logP less than 5, LogS greater than -5, Topological Polar Surface Area
(TPSA) smaller than 140 A2, number of stereo centers not greater than 3, and compounds with problematic functional groups
and predicted toxicity (mutagenic compounds, compounds with reproductive effects, tumorigenic compounds) were excluded.
In total, 42 compounds from 37 different clusters with zero alerts suggested by SwissSADME (53) were ordered from Enamine.
33 compounds were synthesized and experimentally tested.

Experimental Validation: Inhibitors extend from the coenzyme Q site to the NAD site. We assessed the potential bind-
ing and inhibitory activities of the synthesized 33 virtual hits from AdaptiveFlow, using thermal shift and NADH-depletion
assays. Two of the hits elicited stabilizing shifts of at least 1.5 °C in the protein melting temperature and inhibited FSP1 oxi-
doreductase activity by at least 50% at a 10 uM concentration. These two compounds were found to potently inhibit coenzyme
Q-reduction activity (Table 1; Supplementary Fig. 16). Their K; values are comparable to, or better than, those reported for
previously described FSP1 inhibitors (0.283 pM for afi-FSP1-1 and 0.777 uM for afi-FSP1-2; Supplementary Table 5; Supple-
mentary Fig. 17, 18) (2, 44, 45). Critically, a cellular thermal shift assay (CETSA; (54)) performed on FSP1-expressing HEK293
cells shows that afi-FSP1-1 effectively engages human FSP1 in cells, as evidenced by a thermal shift of 2.8 °C (Supplementary
Fig. 19). We determined the crystal structure of the most potent compound (afi-FSP1-1) bound to FSP1-FAD-NAD* which
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Fig. 5. Co-Crystal Structures of FSP1 in Complex with its Cofactors and Substrate. We determined three crystal structures of FSP1: (i) bound to FAD alone, (ii) bound
to FAD and NAD*, and (iii) bound to FAD, NAD*, and coenzyme Q. (A) Overall structure of the fully assembled FSP1 complex with FAD (yellow carbons), NAD* (cyan), and
coenzyme Qq (beige). The polder omit map for coenzyme Q; is contoured at the 3.0 ¢ level. (B) Superposition of structures (i) and (i) reveals that NAD* binding induces
a rotation of the FAD isoalloxazine ring. The FAD conformation prior to NAD* binding is shown in brown, and the conformation after NAD* binding is shown in yellow. No
evidence for 6-hydroxyflavin formation was observed, in contrast to prior reports for human FSP1 (49, 50) (see also Supplementary Fig. 15A). (C) In the ternary complex,
coenzyme Q interacts with Tyr290 and Phe354 via edge-to-edge aromatic stacking and forms a hydrogen bond (dashed black line) with the flavin’s pyrimidine ring. (D) NAD*
and coenzyme Qy occupy distinct but converging channels that meet at the FAD active site, illustrating the architecture of the substrate-binding cavity.

reveals that the inhibitor occupies the coenzyme Q binding site in a mode consistent with the predicted docking pose (Fig. 6A-
B; Supplementary Fig. 15a). With its elongated conformation, afi-FSP1-1 extensively interacts with the protein by contacting
several aromatic side chains, including Tyr290 and Phe354—tesidues that sandwich the quinone ring of coenzyme Q. Tyr290
is involved in a 7-stacking interaction with the benzene ring of the isochroman moiety, whereas Phe354 and Phel5 contribute
to the binding via hydrophobic interactions with the piperidine and a 7-stacking interaction with the triazole group. The central
carbonyl oxygen of afi-FSP1-1 forms an H-bond interaction with the N(3)H group atom of the flavin akin to the interaction
established by the carboxyl oxygen of the coenzyme Q’s ubiquinone head (Fig. 6B and 5C). Furthermore, the inhibitor’s cen-
tral carbonyl oxygen consistently interacts with the backbone amine group (NH) of Leu323 via a water bridge (Supplementary
Fig. 20). Despite its proximity with the inhibitor, the binding conformation of NAD" is identical to that observed both in the
absence of a ligand and in the complex with coenzyme Q;. Similar features characterize the binding compound afi-FSP1-2
whose bulkier structure enables even more extended interaction with the protein (Supplementary Fig. 20, 21). Expanding on
these results, we conducted a structure activity relationship study. The three-dimensional structure of the FSP1/afi-FSP1-1
complex was used as input for an additional round of in silico screening. This procedure returned 20 analogues of compound
afi-FSP1-1 that were experimentally analyzed (Supplementary Fig. 22). Rewardingly, four additional molecules (afi-FSP1-
3-6) displayed inhibitory activities with K; values in two-digit nanomolar for achiral molecules to low micromolar range for
molecules tested as either a racemic mixture or a diastereomeric mixture . Notably, these compounds share an aromatic-amide-
saturated heterocycle core as displayed also by afi-FSP1-1 and 2 (Table 1). Consistent with this common feature, the crystal
structures of afi-FSP1-3 and afi-FSP1-4 bound to FSP1-FAD-NAD* show that the ligands occupy the coenzyme Q site with
their amide carbonyl oxygen engaged by the flavin N(3)H group via a hydrogen bondsand further interacting through a water
molecule with the backbone amine group of L323 in FSP1 as observed for afi-FSP1-1 (Fig. 6B-D; Supplementary Fig. 20,
21). Although compound afi-FSP1-4 replaces the dimethyl-tetrahydropyran portion of the isochroman group of afi-FSP1-1
with a methylthiomethyl-triazole, the two inhibitors bind in a very similar way with their common phenyl-triazole-piperidine
moiety interacting with Phel5 and Phe354. Conversely, the binding of afi-FSP1-3 is more distinct as it adopts a less extended,
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Fig. 6. Co-Crystal Structures of Inhibitors binding to FSP1. (A) Overall structure of FSP1 in complex with inhibitor afi-FSP1-1. The polder omit map for the inhibitor is
contoured at the 3.0 ¢ level. (B-D) Close-up views of the binding site with afi-FSP1-1 (B, green), afi-FSP1-3 (C, violet), and afi-FSP1-4 (D, pink) bound in the region normally
occupied by coenzyme Qq, adjacent to FAD (yellow) and NAD* (cyan). All inhibitors displace coenzyme Q1 and interact directly with the catalytic cavity.

U-shaped conformation laying on Tyr290. These binding modes are validated by mutagenesis experiments (Supplementary
Table 6, 7; Supplementary Fig. 20, 21) and correlate with the measured K; values. Compounds afi-FSP1-1 and afi-FSP1-4
exhibit practically identical K;s, whereas compound afi-FSP1-3 displays a twofold decrease in potency. Besides being the best
inhibitors, compounds afi-FSP1-1, afi-FSP1-2, and afi-FSP1-3 exhibit a 10-12-fold reduced efficacy against the NADH oxidase
activity of FSP1, while compound afi-FSP1-4 exhibited no efficacy at all (Supplementary Fig. 24; Supplementary Table 8).
The weaker inhibition reflects the retention of NAD(P)H binding in the inhibited protein as shown by crystal structures and
indicates that reactivity with oxygen is only mildly or not affected by inhibitor binding in the coenzyme Q site. We posit that
preferentially inhibiting the quinone-reducing activity while sparing the reactivity with oxygen, might be pharmacologically
beneficial. Inhibitors of this type may convert the enzyme from being anti-ferroptotic (coenzyme Q reducing activity) to being
pro-ferroptotic (uninhibited lipid-damaging ROS production). Future work is needed to explore and validate this concept in

FSP1 pharmacology.

Applying AdaptiveFlow to PARP1.To further validate the effectiveness of the AdaptiveFlow platform, we selected hu-
man Poly(ADP-ribose) polymerase 1 (PARP1) as a benchmark target due to its well-characterized structure, critical role in
DNA repair, and relevance in cancer therapy. Following the ATG-prescreen and a primary screen of 100 milliom molecules,
160 promising candidates were synthesized for further experimental verification, as detailed in the Methods section. A two-
concentration highthroughput enzymatic screen identified seven PARP1 inhibitors, four of which (iParp1, iParp2, iParp3,and
iParp4) showed sub-250 nM IC50 values and were selected for further characterization. Protein NMR confirmed direct binding
to the active site of PARP1, with chemical shift perturbations supporting the predicted docking poses. X-ray crystallography
revealed the 2.05 A structure of the PARP1 catalytic domain bound to a hydrolyzed form of iParp1, validating its binding mode
and key interactions. Clonogenic assays in BRCA1-deficient TNBC cells demonstrated selective cytotoxicity for iParpl and
iParp2, though reduced cellular activity, especially for iParpl, was attributed to poor membrane permeability due to hydroly-
sis. Remarkably, AdaptiveFlow identified PARP1 inhibitors with submicromolar to low nanomolar potency, including iParpl,
which exhibited an ICsg of 8.8 nM—comparable to the FDA-approved drug olaparib. This result is particularly notable given
that our hits were derived from a purely virtual screen without any prior knowledge of known inhibitors or medicinal chemistry
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Compound Structure K; (uM) Kgq (uM)

afi-FSP1-1 0.283%+0.05 0.098
afi-FSP1-2 0.777+0.22 0.266
afi-FSP1-3 0.520+0.11 0.184
afi-FSP1-4 0.284+0.07 0.198
afi-FSP1-5 1.00+0.32 n.d.
afi-FSP1-6 3.9440.71 n.d.

Table 1. Competitive K; and Binding K ; Values of the Most Potent FSP1 Inhibitors. K; values were determined by monitoring NADH oxidation at 340 nm (pH 7.2)
using variable NADH concentrations (5-200 p:M), 100 M coenzyme Qy, and 0.1-0.2 uM FSP1 (Supplementary Fig 16). K4 values were derived from independent binding
experiments based on surface plasmon resonance (SPR, Supplementary Fig. 18). The experiments were performed using the racemic mixture of compound afi-FSP1-5 and
the diastereomeric mixture of compound afi-FSP1-6. Inhibitors’ concentrations ranged from micromolar to low nanomolar. For comparison, Supplementary Table 9 lists ICs
values obtained using the indirect resazurin assay, commonly used in previous literature (2, 44, 45).

optimization of the hit. Structural similarity analyses confirmed that several hits shared key scaffolds with known PARP1 in-
hibitors, while others represented new chemical motifs, demonstrating AdaptiveFlow’s capacity to identify both validated and
novel chemotypes. Details can be found in the Supplementary Information. Overall, this validation exemplifies AdaptiveFlow’s
ability to efficiently and accurately discover drug-like molecules with clinically relevant potency, streamlining early-stage drug
discovery. See Supplementary Information; Supplementary Fig. 26 , 27, 28, 29, 31, 30; Supplementary Table 10.

Discussion

The accessible chemical space for drug discovery is expanding at an unprecedented pace, with the number of purchasable,
on-demand molecules growing from approximately 2 billion in 2020 to trillions of molecules. Yet, even this remarkable growth
represents only a minuscule fraction of the estimated 10°C drug-like molecules that populate theoretical chemical space (5).
Identifying high-quality hits within this vast and ever-expanding landscape remains a central challenge in early-stage drug
discovery. To address this, we curated the largest ready-to-dock library to date, the Enamine REAL Space—comprising 69
billion commercially accessible small molecules, fully preprocessed and made available in multiple formats for structure-based
virtual screening.

While ultra-large libraries increase the likelihood of identifying potent binders and enhance true-hit rates (7, 9—
11, 55, 56), exhaustively screening billions of compound impose substantial computational costs, even with today’s cloud-based
computing capabilities. AdaptiveFlow addresses this challenge through Adaptive Target-Guided Virtual Screening (ATG-VS),
a highly efficient prescreening strategy that narrows docking efforts to target-specific, chemically diverse subspaces enriched
for high-affinity candidates. When applied to the 69-billion-compound REAL Space, ATG-VS reduces screening costs by up to
1,000-fold compared to exhaustive searches, while preserving strong enrichment of top hits. Additionally, AdaptiveFlow incor-
porates deep learning—based docking and GPU acceleration, achieving a further 10- to 100-fold increase in throughput(57, 58).
To experimentally validate the practical utility of AdaptiveFlow, we focused on two biologically and clinically relevant tar-
gets. First, we targeted ferroptosis suppressor protein 1 (FSP1), a redox enzyme involved in lipid peroxide detoxification
and resistance to ferroptosis, and identified a series of nanomolar inhibitors. Structural characterization of FSP1 in complex
with cofactors and ligands revealed that both NAD(P)H and coenzyme Q can simultaneously bind in catalytically competent
orientations, providing mechanistic insights into its function. The identified hits were validated through crystallography and
biochemical assays. We also applied AdaptiveFlow to poly(ADP-ribose) polymerase 1 (PARP1), a clinically validated oncology
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target central to DNA damage repair. Our ultra-large screen yielded seven inhibitors, including iParp1, which displayed an ICs
comparable to that of the FDA-approved drug olaparib (59). These results underscore the power of AdaptiveFlow in rapidly
identifying potent hits across diverse protein classes and demonstrate the advantage of adaptive screening over brute-force enu-
meration. Notably, while our previous identification of nanomolar KEAP1-NRF2 inhibitors required an unbiased screen of 1.3
billion molecules, the ATG-guided screen for FSP1 achieved comparable success with just 22 million docking instances. Al-
though the effectiveness of chemical space focusing is target-dependent, our benchmarking and experimental studies highlight
the potential of ATG-VS to tailor the search space to specific binding pockets, significantly enhancing screening efficiency. As
chemical space continues to expand, focusing on target-specific subspaces will no longer be optional, but essential.

With the infrastructure now in place, adding molecules to the library and directing them to their respective tranches
is a computational process that scales linearly. As new tranches, beyond the 12 million currently populated are filled, only
representatives from these newly populated tranches need to be incorporated into the prescreen set. The open-source nature of
AdaptiveFlow enables seamless adaptation, extension, and development of the platform by both academic and industry users.
With the increasing availability of high-resolution structural data, enabled by techniques such as cryo-EM and de novo struc-
ture prediction, combined with site-specific functional insights from gene editing technologies, in silico screening is poised to
deliver chemical tools capable of modulating precise biomolecular functions. As modalities like molecular glues and targeted
protein degraders mature, the ability to identify small molecules that bind specific protein surfaces with functional consequences
is becoming increasingly valuable. AdaptiveFlow’s modular architecture supports over 1,500 docking protocols, encompassing
combinations of scoring functions, sampling algorithms, and ML-based pose predictors such as DiffDock and TANKBind. The
platform also natively supports SELFIES representations, physicochemical property calculations, and active learning—driven
workflows, making it fully compatible with generative models and reinforcement learning pipelines (60). As generative models
continue to advance, platforms like AdaptiveFlow will be essential for rapidly evaluating designed molecules against biolog-
ically relevant structural targets. In conclusion, AdaptiveFlow offers a unified, open-source, and massively scalable solution
for ultra-large virtual screening. It provides seamless integration of conventional and Al-driven docking methods, access to the
largest ready-to-dock chemical library, and adaptive strategies for efficient navigation of trillion-scale chemical space. With
demonstrated success across diverse therapeutic targets, AdaptiveFlow stands as a next-generation infrastructure poised to
accelerate the design and discovery of future therapeutics.
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Methods

AdaptiveFlow

AdaptiveFlow is an in silico platform consisting of three modules (AFLP, AFVS, and AFU) and ready-made ligand libraries
for virtual screens. In this section, general platform-wide features have been described that span multiple modules.

Python Code-base. AdaptiveFlow has been entirely rewritten in Python, a programming language that enables the imple-
mentation of more sophisticated and advanced code while reducing maintenance work. This rewrite has also made it easier for
scientists and programmers to join the open-source project and/or extend AdaptiveFlow independently, as Python is the most
widely used programming language in scientific communities. In contrast, the previous version of AdaptiveFlow was written
in Bash.

Parallelism. In addition to being rewritten in Python, a key goal for AdaptiveFlow was to improve parallelism in order to
decrease the overall time required for screening. AdaptiveFlow has increased the levels of parallelism compared to the previous
version. To help manage this increased parallelism, it maintains the use of collections, that group around 1,000 ligands together,
reducing the overhead of scheduling individual ligands for processing.

AdaptiveFlow also introduces the concept of subjobs, which are atomic units of computational work that include one or
more collections for processing. These subjobs are automatically generated by AdaptiveFlow to match the runtime requirements
specified in the job configuration. Subjobs are then combined into larger groups called workunits, which are designed to allow
schedulers to efficiently process the high levels of parallelism generated by AdaptiveFlow. These work units are sent as job
arrays to the end schedulers for processing. By optimizing for parallelism, the team was able to achieve 5.6 million concurrent
vCPUs running AdaptiveFlow.

Native Cloud Support. The AFLP and AFVS modules of AdaptiveFlow can run on computer clusters as well as on the cloud
by using a batch system. Currently, two batch systems are supported, Slurm (37) and AWS Batch (38). Slurm is able to run on
many cloud infrastructures, including Google Cloud, Microsoft Azure, as well as AWS. Within AWS, AdaptiveFlow uses AWS
Batch and S3 object storage. CloudFormation is used to set up AdaptiveFlow and all necessary components. The AWS-native
architecture allows AdaptiveFlow to utilize millions of virtual CPUs (vCPUs) in parallel, while the previous version was only
demonstrated to scale up to 160,000 vCPUs.

AdaptiveFlow is able to utilize various features from AWS in addition to supporting traditional clusters, making it easier
to use and increasing the scale of computations available to researchers. Some of these features include:

* Scheduling and Orchestration: AWS Batch is a cloud-native scheduler and orchestrator for containerized jobs. As part
of running a job, AdaptiveFlow can make use of AWS Batch to automatically scale cloud infrastructure up and down as
needed and run all of the individual subjobs. AdaptiveFlow can also automatically generate the Docker container used
for processing, eliminating the need to understand containerization or other infrastructure.

* Object Storage (Amazon S3): In addition to the usage of standard cluster filesystems, AdaptiveFlow also supports the
usage of object storage for both ingesting of input datasets and the output of the resulting data from the processing.

» Spot Capacity Awareness and Spot Resilience: Spot capacity is unused computing capacity that cloud providers make
available at significantly discounted prices compared to normal on-demand access. In exchange for a lower price, a
workload running on a spot instance may be reclaimed (stopped) with a short warning. AdaptiveFlow is designed to
take advantage of this capacity model by using shorter running subjobs (approximately 30 minutes) and automatically
re-running jobs that have prematurely exited through integration with AWS Batch. Additionally, through integration with
AWS Batch, AdaptiveFlow is able to select instances that are less likely to be interrupted through the "spot capacity
aware" scheduling method.

The architecture of AdaptiveFlow when deployed on AWS is shown in Supplementary Fig. 1. The architecture makes
use of multiple Compute Environments, each of which may contain thousands of instances (compute nodes). The instances
are automatically allocated and deallocated when the job starts and ends, respectively. Individual subjobs are allocated to the
instances by AWS Batch until all subjobs have been completed. These subjobs run as Docker containers on the instances.

ARM. AdaptiveFlow is also able to run on the compute ARM architecture when using ARM-compatible choices in the settings.
AFLP is fully ARM compatible, and AFVS is ARM compatible when docking programs are used that either make the source
code available or provide binaries for ARM. ARM-based computing infrastructure can be more cost-efficient than traditional
x86-based architectures.
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Enamine REAL Space

The REAL Space (enumerated, version 2022q1-2) was prepared using AFVS. JChem Suite was used for neutralizing the
molecules, stereoisomer enumeration, tautomer generation, protonation state prediction, 3D coordinate calculation, and
the calculation of multiple molecular properties, JChem Suite 18.20.0, ChemAxon (https://www.chemaxon.com).
Open Babel (version 2.3.2) was used as backup program for protonation state prediction, 3D coordinate calculation (61),
and target format conversion (all formats except SELFIES). The pip-installable SELFIES package (https://github.
com/aspuru-guzik—-group/selfies) was used for the conversion of molecules between SMILES and SELFIES. An
overview of the processing steps and preparation methods used is shown in Supplementary Table 2.

Multiple Formats. AdaptiveFlow provides the REAL Space library in ready-to-dock 3D formats including PDB, PDBQT,
MOL2, and SDF. These formats are compatible with a wide range of docking programs for small molecules. The total size
of the ready-to-dock library is approximately 50 terabytes in compressed form for each of these formats, totaling around 200
terabytes in compressed form (uncompressed, the library is around 2 petabytes). In addition to these ready-to-dock formats,
the REAL Space library is also provided in the SELFIES (33), SMILES (62), and Parquet formats. These formats are useful
for postprocessing the results of virtual screening (e.g., for easy representation of each molecule), and they can also be used
as standalone libraries for other purposes such as in the AI/ML community, where SMILES and SELFIES are the standard
molecular input file formats. The Parquet format of the REAL Space only stores the properties of the molecules, which can be
useful for fast library-wide queries.

AdaptiveFlow for Ligand Preparation (AFLP)

AFLP is the module of AdaptiveFlow dedicated to the preparation of ligand libraries into a ready-to-dock format and can handle
libraries of any size, including ultra-large libraries. AFLP requires a batch system and supports Slurm as well as AWS Batch
as batch systems. AFLP is configured via a configuration file (an example configuration file is shown in Supplementary Listing
I). Details on the workflow are available in Supplementary Information Section D. The new version of AFLP has the following
features.

Preparation into Ready-To-Dock Format. The primary task of AFLP is to prepare ligands into a ready-to-dock format.
To accomplish this, AFLP desalts the original ligands (in case they are salts), neutralizes them, generates stereoisomers and
tautomers, predicts the protonation states, computes the minimum-potential energy conformation of the ligand (3D coordinates),
optionally validates the generated 3D conformers, and converts them into the desired target formats. In total over 100 output
formats are supported. A detailed overview of the processing steps can be seen in Supplementary Fig. 7. The support input
formats are SMILES, SELFIES, as well as amino acid sequences. AFLP uses external tools such as ChemAxon’s JChem, Open
Babel, and RDKit (63), to carry out the preparation steps. For many of the preparation steps, the user can choose which external
tool should be used. Details on which tools are available for each processing step can be found in Supplementary Table 3.

Molecular Properties Calculation. AFLP enables researchers to calculate a variety of physicochemical properties and molec-
ular descriptors for the molecules in the input ligand library, in addition to its primary task of preparing them for molecular
docking. By calculating properties such as QED (Quantitative Estimate of Druglikeness), logP, molecular weight, and others (a
full list of supported properties can be found in Supplementary Table 2), researchers can more effectively select and prioritize
ligands, which can help reduce costs and the time required for screens using AFVS. AFLP uses mostly external tools to calculate
the molecular properties, such as ChemAxon’s JChem (https://chemaxon.com/calculators—and-predictors,
Open Babel (61), and RDKit (for details see Supplementary Table 3). By combining the results of AFLP with those of AFVS,
researchers can gain valuable insights into the structural and chemical characteristics of their ligands relative to specific target
proteins, which can help them design and optimize new molecules with improved affinity and specificity.

Automatic Tranche Assignments. In AdaptiveFlow, ligand libraries are organized into tranches. Each tranche corresponds
to a property of the ligands and is divided into multiple intervals or categories. For example, the molecular weight of the ligands
can be used as a tranche type, and can then be partitioned into several categories or intervals such as 0-200, 200-300, 300-400,
400-500, and 500-cc daltons. Multiple tranches allow for the partitioning of a ligand library into a multidimensional grid or
table, with one dimension corresponding to each tranche type (ligand property).

While the previous version of AdaptiveFlow required that the input ligand collection was already organized and struc-
tured in the tranche format, AdaptiveFlow can automatically reorganize the input ligand library into a new tranche output format
based on the computation of specific molecular properties of the ligands (see the corresponding paragraph above). This feature
is useful because most ligand libraries (e.g., from chemical compound vendors) are initially in the SMILES format and not in
the tranche format. AFLP can then be used to prepare the entire library in the multidimensional grid/tranche format for AFVS.

Support of SELFIES. SELF-referencing Embedded Strings (SELFIES) (33, 34) has become one of the most popular line
notation formats for small molecules within machine-learning communities. The primary reason is that SELFIES are fully
robust, meaning that every SELFIES string corresponds to a valid molecule, which is not the case for SMILES. Thus generative
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ML models cannot create invalid molecules when using SELFIES. AFLP now supports SELFIES as an input format for the
molecules in addition to SMILES. Additionally, the entire REAL Space is free to be downloaded in the SELFIES format,
enabling the creation of powerful datasets.

Stereoisomer Enumeration. One of the main tasks of AFLP is to prepare ligand libraries from unprepared formats (e.g.,
SMILES) into ready-to-dock formats. The new version of AFLP enables the enumeration of stereoisomers for the ligands,
which was not possible in the previous version. Accurate stereochemistry is essential for virtual screenings using structure-
based molecular docking, but many ligand libraries in unprepared formats (e.g., from chemical compound vendors) do not
contain stereochemical information. The ability to enumerate stereoisomers allows AFLP to include this information in the
prepared ligand library, ensuring that the virtual screening results are accurate.

Extended Open Source Support. The previous version of AFLP required external tools (from ChemAxon) that are not open
source for some of the steps when preparing ligands in a ready-to-dock format. The new version provides the option to choose
open-source alternatives for each of the steps to prepare molecules into a ready-to-dock format. In particular, Open Babel and
RDK:it are supported by AdaptiveFlow as open-source alternatives.

Enhanced Speed. AFLP has been improved in terms of speed compared to the original version. Firstly, this has been achieved
by AFLP using its own Java code to call the necessary functions of ChemAxon’s JChem package via Nailgun, which reduces
the number of calls to Nailgun significantly. Additionally, timeout parameters that can be adjusted by users have been added
to the control file, allowing AFLP to skip ligands that require unusually long processing times during preparation. These
improvements make AFLP more efficient, robust and able to handle larger and more chemically complex ligand libraries.

Enhanced Quality Checks. AFLP checks the validity of each ligand that it prepares in the ready-to-dock format by calculating
the potential energy of the ligand in 3D format using Open Babel. This allows AFLP to automatically remove ligands that have
an excessively high potential energy, which can be an indication that the compound was damaged or corrupted during the
preparation process. Additionally, AFLP supports optional plausibility checks on generated 3D conformers using PoseBusters
(64). This helps to ensure the integrity and accuracy of the prepared ligand library.

Application. AFLP was used to prepare the REAL Space (version 2022q1-2). It was run on AWS using over 5.6 million Intel
vCPUs in parallel. Spot instances were used, and the used capacity was sustained without significant preemption. In total less
than 0.1 percent of the used CPU hours were interrupted due to preemption. The scaling behavior of AFLP was found to be
perfectly linear (as shown in Supplementary Fig. 2). This demonstrates the efficiency and effectiveness of AFLP in preparing
large ligand libraries in a ready-to-dock format.

AdaptiveFlow for Virtual Screening (AFVS)

AFVS is the module of AdaptiveFlow dedicated to ultra-large virtual screens but can also screen libraries of smaller sizes. It
requires a batch system and supports Slurm as well as AWS Batch. AFVS is configured via a configuration file (an example
configuration file is shown in Supplementary Listing J). AFVS and AFU share many virtual screening features, which are
described in a later section. AFVS and AFLP share the same parallelization mechanisms when using Slurm or AWS Batch, and
therefore the scaling behavior of AFVS is expected to be the same as for AFLP, which was shown to be perfectly linear up to
5.6 million CPUs (see also Supplementary Fig. 2).

Parquet Output Format. AFVS has the ability to store output data in the Apache Parquet format, an open-source column-
oriented data storage format. When using this format, AFVS can take advantage of any database and query system that can
read this format, including Amazon Athena, a serverless service that allows users to efficiently query output score files stored in
Amazon S3 (object storage) on AWS. Additionally, AFVS has a feature for automatically postprocessing ATG Prescreens using
Amazon Athena, enabling researchers to efficiently prepare the input data for the ATG primary screens. Tools are provided
with AFVS to facilitate common queries, but researchers can also create their own queries using the open-source format of the
dataset.

ATG-VSs and Benchmarks. Following completion of the ATG Prescreen, tranches can be selected for the ATG Primary
Screen using two main strategies. In the first, individual tranches from the 18-dimensional REAL Space matrix can be man-
ually selected, offering fine-grained control over specific chemical subspaces. In the second, selection can be restricted to a
hyperrectangular region of the grid. This is achieved by identifying the top-performing intervals (i.e., bins) within each of the
18 molecular property dimensions and computing their Cartesian product to form a structured, intersecting subset of tranches.
This hyperrectangle approach enables chemically diverse yet targeted selection based on multiple favorable properties. In
both selection modes, users define the total number of molecules to include in the ATG Primary Screen, and AdaptiveFlow
automatically prioritizes the tranches containing the best-performing representative ligands.

To evaluate the effectiveness of ATG-VS, we performed two types of benchmark studies: (1) full-scale production
benchmarks using the entire Enamine REAL Space, and (2) smaller-scale "test set-based" benchmarks designed for rapid
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prototyping and detailed comparison across different ATG configurations. In the test set-based benchmarks, we randomly
selected synthetic reactions from the Enamine space to create a compound subset totaling approximately 5 million molecules.
For each of the 10 protein targets tested (listed in Supplementary Table 7), a different random subset was used to ensure unbiased
evaluation across targets and screening scenarios.

The test set-based benchmarks allowed us to systematically assess the benefits of ATG-VS in three configurations:
standard ULVS (random selection), ATG without active learning, and ATG augmented with the optional ML-based active
learning component. In contrast, the full-scale production benchmarks were conducted using the entire 69 billion—compound
library, but without the active learning step, to minimize computational overhead while validating the performance of ATG-
VS at scale. All docking in these benchmarks was performed using QuickVina 2 with default parameters, unless otherwise
specified. For the “100K ATG” benchmark configuration presented in Fig. 8, tranches for the primary screen were selected
using the hyperrectangle method, enabling a balanced, property-informed sampling of chemical space.

Machine Learning Classifier for Tranche Prioritization. To improve the efficiency of Adaptive Target-Guided Virtual
Screens (ATG-VSs), the AdaptiveFlow platform incorporates an optional machine learning (ML) classification step into the
primary screening stage. This step prioritizes compounds that are most likely to be high-affinity binders, thereby reducing
the number of molecules subjected to full docking. The ML classifier is applied after the ATG prescreen and is used to filter
undocked molecules within the selected tranches prior to docking.

The classifier is implemented as a fully connected feedforward neural network (FNN) designed to distinguish between
promising and less likely binders. Compounds are represented using Morgan fingerprints of length 1,024 and radius 2, gener-
ated via RDKit (v2023.03.1). The model is trained on docking scores obtained from all representative molecules used in the
prescreen. These scores are converted into binary classification labels using a percentile-based thresholding strategy: the top
25% of compounds with the most negative docking scores are labeled as positive examples (“high-confidence binders”), while
the remaining compounds are labeled as negatives. To mitigate class imbalance, the majority class is undersampled during
training.

The neural network architecture comprises four fully connected layers: an input layer of 1,024 nodes, followed by
hidden layers of 512, 256, and 128 nodes respectively, each using ReLU activation. The output layer consists of a single
sigmoid-activated node that outputs the predicted binding probability. Hyperparameters and layer configurations were selected
through limited tuning using cross-validation on the prescreen data. The model is trained with the Adam optimizer (learning
rate 0.001), binary cross-entropy loss, and early stopping based on validation loss with a patience of 5 epochs. A validation
split of 10% is used, with training capped at 50 epochs and a batch size of 256, although convergence typically occurs earlier.

Once trained, the model is applied to all undocked compounds within the selected tranches. Compounds with predicted
binding probabilities greater than 0.5 are retained for full docking, while the rest are filtered out. This filtering step typically
reduces the number of compounds subjected to docking by 30-70%, depending on the target, while maintaining or improving
hit enrichment.

The ML classification module is fully integrated into the AdaptiveFlow Unity (AFU) environment and can be activated
through a configuration parameter. The training and inference pipeline is implemented in PyTorch (v2.0.1) and supports GPU
acceleration for scalable and efficient deployment.

AdaptiveFlow Unity

AdaptiveFlow Unity is the all-in-one version of AdaptiveFlow, combining both ligand preparation and virtual screening into a
single streamlined workflow. It is the third module besides AFLP and AFVS. This new module adds many conveniences for
workflows where both ligand preparation and virtual screenings have to be carried out in tandem. Notably, AFU is designed
to be run as a package, supporting approximately 1500 docking methods that can be run independently of job schedulers (see
Supplementary Data Table 1). A conceptual overview of the workflow of AFU can be found in Supplementary Fig. 11, and a
detailed UML workflow diagram is shown in Supplementary Fig. 5. Specifically, as input, a user specifies the molecule to be
docked (as a SMILES, SELFIES, or amino-acid sequence), the protein file, the docking site, and the docking program to be run.
Based on the user’s choices, error checks in the form of missing docking-choice-specific files are performed, and calculations
are run. As a result of a successful calculation, the docking score and pose are returned. AFU can be run in standalone mode,
where it is run via the command line and specifies the options via a configuration file (an example configuration file is shown
in Supplementary Data Fig. K). This mode is for example useful for scientists in the drug discovery communities who want to
carry out molecular dockings in the most convenient and simple way, without requiring computational expertise, while having a
large number of docking methods available. In addition, AFU can be run in API mode to directly interface with other programs
and code, which can for instance be useful for the machine learning communities that develop new methods for drug discovery.

AdaptiveFlow Unity comes in two versions. The first is dedicated to single workstations or compute nodes without
multinode parallelization. VitualFlow Unity Parallelized (AFUparr) is the parallelized version of VitualFlow Unity. Designed
to operate seamlessly on SLURM systems, AFUparr allows users to easily parallelize the workflow on a larger number of
CPUs and GPUs. Execution within SLURM environments is highly optimized, with computations distributed in parallel across
multiple CPUs and nodes. This design ensures efficient linear scaling relative to the number of molecules provided.
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Joint Features of AFVS and AFU
The AFU and AFVS modules support the same docking methods and therefore share all docking-specific features.

Supported Docking Methods. AdaptiveFlow supports approximately 40 docking methods, listed in Tables 4, 5, 6. These
include software that performs both pose prediction and scoring (Table 4), solely pose prediction (Table 6) and only scoring
(Table 5). Notably, within AdaptiveFlow, the scoring functions can be combined with pose prediction methods, giving rise to
approximately 1500 methods (listed in Table 1). We note that many of the newly supported docking software possess special
features such as protein-protein/RNA docking, explicit parameterization of solvents/metals, and covalent docking. In Tables
4,5,6, we describe these as "Special features". Additionally, a key consideration for ULVS is the timing required for carrying
out a single calculation. As such, in Fig. 12, we provide timing estimates for running a single calculation, averaging over 25
independent runs for all docking programs.

Special Types of Ligands. In addition to traditional small molecule ligands, AdaptiveFlow supports the use of peptides,
protein ligands, and covalently-bonded ligands in AFVS. Peptides are of increasing interest as therapeutics, and several docking
programs already support their use. For protein-protein/RNA docking, specialized programs require two protein/RNA targets
in order to generate co-complexes. Covalent docking involves reduced flexibility for certain parts of the input molecule during
pose sampling, and a few specialized docking programs support this ligand type (see Supplementary Table 4).

Enhanced Performance. The QuickVina 2 molecular docking tool is used to accelerate AutoDock Vina with no loss of
accuracy (65). QuickVina 2 execution was profiled in an effort to improve performance even further. To establish baseline
performance, the open-source GitHub repository was cloned and the qvina_1buffer branch was compiled using the GNU C++
compiler (version 9.4), the Boost C++ libraries (version 1.79, available from https://www.boost .org), and the default
parameters (see https://gvina.github.io/compilingQvina2.html for the build instructions). A single docking
experiment of Avanafil binding to unsolvated SFNQ was run through the Intel VTune Profiler to look for performance bottle-
necks. Unfortunately, the execution profile was flat. The most time-consuming function accounted for less than 20% of the
total run-time. Tuning the source code would give rapidly diminishing returns at the risk of affecting accuracy, so compiler-
level optimization was the best option to improve performance. QuickVina 2 was rebuilt using the Intel oneAPI DPC++/C++
Compiler (version 2022.2.0.20220730) and aggressive optimization: automatic vectorization, interprocedural optimization, and
relaxed floating-point constraints. Profile-guided optimization was also tried, but it did not improve performance. The final
executable was 18% faster than the default builds with no loss of accuracy. The new binaries are provided on the QuickVina
and AF homepages.

GPU Support. Several of the docking programs support graphics processing units (GPUs), which can strongly reduce compu-
tation time and cost. For pose prediction, these include softwares: AutoDock-GPU (57), QVina2-GPU (58), QVina2-W-GPU
(58), Vina-GPU (58). Additionally, deep-learning methods such as TANKBind (12), DiffDock (66), EquiBind (67) use GPU-
compatible neural networks for direct pose prediction of several ligands in parallel. Additionally, Gnina (68), NNScore 2.0
(69), DeepAffinity (70) and DeepBindRG (71) use GPU-compatible deep learning models for scoring protein-ligand com-
plexes. AdaptiveFlow supports GPU compatibility of all these software. The relative speedups of these methods for single
calculations can be compared within Fig. 12.

Molecular Dynamics-Based Methods. Molecular docking is a computationally fast way to predict binding poses and
binding-free energies, but it has sometimes trouble distinguishing between compounds with similar binding affinities. Molec-
ular docking algorithms often prioritize speed over accuracy by using fast pose generation and approximate scoring functions
to save time, especially when screening extensive collections of compounds against a protein target. This trade-off reduces the
effectiveness of the algorithms. More precise algorithms based on molecular dynamics simulations are sometimes used down-
stream of docking in drug discovery processes to improve the number of accurate predictions. The combination of molecular
docking and molecular dynamics can yield results near experimentally determined crystal structures (72, 73). AFVS includes
methods for selecting and scoring poses based on molecular dynamics simulations, such as MM/PBSA and MM/GBSA, for
evaluating docking poses and predicting binding affinities (74). MM/PBSA and MM/GBSA are popular for binding free energy
prediction because they are more accurate than molecular docking and less computationally intensive than alchemical methods.
AdaptiveFlow also supports Binding Pose Metadynamics (BPMD), which uses a stability score based on the resistance of the
ligand to perturbation away from the initial pose to rerank predicted binding poses from docking (72, 75). The OpenBPMD
algorithm can accurately predict binding poses within 2 A RMSD of the crystallographic complex structure for many systems
and efficiently rerank docked poses. The MM/PBSA, MM/GBSA, and BPMD methods can be used within AdaptiveFlow as
rescoring and pose refinement methods.

Enhanced Quality Checks. The docking pose of each ligand screened by AFU is checked for corruption by evaluating
the coordinates and computing the potential energy of the docked compound with Open Babel. Any corrupted compounds
are automatically removed. AFVS supports optional plausibility checks on generated docking poses of Vina-based docking
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methods using PoseBusters, an open-source tool, which checks for chemical as well as intramolecular ligand and intermolecular
validity of ligand-protein complexes (64).

Experimental Validation Studies Involving FSP1
Materials and methods used in the experimental validation of the molecules for FSP1 are described below.

Chemicals. All chemicals and proteins employed for binding and enzymatic assays were purchased from Sigma Aldrich,
except for 2,3,5-trimethylcyclohexa-2,5-diene-1,4-dione (a-tocopherolquinone hydrophilic head) purchased from Synthonix
and menaquinone (Vitamin K2) from Supelco Analytical. FSP1 inhibitor candidates were purchased from Enamine; iFSP1
from Medchemexpress; viFSP1 and FSEN1 from Cayman Chemical.

Phylogenetic Inference and Ancestral Sequence Reconstruction. Phylogenetic analysis and ancestral sequence recon-
struction were carried out following the methods described in (76). Briefly, human FSP1 sequence (UniprotID: QIBRQ8) was
employed as query for homology searches with BLASTP. Datasets were constructed vetting all chordate classes according to
TimeTree (77) by mining at least two species with fully sequenced genomes. Multiple sequence alignments were constructed in
MAFFT v7 (78) and manually trimmed for single sequence insertions/terminal extensions. Neighbour-joining guide trees were
constructed in MEGA v10.2 to assess the quality of datasets under construction. Once the working multiple-sequence align-
ments were obtained, best-fit substitution models and gamma distribution values (o) were calculated using ProtTest (data for
each protein phylogeny are shown in Supplementary Fig. 11B). Maximum likelihood phylogenies were inferred using RaxML
v8.2.10 (HPC-PTHREADS module (79)), using rapid bootstrap analysis and searching for the best-scoring ML tree, with 500
bootstraps replicates and the given best-fit model under gamma distribution. When required, a species tree was used to constrain
the phylogeny, this was constructed using TimeTree (timetree.org). Once the phylogenies were inferred, the bootstrap values
were subjected to transfer bootstrap expectation values using BOOSTER online (80). Figtree v1.4.2 was employed for analysing
and visualizing the trees. Ancestral sequence reconstruction was performed employing PAML v4.9a (CODEML module) as
marginal reconstruction, using the phylogenies obtained previously, empirical amino acid substitution model (model=2) and
JTT substitution matrix, four gamma categories and re-estimation of gamma shape parameter (81, 82). The distribution of the
posterior probabilities for each of the ancestral states was analysed at the node corresponding to the tetrapod ancestor in the
phylogeny. Sites that displayed posterior probabilities <0.8 were considered ambiguously reconstructed when alternative states
displayed posterior probabilities >0.2 (83). The length of the targeted nodes was treated by Fitch’s parsimony. To visualize the
degree of sequence conservation across tetrapod organisms, multiple sequence alignments were generated using ESPript 3 (84).

Construct design and expression of FSP1. Plasmid (Genscript) coding for His6-SUMO-ancestral FSP1, His6-SUMO-
ancestral L323A FSP1 and His6-SUMO-ancestral F15A FSP1 were transformed by heat shock into E. coli BL21(DE3) cells (25
s, 42°C). Cells from a single colony were pre-inoculated into 100 mL LB broth containing 100 L mL™! kanamycin and grown
overnight at 37°C. Pre-cultures were inoculated 100x into 1 L Terrific Broth and grown at 37 °C, 200 r.p.m. for ca. 3 h until
the optical density (OD600) reached 0.5-0.7. Protein expression was then induced with isopropyl 3-D-1-thiogalactopyranoside
(0.1 mM final), and incubated for 16 h at 30 °C and 200 r.p.m. Cells were harvested by centrifugation (5,000 g, 15 min, 10 °C),
flash frozen in liquid nitrogen, and stored at -20 °C.

Protein purification. Cells (ca. 29 g) were re-suspended 1:5 (grams:milliters) in Buffer A (50 mM HEPES pH 7.2, 250 mM
NaCl, 10% (v/v) glycerol) supplemented with 1 mM FAD and protease inhibitors (1 mM phenylmethylsulphonyl fluoride, 10
UM leupeptin, 10 uM pepstatin) and 5 pg DNAse I /g cells. Cell resuspensions were stirred at 4 °C for 25 min before cell
lysis, which was performed with a high-pressure homogeniser (Emulsiflex c-3, ATA Scientific) in three cycles. Cell lysates
were centrifuged (4 °C, 56,000 g, 1 h) using an Avanti J-26 XP centrifuge equipped with a JA-25.15 rotor (Beckman Coulter).
The resulting supernatant was filtered through a 0.45 um filter and loaded on a gravity column containing Nickel Sepharose
HP IMAC resin (Cytiva) pre-equilibrated with Buffer A. The crude extract was passed onto the column twice. The resin
was then washed with at least five column volumes of Buffer A. The wash up of the resin was performed adding 5 column
volumes of Buffer A supplemented with increasing concentrations of imidazole, 5 to 30 mM. The protein was then eluted with
at least ten column volumes of Buffer B (Buffer A supplemented with 300 mM imidazole). The purified protein sample was
concentrated using an Amicon Ultra (Merck) with a 30 kDa cut-off up to 2.5 mL. The imidazole was then removed with a
PD-10 batch desalting column (Cytiva) pre-equilibrated with Buffer A. To cleave the His6-SUMO tag, the desalted sample was
concentrated down to 800 pL and then added of a His6-tagged SUMO protease (1.2 mg mL—1) to a volume ratio of 100:1 and
incubated overnight at 4 °C on a rotating wheel. The sample was then loaded onto an Akta Pure system (Cytiva) equipped
with a Ni HiTrap-HP 5 mL column (Cytiva) pre-equilibrated in Buffer A and proteins were eluted out using an imidazole
concentration gradient of 2% Buffer B corresponding to 6 mM imidazole. The elution of the tag-less protein was monitored
with a multiwavelength detector following the absorbance at 280 nm and 450 nm. The sample was loaded onto an Akta Pure
system (Cytiva) equipped with a Superdex 200 10/300 GL (Cytiva) pre-equilibrated in 100 mM NaCl, 50 mM HEPES pH
7.2. The purified protein was then concentrated down to about 1 mM, measuring the concentration using a NanoDrop ND-100
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UV/Vis spectrophotometer (Thermo Scientific) based on the on the absorption at 280 nm and at 458 nm (€280 nm predicted by
ProtParam tool - Expasy). Purity of the sample was evaluated by SDS-PAGE. The purified protein was finally flash frozen in
liquid nitrogen and stored at -80 °C.

Enzyme kinetics. The activity of FSP1 and mutants was monitored using 0.2-1 uM protein (estimated by 458 nm absorbance)
in a 150 pL final volume of Buffer A. Reactions were followed in 10.00 mm quartz cuvettes (Hellma) and a Cary Eclipse
Fluorescence Spectrophotometer (Agilent) or a Cary 100 UV-vis spectrophotometer (Varian) equipped with a thermo-stated
cell holder (T =25 °C). Reactions were started by adding NADH and rates were determined by following NADH consumption,
caused by the oxidation to NAD™" (excitation 340 nm, emission 460 nm or monitoring the absorbance at 340 nm). A calibration
line was built by measuring the fluorescence at known NADH concentrations. GraphPad Prism 9 was used to perform both
linear and non-linear regression.

Superoxide assay. Superoxide radicals generated by oxidation of NADH were detected by the reduction of nitroblue tetra-
zolium to nitroblue diformazane using Tris-HCI buffer (16 mM, pH 8.0) 50 uM nitroblue tetrazolium, and 0.2 uM final FSP1
(final volume 100 pL). The reaction was started by adding various concentrations of NADH. The absorbance was measured at
560 nm using a ClarioStar plate reader.

Enzyme inhibition. K; were measured following NADH oxidation by monitoring the absorbance 340 nm with Cary 100 UV-
vis spectrophotometer (Varian). 0.2-1 uM purified FSP1 was added to a final volume of 150 pL of 50 mM HEPES buffer pH
7.2. Inhibitors were tested with concentrations varying from micromolar to low nanomolar.

Resazurin assay. The activity of FSP1 and mutants was monitored using 0.2-0.1 uM (final, absorbance at 458 nm) protein
in a 100 pL. 50 mM HEPES buffer pH 7.2 and 50 uM resazurin. The activity was monitored by the formation of resorufin
(excitation. 572 nm, emission 583 nm) using varying concentrations of iFSP1 and viFSP1 (2, 44, 45), afi-FSP1-1, afi-FSP1-2,
afi-FSP1-3, afi-FSP1-4, afi-FSP1-5 and afi-FSP1-6. The reaction was started by adding 200-100 uM NADH. The fluorescence
was read using a ClarioStar plate reader, with a gain of 800.

Nano Differential Scanning Fluorimetry. Thermo-stability analyses were carried out using a TychoTMNT.6 system (Nan-
oTemper GmbH). The protein was diluted to 1 mg mL! in Buffer A and pre-incubated with ligands at room temperature for
15 minutes before experiments. Melting curves were obtained following the intrinsic fluorescence of tryptophan and tyrosine
residues (emission 350 nm and 330 nm, respectively) applying a temperature gradient from 35 °C to 95 °C for a time range of
three minutes. Data were analysed as F350/F330 ratio and derived to determine the inflection temperature (Ty,). All measure-
ments were performed in duplicate. The following condition were tested: FSP1 in presence of 1 mM FAD, NAD* or 1 mM
CoQ; or 1 mM a-tocopherolquinone hydrophilic head or 1 mM vitamin K3 or 10 uM inhibitors or 5% DMSO as a control.

ThermoFAD. Experiments were performed with 20 uM FSP1 after 10 min incubation with inhibitors (10 uM) or DMSO in
HEPES buffer (50 mM, pH 7.2) (85). The temperature gradient was set to 30-90 °C with fluorescence detection at a constant
rate 0.1 °C/s at 450 + 30 nm excitation and 535 + 30 nm emission (BioRad MiniOpticon Real-Time PCR System). Data were
normalized and fitted with sigmoidal non-linear regression using GraphPad Prism 9.

Cellular thermal shift assay. 30x10%/mL HEK293 cells were incubated with DMSO or 10 uM inhibitor for 1 h at 37 °C in 2
mL of culture medium. After centrifugation at 1,200 g for 5 min at room temperature, cell pellets were washed twice in PBS,
re-suspended at 30x10%/mL, and aliquoted in PCR-strips at 50 uL per tube. Samples were then heated (ranging from 38.7 °C
to 86.2 °C) for 3 min in a T100 Thermal Cycler (Bio-Rad). Cells were lysed by adding 1% (v/v) triton X-100, and proteases
inhibitors (see Protein purification) to each tube for 60 min at 4 °C. After centrifugation at 20,000 g for 20 min at 4 °C, each
supernatant was analysed by loading 15 pL of each sample onto a SDS gel (Bio-Rad, Mini-PROTEAN TGX). Gel bands were
transferred to a Trans-Blot Turbo Mini 0.2 pm PVDF (polyvinylidene difluoride) membrane (Bio-Rad) using a Trans-Blot Turbo
Transfer System (Bio-Rad). Western blot analysis was performed by immunoblotting the PVDF membrane with Anti-AIFM?2
Antibody, clone 1115 ZooMAb® Rabbit Monoclonal (Sigma-Aldrich), following the addition of goat horseradish peroxidase-
conjugated antirabbit secondary antibody (Millipore). Chemiluminescent detection was performed by using the ECL detection
kit (Bio-Rad, ChemiDoc MP image). Melting curves were generated by plotting the band intensities of each heated sample
against the respective temperatures (°C). Data were first normalized by setting the highest and lowest intensity value in each set
as 100 and 0%, respectively. Non-linear regression was performed by applying a Boltzmann sigmoidal dose-response model
within GraphPad Prism 9. The T,z values obtained were the results of two independent replicates and the mean * standard
deviation was calculated.

Crystallisation and structural determination of FSP1. Crystallisation was performed using 13 g/mL in 50 mM HEPES
pH 7.2, 1 mM FAD, 1 mM NAD™ with or without 1 mM coenzyme Q;. Small crystals or crystalline precipitate appeared in a
few days under several conditions of the Mopheus screening kit (Molecular Dimensions) using the vapour diffusion sitting drop
methods. The best looking crystals grew in HEPES/MOPS 0.1 M pH 7.5, 12.5% PEG 1000, 12.5% PEG 3350, 12.5% MPD,
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0.06 M MgCl,, 0.06 M CaCl, at 20 °C with a ratio of 1:1 in a sitting drop. After harversting, they were smashed to generate
small crystals, and used for microseeding. Specifically, the drops were composed of 0.15 pL protein, 0.05 pL seeds, and 0.2 pL.
reservoir from the following commercial screens.

e FSPI-FAD structure; 0.06 M MgCl,, 0.06 M CaCl,, 0.1 M HEPES/MOPS (acid) pH 7.5; 20% v/v PEG500*MME, 10%
PEG20000.

* FSP1-FAD-NAD" structure; 0.06 M MgCl,, 0.06 CaCl,, 0.1 M HEPES/MOPS (acid) pH 7.5, 12.5% PEG1000, 12.5%
PEG3350, 12.5% MPD.

* FSP1-FAD-NAD*-coenzyme Q; structure; 0.06 M MgCl,, 0.06 CaCl,, 0.1 M imidazole/MES monohydrate (acid) pH
6.5, 20.0% PEG500* MME, 10% PEG20000. Crystals were then soaked with 20 mM coenzyme Q; added to the crys-
tallisation drop.

e FSP1-FAD-NAD*-afi-FSP1-1; 0.06 M MgCl,, CaCl,, 0.1M imidazole/MES monohydrate (acid) pH 6.5, 12.5% MPD,
12.5% PEG1000, 12.5% PEG3350. Crystals were then soaked with 1 mM afi-FSP1-1 added to the crystallisation drop.

* FSP1-FAD-NAD™-afi-FSP1-3; 0.12 M diethylene glycol, 0.12 M triethylene glycol, 0.12 tetraethylene glycol, 0.12 pen-
tacthylene glycol, 0.1 M tris (base)/bicine pH 8.5, 12.5% MPD, 12.5% PEG1000, 12.5% PEG3350. Crystals were then
soaked with 10 mM afi-FSP1-3 added to the crystallisation drop.

* FSP1-FAD-NAD*-afi-FSP1-4; 0.06 M MgCl,, 0.06 M CaCl,, 0.1 M imidazole/MES monohydrate (acid) pH 6.5, 12.5%
MPD, 12.5% PEG1000, 12.5% PEG3350. Crystals were then soaked with 10 mM afi-FSP1-4 added to the crystallisation
drop.

* FSP1(L323A)-FAD-NAD™"-afi-FSP1-2; 0.06 M MgCl,, 0.06 M CaCl,, 0.1 M HEPES/MOPS (acid) pH 7.5, 20% ethylene
glycol, 20% PEG8000. Crystals were then soaked with 1 mM afi-FSP1-2 added to the crystallisation drop.

Electron densities from co-crystallisations with previously reported inhibitors (Supp. Table 5) did not show any ligand
binding. Data were collected at the European Synchrotron Radiation Facility (Grenoble, France) and processed with the XDS
and CCP4 packages (86, 87). The phase problem was solved by molecular replacement using an Alpha Fold model and CCP4
programs. Model building and refinement were conducted using COOT and Refmac5 (88). Figures were then generated using
ChimeraX (89), PyYMOL (DeLano Scientific; www.pymol.org).

SPR Binding Assays. SPR binding assays were carried out using the Biacore 8K SPR system (Cytiva) with the running
buffer (50 mM HEPES, pH 7.2, 150 mM NaCl, 0.05% Tween-20, and 2% DMSO) under controlled conditions at 25 °C.
The His-Sumo-FSP1 protein was immobilized on a preconditioned and activated Series S NTA sensor chip (Cytiva). Pre-
conditioning involved treatment with 350 mM EDTA, followed by activation with 0.5 mM NiCl,. To enhance stability and
minimize signal drift, the chip was further activated using EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) and NHS
(N-hydroxysuccinimide) before coupling the protein to the surface. The protein was immobilized to a response level of 7500
RU.

Compounds were applied in a three-fold serial dilution series (6, 18.9, 60, 189, 600, 1897, 6000, 18973, and 60000 nM)
using a single-cycle kinetics (SCK) setup. Compound plating and DMSO normalization were performed using the Tecan D-
300e digital dispenser (Tecan Life Sciences). Binding was monitored for 60 s during the association phase and 120 s during the
dissociation phase. Reference channel signals and buffer blanks were used to correct the raw binding signals (RU).

Binding data were collected from three independent experiments; however, only a single representative dataset is shown
for each compound in the manuscript. Data processing and binding analysis were performed using Biacore Insight software
(Cytiva). Steady-state binding levels ([2.,) were plotted against compound concentrations and fitted to a one-site binding model
using the Levenberg—Marquardt algorithm, enabling accurate determination of binding affinities for each compound.

Virtual Screens. The AdaptiveFlow open-source drug-discovery platform was used to carry out the virtual screen. The size
of the docking box was set to 14 A x 18 A x 16 A. The FSP1-FAD-NAD* complex structure was held rigid during the virtual
screens (ATG prescreen and primary screen). QuickVina 2 (90) using a hybrid empirical and knowledge-based scoring function
was used as the docking program. The exhaustiveness value was set to 1. The number of replicas was set to 1. The virtual
screen was run in Amazon Web Services (AWS). Postprocessing of the results including clustering with the similarity limit set
to 0.8 was done with DataWarrior (v6.0.0) (91).

Discovery of Inhibitor Analogs. Analog Hunter and Scaffold Hopper modules in the infiniSee (92) module from BioSolvelT
were used to screen analogs of compound afi-FSP1-1. Top-ranking 5000 compounds from each module were exported to
SeeSAR (93) from BioSolvelT and docked with the FlexX algorithm in the general docking mode to the coenzyme Q binding
site of the FSP1/FAD/NAD/afi-FSP1-1 complex structure (PDB code: 9IFU) with compound afi-FSP1-1 removed. The docked
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poses were scored with the HYDE scoring function. Top-ranking 168 compounds with similar binding pose as compound afi-
FSP1-1 were tested with 100-ns-long molecular dynamics (MD) simulations with the PMEMD module (CUDA version) of the
AMBER 22 package and protein.ff19SB force field for protein (94). The Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA) binding free energies between protein and the ligands that remained in the binding pocket were calculated by
the MMPBSA .py script in AmberTools 23 (95). The top-ranking 20 analogs with the lowest MM/GBSA binding free energies
were ordered from Enamine for testing.

Data Availability

The ready-to-dock Enamine REAL Space can be explored online via an interactive web interface available on the AdaptiveFlow
homepage http://adaptive-flow.ai/. The data can be accessed directly via an AWS S3 bucket provided by AWS
Open Data (https://aws.amazon.com/opendata). During the review, the reviewers can access the data via the follow-
ing bucket: s3://vf-library-access—pu-9xyrtd6ot89gneyzyycp9ippn8ghkuse2b-s3alias. Additional
information is available on the AWS Open Data website of this dataset https://aws.amazon.com/marketplace/
pp/prodview—-m32p7engdxk7k?sr=0-1&ref_=beaglesapplicationId=AWSMPContessa, as well as on the
AdaptiveFlow homepage https://adaptive-flow.ai/real-space—2022gl2 (free registration required).

Code Availability

The source code of AdaptiveFlow is released under the GNU GPL v2.0, a free and open-source license. The code can be
accessed via GitHub. The AdaptiveFlow GitHub repos can be found at https://github.com/LigandUniverse,
which contains multiple repositories. The AFLP and AFVS modules of AdaptiveFlow can be found in AFLP (https:
//github.com/LigandUniverse/AFLP) and the AFVS (https://github.com/LigandUniverse/VFVS)
GitHub repositories, respectively. The modules AdaptiveFlow Unity and AdaptiveFlow Unity Parallelized can be found in
the GitHub repo named AFU (https://github.com/LigandUniverse/AFU) and AFUparr (https://github.
com/LigandUniverse/AFUparr), respectively.
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Extended Data Fig. 1. Compute Stack deployed by AdaptiveFlow in AWS. The login node is used by the user to control the workflow in AWS via the workload manager
AWS Batch. AWS Batch has multiple Job Queues to which jobs are submitted by AdaptiveFlow, and each job queue deploys multiple Compute Environments that can spin up
and use a large number of virtual machines (instances) of specific types. On each instance, one or more subjobs are run, and each subjobs deploys a docker container that
carries out the computations of AdaptiveFlow by executing AdaptiveFlow Runner (a core python component of AdaptiveFlow). Each subjob typically processes a few ligand

collections, where each ligand collection contains multiple ligands (e.g. 1000).
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Extended Data Fig. 2. Scaling behavior of AFLP of on AWS. The scaling behavior is perfectly linear even when using extremely large numbers of CPUs. Up to 5.6 million
vCPUs were used in parallel across multiple AWS regions. As can be seen in the plot, the scaling behavior is perfectly linear, implying there is no slowdown even when using
extremely large numbers of vCPUs.
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Molecular Property (X) Tranche ID A B (% D E F
MW 1 X =200 200<X <300 300<X<400 400<X <450 X > 450
3.8E+6 564.9E+6 19.86+9  [48ZEFONN  0.0E+0
logP 2 X=0 0<X=s2 2<X=s3 3<X=<4 4<X<5 X>5
12.5E+9 30.5E+9 14.2E+9 8.0E+9 2.8E+9 706.3E+6
HBA count 3 X=s2 2<X<4 4<X<s7 7<X=<10 X>10
270.9E+6 5.1E+9 31.0E+9 25.5E+9 6.8E+9
HBD count 4 X=0 0<X=<2 2<X<4 4<X<5 X>5
6.0E+9  [[445E+9 |  16.8E+9 1.2E+9 277.2E+6
Rotatable bond count 5 X=0 0<X=s2 2<X<4 4<X<s7 7<X<10 X>10
2.0E+6 966.3E+6 11.6E+9 35.2E+9 17.6E+9 3.3E+9
TPSA 6 X <40 40 < X <80 80<X<110 110<X<140 X > 140
377.6E+6 24.0E+9 28.9E+9 12.6E+9 2.9E+9
Molecular refractivity 7 X=40 40<X =80 80 < X =130 X>130
79.2E+3 540.6E+6 [JIGSRER  4.6E+9
logS 8 X<-6 6<Xs-5 5<Xs-4 “4<X<s-3 X>-3
4.9E+9 10.7E+9 17.1E+9 16.8E+9 19.2E+9
Aromatic proportion 9 X=0 0<X<025 0.25<X=<05 025<X<0.75 0.75<X=<1.0
6.8E+9 25.9E+9 31.9E+9 4.0E+9 49.7E+6
Formal charge 10 Xs-2 X=-1 X=0 X=1 X222
158.3E+6 31E+9  [SSSER  5.4E+9 140.9E+6
Positive charge count 11 X=0 X=1 X222
8.2E+9 341.7E+6
Negative charge count 12 X=0 X=1 Xz2
PEEEETSl 5.7E+9 484.1E+6
Fsp3 13 0=sX<0.2 0.2<X=<0.4 0.4<X=<0.6 0.6 <X=<0.8 0.8<X=1.0
647.0E+6 11.9E+9 30.8E+9 20.7E+9 4.7E+9
Chiral center count 14 X=0 X=1 Xz22
6.1E+9 18.7E+9 | 439E+9 |
Doublebond stereoisomer count 15 X=0 Xz21
9.1E+9
Halogen atom count 16 X=0 Xz21
23.0E+9
Sulfur atom count 17 X=0 X221
14.5E+9 Color Scale
Enamine compound class 18 X=S X=M 0 100M 50B
NGEOERONN  1sE+o I

Extended Data Fig. 3. Overview of 18-dimensional tranche table. Molecular properties associated with each tranche, the partitions that are used for each tranche
property, and the number of compounds per partition interval for each property (colored as a heat map).
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Extended Data Fig. 4. Overview of the distribution of the molecular properties of the Enamine REAL Space (version 2022q1-2). Each subplot shows the distribution
of the molecular property associated with each dimension of the 18-dimensional grid into which the REAL Space was partitioned.
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Extended Data Fig. 5. Webinterface (version 1) of the REAL Space. Shown is an interactive web interface that is made available on the AdaptiveFlow homepage
(https://adaptive-flow.ai/real-space-2022gl2-interface-2) that allows selecting subsets of the REAL Space partitioned into an 18-dimensional matrix.
Each dimension corresponds to a molecular property and has a slider that can be adjusted to select the desired property ranges. The number of selected molecules is
updated automatically in the web interface. Effectively, the sliders allow the selection of multidimensional rectangles within the 18-dimensional matrix.
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REAL Space (2022q12) - Interactive Tranche Table

View Edit Outline Delete Revisions

Vertical dimension

Molecular Weight (MW)

<200 300 400 450 Row sums:

0 ™ 120.8M 4.4B 8B 12.5B

2 2M 264.6M 9.3B 20.9B 30.5B

3 512.9K 103.6M 3.6B 10.5B 14.2B
Horizontal dimension
Partition Coefficient (SlogP) M

4 157.4K 53.6M 1.7 6.2B 8B

5 17.2K 18.4M 552.5M 238 2.8B

>5 253 am 149.2M 553.1M 706.3M

Column sums: 3.8M 564.9M 19.8B 48.4B

Compounds selected: 68.7B from 68.7B Tranches selected: 12.3M from 12.3M

Molecular Weight (MW): <200 to 450 Molecular Refractivity: <40 to >130 Fraction of sp3 Carbon Atoms, %: <20 to 100

® ® © ® © ®

<200 300 400 450 <40 80 130 >130 <20 40 60 80 100
Partition Coefficient (SlogP): 0 to >5 Solubility Coefficient: <-6 to >-3 Chiral Center Count: 0 to 22

® @ @ o

0 2 3 4 5 >5 <6 5 4 3 >3 0 1 22

Hydrogen Bond Acceptor Count: <2 to 211 Aromatic Proportion: 0 to 100 Double Bond Stereo Isomer Count: 0 to 21
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<2 4 7 10 211 0 25 50 75 100 0 B
Hydrogen Bond Donor Count: 0 to 26 Formal Charge: <-2 to 22 Halogen Count: 0 to 21

®  J @  J
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Rotatable Bond Count: 0 to 211 Positive Charge Count: 0 to 22 Sulfur Count: 0 to 21
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0 2 4 7 10 211 0 1 22 0 21
Topological Polar Surface Area: <40 to >140 Negative Charge Count: 0 to >2 Enamine Compound Class: m to s
® ® © ® © ®
<40 80 110 140 >140 0 1 22 m s

Extended Data Fig. 6. Webinterface (version 2) of the REAL Space. Shown is an interactive web interface that is made available on the AdaptiveFlow homepage
(https://adaptive-flow.ai/real-space-2022gl2-interactive-tranche-table) that allows selecting subsets of the REAL Space partitioned into an
18-dimensional matrix. Each dimension corresponds to a molecular property and has a slider that can be adjusted to select the desired property ranges. The number of
selected molecules is updated automatically in the web interface. Effectively, the sliders allow the selection of multidimensional rectangles within the 18-dimensional matrix.
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Original compound
Desalting
Desalted compound
v Neutralization

Neutralized compound

v Stereoisomer enumeration e

Stereoisomer 1 Stereoisomer 2 Stereoisomer ...

____________ v Tautomer enumeration

Tautomer 1 Tautomer 2 Tautomer ...

v Protonation state prediction

Protonated tautomer 2

v 3D coordinate generation

Protonated tautomer 2 in 3D

............... v Target format generation

Target format 1 Target format 2 Target format ...

Extended Data Fig. 7. AFLP - Overview of the Ligand Preparation Procedure. Ligands are initially in a format in line notation (e.g. SMILES, SELFIES, or amino
acid sequences). The preparation steps include desalting, neutralization, stereoisomer enumeration, tautomer enumeration, protonation state prediction, 3D coordinate
generation, and target format generation. Stereoisomer and tautomer generation can result in multiple chemical species. Highlighted in purple are the steps of a molecule
from the beginning to the end of the preparation procedure. Colored in white are the intermediate molecules/tautomers whose subsequent preparation steps are not shown

in the diagram.
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Property (X) Tranche Reps/Tranche=1, Exh=1 Reps/Tranche=10, Exh=1 RepsiTranche=1, Exh=10
Letter Range Average Score Rank Average Score Rank Average Score Rank
X'<200 -5.69868 4 -5.66977 4 -5.75664
200 < X < 300
300 < X <400
400 < X <450
X<0
0<Xs2
2<X<3
3<X<4
4<X<5

Molecular weight

logP

HBA count

HBD count

Rotatable bond count

7<X<10
X>10 -6.72586 -6.74264
X<40
40<X<80
80 <X <110
110 < X <140
X > 140
X <40 -5.44523 -5.38075 -5.52602
40<X<80
80 <X <130
X>130
X<-6
-6<X<-5
5<X<-4
-4<X<-3
X>-3
X=0
0<X<0.25
0.25<X<0.5
0.25<X<0.75
0.75<X<1.0
X<-2

TPSA

Molecular refractivity

logS

Aromatic proportion

N whoobdwN

Formal charge

NFPONRPRONEROWL

nawv nn

Positive charge count

v n

Negative charge count

XX X X X X X X XX

Vo

Fsp3

0.6<X<0.8
0.8<X=<10

Chiral center count X=0

Doublebond stereoisomer count
Halogen atom count

Sulfur atom count

2
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5!
B
4
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Extended Data Fig. 8. Adaptive Target-Guided Prescreening Benchmarks. Results of several prescreens for a test system within the Adaptive Target-Guided Virtual
Screening (ATG-VS) approach, where different settings were used. In the first run (left), one representative per tranche was used with docking exhaustiveness 1. In the
second run (middle), 10 representatives per tranche are used with exhaustiveness 1. In the third run (right), one representative per tranche was used with exhaustiveness 10.
The average docking scores were computed for each tranche of each property (averaging over all other properties/dimensions). For each property, the tranches have been
ranked within their property realm based on the average docking scores for the tranches. As can be seen, the patterns and rankings are very similar to each other, indicating
that one representative with exhaustiveness 1 can be sufficient for the prescreenings.
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100M Random (blue) vs Adaptive Target Guided (ATG) Primary Screens - Top 50 compounds
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Extended Data Fig. 9. Benchmarking large-scale virtual screening strategies. Violin plots compare the distribution of docking scores for the top 50 molecules identified by two
approaches: (1) a standard ultra-large virtual screen of 100 million randomly selected compounds, and (2) the Adaptive Target-Guided (ATG) screening strategy developed in
this work. For each ATG run, a prescreen of 11 million representative compounds was used to identify the most promising regions of chemical space, followed by a focused
primary screen whose size is indicated for each target. ATG consistently achieves comparable or superior docking scores using a fraction of the computational budget.
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100M Standard ULVSs (blue) vs 100M ATG Primary Screens (rose) - Top 50 Hits
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Extended Data Fig. 10. Comparison of Adaptive Target-Guided (ATG) Primary Virtual Screens and standard ULVS. 100 million compounds were screened with
standard ULVS of randomly selected compounds, as well as with ATGs where the 100 million compounds to be screened were selected based on the ATG prescreen. Violin
plots of the docking scores of the top 50 virtual screening hits obtained by standard ULVSs (blue) and ATG-VS (rose). Stripplots of the data points are overlayed. The docking
scores of the top 50 compounds of the adaptive screens are considerably better for all target proteins than for the standard ULVSs.
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AdaptiveFlow Unity

Original Compound ; o Stereoisomer
Desaltin — o !
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Enantiomer
Enumeration

Pose Generation & Docking Program
Docking Score < Error Checks < Parameterization ¢
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Prepared Protein Docking Program

Binding Site
Structure Choice

ing Si Docking Search
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Extended Data Fig. 11. Conceptual Overview of AdaptiveFlow Unity. AF Unity takes as input a user-specified string representation of a molecule and processes the
provided molecule by desalting, neutralizing, and generating stereoisomer (with RDKit (63)). Subsequently, based on the docking program choice, all ligands are converted
into 3D conformers (with OpenBabel(61)) using a default protonation state of 7.4. Finally, built-in error checks are performed depending on a user’s docking program choice,
returning the docking pose and scoring function value. Steps in which the parameters of the user are involved are colored in white.
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Extended Data Fig. 12. Docking Time Estimates. Timing estimates for running a single calculation averaged over 25 independent runs for all docking programs. The
calculations were run using AFU.
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Feature AdaptiveFlow
General Features
Codebase Python
Native cloud support available (AWS)
Linear scaling behavior demonstrated up to 5.6 million CPUs
AdaptiveFlow Ligand Libraries
Total size of ligand library 68.7 billion
Additional predicted ligand properties 28
PDB format available
PDBQT format available
SDF format available
MOL2 format available
SMILES format available
SELFIES format available
Parquet format available
Sparse version (for ATG-VSs) available
Interactive web interface yes (18 dimensions)
Accessability AdaptiveFlow website and AWS Open Data
AdaptiveFlow for Ligand Preparation (AFLP) Module
Stereoisomer enumeration supported
External open-source tools for ligand preparation extended support
SMILES as input format supported
SELFIES as input format supported
Amino acid sequences as input format supported
SELFIES as output format supported
Prediction of physical molecular properties supported (27 properties)
Automatic multidimensional matrix generation extended support
Quality control extended support
Enhanced speed extended support
AdaptiveFlow for Virtual Screening (AFVS) Module
Adaptive target-guided virtual screens supported
- Machine learning enhancement supported
Docking methods 1500
Deep learning-based scoring functions supported
Deep learning-based pose prediction methods supported
Molecular dynamics-based methods supported
Protein as target supported
RNA as target supported
DNA as target supported
Covalent docking extended support
Protein ligands (protein-receptor docking) supported
Peptide ligands supported
Parquet output format supported
Docking quality control supported
ARM supported supported
Enhanced x86 performance available (for several docking methods)
GPU support supported
AdaptiveFlow Unity (AFU) Module
Standalone mode available
API mode available

Extended Data Table 1. Features Supported by AdaptiveFlow. Features grouped by AdaptiveFlow module: General, AFLP, AFVS, and AF Unity. AdaptiveFlow has

significantly more features compared to the original version.
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Index Property AdaptiveFlow Parameter Preparation Method Used for 18-Dimensional Matrix
1 molecular weight mw_file Input library yes
2 logP logp_jchem JChem yes
3 hydrogen bond acceptor count hba_jchem JChem yes
4 hydrogen bond donor count hbd_jchem JChem yes
5 rotatable bond count rotb_jchem JChem yes
6 topological polar surface area tpsa_jchem JChem yes
7 molecular refractivity mr_jchem JChem yes
8 solubility [molar] logs JChem yes
9 number of bonds bondcount_jchem JChem no
10 aromatic proportion ap JChem yes
11 ring count ringcount JChem no
12 aromatic ring count aromaticringcount JChem no
13 logD logd JChem no
14 formal charge formalcharge AdaptiveFlow yes
15 positive charge count positivechargecount AdaptiveFlow yes
16 negative charge count negativechargecount AdaptiveFlow yes
17 fraction of sp3 carbon atoms fsp3_file Input library yes
18 total atom count atomcount_jchem JChem no
19 heavy atom count heavyatomcount_file Input library no
20 chiral center count chiralcentercount JChem yes
21 doublebond stereoisomer count doublebondstereoisomercount JChem yes
22 halogen atom count halogencount JChem yes
23 sulfur atom count sulfurcount JChem yes
24 nitrogen and oxygen atom count NOcount JChem no
25 electronegative atom coun electronegativeatomcount JChem no
26 Enamine compound class enamine_compound_class Input library yes
27 quantitative estimate of druglikeness (QED) qed_rdkit RDKit no
28 Murcko scaffold scaffold_rdkit RDKit no

Extended Data Table 2. Calculated Properties of Ligands in the Enamine REAL Space. All properties of the ligands that were determined/calculated during the
preparation of the REAL Space (version 2022q1-2) with AFVS. A few properties (molecular weight, fsp3, heavy atom count, Enamine compound class) were available in the
input library and thus could be directly used without any calculations.
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Property Available Calculation Methods

Preparation of Ligands into Ready-To-Dock Format

Desalting
Neutralization
Stereoisomer Generation
Tautomer Generation
Protonation State Calculation
3D Coordinate Conversion
Target Format Conversion

AFLP (internal)
JChem, Open Babel
JChem, RDKit
JChem, Open Babel, RDKit

JChem, Open Babel, Epik, QupKake

JChem, Open Babel, RDKit

Open Babel (for all formats but SELFIES)
and SELFIES Python Package (only for SELFIES)

Calculation of Additional Molecular Properties

Molecular weight
logP
HBA count
HBD count
Rotatable bond count
TPSA
Molecular refractivity
Solubility [molar]
Bond count
Aromatic proportion
Ring count
Aromatic ring count
logD
Formal charge
Positive charge count
Negative charge count
Fraction of sp3 carbon atoms (fsp3)
Total atom count
Heavy atom count
Chiral center count
Doublebond stereoisomer count
Halogen atom count
Sulfur atom count
NO atom count
Electronegative atom count

JChem, Open Babel, Input Library
JChem, Open Babel, Input Library
JChem, Open Babel, Input Library
JChem, Open Babel, Input Library
JChem, Open Babel, Input Library
JChem, Open Babel, Input Library
JChem, Open Babel, Input Library
JChem, Open Babel, Input Library
JChem, Input Library
JChem, Input Library
JChem, Input Library
JChem, Input Library
JChem, Input Library
AFLP (internal)
AFLP (internal)
AFLP (internal)
JChem, Input Library
JChem, Open Babel
Input Library
JChem, Input Library
JChem
JChem, Input Library
JChem, Input Library
JChem, Input Library
JChem, Input Library

Enamine compound class Input Library
Quantitative Estimate of Druglikeness (QED) RDKit
Murcko scaffold RDK:it

Extended Data Table 3. Supported Processing Steps of AFLP. AFLP can prepare molecules into a ready-to-dock format, and calculate additional properties of each
molecule. For many of these calculations, external tools (JChem from ChemAxon, RDKit, Epik from Schrddinger (96), QupKake (97) and Open Babel) are used, while for a
few AFLP calculates them internally. Many properties can also be used directly from the input library if available, avoiding the need to calculate them during the runtime.
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Docking program License model Special features DL-based Hardware support Reference
AutoDock-GPU Open Source GPU-accelerated version of AutoDock4 X GPU (57)
AutoDock4 Open Source Improved modelling of waters and macrocycles X CPU (98)
AutoDockZN Open Source Special support for zinc-coordinating ligands X CPU (99)
AutoDock Vina 1.2.0 Open Source Python support; macromolecule support X CPU (100)
AutoDock Vina 1.1.2 Open Source Improved optimization, scoring and multithreading X CPU (101)
AutoDockFR (ADFR) Open Source Improved receptor side-chain flexibility modelling X CPU (102)
AutoDock Koto Open Source Improved sampling X CPU (103)
ATPdock Open Source ATP-specific protein-ligand docking X CPU (104)
CovDock Licence Required Covalent docking X CPU (105)
DOCK 6.0 Free for academics RNA-ligand, DNA-ligand, protein-protein docking X CPU (106)
FlexX Licence Required Covalent docking. Ensemble docking X CPU (107)
FitDock Academic Licence Incorporation of template fitting for docking X CPU (108)
GalaxyDock3 Licence Required Incorporation of side chain flexibility X CPU (109)
Glide (HTVS) Paid Academic Licencing Less exhaustive sampling and scoring X CPU (110)
Glide (SP) Paid Academic Licencing ~ More exhaustive sampling (relative to Glide HTVS) & multiple levels of accuracy X CPU (110)
Glide (XP) Paid Academic Licencing Most accurate sampling and scoring for Glide & different levels of accuracy X CPU (110)
Gnina Open Source Deep learning scoring of complex v GPU/CPU scoring (68)
GOLD Licence Required Genetic algorithm based docking; Covalent docking X CPU (111)
GWOVina Open Source Grey wolf optimization X CPU (112)
HDOCK Academic Licence Protein-RNA/DNA docking X CPU (113)
HSYMDOCK Academic Licence Protein—protein/rna docking with Cn and Dn symmetry X CPU (114)
idock Open Source AutoDock Vina derivative with improved speed X CPU (115)
iGEMDOCK Open Source - X CPU (116)
LeDock Freeware for academic use Excellent Sampling power (comparable to GOLD) X CPU (117)
LigandFit Open Source Identification of active site regions for docking X CPU (118)
LightDock Open Source Protein-protein docking X CPU (119)
MDock Licence Required Ensemble docking for multiple protein conformations X CPU (120)
MCDock Open Source Use of Monte Carlo simulation technique X CPU (121)
Molegro Licence Required - X CPU (122)
MpsDockzn Licence Required Zinc metalloprotein-specific scoring function X CPU (123)
PSOVina Open Source Improved pose sampling and speed X CPU (124)
PLANTS Open Source Use of ant colony optimization X CPU (125)
PI-LZerD Open Source Protein-protein docking X CPU (126)
PIPER Open Source Use of pairwise interaction potentials for protein-protein docking X CPU (127)
QuickVina 2 Open Source Extremely fast X CPU (90)
QuickVina-W Open Source Improved speed for blind docking X CPU (128)
QVina2-GPU Open Source GPU-accelerated version of QVina2 X GPU (58)
QVina2-W-GPU Open Source GPU-accelerated version of QVina2-W X GPU (58)
rDock Open Source Support for RNA targets X CPU (129)
Rosetta Ligand Licence Required - X CPU (130)
RLDOCK Open Source RNA-ligand docking X CPU (131)
SEED Open Source Fragment-based docking X CPU (132)
SMINA Open Source User specific scoring functions X CPU (133)
TANKBind Open Source Fast neural network based complex prediction v CPU/GPU (12)
VinaCarb Open Source Improved glycosidic modelling X CPU (134)
VinaXB16 Open Source Improved halogen bonding scoring function X CPU (135)
Vina-GPU Open Source GPU-accelerated version of Vina X GPU (58)
Vina-GPU-2.0 Open Source GPU-accelerated version of Vina-2.0 X GPU (58)

Extended Data Table 4. Supported docking programs. The collection of docking programs supported within AFVS and AF Unity that perform both pose prediction and

scoring.
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Docking program License model Special features DL-based Hardware support Reference
AD4 Scoring Open Source Improved over AutoDock 3 forcefield X CPU (136)
ASP Scoring Licence required Atom-atom distance potential X CPU (111)

Bump Filter Scoring Free for academics Consideration of molecule overlap with receptor atoms X CPU (106)
ChemScore Licence required Improved speed compared to GoldScore X CPU (111)
Contact Scoring Free for academics Incorporates the scoring performed with the DISTMAP program X CPU (106)
Continuous Scoring Free for academics No grid calculations X CPU (106)
ChemPLP Licence required Slightly faster than ChemScore and up to four times faster than GoldScore X CPU (111)

DOCK3.5 Scoring Free for academics Incorporation of solvation effects X CPU (106)
DeepAffinity Open Source Use of convolutional neural networks v CPU/GPU (70)
DeepBindRG Open Source Use of recurrent and convolutional neural networks v CPU/GPU an

Footprint Scoring Free for academics ~ Calculates intermolecular hydrogen bonds and footprint comparisons, in addition to standard interactions X CPU (106)
Gnina Scoring Open Source Convolutional neural network scoring v CPU/GPU (68)
GOLD Scoring Licence required Use of the chemscore function X CPU (111)

GoldScore Licence required Original scoring function provided with GOLD X CPU (111)
Grid-Based Scoring Free for academics Based on the non-bonded terms of the molecular mechanic force field X CPU (106)
Hawkins GB/SA Scoring Free for academics Use of pairwise GB solvation model X CPU (137)
NNScore 2.0 Open Source Use of a fully-connected neural networks v CPU/GPU (69)
MM/PBSA Open Source Calculation of end-state free energies of molecules in solution X CPU (74)
MM/GBSA Open source Improved scoring accuracy X CPU (74)
MultiGrid FPS Scoring Free for academics Pair-wise interaction energies are computed over multiple grids rather than in Cartesian space X CPU (106)
OpenBPMD Open Source Improved scoring accuracy X CPU (72)

PLP Scoring Open source Pairwise additive scoring function X CPU (125)
PLP95 Scoring Open source Origin of PLP X CPU (125)
PB/SA Scoring Free for academics Application of the ZAP electrostatics toolkit from OpenEye X CPU (106)
Pharmacophore Matching Similarity Scoring ~ Free for academics ~ Calculates the level of pharmacophore overlap between a reference molecule and a candidate molecule X CPU (106)
Rosetta Scoring Open Source Improved scoring for side-chain flexibility X CPU (130)
RF-Score-VS Open Source Random Forest-based scoring function X CPU (138)
SASA Scoring Free for academics Calculates the percent exposure of a ligand X CPU (139)
SEED Scoring Open Source Continuum dielectric approximation of electrostatic contribution X CPU (132)
SMINA Scoring Open Source Improved AutoDock Vina scoring X CPU (133)
Vinardo Scoring Open Source Improved Vina scoring X CPU (140)
Vina Scoring Open Source Improved scoring compared to AD4 X CPU (101)

Zou GB/SA Scoring Free for academics Fast algorithm, pairwise free energy model, for ligand binding affinity calculations X CPU (139)

Extended Data Table 5. Supported Protein-Ligand Scoring Functions. The collection of docking programs supported within AFVS and AF Unity that perform both pose

prediction and scoring.
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Docking program License model Special features DL-based Hardware support Reference
DiffDock Open Source Blind docking pose prediction v GPU/CPU (66)
EquiBind Open Source Blind docking pose prediction v GPU/CPU (67)
EnzyDock Open Source Identifies probable binding modes of multiple ligand states in an enzyme active site X CPU (141)
FRED Academic Licence Improved pose sampling X CPU (142)

Extended Data Table 6. Supported pose prediction methods. The collection of docking programs supported within AFVS and AF Unity that perform both pose prediction
and scoring.
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Target Protein  Structure ID Structure Source Target Site Target Site Type
KRASC!12V 4TQ9 Protein Data Bank (RCSB) Active site Enzymatic site
CB1 6KPG Protein Data Bank (RCSB) Primary ligand pocket Orthosteric site
PTPRB 2H04 Protein Data Bank (RCSB) Active site Enzymatic site
JNK3 7SIN Protein Data Bank (RCSB) Active site Enzymatic site
TLRS (YAY4 Protein Data Bank (RCSB) Dimerization site Protein-protein interaction
PIK3CG 2CHZ Protein Data Bank (RCSB) Active site Enzymatic site
NTR1 4GRV Protein Data Bank (RCSB) Primary ligand pocket Orthosteric site
MED15-KIX 2GUT Protein Data Bank (RCSB) SREBP interaction site  Protein-protein interaction
KEAP1 SFNQ Protein Data Bank (RCSB) NRF?2 interaction site  Protein-protein interaction
Raptor AFQ8N122_F1 AlphaFold Structure Database TOS motif Protein-protein interaction

Extended Data Table 7. ATG-VS Benchmark Systems. The target proteins and binding sites used in the benchmark studies comparing ATG-VSs with standard ULVSs.
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