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Abstract

The nucleus of a cell contains its genetic information in
the form of chromatin: polymers of DNA and associated
proteins. The physical nature of this polymer system
is yet to be understood. Orthogonal experimental ap-
proaches probing chromosome structure, dynamics, and
mechanics typically suggest the existence of scaling re-
lationships, leading to the widespread use of scale-free,
or fractal, models to represent interphase chromosomes.
However, currently, there is no single physical model con-
sistent with all reported scaling exponents. Here, we con-
sider the space of possible scale-free models of chro-
mosome structure, dynamics, and mechanics, and exam-
ine the fundamental connections between these physi-
cal properties. We demonstrate the existence of two al-
gebraic relationships between the scaling exponents—
–connecting structure with dynamics, and dynamics with
mechanics, respectively–—outlining the necessary phys-
ical conditions for a model to match specific exponent
values. Applied to values reported in metazoans, our
theory identifies the family of models consistent with all
observed scalings, which notably excludes the classical
Rouse, Zimm, and fractal globule polymer models. Our
theory highlights dynamic correlations between distal ge-
nomic loci as necessary to reconnect seemingly contra-
dictory measurements. Consequently, we propose new
experiments to narrow down the space of possible mod-
els. We expect this framework to serve as a guide for un-
derstanding past and future measurements, and for build-
ing new physical models of interphase chromosomes.

Introduction

Chromosomes, in addition to being the carriers of genetic in-
formation, are long physical polymers made of DNA and asso-
ciated proteins. Understanding their physical nature and spa-
tiotemporal organization in the nucleus of a eukariotic cell is
of central interest in the field. Specifically, the local chromoso-
mal context of a given locus plays a crucial role in determining
how the information encoded on the DNA is processed [1]. So-
called enhancer elements for example are thought to activate
their target genes by “looping in” and physically contacting the
target promoter to initiate transcription [2–5]. How this interac-
tion is regulated between elements that can be separated by
millions of base pairs remains an open question [6–8]; in fact,
even the structure, dynamics, and mechanics of the chromatin
polymer itself—without reference to specific elements like en-
hancers and promoters—remain topics of active research [9–
12].
Our understanding of the 3D structure of interphase chromo-
somes has increased dramatically over the last decade, pri-

marily due to experimental techniques like Hi-C [13, 14] (mea-
suring pairwise contacts across the genome) and multipoint
FISH methods [15, 16] (visualizing chromosome conforma-
tions in 3D space). Both techniques often report scaling re-
lationships in a broad range of scales and organisms [9, 16–
21]. In metazoans specifically, exponents reported by both
Hi-C and microscopy, from ∼10 kb to ∼100 Mb, suggest a
space-filling organization of chromatin: two loci at a genomic
separation s are on average separated in space by a dis-
tance R(s) ∼ s

1
3 [9, 17], corresponding to a confining vol-

ume V (s) ∼ R3(s) ∼ s—thus the term “space-filling”. The
probability P (s) of finding these two loci in contact is then
given by the mean field approximation P (s) ∼ 1/V (s) [22];
P (s) ∼ s−1 was broadly observed in Hi-C and micro-C experi-
ments across metazoans [13, 14, 19, 23]. Notably, this space-
filling spatial organization is more compact than one would
expect for an ideal chain in equilibrium, which should adopt a
random walk conformation with R(s) ∼ s

1
2 , corresponding to

V (s) ∼ s
3
2 and P (s) ∼ s− 3

2 [24]; the latter, in turn, seems to
be consistent with the situation in yeast [25].
Chromosome dynamics are usually studied by fluorescence
microscopy, where current methods allow monitoring a few
specific genomic loci, by targeting fluorophores either to ex-
ogenous DNA elements integrated into chromosomes [5, 26–
30] or by dCas9-based approaches [31–36]; alternatively,
non-specific approaches such as labels on histone H2B can
track many loci simultaneously, at the expense of knowl-
edge or reproducibility of their genomic identity [10, 37–40].
With either of these imaging approaches ultimately measur-
ing trajectories x(t) for genomic loci, quantification for these
experiments usually employs the Mean Squared Displace-
ment (MSD)

MSD(∆t) :=
〈
(x(t+ ∆t) −x(t))2〉∼ (∆t)µ .

While a freely diffusive particle would exhibit a linear MSD
curve (µ= 1), a chromosomal locus (i.e. point on a long poly-
mer) is expected to move subdiffusively (µ < 1) due to the
chain connectivity. Indeed, experiments show µ ≈ 0.5 − 0.6
in eukaryotic cells [25, 29, 30]. These values are consistent
with the Rouse model of polymer dynamics, which predicts
µ = 1

2 [41, 42]; which, however, also produces an ideal chain

structure, R(s) ∼ s
1
2 , inconsistent with experimental data.

Taking an orthogonal angle on the question of chromatin dy-
namics, the present authors, together with others, recently
presented an experimental system to measure the force re-
sponse of a single genomic locus [43]. In response to a con-
stant force switched on at t= 0 the locus moved as x(t;f) ∼
t0.5, consistent with the same (Rouse) model for polymer dy-
namics that predicted the MSD scaling µ = 0.5—but which is
inconsistent with the structure R(s) ∼ s

1
3 of real chromatin.
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A model consistent with the space-filling structure of meta-
zoan chromatin is the fractal globule, which describes crum-
pling of the chain due to topological constraints [44]. This,
however, predicts an MSD scaling of µ = 2

5 [45], markedly
lower than the µ≈ 0.5 − 0.6 observed in experiments.
In light of these observations, neither Rouse nor the fractal
globule can provide satisfactory models for chromosome orga-
nization; which should not be surprising, given that these sim-
ple toy models neglect almost all biological features like loops,
TADs, compartments, and active dynamics in the nucleus.
More detailed models, usually computational, are thus being
used by the community to investigate these biological features
and their interplay. Notably, however, reference to scaling
exponents—like µ and ν above—is still frequently made in
discussing these results, implying that scale-dependent fea-
tures like TADs are seen as “added on top of” some scale-free
background model [46, 47]. This mindset is supported by the
experimental observation that removal of some of these spe-
cific features, e.g. loops, broadens the region where P (s) can
be well approximated by scaling relationships [19].
The main purpose of the present work is to point out that cur-
rently we do not have such a scale-free background model
that would be consistent with the reported scaling exponents.
While chromosome structure looks fractal-globule-like, dy-
namics and mechanical responses look Rouse-like; there is
no understanding as to how to fit these observations together.
We propose two avenues towards resolving this issue: first,
we can question the usefulness of simplistic toy models.
Specifically, one could argue that discussing scaling expo-
nents for chromosome organization is quite meaningless,
since it is dominated by scale-dependent biological processes
and simply not well approximated by scale-free models that
neglect these details. In this understanding, powerlaw scal-
ings and associated exponents reported from experimental
observations would fall prey to the quip known as Mar’s law
(see also [48]): “everything is linear if plotted log-log with a fat
magic marker.” Biological observables are never truly power-
laws and thus do not exhibit scaling exponents. The alterna-
tive to this radically sober approach is to take the scaling ap-
proximation seriously: assuming that experimental observa-
tions are indeed reasonably well approximated by powerlaws,
we can attempt to construct a scale-free model consistent with
the reported exponents, to serve as rudimentary approxima-
tion to chromosome organization.
The present work pursues this second line of argument: as-
suming that it is in fact a useful approximation, what are the
implications of a consistent, scale-free model of chromosome
organization?

Results
Let us construct such a scale-free model. By “scale-free”,
we mean that there is no intrinsic length scale in the sys-
tem; so we idealize a chromosome as an infinitely long poly-
mer (no large length scale) without any microstructure such
as monomer size (no short length scale). Any such model
should make predictions for the observables discussed in the
introduction; and because of the absence of finite scales, we
expect to find powerlaws. Explicitly, we assume the forms

R(s) =Gsν (1)

for the root-mean-square spatial distance between two loci at
a genomic separation s;

MSD(∆t) = Γ |∆t|µ (2)
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Figure 1. Summary of the exponents considered in the text and what part of the
system they relate to. Left to right: α describes the viscoelasticity of the solvent,
i.e. the MSD of a free tracer particle. Considering an isolated polymer coil as
such a tracer particle, δ reflects the dependence of its (anomalous) diffusivity
on the chain length; ν gives the scaling of the physical radius of the coil. The
motion of individual loci within the coil is characterized by µ. Upon application
of an external force, such loci exhibit a powerlaw response with exponent ρ;
the (fractional) velocity of this response is force dependent, with exponent ψ.
Colors indicate which constitutive relation an exponent is associated with: red
for eq. (1), teal for eq. (2), orange for eq. (3), and blue for eq. (4).
*: “anomalous diffusivity” if α ̸= 1

“fractional velocity” if ρ ̸= 1.

for the MSD of a single genomic locus; and

x(t;f) =Afψtρ (3)

for displacement of a single locus in response to a constant
force f switched on at time t = 0 (red, teal, and orange in
fig. 1).
While the last two observables (dynamics and force response)
probe individual loci, the first one (structure) probes finite sub-
chains. To bridge this gap, we consider the whole-coil dif-
fusion of a finite and isolated subchain (i.e. we disconnect it
from the infinite polymer and place it in empty solvent). Over
timescales longer than the internal relaxation time of this coil,
we expect it to diffuse in the solvent like a free particle, with a
diffusion constant dependent on its size s, i.e. an MSD of the
form

MSDcoil(∆t;s) =Ds−δ |∆t|α (4)

(blue in fig. 1). Since we expect a free coil/particle to undergo
normal diffusion, α = 1 seems like the most natural choice;
however, allowing α < 1 incorporates the possibility of a vis-
coelastic solvent, such that even a free tracer particle would
undergo subdiffusion—which has been observed for the nu-
cleoplasm, though estimates for α vary broadly (α ≈ 0.5 −
1) [49–51]. The exponent δ can be understood as incorporat-
ing dynamic correlations of different loci along the polymer: for
a freely draining chain (such as the Rouse model), monomers
are independent from each other and whole-coil diffusivity is
simply inversely proportional to chain length, yielding δ = 1.
The Zimm model [42], in contrast, incorporates hydrodynamic
interactions between the loci, which results in a hydrodynamic
radius Rhydro ∼R(s). MSDcoil ∼R−1

hydro then implies δ = ν.
Through eqs. (1) to (4), our scale-free description of chromo-
some organization is characterized by the model constantsG,
Γ, A, D, and an energy scale kBT ; which have dimensions

[kBT ] = LF , [G] = LS−ν , [Γ] = L2T−µ ,

[A] = LF−ψT−ρ , [D] = L2SδT−α ,

where we use the symbols L, F , S, T to denote length, force,
genomic distance, and time, respectively. We can combine
these model constants into new quantities

X := (kBT )aGbΓcAdDe (5)
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with units

[X] = La+b+2c+d+2eFa−ψdS−νb+δeT−µc−ρd−αe ,

which allows us to construct e.g. a length scale by solving a
simple linear system: we set [X] = L, which gives a system
of four equations for the five variables a, b, c, d, e; elemen-
tary substitutions reduce this system to one equation for two
variables:(

1 + 2ν
δ

− 2αν
δµ

)
b+
(

1 +ψ− 2ρ
µ

)
d= 1 . (6)

This equation has a one-parameter family of solutions (b,d),
so long as either of the terms in brackets is non-zero. We
have thus constructed a length scale X from the model con-
stants of our—supposedly—scale-free approximation, show-
ing that said approximation is inconsistent; unless the model
exponents satisfy

2να
2ν+ δ

= µ= 2ρ
1 +ψ

, (7)

ensuring that both brackets in eq. (6) vanish. These expo-
nent relations are therefore required for self-consistency of the
scale-free approximation: if they are violated, we can explicitly
construct a length scale from the model constants.
Our derivation of eq. (7) relies only on dimensional analysis,
emphasizing that these relations are a direct consequence of
the scale-free assumption, i.e. the same assumption that lets
us approximate individual observables as powerlaws in the
first place. The same relations can, however, be obtained by
other arguments: in appendix A we demonstrate the physically
more intuitive approach via crossover points between the dif-
ferent scaling regimes of a locus in a finite coil; in appendix B
we discuss how eq. (4) (free diffusion of a finite coil) can be re-
placed by other observables with the same dimensional struc-
ture (depending on a time lag ∆t and polymer separation ∆s);
finally, appendix C gives an explicit formulation in terms of the
polymer configuration x(s, t). Special cases of these argu-
ments exist in the literature and specifically the first relation
in eq. (7) has been reported previously: in the cases α = 1,
δ = 1 [45, 52]; ν = 1

2 , δ = 1 [53]; and δ = 1 [54]. The second
relation connecting dynamics and force-response is satisfied
explicitly by the Rouse model [43, 55], but has not been stud-
ied in generality.

Discussion
Having established eq. (7) as the central consistency condition
for the scale-free approximation in chromosome organization,
we now discuss its implications in light of available experimen-
tal evidence (table 1). We find that existing observations make
specific predictions for less commonly studied exponents and
we propose experimental approaches to measure those.

Mechanics & Dynamics. Consider the force response exper-
iments of [43], where we determined, in the same system,
ρ ≈ 0.5, ψ ≈ 1, and µ ≈ 0.5, fully consistent with eq. (7). No-
tably, just the linear force response (ψ = 1) suffices to pre-
dict ρ = µ; our measurement of the force response exponent
ρ ≈ 0.5 can thus be interpreted as an independent validation
of earlier experiments finding µ ≈ 0.5 (table 1). In addition,
our theory predicts that if ρ ̸= µ (e.g. future experiments in
different chromatin contexts, different cell types, or different
spatial, temporal, or force regimes), this would hint at a non-
linear force response ψ ̸= 1.

Organism ν µ ρ Ref. Notes

H. sapiens
HCT-116 0.3-0.41 - - [18] ∆RAD21

0.3-0.42 - - [16]
HeLa - 0.5 - [56] Telomeric probes
U2OS - 0.5 0.5 [43]

- 0.55 - [56] Telomeric probes
MF - 0.7 - [56] Telomeric probes

M. musculus
mESC - 0.53 - [29] WT and ∆RAD21

- 0.63 - [30] WT and ∆RAD21
0.33-0.41 - - [21] ∆RAD21
0.15-0.42 - - [9]

hepatocytes 0.41 - - [19] ∆NIPBL
3T3 - 0.4 - [56] Telomeric probes

D. melanogaster 0.313 0.523 - [5]
0.22–0.372 - - [17]

S. cerevisiae 0.51 - - [20]
- 0.5 - [57]

E. coli - 0.4 - [58]
Caulobacter - 0.4 - [58]

1from Hi-C contact probability P (s) ∼ s−3ν [22]
2direct measurement from multiplexed FISH
3two-locus live-cell measurement

Table 1. Measured scalings for R(s) ∼ sν , MSD(∆t) ∼ (∆t)µ, and
x(t;f) ∼ tρ. Gray background highlights reporting of multiple exponents from
the same experimental system. Chromosome structure is frequently not strictly
fractal due to loop extrusion; therefore we here focus on experiments where
loop extruding factors (RAD21, a component of the cohesin complex) or their
loaders (NIPBL) were acutely degraded, where possible. This overview is not
exhaustive.

Structure & Dynamics. The first relation in eq. (7) connects
the structural and dynamical scalings ν and µ, both of which
have been investigated in various experimental systems (see
table 1). While specifically yeast seems consistent with the
expectations for a Rouse model, i.e. µ = 0.5, ν = 0.5, and
α = 1 [59], metazoans like fruit fly, mouse, or human, seem
to behave differently. For the purpose of this discussion, let
us consider the case µ = 0.5, ν = 0.33 (fig. 2); this seems
consistent with best estimates, but is of course an idealization
of the experimental situation. While we choose this idealiza-
tion for consistency with the literature models mentioned in
the introduction (Rouse: µ = 0.5; fractal globule: ν = 0.33),
we emphasize that eq. (7) holds for any value of these expo-
nents and similar discussion can be furnished with different
numerical values.
Reformulating the first relation in eq. (7) as

δ = 2ν
(
α

µ
− 1
)

(8)

shows that we should expect a 1-parameter family of models
with different α and δ that exhibit the desired scalings in µ and
ν. We discuss a few of these options:

• In a freely draining chain (blue lines in fig. 2), individ-
ual monomers are independent, such that δ = 1. This
assumption is made in the Rouse model and in [45] for
dynamics of the fractal globule. Equation (8) then be-
comes α= 5

4 > 1, i.e. we would need a medium in which
free tracers undergo superdiffusion. This appears unre-
alistic for the nucleoplasm. While superdiffusion of free
tracers might theoretically be achieved by energy depen-
dent processes like transcription or loop extrusion, those
are unlikely to be scale-free, such that we will not further
pursue this point here.

• Zimm’s treatment of hydrodynamic interactions between
different monomers amounts to δ = ν, such that µ= 2

3α
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Figure 2. Experimental results in the context of eq. (7). Shaded regions are
consistent with experimental determinations of structure ν (orange) or dynamics
µ (green, from SPT; dense shade indicates eukaryotic estimate µ≈ 0.5−0.6,
light shade extends to bacterial estimate µ≈ 0.4) respectively. Black error bars
indicate estimate from [5]. Red circle marks ν = 0.33, µ = 0.5, which serves
as example for discussion in the main text. Outlines show theoretically plausible
regions (eq. (7)) for differentα, as indicated. The top (red) edge of these regions
is given by the Zimm condition δ = ν, while the bottom (blue) edge is given by
the freely draining chain (δ= 1); the points inbetween correspond to ν < δ < 1.
Horizontal cutoffs (gray lines) are chosen for visual appeal. Common polymer
models: Rouse chain and fractal globule are indicated as black circles; both are
instances of a freely draining chain with α = 1 (blue curve).

independent of ν (red lines in fig. 2). This would allow
matching µ≈ 0.5 by tuning α≈ 0.75. While this is within
current estimates for nucleoplasm viscoelasticity, these
estimates scatter quite broadly (α ≈ 0.5 − 1), such that
this consistency statement is rather weak. Furthermore,
due to crowding one might expect hydrodynamic interac-
tions to be screened in the nucleus [60, 61], such that
δ = ν appears questionable in the first place.

• Between the two canonical values of δ = 1 (freely drain-
ing chain) and δ = ν (Zimm-style hydrodynamic interac-
tions), it is conceivable that chromatin loci in the nucleus
exhibit dynamic correlations with ν < δ < 1. In a purely
viscous nucleoplasm (α = 1), eq. (8) would then imply
δ = 2ν = 2

3 , i.e. a whole-coil hydrodynamic radius scal-
ing with the crosssection of the coil: Rhydro ∼R2(s).

We are not aware of a physical model that would produce
this intermediate level of dynamic correlations between
different loci. It seems conceivable, however, that hydro-
dynamics plays a role. The Zimm model (cf. previous
point) treats hydrodynamics as an effective two-body in-
teraction, which might overestimate the correlations cre-
ated in a densely packed chromosome: other parts of
the chain might be close enough to screen hydrodynamic
interactions between two loci—thus increasing δ > ν—
without going so far as to annihilate the effect completely.
It remains to be seen in future studies whether this pro-
vides a viable explanation. At the whole-nucleus scale,
correlated dynamics have been observed [11] and at-
tributed to hydrodynamic interactions [62].

We note that eq. (8) allows us to reconcile any arbitrary com-
bination of exponents (ν,µ) (such as our discussion example
(0.33,0.5)) by hypothesizing suitable values for δ, which has
received little experimental attention to date. But eq. (8) is an
experimentally testable prediction and we propose to test it
with experiments discussed in the next section.

free finite coil finite subchain COM multi-locus COM 2-locus correlations

A B C D

Figure 3. Overview of proposed experimental approaches to completing the
scale-free null model. Left to right: diffusion of a free coil in otherwise pure sol-
vent over long time scales; diffusion of the center of mass of a finite subchain
at short times; diffusion of the center of mass of multiple tracer loci at short
times; displacement correlation/covariance of two tracers with known genomic
separation at short times. These experimental setups correspond to observ-
ables characterized by (α,δ) (main text), (α′, δ′) (appendix B), eq. (23), and
(α′′, δ′′) (appendix C), respectively. See discussion in the main text.

Proposed experiments. The self-consistency of the scale-
free approximation is experimentally testable. There are var-
ious experimental systems that might be employed (fig. 3),
which we discuss in the following.

• Free, finite coil (fig. 3A). Equation (4) describes the free
diffusion (in solution) of finite stretches of chromatin of
different lengths. Possible experimental realizations are
micro-injected nucleosome arrays [63], extrachromoso-
mal DNA [64], or chromatinized DNA fragments in nu-
clear extract. We note that in order to measure the ex-
ponent δ, these experiments would have to be run for a
range of chain lengths s. Furthermore, a major issue for
these approaches would be to verify that the structure
of the chromatin fragments still obeys eq. (1). Finally,
what exactly constitutes the “solvent” in these scenar-
ios can vary: while the picture presented here assumes
that the tracked fragment moves in a chromatin-free en-
vironment (e.g. nuclear extract), for e.g. extrachromoso-
mal DNA one would abstract the surrounding chromatin
in the nucleus into an effective solvent; the measured ex-
ponents (α̃ and δ̃ in appendix B) would be different from
α and δ here, but still satisfy a relation of the form eq. (7).
See eq. (10) and pertinent discussion. The advantage
of using eq. (4) is that the exponent α describes the free
(sub-)diffusion of a generic tracer particle in the solvent;
it is thus often interpreted as a property of the medium
alone and of interest in its own right.

• Center of mass of a finite subchain (fig. 3B). In ap-
pendix B we argue that short-time dynamics of the cen-
ter of mass of a finite subchain—which is still connected
to the infinite polymer, as opposed to the free coil dis-
cussed before—obeys an equation (10) that is analogous
to eq. (7), albeit with different exponents

(
α′, δ′). How-

ever, even though techniques for fluorescent genome la-
beling have recently enabled chromosome tracing in fixed
cells [9, 15–17], labeling a continuous genomic region in
live cells seems difficult with current techniques and has
not been reported yet. So while eq. (10) does provide
an alternative to eq. (7) that does not require excision of
a part of the chain, it still seems out of reach of current
experiments.

• Center of mass of multiple loci (fig. 3C). While homoge-
neous labeling and tracking of extended genomic regions
in live cells is currently not possible, tracking multiple
point-like loci with defined genomic identities has been
demonstrated with various methods [5, 26–30, 32–36].
The center of mass of such a multi-point system exhibits
dynamics that are non-trivial; specifically we expect an
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intermediate regime where the MSD is not necessarily
a powerlaw, due to the abundance of length scales in-
troduced by the label positions. The underlying chromo-
some organization, however, can still be approximated as
scale-free, which now leads to a self-consistency condi-
tion in the form of eq. (23). Such multi-point experiments
are feasible with current technology, but existing data
sets do not suffice to validate our predictions, since our
framework requires making MSD measurements on the
same system for loci arranged across regions of different
genomic sizes. In addition, issues with existing data ap-
proaching these requirements [5, 35] are a low number of
tracked loci, low temporal resolution, and global nuclear
movement. We note that since this approach relies only
on the center of mass of multiple loci, it is not necessary
to be able to distinguish the different loci or track them in-
dividually; they might thus be labelled in the same color,
which drastically increases the number of loci that can be
imaged simultaneously.

• Two-particle displacement covariance (fig. 3D). For short
lag times ∆t, the instantaneous covariance of displace-
ments of two loci on the chain follows eq. (21) and the
pertinent exponents

(
α′′, δ′′) satisfy the same relation

as (α,δ) for the free coil. Two-locus tracking experiments
have been performed recently [5, 26–30], although out
of those only [5] was able to vary the genomic distance
between the loci, which is necessary to measure δ′′. Re-
peating their experiments at higher time resolution should
make these exponents accessible.

Conclusion. Scaling behavior of different aspects of chro-
mosome organization is reported widely in the literature.
We have demonstrated that self-consistency of the under-
lying approximation—that of the absence of relevant length
scales—establishes non-trivial connections between the per-
tinent scaling exponents. These relations highlight that dy-
namic correlations between different genomic loci are the
missing piece to the puzzle of reconciling chromosome struc-
ture, dynamics, and mechanics. We close by discussing pos-
sible experiments to address this gap.
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APPENDIX

A. Finite subchain
The argument in the main text is formulated in terms of di-
mensional analysis to emphasize that it is a necessary con-
clusion of the scale-free assumption. It is easily reformulated
in a more physical language by considering a finite subchain
of length s [54].
Equation (1) gives the physical size of this subchain as

l =R(s) =Gsν .

This allows for two independent definitions of a time scale: by
setting MSD(∆t) = l2 we find

t =
(
G2

Γ

) 1
µ

s
2ν
µ ;

letting instead MSDcoil(∆t;s) = l2 yields

τ =
(
G2

D

) 1
α

s
2ν+δ
α .

Physically, both describe the relaxation time scale of the coil
and should thus be equal up to numerical prefactors. This
requires that the exponents on s be the same, yielding the
first relation in eq. (7).
Similarly, eqs. (2) and (3) and the thermal energy kBT allow for
the construction of two force scales associated with our sub-
chain, both of which should exhibit the same scaling behavior
with s (or in this case l):

f ≡ kBT

l

!∼
(

l

Atρ

) 1
ψ

=

(
Γ
ρ
µ

A

) 1
ψ

l
1
ψ− 2ρ

ψµ .

Again equating the exponents (on l) yields the second relation
in eq. (7).
While the formulation in terms of a finite subchain can aid
physical intuition, the core argument remains the same: if
eq. (7) does not hold, a finite length scale emerges. To see
this, consider:

q(s) := τ(s)
t(s) =G

2
α− 2

µD− 1
αΓ

1
µ s

2ν+δ
α − 2ν

µ .

Since q is a dimensionless ratio, if the scaling with s were
non-trivial, the combination of constants in front would have
units of S to some power, translating to a length scale through
eq. (1). Thus, within the framework of scale-free models, any
finite scale (length, force, or otherwise) associated with the
subchain s has to be unique. This is ultimately what drives the
scaling argument.

B. Alternatives to eq. (4)
The argument in the main text relies on the long-time asymp-
tote of free coil diffusion to make the link between structure
and dynamics. We chose this approach because it directly
connects to the diffusion of free tracer particles in the solvent,
which has previously been investigated experimentally. Its
downside, however, lies in having to “cut out” a piece from the
infinite system; we are thus technically considering two distinct
systems, which might create conceptual confusion. Here we
demonstrate that the same results hold for other observables
that have the same dimensional structure as eq. (4), without
the need to cut a piece from the chain.
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Consider the center of mass of a finite subchain of length s.
Over times much longer than the internal relaxation of the sub-
chain, the subchain moves as a whole; the motion is then
dominated by its connection to the infinite chain and the center
of mass MSD asymptotes to the MSD of a single locus,

MSDCOM (∆t;s) → Γ(∆t)µ as ∆t→ ∞ .

The short time behavior of the center of mass, however, intro-
duces a new law

MSDCOM (∆t;s) →D′s−δ′
(∆t)α

′
as ∆t→ 0 , (9)

with exponents δ′ and α′ which are a priori undetermined and
unrelated to δ and α of the main text. After substituting eq. (9)
for eq. (4), the dimensional analysis follows exactly the same
lines as in the main text, yielding the equivalent of eq. (7):

2να′

2ν+ δ′ = µ. (10)

So short-time center of mass diffusion of a finite subchain sat-
isfies the same exponent relation as long-time diffusion of a
free, finite coil; this relation is forced by the scale-free assump-
tion in either case. Note that this does not imply that α′ = α
and/or δ′ = δ; even though especially the latter seems plau-
sible on physical grounds, it is not required by the scale-free
assumption itself.
Similarly, we might consider the correlated displacement of
two loci s and s′ on the chain (see also eq. (21)). Over lag
times shorter than the equilibration time of the tether between
the loci, the covariance of their displacements is expected to
follow powerlaws in lag time and tether length, with exponents
that we can call α′′ and −δ′′ respectively. Again, dimensional
analysis follows the same lines as before and we find a relation
of the form eq. (10), with double-primed exponents substituted
for single-primed ones.
Clearly, any observable that dimensionally matches eq. (4)
(i.e. is a powerlaw in both genomic separation and lag time)
has to satisfy the appropriate version of eq. (7). This argu-
ment allows us to extend the discussion of the long-time free
coil diffusion of the main text from the behavior in empty sol-
vent (as we assumed initially) to solvent that still contains the
infinite “rest” of the chain (which might be experimentally more
realizable). At long times we still expect diffusion of the form
(4), however now with independent exponents α̃ and δ̃, sat-
isfying eq. (10) (upon replacing primed with tilde exponents).
The exponent α̃ can now be interpreted as characterizing the
background polymer solution, where α in the main text char-
acterizes the solvent itself without polymer.

C. Explicit polymer
In the main text we emphasized that the presented exponent
relations follow directly from the scale-free assumption by sim-
ple dimensional analysis. It is also possible to phrase the
same ideas as an explicit critical (i.e. scale-free) field theory
for the polymer conformation x(s, t); s being the coordinate
along the polymer backbone and t time.
We express the two-point correlations of the conformation
x(s, t) as 〈(

x(s′, t′) −x(s, t)
)2
〉

≡ C(∆s,∆t) , (11)

where here and in the following we use the shorthand ∆s ≡
s′ −s and ∆t≡ t′ −t. We assume parity symmetry (i.e. invari-
ance under s→ −s), such that C(∆s,∆t) = C(|∆s| ,∆t); by

symmetry of the expression on the left hand side of eq. (11)
we then have C(∆s,∆t) = C(|∆s| , |∆t|). We assume that
the system is scale-free, i.e. there exist exponents a, b, and c
such that for any r > 0

C(∆s,∆t) = raC(rb |∆s| , rc |∆t|) .

Formally, we can then set r = |∆t|−1/c, yielding

C(∆s,∆t) = |∆t|−
a
c C

(
|∆s|

|∆t|
b
c

,1

)
.

We rename the exponents a
c ≡ −µ and b

c ≡ µ
2ν , introduce

constants Γ and G2

Γ , and define

c(z) ≡ 1
ΓC
(( Γz

G2

) 1
2ν
,1
)
,

such that ultimately we can write the generic form of the two-
point correlations in our scale-free model as〈(

x(s′, t′) −x(s, t)
)2
〉

= Γ |∆t|µ c
(
G2 |∆s|2ν

Γ |∆t|µ

)
. (12)

This provides the starting point for our discussion.
For eq. (12) to describe a meaningful polymer model, we re-
quire that the limits ∆t → 0 (structural scaling) and ∆s → 0
(single locus MSD) are finite; with appropriate choice of the
constants Γ and Γ

G2 this then enforces

c(z) →
{

1 , z → 0
z , z → ∞

, (13)

such that the two limits reproduce eqs. (1) and (2) of the main
text, respectively. Convergence for z → ∞ is understood as
c(z)
z → 1 here, though we show below that some weak as-

sumptions for “physical” polymer models are equivalent to en-
forcing the stronger c(z) − z → 0 (which we would write as
κ≥ 0+ in the notation below).
Consider now a linear observable

y(t) ≡
∫ L

0
dsw(s)x(s, t) ,

where L is a constant (length along the polymer) and w(s)
is some weight distribution with suppw ⊆ [0,L]. Examples
include a single locus, w(s) = δ(s); the relative position of two
loci, w(s) = δ(s−L) − δ(s); or the center of mass of a finite
subchain, w(s) = 1

LΘ(s)Θ(L− s); where δ(s) is Kronecker’s
δ-distribution and Θ(s) the Heaviside-Θ function.
We can write the MSD of the observable y(t) as

MSDy (∆t) ≡
〈[
y(t′) −y(t)

]2〉
=
∫

ds′ dsw(s′)w(s)
〈[
x(s′, t′) −x(s′, t)

][
x(s, t′) −x(s, t)

]〉
= Γ |∆t|µ

∫ L

−L

d∆s
2L W

(
|∆s|
L

)[
c

(
G2 |∆s|2ν

Γ |∆t|µ

)
− G2 |∆s|2ν

Γ |∆t|µ

]
(14)

= Γ |∆t|µ

2νz
1

2ν
L

∫ zL

0
dz [c(z) −z]z

1
2ν−1W

((
z

zL

) 1
2ν
)
, (15)

where the first step is the definition of MSD and the second
inserts the definition of y(t); in the third step we expand the
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terms inside the expectation value and complete the squares
to produce square terms for which we can then substitute
eq. (12); at the same time, we introduce

W

(
|∆s|
L

)
≡ 2L

∫
dsw

(
s+ ∆s

2

)
w

(
s− ∆s

2

)
to reparametrize the double integral; in the last step we ex-
ploit the symmetry in the integrand to restrict the integration
domain to the positive half axis and substitute integration vari-
able and domain boundary

z ≡ G2 |∆s|2ν

Γ |∆t|µ
; zL ≡ G2L2ν

Γ |∆t|µ
.

Note that if W (a) has finite weight at a= 0 (i.e. a component
δ(a)), the lower limit of the integral in eq. (15) should be un-
derstood to give half of that contribution for the result to be
consistent with eq. (14).

Limit of long lag times. Consider the long-time limit

Γ |∆t|µ ≫ G2L2ν . Then z ≡ G2|∆s|2ν

Γ|∆t|µ ≪ 1∀|∆s| ≤ L and
consequently c(z) → 1 uniformly over the whole integration
domain in eq. (14). Introducing the constants

qy ≡
∫ 1

0
W (a)da and q̃y ≡ −

∫ 1

0
a2νW (a)da,

we then find

MSDy(∆t) → qyΓ |∆t|µ+ q̃yG
2L2ν

→
{
qyΓ |∆t|µ , qy ̸= 0
q̃yG

2L2ν = const. , qy = 0
(16)

as ∆t→ ∞.
The numerical prefactors qy and q̃y depend on the construc-
tion of the observable y(t): for a single locus (w(s) = δ(s))
one finds qy = 1, q̃y = 0; center of mass of a subchain of
length L gives qy = 1, q̃y = −(2ν2 + 3ν+ 1)−1; while for the
relative position of two loci (w(s) = δ(L−s) − δ(s)) one finds
qy = 0, q̃y = 2. Note the limiting behavior for qy = 1, which
are “center-of-mass-like” observables: over long times, those
behave like single loci,

MSDy(∆t) → Γ |∆t|µ as |∆t| → ∞ (if qy = 1),

independent of their internal makeup.

Two-point MSD. We consider the relative motion of two loci
at a fixed separation L; interestingly, this observable turns out
to provide a sufficient characterization of the whole model, at
the level of description employed here (two-point correlations).
Let w(s) = δ(L−s) − δ(s); then

W

(
|∆s|
L

)
= 4δ

(
|∆s|
L

)
− 2δ

(
1 − |∆s|

L

)
and eq. (14) becomes

MSD2-loc(∆t) = 2Γ |∆t|µ
[

1 − c

(
G2L2ν

Γ |∆t|µ

)]
+ 2G2L2ν .

(17)
Note that with the asymptotics of c given in eq. (13), this pro-
duces the expected limits

MSD2-loc(∆t) →
{

2Γ |∆t|µ , ∆t→ 0
2G2L2ν , ∆t→ ∞

.

Thus, knowing MSD2-loc for multiple pairs of loci at different
separations L (as in e.g. [5]) allows us to identify µ, ν, Γ,
and G from the asymptotes and then c(z) from the behav-
ior at finite lag times. The two locus MSD is thus a sufficient
characterization of the whole scale-free model; we exploit this
statement in an example below to indentify c(z) for the contin-
uous Rouse chain.

Center of mass of a finite subchain. As pointed out in a sep-
arate section of this appendix, the dimensional treatment for
this observable is exactly the same as for the finite coil in the
main text, with the difference that the exponent α′ now does
not relate to the diffusion of free tracer particles and thus can-
not be interpreted as an intrinsic property of the solvent. So
here we simply expect to reproduce eq. (10).
Let w(s) = 1

LΘ(s)Θ(L−s). Then

W

(
|∆s|
L

)
= 2
(

1 − |∆s|
L

)
and eq. (15) becomes

MSDCOM(∆t;L) = Γ |∆t|µ

νz
1

2ν
L

∫ zL

0
dz [c(z) −z]z

1
2ν−1

[
1 −
(
z

zL

) 1
2ν
]
,

(18)
where we remind ourselves of the time dependence of

zL ≡ zL(∆t) = G2L2ν

Γ |∆t|µ
→
{

∞ , ∆t→ 0
0 , ∆t→ ∞

.

Taking the long time limit zL → 0 of eq. (18) we note that
c(z) − z → 1∀z ∈ [0,zL], such that we can substitute a≡ z

zL
in the integral and obtain

MSDCOM(∆t;L) → Γ |∆t|µ
∫ 1

0

da
ν
a

1
2ν−1

[
1 −a

1
2ν

]
= Γ |∆t|µ as ∆t→ ∞,

as expected from the more general treatment of eq. (16).
For the short time limit zL → ∞ we introduce

Ir0 (zL) ≡
∫ zL

0
dz [c(z) −z]zr−1

and rewrite the integral in eq. (18) as

I(zL) ≡ I
1

2ν
0 (zL) −z

− 1
2ν

L I
1
ν
0 (zL) . (19)

We introduce the asymptotic expansion

c(z) = z+ qcz
−κ+o(z−κ) as z → ∞,

with qc ̸= 0 and κ > −1 (such that c(z)
z → 1 as z → ∞, as

required by eq. (13)). For large z, the dominant term in the
integrand of Ir0 (zL) is then qczr−1−κ, such that

Ir0 (zL) →


qI(r)<∞ , r < κ

qc logzL , r = κ
qc
r−κz

r−κ
L , r > κ

as zL → ∞.

Applying this to the second term in eq. (19), we note that the
prefactor kills all the cases where the integral does not diverge
fast enough:

z
− 1

2ν
L I

1
ν
0 (zL) →

{
0 , κ > 1

2ν
qcν

1−κν z
1

2ν−κ
L , κ≤ 1

2ν
as zL → ∞,

Grosse-Holz et al. | Scale-free models of chromosome structure, dynamics, and mechanics | 7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2025. ; https://doi.org/10.1101/2023.04.14.536939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536939
http://creativecommons.org/licenses/by/4.0/


such that overall eq. (19) has the limiting behavior

I(zL) →


qI
( 1

2ν
)
, κ > 1

2ν
qc logzL , κ= 1

2ν
qcν

(1−κν)(1−2κν)z
1

2ν−κ
L , κ < 1

2ν

as zL → ∞.

We summarize this behavior as

I(zL) → qν(κ)zmax(0, 1
2ν−κ)

L as zL → ∞,

with

qν(κ) ≡


∫∞

0 dz [c(z) −z]z
1

2ν−1 , κ > 1
2ν

∞ , κ= 1
2ν

qcν
(1−κν)(1−2κν) , κ < 1

2ν

,

where qν
( 1

2ν
)

= ∞ encodes the logarithmic correction and
matches the limiting behavior from both sides.
Upon inserting into eq. (18), we define λ ≡ min

(
κ, 1

2ν
)

and
find (as zL → ∞)

MSDCOM(∆t;L) → qν(κ)
ν

Γ |∆t|µ z−λ
L

= qν(κ)
ν

Γ1+λ

G2λ
|∆t|µ(1+λ)

L2νλ

∝ |∆t|α
′
L−δ′

,

where in the last step we introduced α′ ≡ µ(1 +λ) and δ′ ≡
2νλ, which are the heuristic exponents for short time center of
mass diffusion that we used in eq. (10).
It is now straightforward to check that the parametrization of
α′ and δ′ in terms of λ is equivalent to eq. (10): for any λ ∈ R,

2να′

2ν+ δ′ = µ,

while starting from that equation we can rewrite it as α′ =
µ
(

1 + δ′

2ν

)
and introduce λ ≡ δ′

2ν to reobtain α′ = µ(1 +λ)
and δ′ = 2νλ. Ultimately, we have recovered from the ex-
plicit model the exponent relationship previously derived from
dimensional analysis.
The explicit model does, however, allow us to make additional
connections that are not clear from dimensional analysis, as
demonstrated in the next section.

Displacement covariances. Consider two loci positioned at s
and s′ along the chain and their displacements over a finite
lag time ∆t≡ t′ − t. These displacements have a covariance

C∆x(∆s,∆t) ≡
〈[
x(s′, t′) −x(s′, t)

][
x(s, t′) −x(s, t)

]〉
= Γ |∆t|µ [c(z) −z]

→ qcΓ |∆t|µ z−κ (20)

∼ |∆t|µ(1+κ) |∆s|−2νκ ,

where the second step is analogous to eq. (14), we consider
the limiting behavior for early times, ∆t→ 0 (equivalently z →
∞), and use qc, κ, and z as defined previously. This short-
time asymptote has the form

C∆x(∆s,∆t) ∼ |∆t|α
′′

|∆s|−δ
′′
, (21)

where the exponents α′′ ≡ µ(1 +κ) and δ′′ ≡ 2νκ satisfy the
same exponent relationship as α′ and δ′ in eq. (10), or α and
δ in eq. (7), as expected from the dimensional argument.

Note, however, that δ′ and δ′′ both rely on the same physical
phenomenon: correlated motion of different loci at early times,
quantified by κ; one finds

δ′ = min(1, δ′′) . (22)

For an intuitive interpretation of this relation, note that δ′′ en-
codes how the movements of two loci on the chain—separated
by a finite distance ∆s—are correlated at short times ∆t,
i.e. before displacements can propagate along the backbone.
That is, δ′′ encodes non-backbone mediated correlated mo-
tion of two loci. If these correlations are long-ranged (δ′′ < 1),
they speed up the center of mass diffusion of finite coils
(δ′ = δ′′); if they are short-ranged (δ′′ > 1), finite coil diffu-
sion is governed by the backbone alone and δ′ = 1. Intuitively
one would similarly expect δ = δ′, but this remains outside the
realm of the present model, as δ in the main text character-
izes the motion of a finite stretch of chain, not a subchain of
the infinite system.
Another interesting observation concerning eq. (20) is that it
allows us to further constrain the generic scale-free model.
While so far we considered κ > −1 (which is enforced by
the requirement that c(z)

z → 1 as z → ∞), we now note that
κ≤ 0− would imply δ′′ ≤ 0−, i.e. short-time displacement co-
variance increases with increasing separation of the loci un-
der study; which seems pathological for the polymer models
we consider here. The limiting case κ = 0, in turn, is more
interesting: in this case δ′′ = 0, i.e. short-time displacement
covariance decays slower than any power with ∆s; or not at
all. Specifically, they might be completely independent of ∆s,
in which case

C∆x (∆s,∆t) = C∆x (0,∆t) = Γ |∆t|µ

implies c(z) = z+ 1 and specifically qc = 1. This scenario
describes a frozen polymer configuration moving as a rigid
object and is probably the most intuitive instance of the edge
case κ= 0.

Center of mass of multiple loci. Let w(s) = 1
N

∑N
i=1 δ(s−

si), with si ∈ [0,L] ∀i. Then

W

(
|∆s|
L

)
= 2
N
δ

(
|∆s|
L

)
+ 1
N2

∑
i ̸=j

δ

(
|∆s|
L

−
σij
L

)
,

where σij ≡
∣∣si−sj

∣∣, such that eq. (14) becomes

MSDN (∆t) = Γ |∆t|µ 1
N2

∑
ij

[
c
(
zij
)

−zij
]
, (23)

with

zij ≡
G2σ2ν

ij

Γ |∆t|µ
.

At long times zij → 0∀i, j, such that c(zij) → 1 and
MSDN (∆t) → Γ |∆t|µ as expected by eq. (16).
At short times zij → ∞∀i ̸= j while clearly still zij = 0∀i= j,
such that

MSDN (∆t) → Γ |∆t|µ

 1
N

+ qc
N2

∑
i ̸=j

z−κ
ij


→
{

Γ |∆t|µ , κ= 0, qc = 1
1
N Γ |∆t|µ , κ > 0

,
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as ∆t→ 0, where we omit the cases κ< 0 and qc ̸= 1 if κ= 0,
in line with the discussion of κ above. The case κ= 0, qc = 1
corresponds to a frozen coil as discussed before, while κ > 0
matches the expectation that at short times different loci move
independently, such that MSDN (∆t) → 1

NMSD1(∆t). Note
that this holds true even in the presence of non-backbone me-
diated correlations à la eq. (21), since α′′ = µ(1+κ)> 0. The
correlations thus vanish as ∆t → 0 and produce only a sub-
leading contribution to the short time limit considered here.
How does this observation—short time dynamics of the center
of mass of N discrete loci is independent of the correlations
encoded by κ—square with the short-time limit for the center
of mass of a finite subchain, which manifestly depends on κ?
To answer this question, note that the boundaries of the short
and long time limits for the discrete loci do not match: the short
time limit applies for lag times over which individual loci move
less than the separation between the closest pair, such that
zmin ≡ mini ̸=j zij ≫ 1, while the long time limit applies for lag
times over which individual loci move more than the separa-
tion between the most distant pair, zmax ≡ maxij zij ≪ 1. So
there exists an intermediate regime zmin ≲ 1 ≲ zmax, where
the behavior is non-universal in general (but can of course
still be predicted from eq. (23)). It is this intermediate regime
which will reproduce the previously discussed short time dy-
namics of the center of mass of a continuous subchain, if
we consider the special case of evenly spaced loci, si = i LN ,
i ∈ {1, . . . ,N}, and take N → ∞. The short time regime dis-
cussed in this section, in contrast, does not exist for the con-
tinuous subchain, since in that case zmin = 0 ̸≫ 1∀∆t (note
that technically here, the minimum in zmin should be replaced
with an infimum; one might also write zmin = 0+).

Example: continuous Rouse chain. We can identify the con-
tinuous Rouse chain as a specific instance of our generic
scale-free model by comparing eq. (17) to the known expres-
sion for the MSD of two loci on a continuous Rouse polymer
(e.g. eq. (2.88) in [66]). One obtains µRouse = νRouse = 1

2 and

cRouse(z) = e− z2
π +z erf z√

π

≡ z+ 1
2E 3

2

(
z2

π

)
= z+ O

(
e− z2

π

z2

)
as z → ∞. (24)

Thus, as z → ∞ the approach cRouse(z) → z is faster than
polynomial; we write κ = ∞ and recover δ′ = 1, α′ =
µ
(
1 + 1

2ν
)
. The latter can be rewritten as

µ= 2να′

2ν+ 1 ,

the exponent relation for freely draining chains found in [54].
Our treatment clarifies that this relation holds for any (scale-
free) model where short-time displacement correlations are
short-ranged (δ′′ > 1) and generalizes to eq. (10) otherwise.
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