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Abstract 
 
We introduce mvSuSiE, a multi-trait fine-mapping method for identifying putative causal variants 
from genetic association data (individual-level or summary data). mvSuSiE learns patterns of 
shared genetic effects from data, and exploits these patterns to improve power to identify causal 
SNPs. Comparisons on simulated data show that mvSuSiE is competitive in speed, power and 
precision with existing multi-trait methods, and uniformly improves over single-trait fine-mapping 
(SuSiE) performed separately for each trait. We applied mvSuSiE to jointly finemap 16 blood 
cell traits using data from the UK Biobank. By jointly analyzing the traits and modeling 
heterogeneous effect sharing patterns, we discovered a much larger number of causal SNPs 
(>3,000) compared with single-trait fine-mapping, and with narrower credible sets. mvSuSiE 
also more comprehensively characterized the ways in which the genetic variants affect one or 
more blood cell traits; 68% of causal SNPs showed significant effects in more than one blood 
cell type. 
 
Introduction 
 
Genome-wide association analyses (GWAS) have been performed for thousands of traits and 
have identified many genomic regions associated with diseases and complex traits [1–4]. Many 
statistical fine-mapping methods have been developed to prioritize putative causal SNPs for a 
single trait [5–16], but much fewer methods are available to finemap multiple traits 
simultaneously. A simple strategy to finemap multiple traits is to finemap each trait separately, 
then integrate the results post hoc. However, integration of results is not straightforward; for 
example, it is difficult to say whether signals identified in different single-trait analyses 
correspond to the same underlying causal SNP. Further, analyzing each trait independently is 
inefficient in that it cannot exploit the potential for increased power of a multivariate analysis 
[17]. Therefore, it is desirable to finemap the traits simultaneously—that is, to perform multi-trait 
fine-mapping. 
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Although several methods have been developed for multi-trait fine-mapping [18–26] (Table 1), 
these methods have important practical limitations. For example, several methods are 
computationally impractical for more than a small number of traits, and most methods make 
restrictive assumptions about how SNPs affect the traits, such as that the effects of causal 
SNPs are uncorrelated among traits. These assumptions are easily violated in fine-mapping 
applications; for example, in the blood cell traits considered in this paper, some genetic effects 
are specific to subsets of the traits (e.g., red blood cell traits). There are also several methods 
developed for the problem of colocalization of two traits (e.g., [27–30]), which has different 
analysis aims, but overlaps with multi-trait fine-mapping. 
 
Here we introduce mvSuSiE, a fast and flexible method for multi-trait fine-mapping. The name 
“mvSuSiE” evokes its origins as an extension of the Sum of Single Effects (SuSiE) model [13] to 
the multivariate analysis setting. In particular, mvSuSiE combines the SuSiE model with ideas 
from [31] to learn, in a flexible way, the patterns of shared genetic effects among traits. 
mvSuSiE automatically adapts to the patterns of effect sharing in the particular traits being 
analyzed, making it widely applicable to fine-mapping any set of related traits. We also leverage 
ideas from [16] to allow for the analysis of summary statistics generated from a genetic 
association study, which are often more accessible than individual-level data [32, 33]. mvSuSiE 
is computationally practical for jointly fine-mapping many traits in “biobank scale” data sets. We 
demonstrate its effectiveness compared with existing methods in simulations and by fine-
mapping 16 blood-cell traits in 248,980 UK Biobank samples. 
 
Results 
 
Methods overview. Consider fine-mapping R traits in a region containing J SNPs (or other 
biallelic loci). For each individual i = 1,…,N, let 𝑦!" denote trait r measured individual i, and let 𝑥!# 
denote the genotype of individual i at SNP j, encoded as the number of copies of the minor 
allele. We perform multi-trait fine-mapping using the following multivariate linear regression 
model: 

𝑦!" =	𝜇" +'𝑥!#𝑏#" + 𝑒!"

$

#%&

, 

 (1) 
 

where 𝜇" reflects the mean of trait r, 𝑏#" is the effect of SNP j on trait r, and the 𝑒!" ’s are normally 
distributed error terms (which may be correlated among the R traits). Within this regression 
model, we frame fine-mapping as a “variable selection problem”: most SNPs are assumed to 
have no effect on any trait—that is, most effects 𝑏#" are zero—and the goal of multi-trait fine-
mapping is to identify which SNPs have a non-zero effect on which traits, and to assess 
uncertainty in these inferences. (For brevity, we use the term “causal SNP” to mean a SNP with 
a non-zero effect.) Our mvSuSiE method achieves this goal by extending the Sum of Single 
Effects (SuSiE) model [13] to the multivariate setting. By extending ideas from [16], mvSuSiE 
can perform fine-mapping using either individual-level data (genotypes and phenotypes) or 
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summary data (e.g., LD matrix and marginal z-scores); see Methods and the Supplementary 
Note for details. 
 
Among existing approaches to fine-mapping, mvSuSiE is most closely related to CAFEH [23], 
which also extends SuSiE to perform multi-trait fine-mapping. Both CAFEH and mvSuSiE inherit 
much of the simplicity and benefits of single-trait SuSiE. Like SuSiE, both mvSuSiE and CAFEH 
require the user to specify an upper bound, L, on the number of causal SNPs in a region, and 
are robust to this upper bound being larger than needed. And both methods exploit SuSiE’s 
simple fitting procedure, Iterative Bayesian Stepwise Selection (IBSS) [13]. IBSS is similar to 
standard forward stepwise selection, but improves on it (i) by using Bayesian computations to 
take into account uncertainty in which SNPs are selected at each step and (ii) by iterating 
through selection events to allow errors in initial selections to be corrected as fitting progresses. 
However, mvSuSiE also improves on CAFEH in two key ways: 
  
(a) mvSuSiE uses a flexible prior distribution—specifically, a mixture of multivariate normal 
distributions, as in [31]—to model effect sharing patterns across traits. Further, the parameters 
of this prior are estimated from the data, allowing mvSuSiE to adapt to each data set. This 
flexible approach allows for different causal SNPs that show different patterns of association; for 
example, in analyses of blood cell traits (below), mvSuSiE learns that some SNPs affect 
primarily red blood cell (erythrocyte) traits, some affect primarily white blood cell (leukocyte) 
traits, and some affect both, or a subset of one or the other. In contrast, CAFEH assumes a less 
flexible and less adaptive prior in which causal effects are independent across traits. 
 
(b) mvSuSiE allows for correlations in measurements among traits, with these correlations again 
being estimated from the data. In contrast, CAFEH assumes measurements are independent 
across traits, which is an inappropriate assumption in association studies involving correlated 
traits. 
  
For (a), estimating the prior distribution from the data involves combining information across 
many causal SNPs from many regions, which is an additional step compared with standard 
single-trait fine-mapping analyses. This additional step can be avoided by using a simpler fixed 
prior (see Supplementary Note), but at potential loss of power. 
 
We also introduce novel ways to summarize the inferences from multi-trait fine-mapping. Again, 
this builds on SuSiE, which summarizes single-trait results by reporting, for each SNP, a 
“posterior inclusion probability” (PIP) quantifying the probability that the SNP is causal, and by 
reporting “credible sets” (CSs) [7, 13] that are designed to capture, with high probability, at least 
one causal SNP. Informally, each CS represents an independent association signal in the data, 
and the size of a CS (i.e., the number of SNPs in the CS) indicates how precisely one can 
pinpoint the causal SNP underlying this signal. For multi-trait analyses, it may seem natural to 
report PIPs and CSs separately for each trait. However, this raises thorny issues: for example, if 
the reported CSs for two traits overlap, do these represent the same signal with a single 
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underlying causal SNP, or different signals with multiple causal SNPs? To avoid these 
problems, we separate inference into two questions. 
 
First question: Which SNPs are causal for at least one trait? This question is answered by 
cross-trait PIPs and CSs that summarize the inferences across all traits. 
  
Second question: For each causal SNP (i.e., CS) identified, which traits does it affect? This is 
answered by computing a trait-wise measure of significance, the local false sign rate (lfsr) [31, 
34], for each SNP in each trait. (A small lfsr indicates a high confidence in the sign of the effect.) 
Because SNPs in a CS are typically in high LD, their trait-wise lfsr values are typically similar, 
and it is convenient to use a single number, the average lfsr, as a trait-wise measure of 
significance of each CS. If the average lfsr for trait r is small, this indicates high confidence in 
the sign of the effect—that is, a small posterior probability that the true effect is zero or that its 
estimated sign is incorrect—and we say the CS is “significant for trait r.” 
  
In summary, the reported results from a mvSuSiE analysis are the cross-trait PIPs and CSs 
together with trait-wise measures of significance (lfsr) for each SNP and each CS in each trait. 
Fig. 1 summarizes the mvSuSiE analysis workflow for a typical genetic association study. 
 
Evaluation in simulations using UK Biobank genotypes. We compared mvSuSiE with 
existing multi-trait fine-mapping methods and a single-trait fine-mapping method, SuSiE [13, 16], 
in simulations. Among available multi-trait fine-mapping methods (Table 1), MT-HESS [18] and 
BayesSUR [21, 36, 37] are similar to mvSuSiE in features and modeling assumptions, but are 
computationally impractical for large fine-mapping data sets. msCAVIAR [22] shares the ability 
of mvSuSiE to model effect sharing, but is designed for analyzing data from multiple studies, 
and therefore makes modeling assumptions that are less appropriate for analyzing multiple 
traits. MFM [24] is another multi-trait fine-mapping method, but is specific to multiple case-
control traits with a shared set of controls. Therefore, we focussed our comparisons on CAFEH 
[23] which can handle large multi-trait fine-mapping data sets. We also compared with flashfm 
[20] and PAINTOR [19] on smaller fine-mapping data sets with two traits. 
 
To make our simulations reflective of current large-scale genomic data sets, we obtained 
imputed genotype data from the UK Biobank [38] and simulated quantitative traits with 1–5 
simulated causal SNPs in each fine-mapping region. We simulated from a variety of effect-
sharing patterns, with effect sizes scaled to roughly reproduce the distributions of z-scores 
observed in genome-wide association analyses of complex traits from UK Biobank data. The 
fine-mapping regions were drawn from autosomal chromosomes and varied in size (0.4–1.6 
Mb), number of SNPs (1,000–5,000 SNPs), and LD patterns. 
 
We simulated traits under two scenarios: 
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(a) “Trait-specific + Shared Effects,” in which SNP effects on 20 independent traits were either 
specific to one trait, or shared among traits in simple ways (e.g., equal effects on a pair of traits 
and no effect on the remaining traits); 
 
(b) “Complex Shared Effects,” in which SNP effects on 16 correlated traits were generated from 
a variety of sharing patterns derived from the UK Biobank blood cell traits. 
 
To compare with PAINTOR and flashfm, we also simulated smaller data sets with 2 
independent traits and shared effects. 
 
We compared methods in their detection of cross-trait causal SNPs—in which we define a 
cross-trait causal SNP as one that affects at least one trait—and trait-wise causal SNPs. We 
assessed the performance of both SNP-wise measures (e.g., PIPs) and credible sets (CSs) for 
these tasks. In practice, we recommend focusing on CS-based inferences (Fig. 2c, d) rather 
than SNP-wise measures (Fig. 2a, b) because the CSs account for uncertainty in the causal 
SNP due to LD. (In our multi-trait fine-mapping of blood cell traits below, we focussed on CS-
based inferences.) However, not all competing methods provide comparable CS-based 
inferences (e.g., CAFEH does not provide trait-wise CSs), so for completeness and to allow 
comparisons with other methods, we also evaluated performance of SNP-wise significance 
measures (Fig. 2a, b). 
 
In all our comparisons, mvSuSiE improved power, coverage and resolution (purity, proportion of 
1-SNP CSs) over the SuSiE single-trait analyses (Fig. 2a, b, d; n = 600 simulations). The 
greatest gains were in Scenario B, where mvSuSiE had the advantage that it accounted for 
correlations among traits. Comparing CAFEH and single-trait SuSiE in SNP-wise inferences, 
CAFEH improved performance in Scenario A but performed slightly less well in detecting causal 
SNPs in Scenario B (Fig. 2a, b). CAFEH also produced poorly calibrated PIPs in Scenario B 
(Supplementary Fig. 1, Supplementary Table 1); for example, CAFEH at a seemingly stringent 
“study PIP” threshold of 0.95 resulted in an FDR of 0.13 that was much higher than mvSuSiE at 
an lfsr threshold of 0.05 (FDR = 0.0065). This also illustrates the difficulty of setting comparable 
thresholds for the different quantities outputted by different methods; therefore, following 
common practice in statistical fine-mapping papers, we presented results using power-FDR 
curves to sidestep this difficulty. 
 
Comparing CSs (Fig. 2c, d), CAFEH improved the purity of the CSs and the proportion of 1-SNP 
CSs, but these improvements were tempered by CAFEH's reduced power and coverage, 
particularly in Scenario B. A partial explanation for these results is that Scenario B contradicts 
CAFEH's assumptions of independent traits and independent causal effects. In support of this 
explanation, when we forced mvSuSiE to make the same independence assumptions as 
CAFEH, mvSuSiE's performance was reduced and the PIPs were also poorly calibrated (see 
the “random effects prior” and “independent traits” results in Supplementary Figures 1–3). 
These results illustrate the benefits of having a flexible model that can adapt to different fine-
mapping scenarios by learning effect-sharing patterns from the data (Supplementary Figures 2, 
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4–7). This flexibility comes at a computational cost—CAFEH was consistently faster than 
mvSuSiE (Fig. 2e, Supplementary Table 2)—but mvSuSiE was still fast enough to handle the 
largest fine-mapping data sets we considered. 
 
We also compared mvSuSiE with CAFEH, PAINTOR and flashfm in a variety of simpler fine-
mapping data sets simulated in a similar way to above but with only two traits (Supplementary 
Figures 8–15). Even when the traits were simulated independently in accordance with 
PAINTOR's modeling assumptions, PAINTOR had much lower power to detect causal SNPs 
than both SuSiE and mvSuSiE (Supplementary Fig. 8a). Both flashfm and mvSuSiE improved 
power over the SuSiE single-trait analyses, but mvSuSiE achieved much greater gains in power 
(Supplementary Figures 8–15). mvSuSiE also had considerably lower computational cost than 
PAINTOR and flashfm (Supplementary Fig. 9, Supplementary Table 2). The performance of 
CAFEH in these simpler simulations was similar to mvSuSiE except when the two traits were 
highly correlated (Supplementary Figures 10, 11). 
 
In summary, these simulations demonstrate the benefits of mvSuSiE as an efficient and flexible 
multi-trait fine-mapping method. In particular, mvSuSiE consistently increased power to detect 
causal SNPs, improved precision (reduced CS size) compared with fine-mapping each trait 
separately, and was the only method that provided both cross-trait and trait-wise significance 
measures. 
 
Multi-trait fine-mapping of blood cell traits from UK Biobank. To illustrate mvSuSiE in a 
substantive application, we fine-mapped blood cell traits using data from the UK Biobank [38]. 
Previous analyses of these data include association analyses [39, 40] and single-trait fine-
mapping [41, 42], but multi-trait fine-mapping using mvSuSiE has the potential to improve power 
and precision of fine-mapping. Multi-trait fine-mapping is also better for answering questions 
about shared genetic effects—which SNPs affect which traits—and hence provide insights into 
the underlying biology. 
 
Focusing on a subset of 16 blood cell traits (Supplementary Table 3), we performed standard 
PLINK association analyses [43] with n = 248,980 UK Biobank samples for which all 16 traits 
and imputed genotypes were available (Methods). We included covariates such as sex and age, 
as well as genotype principal components to limit spurious associations due to population 
structure. From the results of these association analyses, we obtained 975 candidate genomic 
regions for fine-mapping (Supplementary Table 4). We then applied the mvSuSiE analysis 
pipeline to these 975 candidate regions (Methods). To understand the benefits of a multi-trait 
fine-mapping, we also ran SuSiE on the same regions, separately for each trait. 
 
Genetic relationships among blood traits inform discovery of multi-trait causal SNPs. 
From the 975 candidate regions, mvSuSiE identified 3,396 independent causal signals (95% 
cross-trait CSs). The median size of a CS was 7 SNPs. Among these CSs, 726 contained just 
one SNP (“1-SNP CS”); therefore, mvSuSiE identified 726 high-confidence candidate causal 
SNPs (PIP > 0.95; Supplementary Table 5). Several of these 1-SNP CSs (36) were not 
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identified in any of our single-trait (SuSiE) analyses, underscoring the benefits of combining 
evidence across genetically related traits. Reassuringly, 496 of the 726 SNPs were also 
identified as high-confidence causal SNPs (PIP > 0.95) in the single-trait analyses of [42], and 
145 of 726 overlapped with [41]. 
 
The number of CSs significant in each trait (average lfsr < 0.01) ranged from 370 (basophil 
percentage) to 1,423 (platelet count), and the number of 1-SNP CSs ranged from 108 to 335 
(Fig. 3c). (Note that 10 of the 3,396 CSs were not significant in any traits at average lfsr < 0.01.) 
Notably, mvSuSiE increased fine-mapping discovery and resolution compared to SuSiE single-
trait fine-mapping: the number of trait-wise significant CSs increased, on average, 2.2-fold 
compared with SuSiE, and the number of trait-wise significant 1-SNP CSs increased, on 
average, 3.5-fold (Fig. 3c). 
 
The fine-mapped SNPs from mvSuSiE were generally slightly more enriched for genomic 
regulatory annotations than those for SuSiE (Supplementary Fig. 16), providing indirect support 
for the additional mvSuSiE findings being driven by real signals rather than false positives. For 
example, the mvSuSiE-fine-mapped SNPs had an enrichment odds ratio of 11.9 for being an 
eQTL compared to 9.7 from SuSiE. We also analyzed enrichment of the fine-mapped SNPs for 
accessible chromatin regions in hematopoietic cell-types [41] (Supplementary Figures 17, 18 
and Supplementary Tables 6, 7). Similar to [42], both the SuSiE and mvSuSiE results showed 
some of the expected enrichments such as enrichment of SNPs affecting platelet-related traits 
for open chromatin in platelet-producing megakaryocytes. 
 
mvSuSiE improved discovery and resolution over single-trait analysis by learning and exploiting 
patterns of shared (and not shared) genetic effects from the data. In these data, the most 
prominent learned patterns involved strong sharing of effects amongst traits for the same blood 
cell type (Fig. 3d). However, many other patterns were also identified (Supplementary Fig. 5), 
including both trait-specific and broad effects, suggesting that SNPs can affect blood cells in a 
wide variety of ways, presumably reflecting a wide variety of underlying biological mechanisms. 
By applying mvSuSiE with a prior that incorporates these learned sharing patterns, we obtained 
a genome-wide summary that underscores the diversity of genetic effects on blood cell traits 
(Fig. 3a, b, d). Genetic effects are more commonly shared among traits within the same blood 
cell type as one might expect (Fig. 3e), but SNPs affecting multiple blood cell types are also 
common (Fig. 3b). 
 
Multi-trait fine-mapping reveals highly heterogeneous genetic determination of blood 
traits. To illustrate the potential for mvSuSiE to help dissect complex genetic association 
signals, we examine four example blood cell trait loci in more detail (Fig. 4). 
 
Fig. 4a shows the mvSuSiE results for the EXT1-SAMD12 locus. Single-trait association 
analysis of this region shows only one trait, basophil percentage, with a genome-wide significant 
association (PLINK two-sided t-test p-value < 5 × 10-8). Similarly, single-trait fine-mapping with 
SuSiE identified a single CS for basophil percentage containing 10 candidate SNPs, and no 
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CSs ifor other traits. From these results one might conclude that the causal SNP is specific to 
basophil percentage. However, the mvSuSiE fine-mapping results assess the CS as significant 
in most traits, suggesting that in fact the causal SNP has broad effects across many traits. 
(Indeed, all traits had marginal association p-values less than 0.003 with the lead SNP, which in 
some situations might be considered “significant”.) The mvSuSiE CS is smaller than the single-
trait CS (8 vs. 10 SNPs), illustrating the improved fine-mapping resolution that can come from 
combining information across traits (see also Supplementary Fig. 19). 
 
Fig. 4b shows mvSuSiE results for the Tensin 3 locus. Vuckovic et al [42] used single-trait fine-
mapping to identify causal signals for several red and white blood cell traits at this locus. 
However, a single-trait analysis does not tell us whether these signals are due to one or a few 
causal SNPs affecting many blood cell traits, or due to many causal SNPs affecting individual 
traits. The multi-trait mvSuSiE analysis identified three causal signals (cross-trait CSs) with 
three distinct patterns of genetic effect: one mostly affects red blood cell traits (CS3); another 
has a detectable effect in HLR% only (CS1); and a third has smaller effects in both white blood 
cell and platelet traits (CS2). The three different patterns suggest that the biological effects of 
these SNPs are also different, and they suggest a multi-faceted role for TNS3 in affecting blood-
cell traits. This example illustrates the flexibility of mvSuSiE, including its ability to capture 
different patterns of effect-sharing even within a single locus, and its ability to extract relatively 
simple inferences in quite complex situations. 
 
Fig. 4c shows a more complex example involving many signals in and around RUNX1. SNPs in 
the RUNX1 locus have previously been associated with rheumatoid arthritis [44, 45] and other 
immune-related diseases (e.g., [46, 47]), and colocalization analyses have suggested that the 
causal SNPs are also associated with eosinophil proportions in blood [42]. Multi-trait fine-
mapping results from mvSuSiE suggest a complex picture with 11 signals (cross-trait CSs), 
each with detectable effects in many different blood cell traits, and some with no detectable 
effect on eosinophil proportions. These results suggest that the mechanisms by which this gene 
affects immune-related diseases may be more complex than just through eosinophils, possibly 
involving many platelet, red blood cell and other white blood cell traits. 
 
Finally, Fig. 4d shows an even more complex example where many causal signals are mapped 
to a region containing many genes, including PIEZO1 and ZFPM1. This is a gene-dense region 
with well-studied connections to blood cell traits and blood-related diseases [48–52]. mvSuSiE 
identified 14 independent signals (cross-trait CSs) in the region. These 14 signals show a wide 
variety of effect patterns; for example, some are significant in only a few traits related to mature 
red blood cells (e.g., CS12, CS14), some are significant across a broader range of red blood 
cell traits (CS2), and some are significant across most traits (CS13). Regions of this level of 
complexity may take considerable additional investigation to fully understand. Although this is a 
complex example, we note that of the 14 CSs identified in this region, 7 contain a single SNP, 
demonstrating that even in complex regions mvSuSiE can identify high-confidence causal 
SNPs. 
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Discussion 
 
We have introduced mvSuSiE, a fast and flexible multi-trait fine-mapping method. mvSuSiE 
outperformed single-trait fine-mapping methods in both power and resolution. Unlike most 
available multi-trait fine-mapping methods, mvSuSiE can efficiently analyze dozens of 
correlated traits and can model complex patterns of effect size variation via a flexible data-
driven prior distribution. The prior model also includes as special cases several simpler models 
that are commonly used in meta-analyses, such as the “fixed effects” model which assumes 
equal effects in all traits, and the “random effects” model which allows for different effect sizes 
among traits [53]. These models can be used in place of the data-driven prior to speed up 
computation if users desire, though at a potential loss of power. See the Supplementary Note 
for additional discussion, where we discuss some of mvSuSiE’s limitations, and give practical 
guidance on applying mvSuSiE to other types of traits (e.g., binary traits) and on dealing with 
other potential complications (e.g., missing data). 
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Tables 
 

 
upper limit on 
number of data accepted  

allows 
correlated 

models 
effect sample runtimes   

Method causal SNPs summary sufficient CSs traits sharing 2 traits 20 traits software version 
mvSuSiE  user-specified yes yes yes yes yes 41 s 2 min R 9f28916 
flashfm† [20] 10 yes yes  yes yes yes 5 min – R 0.0.0.9000 
MT-HESS [18] no limit no no no yes yes >1 day – R 1.99 
BayesSUR [21] no limit no no no yes yes 7 h – R 2.0-1 
msCAVIAR [22] user-specified yes no no no yes >1 day – command-line 0.1 
CAFEH [23] user-specified yes yes yes no no 20 s 37 s Python 1.0 
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PAINTOR [19] user-specified yes no no no no 30 min – R 3.1 
MFM§ [24] user-specified no no yes no no – – R 0.2-1 
HyPrColoc [25] 1 yes no yes‡ no no <1 s <1 s R 1.0 
moloc [26] 1 yes no yes‡ no no <1 s – R 0.1.0 
 
Table 1 | Overview of available statistical methods for multi-trait fine-mapping. Sample 
runtimes were obtained by running on data sets with J = 5,000 SNPs, N = 250,000 individuals 
(only relevant to methods that do not accept summary data), and R = 2 or 20 traits. When 
possible, the upper limit on the number of causal SNPs, L, was set to 10. In our tests, PAINTOR 
ran for a very long time when allowing 3 or more causal SNPs, so we set L = 2. (This was 
without the “MCMC” option, because at the time of our trials the “MCMC” option produced 
unreasonable results.) moloc was computationally impractical with more than 4 traits. See the 
Supplementary Note for further details and explanation of the table columns. §MFM is for 
multiple case-control traits with a shared set of controls. †flashfm's properties depend on the 
single-trait fine-mapping method; to illustrate, we used FINEMAP [10]. flashfm with FINEMAP 
was limited to at most 5 traits. (Another flashfm interface allows up to 6 traits.) ‡Calculation of 
CSs is trivial when limiting to at most 1 causal SNP. 
 
Figure legends 
 
Figure 1 | Overview of multivariate fine-mapping using mvSuSiE. mvSuSiE accepts as 
input R traits and SNP genotypes measured in N individuals, and M target fine-mapping 
regions. Alternatively, mvSuSiE-RSS accepts SNP-level summary statistics (a) computed from 
these data. The weakest SNP association signals are extracted from these data (b), which are 
used in (c) to estimate correlations in the trait residuals. Separately, the strongest association 
signals are extracted (d) to estimate effect sharing patterns (e) using Extreme Deconvolution 
(ED) [35]. Finally, the effect-sharing patterns estimated by ED, together with the estimated 
weights, are used to construct a prior for the unknown multivariate effects, and this prior is used 
in mvSuSiE to perform multivariate fine-mapping simultaneously for all SNPs within a selected 
region (f, g). Steps f and g are repeated for each fine-mapping region of interest. The key 
mvSuSiE outputs are: a list of credible sets (CSs), each of which is intended to capture a causal 
SNP; a posterior inclusion probability (PIP) for each SNP giving the probability that the SNP is 
causal for at least one trait; average local false sign rates summarizing the significance of each 
CS in each trait; and SNP-wise posterior effect estimates on each trait. For example, if a region 
contains 3 causal SNPs, mvSuSiE will, ideally, output 3 CSs, each containing a true causal 
SNP, with the average lfsr indicating which traits are significant for each CS. See Methods for 
definitions. 
 
Figure 2 | Comparison of fine-mapping methods in simulated data. Parts a and b show 
power vs. FDR in identifying (a) cross-trait or (b) trait-wise causal SNPs, using SNP-wise 
measures. In each scenario, FDR and power were calculated by varying the measure threshold 
from 0 to 1 (n = 600 simulations). FDR = FP/(TP + FP) and power = TP/(TP + FN), where FP, 
TP, FN, TN denote, respectively, the number of false positives, true positives, false negatives 
and true negatives. The specific SNP-wise measures used in a are PIP (mvSuSiE, CAFEH), 
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max-PIP (SuSiE); in b, PIP (SuSiE), min-lfsr (mvSuSiE) and study PIP (CAFEH). In a and b, 
power and FDR at specific thresholds are indicated by the circles and triangles. Note that the 
thresholds for the different methods are not equivalent or comparable; results are shown at 
these thresholds for illustration only. See also Supplementary Table 1. Parts c and d evaluate 
the 95% CSs from the n = 600 simulations using the following metrics: coverage, the proportion 
of CSs containing a true causal SNP; power, the proportion of true causal SNPs included in at 
least one CS; the proportion of CSs that contain a single SNP (“1-SNP CSs”); and median 
purity, in which “purity” is defined as the smallest absolute correlation (Pearson's r) among all 
SNP pairs in a CS. Histograms of CS sizes (number of SNPs in a 95% CS) are given for each 
scenario. Target coverage (95%) is shown as a dotted horizontal line. Error bars show 2 times 
the empirical s.e. from the results in all simulations. Part e summarizes runtimes (n = 600 
simulations); the SuSiE runtimes are for running SuSiE independently on all traits. The box plot 
whiskers depict 1.5 times the interquartile range, the box bounds represent the upper and lower 
quartiles (25th and 75th percentiles), the center line represents the median (50th percentile), 
and points represent outliers. Note that SuSiE analyzes each trait independently and therefore 
is not included in c. CAFEH does not provide trait-wise CSs and therefore is not included in d. 
 
Figure 3 | mvSuSiE fine-mapping and primary effect sharing patterns in UK Biobank 
blood cell traits. Parts a, b and e give summaries of the 3,396 mvSuSiE CSs identified from 
the 975 candidate fine-mapping regions: (a) number of significant (average lfsr < 0.01) traits in 
each CS; (b) significant traits in CSs grouped by blood cell-type subsets; (e) pairwise sharing of 
significant CSs among the traits. In e, for each pair of traits we show the ratio of the number of 
CSs that are significant in both traits to the number of CSs that are significant in at least one 
trait. (c) Number of CSs and 1-SNP CSs for each trait identified by SuSiE and mvSuSiE (after 
removing CSs with purity less than 0.5). In c, each mvSuSiE count is the number of mvSuSiE 
CSs or 1-SNP CSs that are significant (average lfsr < 0.01) for the given trait. (d) Covariance 
matrices in the mvSuSiE data-driven prior capturing the top sharing patterns (these are the 
covariance matrices with the largest mixture weights in the prior). The covariance matrices were 
scaled separately for each plot so that the plotted values lie between –1 and 1. See 
Supplementary Fig. 5 for the full set of 15 sharing patterns. 
 
Figure 4 | Examples of blood cell trait loci fine-mapped using mvSuSiE. The left-hand plot  
in each panel a–d is a “PIP plot” showing cross-trait posterior inclusion probabilities (PIPs) for 
each SNP. The cross-trait PIP is an estimate of the probability that the SNP is causal for at least 
one trait. The labeled SNPs are the “sentinel SNPs”, the SNPs with the highest cross-trait PIP in 
each CS. “Purity” is defined as the minimum absolute pairwise correlation (Pearson's r) among 
SNPs in the CS. The right-hand plots a–d shows the posterior effect estimates of the sentinel 
SNPs (only for CSs that are significant for the given trait, with average lfsr < 0.01). All estimates 
and tests are from a data sample of size n = 248,980. 
  
References 
[1] O. Canela-Xandri, K. Rawlik and A. Tenesa. An atlas of genetic associations in UK Biobank. 
Nature Genetics 50,1593–1599 (2018).  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2025. ; https://doi.org/10.1101/2023.04.14.536893doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536893
http://creativecommons.org/licenses/by/4.0/


 
 

12 

[2] P. M. Visscher, N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy, M. A. Brown and J. Yang, 10 
Years of GWAS Discovery: biology, function, and translation. American Journal of Human 
Genetics 101, 5–22 (2017).  
[3] A. Buniello, J. A. L. MacArthur, M. Cerezo, L. W. Harris, J. Hayhurst and others. The NHGRI-
EBI GWAS Catalog of published genome-wide association studies, targeted arrays and 
summary statistics 2019. Nucleic Acids Research 47, D1005–D1012 (2018).  
[4] V. Tam, N. Patel, M. Turcotte, Y. Bossé, G. Paré and D. Meyre. Benefits and limitations of 
genome-wide association studies. Nature Reviews Genetics 20, 467–484 (2019).  
[5] F. Hormozdiari, E. Kostem, E. Y. Kang, B. Pasaniuc and E. Eskin. Identifying causal variants 
at loci with multiple signals of association. Genetics 198, 497–508 (2014).  
[6] G. Kichaev, W.-Y. Yang, S. Lindstrom, F. Hormozdiari, E. Eskin, A. L. Price, P. Kraft and B. 
Pasaniuc. Integrating functional data to prioritize causal variants in statistical fine-mapping 
studies. PLoS Genetics 10, e1004722 (2014).  
[7] J. B. Maller, G. McVean, J. Byrnes, D. Vukcevic, K. Palin and others. Bayesian refinement of 
association signals for 14 loci in 3 common diseases. Nature Genetics 44, 1294–1301 (2012).  
[8] J. Yang, T. Ferreira, A. P. Morris, S. E. Medland, P. A. F. Madden, A. C. Heath, N. G. Martin, 
G. W. Montgomery, M. N. Weedon, R. J. Loos, T. M. Frayling, M. I. McCarthy, J. N. Hirschhorn, 
M. E. Goddard, P. M. Visscher, GIANT Consortium and DIAGRAM Consortium. Conditional and 
joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing 
complex traits. Nature Genetics 44, 369–375 (2012).  
[9] W. Chen, B. R. Larrabee, I. G. Ovsyannikova, R. B. Kennedy, I. H. Haralambieva, G. A. 
Poland and D. J. Schaid. Fine mapping causal variants with an approximate Bayesian method 
using marginal test statistics. Genetics 200, 719–736 (2015).  
[10] C. Benner, C. C. A. Spencer, A. S. Havulinna, V. Salomaa, S. Ripatti and M. Pirinen, 
FINEMAP: efficient variable selection using summary data from genome-wide association 
studies. Bioinformatics 32, 1493–1501 (2016).  
[11] X. Wen, Y. Lee, F. Luca and R. Pique-Regi. Efficient integrative multi-SNP association 
analysis via deterministic approximation of posteriors. American Journal of Human Genetics 98 
1114–1129 (2016).  
[12] Y. Lee, L. Francesca, R. Pique-Regi and X. Wen, Bayesian multi-SNP genetic association 
analysis: control of FDR and use of summary statistics. bioRxiv doi:10.1101/316471 (2018).  
[13] G. Wang, A. Sarkar, P. Carbonetto and M. Stephens. A simple new approach to variable 
selection in regression, with application to genetic fine mapping. Journal of the Royal Statistical 
Society, Series B 82, 1273–1300 (2020).  
[14] C. Wallace, A. J. Cutler, N. Pontikos, M. L. Pekalski, O. S. Burren, J. D. Cooper, A. R. 
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 Methods 
 
Ethics statement. This work used publicly available data sets and so ethical approval was not 
required. 
 
Multivariate multiple regression. mvSuSiE is based on a basic multivariate multiple 
regression model for R quantitative traits observed in N individuals, 
 

𝒀	~	𝑀𝑁'×)(𝑿𝑩, 𝑰' , 𝑽), 
(2) 

 
where 𝒀 ∈ ℝ'×) is a matrix storing N observations of R traits, 𝑿 ∈ ℝ'×$ is a matrix of N 
genotypes at J SNPs, 𝑩 ∈ ℝ$×) is a matrix of regression coefficients (“effects”) for the J SNPs 
and R traits, V is an R × R covariance matrix (we assume V is invertible), 𝐼' is the N × N identity 
matrix, and 𝑀𝑁'×)9𝑴, 𝚺*+,, 𝚺-+.< denotes the matrix normal distribution [54, 55] with mean 𝑴 ∈
ℝ'×) and covariance matrices 𝚺*+,, 𝚺-+. (of dimension N × N and R × R, respectively). 
 
Intercept. We do not explicitly include an intercept in (2). Instead, we account for an intercept 
implicitly by “centering” the columns of X and the columns of Y so that the mean of each column 
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is zero. From a Bayesian perspective, centering the columns of X and Y is equivalent to 
integrating with respect to an (improper) uniform prior on the intercept. (This is a multivariate 
generalization of the result for univariate regression in [56]. See the Supplementary Note for a 
more formal proof of this result.) In short, centering eliminates the need to explicitly include an 
intercept in (2), and we proceed with mvSuSiE assuming that X and Y have been centered. 
 
The mvSuSiE model. mvSuSiE generalizes the “Sum of Single Effects” (SuSiE) model [13] to 
the multivariate setting: 

𝑩 = ∑ 𝑩(0)2
0%&   

𝑩(0) = 𝜸(0)⨂𝒃(0), 
(3) 

 
where 𝜸(0) ∈ {0,1}$ is a vector of indicator variables in which exactly one of the J elements is 
one and the remaining are zero, 𝒃(0) ∈ ℝ) is a vector of regression coefficients, and 𝒖⨂𝒗 = 𝒖𝒗⊺ 
denotes the outer product of (column) vectors u and v. The coefficients B defined in this way 
are a sum of L “single effects” 𝑩(0). In particular, matrix 𝑩(0) ∈ ℝ$×) has at most one row 
containing non-zero values, and these non-zero values are determined by 𝒃(0). We therefore 
refer to 𝑩(0) as a “single effect matrix” because it encodes the effects of a single SNP. The final 
set of coefficients B is a matrix with at most L rows containing non-zero values. 
 
Similar to SuSiE, we introduce priors for the indicator variables 𝜸(0) and regression coefficients 
𝒃(0), 

𝜸(0) ∼ Multinom(1, 𝝅) 
𝒃(0) ∼ 𝑔0, 

(4) 
 

in which Multinom(𝑚,𝝅) denotes the multinomial distribution for m random multinomial trials 
with category probabilities 𝝅 = 9𝜋&, . . . , 𝜋$<, such that 𝜋# ≥ 0, ∑ 𝜋#

$
#%& = 1. The 𝜋# ’s are the prior 

inclusion probabilities. By default, we assume a uniform prior; that is, 𝜋# = 1/𝐽, for 𝑗 = 1, . . . , 𝐽. 
(All the results in this paper use this default prior.) Our software implementation of mvSuSiE 
also support for other choices of 𝝅; for example, 𝝅 could be determined by external biological 
information about the SNPs (e.g., [57]). 
 
The prior distribution 𝑔0 for each single effect 𝒃(0) should capture the variety of effect sharing 
patterns we expect from the multiple traits. To this end, we use a prior similar to the mixture of 
multivariate normals prior introduced in [31], 
 

𝑔0(𝒃) = ∑ 𝜔45
4%& 𝑁)9𝒃; 0, 𝜎607𝑼4<,  

(5) 
in which each 𝑼4 is a (possibly singular) covariance matrix, 𝜎607 ≥ 0 scales the prior for each 
single effect l, 𝝎 = (𝜔&, . . . , 𝜔5) is a vector of mixture weights, such that 𝜔4 ≥ 0, ∑ 𝜔45

4%& = 1, 
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and 𝑁8(𝒙; 𝝁, 𝚺) denotes the multivariate normal distribution on 𝒙 ∈ ℝ8   with mean 𝝁 ∈ ℝ8 and d 
× d covariance 𝚺. The covariance matrices 𝒰 = {𝑼&, . . . , 𝑼𝑲} and the mixture weights 𝝎 must be 
chosen beforehand, whereas prior scaling parameters 𝜎6&7 , . . . , 𝜎627  are treated as unknown, and 
are estimated from the data. 
 
In summary, mvSuSiE is a multivariate regression model with a flexible mixture-of-normals prior 
on the “single effects” 𝒃(0). The unknowns of primary interest are the single-effect matrices 𝑩(0). 
As we explain in more detail below, we compute a posterior distribution of the single effects, 
which is then used to compute key fine-mapping statistics, including posterior inclusion 
probabilities (PIPs) and credible sets (CSs). The scaling factors 𝜎607  are not of primary interest to 
the fine-mapping (“nuisance parameters”), and are estimated from the data to aid in better 
posterior estimation of the single effects. Other model parameters, such as the residual 
covariance matrix V, are assumed to be known, or should have been estimated previously. In 
the Supplementary Note, we give guidance on choosing these parameters or estimating them 
from data. See also the Supplementary Note for derivations, development of the model fitting 
algorithm, and additional technical details. 
 
UK Biobank data. The UK Biobank is a prospective cohort study with detailed phenotype and 
genotype data collected from approximately 500,000 participants recruited in the United 
Kingdom, with ages between 40 and 69 at time of recruitment [38, 58]. For fine-mapping, we 
focused on a subset of 16 blood cell traits from the UK Biobank haematology data collection 
[59]. These blood cell traits were also the focus of a recent association analysis [39, 40] and 
fine-mapping studies [41, 42]. Several of the UK Biobank blood cell traits are based on the 
same measured quantities and are therefore highly correlated so we did not include all the 
blood cell traits in our analyses. For example, relative volume of erythrocytes, also known as 
“hematocrit” (HCT), is calculated from mean corpuscular volume (MCV) and red blood cell count 
(RBC#), so to avoid including highly correlated traits we did not include HCT. The blood cell 
traits used in our fine-mapping analyses are summarized in Supplementary Table 3. 
 
The UK Biobank imputed genotypes feature a high density of available SNPs so they are well 
suited for fine-mapping. We used a subset of the 502,492 available UK Biobank genotypes 
(version 3), removing samples that met one or more of the following criteria for exclusion: 
mismatch between self-reported and genetic sex; pregnant; one or more data entries needed for 
the analysis or data preparation steps are missing; and, following [39, 42], a blood-related 
disease was reported in the hospital in-patient data (blood-related diseases included were 
leukemia, lymphoma, bone marrow transplant, chemotherapy, myelodysplastic syndrome, 
anemia, HIV, end-stage kidney disease, dialysis, cirrhosis, multiple myeloma, lymphocytic 
leukemia, myeloid leukemia, polycythaemia vera, haemochromatosis). Additionally, we 
excluded outlying genotype samples based on heterozygosity and/or rate of missing genotypes 
as defined by UK Biobank (data field 22027), and we removed any individuals having at least 
one relative in the cohort based on UK Biobank kinship calculations (samples with a value other 
than zero in data field 22021). Finally, to limit confounding due to population structure, we 
included only genotype samples marked as “White British” (based on a principal components 
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analysis of the genotypes [38] stored in data field 22009). After filtering genotype samples 
according to these criteria, 257,605 samples remained. 
 
We applied quantile normalization to the 16 blood cell traits measured in the 257,605 samples, 
separately for each trait, to transform each trait to the standard normal distribution. Since 
ultimately we aimed to jointly model the 16 blood cell traits, we removed outlying phenotypes 
according to a simple multivariate normal distribution of the phenotypes. Specifically, after 
quantile normalization, we measured the Mahalanobis distance 𝒚!⊺𝚺c:&𝒚! for each individual i, 
where 𝒚! is the vector of 16 blood cell traits measured in individual i, and 𝚺c is the sample 
covariance matrix estimated from the 257,605 UK Biobank samples. We discarded samples 
with Mahalanobis distance falling within the [0.99, 1] quantile of the chi-square distribution with 
16 degrees of freedom. This step removed 8,625 samples, for a final total of 248,980 UK 
Biobank samples. 
 
Base-pair positions of the SNPs are reported using Genome Reference Consortium human 
genome assembly 37 (hg19). 
 
Association analyses of UK Biobank blood cell traits. Using the UK Biobank genotype and 
phenotype data prepared as described above, we computed association statistics for each of 
the 16 blood cell traits and for all available biallelic SNPs on autosomal chromosomes meeting 
the following criteria: minor allele frequency of 0.1% or greater; information (“INFO”) score of 0.6 
or greater (the INFO score quantifies imputation quality). The same criteria were used in [60] to 
filter the SNPs. 
 
Association statistics were computed using the --glm function in PLINK (version 2.00a2LM, 64-
bit Intel, Feb 21, 2009) [43] with hide-covar no-x-sex omit-ref –vif 100. Following 
[1, 42], we included the following covariates in the association analyses: sex (data field 31), age 
at recruitment (21022), age × age, assessment center (54), and genotype measurement batch 
(22000). To limit inflation of spurious associations due to population structure, we also included 
the top 10 genotype PCs as covariates following previous association analyses of UK Biobank 
data (e.g., [61]). (These PCs were previously computed by UK Biobank [38] and stored in data 
field 22009.) The covariates input file for PLINK was prepared by calling the model.matrix 
function in R and standardizing quantitative covariates (age, PCs) to have mean 0 and variance 
1. 
 
The summary data provided as input to SuSiE and mvSuSiE were the z-scores and p-values 
extracted from the T_STAT and P columns in the plink2 --glm outputs. The association 
statistics computed using PLINK have been made available in a Zenodo repository (see “Data 
availability”). 
 
Selection of regions for fine-mapping. To select regions for fine-mapping, we adapted the 
approach used in [42] to the multivariate setting. In brief, we began by identifying regions 
separately for each trait. For each significant association (PLINK two-sided t-test p-value less 
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than 5 × 10:;), we defined the fine-mapping region as all SNPs within ±250 kb of the significant 
association. Next, any regions overlapping by one or more SNPs were combined into a larger 
region. We repeated combining regions until no regions overlapped. This resulted in a set of 
fine-mapping regions for each of the 16 blood cell traits, similar to [42]. To form a single set of 
fine-mapping regions for all 16 traits, we then merged two regions from different traits whenever 
they overlapped. The end result of this procedure was a set 975 of disjoint fine-mapping regions 
satisfying the following two properties: (i) all significant SNPs (with PLINK p-value for two-sided 
t-test less than 5 × 10:;) belong to exactly one region; and (ii) all SNPs within 250 kb of a 
significant SNP belong to exactly one region. This procedure generated fine-mapping regions 
that varied considerably in size: their lengths ranged from 411 kb to 8.73 Mb (average size: 961 
kb; median size: 686 kb); and the number of SNPs ranged from 93 SNPs to 36,605 SNPs 
(average number of SNPs: 4,776; median number of SNPs: 3,514). A listing of all 975 regions is 
given in Supplementary Table 4. These same regions were used in both the single-trait and 
multi-trait fine-mapping. 
 
Note that we did not finemap the extended MHC [36] (defined as base-pair positions 25–36 Mb 
on chromosome 6). The MHC is particularly challenging to analyze and interpret, and therefore 
is typically analyzed separately [37, 38, 39]. 
 
Simulations using UK Biobank genotypes. We evaluated the fine-mapping methods on data 
sets generated using real genotypes X and simulated phenotypes Y. For the genotypes, we 
used the UK Biobank imputed genotypes. We simulated Y from different mvSuSiE models (see 
below). The genotype data were curated following the data preparation steps described above, 
so N = 248,980 in all our simulations. (To clarify, these data preparation steps included 
removing outlying blood cell trait observations. Even though this particular filtering step was not 
needed since we did not use the UK Biobank phenotype data in the simulations, for 
convenience we used the data prepared with this filtering step.) 
 
Simulation scenarios. We implemented three fine-mapping scenarios in the simulations. 
 
In the simplest simulations, which we used to compare all of the methods (SuSiE, mvSuSiE, 
CAFEH, PAINTOR and flashfm), we simulated 2 traits under a variety of conditions: (i) 
independent traits with independent effects; (ii) independent traits with correlated effects; and 
(iii) correlated traits with independent effects. This simpler scenario was intended mainly for 
comparisons with PAINTOR and flashfm so as to not unfairly disadvantage these methods; 
flashfm cannot handle a large number of traits, and PAINTOR cannot handle a large number of 
causal SNPs, and assumes independent traits and independent effects (Table 1). However, for 
completeness we also compared with SuSiE and CAFEH in this simulation scenario. 
 
For comparing other fine-mapping methods (mvSuSiE, SuSiE, CAFEH), we simulated data sets 
under two more complex scenarios, which we refer to as “Scenario A” and “Scenario B”. 
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In Scenario A, we simulated 20 independent traits in which the SNP effects were either specific 
to one trait or shared among traits in simple ways (equal effects among 2 traits, equal effects 
among half of the traits, or correlated equally among all 20 traits). In the results, we call 
Scenario A the “Trait-specific + Shared Effects” scenario. 
 
Scenario B was intended to capture a combination of factors that one might more realistically 
encounter in fine-mapping studies. It is also more challenging because the traits are correlated 
and the effects are shared among the traits in complex ways. Specifically, we simulated using a 
residual covariance matrix V and sharing patterns 𝑼4 obtained from our analyses of the UK 
Biobank blood cell traits. In the results, we refer to Scenario B as the “Complex Shared Effects” 
scenario. 
 
Simulation procedure. Let X denote the N × J genotype matrix for a given fine-mapping 
region, where J is the number of SNPs in the region, and N = 248,980. The procedure we used 
to simulate an N × R matrix Y was the following. 
 

1. Center and scale the columns of X so that each column has a mean of 0 and a variance 
of 1. 

2. Choose S, the number of causal SNPs. For Scenarios A and B, set S to 1, 2, 3, 4 or 5 
with probabilities 0.3, 0.3, 0.2, 0.1, 0.1, respectively. For the 2-trait simulations, set S = 2. 

3. Sample the indices of the S causal SNPs uniformly at random from {1, . . . , 𝐽}. Denote the 
set of causal SNPs by 𝒞. 

4. For each SNP 𝑗 ∈ 𝒞, simulate the R effects, 𝒃# ∈ ℝ), from the mixture of multivariate 

normals (5), in which 𝜎607 = 1. In the 2-trait simulations, we set 𝐾 = 1,𝜔& = 1,𝑼& = h1 𝜌
𝜌 1j, 

in which the correlation 𝜌 between the two effects was 0, 0.5 or 1. We also simulated 2-
trait data sets in which the effects were drawn from a mixture of R + 5 = 7	“canonical” 
covariance matrices (see the Supplementary Note). To draw each effect 𝒃# from this 
mixture, the mixture component probabilities were specified as follows: one of the 2 trait-
specific covariances was chosen each with probability 0.2; or one of the remaining 
canonical covariances was chosen each with probability 0.12. In Scenario A, we 
simulated the effects of the causal SNPs 𝒃# using a mixture of 19 covariance matrices 
(Supplementary Fig. 4). For Scenario B, we simulated the effects using the mixture of 15 
covariance matrices estimated from the UK Biobank data (Supplementary Fig. 5). 

5. For each SNP 𝑗 ∉ 𝒞, set 𝒃# = 𝟎. 

6. Choose the residual variance 𝜎7. To set 𝜎7 to a realistic value, we set 𝜎7	so that the 
greatest proportion of variance in a trait explained by the SNPs was 0.05%, which roughly 
corresponds to the proportion of variance explained in the mvSuSiE fine-mapping 
analyses of the UK Biobank blood cell traits. In particular, we solved for 𝜎7 satisfying 
<!"

<"=<!"
= 0.0005, where 𝜎>7 ∶= Var(𝒚q") is the variance in the rth trait explained by the SNPs, 
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in which Var(𝜽) denotes the sample variance, 𝒚q" ∶= 𝒙&𝑏&" +⋯+ 𝒙$𝑏$", and 𝑟
∶= argmax"#∈{&,…,)}Var(𝒚q"). 

7. Specify the R × R residual correlation matrix C, then set 𝑽 = 𝜎7𝑪. For Scenario A and the 
2-trait scenario, 𝑪 = 𝑰). For Scenario B, the 16 × 16 covariance matrix C was set to the 
correlation matrix estimated from the 16 blood cell traits after removing the linear effects 
of covariates (Supplementary Table 8). (Note that, although this correlation matrix was 
estimated from the UK Biobank data, for the simulations the V used in the mvSuSiE 
analyses of the simulated data was estimated using the simulated data and so the V used 
by mvSuSiE differed from the V used to simulate Y.) In the 2-trait simulations, we set 𝑪 =

h 1 𝑐&7
𝑐&7 1 j, in which the correlation 𝑐&7 between the two effects was 0, 0.4 or 0.8. 

8. Simulate Y using (1). 
9. Center and scale the columns of Y so that each column has a mean of zero and a 

variance of 1. 

10. Compute the summary statistics—effect estimates 𝛽z#", standard errors 𝑠̂#", z-scores 𝑧#" 
and the in-sample LD matrix R—using PLINK [43] and LDstore [66]. For these summary 
statistics, we extracted the BETA, SE, T_STAT and P columns from the plink2 --glm 
output (see above for more details on how PLINK was called). Note PLINK was applied to 
the raw genotypes without centering or scaling. We computed the J × J in-sample LD 
matrix 𝑹c = 𝑫:&/7𝑿⊺𝑿𝑫:&/7, where 𝑫 ∶= diag(𝑿⊺𝑿), using LDstore version 1.1. 

 
We simulated data sets from the curated set of 975 regions for the UK Biobank blood cell traits 
(Supplementary Table 4). All selected regions had at least 1,000 SNPs and no more than 5,000 
SNPs, and were at least 400 kb in size and at most 1.6 Mb. 
 
These simulations produced an empirical distribution of z-scores roughly similar to the z-scores 
seen in association analyses of the blood cell traits; in our simulations, the largest z-score 
magnitude in each fine-mapping region had a median of 11.05, mean of 10.97 and a third 
quantile of 11.71, whereas the corresponding statistics for the UK Biobank blood cell traits were 
8.01, 10.85 and 12.18. 
 
Details of the methods compared. In this section we describe how we ran the methods on the 
simulated data sets. SuSiE, mvSuSiE and PAINTOR were run using the z-scores and the in-
sample LD. CAFEH and flashfm were run using the effect estimates, standard errors of these 
effect estimates, and in-sample LD. Some methods, including mvSuSiE, also accepted an 
additional input, the sample size (N), in which case we provided this as well. flashfm also 
required the reference allele frequencies, which in all our analyses were the minor allele 
frequencies. 
 
PAINTOR. We ran PAINTOR [19] in only the 2-trait simulations. PAINTOR was designed to 
work with functional genomic annotation data, so to run PAINTOR we created a single “dummy” 
annotation in which all SNPs were assigned to this annotation (that is, all entries of the 
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annotation matrix were set to 1). For all data sets, we asked PAINTOR to enumerate all 
possible configurations up to 2 causal SNPs. (In the 2-trait simulations, the true number of 
causal SNPs was always 2.) We did not use the “mcmc” option (-mcmc) because the outputted 
PIPs when using this option were all zero in our tests. (The same issue was reported in 
https://github.com/gkichaev/PAINTOR_V3.0/issues/5.) All other PAINTOR options were kept at 
their default settings. Note that PAINTOR does not accept N (the sample size) as input. Also 
note that PAINTOR assumes that both traits and effects are independent across traits (Table 1). 
 
flashfm. We ran flashfm [19] in only the 2-trait simulations. We ran flashfm by calling function 
FLASHFMwithFINEMAP from R package flashfm (version 0.0.0.9000). This function internally 
calls FINEMAP [10] (version 1.4.1) with settings --sss --n-configs-top 1000 --n-
causal-snps 10, which allows configurations of up to 10 causal SNPs. We ran flashfm with 4 
CPUs (NCORES = 4). All other flashfm settings were kept at their defaults. The inputs to 
FLASHFMwithFINEMAP were the effect estimates, the standard errors of these effect 
estimates, minor allele frequencies, vector of trait means, and sample size N. Since Y was 
centered and standardized in the simulations, the vector of trait means was simply a vector of 
zeros of length R. 
 
CAFEH. We used the fit_cafeh_summary interface in CAFEH 1.0 [43] installed with Python 
3.7.4. The fit_cafeh_summary function accepts the following data inputs: effect estimates, 
standard errors of those estimates, LD matrix, and sample size N. When calling 
fit_cafeh_summary, all optional arguments were kept at the software defaults. CAFEH's 
default setting for the upper limit on the number of single effects (“K” in the CAFEH model) is 10, 
which is the same default in SuSiE and mvSuSiE. Note that CAFEH assumes that traits and 
effects are independent across traits (Table 1). CAFEH outputs credible sets without any filter 
on the purity of the CSs. Therefore, to make the CAFEH credible sets comparable to SuSiE and 
mvSuSiE credible sets, we filtered out CSs with purity less than 0.5. For assessing performance 
of CAFEH PIPs and trait-wise PIPs (in CAFEH, these are called “study PIPs”), we called 
get_pip and get_study_pip. 
 
Note that the two CAFEH summary data interfaces—fit_cafeh_summary and 
fit_cafeh_z—produce the same or very similar results when X is standardized. Both 
functions internally call function CAFEHSummary with the same LD matrix, but provide different 
effect estimates and standard errors of the effect estimates. Let 𝜷c denote the vector of effect 
estimates (with one entry per SNP) and let 𝒔� denote the vector of standard errors (also with one 
entry per SNP). If fit_cafeh_summary calls CAFEHSummary with inputs 𝜷c, 𝒔�, and assuming X 
is standardized, then it can be shown that fit_cafeh_z calls CAFEHSummary with inputs 
√𝑁𝜷c, √𝑁𝒔�	. Since CAFEHSummary is invariant to rescaling of 𝜷c, 𝒔�—that is, CAFEHSummary 
generates the same result with inputs 𝑎𝜷c and 𝑎𝒔� for any choice of scalar 𝑎 > 0—it follows that 
fit_cafeh_summary and fit_cafeh_z also produce the same result when X is 
standardized. In practice, this invariance does not hold exactly since it requires that the prior on 
the effects also be appropriately rescaled, but empirically we have found that the CAFEH PIPs 
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and posterior effect estimates are almost the same for different choices of 𝑎 > 0. (See 
https://github.com/karltayeb/cafeh/blob/current_working_branch/notebooks/CAFEHS_scale_inv
ariance.ipynb.) 
 
SuSiE. We ran SuSiE by calling function susie_rss from susieR [13] (version 0.12.12). In 
each data set, we ran susie_rss once per trait. The susie_rss interface accepts different 
types of summary data; we provided z-scores, in-sample LD, and sample size N. For all 
simulations, we set L, the maximum number of non-zero effects, to 10. (We also set L = 10 for 
the 2-trait simulations even though there were never more than 2 causal SNPs in these 
simulations.) We estimated the residual variance (estimate_residual_variance = TRUE), 
which is the recommended setting when the LD is estimated from the “in-sample” data. We set 
the maximum number of IBSS iterations to 1,000 (max_iter = 1000). The remaining optional 
arguments were kept at their defaults. 
 
Since SuSiE analyzes each trait separately, it does not directly give evidence for a SNP being a 
cross-trait causal SNP. To quantify performance in this task and compare with mvSuSiE, we 
quantified the evidence for a cross-trait causal SNP using an ad hoc metric, the “maximum PIP”, 
defined as 
 

max-PIP# ∶= max
"	∈	{&,…,)}

PIP#", 

(25) 
where PIP#" is the PIP for SNP j obtained from the SuSiE analysis of trait r. 
 
mvSuSiE. We ran mvSuSiE using the mvsusie_rss interface from mvsusieR (version 
0.0.3.0518, git commit id 9f28916). While susie_rss accepts a vector of z-scores, 
mvsusie_rss accepts a matrix of z-scores (specifically, a J × R matrix). In the simulations, we 
compared several mvSuSiE variants using different prior choices; for more details, see the 
Supplementary Note. (In the 2-trait simulations, we only used the canonical prior. This was a 
mixture of multivariate normals with K = 7 components.) We also compared mvSuSiE with 
different settings of the residual covariance V; see the Supplementary Note. In all cases, we ran 
mvsusie_rss with the following settings: L = 10, max_iter = 1000, 
estimate_prior_variance = TRUE, estimate_prior_method = “EM”, 
precompute_covariances = TRUE and n_thread = 4. (We set L = 10 for the 2-trait 
simulations even though there were never more than 2 causal SNPs in these simulations.) All 
other options were kept at the default settings. 
 
Computing environment. All analyses of the simulated data sets were run on Linux machines 
(Scientific Linux 7.4) with 4 Intel Xeon E5-2680v4 (“Broadwell”) processors, and with R 4.1.0 
linked to the OpenBLAS 0.3.13 optimized numerical libraries. At most 10 GB of memory was 
needed to perform a fine-mapping analysis of a single simulated data set using one of the 
methods. We used DSC version 0.4.3.5 to perform the simulations. 
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Fine-mapping of UK Biobank blood cell traits using SuSiE and mvSuSiE. We fit a mvSuSiE 
model to each fine-mapping data set—specifically, the z-scores matrix Z and LD matrix R—by 
calling mvsusie_rss from the mvsusieR package with the following settings: L = 10, N = 
248980, precompute_covariances = TRUE, estimate_prior_variance = TRUE, 
estimate_prior_method = “EM”, max_iter = 1000 and n_thread = 1. We ran 
SuSiE on Z, R separately for each trait (i.e., column of Z) by calling susie_rss with the 
following settings: n = 248980, L = 10, max_iter = 1000, estimate_prior_variance 
= TRUE, refine = TRUE. Any CSs returned by susie_rss or mvsusie_rss with purity less 
than 0.5 were removed. 
 
Enrichment analysis of regulatory annotations using GREGOR. We performed enrichment 
analyses of the SuSiE and mvSuSiE blood cell trait fine-mapping results using GREGOR [67] 
(version 1.4.0). In brief, GREGOR performs an enrichment analysis for a “positive set” of SNPs 
by calculating overlap with the given regulatory annotation, then estimates the probability of the 
observed overlap against its expectation using a set of “matched control SNPs”. We ran 
GREGOR with the following settings: pop = ‘EUR’, r2_threshold = 0.7,  
ld_window_size = 10000, min_neighbor = 10, job_number = 10. 
 
Although GREGOR provides p-values, we found some issues with these p-values (e.g., some 
exceeded 1). Therefore, for each annotation, we extracted the intermediate GREGOR outputs 
to get a 2 × 2 table of the SNP counts of inside and outside the annotation intersected with 
positive set and matched control set. We then used this 2 × 2 table to perform Fisher’s exact 
test and this was the final p-value reported. Additional details about the GREGOR analysis can 
be found in the 20231106_GREGOR_functional_enrichment.ipynb Jupyter notebook in 
of the Zenodo repositories. 
 
We assessed enrichment for a total of 19 regulatory genomic annotations, including: enhancer 
promoter regions and transcription factor binding sites [68]; genomic structural elements [69]; 
eQTLs in multiple tissues (based on different false discovery rates) [70]; RNA polymerase II 
binding in EPC-treated HESCs [71]; and binding intervals for specific transcription factors. The 
specific transcription factors included were promyelocytic leukemia zinc finger protein (PLZF), 
FOSL2, NR2F2 and FOXO1 [71]. The BED annotation files are included in one of the Zenodo 
repositories. 
 
Using these regulatory genomic annotations, we performed two sets of GREGOR enrichment 
analyses, one using the SuSiE fine-mapping results, and another set using the mvSuSiE fine-
mapping results. We performed these enrichment analyses separately for the fine-mapping 
results for each blood cell trait, as well as the “global” (cross-trait) results. For mvSuSiE, we 
included a SNP in the cross-trait positive set if the SNP was included in at least one 95% CS 
and/or the global PIP was greater than 0.7. We included a SNP in the positive set for a given 
blood cell trait if the SNP was included in at least one 95% CS and the lfsr for the given trait was 
less 0.01. 
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For SuSiE, we included a SNP in the positive set for a given trait if the SNP was included in at 
least one 95% CS and/or the PIP was greater than 0.7. The SuSiE cross-trait positive set was 
defined as the union of the 16 positive sets from the SuSiE analyses of each of the 16 traits. 
 
Enrichment analysis of hematopoietic cell-types using gchromVAR. We performed 
additional enrichment analyses of the SuSiE and mvSuSiE blood cell trait fine-mapping results 
using gchromVAR [41]. In brief, gchromVAR assesses overlap of the fine-mapped SNPs and 
regions of accessible chromatin, separately in different hematopoietic cell types. (This is actually 
a weighted overlap in which we have defined the weights as the SuSiE or mvSuSiE PIPs.) Each 
enrichment analysis was performed following the steps described in the gchromVAR R package 
vignette (we used version 0.3.2 of the gchromVAR R package). The z-scores returned by the 
computeWeightedDeviations function were then refined using adaptive shrinkage 
implemented in ashr [34] (version 2.2-57). The adaptive shrinkage posterior z-scores (posterior 
means divided by posterior standard deviations) and lfsr values were used to report the final 
enrichment results. 
 
Similar to the GREGOR enrichment analyses, we performed two separate enrichment analyses 
with gchromVAR, one using the SuSiE results, and another using the mvSuSiE results. For 
SuSiE, we included a SNP for a given trait if the PIP > 0.01 for that trait. A total of 100,090 
SNPs had PIP > 0.01 in at least one of the blood cell traits. For mvSuSiE, we included a SNP 
for a given trait if the global PIP > 0.01 and if the CS was significant for the given trait (lfsr < 
0.01). A total of 39,884 SNPs had a global PIP > 0.01. 
 
Data availability. UK Biobank data, https://www.ukbiobank.ac.uk; PLINK association test 
statistics from the UK Biobank blood cell traits, https://doi.org/10.5281/zenodo.8088040.  
 
Code availability. The mvsusieR R package implementing our methods is available on GitHub 
at https://github.com/stephenslab/mvsusieR; mvsusieR 0.1.8 is also available via Zenodo 
at https://doi.org/10.5281/zenodo.17296669. Additional code resources accompanying this 
paper include: code for preparing the UK Biobank data, 
https://doi.org/10.5281/zenodo.8400278; code for performing the fine-mapping simulations, 
https://doi.org/10.5281/zenodo.8087907; additional code for the fine-mapping simulations and 
the fine-mapping analyses of the UK Biobank blood cell traits, 
https://doi.org/10.5281/zenodo.8094982. Other R packages and software used in this work 
include: susieR 0.12.12, https://github.com/stephenslab/susieR; mashr 0.2.59, 
https://github.com/stephenslab/mashr; flashr 0.6-8, https://github.com/stephenslab/flashr; 
PAINTOR 3.1, https://github.com/gkichaev/PAINTOR_V3.0; BayesSUR 2.0-1, https://cran.r-
project.org/package=BayesSUR; flashfm 0.0.0.9000, https://github.com/jennasimit/flashfm; 
FINEMAP 1.4.1, http://www.christianbenner.com; msCAVIAR 0.1, 
https://github.com/nlapier2/MsCAVIAR; CAFEH 1.0, https://github.com/karltayeb/cafeh; 
hyprcoloc 1.0, https://github.com/cnfoley/hyprcoloc; moloc 0.1.0, 
https://bogdan.dgsom.ucla.edu/pages/MOLOC; MFM 0.2-1, https://github.com/jennasimit/MFM; 
gchromVAR 0.3.2, https://github.com/caleblareau/gchromVAR; GREGOR 1.4.0, 
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http://csg.sph.umich.edu/GREGOR/; R 4.1.0, https://cran.r-project.org; Python 3.7.4, 
https://www.python.org; PLINK 2.00a2LM, 64-581 bit Intel, Feb 21, 2009, https://www.cog-
genomics.org/plink2; LDstore 1.1, http://christianbenner.com; DSC 0.4.3.5, 
https://github.com/stephenslab/dsc. 
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