bioRxiv preprint doi: https://doi.org/10.1101/2023.03.24.534115; this version posted January 13, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Two long-axis dimensions of hippocampal-cortical integration support memory function

across the adult lifespan

Kristin Nordin>23, Robin Pedersen®#°, Farshad Falahati', Jarkko Johansson*®, Filip Grill’,
Micael Andersson*®, Saana M. Korkki'?, Lars Backman'?, Andrew Zalesky®®, Anna

Rieckmann*>%10 |ars Nyberg*®, Alireza Salamil?345

“Corresponding author

!Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
2Aging Research Center, Karolinska Institutet and Stockholm University, Solna, Sweden
SWallenberg Centre for Molecular Medicine, Umea University, Umea, Sweden

“Umea Center for Functional Brain Imaging, Umea University, Umea, Sweden

*Department of Integrative Medical Biology, Umea University, Umea, Sweden

®Department of Radiation Sciences, Umea University, Umed, Sweden

"Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud
University, Nijmegen, The Netherlands

8Department of Biomedical Engineering, the University of Melbourne, Melbourne, VIC, Australia
*Department of Psychiatry, the University of Melbourne, Melbourne, VIC, Australia
ODepartment of Psychology, University of the Bundeswehr Munich, Germany

Corresponding author: Kristin Nordin
Karolinska Institutet

Aging Research Center
Tomtebodavégen 18A

171 65 Solna, Sweden

E-mail: kristin.nordin@Kki.se



mailto:kristin.nordin@ki.se
https://doi.org/10.1101/2023.03.24.534115
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.24.534115; this version posted January 13, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Abstract
The hippocampus is a complex structure critically involved in numerous behavior-regulating
systems. In young adults, multiple overlapping spatial modes along its longitudinal and
transverse axes describe the organization of its functional integration with neocortex, extending
the traditional framework emphasizing functional differences between sharply segregated
hippocampal subregions. Yet, it remains unknown whether these modes (i.e., gradients) persist
across the adult human lifespan, and relate to memory and molecular markers associated with
brain function and cognition. In two independent samples, we demonstrate that the principal
anteroposterior and second-order, mid-to-anterior/posterior hippocampal modes of neocortical
functional connectivity, representing distinct dimensions of macroscale cortical organization,
manifest across the adult lifespan. Specifically, individual differences in topography of the
second-order gradient predicted episodic memory and mirrored dopamine D1 receptor
distribution, capturing shared functional and molecular organization. Older age was associated
with less distinct transitions along gradients (i.e., increased functional homogeneity).
Importantly, a youth-like gradient profile predicted preserved episodic memory — emphasizing
age-related gradient dedifferentiation as a marker of cognitive decline. Our results underscore
a critical role of mapping multidimensional hippocampal organization in understanding the

neural circuits that support memory across the adult lifespan.
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The hippocampus plays a critical role in human behavior beyond its well-established
involvement in memory and spatial navigation'. Contemporary views hold that its broad
involvement in cognition emerges through the combination of its intrinsic circuitry and its
widespread neocortical connections — placing it at the interface of multiple behavioral
systems?*, Characterizing organizational principles of hippocampal integration with the larger
neocortical landscape is therefore key to our understanding of its contribution to cognition and
to the many diseases associated with its dysfunction®=®.

Animal models®°, together with histological and functional descriptions in
humans'13, emphasize the hippocampus transverse (mediolateral) and longitudinal
(anteroposterior) axes in determining its functional organization, contribution to behavior*4*°,
and vulnerability to neurological disease’®'’. In humans, functional analogues of the
hippocampus canonical internal circuitry and its anatomical connections with neocortical areas
have successfully been provided by resting-state functional magnetic resonance imaging
(FMRI1)218 at a coarse scale confirming the anteroposterior differentiation in connectivity
observed in the animal literature®'®?°, Despite the consistency by which this anteroposterior
organizational dimension emerges?!, significant questions however remain regarding its spatial
distribution across cortex and its contribution to behavior across the adult human lifespan.

Lack of consensus is especially evident in terms of the hippocampus functional
connectivity with the default-mode network (DMN), encompassing core areas of the brain’s
system for memory-guided behavior*?2, Several studies primarily attribute integration with the
DMN to the posterior hippocampus*'?2324  consistent with its anatomical connections to
midline posterior parietal areas'®. Other sources emphasize the anterior hippocampus as driving
connectivity with the DMNZ-%"_ on the basis of its anatomical connections with ventromedial
prefrontal areas'®. These inconsistencies ultimately limit our understanding of hippocampal

functional specialization, and the impact on cognition of the heterogeneous vulnerability to
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aging and disease observed along the hippocampus longitudinal axis'’?%. We propose that
inconsistencies in part stem from overlooking multiple overlapping and complementary
functional modes, not discernable through traditional parcellation-based approaches, which
assume homogeneous function within distinct, pre-defined, portions of the hippocampus.

Accumulating evidence in young adults indicate that hippocampal neocortical
connectivity is indeed fundamentally multidimensional — organized in several overlapping, but
distinct, spatial modes??*-32, Whereas such gradient-based observations describe a principal
anteroposterior mode of neocortical connectivity, they also identify orthogonal modes of long-
axis and transverse variation in connectivity?®=!. Importantly, these hippocampal gradients
appear to reflect well-known gradients of macroscale brain function®, which express functional
differentiation across distinct cortical hierarchies®>3*. The principal anteroposterior gradient has
been linked to functional differentiation along a task-negative/task-positive cortical
dimension®, separating neural communities involved in the formation of representations from
sensory input (e.g., visual, somatosensory, and DMN areas) and those involved in the
modulation of these representations (e.g., frontoparietal areas of attention and control)3%:34, In
parallel, a secondary, non-linear, long-axis gradient is suggested to correspond to the principal
unimodal-transmodal gradient of cortical function (oppositely anchored in associative DMN
areas and in unimodal sensory and motor cortices®*34)31. However, the biological underpinnings
of this secondary gradient are still unknown, in contrast to the principal gradient, demonstrated
also in microstructure?®, gray matter covariance®>3, and gene expression®’.

Differences in the topography (i.e., the spatial layout) of the principal,
anteroposterior, hippocampal gradient may predict episodic memory®°, but current findings are
restricted to younger age — and to mainly the same sample (i.e., the Human Connectome
Project®®)?®3L, Moreover, it remains unknown in which capacity the secondary long-axis

gradient contributes to behavior. Yet, a comprehensive model of the spatial properties of
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hippocampal functional organization should consider that hippocampal functional alterations
occur across the adult lifespan, and manifest across the hippocampus in a heterogeneous
manner. Specifically, aging has been linked to differential functional isolation of anterior and
posterior hippocampal regions from prefrontal areas and large-scale brain networks including
the DMN3%4%, Such neocortical disconnection of hippocampal subregions has been linked to
dysfunction during memory encoding and retrieval®®#?, and in turn, to episodic memory
decline®?. Findings which link hippocampal isolation to increased functional homogeneity
within the region, suggest that its disconnection from neocortex is driven by the spatial patterns
in which Alzheimer’s disease (AD) pathology accumulates in cognitively healthy older
adults*>#4, Importantly, loss of functional segregation between task-negative and task-positive
poles is a functional hallmark of both healthy aging*® and AD* — introducing overall ambiguity
as to whether hippocampal gradients established in young adults persist into older age.
Dopamine (DA) is one of the most important modulators of hippocampus-
dependent function*”*8, and influences the brain’s functional architecture through enhancing
specificity of neuronal signaling®®. Consistently, there is a DA-dependent aspect of maintained
functional network segregation in aging which supports cognition®. Animal models suggest
heterogeneous patterns of DA innervation®>®? and postsynaptic DA receptors®, across both
transverse and longitudinal hippocampal axes, likely allowing for separation between DA
modulation of distinct hippocampus-dependent behaviors*’. Moreover, the human
hippocampus has been linked to distinct DA circuits on the basis of long-axis variation in
functional connectivity with midbrain and striatal regions®**°. Taken together with recent
findings revealing a unimodal-transmodal organization of the most abundantly expressed DA
receptor subtype, D1 (D1DR), across cortex®®, we tested the hypothesis that the organization of

hippocampal-neocortical connectivity partly reflects the underlying distribution of
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hippocampal DA receptors, predicting predominant spatial correspondence for any
hippocampal gradient conveying a unimodal-transmodal pattern across cortex.

Here, we characterize the multidimensional functional organization of the
hippocampus in two independent adult-lifespan samples, and map individual differences in
fine-scale topographic properties of connectivity gradients onto behavioral and molecular
phenotypes. We report three hippocampal gradients displaying distinct correspondence to a)
canonical gradients of cortical function, b) the organization of hippocampal DA receptors, and
c¢) individual differences in memory function. Multivariate, data-driven, classification on
gradient topography identified older adults exhibiting a youth-like gradient profile and superior
memory function as distinct from age-matched older counterparts, emphasizing a behavioral

significance of preserved functional hippocampal topography in older age.

Results

Multiple dimensions of hippocampal-neocortical integration across the adult lifespan

Connectopic mapping®’ was applied to resting-state fMRI data (=180, 90 men/90 women; 20-
79 years; mean age = 49.8+17.4) from the DyNAMIC study®®. For replication, we used an
independent sample of 224 adults (122 men/102 women; 29-85 years mean age = 65.0+13.0)
from the Betula project®. Connectopic mapping was used to extract the dominant modes of
functional cortical connectivity within the hippocampus based on non-linear manifold learning
(Laplacian eigenmaps) applied to a similarity matrix derived from connectivity fingerprints
computed between each hippocampal voxel and each voxel within neocortex. This identified a
set of orthogonal connectopic maps (i.e., eigenvectors) describing overlapping connectivity
topographies (i.e., gradients) within the hippocampus. Gradients were computed at subject
level, and at group level across the sample, separately for the left and right hippocampus. We

analyzed the first three gradients, together explaining 63% and 71% of the variance in left and
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right-hemispheres, respectively. This number corresponded to a clear elbow in the scree plot
(Supplementary Figure 1).

The principal gradient (G1), explaining 44% and 53% of the variance in left and
right hemispheres, was organized along the hippocampus longitudinal axis, conveying gradual
anterior-to-posterior variation in cortical connectivity (Figure 1A). This pattern of connectivity
change is illustrated by dividing subject-level G1 connectopic maps into 23 long-axis bins of
~2mm and plotting the average gradient values as a function of their distance from the most
anterior hippocampal voxel® (Figure 1B). The second-order gradient (G2), explaining 11% of
the variance in both hemispheres, expressed a secondary long-axis gradient organized from the
middle hippocampus towards anterior and posterior ends (Figure 1A-B). Finally, the third-order
gradient (G3: explaining 8% and 7% of the variance), reflected variation along the hippocampus
transverse axis, such that inferior-lateral parts of the hippocampus were separated from medial-
superior parts (Figure 1A). This pattern was most pronounced in the anterior hippocampus.
Inspecting G3 across sample-specific segmentations of cornu ammonis (CA1-3), dentate gyrus
(DGI/CAA4), and subiculum subfields suggested that while CA1-3 expressed the full extent of
the gradient, and DG/CAA4 variation around its center, the subiculum expressed only the most
inferior section of the gradient (Supplementary Figure 2).

The three gradients reflected gradients identified in young adults?®3!, and were
highly reproducible in the independent replication data set (Supplementary Figure 3).
Correspondence between samples was determined by spatial correlations (left hemisphere: G1.:
r=0.990, p <0.001; G2: r =0.946, p < 0.001; G3: r =0.918, p < 0.001; right hemisphere: G1:
r=0.996, p <0.001; G2: r =0.969, p < 0.001; G3: r = 0.897, p < 0.001). Furthermore, the
reliability of connectopic mapping to produce functional connectivity gradients was determined
across varying degrees of spatial smoothing, and contrasted against connectopic maps derived

from random data®. Results confirmed high stability of resting-state gradients and their efficacy
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in capturing inter-individual differences, whereas random data failed to produce meaningful

gradients (Supplementary Figure 4).
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Figure 1. Topographic gradients of hippocampal cortical connectivity. A) The first three hippocampal
connectopic maps (G1-G3), explaining 67% of the variance across left and right hemispheres. Similar
colors convey similar patterns of cortical connectivity. Values range between 0 (blue) and 1 (yellow).
B) Plots convey change in connectivity along the anteroposterior hippocampal axis. Mean values from
23 hippocampal bins (each ~2mm) are plotted against their distance (in mm) from the most anterior
hippocampal voxel. Values were estimated based on subject-level gradients and averaged across
participants. G1 conveys gradual change in connectivity along an anteroposterior gradient. G2 conveys
gradual change in connectivity along a second-order long-axis gradient, separating the middle
hippocampus from anterior and posterior ends. G3 conveys close to no change in connectivity along the
longitudinal axis, with connectivity change instead organized in a primarily medial-lateral gradient. C)
Cortical projections for G1, G2, and G3. Values range between 0 (blue) and 1 (yellow). D) The order of
cortical networks in gradient space. Density plots visualize the distribution of gradient values for seven
cortical networks (Yeo et al., 2011). E) Correlations between cortical patterns of hippocampal gradients
and the three primary gradients of cortical functional organization, which are exemplified at the top of
each graph (Margulies et al., 2016).
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Hippocampal gradients reflect distinct dimensions of macroscale cortical organization
The projection of G1 onto cortex conveyed a pattern linking medial orbitofrontal,
temporolimbic, and medial parietal regions at the anterior end of the gradient with occipital and
frontoparietal regions at the posterior end (Figure 1C). For further characterization, we
computed G1 gradient values within seven cortical networks®, and examined their position in
gradient space. This placed the DMN, limbic, and somatomotor networks at anterior-to-middle
parts of the gradient, whereas visual, ventral attention, and frontoparietal networks toward the
posterior end of the gradient (Figure 1D). In contrast, G2 exhibited a unimodal-transmodal
pattern across cortex, linking the middle hippocampus to frontal and posterior parietal regions,
and anterior and posterior hippocampal ends to somatomotor and occipital regions (Figure 1C).
Consistently, the DMN and frontoparietal network mapped onto G2 at one end, and visual and
somatomotor networks at the other (Figure 1D). Across cortex, G3 primarily separated temporal
and insular areas from medial parietal and medial frontal areas (Figure 1C). Aligning with
cortical connectivity previously reported for hippocampal subfields?®®2, areas of the DMN most
strongly mapped onto the most inferior end of G3, consistent with the connectivity profile of
the subiculum, whereas ventral attention and somatomotor networks had a stronger medial
position along G3, aligning with reported connectivity of CA1-3 (Figure 1D).

Next, we linked the cortical patterns of gradients to the established macroscale
layout of cortical function®* using Spearman’s rank correlation analyses. G1 showed significant
correspondence with the cortical representation-modulation gradient®, differentiating the task-
negative DMN and somatomotor networks from task-positive areas of attention and control
(left G1: Spearman’s r = -0.353, pspin < 0.001; right G1: Spearman’s r = -0.406, pspin < 0.001,
Figure 1E). G1’s correlation with this cortical gradient was greater than its correlations to other
cortical gradients (6.3 < Z < 9.6, ps < 0.001), as well as significantly stronger than correlations

observed for G2 and G3 (1.6 < Z < 6.5, ps <0.05). In contrast, G2 corresponded to the principal
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unimodal-transmodal gradient of cortical function (left G2: Spearman’s r = 0.502, pspin < 0.001;
right G2: Spearman’s r = 0.536, pspin < 0.001; Figure 1E), to a greater extent than G1 and G3
(4.9 <Z<10.9, ps <0.001) and in comparison to other cortical gradients (5.2 < Z < 9.4, ps <
0.001). Finally, the cortical pattern of G3 showed overall weaker correspondence with the
canonical cortical gradients. G3’s correlations with the unimodal-transmodal gradient (left G3:
Spearman’s r = -0.32, pspin = 0.011), and the representation-modulation gradient (right G3:
Spearman’s r = 0.191, pspin = 0.009), were significantly weaker compared their counterparts of
G2 (Z9s) = 4.9, p < 0.001) and G1 (Z(9s) = 5.3, p < 0.001). These multiple lines of evidence
contribute to a model of hippocampal functional organization across the adult human lifespan

in which G1 and G2 constitute local representations of distinct macroscale cortical motifs.

Distinct patterns of behavioral transitions along G1 and G2

Given the correspondence of G1 and G2 to distinct gradients of cortical function, we
characterized their relevance for hippocampal functional specialization by mapping transitions
in behavioral domains onto G1 and G2 using meta-analytical decoding in Neurosynth®.
Correlations were assessed between meta-analytical maps of behavioral terms and twenty-
percentile bins of each gradient’s cortical projection (Figure 2). First, a selection of terms
commonly linked to anteroposterior hippocampal functional specialization'®** were assessed
across G1 and ranked based on their location along the gradient (Figure 2A). The strongest
anterior loadings on G1 belonged to terms including words, social, and dementia, whereas terms
of navigation, episodic memory, encoding, and recollection showed preferential posterior
loadings. In contrast, behavioral transitions along G2 were expected to reflect its unimodal-
transmodal organization (Figure 1B). To this end, terms were selected and ordered based on a
previous report demonstrating unimodal-transmodal behavioral transitions across cortex®*. G2

expressed a clear separation between sensorimotor and visual terms at one end from social,
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self-referential, and default terms at the other (Figure 2B), confirming its unimodal-transmodal

organization.
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Figure 2. Behavioral profiling of G1 and G2 across cortex. For each gradient, columns represent twenty-
percentile bins of the gradient’s cortical projection. Color shadings represent the strength of correlations
between gradient bins and meta-analytical maps in Neurosynth. A) Terms commonly linked to
anteroposterior hippocampal functional specialization were assessed across G1 and ranked based on
their location along the gradient. B) For G2, terms were selected and ordered as to reflect a unimodal-
transmodal cortical axis®*. C) The correspondence between G2 and behavioral terms commonly linked
to anteroposterior hippocampal functional specialization. D) The correspondence between G1 and
behavioral terms expressing a unimodal-transmodal axis.
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Topography of G2 reflects distribution of hippocampal dopamine D1 receptors

Our next aim was to investigate to which extent the distribution of hippocampal DA D1
receptors (D1DRs), measured by [**C]SCH23390 PET in the DyNAMIiC®® sample, may serve
as a molecular correlate of the hippocampus’ functional organization. First, to estimate
individual differences in gradients’ spatial layout, trend surface modelling (TSM) was applied
to each subject-level connectopic map®%°"%4, This spatial-statistics approach parameterizes
gradients at subject level, yielding a set of model parameters describing the topographic
characteristics of each gradient in X, y, z directions (see Methods, and Supplementary Figure 5
for model selection). Unlike voxel-wise statistical inference on gradients, which overlooks the
high interdependence between voxels’ gradient values and demands rigorous correction for
multiple comparisons, TSM allows for statistical inference across a region’s internal
heterogeneity using a concise set of independent parameters®®. Moreover, by adjusting the
number of polynomial terms, TSM facilitates examination of spatial trends across gradients at
coarser-to-finer levels®,

Individual maps of D1DR binding potential (BP) were also submitted to TSM,
yielding a set of spatial model parameters describing the topographic characteristics of
hippocampal D1DR distribution for each participant. D1DR parameters were subsequently used
as predictors of gradient parameters in one multivariate GLM per gradient (in total 6 GLMs,
controlled for age, sex, and mean FD). Results are reported with p-values at an uncorrected
statistical threshold and p-values after adjustment for multiple comparisons using the
Benjamini-Hochberg method to control the false discovery rate (FDR). Individual differences
in D1DR topography significantly explained topography of right-hemisphere G2 (F = 1.207, p
=0.041, pror = 0.073; partial n2 = 0.118), but not of G1 nor G3 (F 0.953-1.108, p 0.222-0.596)
(Figure 3). This association was robust across multiple TSM model orders (Supplementary

Figure 6). Complimentary analyses were then conducted to further evaluate G2 as a
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dopaminergic hippocampal mode by utilizing additional DA markers at group-level. First, a
map of D1DR distribution was formed by averaging the [*'C]SCH23390 BP images across
DyNAMIC participants (n=176), and a map of D2DR distribution was formed by averaging
[**C]raclopride BP images in a subsample of DyNAMIC participants (n = 20). Previously

published maps of DAT® and FDOPA (https://www.nitrc.org/projects/spmtemplates) were

also analyzed. Correlations across group-level TSM parameters®, revealed significant positive
associations between G2 and D1, DAT, and FDOPA (D1: r = 0.501, p < 0.01, pror = 0.021;
DAT: r=0.378, p<0.01, pror = 0.021; FDOPA: r = 0.584, p < 0.01, pror = 0.021; Figure 3C),
although not D2 (D2: r = 0.131, p = 0.440, pror = 0.528), whereas correlations were not
significant for G1 or G3, indicating that G2 best captures shared principles of functional and

molecular organization.

G2
A Subject-level: D1 x G2 r
|

mLeft . v
Right .
0,15 . 9
0,1
D1

Partial n2

=

[

o
o

G1 G2 G3

*n<0.05

B G2 and dopaminergic organization

D1 »D2mDAT mFDOPA
0,8 . wk
06 ok

0,4
0,2
0 |

02
04
06

Pearson’s r

G1 G2 G3
=0 < 0.01

Figure 3. Shared functional and molecular organization within the hippocampus. A) Multivariate effects
of hippocampal D1DR TSM parameters as predictors of G2 TSM parameters. Images show average
organization of G2 and D1DR in the right hemisphere. Note that the arbitrary color scale of G2 has been
flipped. B) Correlations between group-level TSM parameters of functional gradients and DA markers.
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Dedifferentiated gradient topography in older age

Effects of age on gradient topography were assessed using multivariate GLMs including age as
the predictor and gradient TSM parameters as dependent variables (controlling for sex and
mean frame-wise displacement; FD). One model was fitted per gradient and hemisphere, each
model including all TSM parameters belonging to a gradient (in total, 6 GLMs). There was a
significant effect of age on topographic characteristics of all three gradients. G1 displayed the
greatest effect of age (left: F(o150) = 5.853, p < 0.001, pror = 0.003, partial n? = 0.260; right:
F(o.150) = 6.971, p < 0.001, pror = 0.003, partial n? = 0.298), followed by G2 (left: F(12,147) =
2.583, p =0.004, pror = 0.01, partial n?= 0.174; right: F(12,145) = 2.635, p = 0.003, pror = 0.008,
partial n° = 0.179), and G3 (left: F(12,147) = 1.973, p = 0.030, pror = 0.056, partial n2 = 0.139;
right: F(12,14s5) = 2.082, p = 0.021, pror = 0.042, partial n? = 0.147). To visualize effects, subject-
level G1 and G2 values were plotted along the anteroposterior axis, averaged within young (20-
39 years), middle-aged (40-59 years) and older (60-79 years) adults. Connectivity across G1
and G2 displayed less distinct differentiation at older age, depicted by the flatter curves in the
older group (Figure 4A). The difference in gradient values between each consecutive pair of
gradient bins was computed, and the locations of significant univariate contributions to the
effect of age on these values were visualized along gradients (Figure 4B-C). For G1, this
primarily localized effects to a middle hippocampal region extending posteriorly from just after

the uncal apex (MNI y=21).
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Figure 4. Effects of age on hippocampal gradients. A-B) Less specificity in connectivity change across
G1 and G2 in older age. Average values of subject-level gradient bins are plotted as a function of their
distance from the most anterior hippocampal voxel. Separate lines mark young (20-39 years; gray),
middle-aged (40-59 years, green), and older (60-79 years; blue) age groups. The flatter curves in the
older group indicate less distinct change in connectivity patterns across gradients in older age. C)
Localization of age effects along G1. Shaded fields indicate the position of significant age effects along
G1. D) Localization of age effects along G2. Shaded fields indicate the position of significant age effects
along G2.
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Topography of hippocampal gradients predicts episodic memory performance

Next, we tested associations between topography of the three gradients and episodic memory.
Using hierarchical multiple regression models in which age, sex, and mean FD were controlled
for in a first step (M1), we entered TSM parameters of the three gradients as predictors of
episodic memory in a step-wise manner. Models were assessed separately for left and right
hemispheres, across the full sample and within age groups, yielding eight hierarchical models
in total. Results are reported with p-values at an uncorrected statistical threshold and p-values
after FDR adjustment. Memory performance was, across the sample, predicted by G2 in the left
hippocampus (Adj. R?=0.308, AR? = 0.096, F= 1.842, p = 0.047, pror = 0.082) over and above
covariates and topography of G1, which did not predict performance (Adj. R? = 0.260, AR? =
0.029, F= 0.695, p = 0.713, pror = 0.771), and neither did G3 (Adj. R? = 0.276, AR? = 0.027,
F=0.502, p = 0.910, pror = 0.920), Figure 5A. Observing that the association between G2 and
memory did not remain significant after FDR adjustment, we performed the same analysis in
our replication dataset, which also included episodic memory testing. Consistent with the
observation in our main dataset, G2 significantly predicted memory performance (Adj. R? =
0.368, AR? = 0.081, F= 1.992, p = 0.028) over and above covariates and topography of G1.
Here, the analysis also showed that G1 topography predicted performance across the sample
(Adj. R?=0.325, AR? = 0.112, F= 3.431, p < 0.001).

In our main dataset, memory performance was within young adults, predicted by left-
hemisphere G1 (Adj. R? = 0.182, AR? = 0.357, F= 2.672, p = 0.015, pror = 0.030), whereas
neither G2 (Adj. R? = 0.204, AR? = 0.191, F=1.098, p = 0.396, pror = 0.492) nor G3 (Adj. R?
=0.384, AR?=0.236, F= 1.755, p = 0.132, pror = 0.189) improved the prediction (Figure 5B).
No gradient predicted memory within middle-aged or older age groups (F 0.432-1.865, p 0.928-

0.113; Supplementary Table 1).
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Youth-like gradient topography supports memory in older age

To investigate the functional role of G1 in old age, the principal and most age-sensitive gradient,
we tested whether memory in older adults would be facilitated by youth-like gradient
topography using two independent datasets. In DyNAMIC, we applied data-driven latent class
analysis (LCA) to TSM parameters (residualized to account for age, sex, and mean FD) of left-
hemisphere G1, which predicted episodic memory performance in younger adults. LCA vyielded
a two-class solution identifying two subgroups (n=19 vs. n=30) of older adults (60-79 years),
which by definition differed in left-hemisphere G1 characteristics (F37) = 13.778, p < 0.001,
pror = 0.003, partial n? = 0.770). A difference was also evident in the right hemisphere (F.37)
=3.790, p = 0.002, pror = 0.005, partial n? = 0.480).

Individuals in the smaller subgroup were determined as exhibiting an aged
gradient profile, whereas older adults in the larger subgroup as exhibiting a youth-like gradient
profile. The classification based on G1 parameters extended across all three gradients in both
hemispheres (Figure 6A), such that the smaller subgroup displayed marked differences from
younger adults across all gradients (left G1: F(g,63 = 15.549, p < 0.001, pror = 0.003, partial n?
= 0.690; right G1: Fe,63) = 5.322, p < 0.001, pror = 0.003, partial n? = 0.432; left G2: F(12,60) =
3.991, p < 0.001, pror = 0.003, partial n2 = 0.444; right G2: F12,60) = 2.192, p = 0.023, pror =
0.045, partial n? = 0.305; left G3: Fz,60) = 2.832, p = 0.004, pror = 0.01, partial n2 = 0.362;
right G3: Fz,60) = 1.844, p = 0.061, pror = 0.098, partial n? = 0.269), while the larger subgroup
differed less from young adults in terms of G1 (left G1: F(9,74) = 4.416, p < 0.001, pror = 0.003,
partial n? = 0.349; right G1: Fg 74 = 3.086, p = 0.003, pror = 0.008, partial n? = 0.273), and
displayed second- and third-order gradients comparable to those in younger age (left G2: F2,71)
=1.616, p = 0.107, pror = 0.167, partial n? = 0.215; right G2: Fi2,71) = 1.442, p = 0.168, pror

= 0.235, partial n? = 0.196; left G3: Fz,71) = 1.122, p = 0.357, peor = 0.457, partial n? = 0.159;
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right G3: Fuz,71y = 1.596, p = 0.112, pror = 0.172, partial n? = 0.212). See Supplementary Figure
7 for classification based on right-hemisphere G1.

Plotting connectivity change along G1 and G2 in the aged and youth-like
subgroups revealed that the diminished topographic specificity observed across gradients in
older individuals (Figure 4A) was driven by older adults with an aged gradient profile (Figure
6B). Both older subgroups displayed altered gradient organization across cortex (Figure 6C-D).
The distribution of cortical networks in G1 space indicated a unimodal-transmodal organization
in youth-like older adults, not evident in the aged older group (Figure 6D). The two groups did
not differ in terms of age (aged: 70.8+6.0; youth-like: 68.4+4.7; t = 1.548, p = 0.128, prpr =
0.189), sex (aged: 9 men/10 women; youth-like: 16 men/14 women; X? = 0.166, p = 0.684, pror
= 0.746), nor hippocampal gray matter (left hemisphere: aged: 4271.2 ml £480.9; youth-like:
4246.8 ml £269.1; t=0.223, p = 0.824, pror = 0.850; right hemisphere: aged: 3866.2 ml +446.3;
youth-like: 3979.9 ml +398.1; t = 0.929, p = 0.357, pror = 0.457). Subgroups showed
comparable levels of average hippocampal D1DR availability (left: youth-like 0.257+0.06;
aged 0.242+0.06; t = 0.796, p = 0.430, pror = 0.525; right: youth-like 0.242+0.06; aged
0.251+0.06 t = 0.296, p = 0.768, pror = 0.817), but displayed a pattern of differences in D1DR
TSM parameters in comparison to young adults supporting youth-like and aged profiles (youth-

like subgroup vs. young: left: F = 1.645, p = 0.118, pror = 0.176, partial n2 = 0.167; aged

9,74)

subgroup vs. young: left: F =3.478, p = 0.002, pror = 0.005, partial n? = 0.335; Figure 6E).

9,62)

In line with our hypothesis, we observed superior memory in older adults
exhibiting a youth-like gradient profile (Figure 6E): at trend-level for the composite episodic
measure (aged: 43.2+3.7; youth-like: 46.5+6.6; t = 1.958, p = 0.056, pror = 0.092), driven by a
significant group difference on its word recall sub test (aged: 40.9+4.5; youth-like: 43.4+6.8; t

=2.600, p = 0.012, pror = 0.025). Word recall performance was furthermore predicted by left-

hemisphere G1 parameters (over and above age, sex, and mean FD) in the youth-like older
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adults (Adj. R? = 0.464, AR? = 0.543, F = 3.043, p = 0.028, pror = 0.054), while no association
was observed in the aged older subgroup (Adj. R? = 0.063, AR? = 0.533, F = 1.004, p = 0.518,
pror = 0.599). Crucially, the ability of left G1 topography to inform classification of older adults

into mnemonically distinct subgroups was replicated in the Betula sample (Supplementary

Information; Figure 7C).

21


https://doi.org/10.1101/2023.03.24.534115
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.24.534115; this version posted January 13, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

A B
Gradient profiles in older age
g
08 - ‘ 3
M Youth-like vs. Young z
& Aged vs. Young 5
06 s
05 *EK xxx
E 0 4 ARK xK A
€ *
© G A
a 03
1
02
0.1 3
; E
’ z
G1 G2 G3 G1 G2 G3 g
: G}
Left Right
0
“p < 0.06; *p < 0.05; **p < 0.01; ***p < 0.001 A
(84 YOUNG YOUTH-LIKE
G1
G2
D
G1 G1
hovse : G2 ! i
b ——
o Views! B VAN
Sumplomone Somasomotor i
Lemdc LUimbie e
e RAN o
VAN
OMN g
FPN
E
® u Youth-ike
73 Aged
L]
2 es
83
65 = mYouth-like 5000
58

4500

4000

HC GM (mm?)

|

Episodic

Memory score

3500

* Agec‘

‘Word recall

1814
g 10
I II 3000
Youthike Aged

mmale =female

Left

Ap <0.06; *p < 0.05; *p < 0.01; **p < 0.001

G1: left

G2: left

Right

Somatomator

G1: right

0

P A P
M Youth-like 5
Aged G2: right
—~Young 1
0
P A P
AGED

Visual

PN

W Youth-like

Aged

Right

HC D1DR BP

:

Dopamine profiles
*EK

B Youth-like
Aged

*x
*%

Left HC Right HC
® Youth-like vs. Young ' Aged vs. Young

Partial n2

Figure 6. Gradient profiles in older age. A) Two older subgroups were identified based on left-hemisphere G1. The first
group (n=19) displayed gradient characteristics significantly different from those in young adults, whereas the second
group (n=30) displayed gradient characteristics more similar to those in young adults. Bars represent comparisons of
gradient TSM parameters between older subgroups and younger adults. B) Average gradient values across participants
within subgroups, plotted against the distance (in mm) from the most anterior hippocampal voxel. The flatter curves in
older adults with an aged gradient profile suggest less distinct change in connectivity across gradients. C) Group-level
G1 and G2 for young, youth-like, and aged groups. D) Position of cortical networks in gradient space. E) Older
subgroups were comparable in terms of age, sex, hippocampal gray matter volume, and average levels of hippocampal
D1DR availability, while older adults with a youth-like gradient profile exhibited a more youth-like profile also in D1DR

distribution, and superior episodic memory.
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Discussion

In this study, we present a comprehensive multidimensional characterization of functional
hippocampal-neocortical integration across the adult human lifespan, and methodically map
topography of connectivity gradients onto behavioral and molecular phenotypes. Our findings
reveal the presence of two distinct connectivity gradients distributed along the hippocampus
longitudinal axis which contribute to episodic memory function across the lifespan. These
observations underscore the importance of disentangling multiple dimensions of hippocampal
functional organization in advancing our understanding of cortico-hippocampal systems for
memory-related behavior. Moreover, we demonstrate in two independent samples, that
maintaining a youth-like gradient profile in older age — characterized by preserved
distinctiveness of connectivity change along gradients — supports mnemonic functioning, and
that increased homogeneity of gradient topography may precede gray matter atrophy.

Despite converging evidence in young adults indicating multiple overlapping
modes of functional connectivity across the hippocampus?2°-32 significant questions have
remained regarding their spatial distribution across cortex, and their role in behavior. Here,
connectopic mapping®’ identified a principal anteroposterior gradient (G1); a second-order
gradient of mid-to-anterior/posterior long-axis variation (G2); and a third-order gradient
conveying variation across the hippocampus transverse axis (G3). Although we restrict our
discussion of G3 given its low proportion of explained variance, we note that it mirrors patterns
previously observed in both structure and function'®3167_ Consistently, cortical patterns of G3
matched cortical connectivity profiles previously reported for hippocampal subfields?®%2. Our
results confirm that functional data favors detection of anteroposterior hippocampal
organization in contrast to that determined by its cytoarchitecture??, but indicate that higher-
order connectivity modes may indeed carry coarse-scale information about subfield-determined

organization. Greater anatomical specificity, with more precise characterization of connectivity
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in relation to subfield boundaries while minimizing effects of inter-individual differences in
hippocampal shape and folding, might be achieved by adopting techniques implementing a
geodesic coordinate system to represent effects within the hippocampus®°.

The general organization of neocortical connectivity within the hippocampus
showed stability across the lifespan (Figure 1), although clear effects of age were evident in the
fine-scale topography of connectivity modes (Figure 4). Older age was associated with less
distinct transitions in connectivity along G1 and G2, an effect that was exacerbated in a
subgroup of older adults exhibiting an aged gradient profile — separated from older adults
exhibiting youth-like gradient topography (Figure 6A-B). This finding constitutes an important
addition to evidence highlighting increased homogeneity in hippocampal function in aging*°.
Current theories view this loss of specificity as a consequence of its functional isolation from
neocortical areas, possibly linked to tau-driven degeneration of the perforant pathway**"*. Age-
related deterioration of this entorhinal-hippocampal pathway has in turn been linked to impaired
mnemonic functioning’®. Importantly, older individuals exhibiting dedifferentiated gradient
topography, but comparable hippocampal volumes, displayed less efficient episodic memory
compared to older adults maintaining youth-like gradient topography (Figure 6; Supplementary
Figure 7). This underscores the potential of gradient-based techniques to capture behaviorally
relevant alterations in hippocampal function at a stage preceding structural decline.

Testing the correspondence across cortex of G1 and G2 to canonical gradients of
cortical function provided support for G1 reflecting differentiation along a representation-
modulation dimension (e.g., task-negative/task-positive®; Figure 1C-E), separating
frontoparietal areas of attention and control from sensorimotor and DMN areas. Consistent with
age-related loss of segregation between task-positive and task-negative poles®, also evident in
numerous diseases involving hippocampal dysfunction (e.g., depression’®, schizophrenia’™, and

Alzheimer’s disease®®), we observed altered cortical organization of G1 in both older
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subgroups. A main difference between subgroups, however, included a unimodal-transmodal
organization instead emerging in youth-like older adults, whereas not in the aged subgroup
(Figure 6D). A meaningful role of this potential reorganization was indicated by an association
between G1 topography and memory in the youth-like older adults only. In terms of G2, we
provide support of its characterization as a local representation of the principal unimodal-
transmodal cortical gradient (Figure 1C-E), widely demonstrated across functional, structural,
and molecular modalities®®**+"®, Taken together, our observations support a framework of
cortico-hippocampal integration in which the DMN is positioned in different neural contexts:
in one case at the opposite end from frontoparietal networks of attention and control, and in the
other, opposite to sensorimotor and visual networks — indicating that an account of the
hippocampus functional connectivity with the DMN is dependent on multiple neurofunctional
hierarchies. The overlap of G1 and G2 may potentially reflect the superimposition of gradients
and hubs of long-axis anatomical connections indicated in both the human and animal
hippocampus?®’®. Moreover, the observation that macroscale relationships between distinct
cortical systems are mapped out by G1 and G2 in this manner may reflect the hippocampus
primordial position in the laminar development of the cerebral cortex’’, supporting the idea that
hippocampal function stands, from a phylogenetic perspective, to inform general principles of
brain organization?L.

We discovered that G2, specifically, manifested organizational principles shared
among function, behavior, and neuromodulation. Meta-analytical decoding reproduced a
unimodal-associative axis across G2 (Figure 3B), and analyses in relation to the distribution of
D1DRs — which vary across cortex along a unimodal-transmodal axis’®’® — demonstrated
topographic correspondence both at the level of individual differences and across the group. It
should, however, be acknowledged that PET imaging in the hippocampus is associated with

resolution-related limitations, although previous research indicate high test-retest reliability of
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[**C]SCH23390 PET to quantify D1DR availability in this region®. As such, mapping the
distribution of hippocampal D1DRs at a fine spatial scale remains challenging, and replication
of our results in terms of overlap with G2 is needed in independent samples. Here, we evaluated
the observed spatial overlap between G2 topography and D1DRs across multiple TSM model
orders, showing correspondence between modalities from simple to more complex
parameterizations of their spatial properties. Topographic correspondence was additionally
observed between G2 and other DA markers from independent datasets (Figure 3B), suggesting
that G2 may constitute a mode reflecting a dopaminergic phenotype, which contributes to the
currently limited understanding of its biological underpinnings.

Results linked both G1 and G2 to episodic memory, suggesting complimentary
contributions of these two overlapping long-axis modes. Considered together, analyses in the
main and replication datasets indicated a role of G2 topography in memory across the adult
lifespan, independent of age. A similar association with G1 was only evident across the entire
sample in the replication dataset, whereas results in the main sample seemed to emphasize a
role of youth-like G1 topography in memory performance. In line with previous research,
memory was successfully predicted by G1 topography in young adults®®, and similarly
predicted by G1 in older adults exhibiting a youth-like functional profile.

It is noteworthy that meta-analytical decoding of G2 primarily linked the
unimodal connectivity patterns of anterior and posterior subregions to terms of episodic
memory, encoding, and navigation (Figure 2C). G2’s role in memory might as such be
considered in light of hippocampal integration with the visual system, by which it contributes
to complex perceptual processes supporting memory®. In humans, there is evidence of direct
hippocampal connections to early visual areas, with recent tractography-based work
demonstrating connectivity as primarily localized to the posterior hippocampus and to a smaller

region in the anterior hippocampus’®.
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The verbal nature of our memory tasks likely contributed to the left-lateralization
of effects, yet, predominant left-hemisphere vulnerability to aging and age-related pathology
should not be ruled out as a meaningful contributor to these effects®?. Average hippocampal
D1DR availability did not differ between older subgroups, but a tendency towards youth-like
and aged functional profiles being mirrored in D1DR topography was observed (Figure 6E).
However, longitudinal data is ultimately required to inform the underlying mechanisms of
individual differences in hippocampal gradient topography in older age®3®. Future studies
should, furthermore, assess gradients’ modulation by behavioral conditions and extend these
methods to clinical samples characterized by hippocampal dysfunction.

This study establishes behavioral relevance of two overlapping long-axis modes
of hippocampal-neocortical functional connectivity, shedding light on their age-related
dedifferentiation, and its impact on cognition. In sum, this study introduces a multidimensional
framework for understanding hippocampal-neocortical integration and its interplay with

memory and neuromodulation throughout the adult human lifespan.
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Materials and Methods
This study included data from the DopamiNe, Age, connectoMe, and Cognition (DyNAMIC)
study, for which the design and procedures have been described in detail elsewhere>®°, Here,
we include the materials and methods relevant to the current study. DyNAMIC was approved
by the Regional Ethical board and the local Radiation Safety Committee of Umed, Sweden. All

participants provided written informed consent prior to testing.

Participants

The DyNAMIC sample included 180 participants (20-79 years; mean age = 49.8+17.4; 90
men/90 women equally distributed within each decade). Individuals were randomly selected
from the population register of Umed, Sweden, and recruited via postal mail. Exclusion criteria
implemented during the recruitment procedure included brain pathology, impaired cognitive
functioning (Mini Mental State Examination < 26), medical conditions and treatment that could
affect brain functioning and cognition (e.g. dementia, diabetes, and psychiatric diagnosis), and
brain imaging contraindications (e.g. metal implants). All participants were native Swedish
speakers. A total of 16 participants were excluded from connectopic mapping due to excessive
in-scanner motion, leaving resting-state fMRI data for 164 participants (20-78 years; mean age
= 48.7+17.3). As a replication data set, we used an independent sample of 224 cognitively
healthy and native Swedish-speaking adults (122 men/102 women; 29-85 years mean age =
65.0£13.0) from the population-based Betula project, for which the design and recruitment

procedures have been reported in detail elsewhere®.

Episodic memory
Episodic memory was measured using three tasks testing word recall, number-word recall and

object-location recall, respectively®. In the word recall task, participants were presented with
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16 Swedish concrete nouns that appeared successively on a computer screen. Each word was
presented for 6 s during encoding with an inter-stimulus interval (ISI) of 1 s. Following
encoding, participants reported as many words as they could recall by typing them using the
keyboard. Two trials were completed, yielding a maximum score of 32. In the number-word
task, participants encoded pairs of 2-digit numbers and concrete plural nouns (e.g., 46 dogs).
During encoding, eight number-word pairs were presented, each displayed for 6 s, with an ISI
of 1 s. Following encoding, nouns were presented again, in a re-arranged order, and participants
had to report the 2-digit number associated with each presented noun (e.g. How many dogs?).
This task included two trials with a total maximum score of 16. The third task was an object-
location memory task. Here, participants were presented with a 6 x 6 square grid in which 12
objects were, one by one, shown at distinct locations. Each object-position pairing was
displayed for 8 s, with an IS of 1 s. Following encoding, all objects were simultaneously shown
next to the grid for the participant to move them (in any order) to their correct position in the
grid. If unable to recall the correct position of an object, participants had to guess and place the
object in the grid to the best of their ability. Two trials of this task were completed, making the
total maximum score 24.

A composite score of performances across the three tasks was calculated and used as
the measure of episodic memory. For each of the three tasks, scores were summarized across
the total number of trials. The three resulting sum scores were z-standardized and averaged to
form one composite score of episodic memory performance (T score: mean = 50; SD = 10).

Missing values were replaced by the average of the available observed scores.

Image acquisition
Brain imaging was conducted at Umea University Hospital, Sweden. Structural and functional

MRI data were acquired with a 3T Discovery MR 750 scanner (General Electric, WI, USA),
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using a 32-channel head coil. Positron emission tomography (PET) data were acquired with a

Discovery PET/CT 690 scanner (General Electric, WI, USA).

Structural MR Imaging
Anatomical T1-weighted images were acquired with a 3D fast-spoiled gradient-echo sequence,
collected as 176 slices with a thickness of 1 mm. Repetition time (TR) was 8.2 ms, echo-time

(TE) = 3.2 ms, flip angle = 12°, and field of view (FOV) = 250 x 250 mm.

Functional MR Imaging

Functional MR data were collected during resting-state, with participants instructed to keep
their eyes open and focus on a fixation cross during scanning. Images were acquired using a
T2*-weighted single-shot echo-planar imaging (EPI) sequence, with a total of 350 volumes
collected over 12 minutes. The functional time series was sampled with 37 transaxial slices,
slice thickness = 3.4 mm, and 0.5 mm spacing, TR = 2000 ms, TE = 30 ms, flip angle = 80°,

and FOV = 250 x 250 mm. Ten dummy scans were collected at the start of the sequence.

PET Imaging

PET was conducted in 3D mode with a Discovery PET/CT 690 (General Electric, WI, US) to
assess whole-brain dopamine D1 receptor availability using the radioligand [*!C]SCH23390.
Scanning was done during a resting condition, with participants instructed to lay still and remain
awake with their eyes open. To minimize head movement, a thermoplastic mask (Posicast®;
CIVCO medical solutions; 1A, US) was individually fitted for each participant, and attached to
the bed surface during scanning. Following a low-dose CT scan (10 mA, 120 kV, and 0.8 s
rotation time) for attenuation correction, an intravenous bolus injection with target radioactivity
of 350 MBq [*'C]SCH23390 was administered. The PET scan was a 60 min dynamic scan, with

6x10s,6x20s, 6x40s,9x60s, 22 x 120 s frames. The average radioactivity dose
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administered to participants was 337+27 MBq (range 205-391 MBq). Due to participant drop-

out and technical issues, complete PET data was available for 177 DyNAMIC participants.

Image preprocessing

Hippocampal segmentation and volumetric assessment

Individual anatomical T1-weighted images were submitted to automated segmentation in
FreeSurfer version 6%. A mean image of participants’ normalized T1-weighted images was also
segmented in FreeSurfer, and yielded hippocampal and cortical segmentations used as masks
for connectopic mapping. Regional gray matter (GM) volume was estimated from subject-
specific hippocampal segmentations, and were corrected for total intracranial volume (ICV; the
sum of volumes for grey matter, white matter, and cerebrospinal fluid). Adjusted volumes were
equal to the raw volume - b(ICV - mean ICV), where b is the regression slope of volume on
ICV®. Automated segmentation of the hippocampus into subiculum, CA1-3, and DG/CA4
subfields was conducted in FreeSurfer using the group-average T1-weighted image, for sample-

specific masks to overlay onto G3 (Supplementary Figure 2).

Functional MRI data
Resting-state fMRI data were preprocessed using Statistical Parametric Mapping (SPM12:

Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/) implemented in

an in-house software, DataZ. Functional images were slice-timing corrected, co-registered to
the anatomical T1-images, and motion corrected, and underwent distortion correction using
subject-specific BO-field maps. The functional data were subsequently co-registered to the
anatomical T1-images again, temporally demeaned and linear and quadratic effects were
removed. Next, a 36-parameter nuisance regression model was applied®, including mean
cerebrospinal, white-matter, and whole-brain signal in addition to six motion parameters,

including parameters’ squares, derivatives, and squared derivatives. To further control for in-
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scanner motion, the model also included a set of spike regressors, defined as binary vectors of
motion-contaminated volumes exceeding a volume-to-volume root-mean-squared (RMS)
displacement of 0.25 mm. A temporal high-pass filter (with a threshold of 0.009 Hz) was
applied simultaneously as nuisance regression in order to not re-introduce nuisance signals.
Finally, images were normalized to MNI space by Diffeomorphic Anatomical Registration
using Exponentiated Lie algebra (DARTEL®®) and smoothed with a 6-mm FWHM Gaussian
kernel. Four individuals were excluded from the template-generation step due to non-
pathological anatomical irregularities. In total, 16 participants were excluded due to displaying
excessive in-scanner motion, as defined by displaying i) more than 20 volumes with >0.25
relative RMS difference in motion, and ii) greater than 0.2 average RMS across the run. On
average, the relative RMS difference in motion across the sample was 0.090 (+ 0.063), and the

mean frame-wise displacement (FD) was 0.164 (£ 0.104).

Dopamine D1 receptor availability
Preprocessing of PET data was performed in SPM12 (Wellcome Trust Centre for

Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Binding potential relative to non-

displaceable binding in a reference region (BPnp; Innis et al., 2007), was used as an estimate of
receptor availability (i.e. D1DR) in the hippocampus, for each participant defined using the
FreeSurfer segmentation of their anatomical images. Cerebellum was used as reference region.
PET images were corrected for head movement by using frame-to-frame image co-registration,
and co-registered with T1-weighted MRI images with re-slicing to T1 voxel size. The simplified
reference-tissue model (SRTM) was used to model regional time-activity course (TAC) data.
Regional TAC data were adjusted for partial volume effects (PVE) by using the symmetric
geometric transfer matrix (SGTM) method implemented in FreeSurfer, and an estimated point-
spread-function of 2.5 mm full-width-at-half-maximum (FWHM). We additionally used data

from a publicly available database of group-averaged volumetric maps of molecular target
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distributions (https://github.com/netneurolab/hansen_receptors). Specifically, we downloaded
previously published maps of DAT®® and FDOPA

(https://wwwe.nitrc.org/projects/spmtemplates), to investigate the spatial correspondence

between functional gradients and dopaminergic target distributions.

Mapping gradients of functional connectivity

Connectopic mapping®’ was run through the ConGrads toolbox®’ implemented in FSL®.
Mapping was conducted on both subject level and group level, for the left and right
hippocampus separately, and involved two main steps. First, for every hippocampal voxel,
connectivity fingerprints were computed as the Pearson correlation between the voxel-wise
time-series and a singular-value decomposition (SVD) representation of all cortical voxels. In
a second step, non-linear manifold learning (Laplacian eigenmaps) was applied to a matrix
expressing the degree of similarity between the voxel-wise fingerprints. This yields
eigenvectors, so called connectopic maps, representing modes of functional connectivity (i.e.
functional gradients). Each connectopic map is then projected onto cortex, for which each
vertex is color coded according to the voxel in the hippocampus it correlates the most with.
Since connectopic mapping at group level involves applying Laplacian eigenmaps to a group-
average similarity matrix, group level mapping across the sample was conducted using the
hippocampal and cortical masks derived from the FreeSurfer segmentation of a sample-mean
structural image. Mapping was specified to compute 20 gradients, and a subsequent scree plot
over explained variance indicated meaningful contributions of the three first connectopic maps,

together explaining 67% of the variance across hemispheres (Supplementary Figure 1).

Stability of functional gradients across levels of spatial smoothing
It has recently been suggested that the reliability of connectopic mapping to detect meaningful

gradients of resting-state functional connectivity may be limited due to spatial smoothing
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implemented during preprocessing of fMRI data®. To determine the stability of our
hippocampal gradients, we conducted a series of control analyses across varying levels of
smoothing, and in contrast to connectopic maps derived through connectopic mapping on
random data. These analyses are presented in the Supplementary Information, and confirmed
high stability of resting-state gradients and their ability to capture inter-individual differences,

whereas random data failed to produce meaningful gradients (Supplementary Figure 4).

Alignment of connectopic maps across participants

To ensure optimal alignment of identified connectopic maps across participants, we employed
Procrustes alignment, based on voxel-wise correlations, to order subject-level connectopic
maps according to their correspondence with a set of reference maps (i.e. gradients computed
at group level across the full sample). Moreover, whereas the sign of connectopic maps is
arbitrary, differences therein have an impact on the spatial model parameters describing the
topographic characteristics of gradients, derived through TSM in a later step. As such, the sign
of subject-level connectopic maps showing negative correlations with the corresponding group-

level reference map were inversed.

Trend surface modelling

Using spatial statistics, the topography of a connectopic map can be represented by a small
number of spatial model parameters. This parameterization enables analyses of inter-individual
differences, and is achieved through trend surface modelling (TSM), implemented in a third
step of the ConGrads analysis pipeline®’. In this step, the spatial pattern of each subject-level
connectopic map is approximated by estimating a spatial statistical model. Model estimation
involves fitting a set of polynomial basis functions along canonical axes of the connectopic
map. In MNI space, this entails estimation along X, y, and z axes of the hippocampus. Thus,
fitting a polynomial of degree 1 yields three TSM parameters (X, y, z), with any increase in

model order corresponding to an increase in number of parameters (e.g. 6 parameters for the
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second model order: X, y, z, X2, y?, z%; 9 parameters for the third model order, etc.). Trend surface
models are fitted with an increasing polynomial degree using Bayesian linear regression, which
provides likelihood estimates that can be used for subsequent model selection. Here, model
selection was based on three information sources: a) the Bayesian Information Criterion (BIC)
across subjects for models estimated at orders 1-10; b) the % explained variance in connectopic
maps by each model; and c) visual inspection of group-level gradients reconstructed from TSM
parameters at different model orders. The purpose of using multiple information sources, as
opposed to simply BIC, was to find a trade-off between high-quality reconstructions of
gradients by TSM models, while keeping the number of model parameters sufficiently low for
multivariate statistical analyses. A model order of 3 (=9 TSM parameters) was selected for G1,
whereas a model order of 4 (=12 TSM parameters) was selected for G2 and G3 (Supplementary
Figure 5). Each gradient’s set of TSM parameters were then used as either dependent or
independent variables in multivariate GLMs investigating links between gradient topography

and variables such as age, episodic memory performance, and D1DR distribution.

Transitions in connectivity as a function of the hippocampal longitudinal axis

To visualize the orthogonal patterns of change in connectivity conveyed by each gradient, and
to aid in the interpretation of age effects, we divided each subject-level connectopic map into
23 bins of ~2mm along the hippocampus anterior-posterior axis and estimated the average
gradient value (ranging from 0-1) for each bin. Plotting the values of each bin against their
distance in mm from the most anterior voxel in the hippocampus as such demonstrates the

pattern of change in connectivity along the anterior-posterior axis®.

Cortical projections and correlations with gradients of cortical function

In ConGrads®’, cortical mapping is computed independently for each gradient based on the

—
regression equation; pmap = BT.(XT ".AT)" where A corresponds to data inside (i.e.,
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hippocampus) and B to data outside (i.e., cortical) the ROI, and X-1 is the pseudo-inverse of
the corresponding eigenvector (stacked with a row of ones). For each hippocampal gradient,
the volumetric MNI-registered group-level cortical projection map was resampled to the
Human Connectome Project 32k_LR midthickness surface mesh, using the volume-to-surface
algorithm with enclosing mapping available in Connectome Workbench v.1.5.0. Spearman
correlations were computed between the cortical projection of each hippocampal gradient and
the three gradients previously established as the main axes of cortical functional organization®*.
To reduce the degree of freedom, each surface projection was resampled by 1000-cortical
parcels®. Statistical significance of correlations was assessed by spin-test permutation®,
randomly rotating a spherical projection of the cortical maps 1000 times, with two-tailed

statistical significance determined at a 95% confidence level.

Mapping behavioral transitions along gradients using Neurosynth

Transitions in behavioral domains were mapped onto G1 and G2 using meta-analytical
decoding in Neurosynth®®, We assessed two sets of behavioral terms (Figure 2), the first was a
selection of terms commonly linked to anteroposterior hippocampal functional
specialization*3, and the second a selection of terms based on a previous report demonstrating
behavioral transitions along a unimodal-transmodal cortical axis®*. For correspondence with
meta-analytical maps, we created region of interest masks by projecting the cortical surface of
each gradient to the 2-mm volumetric MNI152 standard space. These volumetric images were
then divided into five twenty-percentile bins and binarized. The resulting images were used as
input to the Neurosynth decoder, yielding an r statistic associated with each behavioral term

per section of each gradient.
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