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Abstract 

The hippocampus is a complex structure critically involved in numerous behavior-regulating 

systems. In young adults, multiple overlapping spatial modes along its longitudinal and 

transverse axes describe the organization of its functional integration with neocortex, extending 

the traditional framework emphasizing functional differences between sharply segregated 

hippocampal subregions. Yet, it remains unknown whether these modes (i.e., gradients) persist 

across the adult human lifespan, and relate to memory and molecular markers associated with 

brain function and cognition. In two independent samples, we demonstrate that the principal 

anteroposterior and second-order, mid-to-anterior/posterior hippocampal modes of neocortical 

functional connectivity, representing distinct dimensions of macroscale cortical organization, 

manifest across the adult lifespan. Specifically, individual differences in topography of the 

second-order gradient predicted episodic memory and mirrored dopamine D1 receptor 

distribution, capturing shared functional and molecular organization. Older age was associated 

with less distinct transitions along gradients (i.e., increased functional homogeneity). 

Importantly, a youth-like gradient profile predicted preserved episodic memory – emphasizing 

age-related gradient dedifferentiation as a marker of cognitive decline. Our results underscore 

a critical role of mapping multidimensional hippocampal organization in understanding the 

neural circuits that support memory across the adult lifespan. 

 

Key words: Adult lifespan, Aging, Anteroposterior axis, Brain maintenance, Brain 

organization, Connectopic mapping, Dopamine, Episodic memory, Functional connectivity, 

Hippocampus 
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The hippocampus plays a critical role in human behavior beyond its well-established 

involvement in memory and spatial navigation1–3. Contemporary views hold that its broad 

involvement in cognition emerges through the combination of its intrinsic circuitry and its 

widespread neocortical connections – placing it at the interface of multiple behavioral 

systems2,4. Characterizing organizational principles of hippocampal integration with the larger 

neocortical landscape is therefore key to our understanding of its contribution to cognition and 

to the many diseases associated with its dysfunction5–8. 

Animal models9,10, together with histological and functional descriptions in 

humans11–13, emphasize the hippocampus transverse (mediolateral) and longitudinal 

(anteroposterior) axes in determining its functional organization, contribution to behavior14,15, 

and vulnerability to neurological disease16,17. In humans, functional analogues of the 

hippocampus canonical internal circuitry and its anatomical connections with neocortical areas 

have successfully been provided by resting-state functional magnetic resonance imaging 

(fMRI)12,18, at a coarse scale confirming the anteroposterior differentiation in connectivity 

observed in the animal literature9,19,20. Despite the consistency by which this anteroposterior 

organizational dimension emerges21, significant questions however remain regarding its spatial 

distribution across cortex and its contribution to behavior across the adult human lifespan. 

Lack of consensus is especially evident in terms of the hippocampus functional 

connectivity with the default-mode network (DMN), encompassing core areas of the brain’s 

system for memory-guided behavior4,22. Several studies primarily attribute integration with the 

DMN to the posterior hippocampus4,12,23,24, consistent with its anatomical connections to 

midline posterior parietal areas19. Other sources emphasize the anterior hippocampus as driving 

connectivity with the DMN25–27, on the basis of its anatomical connections with ventromedial 

prefrontal areas19. These inconsistencies ultimately limit our understanding of hippocampal 

functional specialization, and the impact on cognition of the heterogeneous vulnerability to 
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aging and disease observed along the hippocampus longitudinal axis17,28. We propose that 

inconsistencies in part stem from overlooking multiple overlapping and complementary 

functional modes, not discernable through traditional parcellation-based approaches, which 

assume homogeneous function within distinct, pre-defined, portions of the hippocampus. 

Accumulating evidence in young adults indicate that hippocampal neocortical 

connectivity is indeed fundamentally multidimensional – organized in several overlapping, but 

distinct, spatial modes21,29–32. Whereas such gradient-based observations describe a principal 

anteroposterior mode of neocortical connectivity, they also identify orthogonal modes of long-

axis and transverse variation in connectivity29–31. Importantly, these hippocampal gradients 

appear to reflect well-known gradients of macroscale brain function31, which express functional 

differentiation across distinct cortical hierarchies33,34. The principal anteroposterior gradient has 

been linked to functional differentiation along a task-negative/task-positive cortical 

dimension35, separating neural communities involved in the formation of representations from 

sensory input (e.g., visual, somatosensory, and DMN areas) and those involved in the 

modulation of these representations (e.g., frontoparietal areas of attention and control)31,34. In 

parallel, a secondary, non-linear, long-axis gradient is suggested to correspond to the principal 

unimodal-transmodal gradient of cortical function (oppositely anchored in associative DMN 

areas and in unimodal sensory and motor cortices33,34)31. However, the biological underpinnings 

of this secondary gradient are still unknown, in contrast to the principal gradient, demonstrated 

also in microstructure23, gray matter covariance13,36, and gene expression37. 

Differences in the topography (i.e., the spatial layout) of the principal, 

anteroposterior, hippocampal gradient may predict episodic memory30, but current findings are 

restricted to younger age – and to mainly the same sample (i.e., the Human Connectome 

Project38)29–31. Moreover, it remains unknown in which capacity the secondary long-axis 

gradient contributes to behavior. Yet, a comprehensive model of the spatial properties of 
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hippocampal functional organization should consider that hippocampal functional alterations 

occur across the adult lifespan, and manifest across the hippocampus in a heterogeneous 

manner. Specifically, aging has been linked to differential functional isolation of anterior and 

posterior hippocampal regions from prefrontal areas and large-scale brain networks including 

the DMN39,40. Such neocortical disconnection of hippocampal subregions has been linked to 

dysfunction during memory encoding and retrieval40–42, and in turn, to episodic memory 

decline42. Findings which link hippocampal isolation to increased functional homogeneity 

within the region, suggest that its disconnection from neocortex is driven by the spatial patterns 

in which Alzheimer’s disease (AD) pathology accumulates in cognitively healthy older 

adults43,44. Importantly, loss of functional segregation between task-negative and task-positive 

poles is a functional hallmark of both healthy aging45 and AD46 – introducing overall ambiguity 

as to whether hippocampal gradients established in young adults persist into older age. 

Dopamine (DA) is one of the most important modulators of hippocampus-

dependent function47,48, and influences the brain’s functional architecture through enhancing 

specificity of neuronal signaling49. Consistently, there is a DA-dependent aspect of maintained 

functional network segregation in aging which supports cognition50. Animal models suggest 

heterogeneous patterns of DA innervation51,52 and postsynaptic DA receptors53, across both 

transverse and longitudinal hippocampal axes, likely allowing for separation between DA 

modulation of distinct hippocampus-dependent behaviors47. Moreover, the human 

hippocampus has been linked to distinct DA circuits on the basis of long-axis variation in 

functional connectivity with midbrain and striatal regions54,55. Taken together with recent 

findings revealing a unimodal-transmodal organization of the most abundantly expressed DA 

receptor subtype, D1 (D1DR), across cortex56, we tested the hypothesis that the organization of 

hippocampal-neocortical connectivity partly reflects the underlying distribution of 
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hippocampal DA receptors, predicting predominant spatial correspondence for any 

hippocampal gradient conveying a unimodal-transmodal pattern across cortex. 

Here, we characterize the multidimensional functional organization of the 

hippocampus in two independent adult-lifespan samples, and map individual differences in 

fine-scale topographic properties of connectivity gradients onto behavioral and molecular 

phenotypes. We report three hippocampal gradients displaying distinct correspondence to a) 

canonical gradients of cortical function, b) the organization of hippocampal DA receptors, and 

c) individual differences in memory function. Multivariate, data-driven, classification on 

gradient topography identified older adults exhibiting a youth-like gradient profile and superior 

memory function as distinct from age-matched older counterparts, emphasizing a behavioral 

significance of preserved functional hippocampal topography in older age. 

 

Results 

Multiple dimensions of hippocampal-neocortical integration across the adult lifespan 

Connectopic mapping57 was applied to resting-state fMRI data (n=180, 90 men/90 women; 20-

79 years; mean age = 49.8±17.4) from the DyNAMiC study58. For replication, we used an 

independent sample of 224 adults (122 men/102 women; 29-85 years mean age = 65.0±13.0) 

from the Betula project59. Connectopic mapping was used to extract the dominant modes of 

functional cortical connectivity within the hippocampus based on non-linear manifold learning 

(Laplacian eigenmaps) applied to a similarity matrix derived from connectivity fingerprints 

computed between each hippocampal voxel and each voxel within neocortex. This identified a 

set of orthogonal connectopic maps (i.e., eigenvectors) describing overlapping connectivity 

topographies (i.e., gradients) within the hippocampus. Gradients were computed at subject 

level, and at group level across the sample, separately for the left and right hippocampus. We 

analyzed the first three gradients, together explaining 63% and 71% of the variance in left and 
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right-hemispheres, respectively. This number corresponded to a clear elbow in the scree plot 

(Supplementary Figure 1). 

The principal gradient (G1), explaining 44% and 53% of the variance in left and 

right hemispheres, was organized along the hippocampus longitudinal axis, conveying gradual 

anterior-to-posterior variation in cortical connectivity (Figure 1A). This pattern of connectivity 

change is illustrated by dividing subject-level G1 connectopic maps into 23 long-axis bins of 

~2mm and plotting the average gradient values as a function of their distance from the most 

anterior hippocampal voxel30 (Figure 1B). The second-order gradient (G2), explaining 11% of 

the variance in both hemispheres, expressed a secondary long-axis gradient organized from the 

middle hippocampus towards anterior and posterior ends (Figure 1A-B). Finally, the third-order 

gradient (G3: explaining 8% and 7% of the variance), reflected variation along the hippocampus 

transverse axis, such that inferior-lateral parts of the hippocampus were separated from medial-

superior parts (Figure 1A). This pattern was most pronounced in the anterior hippocampus. 

Inspecting G3 across sample-specific segmentations of cornu ammonis (CA1-3), dentate gyrus 

(DG/CA4), and subiculum subfields suggested that while CA1-3 expressed the full extent of 

the gradient, and DG/CA4 variation around its center, the subiculum expressed only the most 

inferior section of the gradient (Supplementary Figure 2). 

The three gradients reflected gradients identified in young adults29–31, and were 

highly reproducible in the independent replication data set (Supplementary Figure 3). 

Correspondence between samples was determined by spatial correlations (left hemisphere: G1: 

r = 0.990, p < 0.001; G2: r = 0.946, p < 0.001; G3: r = 0.918, p < 0.001; right hemisphere: G1: 

r = 0.996, p < 0.001; G2: r = 0.969, p < 0.001; G3: r = 0.897, p < 0.001). Furthermore, the 

reliability of connectopic mapping to produce functional connectivity gradients was determined 

across varying degrees of spatial smoothing, and contrasted against connectopic maps derived 

from random data60. Results confirmed high stability of resting-state gradients and their efficacy 
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in capturing inter-individual differences, whereas random data failed to produce meaningful 

gradients (Supplementary Figure 4). 
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Figure 1. Topographic gradients of hippocampal cortical connectivity. A) The first three hippocampal 

connectopic maps (G1-G3), explaining 67% of the variance across left and right hemispheres. Similar 

colors convey similar patterns of cortical connectivity. Values range between 0 (blue) and 1 (yellow). 

B) Plots convey change in connectivity along the anteroposterior hippocampal axis. Mean values from 

23 hippocampal bins (each ~2mm) are plotted against their distance (in mm) from the most anterior 

hippocampal voxel. Values were estimated based on subject-level gradients and averaged across 

participants. G1 conveys gradual change in connectivity along an anteroposterior gradient. G2 conveys 

gradual change in connectivity along a second-order long-axis gradient, separating the middle 

hippocampus from anterior and posterior ends. G3 conveys close to no change in connectivity along the 

longitudinal axis, with connectivity change instead organized in a primarily medial-lateral gradient. C) 

Cortical projections for G1, G2, and G3. Values range between 0 (blue) and 1 (yellow). D) The order of 

cortical networks in gradient space. Density plots visualize the distribution of gradient values for seven 

cortical networks (Yeo et al., 2011). E) Correlations between cortical patterns of hippocampal gradients 

and the three primary gradients of cortical functional organization, which are exemplified at the top of 

each graph (Margulies et al., 2016). 
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Hippocampal gradients reflect distinct dimensions of macroscale cortical organization 

The projection of G1 onto cortex conveyed a pattern linking medial orbitofrontal, 

temporolimbic, and medial parietal regions at the anterior end of the gradient with occipital and 

frontoparietal regions at the posterior end (Figure 1C). For further characterization, we 

computed G1 gradient values within seven cortical networks61, and examined their position in 

gradient space. This placed the DMN, limbic, and somatomotor networks at anterior-to-middle 

parts of the gradient, whereas visual, ventral attention, and frontoparietal networks toward the 

posterior end of the gradient (Figure 1D). In contrast, G2 exhibited a unimodal-transmodal 

pattern across cortex, linking the middle hippocampus to frontal and posterior parietal regions, 

and anterior and posterior hippocampal ends to somatomotor and occipital regions (Figure 1C). 

Consistently, the DMN and frontoparietal network mapped onto G2 at one end, and visual and 

somatomotor networks at the other (Figure 1D). Across cortex, G3 primarily separated temporal 

and insular areas from medial parietal and medial frontal areas (Figure 1C). Aligning with 

cortical connectivity previously reported for hippocampal subfields29,62, areas of the DMN most 

strongly mapped onto the most inferior end of G3, consistent with the connectivity profile of 

the subiculum, whereas ventral attention and somatomotor networks had a stronger medial 

position along G3, aligning with reported connectivity of CA1-3 (Figure 1D). 

Next, we linked the cortical patterns of gradients to the established macroscale 

layout of cortical function34 using Spearman’s rank correlation analyses. G1 showed significant 

correspondence with the cortical representation-modulation gradient34, differentiating the task-

negative DMN and somatomotor networks from task-positive areas of attention and control 

(left G1: Spearman’s r = -0.353, pspin < 0.001; right G1: Spearman’s r = -0.406, pspin < 0.001; 

Figure 1E). G1’s correlation with this cortical gradient was greater than its correlations to other 

cortical gradients (6.3 < Z < 9.6, ps < 0.001), as well as significantly stronger than correlations 

observed for G2 and G3 (1.6 < Z < 6.5, ps < 0.05). In contrast, G2 corresponded to the principal 
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unimodal-transmodal gradient of cortical function (left G2: Spearman’s r = 0.502, pspin < 0.001; 

right G2: Spearman’s r = 0.536, pspin < 0.001; Figure 1E), to a greater extent than G1 and G3 

(4.9 < Z < 10.9, ps < 0.001) and in comparison to other cortical gradients (5.2 < Z < 9.4, ps < 

0.001). Finally, the cortical pattern of G3 showed overall weaker correspondence with the 

canonical cortical gradients. G3’s correlations with the unimodal-transmodal gradient (left G3: 

Spearman’s r = -0.32, pspin = 0.011), and the representation-modulation gradient (right G3: 

Spearman’s r = 0.191, pspin = 0.009), were significantly weaker compared their counterparts of 

G2 (Z(998) = 4.9, p < 0.001) and G1 (Z(998) = 5.3, p < 0.001). These multiple lines of evidence 

contribute to a model of hippocampal functional organization across the adult human lifespan 

in which G1 and G2 constitute local representations of distinct macroscale cortical motifs. 

 

Distinct patterns of behavioral transitions along G1 and G2 

Given the correspondence of G1 and G2 to distinct gradients of cortical function, we 

characterized their relevance for hippocampal functional specialization by mapping transitions 

in behavioral domains onto G1 and G2 using meta-analytical decoding in Neurosynth63. 

Correlations were assessed between meta-analytical maps of behavioral terms and twenty-

percentile bins of each gradient’s cortical projection (Figure 2). First, a selection of terms 

commonly linked to anteroposterior hippocampal functional specialization13,14 were assessed 

across G1 and ranked based on their location along the gradient (Figure 2A). The strongest 

anterior loadings on G1 belonged to terms including words, social, and dementia, whereas terms 

of navigation, episodic memory, encoding, and recollection showed preferential posterior 

loadings. In contrast, behavioral transitions along G2 were expected to reflect its unimodal-

transmodal organization (Figure 1B). To this end, terms were selected and ordered based on a 

previous report demonstrating unimodal-transmodal behavioral transitions across cortex34. G2 

expressed a clear separation between sensorimotor and visual terms at one end from social, 
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self-referential, and default terms at the other (Figure 2B), confirming its unimodal-transmodal 

organization. 

 

 

 

Figure 2. Behavioral profiling of G1 and G2 across cortex. For each gradient, columns represent twenty-

percentile bins of the gradient’s cortical projection. Color shadings represent the strength of correlations 

between gradient bins and meta-analytical maps in Neurosynth. A) Terms commonly linked to 

anteroposterior hippocampal functional specialization were assessed across G1 and ranked based on 

their location along the gradient. B) For G2, terms were selected and ordered as to reflect a unimodal-

transmodal cortical axis34. C) The correspondence between G2 and behavioral terms commonly linked 

to anteroposterior hippocampal functional specialization. D) The correspondence between G1 and 

behavioral terms expressing a unimodal-transmodal axis. 
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Topography of G2 reflects distribution of hippocampal dopamine D1 receptors 

Our next aim was to investigate to which extent the distribution of hippocampal DA D1 

receptors (D1DRs), measured by [11C]SCH23390 PET in the DyNAMiC58 sample, may serve 

as a molecular correlate of the hippocampus’ functional organization. First, to estimate 

individual differences in gradients’ spatial layout, trend surface modelling (TSM) was applied 

to each subject-level connectopic map30,57,64. This spatial-statistics approach parameterizes 

gradients at subject level, yielding a set of model parameters describing the topographic 

characteristics of each gradient in x, y, z directions (see Methods, and Supplementary Figure 5 

for model selection). Unlike voxel-wise statistical inference on gradients, which overlooks the 

high interdependence between voxels’ gradient values and demands rigorous correction for 

multiple comparisons, TSM allows for statistical inference across a region’s internal 

heterogeneity using a concise set of independent parameters64. Moreover, by adjusting the 

number of polynomial terms, TSM facilitates examination of spatial trends across gradients at 

coarser-to-finer levels64. 

Individual maps of D1DR binding potential (BP) were also submitted to TSM, 

yielding a set of spatial model parameters describing the topographic characteristics of 

hippocampal D1DR distribution for each participant. D1DR parameters were subsequently used 

as predictors of gradient parameters in one multivariate GLM per gradient (in total 6 GLMs, 

controlled for age, sex, and mean FD). Results are reported with p-values at an uncorrected 

statistical threshold and p-values after adjustment for multiple comparisons using the 

Benjamini-Hochberg method to control the false discovery rate (FDR). Individual differences 

in D1DR topography significantly explained topography of right-hemisphere G2 (F = 1.207, p 

= 0.041, pFDR = 0.073; partial η2 = 0.118), but not of G1 nor G3 (F 0.953-1.108, p 0.222-0.596) 

(Figure 3). This association was robust across multiple TSM model orders (Supplementary 

Figure 6). Complimentary analyses were then conducted to further evaluate G2 as a 
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dopaminergic hippocampal mode by utilizing additional DA markers at group-level. First, a 

map of D1DR distribution was formed by averaging the [11C]SCH23390 BP images across 

DyNAMiC participants (n=176),  and a map of D2DR distribution was formed by averaging 

[11C]raclopride BP images in a subsample of DyNAMiC participants (n = 20). Previously 

published maps of DAT65 and FDOPA (https://www.nitrc.org/projects/spmtemplates) were 

also analyzed. Correlations across group-level TSM parameters66, revealed significant positive 

associations between G2 and D1, DAT, and FDOPA (D1: r = 0.501, p < 0.01, pFDR = 0.021; 

DAT: r = 0.378, p < 0.01, pFDR = 0.021; FDOPA: r = 0.584, p < 0.01, pFDR = 0.021; Figure 3C), 

although not D2 (D2: r = 0.131, p = 0.440, pFDR = 0.528), whereas correlations were not 

significant for G1 or G3, indicating that G2 best captures shared principles of functional and 

molecular organization. 

 

Figure 3. Shared functional and molecular organization within the hippocampus. A) Multivariate effects 

of hippocampal D1DR TSM parameters as predictors of G2 TSM parameters. Images show average 

organization of G2 and D1DR in the right hemisphere. Note that the arbitrary color scale of G2 has been 

flipped. B) Correlations between group-level TSM parameters of functional gradients and DA markers. 
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Dedifferentiated gradient topography in older age 

Effects of age on gradient topography were assessed using multivariate GLMs including age as 

the predictor and gradient TSM parameters as dependent variables (controlling for sex and 

mean frame-wise displacement; FD). One model was fitted per gradient and hemisphere, each 

model including all TSM parameters belonging to a gradient (in total, 6 GLMs). There was a 

significant effect of age on topographic characteristics of all three gradients. G1 displayed the 

greatest effect of age (left: F(9,150) = 5.853, p < 0.001, pFDR = 0.003, partial ƞ2 = 0.260; right: 

F(9,150) = 6.971, p < 0.001, pFDR = 0.003, partial ƞ2 = 0.298), followed by G2 (left: F(12,147) = 

2.583, p = 0.004, pFDR = 0.01, partial ƞ2 = 0.174; right: F(12,145) = 2.635, p = 0.003, pFDR = 0.008, 

partial ƞ2 = 0.179), and G3 (left: F(12,147) = 1.973, p = 0.030, pFDR = 0.056, partial ƞ2 = 0.139; 

right: F(12,145) = 2.082, p = 0.021, pFDR = 0.042, partial ƞ2 = 0.147). To visualize effects, subject-

level G1 and G2 values were plotted along the anteroposterior axis, averaged within young (20-

39 years), middle-aged (40-59 years) and older (60-79 years) adults. Connectivity across G1 

and G2 displayed less distinct differentiation at older age, depicted by the flatter curves in the 

older group (Figure 4A). The difference in gradient values between each consecutive pair of 

gradient bins was computed, and the locations of significant univariate contributions to the 

effect of age on these values were visualized along gradients (Figure 4B-C). For G1, this 

primarily localized effects to a middle hippocampal region extending posteriorly from just after 

the uncal apex (MNI y=21). 
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Figure 4. Effects of age on hippocampal gradients. A-B) Less specificity in connectivity change across 

G1 and G2 in older age. Average values of subject-level gradient bins are plotted as a function of their 

distance from the most anterior hippocampal voxel. Separate lines mark young (20-39 years; gray), 

middle-aged (40-59 years, green), and older (60-79 years; blue) age groups. The flatter curves in the 

older group indicate less distinct change in connectivity patterns across gradients in older age. C) 

Localization of age effects along G1. Shaded fields indicate the position of significant age effects along 

G1. D) Localization of age effects along G2. Shaded fields indicate the position of significant age effects 

along G2. 
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Topography of hippocampal gradients predicts episodic memory performance 

Next, we tested associations between topography of the three gradients and episodic memory. 

Using hierarchical multiple regression models in which age, sex, and mean FD were controlled 

for in a first step (M1), we entered TSM parameters of the three gradients as predictors of 

episodic memory in a step-wise manner. Models were assessed separately for left and right 

hemispheres, across the full sample and within age groups, yielding eight hierarchical models 

in total. Results are reported with p-values at an uncorrected statistical threshold and p-values 

after FDR adjustment. Memory performance was, across the sample, predicted by G2 in the left 

hippocampus (Adj. R2 = 0.308, ΔR2 = 0.096, F= 1.842, p = 0.047, pFDR = 0.082) over and above 

covariates and topography of G1, which did not predict performance (Adj. R2 = 0.260, ΔR2 = 

0.029, F= 0.695, p = 0.713, pFDR = 0.771), and neither did G3 (Adj. R2 = 0.276, ΔR2 = 0.027, 

F= 0.502, p = 0.910, pFDR = 0.920), Figure 5A. Observing that the association between G2 and 

memory did not remain significant after FDR adjustment, we performed the same analysis in 

our replication dataset, which also included episodic memory testing. Consistent with the 

observation in our main dataset, G2 significantly predicted memory performance (Adj. R2 = 

0.368, ΔR2 = 0.081, F= 1.992, p = 0.028) over and above covariates and topography of G1. 

Here, the analysis also showed that G1 topography predicted performance across the sample 

(Adj. R2 = 0.325, ΔR2 = 0.112, F= 3.431, p < 0.001). 

In our main dataset, memory performance was within young adults, predicted by left-

hemisphere G1 (Adj. R2 = 0.182, ΔR2 = 0.357, F= 2.672, p = 0.015, pFDR = 0.030), whereas 

neither G2 (Adj. R2 = 0.204, ΔR2 = 0.191, F= 1.098, p = 0.396, pFDR = 0.492) nor G3 (Adj. R2 

= 0.384, ΔR2 = 0.236, F= 1.755, p = 0.132, pFDR = 0.189) improved the prediction (Figure 5B). 

No gradient predicted memory within middle-aged or older age groups (F 0.432-1.865, p 0.928-

0.113; Supplementary Table 1). 
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Figure 5. Gradient topography and episodic 

memory. A) Individual differences in topographic 

characteristics of left-hemisphere G2 significantly 

predicted episodic memory performance across the 

sample, over and above the first- and second-step 

models (M1: age, sex, in-scanner motion; G1 

parameters). B) Topographic characteristics of G1 

in the left hemisphere significantly predicted 

episodic memory performance in young adults, over 

and above M1 (age, sex, and in-scanner motion). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2025. ; https://doi.org/10.1101/2023.03.24.534115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.534115
http://creativecommons.org/licenses/by/4.0/


19 
 

Youth-like gradient topography supports memory in older age 

To investigate the functional role of G1 in old age, the principal and most age-sensitive gradient, 

we tested whether memory in older adults would be facilitated by youth-like gradient 

topography using two independent datasets. In DyNAMiC, we applied data-driven latent class 

analysis (LCA) to TSM parameters (residualized to account for age, sex, and mean FD) of left-

hemisphere G1, which predicted episodic memory performance in younger adults. LCA yielded 

a two-class solution identifying two subgroups (n=19 vs. n=30) of older adults (60-79 years), 

which by definition differed in left-hemisphere G1 characteristics (F(9,37) = 13.778, p < 0.001, 

pFDR = 0.003, partial η2 = 0.770). A difference was also evident in the right hemisphere (F(9,37) 

= 3.790, p = 0.002, pFDR = 0.005, partial η2 = 0.480). 

Individuals in the smaller subgroup were determined as exhibiting an aged 

gradient profile, whereas older adults in the larger subgroup as exhibiting a youth-like gradient 

profile. The classification based on G1 parameters extended across all three gradients in both 

hemispheres (Figure 6A), such that the smaller subgroup displayed marked differences from 

younger adults across all gradients (left G1: F(9,63) = 15.549, p < 0.001, pFDR = 0.003, partial η2 

= 0.690; right G1: F(9,63) = 5.322, p < 0.001, pFDR = 0.003, partial η2 = 0.432; left G2: F(12,60) = 

3.991, p < 0.001, pFDR = 0.003, partial η2 = 0.444; right G2: F(12,60) = 2.192, p = 0.023, pFDR = 

0.045, partial η2 = 0.305; left G3: F(12,60) = 2.832, p = 0.004, pFDR = 0.01, partial η2 = 0.362; 

right G3: F(12,60) = 1.844, p = 0.061, pFDR = 0.098, partial η2 = 0.269), while the larger subgroup 

differed less from young adults in terms of G1 (left G1: F(9,74) = 4.416, p < 0.001, pFDR = 0.003, 

partial η2 = 0.349; right G1: F(9,74) = 3.086, p = 0.003, pFDR = 0.008, partial η2 = 0.273), and 

displayed second- and third-order gradients comparable to those in younger age (left G2: F(12,71) 

= 1.616, p = 0.107, pFDR = 0.167, partial η2 = 0.215; right G2: F(12,71) = 1.442, p = 0.168, pFDR 

= 0.235, partial η2 = 0.196; left G3: F(12,71) = 1.122, p = 0.357, pFDR = 0.457, partial η2 = 0.159; 
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right G3: F(12,71) = 1.596, p = 0.112, pFDR = 0.172, partial η2 = 0.212). See Supplementary Figure 

7 for classification based on right-hemisphere G1. 

Plotting connectivity change along G1 and G2 in the aged and youth-like 

subgroups revealed that the diminished topographic specificity observed across gradients in 

older individuals (Figure 4A) was driven by older adults with an aged gradient profile (Figure 

6B). Both older subgroups displayed altered gradient organization across cortex (Figure 6C-D). 

The distribution of cortical networks in G1 space indicated a unimodal-transmodal organization 

in youth-like older adults, not evident in the aged older group (Figure 6D). The two groups did 

not differ in terms of age (aged: 70.8±6.0; youth-like: 68.4±4.7; t = 1.548, p = 0.128, pFDR = 

0.189), sex (aged: 9 men/10 women; youth-like: 16 men/14 women; X2 = 0.166, p = 0.684, pFDR 

= 0.746), nor hippocampal gray matter (left hemisphere: aged: 4271.2 ml ±480.9; youth-like: 

4246.8 ml ±269.1; t = 0.223, p = 0.824, pFDR = 0.850; right hemisphere: aged: 3866.2 ml ±446.3; 

youth-like: 3979.9 ml ±398.1; t = 0.929, p = 0.357, pFDR = 0.457). Subgroups showed 

comparable levels of average hippocampal D1DR availability (left: youth-like 0.257±0.06; 

aged 0.242±0.06; t = 0.796, p = 0.430, pFDR = 0.525; right: youth-like 0.242±0.06; aged 

0.251±0.06 t = 0.296, p = 0.768, pFDR = 0.817), but displayed a pattern of differences in D1DR 

TSM parameters in comparison to young adults supporting youth-like and aged profiles (youth-

like subgroup vs. young: left: F
(9,74)

 = 1.645, p = 0.118, pFDR = 0.176, partial η2 = 0.167; aged 

subgroup vs. young: left: F
(9,62)

 = 3.478, p = 0.002, pFDR = 0.005, partial η2 = 0.335; Figure 6E). 

In line with our hypothesis, we observed superior memory in older adults 

exhibiting a youth-like gradient profile (Figure 6E): at trend-level for the composite episodic 

measure (aged: 43.2±3.7; youth-like: 46.5±6.6; t = 1.958, p = 0.056, pFDR = 0.092), driven by a 

significant group difference on its word recall sub test (aged: 40.9±4.5; youth-like: 43.4±6.8; t 

= 2.600, p = 0.012, pFDR = 0.025). Word recall performance was furthermore predicted by left-

hemisphere G1 parameters (over and above age, sex, and mean FD) in the youth-like older 
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adults (Adj. R2 = 0.464, ΔR2 = 0.543, F = 3.043, p = 0.028, pFDR = 0.054), while no association 

was observed in the aged older subgroup (Adj. R2 = 0.063, ΔR2 = 0.533, F = 1.004, p = 0.518, 

pFDR = 0.599). Crucially, the ability of left G1 topography to inform classification of older adults 

into mnemonically distinct subgroups was replicated in the Betula sample (Supplementary 

Information; Figure 7C). 
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Figure 6. Gradient profiles in older age. A) Two older subgroups were identified based on left-hemisphere G1. The first 

group (n=19) displayed gradient characteristics significantly different from those in young adults, whereas the second 

group (n=30) displayed gradient characteristics more similar to those in young adults. Bars represent comparisons of 

gradient TSM parameters between older subgroups and younger adults. B) Average gradient values across participants 

within subgroups, plotted against the distance (in mm) from the most anterior hippocampal voxel. The flatter curves in 

older adults with an aged gradient profile suggest less distinct change in connectivity across gradients. C) Group-level 

G1 and G2 for young, youth-like, and aged groups. D) Position of cortical networks in gradient space. E) Older 

subgroups were comparable in terms of age, sex, hippocampal gray matter volume, and average levels of hippocampal 

D1DR availability, while older adults with a youth-like gradient profile exhibited a more youth-like profile also in D1DR 

distribution, and superior episodic memory. 
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Discussion 

In this study, we present a comprehensive multidimensional characterization of functional 

hippocampal-neocortical integration across the adult human lifespan, and methodically map 

topography of connectivity gradients onto behavioral and molecular phenotypes. Our findings 

reveal the presence of two distinct connectivity gradients distributed along the hippocampus 

longitudinal axis which contribute to episodic memory function across the lifespan. These 

observations underscore the importance of disentangling multiple dimensions of hippocampal 

functional organization in advancing our understanding of cortico-hippocampal systems for 

memory-related behavior. Moreover, we demonstrate in two independent samples, that 

maintaining a youth-like gradient profile in older age – characterized by preserved 

distinctiveness of connectivity change along gradients – supports mnemonic functioning, and 

that increased homogeneity of gradient topography may precede gray matter atrophy. 

Despite converging evidence in young adults indicating multiple overlapping 

modes of functional connectivity across the hippocampus21,29–32, significant questions have 

remained regarding their spatial distribution across cortex, and their role in behavior. Here, 

connectopic mapping57 identified a principal anteroposterior gradient (G1); a second-order 

gradient of mid-to-anterior/posterior long-axis variation (G2); and a third-order gradient 

conveying variation across the hippocampus transverse axis (G3). Although we restrict our 

discussion of G3 given its low proportion of explained variance, we note that it mirrors patterns 

previously observed in both structure and function13,31,67. Consistently, cortical patterns of G3 

matched cortical connectivity profiles previously reported for hippocampal subfields29,62. Our 

results confirm that functional data favors detection of anteroposterior hippocampal 

organization in contrast to that determined by its cytoarchitecture21, but indicate that higher-

order connectivity modes may indeed carry coarse-scale information about subfield-determined 

organization. Greater anatomical specificity, with more precise characterization of connectivity 
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in relation to subfield boundaries while minimizing effects of inter-individual differences in 

hippocampal shape and folding, might be achieved by adopting techniques implementing a 

geodesic coordinate system to represent effects within the hippocampus68,69. 

The general organization of neocortical connectivity within the hippocampus 

showed stability across the lifespan (Figure 1), although clear effects of age were evident in the 

fine-scale topography of connectivity modes (Figure 4). Older age was associated with less 

distinct transitions in connectivity along G1 and G2, an effect that was exacerbated in a 

subgroup of older adults exhibiting an aged gradient profile – separated from older adults 

exhibiting youth-like gradient topography (Figure 6A-B). This finding constitutes an important 

addition to evidence highlighting increased homogeneity in hippocampal function in aging44,70. 

Current theories view this loss of specificity as a consequence of its functional isolation from 

neocortical areas, possibly linked to tau-driven degeneration of the perforant pathway44,71. Age-

related deterioration of this entorhinal-hippocampal pathway has in turn been linked to impaired 

mnemonic functioning72. Importantly, older individuals exhibiting dedifferentiated gradient 

topography, but comparable hippocampal volumes, displayed less efficient episodic memory 

compared to older adults maintaining youth-like gradient topography (Figure 6; Supplementary 

Figure 7). This underscores the potential of gradient-based techniques to capture behaviorally 

relevant alterations in hippocampal function at a stage preceding structural decline. 

Testing the correspondence across cortex of G1 and G2 to canonical gradients of 

cortical function provided support for G1 reflecting differentiation along a representation-

modulation dimension (e.g., task-negative/task-positive35; Figure 1C-E), separating 

frontoparietal areas of attention and control from sensorimotor and DMN areas. Consistent with 

age-related loss of segregation between task-positive and task-negative poles45, also evident in 

numerous diseases involving hippocampal dysfunction (e.g., depression73, schizophrenia74, and 

Alzheimer’s disease46), we observed altered cortical organization of G1 in both older 
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subgroups. A main difference between subgroups, however, included a unimodal-transmodal 

organization instead emerging in youth-like older adults, whereas not in the aged subgroup 

(Figure 6D). A meaningful role of this potential reorganization was indicated by an association 

between G1 topography and memory in the youth-like older adults only. In terms of G2, we 

provide support of its characterization as a local representation of the principal unimodal-

transmodal cortical gradient (Figure 1C-E), widely demonstrated across functional, structural, 

and molecular modalities33,34,75. Taken together, our observations support a framework of 

cortico-hippocampal integration in which the DMN is positioned in different neural contexts: 

in one case at the opposite end from frontoparietal networks of attention and control, and in the 

other, opposite to sensorimotor and visual networks – indicating that an account of the 

hippocampus functional connectivity with the DMN is dependent on multiple neurofunctional 

hierarchies. The overlap of G1 and G2 may potentially reflect the superimposition of gradients 

and hubs of long-axis anatomical connections indicated in both the human and animal 

hippocampus20,76. Moreover, the observation that macroscale relationships between distinct 

cortical systems are mapped out by G1 and G2 in this manner may reflect the hippocampus 

primordial position in the laminar development of the cerebral cortex77, supporting the idea that 

hippocampal function stands, from a phylogenetic perspective, to inform general principles of 

brain organization21. 

We discovered that G2, specifically, manifested organizational principles shared 

among function, behavior, and neuromodulation. Meta-analytical decoding reproduced a 

unimodal-associative axis across G2 (Figure 3B), and analyses in relation to the distribution of 

D1DRs – which vary across cortex along a unimodal-transmodal axis78,79 – demonstrated 

topographic correspondence both at the level of individual differences and across the group. It 

should, however, be acknowledged that PET imaging in the hippocampus is associated with 

resolution-related limitations, although previous research indicate high test-retest reliability of 
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[11C]SCH23390 PET to quantify D1DR availability in this region80. As such, mapping the 

distribution of hippocampal D1DRs at a fine spatial scale remains challenging, and replication 

of our results in terms of overlap with G2 is needed in independent samples. Here, we evaluated 

the observed spatial overlap between G2 topography and D1DRs across multiple TSM model 

orders, showing correspondence between modalities from simple to more complex 

parameterizations of their spatial properties. Topographic correspondence was additionally 

observed between G2 and other DA markers from independent datasets (Figure 3B), suggesting 

that G2 may constitute a mode reflecting a dopaminergic phenotype, which contributes to the 

currently limited understanding of its biological underpinnings. 

Results linked both G1 and G2 to episodic memory, suggesting complimentary 

contributions of these two overlapping long-axis modes. Considered together, analyses in the 

main and replication datasets indicated a role of G2 topography in memory across the adult 

lifespan, independent of age. A similar association with G1 was only evident across the entire 

sample in the replication dataset, whereas results in the main sample seemed to emphasize a 

role of youth-like G1 topography in memory performance. In line with previous research, 

memory was successfully predicted by G1 topography in young adults30, and similarly 

predicted by G1 in older adults exhibiting a youth-like functional profile. 

It is noteworthy that meta-analytical decoding of G2 primarily linked the 

unimodal connectivity patterns of anterior and posterior subregions to terms of episodic 

memory, encoding, and navigation (Figure 2C). G2’s role in memory might as such be 

considered in light of hippocampal integration with the visual system, by which it contributes 

to complex perceptual processes supporting memory81. In humans, there is evidence of direct 

hippocampal connections to early visual areas, with recent tractography-based work 

demonstrating connectivity as primarily localized to the posterior hippocampus and to a smaller 

region in the anterior hippocampus76. 
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The verbal nature of our memory tasks likely contributed to the left-lateralization 

of effects, yet, predominant left-hemisphere vulnerability to aging and age-related pathology 

should not be ruled out as a meaningful contributor to these effects82. Average hippocampal 

D1DR availability did not differ between older subgroups, but a tendency towards youth-like 

and aged functional profiles being mirrored in D1DR topography was observed (Figure 6E). 

However, longitudinal data is ultimately required to inform the underlying mechanisms of 

individual differences in hippocampal gradient topography in older age83,84. Future studies 

should, furthermore, assess gradients’ modulation by behavioral conditions and extend these 

methods to clinical samples characterized by hippocampal dysfunction. 

This study establishes behavioral relevance of two overlapping long-axis modes 

of hippocampal-neocortical functional connectivity, shedding light on their age-related 

dedifferentiation, and its impact on cognition. In sum, this study introduces a multidimensional 

framework for understanding hippocampal-neocortical integration and its interplay with 

memory and neuromodulation throughout the adult human lifespan. 
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Materials and Methods 

This study included data from the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) 

study, for which the design and procedures have been described in detail elsewhere58,85. Here, 

we include the materials and methods relevant to the current study. DyNAMiC was approved 

by the Regional Ethical board and the local Radiation Safety Committee of Umeå, Sweden. All 

participants provided written informed consent prior to testing. 

 

Participants 

The DyNAMiC sample included 180 participants (20-79 years; mean age = 49.8±17.4; 90 

men/90 women equally distributed within each decade). Individuals were randomly selected 

from the population register of Umeå, Sweden, and recruited via postal mail. Exclusion criteria 

implemented during the recruitment procedure included brain pathology, impaired cognitive 

functioning (Mini Mental State Examination < 26), medical conditions and treatment that could 

affect brain functioning and cognition (e.g. dementia, diabetes, and psychiatric diagnosis), and 

brain imaging contraindications (e.g. metal implants). All participants were native Swedish 

speakers. A total of 16 participants were excluded from connectopic mapping due to excessive 

in-scanner motion, leaving resting-state fMRI data for 164 participants (20-78 years; mean age 

= 48.7±17.3). As a replication data set, we used an independent sample of 224 cognitively 

healthy and native Swedish-speaking adults (122 men/102 women; 29-85 years mean age = 

65.0±13.0) from the population-based Betula project, for which the design and recruitment 

procedures have been reported in detail elsewhere59. 

 

Episodic memory 

Episodic memory was measured using three tasks testing word recall, number-word recall and 

object-location recall, respectively58. In the word recall task, participants were presented with 
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16 Swedish concrete nouns that appeared successively on a computer screen. Each word was 

presented for 6 s during encoding with an inter-stimulus interval (ISI) of 1 s. Following 

encoding, participants reported as many words as they could recall by typing them using the 

keyboard. Two trials were completed, yielding a maximum score of 32. In the number-word 

task, participants encoded pairs of 2-digit numbers and concrete plural nouns (e.g., 46 dogs). 

During encoding, eight number-word pairs were presented, each displayed for 6 s, with an ISI 

of 1 s. Following encoding, nouns were presented again, in a re-arranged order, and participants 

had to report the 2-digit number associated with each presented noun (e.g. How many dogs?). 

This task included two trials with a total maximum score of 16. The third task was an object-

location memory task. Here, participants were presented with a 6 × 6 square grid in which 12 

objects were, one by one, shown at distinct locations. Each object-position pairing was 

displayed for 8 s, with an ISI of 1 s. Following encoding, all objects were simultaneously shown 

next to the grid for the participant to move them (in any order) to their correct position in the 

grid. If unable to recall the correct position of an object, participants had to guess and place the 

object in the grid to the best of their ability. Two trials of this task were completed, making the 

total maximum score 24. 

A composite score of performances across the three tasks was calculated and used as 

the measure of episodic memory. For each of the three tasks, scores were summarized across 

the total number of trials. The three resulting sum scores were z-standardized and averaged to 

form one composite score of episodic memory performance (T score: mean = 50; SD = 10). 

Missing values were replaced by the average of the available observed scores. 

 

Image acquisition 

Brain imaging was conducted at Umeå University Hospital, Sweden. Structural and functional 

MRI data were acquired with a 3T Discovery MR 750 scanner (General Electric, WI, USA), 
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using a 32-channel head coil. Positron emission tomography (PET) data were acquired with a 

Discovery PET/CT 690 scanner (General Electric, WI, USA). 

Structural MR Imaging 

Anatomical T1-weighted images were acquired with a 3D fast-spoiled gradient-echo sequence, 

collected as 176 slices with a thickness of 1 mm. Repetition time (TR) was 8.2 ms, echo-time 

(TE) = 3.2 ms, flip angle = 12º, and field of view (FOV) = 250 × 250 mm. 

Functional MR Imaging 

Functional MR data were collected during resting-state, with participants instructed to keep 

their eyes open and focus on a fixation cross during scanning. Images were acquired using a 

T2*-weighted single-shot echo-planar imaging (EPI) sequence, with a total of 350 volumes 

collected over 12 minutes. The functional time series was sampled with 37 transaxial slices, 

slice thickness = 3.4 mm, and 0.5 mm spacing, TR = 2000 ms, TE = 30 ms, flip angle = 80º, 

and FOV = 250 x 250 mm. Ten dummy scans were collected at the start of the sequence. 

PET Imaging 

PET was conducted in 3D mode with a Discovery PET/CT 690 (General Electric, WI, US) to 

assess whole-brain dopamine D1 receptor availability using the radioligand [11C]SCH23390. 

Scanning was done during a resting condition, with participants instructed to lay still and remain 

awake with their eyes open. To minimize head movement, a thermoplastic mask (Posicast®; 

CIVCO medical solutions; IA, US) was individually fitted for each participant, and attached to 

the bed surface during scanning. Following a low-dose CT scan (10 mA, 120 kV, and 0.8 s 

rotation time) for attenuation correction, an intravenous bolus injection with target radioactivity 

of 350 MBq [11C]SCH23390 was administered. The PET scan was a 60 min dynamic scan, with 

6 x 10 s, 6 x 20 s, 6 x 40 s, 9 x 60 s, 22 x 120 s frames. The average radioactivity dose 
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administered to participants was 337±27 MBq (range 205-391 MBq). Due to participant drop-

out and technical issues, complete PET data was available for 177 DyNAMiC participants. 

 

Image preprocessing 

Hippocampal segmentation and volumetric assessment 

Individual anatomical T1-weighted images were submitted to automated segmentation in 

FreeSurfer version 686. A mean image of participants’ normalized T1-weighted images was also 

segmented in FreeSurfer, and yielded hippocampal and cortical segmentations used as masks 

for connectopic mapping. Regional gray matter (GM) volume was estimated from subject-

specific hippocampal segmentations, and were corrected for total intracranial volume (ICV; the 

sum of volumes for grey matter, white matter, and cerebrospinal fluid). Adjusted volumes were 

equal to the raw volume - b(ICV - mean ICV), where b is the regression slope of volume on 

ICV87. Automated segmentation of the hippocampus into subiculum, CA1-3, and DG/CA4 

subfields was conducted in FreeSurfer using the group-average T1-weighted image, for sample-

specific masks to overlay onto G3 (Supplementary Figure 2). 

Functional MRI data 

Resting-state fMRI data were preprocessed using Statistical Parametric Mapping (SPM12: 

Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/) implemented in 

an in-house software, DataZ. Functional images were slice-timing corrected, co-registered to 

the anatomical T1-images, and motion corrected, and underwent distortion correction using 

subject-specific B0-field maps. The functional data were subsequently co-registered to the 

anatomical T1-images again, temporally demeaned and linear and quadratic effects were 

removed. Next, a 36-parameter nuisance regression model was applied88, including mean 

cerebrospinal, white-matter, and whole-brain signal in addition to six motion parameters, 

including parameters’ squares, derivatives, and squared derivatives. To further control for in-
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scanner motion, the model also included a set of spike regressors, defined as binary vectors of 

motion-contaminated volumes exceeding a volume-to-volume root-mean-squared (RMS) 

displacement of 0.25 mm. A temporal high-pass filter (with a threshold of 0.009 Hz) was 

applied simultaneously as nuisance regression in order to not re-introduce nuisance signals. 

Finally, images were normalized to MNI space by Diffeomorphic Anatomical Registration 

using Exponentiated Lie algebra (DARTEL89) and smoothed with a 6-mm FWHM Gaussian 

kernel. Four individuals were excluded from the template-generation step due to non-

pathological anatomical irregularities. In total, 16 participants were excluded due to displaying 

excessive in-scanner motion, as defined by displaying i) more than 20 volumes with >0.25 

relative RMS difference in motion, and ii) greater than 0.2 average RMS across the run. On 

average, the relative RMS difference in motion across the sample was 0.090 (± 0.063), and the 

mean frame-wise displacement (FD) was 0.164 (± 0.104). 

Dopamine D1 receptor availability 

Preprocessing of PET data was performed in SPM12 (Wellcome Trust Centre for 

Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Binding potential relative to non-

displaceable binding in a reference region (BPND; Innis et al., 2007), was used as an estimate of 

receptor availability (i.e. D1DR) in the hippocampus, for each participant defined using the 

FreeSurfer segmentation of their anatomical images. Cerebellum was used as reference region. 

PET images were corrected for head movement by using frame-to-frame image co-registration, 

and co-registered with T1-weighted MRI images with re-slicing to T1 voxel size. The simplified 

reference-tissue model (SRTM) was used to model regional time-activity course (TAC) data. 

Regional TAC data were adjusted for partial volume effects (PVE) by using the symmetric 

geometric transfer matrix (SGTM) method implemented in FreeSurfer, and an estimated point-

spread-function of 2.5 mm full-width-at-half-maximum (FWHM). We additionally used data 

from a publicly available database of group-averaged volumetric maps of molecular target 
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distributions (https://github.com/netneurolab/hansen_receptors). Specifically, we downloaded 

previously published maps of DAT65 and FDOPA 

(https://www.nitrc.org/projects/spmtemplates), to investigate the spatial correspondence 

between functional gradients and dopaminergic target distributions. 

 

Mapping gradients of functional connectivity 

Connectopic mapping57 was run through the ConGrads toolbox57 implemented in FSL91. 

Mapping was conducted on both subject level and group level, for the left and right 

hippocampus separately, and involved two main steps. First, for every hippocampal voxel, 

connectivity fingerprints were computed as the Pearson correlation between the voxel-wise 

time-series and a singular-value decomposition (SVD) representation of all cortical voxels. In 

a second step, non-linear manifold learning (Laplacian eigenmaps) was applied to a matrix 

expressing the degree of similarity between the voxel-wise fingerprints. This yields 

eigenvectors, so called connectopic maps, representing modes of functional connectivity (i.e. 

functional gradients). Each connectopic map is then projected onto cortex, for which each 

vertex is color coded according to the voxel in the hippocampus it correlates the most with. 

Since connectopic mapping at group level involves applying Laplacian eigenmaps to a group-

average similarity matrix, group level mapping across the sample was conducted using the 

hippocampal and cortical masks derived from the FreeSurfer segmentation of a sample-mean 

structural image. Mapping was specified to compute 20 gradients, and a subsequent scree plot 

over explained variance indicated meaningful contributions of the three first connectopic maps, 

together explaining 67% of the variance across hemispheres (Supplementary Figure 1). 

Stability of functional gradients across levels of spatial smoothing 

It has recently been suggested that the reliability of connectopic mapping to detect meaningful 

gradients of resting-state functional connectivity may be limited due to spatial smoothing 
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implemented during preprocessing of fMRI data60. To determine the stability of our 

hippocampal gradients, we conducted a series of control analyses across varying levels of 

smoothing, and in contrast to connectopic maps derived through connectopic mapping on 

random data. These analyses are presented in the Supplementary Information, and confirmed 

high stability of resting-state gradients and their ability to capture inter-individual differences, 

whereas random data failed to produce meaningful gradients (Supplementary Figure 4). 

Alignment of connectopic maps across participants 

To ensure optimal alignment of identified connectopic maps across participants, we employed 

Procrustes alignment, based on voxel-wise correlations, to order subject-level connectopic 

maps according to their correspondence with a set of reference maps (i.e. gradients computed 

at group level across the full sample). Moreover, whereas the sign of connectopic maps is 

arbitrary, differences therein have an impact on the spatial model parameters describing the 

topographic characteristics of gradients, derived through TSM in a later step. As such, the sign 

of subject-level connectopic maps showing negative correlations with the corresponding group-

level reference map were inversed. 

Trend surface modelling 

Using spatial statistics, the topography of a connectopic map can be represented by a small 

number of spatial model parameters. This parameterization enables analyses of inter-individual 

differences, and is achieved through trend surface modelling (TSM), implemented in a third 

step of the ConGrads analysis pipeline57. In this step, the spatial pattern of each subject-level 

connectopic map is approximated by estimating a spatial statistical model. Model estimation 

involves fitting a set of polynomial basis functions along canonical axes of the connectopic 

map. In MNI space, this entails estimation along x, y, and z axes of the hippocampus. Thus, 

fitting a polynomial of degree 1 yields three TSM parameters (x, y, z), with any increase in 

model order corresponding to an increase in number of parameters (e.g. 6 parameters for the 
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second model order: x, y, z, x2, y2, z2; 9 parameters for the third model order, etc.). Trend surface 

models are fitted with an increasing polynomial degree using Bayesian linear regression, which 

provides likelihood estimates that can be used for subsequent model selection. Here, model 

selection was based on three information sources: a) the Bayesian Information Criterion (BIC) 

across subjects for models estimated at orders 1-10; b) the % explained variance in connectopic 

maps by each model; and c) visual inspection of group-level gradients reconstructed from TSM 

parameters at different model orders. The purpose of using multiple information sources, as 

opposed to simply BIC, was to find a trade-off between high-quality reconstructions of 

gradients by TSM models, while keeping the number of model parameters sufficiently low for 

multivariate statistical analyses. A model order of 3 (=9 TSM parameters) was selected for G1, 

whereas a model order of 4 (=12 TSM parameters) was selected for G2 and G3 (Supplementary 

Figure 5). Each gradient’s set of TSM parameters were then used as either dependent or 

independent variables in multivariate GLMs investigating links between gradient topography 

and variables such as age, episodic memory performance, and D1DR distribution. 

Transitions in connectivity as a function of the hippocampal longitudinal axis 

To visualize the orthogonal patterns of change in connectivity conveyed by each gradient, and 

to aid in the interpretation of age effects, we divided each subject-level connectopic map into 

23 bins of ~2mm along the hippocampus anterior-posterior axis and estimated the average 

gradient value (ranging from 0-1) for each bin. Plotting the values of each bin against their 

distance in mm from the most anterior voxel in the hippocampus as such demonstrates the 

pattern of change in connectivity along the anterior-posterior axis30. 

Cortical projections and correlations with gradients of cortical function 

In ConGrads57, cortical mapping is computed independently for each gradient based on the 

regression equation:  where A corresponds to data inside (i.e., 
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hippocampus) and B to data outside (i.e., cortical) the ROI, and X-1 is the pseudo-inverse of 

the corresponding eigenvector (stacked with a row of ones). For each hippocampal gradient, 

the volumetric MNI-registered group-level cortical projection map was resampled to the 

Human Connectome Project 32k_LR midthickness surface mesh, using the volume-to-surface 

algorithm with enclosing mapping available in Connectome Workbench v.1.5.0. Spearman 

correlations were computed between the cortical projection of each hippocampal gradient and 

the three gradients previously established as the main axes of cortical functional organization34. 

To reduce the degree of freedom, each surface projection was resampled by 1000-cortical 

parcels92. Statistical significance of correlations was assessed by spin-test permutation93, 

randomly rotating a spherical projection of the cortical maps 1000 times, with two-tailed 

statistical significance determined at a 95% confidence level. 

Mapping behavioral transitions along gradients using Neurosynth 

Transitions in behavioral domains were mapped onto G1 and G2 using meta-analytical 

decoding in Neurosynth63. We assessed two sets of behavioral terms (Figure 2), the first was a 

selection of terms commonly linked to anteroposterior hippocampal functional 

specialization13,14, and the second a selection of terms based on a previous report demonstrating 

behavioral transitions along a unimodal-transmodal cortical axis34. For correspondence with 

meta-analytical maps, we created region of interest masks by projecting the cortical surface of 

each gradient to the 2-mm volumetric MNI152 standard space. These volumetric images were 

then divided into five twenty-percentile bins and binarized. The resulting images were used as 

input to the Neurosynth decoder, yielding an r statistic associated with each behavioral term 

per section of each gradient. 
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