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Abstract

Making meaningful inferences about the functional architecture of the language system
requires the ability to refer to the same neural units across individuals and studies. Traditional
brain imaging approaches align and average brains together in a common space. However,
lateral frontal and temporal cortices, where the language system resides, is characterized by
high structural and functional inter-individual variability, which reduces the sensitivity and
functional resolution of group-averaging analyses. This issue is compounded by the fact that
language areas lay in close proximity to regions of other large-scale networks with different
functional profiles. A solution inspired by visual neuroscience is to identify language areas
functionally in each individual brain using a ‘localizer’ task (e.g., a language comprehension
task). This approach has proven productive in fMRI, yielding a number of robust and replicable
findings about the language system. Here, we extend this approach to MEG. Across two
experiments (one in Dutch speakers, n=19; one in English speakers, n=23), we examined neural
responses to the processing of sentences and a control condition (nonword sequences). In both
the time and frequency domains, we demonstrated that the topography of neural responses to
language is spatially stable within individuals but varies across individuals. Consequently,
analyses that take this inter-individual variability into account are characterized by greater
sensitivity, compared to the group-level analyses. In summary, similar to fMRI, functional
identification within individuals yields benefits in MEG, thus opening the door to future
investigations of language processing including questions where whole-brain coverage and

temporal resolution are both critical.
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1. Introduction

The functional architecture of the human language network is broadly consistent across
individuals (Lipkin et al., 2022). However, the precise topography of this network varies
substantially even within homogenous groups of neurotypical adults (Fedorenko et al., 2010).
Developing research methods that take these inter-individual differences into account by
identifying functional areas in individual participants—an approach known as ‘functional
localization’—has proven vital in cognitive neuroscience across domains and has been shown
to increase sensitivity, functional resolution, accurate effect size estimation, and interpretability
(Saxe et al., 2006; Nieto-Castanon & Fedorenko, 2012; Fedorenko, 2021; see Brett et al., 2002
for an early discussion of these issues). So far, functional localizer paradigms have been mostly
used in fMRI research (Kanwisher et al., 1997; Saxe & Kanwisher, 2003; Fedorenko et al.,
2010; Baldauf & Desimone, 2014), although a handful of studies have applied a similar
approach in other recording modalities, including electrocorticography (ECoG) (Cogan et al.,
2014; Fedorenko et al., 2016; Regev et al., 2024) and functional near-infrared spectroscopy
(NIRS) (Powell et al., 2018; Y. Liu et al., 2022; Paranawithana et al., 2024). With respect to
magnetoencephalography (MEG), functional localization has predominantly been applied in
studies of visual processing (J. Liu et al., 2002; De Vries & Baldauf, 2019), but has also shown
potential in the language domain with for instance applications in presurgical mapping and
inferring the role of different neural frequency bands during language comprehension (Lam et

al., 2016; Prystauka & Lewis, 2019; Papanicolaou, 2023).

Numerous studies over the last decade have provided evidence that the language network can
be delineated in a robust and replicable way at the individual-subject level using a contrast
between language comprehension and a perceptually matched control condition in fMRI

(Fedorenko et al., 2010; Mahowald & Fedorenko, 2016; Braga et al., 2020; Fedorenko et al.,
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2024; Lee et al., 2024) (see (Lipkin et al., 2022) for data in > 800 individuals). Importantly, the
language localizer contrast (language > perceptually matched control condition) has been
shown to be robust to input modality (written, spoken, or signed) (Fedorenko et al., 2010; Scott
etal., 2017; Richardson et al., 2020; Lee et al., 2024), stimulus content (hand-crafted sentences,
sentences extracted from a corpus, or connected passages (Scott et al., 2017)), language (Malik-
Moraleda, Ayyash et al., 2022), and the presence or absence of an active task (Fedorenko et al.,
2010; Diachek et al., 2020; Ivanova et al., 2020). Furthermore, this network has been shown to
be strongly selective for linguistic input (Fedorenko et al., 2011; Monti et al., 2012; Amalric &
Dehaene, 2018) (see e.g., (Fedorenko & Blank, 2020) for a review). This broad generalization
across paradigm variations and selectivity for language processing jointly suggest that the
language brain areas support specifically linguistic computations. Indeed, evidence from
dozens of studies has implicated these areas in lexical access, syntactic structure building, and
semantic composition during both comprehension and production (e.g. Pallier et al., 2011; Hu,

Small et al., 2023; Shain, Kean et al., 2022, 2024; Giglio et al., 2024).

Although fMRI investigations of the language network have yielded important findings,
fMRI’s poor temporal resolution limits its use for research questions where timing information
is critical. Intracranial recordings provide an incredible opportunity to obtain high-spatial and
high-temporal resolution data with high signal-to-noise ratio, but the approach is inherently
limited with respect to both the population and the sparse brain coverage. In contrast,
magnetoencephalography (MEG) enables whole-brain non-invasive measurements of neural
activity in typical brains at a millisecond-level resolution. Here, using data from two
independent datasets (across two languages: English and Dutch), we establish the feasibility of
identifying language-responsive sensors at the individual level in MEG investigations, and
provide evidence that this approach is more sensitive than the standard brain-averaging

approach.
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2.Methods

2.1 Participants

We recruited 42 healthy young volunteers: 19 native Dutch speakers (18 female, between 19
and 29 years old, mean 23.4 years old) and 23 native English speakers (between 19 and 53
years old, mean 26.7 years old). The study was approved by the local Ethics Committees. All

participants provided written informed consent in accordance with the Declaration of Helsinki.

2.2 Experimental Design

In identifying the language network, we use a design that has been extensively validated in
fMRI (first used in (Fedorenko et al., 2010)), namely, a sentence reading task. Using fMRI, the
sentences>nonwords sequences contrast has been shown to robustly and reliably identify the
language-selective network (Lipkin et al., 2022; Malik-Moraleda, Ayyash et al., 2022).
Participants performed the experiment in their native language. Materials can be downloaded
from https://osf.io/ve2bw/. For the sentence condition, 80 12-word-long sentences were
constructed in English using a variety of syntactic structures and covering a wide range of
topics. The sentences were translated into Dutch, with minimal changes to obtain 12-word-long
sentences. For the nonwords condition, care was taken to minimize low-level differences in the
phonological make-up of the stimuli compared to the sentence condition. In English, the
content words (noun, verb, adjective, adverb) of the sentence condition were syllabified to
create a set of syllables that could be re-combined in new ways to create pronounceable
nonwords. For syllables that formed real words of English, a single phoneme was replaced
(respecting the phonotactic constraints of English) to turn the syllable into a nonword. The
syllables were then recombined to create nonwords matched for length (in syllables) with

sentence condition. In Dutch, nonwords were derived from the content words in the sentence
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condition by means of the pseudoword generator Wuggy (https://github.com/crr-ugent/wuggy).
This program generates nonwords that match the original word in subsyllabic structure and

respects the transition frequencies specific to Dutch (Keuleers & Brysbaert, 2010).

To help participants stay engaged, we used a memory probe version of the language localizer
task in the Dutch version, where participants are asked to decide (by pressing one of two
buttons) whether a word or nonword, presented at the end of each sentence or nonword list,
was in the preceding trial. Probes were restricted to content words in the sentence condition
and nonwords in the nonwords condition. Half of the trials required a positive response. In the
English version, a button-press icon was presented at the end of each sentence or nonword list
where participants are asked to press a button. This difference between the Dutch and English
version was introduced to reduce the duration of the English experiment by several minutes, in
order to combine the paradigm with other, unrelated studies. As noted above, previous fMRI
work demonstrated that the sentences>nonwords localizer contrast is robust to different tasks

including passive viewing (Fedorenko et al., 2010; Diachek et al., 2020).

The words/nonwords were presented one at a time in a rapid serial visual presentation paradigm
at a fixed rate per word/nonword (385 ms per (non)word in Dutch, 400 ms in English). Each
word/nonword was presented in the center of the screen in capital letters without punctuation
and appeared immediately after the previous (non)word without a blank transient screen. Then,
at the end of the trial, the memory probe or button-press icon was presented, followed by a
variable interval, between 0.5s and 2.25s. Participants could respond any time after the probe
or button-press icon appeared and until the next trial started. The experiment lasted ~20
minutes. Five participants in the English dataset were scanned using a similar paradigm but
with a different set of materials (8-word-long sentences and 8-nonword-long sequences).
Previous fMRI work has shown that the sentences>nonwords localizer contrast is robust to

such variation (Fedorenko et al., 2010).
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2.3 MEG Data Acquisition

Continuous MEG data were recorded using a whole-head 306 channel (102 magnetometers,
204 planar gradiometers) TRIUX system (MEGIN, Espoo, Finland) either at the HUB - Hopital
Erasme (Brussels, Belgium) or at the Martinos Imaging Center (McGovern Institute for Brain
Research at MIT, Cambridge, MA, USA). Participants were tested in an upright seated position
(68° recline). Four head-position indicator (HPI) coils were used to record the head position
within the MEG helmet every 200 ms. The participant’s head shape was digitally recorded by
means of a 3D digitizer (Fastrak Polhemus, Inc., Colchester, VA, USA) along with the position
of the HPI coils and fiducial points (nasion, left and right periauricular). MEG signals were

recorded at a sampling rate of 1000 Hz with on-line band filter between 0.1 and 330 Hz.

2.4 MEG Data Processing

Initial preprocessing of the raw data used MaxFilter version 2.2 (MEGIN, Espoo, Finland):
temporal signal space separation (Taulu et al., 2003) was applied to remove noise from external
sources and from HPI coils for continuous head-motion correction (correlation threshold: 0.98,
10 s sliding window), and to virtually transform data to a standardized head position. The latter
facilitates comparison across experiments. MaxFilter was used to automatically detect and
virtually reconstruct noisy channels. Further preprocessing was performed using MNE-Python
version 1.8.0 (Gramfort, 2013). Preprocessing consisted of high-pass filtering at 0.1 Hz, low-
pass filtering at 300 Hz and notch filtering at S0Hz or 60Hz (with respective higher harmonics)
depending on the line frequency. Data were downsampled to 500 Hz and epoched at the level
of the sentence or nonword list (500ms before onset of the first (non)word until 400 ms after
onset of the last (non)word). Visual inspection of all epochs was performed, and epochs with
clear artefacts were marked as bad and excluded from further analysis. Denoising was

performed by visually identifying and removing ICA components consistent with eye blinks
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and cardiac artefacts from a total of 60 components extracted using fastICA (Hyvarinen, 1999)

with default parameters on the concatenated epochs (excluding bad epochs).

A quantitative marker of noise was derived per participant by first averaging the baseline
intervals across all sensors for each trial and then calculating the standard deviation of these
trial-averaged values across all trials. Here and later in the study, the baseline is defined as the
neutral interval of 500 ms prior to trial onset when only a fixation cross is presented.
Participants with markers of noise greater than two standard deviations from the average noise
marker across participants scanned in the same MEG device were removed from further
analysis. This procedure led to the removal of one participant from the English dataset. Two
additional participants were removed from the English dataset: one due to excessive motion

and one due to the presence of high-amplitude “mu rhythm” apparent upon visual inspection.

Language processing related to the presentation of the word or nonword stimuli is reflected in
both the time and frequency domain of the recorded MEG signal (Beres, 2017; Prystauka &
Lewis, 2019; Coolen et al., 2024). Analyses that focus on the time domain and rely on event-
related potentials have reliably shown effects related to prediction and integration of lexical
information during language comprehension (Sun & Luo, 2024). However, such analyses only
capture a subset of changes in the signal associated with the presentation of the stimuli.
Specifically, oscillatory activity that is not strictly time-or phase-locked to the stimulus will be
averaged out in this analytic approach (Maguire & Abel, 2013; Morales & Bowers, 2022). To
this end, we analyzed the epochs in the time and frequency domains separately. The spectral
analysis offers an alternative, complementary perspective to the time domain analysis for
understanding the neural computations associated with language comprehension (Lam et al.,

2016).
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In the time domain analysis, we grouped each pair of planar gradiometers into a single effective
gradiometer derived as their Euclidean norm (hence measuring the amplitude of the field’s
tangential gradient, independently of orientation) (Chetail et al., 2018). To facilitate between-
participant comparisons, we then calculated the percent signal change at every timepoint in the
sentence and nonword conditions for every trial compared to the mean amplitude of its
baseline. We omitted the first 4 (non)words in each trial (n=80 per condition) from the analysis
in order to focus on the part of the trial where the between-condition differences might be most
pronounced (given what is known about the processes related to sentence meaning construction
(Pallier et al., 2011; Fedorenko et al., 2016)), although this choice proved not to impact the
results in the end (see discussion). Finally, we averaged the percent signal change values across
all included word/nonword positions (i.e., the 5th (non)word and all subsequent ones) within a

condition to derive a single “amplitude-based” value per channel per participant.

In the spectral analysis, we adopted a similar approach: we compared the bandlimited power
of the sentence and nonword trials in the 204 planar gradiometers to that of the baseline (as
percent power change) for each neural frequency band. We used five bands: 8 (3-8Hz), a (8-
13Hz), B (13-30Hz), 10w (30-60Hz) and yp; 4, (60-90Hz). We divided the y-band into a lower
and higher frequency component given that previous studies have demonstrated distinctions
between these sub-bands or linked effects specifically to one of them (Towle et al., 2008;
Fedorenko et al., 2016; Lam et al., 2016; Hashimoto et al., 2017). First, we computed the
frequency estimates of the sentence trial epochs and nonword trial epochs (from the 5th
(non)word onwards, as in the time domain analyses) and their respective baselines using
multitapers with 7 Discrete Prolate Spheroidal Sequences (DPSS). Then, we calculated the
percent signal change in the power estimates of the sentence and nonword conditions for every

trial compared to the baseline interval for that trial. Finally, we averaged all percent signal

10
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change values within each condition, which yielded a single “power-based” percent change

value for each channel per participant per frequency band.

2.5 Statistical analysis

To test whether MEG allows for a robust identification of language-responsive sensors at the
individual participant level, we evaluated the stability of the language responses within
individuals across time (i.e., between the odd- vs. even-numbered trials). To do so, we
performed three analyses. First, we examined the Spearman correlation in the size of the
sentence effect (percent signal change for the sentence condition relative to the baseline) over
all channels within each participant across odd- and even-numbered trials and compared this
to the correlations between different participants (Wilcoxon rank sum test). Spearman instead
of Pearson correlation was used because it is more robust to potential outliers (Rousselet &
Pernet, 2012). This analysis asks: if a sensor shows a strong response to sentences in one half
of the data, does it also show a strong response to sentences in the other half of the data in the

same participant compared to another participant?

Second, we used the data from the odd-numbered trials to define sensors of interest (SOIs) in
each participant. SOIs were defined as the 10% of sensors with the highest increase in
percentage signal change in the sentence condition relative to the baseline. We then examined
the effect size for the sentence condition in the even-numbered trials in these SOIs relative to

the baseline and to the effect size for the nonword condition using a signed rank test.

Third, to test whether identification of language-responsive sensors at the individual level is
superior to identifying language-responsive sensors at the group level, we compared the results
of the second analysis above to a version of the analysis where we performed the same
calculation using group-averaged maps (where the responses are averaged across participants

from either the English or Dutch dataset in each sensor). In particular, we used the data from

11
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the odd-numbered trials to create a group map and defined SOlIs as the 10% of sensors with the
highest increases in percent signal change in the sentence condition relative to the baseline. We
then examined the effect size for the sentence condition in the even-numbered trials in these
SOIs for each participant. Critically, unlike in the individual-level analyses, the SOIs in the
group analysis are the same for all participants. To compare the effect sizes in SOIs defined

individually vs. based on a group-level map, we used a signed rank test.

In all analyses, we employed an exploratory-confirmatory approach to control for false
positives. The English dataset served as the exploratory sample, where we identified key neural
effects of interest. Then, we tested whether these effects could be replicated in the Dutch dataset
using the same statistical analysis. Only results that met predefined confirmation criteria —
statistical significance (p<0.05), consistent directionality, and comparable effect size — were
considered robust. This approach reduces the likelihood of false positives while enhancing the

generalizability of our approach.

3. Results

3.1 The topography of neural responses to language is stable within
but varies between individuals

In the English dataset, the average correlation of the amplitude-based sentence effect sizes
across all channels within each participant across odd- and even-numbered trials was 0.61 (s.d.
0.22). The mean correlation between pairs of participants was significantly lower compared to
the within-participant correlation (mean rho: 0.16, s.d. 0.24; P < 0.0001; Figure 1A). This
finding was confirmed in the Dutch dataset as the average within-participant correlation (0.63
s.d. 0.23) was also significantly higher than the average between-participant correlation (0.25

s.d. 0.26; P<0.0001; Figure 1B). Furthermore, the effect was comparable in size and

12
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directionality to that of the English dataset, aligning with the predefined confirmation criteria

of the exploratory-confirmatory approach.

In the frequency domain analysis, the average within-participant correlations of the power-
based percent changes were significantly higher than the average between-participant
correlations (P<0.0001 for all frequency bands apart from high gamma where P<0.001;Figure
1C,D). For each frequency band, similar effect sizes where obtained in the English and Dutch

datasets (Table 1).

A Time c Theta Alpha Beta Gamma low Gamma high
ekkk Fkkk Fkokk ek
5 10 1.0 1.0 10 : 1.0 I'|
) | i
28 08 0.8{ 0.8{ 0.8
0w 2 i
o o
= L 06 0.6 0.6 0.5
- W
= £ o4 0.4 0.4 0.4
23
235 0z 0.2 0.2 0.2
w oo
0.0 0.0 —— 0.0 . 0.0
-05 00 05 1.0 -05 00 05 1.0 -05 00 05 1.0 -05 00 05 10
B _— D i o
|

=
o
c
_ 2
8z
@ @O
% I 0.6 0.6 0.61 0.6 0.6 0.6
T v
= 2 04 0.4 0.4 0.4 0.4 0.4
=1
2 e
= | | 1 1 1
28 o2 0.2 0.2 0.2 0.2 0.2
0.0 0.0 : [ a— 0.0 00! — 0.0
-05 00 05 1.0 -05 00 05 1.0 -05 00 05 10 -05 00 05 10 -05 00 05 10 -05 00 05 1.0
Spearman correlation Spearman correlation Spearman correlation Spearman correlation Spearman correlation Spearman correlation
[ Within participants Between participants Bl Within participants Between participants whhk p 2 0.0001; *** p<0001; ¥ p<001; ¥ p<0.05

Figure 1: Distribution of the correlation (Spearman) values for the size of the
sentence>baseline effect across channels within individuals across odd- and even-
numbered trials (darker shades) and between data halves taken from different individuals
(lighter shades) in the A) English and B) Dutch datasets in the time domain analysis. Similar
distributions for the spectral analysis are represented for the C) English and D) Dutch
datasets for each of the neural frequency bands. Relative frequency counts were plotted
because of the different number of possible combinations between vs within individuals.

Vertical striped lines indicate the mean of each distribution.
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Table 1: Within and between participant correlation values in the English and Dutch datasets

for the time domain and each of the neural frequency bands.

English Time Theta Alpha Beta Gamma low  Gamma high

Within 0.61 0.55 0.83 0.75 0.53 0.13
correlations (s.d.0.22) (s.d.0.17)  (s.d.0.12)  (s.d.0.17) (s.d. 0.20)  (s.d. 0.14)
Between 0.16 0.09 0.46 0.39 0.20 0.02

correlations (s.d.0.24) (s.d.0.19) (s.d.0.18)  (s.d.0.21) (s.d. 0.19) (s.d. 0.10)

P value P <0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.001
Dutch Time Theta Alpha Beta Gamma low Gamma high
Within 0. 63 0.64 0.84 0.77 0.41 0.19

correlations (s.d.0.23) (s.d.0.16) (s.d.0.12)  (s.d.0.12) (s.d. 0.22)  (s.d.0.16)
Between 0.25 0.21 0.44 0.42 0.12 0.06
correlations (s.d.0.26) (s.d.0.22) (s.d.0.17) (s.d.0.21) (s.d. 0.17) (s.d. 0.11)

P value P <0.0001 P<0.0001 P<0.0001 P<0.0001 P <0.0001 P <0.001

Inspection confirmed the similarity between the topographies of the signal changes during the
sentence condition in the odd- and even-numbered trials at the individual level (Figure 2).
When assessing the topography of the language-responsive SOls that were selected in different
participants, inter-individual differences were notable: although some channels were
consistently selected in a substantial fraction of participants, other channels were only selected
in a small fraction of individuals. In the English dataset, certain sensors were consistently
selected in up to 45%, or 9 of the 20 participants in the time domain and up to 75% or 15 of 20
participants in the alpha band. Similarly, in the Dutch dataset, some sensors were consistently
selected in up to 42%, or 8 of the 19 participants in the time domain and up to 68% or 13 of 19

participants in the alpha band.
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Figure 2: Topographies of the effect sizes (percentage change) during the sentence condition
in the odd- and even-numbered trials in time domain and frequency domain in sample
participants of the English (top two participants) and Dutch dataset (bottom participant) with
selected SOIs indicated by white dots.

3.2 Analyses based on individual-level sensors of interest yield more
robust responses compared to the group-level analysis

The amplitude-based effect size for the sentence condition in the even-numbered trials with
individually defined SOlIs (based on the odd-numbered trials) in the English dataset was 3.17%
(s.d. 4.04%) signal increase compared to baseline (Figure 3A) and was reliably greater than the
effect size for the nonwords condition (P = 0.024). At the level of individual participants, 16 of
the 20 showed a sentence > nonwords effect. This was further confirmed in the Dutch dataset

where the effect size for the sentence condition in the individually defined SOIs was 5.54%
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(s.d. 6.04%) signal increase compared to baseline in the even-numbered trials (Figure 3B) and
was reliably greater than the effect size for the nonwords condition (P=0.026). At the level of

individual participants, 14 of the 19 showed a sentence > nonwords effect (Table 2).

Time Theta Alpha Beta Gamma low Gamma high
— * ns N 35 0s
o
— 400% 4 e 50%
140% ek
'_I 80%
10% 'i|
120% Lr : - 40%
— 300% . b
I : 60% |
s
v 5% 100% - .
N 10 ns 30% o
7] 200% 40% -
e B R e s
O 20%
Q 20% 529
= 60% 7 100% - H ™
w
.
5% 40% 4 l 0% | 0% 10% o 3
0% 4 4
——— S ——— e owd 0% -
B D s S
® - - ns ns
40% 500% . [ vvvam| ok awy —08 —E—
. 400% 80% 7 . 50%
25%
30% 400%
fedk 60% '_IN lﬁl
by ! 300% 4 20% A%
% 20%- » .
g H 5
= 300% A
P 40% 4 .
z ok 15% EICE .
— 10% 4
® % . 200% - ¢
— . 200% 20% H .
- & ] i
O o % C l ! ! 2% ‘
= 100% - 0%
b : 100% - 5%
0% 4 . 10%
. -20% - %
. 0% - &2

-20% - 0% =

| — — L e — | E— — | — — | — m— | e —
Ea EaC Ea e & L& & Ea R e o oSS @
& \'b%o Qro° & F br,Q Q@Q & ba“\ QaQ Eo b:?\ an\ Eo JJO\ ijo\ § o & QE;O\
& G S & R R & &0 &
I ndividual SOI - Sentence Group SOI - Sentence EE ndividual SOI - Sentence Group SOI - Sentence *hF* D <0.0001 **p<0.01
I Individual SOI - Nonword [ Group SOl - Nonword N (ndividual SOI- Nonword I Group SOI - Nonword % <0000 ¥ p<005

Figure 3: Mean effect sizes (percent signal change) for the sentence and nonwords
conditions when the language-responsive sensors of interest (SOIs) are defined at the
individual level vs. at the group level in the A) English and B) Dutch datasets for the time
domain analysis. Similar results depicted for each of the neural frequency bands in the
frequency domain analysis in the C) English and D) Dutch dataset. In all cases, the SOIs
are defined using one half of the data (odd-numbered trials) and the response magnitudes

are examined in the other half of the data (even-numbered trials).

In the frequency domain, in the theta and beta bands, power-based signal increases of 72.95%
and 23.12% respectively were observed with the individually defined SOIs in the English
dataset (Figure 3C). Both were reliably greater than their nonword conditions (P=0.015 for

theta and P=0.014 for beta). At the level of individual participants, 16 out of 20 exhibited a
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greater theta power response to sentences compared to nonword lists, and 14 out of 20 showed
an increase in beta power for the same contrast. These findings were replicated in the Dutch
dataset where for the theta and beta bands, the increases of the sentence condition over baseline
were 96.66% and 29.26%. respectively. Both were reliably greater than the nonword condition
with P=0.012 for the theta band and P<0.001 for the beta band. Other frequency bands also
showed increased levels of power for the sentence condition compared to baseline but did not
demonstrate a reliably greater effect for sentences than for nonwords (Table 2).

Table 2: (Left) Proportion of participants showing an increase in effect size for the sentence
condition over the nonword condition with individually defined SOI (Sentence > Nonword).
(Right) The proportion of participants showing an increase in effect size in the sentence
condition when SOIs are defined at the individual level versus when SOls are compared at the

group level (Individual SOI > Group SOI). Values indicate the number of significant

participants (n) out of the total, with corresponding p-values for English and Dutch datasets.

Individual SOI: Sentence > Nonword Individual SOI > Group SOI
English Dutch English Dutch

n p-val n p-val n p-val n p-val
Time 16/20 0.024 14/19  0.026 18/20 <0.001 = 16/19 <0.001
Theta 16/20 0.015 16/19  0.012 16/20  <0.001 | 17/19  <0.001
Alpha 12/20 0.674 14/19  0.087 19/20  <0.0001 = 19/19 <0.0001
Beta 14/20 0.014 16/19 <0.001 | 1720 <0.001 @ 15/19 <0.001
Gamma Low | 11/20 0.294 12/19  0.441 9/20 0.596 13/19 0.006
Gamma High | 14/20 0.105 11/19  0.490 10/20 0.498 12/19 0.441

To test whether identification of SOIs at the individual level is superior to analysis at the group
level, we defined a separate set of SOIs based on the group-level map for the odd-numbered
trials. With the group-level SOIs, we found that the amplitude-based effect size for the sentence

condition in the English dataset was significantly smaller compared to the analyses that take
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inter-individual differences into account (P < 0.001, Figure 3A). At the level of individual
participants, 18 of the 20 participants showed a larger amplitude-based effect size in the
individually defined SOIs compared to the group-level SOI. This was confirmed in the Dutch
dataset where the same result was observed (P<0.001, Figure 3B). At the level of individual
participants, 16 of the 19 showed a larger effect size when SOIs are selected at the individual
level effect. Similarly, the power in the theta, alpha, and beta bands was significantly lower
when inter-individual differences were not taken into account for both the English and Dutch

dataset (P<0.001, P<0.0001, P<0.001, Figure 3C,D; Table 2).

4. Discussion

In two independent datasets, MEG recordings allowed the identification of language-
responsive sensors at the individual-participant level, both in the time and frequency domains.
During sentence reading, neural signal changes could be detected within native individual
English speakers and reproduced in native Dutch speakers. We showed that in both datasets,
the response to this language comprehension task is spatially consistent (over time) within
individuals: similar sensors show strong responses during language processing in two halves
of the data. Importantly, the response to language is spatially variable across individuals,
presumably due to differences in the functional neuroanatomy. The consequence is that
analyses that take inter-individual variability into account have greater sensitivity than the
traditional group-level analysis. Overall, the results suggest that the functional identification
approach, where sensors of interest are defined in individual participants, can yield advantages

in MEG, including greater sensitivity, functional resolution, and interpretability.
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4.1 Individual-level identification of the language network

In line with prior results using the same language localizer task with fMRI (Lipkin et al., 2022)
and intracranial recordings (Fedorenko et al., 2016), we observed that analyses that take into
account inter-individual variability in the functional neuroanatomy of language-responsive
cortex yield higher sensitivity: language responses are reliably higher when the channels are
selected at the individual level, compared to the group level. When using a typical fMRI
preprocessing and analysis pipeline, voxel-wise neural responses from each participant are
warped from the subject space to a common space based on a brain template and functional
correspondence is assumed in each voxel. This assumption has long been shown to be flawed,
especially when examining cognitive functions supported by the association cortex (Nieto-
Castafion & Fedorenko, 2012; Frost & Goebel, 2012; Fedorenko & Blank, 2020). Analysis of
resting-state  MEG data demonstrated that functional connectivity patterns enable
differentiation between different individuals (Da Silva Castanheira et al., 2021) and we here

extend the individual-level neural characterization to the language network.

In brain recording approaches, like fNIRS and MEG, where a fixed number of sensors are used,
a similar assumption is typically made when data are pooled across participants: that the same
sensor is functionally equivalent across individuals. However, because of the inter-individual
neuroanatomical differences in cortical thickness, gyrification, and total brain volume, and
differences in the placement of the recording channels relative to the brain, the same sensor
may capture different underlying sources of neural signals depending on the individual’s
anatomy. This variability in the sources captured by the same channels across participants
introduces noise when signals are averaged across participants and complicates interpretation.
potentially leading to incorrect conclusions (e.g., see (Powell et al., 2018) for a discussion of

this issue in fNIRS).
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Source modelling allows to map neural signals from the sensors to an individual’s structural
brain scan for both fNIRS and MEG. However, group-level analysis after source modelling is
associated with the same limitations as group-level analysis performed in a common space
using fMRI: specifically, warping the neural signals across participants to a common space
wrongly assumes functional equivalence of the same voxel or vertex across participants (Nieto-
Castanon & Fedorenko, 2012; Frost & Goebel, 2012; Fedorenko & Blank, 2020). Functional
identification in individual participants provides a powerful alternative solution. This approach
allows us to circumvent potential differences in the underlying anatomy and focus on the
functional responses. Functional identification at the individual level can be performed in
sensor space, as we have done here, or in source space. Logistically, a MEG source modelling
approach requires additional data acquisition using MRI. Future research will investigate the
use of source modelling combined with our functional localizer approach to localize the

language-responsive vertices at the individual level.

We established the feasibility of individual-participant functional identification in MEG using
an extensively validated language localizer paradigm. Previous work established the
replicability of neural responses evoked by language processing using MEG within the same
group of individuals (Roos & Piai, 2020). We demonstrated the topographic stability of the
language-responsive channels within individuals over time—the critical foundation of
individual-level functional localization. The functional identification approach yields greater
sensitivity and functional resolution. In particular, with respect to sensitivity: by grouping the
selected SOIs, one statistical test can be performed across the ensemble of sensors, avoiding
the need for multiple statistical comparisons (Nieto-Castaindén & Fedorenko, 2012). Further,
effect sizes are more accurately estimated. This greater sensitivity can be helpful in examining
subtle effects in some new, critical conditions and has the potential for application in patients

with neurological disease, where neural responses may be overall weaker.
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These advantages in sensitivity and functional resolution are afforded by the application of the
individual-subject analyses in any study regardless of whether a functional localizer task is
included. However, if a validated localizer paradigm is used, the study will additionally benefit
from greater interpretability. By using the same paradigm to identify the relevant functional
subset of the brain across individuals, studies, imaging modalities, and species (in cases of
shared cognitive capacities e.g., face processing), we can a) make stronger inferences about the
origins of an effect (e.g., the ability to interpret some critical effect as arising within the
language-responsive regions), which cannot be done based on anatomy alone because of the
inter-individual functional differences, and b) be generally more confident that we are referring
to the same system which is critical for knowledge accumulation and for comparing findings
across studies and labs. In this way, the functional localization approach aligns with the field’s
current focus on robust and replicable science (Poldrack et al., 2017). In addition to affording
the ability to refer to the same system across studies, studies that rely on functional localization
include an internal replication component because half of the data is used to identify the
voxels/sensors of interest and the other half'is used to quantify the response magnitudes, similar
to what is commonly done in other modalities (Peelen & Downing, 2005; Nieto-Castaién &
Fedorenko, 2012; Powell et al., 2018). Thus, the use of a functional identification task yields a

replication of the effect in every new participant and study, thus reducing type I errors.

We have so far focused on univariate analyses. However, the combined use of functional
identification and multivariate analyses, like multivariate pattern analysis (MVPA), could
powerfully enable investigations of fine-grained meaning and structure representations within
the language network. For example, with respect to semantic knowledge, explicit quantitative
models reflecting single-word and contextualized semantic knowledge can be used to test

hypotheses about how the brain processes meanings extracted from linguistic input (Bruffaerts
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et al., 2019). Focusing on language-responsive sensors can increase both the sensitivity of such

an analysis and help interpret the observed effects.

4.2 Using MEG to probe linguistic computations

We here advocate individual-level functional identification as an approach to achieve greater
sensitivity and interpretability when investigating the language network using MEG. The
present work introduces this approach using neural signals in sensor space. When dealing with
well-characterized systems, like the language network or the face recognition system, for which
certain localizer paradigms have been shown (in fMRI research) to reliably identify the relevant
underlying functional neuroanatomy, obtaining the anatomical information from MEG
becomes not critical: we already know where these signals are coming from based on dozens
or even hundreds of fMRI studies, which are ideally suited for localizing functions. As a result,
we argue for leveraging the advantages that MEG has over other recording modalities, the core
one being the ability to study the detailed time-course of information processing. Our proposed
method provides a means for the selection of language-responsive sensors in which in a second
stage different time-resolved processes contributing to sentence comprehension can be studied.
Specifically, the fine temporal resolution of MEG offers the potential to study the incremental
construction of sentence structure and meaning in real time (e.g., (Heilbron et al., 2022; Ten
Oever et al., 2022; Desbordes et al., 2024)). Previous MEG studies have suggested that the
temporal dynamics of sentence processing entail both feed-forward as well as recurrent
processing (Hultén et al., 2019), that representations extracted from artificial neural network
language models capture some aspects of neural signals recorded with MEG (Choi et al., 2021),
and that different frequency bands may reflect distinct cognitive processes, such as lexical
retrieval, semantic composition, and prediction of upcoming words (Lam et al., 2016;

Prystauka & Lewis, 2019).
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While the main purpose of this work is not to make inferences about the functional role of each
frequency band during language comprehension, we do find that the results align with current
research. For example, the observed increase in theta-band power during the sentence condition
(Figure 3) supports leading theories proposing that theta synchronization plays a role in
retrieving incoming words from memory during sentence processing (Meyer et al., 2015;
Meyer, 2018; Prystauka & Lewis, 2019). Similarly, the reported increase in beta-band power
aligns with accounts suggesting that beta-band synchronization supports the maintenance of
the ongoing cognitive set, facilitating top-down predictions (Lam et al., 2016; Armeni et al.,
2019; Prystauka & Lewis, 2019; Lewis et al., 2023). On an additional note, we report
differences in the SOIs that are selected at the level of the frequency bands (and the time domain
by extension). Sensors that play a key role in one frequency band, might not be equally
influential in other frequency bands, highlighting the difference in functional roles that these
bands have during language comprehension. This aligns with findings showing that the
language network that we can measure with MEG is not driven by a single dominant frequency

but rather exhibits a frequency-dependent organization (Coolen et al., 2020).

In summary, the functional identification MEG approach presented here can increase the
sensitivity and interpretability of future investigations of the temporal and spectral dynamics
of language processing, as needed to decipher the precise computations that enable language

comprehension.

4.3 Limitations

As is typical with MEG, we used neural changes during sentence processing relative to the
baseline to identify the SOIs rather than a contrast between two conditions. In the fMRI
implementation of the language localizer, the cortical regions of interest are identified by the

sentences > nonwords univariate contrast. It 1s known that the inverse contrast (nonwords >
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sentences) activates the multiple demand network (Duncan, 2010; Fedorenko et al., 2013)
which is neuroanatomically in close proximity to the language network (Blank et al., 2014;
Braga et al., 2020; Du et al., 2024). The inherently lower spatial resolution of MEG may result
in sources from the language and multiple demand networks being captured by the same SOls.
Here, we opted to select SOIs based on the sentence condition and verified that the response to
the nonwords condition was significantly lower from the sentence condition. The advantage of
using the contrast of the sentence minus the nonwords condition is that non-language
processing is subtracted out: in the case of the nonwords condition, this processing includes
working memory and visual perceptual processing. As we did not use a contrast and examined
temporal aggregates within the post-stimulus time window — in which both visual processing
and language processing occurs — some of the selected sensors may reflect sources in the
occipital cortex related to lower-level visual processes. However, it is clear that most SOIs are

not occipital channels (Figure 2).

Secondly, we opted to include the top 10% of most responsive sensors in the sentence
condition. This choice assumes an event related synchronization in each of the neural frequency
bands over the course of the sentences. While past research does point in this direction
(Prystauka & Lewis, 2019), some have demonstrated opposite effects in which, depending on
the anatomical brain region, the alpha and beta band also exhibit an event-related

desynchronization (Lam et al., 2016).

Thirdly, we opted to compute the percentage signal change from baseline between the fifth
(non)word and the end of the trial to calculate the effect size. This choice did not critically
impact the results: similar findings were observed when including signals across the whole trial

(Supplementary Tables 1 and 2).
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Finally, extracting frequency information from the signal can pose challenges. For one, the
detectability of neural activations in higher frequency bands (gamma) is limited in MEG (Jerbi
et al., 2009; Muthukumaraswamy, 2013). The lower signal-to-noise ratio for high-frequency
activity might explain why the within-participant correlations and the effect sizes were smaller
in the gamma bands when compared to the lower-frequency bands (theta, alpha, and beta).
Additionally, the paradigm used in this study, due to its time-locked stimulus presentation, is
expected to give rise to both evoked responses as well as induced responses. A relevant question
related to the earlier notion that the frequency analysis presents a different yet complementary
perspective to the time-domain analysis, is that the power-based effect sizes in the frequency
domain may be driven by the same evoked responses that shape the results in the time domain.
To address this, we performed a control analysis in which we estimate the induced power in
each of the frequency bands after subtracting the event-related average from the signal. Our
verification analysis (Supplementary Figure 1) confirms that the power-based effects primarily

reflect modulations of ongoing oscillations.

5. Conclusion

Using an extensively validated fMRI language localizer task, based on sentence reading, we
showed that the neural responses recorded with MEG are reproducible at the individual
participant level in the time and frequency domain and we generalized these findings across
two datasets in two different languages (English and Dutch). We observed that language-
responsive sensors are spatially variable across individuals, giving an individual-level
approach an advantage over the traditional group-level analysis. This method has a wide range
of applications—from the detailed characterization of the time-course of language processing

to probing the language network in (small) non-neurotypical populations — and may generally
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encourage the use of MEG to study the functional neuroanatomy of human higher-order

cognition.

6. Data and Code Availability Statements

Initial preprocessing of the data made use of MaxFilter version 2.2, while further processing
was performed with MNE-Python version 1.8.0. All scripts used to generate the outputs for this
work as well as the task stimuli are available on OSF (https://osf.io/vc2bw/). Raw MEG data

can be made available upon reasonable request.
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Supplementary Figure 1: Induced power effect sizes
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Supplementary Figure 1: Mean effect sizes (percent signal change) for the sentence and
nonwords conditions when the language-responsive sensors of interest (SOIs) are defined at
the individual level vs. at the group level in the A) English and B) Dutch datasets for the time
domain analysis. Similar rvesults depicted for each of the neural frequency bands in the
frequency domain analysis after subtraction of the event-related average in the C) English and
D) Dutch dataset. In all cases, the SOIs are defined using one half of the data (odd-numbered
trials) and the response magnitudes are examined in the other half of the data (even-numbered

trials).
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Supplementary Table 1: Within vs between participants correlations in

English dataset from start word 1

Average within participants correlation values and between participants correlation values

across odd and even-numbered trials when trials are analyzed from the first word onwards

instead of from the fifth word and onwards.

English Time Theta Alpha Beta Gamma low Gamma high
Within 0.58 0.59 0.86 0.77 0.55 0.13
correlations (s.d.0.23) (s.d.0.16) (s.d.0.10) (s.d.0.13) (s.d. 0.20) (s.d. 0.13)
Between 0.12 0.12 0.46 0.38 0.20 0.02
correlations (s.d.0.23) (s.d.0.21) (s.d.0.19) (s.d.0.24) (s.d. 0.20) (s.d. 0.10)
P value P <0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.001

Supplementary Table 2: Within vs between participants correlations in

Dutch dataset from start word 1

Average within participants correlation values and between participants correlation values

across odd and even-numbered trials when trials are analyzed from the first word onwards

instead of from the fifth word and onwards.

Dutch Time Theta Alpha Beta Gamma low Gamma high
Within 0.64 0.67 0.84 0.78 0.41 0.20
correlations (s.d.0.20) (s.d.0.15) (s.d.0.13) (s.d.0.13) (s.d. 0.21)  (s.d.0.17)
Between 0.25 0.23 0.47 0.48 0.13 0.06
correlations (s.d.0.25) (s.d.0.21) (s.d.0.17)  (s.d.0.19) (s.d. 0.17)  (s.d. 0.11)
P value P <0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.001

39


https://doi.org/10.1101/2023.03.23.533424
http://creativecommons.org/licenses/by-nc-nd/4.0/

