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Abstract: 

Objectives:  

Brain segmentation of infant magnetic resonance (MR) images is vitally important for studying 
typical and atypical brain development. The infant brain undergoes many changes throughout 
the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. 
Here we introduce a deep neural network BIBSNet (Baby and Infant Brain Segmentation Neural 
Network), an open-source, community-driven model for robust and generalizable brain 
segmentation leveraging data augmentation and a large sample size of manually annotated 
images.  

Experimental Design: 

Included in model training and testing were MR brain images from 90 participants with an age 
range of 0-8 months (median age 4.6 months). Using the BOBs repository of manually 
annotated real images along with synthetic segmentation images produced using SynthSeg, the 
model was trained using a 10-fold procedure. Model performance of segmentations was 
assessed by comparing BIBSNet, joint label fusion (JLF) inferred segmentation to ground truth 
segmentations using Dice Similarity Coefficient (DSC). Additionally, MR data along with the 
FreeSurfer compatible segmentations were processed with the DCAN labs infant-ABCD-BIDS 
processing pipeline from ground truth, JLF, and BIBSNet to further assess model performance 
on derivative data, including cortical thickness, resting state connectivity and brain region 
volumes.  

Principal Observations: 

BIBSNet segmentations outperforms JLF across all regions based on DSC comparisons. 
Additionally, with processed derived metrics, BIBSNet segmentations outperforms JLF 
segmentations across nearly all metrics.  

Conclusions: 

BIBSNet segmentation shows marked improvement over JLF across all age groups analyzed. 
The BIBSNet model is 600x faster compared to JLF, produces FreeSurfer-compatible 
segmentation labels, and can be easily included in other processing pipelines. BIBSNet 
provides a viable alternative for segmenting the brain in the earliest stages of development.  
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Introduction: 

The first years of postnatal life are marked by significant neuronal development through 
synapse growth, myelination of axons, and programmed cell death 1,2. Converging evidence 
suggests that neurodevelopmental and psychiatric disorders throughout the lifespan are 
influenced by atypical brain development during this highly dynamic period 3–7. These dynamics 
and have led to major investments in characterizing brain trajectories during this sensitive 
period, including the recently launched Healthy Brain and Child Development (HBCD) Study™ - 
a large (N ~ 7,200) multi-site, longitudinal, effort to examine the developing brain from 0-10y to 
study typical and atypical brain development. 
 
Magnetic resonance imaging (MRI) is a non-invasive tool that can be used to study 
developmental brain health and disease. It is capable of producing multiple types of MR data, 
including diffusion, spectroscopy, functional, and quantitative MRI data 8–11. The vast majority of 
analysis strategies across all of these modalities depend on well-annotated, or segmented, MRI 
data - that is, data that delineates various brain tissues. Traditionally, structural MR images (i.e., 
T1-weighted (T1w) or T2-weighted (T2w) anatomical images) are used to create annotations that 
segment tissue types, such as white matter, gray matter, cerebrospinal fluid (CSF), and 
subcortical structures12. Accurate segmentation of cortical gray matter is also necessary to 
produce more advanced morphological metrics, such as cortical thickness, surface area, and 
gyrification13. Finally, other modalities such as functional MRI (fMRI) and diffusion MRI (dMRI) 
rely on accurate segmentations to produce more computationally sophisticated metrics like 
functional or structural connectivity 14–18. Studies such as HBCD require efficient and reliable 
methods to conduct this critical step required for many derived measures of MRI. 
 
Automated brain segmentation algorithms often rely on high-resolution (e.g. ~1mm3 or smaller) 
T1w and T2w anatomical images to annotate tissue types. These algorithms depend on voxel 
contrast and intensity differences across differing brain tissue and regions to delineate brain 
tissue and region boundaries. Brain tissue and region boundaries are, for the most part, easily 
delineated within the adult and child brain; however, they are often less accurate in infant data. 
This difficulty is due to the significant changes that the brain undergoes during the first years of 
postnatal life, such as myelination1,19,20. For example, T1w-gray matter voxel contrast is greater 
than T1w-white matter voxel contrast in infants 0 to 3-months (Figure 3, Supplemental Figure 
1), T1w-gray matter and T1w-white matter are approximately equal in contrast from about 3-6 
months causing the tissues to look very similar (Figure 3, Supplemental Figure 1), and at >6 
months and on the T1w-gray matter is less than T1w-white matter, emulating the tissue contrast 
of an adult brain 12,21,22. 
 
One popular approach in the field to produce accurate segmentations is joint label fusion (JLF) 
23,24. JLF relies on manually annotated segmentations in multiple individual atlases. From there 
an individual's brain is non-linearly registered to each atlas. A ‘winner take all’ approach is then 
used to assign labels to each voxel based on local cross correlations between voxel intensities 
in the subject and atlas. While this strategy has shown to be successful compared to single 
atlas approaches 25,26, the approach is time-consuming (computation of 2-3 days) and still 
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error-prone. Furthermore, results are quite variable at different ages, which by themselves may 
take months to optimize. Exploring alternative solutions is warranted. 
 
Convolutional Neural Networks (CNN) are an attractive alternative to traditional methods of 
segmentations, and have shown significant promise in adult samples27, CNNs are fast and take 
only minutes to segment an infant’s brain once properly trained. CNNs can be further trained 
with new data from other datasets in order to boost generalizability quickly. Prior work in infants 
has attempted to build CNNs for fast brain segmentation 22,28–31,32. Supplemental Table 1 
showcases a review of the deep learning infant brain segmentation literature along with 
limitations of deep learning algorithms. Each study reviewed has limited sample sizes of 
high-quality ground truth segmentations, with no study exceeding more than 25 infants. Most 
studies focus on limited age ranges, specifically between 5-9 months, limiting the 
generalizability of these models to other age groups. Outside of Moeskops et al 33, all studies 
within Supplemental Table 1 also removed the skull, cerebellum, and brain stem from the 
images for training and prior to segmentation generation. This pre-processing likely reduces the 
generalizability for images in which the skull remains and increases the burden for performing 
inference. In addition, even in the case where sufficient data is used for training outputs often 
don’t follow common labels and standards such as the frequently used Freesurfer software. 
Last, implementing a model that is open-source, community-centered and follows Findable 
Accessible Interoperable and Reusable (FAIR) principles 34 is vital for the development and 
progress in future model generation and general usage.  
  
BIBSNet (Baby and Infant Brain Segmentation Neural Network) provides a new open source 
software to advance brain segmentations. BIBSNet was implemented to add to and improve 
upon previous deep learning infant and baby brain segmentation research by creating a model 
that can handle variability of infant MR images based on age, neuronal developmental status, 
and data acquisition and quality. BIBSNet uses a larger sample size, n=90, than has been 
previously published and employs a relatively wide age range — 0-8 months. This wide age 
range allows BIBSNet to capably segment neonate and infant brains across important brain 
developmental boundaries (i.e., 0-3 months, 3-6 months, and 6-8 months). BIBSNet was built 
upon the proven deep learning architecture, nnU-Net 35, for brain segmentations. To improve 
generalizability and robustness, SynthSeg was used to create augmented images 36. Unlike 
models described in the previous literature, BIBSNet does not require that the skull, brainstem, 
or cerebellum be removed before segmentation; hence, much less pre-processing before 
inference is needed. The segmentations produced from BIBSNet are BIDS-compatible and 
conducted using input data in the subject’s native space. This choice was intentionally done so 
that BIBSNet segmentations can easily be transformed to fit whatever space is required for 
processing and analysis 37. BIBSnet is fully open-source, so other researchers are able to look 
at methodological detail and train their own models if needed. Finally, BIBSNet outputs can be 
directly input into a pre-processing pipeline, such as fMRIPrep-Infants 38 and the Developmental 
Cognition and Neuroimaging (DCAN) labs infant processing pipeline 14,15,39,40, in particular 
because it follows the standard Freesurfer anatomical labels, making it a turn-key solution for 
subsequent analyses. 
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Results: 

BIBSNet training is computationally expensive, but BIBSNet application is efficient 

As one might expect, BIBSNet training necessitates considerable time and resources, requiring 
approximately 3.5 days of compute time with 1 NVIDIA V100 GPU, 6 CPUs, and 90GB of RAM. 
This resulted in a total clock time of 5-7 days factoring in average delays on the Minnesota 
Supercomputing Institute (MSI) systems. The training included 5 folds with 1000 epochs per 
fold, with each epoch taking around four to five minutes to complete. After an initialization step 
completed within the first fold, all five folds could be run concurrently.   
 
While model training is resource-intensive, using the trained model for inference is 
straightforward. The BIBSNet application, provided as a BIDS app, requires minimal time and 
computing power to perform inference on unseen T1w/T2w image pairs. The inferences for the 
present study only required 4 minutes per subject using 2 CPUs and 20GB of RAM on the MSI 
systems. Details for downloading and usage can be found on Zenodo and GitHub41. This far 
out-performs the resources and time required by JLF, which, including the pre-processing steps 
required (i.e. nonlinear registration of a set of atlas images to the subject brain) can take up to 
2-3 days.  

Dice similarity coefficient comparisons 

DSCs were used to assess overlap in label assignments for BIBSNet- and JLF-derived 
segmentations compared to ground truth, i.e. manually corrected, segmentations for cortical and 
subcortical structures in the left and right hemispheres (Figure 1). For cortical structures, there 
was more similarity between BIBSNet and ground truth structures (RMSE = 0.157 gray matter, 
0.144 white matter) than between JLF and ground truth (RMSE = 0.30 gray matter, 0.24 white 
matter), with an average DSC of 0.856 and 0.752 respectively across cortical structures. The 
DSCs were further compared with repeated sample T-test, revealing that both the gray matter 
and white matter DSCs produced from BIBSNet were significantly larger than JLF (gray matter: 
T = 14.08 , p < 1x10-23; white matter: T = 6.21, p < 1x10-7). For subcortical structures, amygdala 
and hippocampus DSCs were compared as these are typically more difficult to accurately 
segment due to their small size. The bilateral amygdala and hippocampus RMSE based on the 
DSC for BIBSNet were RMSE = 0.17 and RMSE = 0.16, respectively, while for JLF they were 
RMSE = 0.24 and RMSE = 0.19. Neither subcortical comparison was statistically significantly 
(Amygdala: T = 1.74, p = 0.08; Hippocampus: T = 0.41, p = 0.67), however, there was much 
less variability in DSC values from BIBSNet vs ground truth (average standard deviation across 
regions = 0.04) compared to JLF vs ground truth (average standard deviation across regions = 
0.12) (Figure 1a).  
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​ ​  
Figure 1 | Dice similarity coefficients by infant age full sample, JLF and BIBSNet 

a,b ALBERT and BCP analysis sample with inferred JLF and BIBSNet segmentations compared 
against Ground Truth (GT) using Dice Similarity Coefficient (DSC) on left and right white matter, 
left and right gray matter, left and right hippocampus, and left and right amygdala (n=90). a, 
Violin plots showcasing DSC between BIBSNet and GT segmentations (left), and JLF and GT 
segmentations (right). Notice that JLF performs worse compared to BIBSNet particularly the 
range of the data distribution. b, Line plots outlining the per subject DSC by infant age (in 
months) for BIBSNet (left), and JLF (right), and iBeat (right). The mean DSC is represented by 
opaque lines, whereas the semi-transparent lines show the 95% confidence interval variability. 
Observe, the large variability of DSC with JLF across infants of differing ages, whereas BIBSNet 
remains relatively stable across all ages. 
 
An ad hoc comparison of BIBSNet to iBeat, an existing deep learning model for infant brain 
segmentation 42,43, was also performed. BIBSNet and iBeat differ, in that, BIBSNet produces 
FreeSurfer-compatible segmentations as well as segmenting cortical and subcortical structures, 
whereas iBeat does not produce FreeSurfer-compatible labels and segments the cortical 
structures only. Therefore, the analyses were limited to comparisons of white matter and gray 
matter.  BIBSNet and iBeat performed similarly with no significant differences across ages within 
gray matter (T = 1.30, p = 0.19) (Supplemental Figure 2a). However, in white matter, while 
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both performed similarly from 0-5 months (T = 0.69, p = 0.49), iBeat outperformed BIBSNet at 
months 6-8 significantly (T = 6.9, p <  p < 1x10-6) (Supplemental Figure 2b).   
 
Volumetric, Cortical Surface, and Functional Connectivity Comparisons 
We assessed the similarity of cortical and subcortical volumes in BIBSNet- and JLF-derived 
segmentations compared to ground truth segmentations. For both gray matter (BIBSNet RMSE 
= 38945.72, JLF RMSE = 42515.47) and white matter (BIBSNet RMSE = 38414.41, JLF RMSE 
= 47704.83), BIBSNet volumes were more similar to ground truth than JLF (Figure 2a,c). For 
subcortical volumes, we compared hippocampus and amygdala volumes to match the DSC 
comparisons above (Figure 2b,d). Bilateral hippocampus volumes produced from BIBSNet 
(BIBSNet RMSE = 397.03) segmentations were more similar to ground truth than JLF (JLF 
RMSE = 465.72). Similarly, ground truth and BIBSNet bilateral amygdala volume were more 
similar (BIBSNet RMSE = 231.96) compared to JLF and ground truth (JLF RMSE = 237.51). 
 
Interestingly, although BIBSNet DSC and resulting cortical and subcortical volumes were more 
similar to ground truth, cortical thickness from JLF-derived segmentations were more similar to 
ground truth (RMSE = 0.45) than BIBSNet (RMSE = 0.55) (Figure 2e,f). 
 
In addition to assessing the similarity between label assignments of segmentations and 
anatomical metrics derived from the associated MRI images, we also analyzed how functional 
connectivity compares between BIBSNet- and JLF-derived segmentations and ground truth. 
The similarity between BIBSNet and ground truth functional connectome matrices (RMSE = 
0.09) was greater than the similarity between the JLF and ground truth (RMSE = 0.19) (Figure 
2g,h,i). 
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Figure 2 | Anatomical and functional derived brain metric comparisons between JLF, 
BIBSNet and ground truth. 

BCP and ALBERT analysis sample, anatomical data: (a-d,f-h, n=90); functional data (e, n=64) . 
a,c, Gray matter (left panels) and white matter (right panels) volume comparisons based on 
segmentations produced from BIBSNet, ground truth (GT), and JLF. b,d Bilateral hippocampus 
(left panels) and amygdala (right panels) volume comparisons based on segmentations 
produced from BIBSNet, GT, and JLF. a,b violin plots – a hybrid of a box and kernel density plot 
– showcasing the comparisons for each segmentation model grouping, c,d line plots 
showcasing the variability in cortical volume by segmentation model used, per participant. e,f, 
Cortical thickness values per surface vertex were calculated by FreeSurfer, averaged per 
surface, and plotted as violin plots (labeled as “Average CT”) (e) and line plots (f) showcasing 
the comparisons for each segmentation model grouping. g, Difference maps of segmentation 
group functional connectivity matrices derived from the Gordon parcellation atlas. Networks are 
marked in color along the X and Y-axes. BIBSNet (top) and JLF (bottom), separately were 
subtracted from by the Ground Truth functional connectivity matrix to produce a difference map. 
Notice that the values of the difference map between BIBSNet and GT hover closer to zero (i.e. 
no difference), compared to the JLF and GT difference map. h,i, Similarity from paired functional 
connectome matrices was calculated using Spearman’s rank correlation between JLF and GT 
and BIBSNet and GT and plotted as violin plots (h) and line plots (i). Notice that the distribution 
of values pile up near the correlation max (1.0) and is much tighter for BIBSNet compared to 
JLF.  
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Figure 3 | Comparison between BIBSNet, JLF, and ground truth segmentation with 
representative participants 
Single subject representative slices on the anterior and posterior aspects for 1, 4, and 8 month 
infants showcasing the T1-weighted, and T2-weighted images, along with the segmentations 
produced from JLF, BIBSNet, and Ground Truth. The red arrows highlight segmentation label 
differences. In each case JLF fails to properly segment the white matter – lime green – or gray 
matter - dark blue. 

Discussion: 

BIBSNet is the only open-source pre-trained deep neural network model that we are aware of to 
construct high-quality cortical and subcortical segmentations in infant brains with 29 FreeSurfer 
compatible labels, highlighting its utility for use in infant processing methods and pipelines such 
as fMRIPrep-Infants38, MCRIBS44, and Infant FreeSurfer45. The extensive examination of 
BIBSNet showcases its success compared to JLF, the current state-of-the-art traditional 
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approach, across DSC, morphometric, and functional metrics. An added benefit of BIBSNet is 
that it is nearly 600x faster than JLF and requires minimal computational resources. An ad-hoc 
examination comparing BIBSNet to iBeat, the current state-of-the-art deep neural network 
approach trained on infants, showed slightly higher DSC similarities. However, the comparison 
was limited to cortical structures as iBeat does not segment subcortical structures nor does it 
produce FreeSurfer compatible labels. 

BIBSnet segments cortical and subcortical ROIs with state-of-the-art accuracy  

The analyses to evaluate the DSCs further confirms that BIBSNet segments cortical and 
subcortical structures with state-of-the-art accuracy. Prior literature DSC findings show that gray 
matter ranged from 0.84 - 0.92 with a mean of 0.879, while white matter ranged from 0.85 - 0.93 
with a mean of 0.88522,28,29,31,33,43,46–49 (Supplemental Table 1), with BIBSNet firmly fitting into 
this. Across the cortical and subcortical ROIs evaluated with DSC BIBSNet outperformed JLF, 
the existing state-of-the-art traditional segmentation method (Figure 1). As showcased by the 
difference in standard deviation the distributions are much tighter for BIBSNet, highlighting its 
high reliability. Performance is also evident within the single subject comparisons as shown with 
Figure 3. Notice that there is high correspondence between the BIBSNet and ground truth 
segmentations more generally, whereas the arrows highlight the errors from the JLF 
segmentations. In addition to DSC comparisons with JLF, a comparison with iBeat, the existing 
state-of-the-art deep learning segmentation method trained on infants, was performed. iBeat 
and BIBSNet DSC comparisons revealed that the performance was similar between the two 
models, with iBeat slightly outperforming BIBSNet based on RMSE, and paired T-tests. It is 
worth highlighting that the differences between the means are quite small (gray matter = 0.007, 
white matter = 0.014), indicating that the differnences between BIBSNet and iBeat DSCs are 
subtle.  When the DSC comparisons are observed at a per age level there is some performance 
variability between iBeat and BIBSNet. For example, iBeat outperforms BIBSnet in 2,3,5, and 6 
month infants, whereas BIBSNet outperforms iBeat in 0-month and 7-month infants based on 
gray matter (Supplemental Figure 1). The similarity between BIBSNet and iBeat can also be 
seen within the single subject comparisons in Supplemental Figure 2. Importantly, the 
comparison of BIBSNet and iBeat is limited to cortical structures, as iBeat does not perform 
subcortical segmentations. BIBSNet has two important distinguishing features that stand out 
compared to the extant literature. First, nearly all models require pre-processing to remove part 
of the anatomy, particularly the skull. BIBSNet does not require image pre-processing, and is 
robust to the existence of the skull in images. Secondly, the training samples from models in 
prior literature involve infants between 5 and 9 months of age. BIBSNet, on the other hand, is 
trained on a much larger age range, between 0 and 8 months. These distinguishing 
characteristics allow BIBSNet to generalize well to unseen data. 

BIBSnet improves accuracy of brain morphometric and functional measures 
substantially over JLF  

When the segmentations from ground truth, JLF, and BIBSNet were used to derive volumetric 
and cortical surface metrics, BIBSNet showed a similar pattern to the DSC comparisons. Across 
nearly all volumetric and cortical surface derived metrics, BIBSNet outperformed JLF. The 

 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2023.03.22.533696doi: bioRxiv preprint 

https://paperpile.com/c/00IP4Z/3cU3h+beK1L+ia2fA+4ph0u+c5rwb+FoJMT+NvUQc+JgQyU+TqpcT+VPAS
https://doi.org/10.1101/2023.03.22.533696


effects were particularly pronounced with gray and white matter volume, with JLF showing 
nearly double the RMSE compared to BIBSNet (Figure 2a,c). Differences in RMSE highlights 
two details: 1) that JLF made more errors than BIBSNet; and 2) the errors that JLF made were 
markedly larger compared to BIBSNet. Both JLF and BIBSNet segment all subcortical 
structures, however, the amygdala and hippocampus were of particular focus as they are 
smaller structures and typically more difficult for automated methods to segment. Once again, 
BIBSNet outperformed JLF across both the hippocampus and amygdala. In both cases, it is 
likely that there is considerable variability across JLF template participants causing it to make 
some mistakes as it attempts to segment unseen data. On the other hand, BIBSNet seemed to 
have learned the latent patterns of each region allowing it to more accurately segment 
structures despite potential variabilities.  
 
In addition to morphometrics being affected by the underlying brain segmentations, fMRI data 
produced from the DCAN infant pipeline is as well since the BOLD data is projected onto the 
cortical surface, a routine which requires a segmentation14. Therefore, functional connectivity 
matrices were compared across segmentation type. Using Spearman’s rank correlation to 
generate a measure of similarity of paired functional connectivity matrices, RMSE revealed that 
functional connectome matrices derived from BIBSNet segmentations were much more similar 
to ground truth than JLF derived matrices (Figure 2 h,i). This effect is also apparent within the 
group averaged based difference matrices (Figure 2g), notice that values from the BIBSNet and 
ground truth difference matrix hovering closer to zero, indicating no difference, compared to the 
JLF and ground truth difference matrix. 
 

Impact and Future directions 

BIBSNet provides a critical need for infant neuroimaging studies. Many neuroimaging pipelines 
44,45,50,51 require FreeSurfer compatible labels from segmentations, a feature which is unavailable 
with existing deep learning based infant segmentation methods. With the use of FreeSurfer 
compatible labels in BIBSNet, it is an easy turnkey solution for incorporation into existing 
pipelines and can be relied upon for segmentation within yet to be designed pipelines. The 
addition of subcortical segmentations in BIBSNet make it invaluable for handling multimodal 
infant studies, such as HBCD. For example, subcortical segmentation is needed for diffusion51 
and MRS52 data processing. Moreover, it is critical for deriving measures from fMRI for 
subcortical structures50 as well. Additionally, our hope is that the morphological and resting state 
fMRI analysis performed, paired with the images showcased within Figure 3 indicating the per 
subject improvement in accuracy of BIBSNet over JLF,  will allow researchers to see the 
practical benefits of using BIBSNet. Finally, as a resource the BIBSNet lookup table is provided 
in Supplemental Table 2 so others can easily know the mapping between label numbers within 
the segmentations and their corresponding label names. 

 
Given the success of BIBSNet, future directions are warranted. A primary feature of the 
BIBSNet model proposed in this work is that it currently requires a T1w and T2w image pair. In 
practice, infant MRI research studies typically only acquire one of the two anatomical images. 
Since infant MR scans are typically acquired while the infant is asleep, time is at a premium. 
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Therefore, once a single anatomical image is collected, researchers often move on to collecting 
other images such as resting state or diffusion weighted imaging. As a result of this, we have 
trained additional BIBSNet models, one that requires just a T1w and the other just a T2w image. 
A future study will evaluate the performance of these additional BIBSNet models. Additional, 
future work will involve the incorporation of large and diverse datasets, such as HBCD, to widen 
the age range and acquisition parameters of images in the training sample. This will boost 
model generalizability for out-of-sample inference and increase its utility for researchers that 
collect data with a variety of ages and/or acquisition parameters. 

Conclusion: 

In conclusion, BIBSnet shows state-of-the-art performance when compared to iBeat, JLF and 
models used in prior literature. BIBSNet performed well across multiple ages and was robust to 
the existence of the skull in images. Finally, the pre-trained model is fast (at least 600x speed up 
compared to JLF), requires minimal high performance computing resources, and can easily be 
included in other pipelines. Future studies will extend BIBSnet’s performance and flexibility 
across more datasets and longitudinal timepoints. 
 

Methods: 

We used MR images and manually annotated segmentations from infants aged 0 to 8 
months from the BCP and ALBERTs datasets for the present study.  

MR Image Collection Procedure 
MR images were collected from 72 participants within the BCP study53 — median age at scan = 
5.5 months, 43 female — with a 3T Siemens Prisma at the University of Minnesota’s Center for 
Magnetic Resonance Research (CMRR). Images used for this study included T1-weighted 
(echo time = 2.24 ms, repetition time = 2400 ms, inversion time = 1060 ms, sagittal slices = 208, 
flip angle = 8°, matrix = 320 x 320, voxel sizes = 0.8 x 0.8 x 0.8mm3), T2-weighted (echo time = 
564 ms, repetition time = 3200 ms, sagittal slices = 208, flip angle = variable, matrix = 320 x 
320, voxel sizes = 0.8 x 0.8 x 0.8mm3), and approximately 12 minutes of resting state MR 
images (echo time = 37 ms, repetition time = 800 ms, axial slices = 72, flip angle = 52, matrix = 
104 x 91, multi-band acceleration factor = 8, voxel sizes = 2.0 x 2.0 x 2.0mm3) made up of two 
separate collections with reverse phase encoding (AP and PA). 
 
To supplement the sample with additional neonates, 19 infants that were used to generate the 
ALBERTs neonatal atlas were also used 54. The MRI data for the ALBERTs infants (median age 
at scan = 0 months) were acquired on a 3.0 T Philips Intera scanner (Philips Medical Systems, 
Best, Netherlands). The relevant images utilized included T1-weighted (echo time = 4.6ms, 
repetition time = 17 ms, sagittal slices = 124–150, flip angle = 30°, matrix = 256 × 256, voxel 
sizes = 0.82 × 0.82 × 1.6 mm3) and T2-weighted (echo time = 160ms, repetition time = 8000 ms, 
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sagittal slices = 88–100, flip angle = 90°, matrix = 224 × 224, voxel sizes = 0.86 × 0.86 × 2.0 
mm3) data.  

Manually Annotated Segmentation Procedure 
Following data collection, the T1w and T2w MR images from the BCP study were used to 
produce manual annotations based on FreeSurfer’s aseg atlas55. As a starting point for the 
segmentations, the T1w and T2w images from each BCP participant were run through either 
JLF or a prototyped version of the BIBSnet algorithm. Led by an expert (E.F.), the cortical and 
subcortical structures from the BCP participants were then extensively manually annotated with 
highly trained staff to generate accurate segmentations. This work, known as the Baby Open 
Brains (BOBs) repository, will be made available to others as a resource56. The ALBERTs MR 
images were included in the training to have fairly equal sample sizes of infants from 0 to 
8-months. The segmentations produced from the ALBERTs MR images had been previously 
manually annotated but did not have extensive quality control procedures and were not 
reviewed by an expert.  
 
The BCP and ALBERTs MR images and manual annotated segmentations were used for 
BIBSNet model training and subsequent data processing and analyses.  

BIBSNet combines the nnU-Net model and SynthSeg software, to produce generalizable 
segmentations 

nnU-Net model design 
As can be seen within Figure 4, nnU-Net plays a central role in the BIBSNet model design. 
nnU-Net is a model that is based upon the CNN based network, U-Net 57. In the last several 
years, U-Net has shown state-of-the-art performance in segmentation problems, specifically 
biomedical image segmentation. U-Net consists of two separate elements, the contracting path 
and the expanding path. The contracting path progressively downsamples the input image/s 
while gaining progressively more in-depth features, known as feature maps, to represent the 
image. Following the contracting path, the expansive path takes the feature maps and 
progressively up-samples them until they are the same size as the originally input image/s. The 
downsampling and upsampling is what gives this model its characteristic “U” shape, hence the 
“U” in U-Net. Despite the success of U-Net, a major pitfall was its difficulty with applying it to 
different image analysis problems. It required a multitude of expert decisions in the form of 
adaptation and modification of parameters to be made without clear guidance or obvious 
parameter defaults. nnU-Net sought to correct this by 1) fixing parameters that do not require 
adaptation; 2) tuning parameters that needed to be adapted based upon the inputted dataset; 
and 3) for any parameters that remain, making decisions empirically from the data 35.  

SynthSeg 
While nnU-Net plays the integral role of segmenting the inputted images, SynthSeg is vital to 
improve the generalizability of the model. SynthSeg is software that is capable of producing 
synthetic MR imaging data. Here, the manually annotated segmentations from the BCP and 
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ALBERTs were inputted into SynthSeg for the production of synthetic MR images. SynthSeg 
randomly modified the features of each image in four separate ways to emulate different 
acquisition parameters and data quality 36. First, an affine and non-linear transformation was 
applied to spatially deform the data, simulating a head tilt or changes in head size. Second and 
third, a randomized Gaussian mixed model and bias corruption were applied. These steps are 
meant to mimic the global and local pixel intensity differences that can occur across different 
MRI scanners, such as bias field artifacts. Fourth, to mirror acquisition differences resulting from 
slice thickness, collection orientation, or voxel size the image was randomly downsampled and 
blurred. For the current study, 9,000 T1w, T2w, and segmentation datasets were produced 
based on the 90 participant datasets, a 100x increase in training data. Henceforth, images from 
the BCP and ALBERTs will be referred to as “real images”, while the synthetic images produced 
by Synthseg will be referred to as “synthetic images”.  

 

Figure 4 | Schematic of model training, cross validation, and evaluation process.  
Schematic overview of BIBSNet model design, training, and cross validation process. Sections 
shaped as hexagons represent the starting and end points of the current work, whereas 
sections shaped as rounded rectangles represent intermediate steps.  
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BIBSNet cross validation and training 
As shown in Figure 4, the synthetic outputs from SynthSeg, in combination with the real BCP 
and ALBERTs MR imaging data, were fed directly into nnU-Net for segmentation. Importantly 
the imaging data were not skull-stripped, as a desired feature was for BIBSNet to perform 
inference on non-skull stripped images. The same BCP and ALBERT participants were used for 
training and analysis, thus, a k-fold training strategy was employed to avoid data leakage. The 
first step included splitting the real images into ten approximately equally sized pseudorandom 
testing datasets stratified by age. Each of the ten testing datasets was paired with a training 
dataset. The training dataset was composed of the other real images along with all generated 
synthetic images. This strategy ensured that when inference was performed the real images 
were previously unseen by at least one fold.  
 
To avoid chirality errors, where the inferred annotation was locally correct but the hemisphere 
was not (e.g., right white matter labeled on the left hemisphere), inferred nnUnet segmentation 
outputs underwent a chirality correction procedure. The anatomical T1 was non-linearly 
registered via ANTS SyN algorithm58 to a template infant T1 of the same age. The template 
infant comprised a mask of the left and right hemisphere mapped to the T1. The non-linear warp 
was inversely applied to the left/right mask using a nearest neighbor interpolation, producing the 
left/right mask in the BIBSnet segmentation space. The mask was then applied to the BIBSnet 
segmentation, correcting any chirality errors. 
 

MRI data were processed with the DCAN lab’s infant-ABCD-BIDS processing pipeline 
using segmentations produced from ground truth and the JLF and BIBSNet models  

To test for the effect of segmentation type in subsequent analyses, each of the 90 participants 
were processed through the DCAN labs infant processing pipeline14,39,40,59 in three separate 
ways: 1) running JLF using the age-matched templates produced from the manually annotated 
segmentations (excluding the same-subject template) 2) using the externally generated 
segmentations based on the manual annotations; and 3) using the externally generated 
segmentation inferred by the trained BIBSNet model. From here on, the processing strategies 
will be referred to as “JLF”, “ground truth” and “BIBSNet”, respectively. Beyond the three 
separate processing strategies mentioned above, the data were processed using the exact 
same procedures. iBeat inferred segmentations were not included in this processing, in part, 
because iBeat does not segment subcortical structures so there was concern regarding the 
ability to process the data and the accuracy of the potential outputs. However, iBeat was 
included in Dice Similarity Coefficient (DSC) comparisons.  
 
The DCAN lab’s infant processing pipeline is based on the Human Connectome Project minimal 
processing pipeline14 with key changes to accomodate for the differences in the developing 
brain of infants. Additionally, the design of DCAN lab’s infant processing pipeline draws heavily 
on ABCD-BIDS processing pipeline to accomodate and attenuate scanner effects found within 
major MRI vendors GE, Philips, and Siemens 16. The pipeline is split into several stages: 
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“PreFreeSurfer”, “FreeSurfer”, “PostFreeSurfer”, “FMRIVolume”, “FMRISurface”, 
“DCANBOLDProcessing”, and “ExecutiveSummary”.  
 
The “PreFreeSurfer” stage, the first stage in the structural pipeline, aligned the T1-weighted and 
T2-weighted anatomical images, registered native structural images to standard MNI space, 
and, in the case of JLF processing, ran JLF. The second stage, “FreeSurfer”, ran the software 
tool FreeSurfer 13,55,60–64. The primary goals of FreeSurfer are to reconstruct white and pial 
cortical surfaces, segment subcortical structures, and to register produced native surfaces to the 
template space, fsaverage. “PostFreeSurfer”, generated the NIFTI volumes and GIFTI surface 
files and placed them together into CIFTI files for viewing in the visualization tool Connectome 
Workbench 14.  
 
The main goals of the “FMRIVolume'' stage, the first in the functional pipeline, are to remove 
spatial distortion, realign volumes to correct for participant motion, register the functional to the 
structural data, reduce bias field, normalize the resulting 4D image to a global mean, and mask 
the data 14,16. The second functional pipeline stage is “FMRISurface”. The purpose of 
“FMRISurface'' is to extract the time series processed within the volume space and place it into 
the surface CIFTI standard space. Voxels on the cortical gray matter ribbon were mapped onto 
the native cortical surface, transformed according to the surface registration onto the 32k mesh. 
Subcortical gray matter voxels were mapped from the set of pre-defined subcortical parcels to a 
standard set of voxels in each atlas parcel 14,16. For infant data, the standard adult MNI template 
cannot be non-linearly registered for subcortical data. Therefore, a piecemeal approach was 
used, where we register each subcortical region linearly to the adult template and then project 
the subcortical fMRI data into the CIFTI subcortical greyordinates. 
 
Immediately following “FMRISurface”, two additional stages “DCANBOLDProcessing” and 
“ExecutiveSummary” were launched. The primary goals of “DCANBOLDProcessing” are to 
further process fMRI CIFTI data by filtering motion estimates to separate true head motion from 
factitious motion due to magnetic field changes due to breathing15 and produce both dense 
(dtseries) and parcellated (ptseries) CIFTI files for subsequent analyses. The final stage in the 
DCAN labs infant processing pipeline, “ExecutiveSummary”, summarized standard quality 
control outputs and provided them in a browser-interface for easy navigation and review 16. Data 
processing failed for a total of three participants. Two participants were from ALBERTs and one 
was from the BCP study. All three failures used the JLF inferred segmentations. These failures 
were removed from subsequent analyses, including cortical thickness comparisons and, in the 
case of the BCP, participant functional connectome and DSC analyses. Further details on 
failures are highlighted in Supplemental Table 3.  
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Segmentation overlap and structural and functional MRI metrics were used to perform 
statistical analyses comparing JLF versus ground truth, iBeat versus ground truth and 
separately, BIBSNet versus ground truth 

Segmentation similarity analysis 

To evaluate how similar the segmentations produced by JLF and BIBSNet were to the ground 
truth segmentations, DSC was used 65,66. DSC measures the fraction of overlap between 
anatomical regions of the same type, ranging in values between 0 and 1. DSC was calculated 
thrice, first to compare JLF and ground truth, second comparing BIBSNet and ground truth, and 
third, as a post-hoc analysis, to compare iBeat and ground truth. As iBeat does not segment 
subcortical structures, manually annotated images were used to mask out the would-be 
subcortical structures.  
 
To assess DSC for each segmentation type, Root Mean Squared Error (RMSE) to the ground 
truth was used. RMSE is a metric often used to assess the accuracy of predictive models by 
ascertaining how closely predicted values match actual values. It is defined as the square root 
of the average squared differences between predicted and actual values. The lower the value of 
the RMSE, the better performance of the model. For the comparison, since DSC is a pairing 
metric, the ground truth DSC was a perfect 1.0 as each segmentation was compared with itself. 
RMSE, compared to other metrics like mean absolute error, punishes larger errors. We find that 
this feature is particularly useful for our comparisons as even subtle differences in derived 
metrics could result in different conclusions when studied or analyzed, let alone patently large 
errors. As an added assessment of method effectiveness paired T-tests are also used.  

Structural MRI analyses 

In addition to evaluating the similarity of resulting segmentations, morphological metrics were 
also analyzed. Using outputs from the FreeSurfer processing stage, four different morphological 
metrics – gray matter, white matter, bilateral amygdala, and bilateral hippocampal volume – and 
one cortical sheet metric – average cortical thickness – were analyzed. To assess method 
effectiveness, the metrics produced from BIBSNet segmentations were directly compared 
RMSE to the ground truth segmentation produced metrics. Separately, the metrics produced 
from the JLF model were directly compared to ground truth with the same strategy. 

Functional MRI analysis 

In addition to structural or structurally derived metrics, functional MRI metrics were also 
analyzed. The Gordon67 cortical parcellated resting state time series generated by the 
DCANBOLDProcessing processing stage were used to produce pair-pair correlation matrices 
with the tool “cifti-connectivity” (https://github.com/DCAN-Labs/cifti-connectivity). First, 
“cifti-connectivity”, used the Gordon cortical parcellated resting state time series processed 
through the DCAN labs infant processing pipeline. Second, timepoints were regressed out that 
exceeded a framewise displacement of 0.3mm 68. Regressing out time points in this fashion had 
the effect of removing sufficiently large motion events that could cause spurious correlation. 
With these motion events removed, each so-called “filtered” Gordon parcellated resting state 
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time series was temporally correlated with itself to produce a pair-pair correlation matrix, also 
known as a functional connectome matrix.  
 
Like all other metrics, the functional connectome matrices were produced based on each of the 
three processing strategies. Spearman’s rank correlation was calculated per participant between 
the ground truth and BIBSNet and, separately, ground truth and JLF. This created a measure of 
per participant similarity between the JLF and ground truth, and BIBSNet and ground truth 
functional connectome matrices. Spearman’s rank correlation ranges from 0.0, meaning 
absolutely no similarity, and 1.0 meaning perfect rank similarity. RMSE was also calculated for 
comparisons. Similar to DSC, Spearman’s rank is a paired metric, thus the ground truth 
similarity had a perfect 1.0 correlation as each ground truth functional connectome was 
compared to itself. 
 

Supplementary Information: 

 
 

 
 

Authors
, Year Paper Title Test Sample Size Deep Learning Architecture Anatomy Removed 

from Image Dice Similarity Coefficient 

Zhang, 
2015 

Deep convolutional neural 
networks for multi-modality 

isointense infant brain image 
segmentation 

8: 26-34 wks Convolutional Neural Network skull, cerebellum, brain 
stem GM: 0.86, WM: 0.85 

Moesko
ps, 2017 

Isointense infant brain MRI 
segmentation with a dilated 

convolutional neural network 
23: 26 wks Convolutional Neural Network skull, cerebellum, brain 

stem  WM: 0.874, GM: 0.877 

Moesko
ps, 2016 

Automatic Segmentation of 
MR Brain Images with a 

Convolutional Neural 
Network 

10: 30 wks 
12: 40 wks Convolutional Neural Network None 

30 weeks: CB: 0.92, mWM: 0.69, 
BGT: 0.92, uWM: 0.96, BS 0.87, 

cGM: 0.84, 
40 weeks: CB: 0.93, mWM: 0.56, 
BGT: 0.91, uWM: 0.93, BS: 0.85, 

cGM: 0.87 

Nie, 
2016 

FULLY CONVOLUTIONAL 
NETWORKS FOR 
MULTI-MODALITY 

ISOINTENSE INFANT 
BRAIN IMAGE 

SEGMENTATION 

10: 26-34 wks multi fusion fully convoluted 
network  

skull, cerebellum, brain 
stem GM: 0.873, WM: 0.887 

Dolz, 
2018 

ISOINTENSE INFANT 
BRAIN SEGMENTATION 
WITH A HYPER-DENSE 

CONNECTED 
CONVOLUTIONAL 

NEURAL NETWORK 

23: 26 wks.  3D hyper dense CNN known as 
HyperDenseNet 

skull, cerebellum, brain 
stem GM: 0.920, WM: 0.901 

Dolz, 
2020 

Deep CNN ensembles and 
suggestive annotations for 

infant brain MRI 
segmentation 

23: 26 wks 3D CNN SemiDenseNet, 
extending HyperDenseNet. 

skull, cerebellum, brain 
stem GM: 0.92, WM: 0.90 

Nie, 
2019 

3-D Fully Convolutional 
Networks for Multimodal 
Isointense Infant Brain 
Image Segmentation 

11: 26-34 wks 3D multimodal fully convoluted 
network  

skull, cerebellum, brain 
stem GM: 0.8817, WM: 0.8586 

Zeng, 
2018 

MULTI-STREAM 3D FCN 
WITH MULTI-SCALE DEEP 

SUPERVISION FOR 
MULTI-MODALITY 

23: 26 wks 3D fully convoluted network  skull, cerebellum, brain 
stem GM: 0.916, WM: 0.896 
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Supplemental Table 1 | Spreadsheet of previous literature. 
Sample size, deep learning architectures, anatomy removed and Dice Similarity Coefficient 
reported in the recent infant brain segmentation literature. GM: gray matter, WM: white matter, 
CB: cerebellum, mWM: myelinated white matter, BGT: basal ganglia and thalami, vCSF: 
ventricular cerebrospinal fluid, uWM: unmyelinated white matter, BS: brain stem, cGM: cortical 
gray matter, eCSF extracerebral cerebrospinal fluid

 
 

 
 

ISOINTENSE INFANT 
BRAIN MR IMAGE 
SEGMENTATION 

Wang, 
2018 

Volume-Based Analysis of 
6-Month-Old Infant Brain 

MRI for  Autism Biomarker 
Identification and Early 

Diagnosis 

18: 26 wks  Anatomy-Guided 
Densely-Connected U-Net skull GM: 0.923, WM: 0.933 

Wang, 
2023 

iBEAT V2.0: a 
multisite-applicable, deep 
learning-based pipeline for 

infant cerebral cortical 
surface reconstruction 

505: 29-45 
postmenstrual 

weeks 

Anatomy-Guided 
Densely-Connected U-Net 

Skull, cerebellum, brain 
stem GM: ~0.86, WM: ~0.90 
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Supplemental Figure 1 | Comparison between BIBSNet, iBeat, and ground truth 
segmentation with representative participants 
 
Single subject representative slices on the anterior and posterior aspects for 0, 4, and 8 month 
infants showcasing the T1-weighted, and T2-weighted images, along with the segmentations 
produced from iBeat, BIBSNet, and ground truth. The red arrows and light green arrows 
highlight segmentation label differences, whereby red arrows indicate where iBeat does better, 
and light green arrows where BIBSNet does better. 
 
 

 
Supplemental Figure 2 | Dice similarity coefficients by infant age full sample, BIBSNet 
and iBeat. 

a,b ALBERT and BCP analysis sample with inferred iBeat, and BIBSNet segmentations 
compared against ground truth using Dice Similarity Coefficient (DSC) on left and right gray 
matter (a) and white matter (b) (n=90). Line plots outlining the per subject DSC by infant age (in 
months) for BIBSNet and iBeat. The mean DSC is represented by opaque lines, whereas the 
semi-transparent lines show the 95% confidence interval variability. Notice that BIBSNet and 
iBeat remain relatively stable across all ages. The DSC values diverge most heavily in 0-month 
infants (BIBSNet better), and 5-month infants (iBeat better). a) iBeat DSC = 0.856, iBeat RMSE 
= 0.151, BIBSNet DSC = 0.849, BIBSNet RMSE =  0.157, b) iBeat RMSE = 0.134, iBeat DSC = 
0.876, BIBSNet RMSE =  0.144, BIBSNet DSC = 0.862 
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Label 
Number 

Label Name 

2 Left Cerebral White Matter 
3 Left Cerebral Cortex 
4 Left Lateral Ventricle 
8 Left Cerebellum Cortex 

10 Left Thalamus Proper 
11 Left Caudate 
12 Left Putamen 
13 Left Pallidum 
14 3rd Ventricle 
15 4th Ventricle 
16 Brain Stem 
17 Left Hippocampus 
18 Left Amygdala 
24 CSF 
26 Left Accumbens Area 
28 Left Ventral Diencephalon 
41 Right Cerebral White Matter 
42 Right Cerebral Cortex 
43 Right Lateral Ventricle 
47 Right Cerebellum Cortex 
49 Right Thalamus Proper 
50 Right Caudate 
51 Right Putamen 
52 Right Pallidum 
53 Right Hippocampus 
54 Right Amygdala 
58 Right Accumbens Area 
60 Right Ventral Diencephalon 

172 Vermis 
 

Supplemental Table 2 | BIBSNet Lookup Table 
Lookup table for the labels that BIBSNet segments. The label number represents the value that 
will be found within the segmentation images, whereas, the label name is the actual 
structure/region that the label number corresponds to. 
 
 
 
Segmentation 

Type 
Failure Stage Reason 
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JLF FreeSurfer Cortical 
Reconstruction Step 

Failed 
JLF FreeSurfer Cortical 

Reconstruction Step 
Failed 

JLF PreFreeSurfer JLF was unable to 
generate a 

segmentation 
 

Supplemental Table 3 | Processing Pipeline Failures 
Table laying out failures through the DCAN infant pipeline. The left column highlights the 
segmentation type that failed. Middle column indicates what stage of the DCAN infant pipeline 
failed. Right column indicates the reason for the failure. 
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