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Abstract:

Objectives:

Brain segmentation of infant magnetic resonance (MR) images is vitally important for studying
typical and atypical brain development. The infant brain undergoes many changes throughout
the first years of postnatal life, making tissue segmentation difficult for most existing algorithms.
Here we introduce a deep neural network BIBSNet (Baby and Infant Brain Segmentation Neural
Network), an open-source, community-driven model for robust and generalizable brain
segmentation leveraging data augmentation and a large sample size of manually annotated
images.

Experimental Design:

Included in model training and testing were MR brain images from 90 participants with an age
range of 0-8 months (median age 4.6 months). Using the BOBs repository of manually
annotated real images along with synthetic segmentation images produced using SynthSeg, the
model was trained using a 10-fold procedure. Model performance of segmentations was
assessed by comparing BIBSNet, joint label fusion (JLF) inferred segmentation to ground truth
segmentations using Dice Similarity Coefficient (DSC). Additionally, MR data along with the
FreeSurfer compatible segmentations were processed with the DCAN labs infant-ABCD-BIDS
processing pipeline from ground truth, JLF, and BIBSNet to further assess model performance
on derivative data, including cortical thickness, resting state connectivity and brain region
volumes.

Principal Observations:

BIBSNet segmentations outperforms JLF across all regions based on DSC comparisons.
Additionally, with processed derived metrics, BIBSNet segmentations outperforms JLF
segmentations across nearly all metrics.

Conclusions:

BIBSNet segmentation shows marked improvement over JLF across all age groups analyzed.
The BIBSNet model is 600x faster compared to JLF, produces FreeSurfer-compatible
segmentation labels, and can be easily included in other processing pipelines. BIBSNet
provides a viable alternative for segmenting the brain in the earliest stages of development.
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Introduction:

The first years of postnatal life are marked by significant neuronal development through
synapse growth, myelination of axons, and programmed cell death "2. Converging evidence
suggests that neurodevelopmental and psychiatric disorders throughout the lifespan are
influenced by atypical brain development during this highly dynamic period *7. These dynamics
and have led to major investments in characterizing brain trajectories during this sensitive
period, including the recently launched Healthy Brain and Child Development (HBCD) Study™ -
a large (N ~ 7,200) multi-site, longitudinal, effort to examine the developing brain from 0-10y to
study typical and atypical brain development.

Magnetic resonance imaging (MRI) is a non-invasive tool that can be used to study
developmental brain health and disease. It is capable of producing multiple types of MR data,
including diffusion, spectroscopy, functional, and quantitative MRI data ®''. The vast majority of
analysis strategies across all of these modalities depend on well-annotated, or segmented, MRI
data - that is, data that delineates various brain tissues. Traditionally, structural MR images (i.e.,
T,-weighted (T1w) or T,-weighted (T2w) anatomical images) are used to create annotations that
segment tissue types, such as white matter, gray matter, cerebrospinal fluid (CSF), and
subcortical structures'. Accurate segmentation of cortical gray matter is also necessary to
produce more advanced morphological metrics, such as cortical thickness, surface area, and
gyrification. Finally, other modalities such as functional MRI (fMRI) and diffusion MRI (dMRI)
rely on accurate segmentations to produce more computationally sophisticated metrics like
functional or structural connectivity '*-'®. Studies such as HBCD require efficient and reliable
methods to conduct this critical step required for many derived measures of MRI.

Automated brain segmentation algorithms often rely on high-resolution (e.g. ~1mm?® or smaller)
T1w and T2w anatomical images to annotate tissue types. These algorithms depend on voxel
contrast and intensity differences across differing brain tissue and regions to delineate brain
tissue and region boundaries. Brain tissue and region boundaries are, for the most part, easily
delineated within the adult and child brain; however, they are often less accurate in infant data.
This difficulty is due to the significant changes that the brain undergoes during the first years of
postnatal life, such as myelination™'%?°. For example, T1w-gray matter voxel contrast is greater
than T1w-white matter voxel contrast in infants 0 to 3-months (Figure 3, Supplemental Figure
1), T1w-gray matter and T1w-white matter are approximately equal in contrast from about 3-6
months causing the tissues to look very similar (Figure 3, Supplemental Figure 1), and at >6
months and on the T1w-gray matter is less than T1w-white matter, emulating the tissue contrast
of an adult brain '22'22,

One popular approach in the field to produce accurate segmentations is joint label fusion (JLF)
2324 JLF relies on manually annotated segmentations in multiple individual atlases. From there
an individual's brain is non-linearly registered to each atlas. A ‘winner take all’ approach is then
used to assign labels to each voxel based on local cross correlations between voxel intensities
in the subject and atlas. While this strategy has shown to be successful compared to single
atlas approaches 2>%, the approach is time-consuming (computation of 2-3 days) and still
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error-prone. Furthermore, results are quite variable at different ages, which by themselves may
take months to optimize. Exploring alternative solutions is warranted.

Convolutional Neural Networks (CNN) are an attractive alternative to traditional methods of
segmentations, and have shown significant promise in adult samples?’, CNNs are fast and take
only minutes to segment an infant’s brain once properly trained. CNNs can be further trained
with new data from other datasets in order to boost generalizability quickly. Prior work in infants
has attempted to build CNNs for fast brain segmentation 222332, Supplemental Table 1
showcases a review of the deep learning infant brain segmentation literature along with
limitations of deep learning algorithms. Each study reviewed has limited sample sizes of
high-quality ground truth segmentations, with no study exceeding more than 25 infants. Most
studies focus on limited age ranges, specifically between 5-9 months, limiting the
generalizability of these models to other age groups. Outside of Moeskops et al **, all studies
within Supplemental Table 1 also removed the skull, cerebellum, and brain stem from the
images for training and prior to segmentation generation. This pre-processing likely reduces the
generalizability for images in which the skull remains and increases the burden for performing
inference. In addition, even in the case where sufficient data is used for training outputs often
don’t follow common labels and standards such as the frequently used Freesurfer software.
Last, implementing a model that is open-source, community-centered and follows Findable
Accessible Interoperable and Reusable (FAIR) principles ** is vital for the development and
progress in future model generation and general usage.

BIBSNet (Baby and Infant Brain Segmentation Neural Network) provides a new open source
software to advance brain segmentations. BIBSNet was implemented to add to and improve
upon previous deep learning infant and baby brain segmentation research by creating a model
that can handle variability of infant MR images based on age, neuronal developmental status,
and data acquisition and quality. BIBSNet uses a larger sample size, n=90, than has been
previously published and employs a relatively wide age range — 0-8 months. This wide age
range allows BIBSNet to capably segment neonate and infant brains across important brain
developmental boundaries (i.e., 0-3 months, 3-6 months, and 6-8 months). BIBSNet was built
upon the proven deep learning architecture, nnU-Net *°, for brain segmentations. To improve
generalizability and robustness, SynthSeg was used to create augmented images . Unlike
models described in the previous literature, BIBSNet does not require that the skull, brainstem,
or cerebellum be removed before segmentation; hence, much less pre-processing before
inference is needed. The segmentations produced from BIBSNet are BIDS-compatible and
conducted using input data in the subject’s native space. This choice was intentionally done so
that BIBSNet segmentations can easily be transformed to fit whatever space is required for
processing and analysis . BIBSnet is fully open-source, so other researchers are able to look
at methodological detail and train their own models if needed. Finally, BIBSNet outputs can be
directly input into a pre-processing pipeline, such as fMRIPrep-Infants * and the Developmental
Cognition and Neuroimaging (DCAN) labs infant processing pipeline '*1°3°4°_in particular
because it follows the standard Freesurfer anatomical labels, making it a turn-key solution for
subsequent analyses.
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Results:

BIBSNet training is computationally expensive, but BIBSNet application is efficient

As one might expect, BIBSNet training necessitates considerable time and resources, requiring
approximately 3.5 days of compute time with 1 NVIDIA V100 GPU, 6 CPUs, and 90GB of RAM.
This resulted in a total clock time of 5-7 days factoring in average delays on the Minnesota
Supercomputing Institute (MSI) systems. The training included 5 folds with 1000 epochs per
fold, with each epoch taking around four to five minutes to complete. After an initialization step
completed within the first fold, all five folds could be run concurrently.

While model training is resource-intensive, using the trained model for inference is
straightforward. The BIBSNet application, provided as a BIDS app, requires minimal time and
computing power to perform inference on unseen T1w/T2w image pairs. The inferences for the
present study only required 4 minutes per subject using 2 CPUs and 20GB of RAM on the MSI
systems. Details for downloading and usage can be found on Zenodo and GitHub*'. This far
out-performs the resources and time required by JLF, which, including the pre-processing steps
required (i.e. nonlinear registration of a set of atlas images to the subject brain) can take up to
2-3 days.

Dice similarity coefficient comparisons

DSCs were used to assess overlap in label assignments for BIBSNet- and JLF-derived
segmentations compared to ground truth, i.e. manually corrected, segmentations for cortical and
subcortical structures in the left and right hemispheres (Figure 1). For cortical structures, there
was more similarity between BIBSNet and ground truth structures (RMSE = 0.157 gray matter,
0.144 white matter) than between JLF and ground truth (RMSE = 0.30 gray matter, 0.24 white
matter), with an average DSC of 0.856 and 0.752 respectively across cortical structures. The
DSCs were further compared with repeated sample T-test, revealing that both the gray matter
and white matter DSCs produced from BIBSNet were significantly larger than JLF (gray matter:
T =14.08, p < 1x10%; white matter: T = 6.21, p < 1x107). For subcortical structures, amygdala
and hippocampus DSCs were compared as these are typically more difficult to accurately
segment due to their small size. The bilateral amygdala and hippocampus RMSE based on the
DSC for BIBSNet were RMSE = 0.17 and RMSE = 0.16, respectively, while for JLF they were
RMSE = 0.24 and RMSE = 0.19. Neither subcortical comparison was statistically significantly
(Amygdala: T = 1.74, p = 0.08; Hippocampus: T = 0.41, p = 0.67), however, there was much
less variability in DSC values from BIBSNet vs ground truth (average standard deviation across
regions = 0.04) compared to JLF vs ground truth (average standard deviation across regions =
0.12) (Figure 1a).
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Figure 1 | Dice similarity coefficients by infant age full sample, JLF and BIBSNet

a,b ALBERT and BCP analysis sample with inferred JLF and BIBSNet segmentations compared
against Ground Truth (GT) using Dice Similarity Coefficient (DSC) on left and right white matter,
left and right gray matter, left and right hippocampus, and left and right amygdala (n=90). a,
Violin plots showcasing DSC between BIBSNet and GT segmentations (left), and JLF and GT
segmentations (right). Notice that JLF performs worse compared to BIBSNet particularly the
range of the data distribution. b, Line plots outlining the per subject DSC by infant age (in
months) for BIBSNet (left), and JLF (right), and iBeat (right). The mean DSC is represented by
opaque lines, whereas the semi-transparent lines show the 95% confidence interval variability.
Observe, the large variability of DSC with JLF across infants of differing ages, whereas BIBSNet
remains relatively stable across all ages.

An ad hoc comparison of BIBSNet to iBeat, an existing deep learning model for infant brain
segmentation “>*3, was also performed. BIBSNet and iBeat differ, in that, BIBSNet produces
FreeSurfer-compatible segmentations as well as segmenting cortical and subcortical structures,
whereas iBeat does not produce FreeSurfer-compatible labels and segments the cortical
structures only. Therefore, the analyses were limited to comparisons of white matter and gray
matter. BIBSNet and iBeat performed similarly with no significant differences across ages within
gray matter (T = 1.30, p = 0.19) (Supplemental Figure 2a). However, in white matter, while
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both performed similarly from 0-5 months (T = 0.69, p = 0.49), iBeat outperformed BIBSNet at
months 6-8 significantly (T = 6.9, p < p < 1x10°) (Supplemental Figure 2b).

Volumetric, Cortical Surface, and Functional Connectivity Comparisons

We assessed the similarity of cortical and subcortical volumes in BIBSNet- and JLF-derived
segmentations compared to ground truth segmentations. For both gray matter (BIBSNet RMSE
= 38945.72, JLF RMSE = 42515.47) and white matter (BIBSNet RMSE = 38414.41, JLF RMSE
= 47704.83), BIBSNet volumes were more similar to ground truth than JLF (Figure 2a,c). For
subcortical volumes, we compared hippocampus and amygdala volumes to match the DSC
comparisons above (Figure 2b,d). Bilateral hippocampus volumes produced from BIBSNet
(BIBSNet RMSE = 397.03) segmentations were more similar to ground truth than JLF (JLF
RMSE = 465.72). Similarly, ground truth and BIBSNet bilateral amygdala volume were more
similar (BIBSNet RMSE = 231.96) compared to JLF and ground truth (JLF RMSE = 237.51).

Interestingly, although BIBSNet DSC and resulting cortical and subcortical volumes were more
similar to ground truth, cortical thickness from JLF-derived segmentations were more similar to
ground truth (RMSE = 0.45) than BIBSNet (RMSE = 0.55) (Figure 2e,f).

In addition to assessing the similarity between label assignments of segmentations and
anatomical metrics derived from the associated MRI images, we also analyzed how functional
connectivity compares between BIBSNet- and JLF-derived segmentations and ground truth.
The similarity between BIBSNet and ground truth functional connectome matrices (RMSE =
0.09) was greater than the similarity between the JLF and ground truth (RMSE = 0.19) (Figure
2g,h,i).


https://doi.org/10.1101/2023.03.22.533696

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.22.533696; this version posted January 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

a 1e5 - les b . le3 2% le3
- . E i
Ea £3 £ Ezo0
- = w E
g3 £ §4 g
- ] ]
g g2 = 210
= 2 @ o >
) = a2 E
= = = Z 05
L =1 T
BIBSNet GT JLF BIBSNet GT JLF BIBSNet GT JLF BIBSNet GT JLF
c Segmentation Segmentation d Segmentation Segmentation
le5 le5 le3 . le3
— . el a6 - 2.5 - . .
I—‘- L E L * ‘E_ m .
E4 M g3 . : H £ - E20
= = e [ ] = E = =
= o - = = — —=
E : : £ = 2! 315 _
B s = 5 = £ = I
s - = o] — o 1.0
=2 . ) : = — = »
p ' £ a Z05
LY H hd =1 N . T - .
BIBSMeE GI ILF BIBSNet GT JLF BIBSMet GT JLF BIBSMet GT JLF
Segmentation Segmentation Segmentation Segmentation
e h
£ I;'I - aT - Difference L 10
1 8.3 v — 8.3
30 | A S == 4% . 1 | c
E i A CEEEEET ey g e gl CR
= / I A 0.2 . 4o 0.2 7} £ —
3] 1) i el A= E X S08
w25 .y, s L L ‘L™ 0 || S Y O z
o \"I"' ot T8 1 R R e £
g -] Tl | e Lo ; 80 : ! s >
§20 v g T - - =t Yoe
< ) e Lo o 1 - ) = = | oo
BIBSNet GT ILF s . '-' : ) JLF-GT BIBSNet-GT
£ Segrnentation i e Paired Segmentations
- [
E 10 B = .04 J_ﬁ:D 0.9 —
— = +—1 .4 T i
. ! RN, - ==
&) - 0.0z cpg M
' 95 = o = ] -
£ T e o = l .
g S o | (00 9 0.7 .
920 sptt bl ] B o
S (R i R et k02 W06 .
* i = TV .
e < 1 - -
BIBSNat GT JLF { H 4 -0 JLF-GT BIBSNet-GT
Segmentation

Paired Segmentations

Fi%ure 2 | Anatomical and functional derived brain metric comparisons between JLF,
BIBSNet and ground truth.

BCP and ALBERT analysis sample, anatomical data: (a-d,f-h, n=90); functional data (e, n=64) .
a,c, Gray matter (left panels) and white matter (right panels) volume comparisons based on
segmentations produced from BIBSNet, ground truth (GT), and JLF. b,d Bilateral hippocampus
(left panels) and amygdala (right panels) volume comparisons based on segmentations
produced from BIBSNet, GT, and JLF. a,b violin plots — a hybrid of a box and kernel density plot
— showcasing the comparisons for each segmentation model grouping, c,d line plots
showcasing the variability in cortical volume by segmentation model used, per participant. e,f,
Cortical thickness values per surface vertex were calculated by FreeSurfer, averaged per
surface, and plotted as violin plots (labeled as “Average CT”) (e) and line plots (f) showcasing
the comparisons for each segmentation model grouping. g, Difference maps of segmentation
group functional connectivity matrices derived from the Gordon parcellation atlas. Networks are
marked in color along the X and Y-axes. BIBSNet (top) and JLF (bottom), separately were
subtracted from by the Ground Truth functional connectivity matrix to produce a difference map.
Notice that the values of the difference map between BIBSNet and GT hover closer to zero (i.e.
no difference), compared to the JLF and GT difference map. h,i, Similarity from paired functional
connectome matrices was calculated using Spearman’s rank correlation between JLF and GT
and BIBSNet and GT and plotted as violin plots (h) and line plots (i). Notice that the distribution
of values pile up near the correlation max (1.0) and is much tighter for BIBSNet compared to
JLF.


https://doi.org/10.1101/2023.03.22.533696

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.22.533696; this version posted January 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

BIBSNet Ground Truth

1 month
Posterior |

Anterior
4 month
o . .

Anterior

8 month

Postenor

Figure 3 | Comparison between BIBSNet, JLF, and ground truth segmentation with
representative participants

Single subject representative slices on the anterior and posterior aspects for 1, 4, and 8 month
infants showcasing the T1-weighted, and T2-weighted images, along with the segmentations
produced from JLF, BIBSNet, and Ground Truth. The red arrows highlight segmentation label
differences. In each case JLF fails to properly segment the white matter — lime green — or gray
matter - dark blue.

Discussion:

BIBSNet is the only open-source pre-trained deep neural network model that we are aware of to
construct high-quality cortical and subcortical segmentations in infant brains with 29 FreeSurfer
compatible labels, highlighting its utility for use in infant processing methods and pipelines such
as fMRIPrep-Infants®®, MCRIBS*, and Infant FreeSurfer*>. The extensive examination of
BIBSNet showcases its success compared to JLF, the current state-of-the-art traditional
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approach, across DSC, morphometric, and functional metrics. An added benefit of BIBSNet is
that it is nearly 600x faster than JLF and requires minimal computational resources. An ad-hoc
examination comparing BIBSNet to iBeat, the current state-of-the-art deep neural network
approach trained on infants, showed slightly higher DSC similarities. However, the comparison
was limited to cortical structures as iBeat does not segment subcortical structures nor does it
produce FreeSurfer compatible labels.

BIBSnet segments cortical and subcortical ROIs with state-of-the-art accuracy

The analyses to evaluate the DSCs further confirms that BIBSNet segments cortical and
subcortical structures with state-of-the-art accuracy. Prior literature DSC findings show that gray
matter ranged from 0.84 - 0.92 with a mean of 0.879, while white matter ranged from 0.85 - 0.93
with a mean of 0.8852%22829.31.3343.46-49 (gyupplemental Table 1), with BIBSNet firmly fitting into
this. Across the cortical and subcortical ROls evaluated with DSC BIBSNet outperformed JLF,
the existing state-of-the-art traditional segmentation method (Figure 1). As showcased by the
difference in standard deviation the distributions are much tighter for BIBSNet, highlighting its
high reliability. Performance is also evident within the single subject comparisons as shown with
Figure 3. Notice that there is high correspondence between the BIBSNet and ground truth
segmentations more generally, whereas the arrows highlight the errors from the JLF
segmentations. In addition to DSC comparisons with JLF, a comparison with iBeat, the existing
state-of-the-art deep learning segmentation method trained on infants, was performed. iBeat
and BIBSNet DSC comparisons revealed that the performance was similar between the two
models, with iBeat slightly outperforming BIBSNet based on RMSE, and paired T-tests. It is
worth highlighting that the differences between the means are quite small (gray matter = 0.007,
white matter = 0.014), indicating that the differnences between BIBSNet and iBeat DSCs are
subtle. When the DSC comparisons are observed at a per age level there is some performance
variability between iBeat and BIBSNet. For example, iBeat outperforms BIBSnet in 2,3,5, and 6
month infants, whereas BIBSNet outperforms iBeat in 0-month and 7-month infants based on
gray matter (Supplemental Figure 1). The similarity between BIBSNet and iBeat can also be
seen within the single subject comparisons in Supplemental Figure 2. Importantly, the
comparison of BIBSNet and iBeat is limited to cortical structures, as iBeat does not perform
subcortical segmentations. BIBSNet has two important distinguishing features that stand out
compared to the extant literature. First, nearly all models require pre-processing to remove part
of the anatomy, particularly the skull. BIBSNet does not require image pre-processing, and is
robust to the existence of the skull in images. Secondly, the training samples from models in
prior literature involve infants between 5 and 9 months of age. BIBSNet, on the other hand, is
trained on a much larger age range, between 0 and 8 months. These distinguishing
characteristics allow BIBSNet to generalize well to unseen data.

BIBSnet improves accuracy of brain morphometric and functional measures
substantially over JLF

When the segmentations from ground truth, JLF, and BIBSNet were used to derive volumetric
and cortical surface metrics, BIBSNet showed a similar pattern to the DSC comparisons. Across
nearly all volumetric and cortical surface derived metrics, BIBSNet outperformed JLF. The
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effects were particularly pronounced with gray and white matter volume, with JLF showing
nearly double the RMSE compared to BIBSNet (Figure 2a,c). Differences in RMSE highlights
two details: 1) that JLF made more errors than BIBSNet; and 2) the errors that JLF made were
markedly larger compared to BIBSNet. Both JLF and BIBSNet segment all subcortical
structures, however, the amygdala and hippocampus were of particular focus as they are
smaller structures and typically more difficult for automated methods to segment. Once again,
BIBSNet outperformed JLF across both the hippocampus and amygdala. In both cases, it is
likely that there is considerable variability across JLF template participants causing it to make
some mistakes as it attempts to segment unseen data. On the other hand, BIBSNet seemed to
have learned the latent patterns of each region allowing it to more accurately segment
structures despite potential variabilities.

In addition to morphometrics being affected by the underlying brain segmentations, fMRI data
produced from the DCAN infant pipeline is as well since the BOLD data is projected onto the
cortical surface, a routine which requires a segmentation™. Therefore, functional connectivity
matrices were compared across segmentation type. Using Spearman’s rank correlation to
generate a measure of similarity of paired functional connectivity matrices, RMSE revealed that
functional connectome matrices derived from BIBSNet segmentations were much more similar
to ground truth than JLF derived matrices (Figure 2 h,i). This effect is also apparent within the
group averaged based difference matrices (Figure 2g), notice that values from the BIBSNet and
ground truth difference matrix hovering closer to zero, indicating no difference, compared to the
JLF and ground truth difference matrix.

Impact and Future directions

BIBSNet provides a critical need for infant neuroimaging studies. Many neuroimaging pipelines
44455051 require FreeSurfer compatible labels from segmentations, a feature which is unavailable
with existing deep learning based infant segmentation methods. With the use of FreeSurfer
compatible labels in BIBSNet, it is an easy turnkey solution for incorporation into existing
pipelines and can be relied upon for segmentation within yet to be designed pipelines. The
addition of subcortical segmentations in BIBSNet make it invaluable for handling multimodal
infant studies, such as HBCD. For example, subcortical segmentation is needed for diffusion®
and MRS*? data processing. Moreover, it is critical for deriving measures from fMRI for
subcortical structures® as well. Additionally, our hope is that the morphological and resting state
fMRI analysis performed, paired with the images showcased within Figure 3 indicating the per
subject improvement in accuracy of BIBSNet over JLF, will allow researchers to see the
practical benefits of using BIBSNet. Finally, as a resource the BIBSNet lookup table is provided
in Supplemental Table 2 so others can easily know the mapping between label numbers within
the segmentations and their corresponding label names.

Given the success of BIBSNet, future directions are warranted. A primary feature of the
BIBSNet model proposed in this work is that it currently requires a T1w and T2w image pair. In
practice, infant MRI research studies typically only acquire one of the two anatomical images.
Since infant MR scans are typically acquired while the infant is asleep, time is at a premium.
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Therefore, once a single anatomical image is collected, researchers often move on to collecting
other images such as resting state or diffusion weighted imaging. As a result of this, we have
trained additional BIBSNet models, one that requires just a T1w and the other just a T2w image.
A future study will evaluate the performance of these additional BIBSNet models. Additional,
future work will involve the incorporation of large and diverse datasets, such as HBCD, to widen
the age range and acquisition parameters of images in the training sample. This will boost
model generalizability for out-of-sample inference and increase its utility for researchers that
collect data with a variety of ages and/or acquisition parameters.

Conclusion:

In conclusion, BIBSnet shows state-of-the-art performance when compared to iBeat, JLF and
models used in prior literature. BIBSNet performed well across multiple ages and was robust to
the existence of the skull in images. Finally, the pre-trained model is fast (at least 600x speed up
compared to JLF), requires minimal high performance computing resources, and can easily be
included in other pipelines. Future studies will extend BIBSnet’s performance and flexibility
across more datasets and longitudinal timepoints.

Methods:

We used MR images and manually annotated segmentations from infants aged 0 to 8
months from the BCP and ALBERTSs datasets for the present study.

MR Image Collection Procedure

MR images were collected from 72 participants within the BCP study®® — median age at scan =
5.5 months, 43 female — with a 3T Siemens Prisma at the University of Minnesota’s Center for
Magnetic Resonance Research (CMRR). Images used for this study included T1-weighted
(echo time = 2.24 ms, repetition time = 2400 ms, inversion time = 1060 ms, sagittal slices = 208,
flip angle = 8°, matrix = 320 x 320, voxel sizes = 0.8 x 0.8 x 0.8mm?), T2-weighted (echo time =
564 ms, repetition time = 3200 ms, sagittal slices = 208, flip angle = variable, matrix = 320 x
320, voxel sizes = 0.8 x 0.8 x 0.8mm?), and approximately 12 minutes of resting state MR
images (echo time = 37 ms, repetition time = 800 ms, axial slices = 72, flip angle = 52, matrix =
104 x 91, multi-band acceleration factor = 8, voxel sizes = 2.0 x 2.0 x 2.0mm?®) made up of two
separate collections with reverse phase encoding (AP and PA).

To supplement the sample with additional neonates, 19 infants that were used to generate the
ALBERTSs neonatal atlas were also used *. The MRI data for the ALBERTs infants (median age
at scan = 0 months) were acquired on a 3.0 T Philips Intera scanner (Philips Medical Systems,
Best, Netherlands). The relevant images utilized included T1-weighted (echo time = 4.6ms,
repetition time = 17 ms, sagittal slices = 124—150, flip angle = 30°, matrix = 256 x 256, voxel
sizes = 0.82 x 0.82 x 1.6 mm?) and T2-weighted (echo time = 160ms, repetition time = 8000 ms,
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sagittal slices = 88-100, flip angle = 90°, matrix = 224 x 224, voxel sizes = 0.86 x 0.86 x 2.0
mm?®) data.

Manually Annotated Segmentation Procedure

Following data collection, the T1w and T2w MR images from the BCP study were used to
produce manual annotations based on FreeSurfer’s aseg atlas®. As a starting point for the
segmentations, the T1w and T2w images from each BCP participant were run through either
JLF or a prototyped version of the BIBSnet algorithm. Led by an expert (E.F.), the cortical and
subcortical structures from the BCP participants were then extensively manually annotated with
highly trained staff to generate accurate segmentations. This work, known as the Baby Open
Brains (BOBs) repository, will be made available to others as a resource®®. The ALBERTs MR
images were included in the training to have fairly equal sample sizes of infants from 0 to
8-months. The segmentations produced from the ALBERTs MR images had been previously
manually annotated but did not have extensive quality control procedures and were not
reviewed by an expert.

The BCP and ALBERTs MR images and manual annotated segmentations were used for
BIBSNet model training and subsequent data processing and analyses.

BIBSNet combines the nnU-Net model and SynthSeg software, to produce generalizable
segmentations

nnU-Net model design

As can be seen within Figure 4, nnU-Net plays a central role in the BIBSNet model design.
nnU-Net is a model that is based upon the CNN based network, U-Net *’. In the last several
years, U-Net has shown state-of-the-art performance in segmentation problems, specifically
biomedical image segmentation. U-Net consists of two separate elements, the contracting path
and the expanding path. The contracting path progressively downsamples the input image/s
while gaining progressively more in-depth features, known as feature maps, to represent the
image. Following the contracting path, the expansive path takes the feature maps and
progressively up-samples them until they are the same size as the originally input image/s. The
downsampling and upsampling is what gives this model its characteristic “U” shape, hence the
“U” in U-Net. Despite the success of U-Net, a major pitfall was its difficulty with applying it to
different image analysis problems. It required a multitude of expert decisions in the form of
adaptation and modification of parameters to be made without clear guidance or obvious
parameter defaults. nnU-Net sought to correct this by 1) fixing parameters that do not require
adaptation; 2) tuning parameters that needed to be adapted based upon the inputted dataset;
and 3) for any parameters that remain, making decisions empirically from the data 3.

SynthSeg

While nnU-Net plays the integral role of segmenting the inputted images, SynthSeg is vital to
improve the generalizability of the model. SynthSeg is software that is capable of producing
synthetic MR imaging data. Here, the manually annotated segmentations from the BCP and
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ALBERTSs were inputted into SynthSeg for the production of synthetic MR images. SynthSeg
randomly modified the features of each image in four separate ways to emulate different
acquisition parameters and data quality °. First, an affine and non-linear transformation was
applied to spatially deform the data, simulating a head tilt or changes in head size. Second and
third, a randomized Gaussian mixed model and bias corruption were applied. These steps are
meant to mimic the global and local pixel intensity differences that can occur across different
MRI scanners, such as bias field artifacts. Fourth, to mirror acquisition differences resulting from
slice thickness, collection orientation, or voxel size the image was randomly downsampled and
blurred. For the current study, 9,000 T1w, T2w, and segmentation datasets were produced
based on the 90 participant datasets, a 100x increase in training data. Henceforth, images from
the BCP and ALBERTSs will be referred to as “real images”, while the synthetic images produced
by Synthseg will be referred to as “synthetic images”.

Input data consisted of 90 scanning
sessions, comprised of a T1-weighted
and T2-weighted image along with a
ground truth segmentation

Ground Truth
Segmentation

Run trained models on
appropriate test sets
to create a predicted

~

segmentation.
Ground Truth Predicted
Segmentation Segmentation

ﬁ,OOO additional scanning sessions (T1,

T2, segmentation) were synthetically

generated with SynthSeg to augment
training sample (Billot et al., 2021)

Pool synthetic and
Segmentation

1 L1

/Split real scanning sessions into 10 separate folds
stratified by age for use in test set. All synthetic
images were placed in training set

real scanning
sessions images

A\

Partition 1 Partition 2 Partition 10
Fold 1 [ Test ] [ Training ][ Training ]

«——

Fold 2 [ Training ] [ Test ][ Training ]

(oldm[ Training ] [ Training ][ Test ]/

Analyses to

compare BIBSNet, ortical volume (gra Dice Slmllarlty Cortical thickness Functional
manual and JLF and white matter) Coefficient comparisons connectivity
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Figure 4 | Schematic of model training, cross validation, and evaluation process.
Schematic overview of BIBSNet model design, training, and cross validation process. Sections
shaped as hexagons represent the starting and end points of the current work, whereas
sections shaped as rounded rectangles represent intermediate steps.
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BIBSNet cross validation and training

As shown in Figure 4, the synthetic outputs from SynthSeg, in combination with the real BCP
and ALBERTs MR imaging data, were fed directly into nnU-Net for segmentation. Importantly
the imaging data were not skull-stripped, as a desired feature was for BIBSNet to perform
inference on non-skull stripped images. The same BCP and ALBERT participants were used for
training and analysis, thus, a k-fold training strategy was employed to avoid data leakage. The
first step included splitting the real images into ten approximately equally sized pseudorandom
testing datasets stratified by age. Each of the ten testing datasets was paired with a training
dataset. The training dataset was composed of the other real images along with all generated
synthetic images. This strategy ensured that when inference was performed the real images
were previously unseen by at least one fold.

To avoid chirality errors, where the inferred annotation was locally correct but the hemisphere
was not (e.g., right white matter labeled on the left hemisphere), inferred nnUnet segmentation
outputs underwent a chirality correction procedure. The anatomical T1 was non-linearly
registered via ANTS SyN algorithm®® to a template infant T1 of the same age. The template
infant comprised a mask of the left and right hemisphere mapped to the T1. The non-linear warp
was inversely applied to the left/right mask using a nearest neighbor interpolation, producing the
left/right mask in the BIBSnet segmentation space. The mask was then applied to the BIBSnet
segmentation, correcting any chirality errors.

MRI data were processed with the DCAN lab’s infant-ABCD-BIDS processing pipeline
using segmentations produced from ground truth and the JLF and BIBSNet models

To test for the effect of segmentation type in subsequent analyses, each of the 90 participants
were processed through the DCAN labs infant processing pipeline'3°4°% in three separate
ways: 1) running JLF using the age-matched templates produced from the manually annotated
segmentations (excluding the same-subject template) 2) using the externally generated
segmentations based on the manual annotations; and 3) using the externally generated
segmentation inferred by the trained BIBSNet model. From here on, the processing strategies
will be referred to as “JLF”, “ground truth” and “BIBSNet”, respectively. Beyond the three
separate processing strategies mentioned above, the data were processed using the exact
same procedures. iBeat inferred segmentations were not included in this processing, in part,
because iBeat does not segment subcortical structures so there was concern regarding the
ability to process the data and the accuracy of the potential outputs. However, iBeat was
included in Dice Similarity Coefficient (DSC) comparisons.

The DCAN lab’s infant processing pipeline is based on the Human Connectome Project minimal
processing pipeline' with key changes to accomodate for the differences in the developing
brain of infants. Additionally, the design of DCAN lab’s infant processing pipeline draws heavily
on ABCD-BIDS processing pipeline to accomodate and attenuate scanner effects found within
major MRI vendors GE, Philips, and Siemens 6. The pipeline is split into several stages:
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“PreFreeSurfer’, “FreeSurfer”, “PostFreeSurfer”, “FMRIVolume”, “FMRISurface”,
“‘DCANBOLDProcessing”, and “ExecutiveSummary”.

The “PreFreeSurfer” stage, the first stage in the structural pipeline, aligned the T1-weighted and
T2-weighted anatomical images, registered native structural images to standard MNI space,
and, in the case of JLF processing, ran JLF. The second stage, “FreeSurfer”, ran the software
tool FreeSurfer '*%56-64 The primary goals of FreeSurfer are to reconstruct white and pial
cortical surfaces, segment subcortical structures, and to register produced native surfaces to the
template space, fsaverage. “PostFreeSurfer’, generated the NIFTI volumes and GIFTI surface
files and placed them together into CIFTI files for viewing in the visualization tool Connectome
Workbench ™.

The main goals of the “FMRIVolume" stage, the first in the functional pipeline, are to remove
spatial distortion, realign volumes to correct for participant motion, register the functional to the
structural data, reduce bias field, normalize the resulting 4D image to a global mean, and mask
the data "*'®. The second functional pipeline stage is “FMRISurface”. The purpose of
“‘FMRISurface" is to extract the time series processed within the volume space and place it into
the surface CIFTI standard space. Voxels on the cortical gray matter ribbon were mapped onto
the native cortical surface, transformed according to the surface registration onto the 32k mesh.
Subcortical gray matter voxels were mapped from the set of pre-defined subcortical parcels to a
standard set of voxels in each atlas parcel '*'6. For infant data, the standard adult MNI template
cannot be non-linearly registered for subcortical data. Therefore, a piecemeal approach was
used, where we register each subcortical region linearly to the adult template and then project
the subcortical fMRI data into the CIFTI subcortical greyordinates.

Immediately following “FMRISurface”, two additional stages “DCANBOLDProcessing” and
“ExecutiveSummary” were launched. The primary goals of “DCANBOLDProcessing” are to
further process fMRI CIFTI data by filtering motion estimates to separate true head motion from
factitious motion due to magnetic field changes due to breathing' and produce both dense
(dtseries) and parcellated (ptseries) CIFTI files for subsequent analyses. The final stage in the
DCAN labs infant processing pipeline, “ExecutiveSummary”, summarized standard quality
control outputs and provided them in a browser-interface for easy navigation and review '°. Data
processing failed for a total of three participants. Two participants were from ALBERTs and one
was from the BCP study. All three failures used the JLF inferred segmentations. These failures
were removed from subsequent analyses, including cortical thickness comparisons and, in the
case of the BCP, participant functional connectome and DSC analyses. Further details on
failures are highlighted in Supplemental Table 3.
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Segmentation overlap and structural and functional MRI metrics were used to perform
statistical analyses comparing JLF versus ground truth, iBeat versus ground truth and
separately, BIBSNet versus ground truth

Segmentation similarity analysis

To evaluate how similar the segmentations produced by JLF and BIBSNet were to the ground
truth segmentations, DSC was used 5. DSC measures the fraction of overlap between
anatomical regions of the same type, ranging in values between 0 and 1. DSC was calculated
thrice, first to compare JLF and ground truth, second comparing BIBSNet and ground truth, and
third, as a post-hoc analysis, to compare iBeat and ground truth. As iBeat does not segment
subcortical structures, manually annotated images were used to mask out the would-be
subcortical structures.

To assess DSC for each segmentation type, Root Mean Squared Error (RMSE) to the ground
truth was used. RMSE is a metric often used to assess the accuracy of predictive models by
ascertaining how closely predicted values match actual values. It is defined as the square root
of the average squared differences between predicted and actual values. The lower the value of
the RMSE, the better performance of the model. For the comparison, since DSC is a pairing
metric, the ground truth DSC was a perfect 1.0 as each segmentation was compared with itself.
RMSE, compared to other metrics like mean absolute error, punishes larger errors. We find that
this feature is particularly useful for our comparisons as even subtle differences in derived
metrics could result in different conclusions when studied or analyzed, let alone patently large
errors. As an added assessment of method effectiveness paired T-tests are also used.

Structural MRI analyses

In addition to evaluating the similarity of resulting segmentations, morphological metrics were
also analyzed. Using outputs from the FreeSurfer processing stage, four different morphological
metrics — gray matter, white matter, bilateral amygdala, and bilateral hippocampal volume — and
one cortical sheet metric — average cortical thickness — were analyzed. To assess method
effectiveness, the metrics produced from BIBSNet segmentations were directly compared
RMSE to the ground truth segmentation produced metrics. Separately, the metrics produced
from the JLF model were directly compared to ground truth with the same strategy.

Functional MRI analysis

In addition to structural or structurally derived metrics, functional MRI metrics were also
analyzed. The Gordon®’ cortical parcellated resting state time series generated by the
DCANBOLDProcessing processing stage were used to produce pair-pair correlation matrices
with the tool “cifti-connectivity” (https://github.com/DCAN-Labs/cifti-connectivity). First,
“cifti-connectivity”, used the Gordon cortical parcellated resting state time series processed
through the DCAN labs infant processing pipeline. Second, timepoints were regressed out that
exceeded a framewise displacement of 0.3mm . Regressing out time points in this fashion had
the effect of removing sufficiently large motion events that could cause spurious correlation.
With these motion events removed, each so-called “filtered” Gordon parcellated resting state
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time series was temporally correlated with itself to produce a pair-pair correlation matrix, also
known as a functional connectome matrix.

Like all other metrics, the functional connectome matrices were produced based on each of the
three processing strategies. Spearman’s rank correlation was calculated per participant between
the ground truth and BIBSNet and, separately, ground truth and JLF. This created a measure of
per participant similarity between the JLF and ground truth, and BIBSNet and ground truth
functional connectome matrices. Spearman’s rank correlation ranges from 0.0, meaning
absolutely no similarity, and 1.0 meaning perfect rank similarity. RMSE was also calculated for
comparisons. Similar to DSC, Spearman’s rank is a paired metric, thus the ground truth
similarity had a perfect 1.0 correlation as each ground truth functional connectome was
compared to itself.

Supplementary Information:

Authors Paper Title Test Sample Size Deep Learning Architecture Anatomy Removed Dice Similarity Coefficient
, Year from Image
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30 weeks: CB: 0.92, mWM: 0.69,
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ISOINTENSE INFANT
BRAIN MR IMAGE
SEGMENTATION

Volume-Based Analysis of

6-Month-Old Infant Brain :
Wang, | e ifor Autism Biomarker 18: 26 wks Anatomy-Guided skull GM: 0.923, WM: 0.933
2018 Identification and Early Densely-Connected U-Net

Diagnosis
iBEAT V2.0: a

Wang, | multisite-applicable, deep 505:29-45 Anatomy-Guided Skull, cerebellum, brain

learning-based pipeline for postmenstrual GM: ~0.86, WM: ~0.90
2023 infant cerebral cortical weeks Densely-Connected U-Net stem

surface reconstruction

Supplemental Table 1 | Spreadsheet of previous literature.

Sample size, deep learning architectures, anatomy removed and Dice Similarity Coefficient
reported in the recent infant brain segmentation literature. GM: gray matter, WM: white matter,
CB: cerebellum, mWM: myelinated white matter, BGT: basal ganglia and thalami, vCSF:
ventricular cerebrospinal fluid, uWM: unmyelinated white matter, BS: brain stem, cGM: cortical
gray matter, eCSF extracerebral cerebrospinal fluid
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Supplemental Figure 1 | Comparison between BIBSNet, iBeat, and ground truth
segmentation with representative participants

Single subject representative slices on the anterior and posterior aspects for 0, 4, and 8 month
infants showcasing the T1-weighted, and T2-weighted images, along with the segmentations
produced from iBeat, BIBSNet, and ground truth. The red arrows and light green arrows
highlight segmentation label differences, whereby red arrows indicate where iBeat does better,
and light green arrows where BIBSNet does better.
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Supplemental Figure 2 | Dice similarity coefficients by infant age full sample, BIBSNet
and iBeat.

a,b ALBERT and BCP analysis sample with inferred iBeat, and BIBSNet segmentations
compared against ground truth using Dice Similarity Coefficient (DSC) on left and right gray
matter (a) and white matter (b) (n=90). Line plots outlining the per subject DSC by infant age (in
months) for BIBSNet and iBeat. The mean DSC is represented by opaque lines, whereas the
semi-transparent lines show the 95% confidence interval variability. Notice that BIBSNet and
iBeat remain relatively stable across all ages. The DSC values diverge most heavily in 0-month
infants (BIBSNet better), and 5-month infants (iBeat better). a) iBeat DSC = 0.856, iBeat RMSE
= 0.151, BIBSNet DSC = 0.849, BIBSNet RMSE = 0.157, b) iBeat RMSE = 0.134, iBeat DSC =
0.876, BIBSNet RMSE = 0.144, BIBSNet DSC = 0.862
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Label Label Name
Number
2 Left Cerebral White Matter
3 Left Cerebral Cortex
4 Left Lateral Ventricle
8 Left Cerebellum Cortex
10 Left Thalamus Proper
1 Left Caudate
12 Left Putamen
13 Left Pallidum
14 3rd Ventricle
15 4th Ventricle
16 Brain Stem
17 Left Hippocampus
18 Left Amygdala
24 CSF
26 Left Accumbens Area
28 Left Ventral Diencephalon
41 Right Cerebral White Matter
42 Right Cerebral Cortex
43 Right Lateral Ventricle
47 Right Cerebellum Cortex
49 Right Thalamus Proper
50 Right Caudate
51 Right Putamen
52 Right Pallidum
53 Right Hippocampus
54 Right Amygdala
58 Right Accumbens Area
60 Right Ventral Diencephalon
172 ) Vermis

Supplemental Table 2 | BIBSNet Lookup Table

Lookup table for the labels that BIBSNet segments. The label number represents the value that
will be found within the segmentation images, whereas, the label name is the actual
structure/region that the label number corresponds to.

Segmentation Failure Stage Reason
Type
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JLF FreeSurfer Cortical
Reconstruction Step
Failed

JLF FreeSurfer Cortical
Reconstruction Step
Failed

JLF PreFreeSurfer JLF was unable to
generate a
segmentation

Supplemental Table 3 | Processing Pipeline Failures

Table laying out failures through the DCAN infant pipeline. The left column highlights the
segmentation type that failed. Middle column indicates what stage of the DCAN infant pipeline
failed. Right column indicates the reason for the failure.
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