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Ras-dependent activation of BMAL2 regulates hypoxic metabolism in pancreatic cancer
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Summary

KRAS is the archetypal oncogenic driver of pancreatic cancer. To identify new modulators of
KRAS activity in human pancreatic ductal adenocarcinoma (PDAC), we performed regulatory
network analysis on a large collection of expression profiles from laser capture microdissected
samples of PDAC and benign controls. We discovered that BMAL2, a member of the PAS family
of transcription factors, promotes tumor initiation, progression, and post-resection survival, and is
highly correlated with KRAS activity. Functional analysis of BMAL2 target genes suggested a role
in regulating the hypoxia response, a hallmark of PDAC. Knockout of BMALZ2 in multiple human
PDAC cell lines reduced cancer cell viability, invasion, and glycolysis, leading to broad
dysregulation of cellular metabolism, particularly under hypoxic conditions. We find that BMAL2
directly regulates hypoxia-responsive target genes and is necessary for the stabilization of HIF1A
under low oxygen conditions, while simultaneously destabilizing HIF2A. Notably, in vivo xenograft
studies demonstrated that BMAL2 loss significantly impairs tumor growth and reduces tumor
volume, underscoring its functional importance in tumor progression. We conclude that BMAL2 is
a master transcriptional regulator of hypoxia responses in PDAC that works downstream of KRAS
signaling, possibly serving as a long-sought molecular switch that distinguishes HIF1A- and

HIF2A-dependent modes of hypoxic metabolism.
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Statement of Significance

We annotate the landscape of KRAS-associated transcriptional drivers of pancreatic cancer
initiation, progression, and overall survival, leading to the identification of BMAL2 as a novel
regulator of hypoxic metabolism. BMAL2 helps execute the oncogenic transcriptional programs
of KRAS and serves as a long-sought switch between HIF1A- and HIF2A-dependent modes of

hypoxic metabolism.

Introduction

DNA sequencing of hundreds of human pancreatic tumors has helped define the genetic drivers
of pancreatic ductal adenocarcinoma (PDAC). However, mutations alone poorly predict key,
clinically-relevant traits of the disease, such as tumor stage or therapeutic response 2. This
suggests that non-genetic factors may control vital, biological characteristics of PDAC, such as
differentiation state, metastasis, and clinical outcome. Defining these factors is a necessary first

step towards intervening in these complex pathologies.

Among genetic drivers, activating mutations in KRAS are the most penetrant, driving ~95% of
human PDAC tumors. Though extensive work has delineated the signal transduction pathways
that effect its activity, there is a comparatively poor understanding of how the downstream
transcriptional outputs of mutant KRAS drive contribute to the manifold phenotypes attributed to
RAS activity. While MYC and AP1 serve as canonical effectors of RAS signaling, hyperactivation
of these transcription factors alone does not recapitulate the tumorigenic phenotype of Kras
mutation in the pancreas **. The advent of RAS inhibitors for clinical use has served to highlight
the need for a more detailed understanding of how RAS signaling drives pancreatic tumors, not

only from a classical genetic standpoint, but from a system-wide, cellular view.

RNA sequencing (RNA-Seq) has been widely used to identify correlations between gene
expression and phenotypes. However, recent advances in the area of regulatory network analysis
have enabled the identification of proteins that causally drive phenotypes using RNA expression
data °. Briefly, this approach quantifies the signaling activity of transcription factors and other
transcriptional regulators (collectively, “regulatory proteins” or RPs) by integrating the expression

of their positive and negative target genes using algorithms such as VIPER °’. This approach is
founded on algorithms such as ARACNe, which can accurately infer context-specific sets of target
genes for thousands of RPs using context-specific gene expression datasets '°. Within this

framework, master regulators (MRs) are a distinct subset of RP whose activity is both necessary
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and sufficient to drive specific cellular phenotypes. Here we apply regulatory network analysis to
a set of 242 laser capture microdissected samples of human PDAC or precursor lesions in order
to understand how mutant KRAS drives malignant phenotypes in PDAC on a comprehensive

scale.

Results

BMAL2 Drives PDAC Phenotypes

To link clinical and pathological phenotypes to gene expression data in PDAC, we first augmented
our previous collection of RNA-Seq profiles derived from the malignant epithelium of laser-
captured, microdissected (LCM) human PDAC (CUMC-E, ') to now include a total of 197
adenocarcinomas, 26 low-grade pancreatic intraepithelial neoplasms (PanINs), and 19 low-grade
intraductal papillary mucinous neoplasms (IPMNs) '?. Together, the PanIN and IPMN samples
served as “benign controls” that are committed to the neoplastic lineage "' but unlikely to
progress to PDAC '2'°. Each sample was associated with clinical data including demographics,
surgical features, treatment class, survival time, and histopathological analysis performed on a
section adjacent that used for LCM. Unsupervised clustering by Principal Component Analysis

(PCA) showed a clear distinction between precursor and PDAC expression profiles (Figure 1A).

To benchmark the dataset, we conducted an unbiased analysis of associations between gene
expression and histopathological features, as drawn from observations of adjacent tissue sections
(Supplementary Figure S1A). We found that poorly differentiated tumors had elevated
expression of KRAS '®'7 of proliferation markers (TOP2A, BUB1B, CDC20, and TK1) '8, and
indicators of squamous PDAC lineage (KRT5, KRT6A, PTHLH, and S100A2) '°?° (Figure 1B).
Conversely, hallmarks of differentiation (MUC1, MUCSAC) and Gl lineage (TFF1, TFF2)
decreased during tumor initiation and progression, providing strong validation from these

established biomarkers.

While correlations identified through differential gene expression analysis can yield some insights,
regulatory network analysis can connect phenotypes to their mechanistic drivers 8192122 e
therefore applied ARACNe 7 to the full set of 242 epithelial expression profiles to generate a
regulatory network specific to PDAC epithelia, compiling a total of 263,085 inferred transcriptional
targets for 2,211 regulatory proteins (RP). For 26 of these RPs, ChIP-Seq data were publicly

available in human PDAC cells %. Half of these (13/26) showed a significant overlap with the
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ARACNe target gene sets, despite the difference of in vivo versus in vitro contexts
(Supplementary Figure S1B), providing experimental validation for the accuracy of the
regulatory network. Finally, to benchmark the regulatory network against established PDAC
biology, we examined the inferred activities of RPs with well-studied roles in PDAC (Figure 1C).
Principal component 1 (PC1) effectively captured the progression from benign precursors through
low-grade PDAC, to high-grade PDAC with squamous features. These phenotypic changes were
accompanied by the repression of canonical PDAC tumor suppressors TP53 and SMAD4, and
activation of RPs with known oncogenic functions in PDAC, such as FOXA1 ?* and TRIM29 %°
(Figure 1C). Gl transcription factors GATA6, FOXA2, and PDX1, which have been described as

being “overexpressed” in some PDAC molecular subtypes "2

, were more highly active in low-
grade PDAC than in high grade. However, in comparison to benign precursors, their activity in
low-grade tumors was down-regulated, consistent with the progressive loss of Gl identity during
tumor initiation and progression. Finally, drivers of squamous histology such as TP63 ' and
ZBED2 ?" were hyperactivated in high-grade PDAC, particularly those with annotated squamous
histopathology. Together these findings demonstrate the ability of MR analysis to accurately

identify known drivers of specific PDAC phenotypes.

Next we examined the RPs whose activities were most associated either with KRAS activity or
with key malignant phenotypes, including tumor initiation, tumor progression, and patient survival
(Supplementary Figure 1C). We used MARINa analysis ? to identify MRs of PDAC initiation
(comparing precursors to adenocarcinoma, Figure 1D) and progression (comparing PDAC with
low-grade versus high-grade histopathology, Figure 1E). For survival, we constructed a survival
signature from a multi-variate Cox proportional hazards model and identified RPs controlling the
expression of the most prognostic target genes (Figure 1F). Lastly, we calculated KRAS activity
by iterating a new PDAC regulatory network comprising the transcriptional targets for a total of
2,523 signaling factors (see Methods) (Figure 1G). In this analysis, the inferred target genes of
each signaling protein serve as a bespoke reporter gene set, providing an indirect, but unbiased,
measure of their signaling activity in PDAC °?°. As expected, the inferred activity of KRAS
increased significantly during tumor initiation and tumor progression (Supplementary Figure 1D),

peaking among tumors growing in solid nests.

The positive and negative MRs of all four of these phenotypes were widely associated with the
oncogenic programs of the HALLMARK signature set * (Supplementary Figure S1E). However,

in contradistinction to the processes of PDAC initiation and progression, overall survival was not


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533333; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

associated with proliferation gene sets. Rather, MRs of patient survival were most strongly
associated with hypoxia, KRAS signaling, immune signaling, and EMT, suggesting that clinical
outcome is not solely dependent on growth rate *'. To identify new global drivers of PDAC
malignancy, we integrated the ranked lists of MRs for PDAC initiation, progression, survival, and
KRAS activity. We found that BMAL2, a member of the PAS superfamily, was the top candidate

master transcriptional regulator of PDAC malignancy (Figure 1H).

BMAL2 is associated with aggressiveness in multiple PDAC datasets

BMAL2 has not previously been defined as a key driver of PDAC. To assess the reproducibility
of our findings, we performed a meta-analysis across a total of 10 published PDAC expression

studies 263240

and found that BMAL2 expression was elevated relative to normal pancreas
(Supplementary Figure S2A) and elevated in high-grade versus low-grade PDAC specimens
(Supplementary Figure S2B). Concordant with our findings in the CUMC-E cohort, high BMAL2
activity consistently identified patients with worse outcomes (Supplementary Figure S2C). Next,
we evaluated each combination of five subtype classification schemes and six PDAC expression
data sets for differences in BMAL2 activity between tumors of the most aggressive versus least
aggressive subtype (Supplementary Figure S2D), and found that BMAL2 was consistently

hyperactivated in the most aggressive subtype +'-3.

Finally, we found BMAL2 expression in normal tissues (Supplementary Figure S2E) *' to be
highest in squamous epithelia, whereas expression in the normal pancreas was comparatively
low. By contrast, PDAC tumor samples had among the highest levels of BMALZ2 expression
across multiple cancers (Supplementary Fig. S2F) “> and PDAC cell lines had the highest
median expression across cell lines from different lineages ** (Supplementary Figure S2G).
Together these results validate our identification of BMAL2 as a key driver of initiation,

progression, and outcome in multiple independent PDAC datasets.

Oncogenic KRAS activates BMAL2 through ERK

In addition to driving the three PDAC malignancy phenotypes, BMAL2 stood out as the single RP
most highly correlated with KRAS activity (out of 2211 measured), leading us to hypothesize that
BMAL2 is regulated by KRAS signaling. To test this, we reanalyzed published expression

datasets in which mutant KRAS activity was experimental manipulated to assess BMALZ2 activity:
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Kras activation in murine pancreatic ductal cells (Sivakumar, Diersch); Kras reactivation
in PDAC cells that survived mutant Kras withdrawal (Viale); and mutant Kras inactivation in
murine and human PDAC cells (Ying, Bryant) **. In all five independent experiments, BMAL2
activity was regulated as predicted by KRAS, suggesting that BMAL2 may serve as a
transcriptional effector downstream of mutant KRAS (Figure 2A). To determine whether this
association extended beyond PDAC, we examined similar RAS modulation experiments in five
datasets from lung adenocarcinoma models (LUAD) and three datasets from colorectal
adenocarcinoma models (COAD). In all save one LUAD experiment, BMAL2 activity was
significantly regulated in coordination with RAS (Figure 2A), suggesting a more general

association of BMAL2 function in RAS-driven cancers.

To evaluate potential regulators of BMALZ2 in an unbiased manner, we leveraged results from a
recent analysis that presented high throughput RNA-Seq data from two human PDAC cell lines
treated with 322 different drugs “**° (Figure 2B). This exercise revealed a strong
overrepresentation of MEK inhibitors among the agents most capable of reducing BMAL2 activity
in PDAC lines (Figure 2C). By contrast, we did not observe effects of this magnitude for inhibitors
of other KRAS effector proteins, including PI3K, AKT, and MTOR (Figure 2D). Although this
screen lacked ERK inhibitors, a reanalysis of experimental expression data from PDAC cells
treated with the ERK1/2 inhibitor SCH772984 found decreasing BMAL2 activity over the course

of 24 hours after treatment *’ (Figure 2E).

Finally, to directly test whether RAS inhibition controls BMAL2, we performed RNA-Seq on four
human PDAC cell lines treated with RMC-7977, a RAS(ON) multi-selective inhibitor that potently
inhibits mutant and wild-type variants of KRAS, HRAS, and NRAS®"*2_ In vitro, we found that
BMAL2 activity was significantly decreased upon RAS inhibition in three PDAC lines that were
sensitive to RMC-7977 (Figure 2F), despite having no impact to BMAL2 expression levels,
consistent with a post-translational mechanism of regulation. Interestingly, in two lines with low
sensitivity to RAS inhibition due to a BRAF mutation (BXPC3) and MY C amplification (KP4), RMC-
7977 treatment did not alter BMAL2 activity. Next, we examined single cell RNA sequencing
(scRNA-Seq) data from a collection of pancreatic tumors arising in the Kras-S-¢"2P;
Trp53-SLR172H pax1-Cre'?* (KPC) mouse model (manuscript in preparation) and applied
regulatory network analysis to malignant epithelial cells from mice treated either for one week with
RMC-7977 versus controls (Supplementary Figure S3A). We found in this in vivo experiment

that pan-RAS inhibition significantly reduced the activity of BMALZ2 in the malignant epithelial cells
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of PDAC (Figure 2G). Together, these data demonstrate that BMAL2 activity is regulated by
oncogenic KRAS via the RAF/MEK/ERK effector pathway in pancreatic cancer.

BMAL2 controls hypoxia response targets

BMAL2 belongs to the basic helix—loop—helix PER-ARNT-SIM (bHLH-PAS) family of transcription
factors that heterodimerize to drive varied functions including circadian rhythm programs, innate
and adaptive immune responses, oxygen-sensing mechanisms, and response to deleterious
environmental exposures 3. BMAL?2 is classically associated with circadian processes, serving
as a binding partner for CLOCK **%° but sequence conservation analysis shows that BMAL1 and
BMAL2 are most closely related to ARNT (HIF1B) and ARNT2 (HIF2B), the binding partners of
the hypoxia-responsive HIF1A and HIF2A proteins (Figure 3A). As hypoxia plays an important
role in cancer, we examined the association of activities for each bHLH-PAS family member in
our 197 PDAC epithelial profiles with eight publicly available hypoxia transcriptional signatures®.
We found BMAL2 exhibited the highest average positive correlation (Spearman’s rho 0.46, Figure
3B) with hypoxia signatures of any bHLH-PAS family member. Interestingly, neither HIF1A nor
HIF1B (ARNT) were strongly correlated with hypoxia signatures in PDAC epithelial samples,
despite being among the top correlated PAS family members in laser capture microdissected
PDAC stromal samples from the same tumors (N=124, Figure 3C). To assess whether BMAL2
activity is associated with hypoxia signatures more broadly in cancer, we built bespoke regulatory
networks for multiple tumor types from TCGA datasets and found that BMAL2 was frequently
among the most hypoxia-associated bHLH-PAS family members, along with HIF1A and HIF1B
(Figure 3D). These data suggest that BMAL2 may play an underappreciated role in hypoxia
responses across human tumors and a particularly prominent role in the hypoxia response of
PDAC.

Next, we returned to the RNA-Seq data from RMC-7977 treated PDAC cells and found that RAS
inhibition led to a decrease in hypoxia signature scores (Figure 3E), concordant with the observed
downregulation of BMALZ activity (Figure 2F). This was further validated in vivo in the KPC tumor
scRNA-Seq dataset, which showed a decrease in hypoxia signature enrichment in malignant
epithelial cells following RMC-7977 treatment (Figure 3F, Supplementary Figure 3A). To
investigate whether BMALZ2 could plausibly play a direct role in transcriptionally regulating hypoxia
programs, we analyzed the inferred target genes of BMAL2 in the CUMC-E regulatory network

and evaluated enrichment for genes canonically controlled by HIF1A %’. We found that BMAL2
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impacts 33 out of 44 hypoxia genes from a published hypoxia signature °” were regulated in a net
positive manner, including metabolic proteins such as SLC2A1 (GLUT1), GAPDH, and LDHA
(Figure 3G); none of the canonical HIF1A target genes were regulated by BMAL2 in a net
negative manner. Together, these analyses support the hypothesis that BMALZ2 contributes to the

transcriptional regulation of hypoxia genes in PDAC.

Autochthonous pancreatic tumors are severely hypoxic
The activation of oncogenic KRAS in PDAC provokes a cascade of paracrine signals that

8 resulting in low tumor vascularity and limited perfusion®®. By

suppresses angiogenesis
inference, these tumors are widely expected to be severely hypoxic, but there are few direct
measurements of partial oxygen pressure (pO.) in PDAC tissues. Oxygen microelectrode
measurements on a small set of human PDAC patients previously indicated the presence of
extreme hypoxia (ranging from 0 — 5.3 mmHg) , but technical concerns limited interpretation ©'.
We therefore measured the oxygenation of autochthonous pancreatic tumors arising in KPC mice
—a model system widely utilized for its physiological accuracy to human PDAC. We first measured
intratumoral pO. using ultrasound-guided placement of an OxyLite sensor (a gold-standard
physical sensor of oxygen) and found that pO. levels were <1mmHg in KPC mouse pancreatic
tumors (Figure 4A, B), reflecting a setting of extreme hypoxia. This finding was further supported
via photoacoustic imaging on KPC pancreatic tumors, which revealed an average hemoglobin
saturation of just 17%, significantly lower than in adjacent pancreas tissue (Figure 4C and
Supplementary Figures 3B-D). Finally, we measured activation of the hypoxia probe
pimonidazole % following its administration to KPC mice respiring normoxic or hypoxic (10% O2)
air. In these mice, normal tissues showed marker staining only upon exposure to hypoxia whereas
PDAC tissues showed equally high levels of staining under both normoxic and hypoxic conditions
(Figure 4D, Supplementary Figure 3B). Together these experiments demonstrate that
autochthonous pancreatic tumors in a physiologically relevant model system naturally exist in a
state of extreme hypoxia, underscoring the importance of hypoxia response programs to PDAC

biology.

BMAL2 drives PDAC cell proliferation and hypoxic metabolism
We next examined the consequences of BMAL2 loss in four human PDAC cell lines (KP4,
PANC1, MIAPACA2, and PATU8902) under both normoxic and hypoxic conditions (1% O-), using
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CRISPR/Cas9 genome editing. Under normoxia, loss of BMAL2 significantly reduced both cell
viability, trans-well cell migration, clonogenic growth at low density, and in a scratch invasion
assay (Figure 5A, B and Supplementary Figure 4A-C). We noted that BMAL2 drove the activity
of a number of other regulatory proteins, including several several direct positive targets
associated with proliferation, including: Cyclin A2 (CCNA2), MET, NRAS, ETS1, BUB1, and AXL
(Figure 5C). We selected two of these for (AXL and CCNA2) for validation by western blotting in
in PDAC cells and confirmed their downregulation in response to BMALZ2 loss (Figure 5D). The
effects of BMALZ2 loss on proliferation were also apparent upon exposure to hypoxia; BMAL2
knockout reduced cell viability, clonogenic growth, and scratch invasion to a similar degree
regardless of oxygen levels (Figure 5A and Supplementary Figure 4A-C). However, BMAL?2
loss had a particularly potent effect on trans-well cell migration, synergistically reducing the ability
of PDAC cells move through a porous membrane under hypoxia (Figure 5B, pinteracton= 0.004),
highlighting a specific contribution of BMAL2 to the hypoxia response of PDAC cells. This is
consistent with a deep body of literature linking hypoxia to cell migration and places BMAL2 as a

key transcriptional mediator of hypoxia-induced migration ¢354,

A key component of hypoxic metabolism in all cells is the production and secretion of the glycolytic
product lactate %°. We examined the impact of BMAL2 knockout on lactate secretion in PDAC
cells after five days in culture. As expected, exposure to hypoxia significantly increased
extracellular lactate levels of control cells expressing a non-targeting sgRNA (sgNT). However,
upon loss of BMAL2, hypoxia no longer increased lactate secretion (Figure 5E, pinteraction = 0.025),
indicating a strong reliance of PDAC cells on BMAL2 function to facilitate the hypoxia-induced
shift to glycolytic metabolism. Indeed, Western blots for LDHA and GAPDH, two glycolysis
proteins that were identified in the PDAC regulatory network as indirect targets of BMAL2, found
that both were reduced in response to BMALZ2 knockout. Moreover, expression of Lactate
Dehydrogenase A (LDHA), which is directly responsible for cellular lactate production in the final
step of glycolysis, was decreased in BMALZ2 null PDAC cells after 24 hours under hypoxia (Figure
5F), further supporting the role of BMALZ2 in driving hypoxic metabolism.

To better understand the molecular consequences of BMALZ2 loss in PDAC cells, we performed
transcriptomic profiling of KP4 and MIAPACAZ2 cells from hypoxic and normoxic environments.
Unsupervised clustering of gene expression profiles showed that hypoxia exposure and BMAL2
knockout dominated the global variance in both cell lines (Figure 5G and Supplementary Figure

4D). In both BMAL2 wild type and knockout lines, exposure to hypoxia induced transcriptional
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programs enriched for HIF1A target genes (Figure 5H and Supplementary Figure 4E), indicating
that BMAL2 knockout cells are still capable of mounting a transcriptional response to hypoxia.
However, the magnitude of their response to hypoxia was significantly blunted upon loss of
BMAL2 in both cell lines, as demonstrated by directly comparing the enrichment of hypoxia
signatures in sgNT versus sgBMAL2 cells (Figure 51). Moreover, we found that 19 out of 44
hypoxia signature genes *" were significantly less activated by hypoxia upon BMAL2 deletion
(FDRinteraction < 0.05, Figure 5J).

Next, we examined whether the transcriptional programs altered by BMAL2 loss impacted the
metabolic programs induced by hypoxia in PDAC cells. We used an LC/MS metabolomic panel
to quantify ~230 metabolites from BMALZ2 wild type or knockout PDAC cells exposed to normoxia
or hypoxia (Figure 5K). Guided by our transcriptional findings, we focused on metabolites that
increased in hypoxic conditions but to a lesser degree in BMALZ2 knockout cells compared to
wildtype cells (Figure 5L). Among these, metabolite set analysis found significant
overrepresentation of metabolites associated with glycolysis and related metabolic pathways
(Figure 5M) including fructose 6-phosphate, fructose 1,6-bisphosphate, and glyceraldehyde 3-
phosphate (G3P). Together these results that BMAL2 broadly sculpts the transcriptional

responses of PDAC cells to modulate the metabolic responses to hypoxia.

Finally, to determine whether the phenotypes we observed in cultured PDAC cells ultimately
impact tumor growth, we assessed the effect of BMAL2 knockout in vivo using two human PDAC
cell line-derived xenografts (CDX) implanted orthotopically in the pancreas of immune-deficient
mice (Figure 6A). First, in orthotopic PANC1-derived tumors, we found that loss of BMAL2
significantly reduced tumor growth rates, as measured by longitudinal 3D high resolution
ultrasound (Figure 6B,C). We then repeated the experiment using KP4 cells and found that
BMAL2 had a profound impact on tumor engraftment, with 0 of 12 implanted mice exhibiting
tumors after 8 weeks, compared to 8 of 12 (66.67%) from sgNT expressing cells (Figure 6D). We
conclude that BMAL2 is a master transcriptional regulator of PDAC malignancy that both

promotes cell proliferation and drives the transcriptional and metabolic responses to hypoxia.

BMALZ2 reciprocally regulates the stability of HIFa proteins
The classical cellular responses to hypoxia are mediated by the hypoxia inducible factors HIF1a

and HIF2a ®, which are stabilized in response to low oxygen levels. The HIFa proteins are first
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stabilized through loss of (oxygen-dependent) proteasomal degradation, followed by further
stabilization through heterodimerization with the transcription factor HIF1B ¢ . To assess the
impact of BMAL2 on HIF-dependent hypoxia regulation, we performed western blots for HIF1a
and HIF2a on BMAL2 knockout and wild type PDAC cells, cultured in normoxia and hypoxia
(Figure 6E). Strikingly, knockout of BMAL2 fully prevented the stabilization HIF 1a under hypoxia
in four different PDAC cell lines, consistent with the observed decrease in LDHA expression. In
contrast, HIF2a accumulated to even higher levels in BMAL2 knockout cells than in wild-type
cells, suggesting that BMAL2 can serve as a switch between HIF1a- and HIF2a-dependent

modes of hypoxia response.

Given the evolutionary conservation of BMAL2 and HIF1B, we considered whether BMAL2
contribute to HIF1a stabilization by serving as a heterodimerization partner. To test this, we
transfected HEK293 cells with a GFP-tagged HIF1a construct and performed
coimmunoprecipitation and western blotting (Figure 6F). In addition to detecting the canonical
partner HIF1 we were able to detect both endogenous BMAL2 and HIF 13 in complex with HIF1q,
suggesting that BMAL2 may play a direct role in regulating the stability of HIFa family members.
In summary, we find that BMAL2 serves as a RAS-dependent regulator of hypoxia transcriptional

programs that drive PDAC malignancy.

Discussion

The stability of key genetic mutations throughout PDAC progression, from precursor lesions to
metastasis, suggests that while these mutations initiate the disease, additional, non-genetic
mechanisms must drive the dynamic changes in tumor behavior and aggressiveness observed in
later stages. Here we utilized regulatory network analysis to explore the landscape of non-genetic
regulators of PDAC. Anchoring our expression profiles to histopathological annotation, we find
that epithelial differentiation state is closely mirrored by transcriptional regulatory programs. The
availability of profiles from benign precursors contextualizes our observations of malignant
samples. For example, oncogenic properties have frequently been ascribed to transcription
factors, such as GATAG, that are “overexpressed” in the (well-differentiated) Classical subtype,
relative to other PDAC tumors "%, However, GATAG activity was significantly higher in benign
precursors than in low-grade tumors. We infer that the comparatively high activity of GATAG in
low-grade tumors reflects an incomplete loss of differentiation state—consistent with functional

68,69

characterizations —that point to a largely tumor-suppressive role for GATAG. We find a similar
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pattern of downregulation in PDAC for the majority of pancreatic transcription factors, including
PDX1, HNF1B, and SOX9. These data prompt a reevaluation of their strict classification as
'drivers' of low-grade, classical tumors, especially considering that loss of differentiation in high-
grade tumors is associated with worse prognosis "', We urge caution in attempts to target Gl
transcription factors therapeutically, at any stage of disease, and would instead favor strategies

that target consistent RPs of multiple malignant phenotypes.

While virtually all aspects of PDAC biology are influenced by activating mutations in KRAS, their
association to histopathological phenotypes is limited "#73. We find KRAS activity is lowest in low-
grade precursor lesions, despite the high prevalence of activating KRAS mutations ' in PanIN.
With the progression to PDAC and eventual loss of differentiation "*, KRAS activity increases
steadily. Among the 2,211 regulatory proteins we measured, this pattern was most strongly
correlated with the activity of BMAL2, a transcription factor that is largely undescribed in
pancreatic cancer. Our pharmacologic perturbation data, particularly the treatment of PDAC cell
lines with RAS, MEK and ERK inhibitors, demonstrates that BMAL2 activity is effectively regulated
by RAS/MAPK signaling. This finding places BMALZ2 in company with well-validated downstream
effectors of the RAS-MEK-ERK cascade such as MYC *"® and ETS1 ® (the latter of which is a
direct target of BMALZ2 in our regulatory network).

Although BMAL2 is classically associated with circadian rhythm function *, our results show that
BMALZ2 is a critical regulator of hypoxia responses. As we demonstrate, the hypovascularity of
PDAC *° results in a state of profound hypoxia, begging the question of how these tumors can
survive and thrive in such an adverse environment. Certainly, severe hypoxia can confer several
advantageous phenotypes, including immunosuppression, inflammation, invasiveness, and EMT,
and an associate between RAS signaling and glycolysis has long been apparent from cell culture
studies **"""®. However, the precise mechanisms by which PDAC cells survive such an extreme
environment have remained cryptic given that tumor-cell specific deletion of Hif1a in KPC mice
counterintuitively accelerates PDAC progression "°. Our current findings on BMAL2 demonstrate
that KRAS mutation is directly linked both to the paracrine suppression of angiogenesis in PDAC®®
and to a cell-autonomous regulatory program that enables survival in the resulting hypoxic

microenvironment.

It has long been appreciated that HIF1a and HIF2a are differentially regulated through an
unknown mechanism and that they drive distinct metabolic and transcriptional responses %'
The possibility that BMAL2 can serve as a functional switch between HIF1a- and HIF2a-

dependent hypoxic responses provides a potential answer to the long-standing question of how
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these proteins are differentially regulated. With multiple HIF-targeted drugs entering clinical
development %, it will be critical to understand in which settings these proteins serve as critical
dependencies and for which they are dispensable. Moreover, given that BMAL2 knockout mice
are viable into adulthood with only modest physical phenotypes #, we anticipate that parallel
chemical approaches for targeting BMAL2 and other bHLH-PAS proteins may enable yield novel

therapeutic strategies for targeting the hypoxia response of a broad range of cancers.
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Figure Legends
Figure 1. Master regulator analysis of PDAC nominates BMAL2 as a PDAC driver

(A) Principal component analysis (PCA) of precursor and PDAC LCM RNA-Seq samples used to
assemble a regulatory model (interactome) of PDAC carcinogenesis. (B) Heatmap depicting
select differentially expressed genes between the indicated histopathological groups (x-axis).
Wald test statistics were derived from a negative-binomial linear model comparing the respective
group against all other groups. (C) Heatmap of protein activity scores (NES) for select regulatory
proteins during PDAC progression. The samples are ordered by their value in the first principal
component, essentially capturing progression and dedifferentiation. (D) Select results from
master regulator analysis on a genome-wide PDAC initiation gene expression signature (x-axis)
represented by Z-scores for each gene. Each regulatory protein's regulon is represented by red
(positive targets) and blue (negative targets) vertical bars. The rank of each RP based on activity
and expression, respectively, is illustrated on the right. (E) Select results from master regulator
analysis on a genome-wide PDAC progression gene expression signature (x-axis) (F) Select
results from master regulator analysis on a genome-wide survival signature (x-axis) represented
by Wald test statistics from a multivariate Cox Proportional Hazards model testing the coefficient
for each gene’s continuous expression while accounting for patient age (G) Genome-wide
Pearson correlation between KRAS and RP activity with illustration of the most positively
correlated RPs (H) Heatmap of rank positions for the indicated regulatory proteins (x-axis) in each

of four critical phenotypic PDAC transitions yields a conserved core set of non-oncogene
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dependency candidates for PDAC. A low rank represents activation in a given phenotype

signature.

Figure 2. Oncogenic KRAS activates BMAL2 via the ERK mitogen-activated protein kinase

cascade

(A) BMAL2 regulon enrichment in the indicated genome-wide response gene expression
signatures to the experimental modification of oncogenic Kras mutation (Refs. **%) in PDAC (top
panel), lung adenocarcinoma (LUAD, Refs. 3-%) and colon adenocarcinoma (COAD, Ref. ¥).
Positive and negative targets, respectively, are represented by red and blue vertical bars,
respectively. Normalized enrichment score (NES) and p-values are calculated by two-tailed
analytic rank-based enrichment analysis (aREA, p-values are Bonferroni corrected) (B)
Schematic of the experimental design to study the effect of a library of antineoplastic compounds
on regulatory protein activity as part of the OncoTreat framework (Refs. 4°*°) (C) Effects of 322
antineoplastic compounds on BMAL2 activity (NES) in ASPC1 (x-axis) and PANC1 (y-axis) cells.
Zoomed area shows compounds with consistent and potent reversal of BMAL2 activity. Red
circles mark MEK inhibitors, all other compounds are grey. (D) Reversal of BMALZ2 activity (y-
axis, normalized enrichment score, NES) for the indicated compound classes (x-axis). P-values
are derived from pairwise t-tests with post hoc Bonferroni correction. (E) Reversal of BMAL2
activity (y-axis, NES) at the indicated time points of treatment with an ERK inhibitor (SCH772984)
in 7 PDAC cell lines. (F) Inferred changes in KRAS and BMAL2 protein activity in pancreatic
cancer cell lines upon RMC-7977 (100nM) treatment for 24h. Statistical significance was
determined by a paired, two-tailed t-test, and p-values are indicated where significant (*p < 0.05,
**p < 0.01, ***p < 0.001). (G) Box plots showing Normalized Enrichment Score (NES) of BMAL2
activity in tumor cells from single-cell RNA sequencing from control and 1-week RMC-7977

treated mice®’
Figure 3. The bHLH-PAS family member BMAL2 controls hypoxia response targets

(A) Phylogenetic tree illustrating the pairwise distance based on sequence alignment of bHLH-
PAS family transcription factors. Blue rectangle highlights the closest family members for BMAL2.
Vertical bars represent specific amino acids at the indicated position (1-1300). (B) Heatmap of
Spearman's rank correlation between transcriptional hypoxia scores using signatures from the
indicated references (x-axis) and epithelial protein activity for bHLH-PAS family members (y-axis).
(C) Heatmap of Spearman's rank correlation between transcriptional hypoxia scores using

signatures from the indicated references (x-axis) and stromal protein activity for bHLH-PAS family
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members (y-axis). (D) Heatmap of the average Spearman's rank correlation between eight
transcriptional hypoxia scores in the indicated TCGA tumor cohorts (x-axis) and protein activity
for bHLH-PAS family members (y-axis). (E) Gene Set Enrichment Analysis (GSEA) of hypoxia-
related gene signatures upon RAS inhibition in five human PDAC cell lines treated with 100nM of
the RAS(ON) inhibitor RMC-7977 for 24 hours. (F) Box plots showing Normalized Enrichment
Score (NES) of a hypoxia-related gene set®” in tumor cells from single-cell RNA sequencing from
control and 1-week RMC-7977 treated mice®. The normalized enrichment score (NES) and p-

value are indicated. (G) HIF target genes (Ref. ¥’

, orange) controlled directly or indirectly by
BMAL2 (green). Indirect control involves both BMAL2's negative influence on first (dark blue) or
second tier (light blue) RP repressing HIF target genes, and positive influence on first (dark red)

and second (light red) tier RP activating HIF target genes.
Figure 4. Severe hypoxia in pancreatic tumors is highlighted by multiple methods

(A) Image (top) shows a KPC mouse (M) being imaged with an ultrasound transducer (T), with
percutaneous insertion of the OxyLite probe (arrow). An ultrasound image (bottom) shows the
probe (red hashline, offset) extending through the abdominal wall and through the depth of the
tumor (outlined in blue). (B) Oxygen tension (y-axis) as determined by an OxyLite probe in tumors
from KPC mice breathing ambient air or pure oxygen (x-axis). Dark blue circles represent
averages per tumor and boxplots illustrate their distribution. Light blue circles represent repeat
measurements per tumor at different sites. (C) Fraction of saturated hemoglobin (y-axis) in the

indicated tissue (x-axis). (D) Hypoxia marker pimonidazole staining intensity in the indicated

tissues and oxygen conditions. **: p < 0.01, ***: p £ 0.001, ns: not significant

In boxplots, the box ranges from Q1 (the first quartile) to Q3 (the third quartile) of the distribution
and the range represents the IQR (interquartile range). The median is indicated by a dashed line

across the box. The “whiskers” on box plots extend from Q1 and Q3 to 1.5 times the IQR.

Figure 5. BMAL2 knockout phenotypes in pancreatic cancer cells are pronounced by

hypoxic environments and blunts its transcriptional and metabolic response.

(A) Cell numbers represented by luminescence in pancreatic cancer cells expressing non-
targeting (sgNT) or BMAL2-directed (sgBMAL2) sgRNA in the indicated oxygen environment and
cell line. (B) Number of migrated cells for pancreatic cancer cells expressing sgNT or sgBMAL2
in the indicated oxygen environment and cell line. P-value stems from testing the interaction

coefficient between BMAL2 knockout and hypoxic conditions from a log linear regression model.
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(C) Depiction of a subset of target genes inferred for BMAL2 from the PDAC regulatory network,
focused on those associated with proliferation. (D) Western Blot for direct targets AXL and CCNA2
in KP4 cells carrying the indicated sgRNA in the indicated oxygen environment (24h). Tubulin was
the loading control. (E) Extracellular lactate levels after 5 days in pancreatic cancer cells
expressing sgNT or sgBMALZ2 in the indicated oxygen environment and cell line. P-value stems

from testing the interaction coefficient between BMALZ2 knockout and hypoxic conditions from a

log linear regression model. *: p < 0.05, **: p < 0.01. (F) Western Blot for hypoxia targets LDHA

and GAPDH in Patu8902 cells carrying the indicated sgRNA in the indicated oxygen environment
(24h). Tubulin was the loading control. (G) Principal component analysis (PCA) based on gene
expression of the indicated cell line carrying sgNT or sgBMAL2 in hypoxic or normoxic
environments, respectively. (H) Scatter plot illustrating the relationship of a genome-wide
transcriptional hypoxia signature found in the indicated cell lines carrying sgNT (x-axis) and
sgBMAL2 (y-axis) sgRNA, respectively. Red circles mark a set of HIF1A reporter genes described
previously (Ref. %) (1) 2-tailed GSEA of the top 100 transcripts induced (red) and repressed (blue)
by hypoxia in PDAC cells on a gene expression signature between hypoxic sgBMAL2 cells (left)
and sgNT cells (right). (J) Heatmap illustrating HIF1A reporter gene expression (Ref. %) for a
subset with a differential hypoxia response between cells carrying sgNT or sgBMAL2,
respectively. (K) PCA based on metabolite abundances in sgBMAL2 vs sgNT MP2 cells in
hypoxic or normoxic environments, respectively. (L) Differential abundance signatures of 230
metabolites in MP2 cells comparing the effects of hypoxia treatment (y-axis) and knockout of
BMAL2 (x-axis). We focused on metabolites that were upregulated under hypoxia more in BMAL2
wild-type cells than in BMAL2 knockout cells (inset). (M) shows metabolite sets that are

overrepresented among this group.

Figure 6. HIF1A interacts with BMAL2 and depends on it for stabilization in pancreatic

cancer cells

(A) Experimental design of the in vivo experimental setup. Immunodeficient NOD/SCID mice were
orthotopically injected with PANC1-Cas9 or KP4-Cas9 cells carrying non-targeting control (sgNT)
or sgBMAL2. Tumor growth was monitored weekly using longitudinal, high-resolution 3D
ultrasound imaging. At endpoint, tissue was collected and processed for analysis. (B)
Representative ultrasound images of orthotopic tumors derived from PANC1 sgNT and sgBMAL2
cells. Yellow arrowheads indicate tumor boundaries. Scale = 2mm. (C) Box plot showing tumor
growth rates (y-axis) in tumors carrying the indicated sgRNA (x-axis) in PANC1 cells. Groups

were compared by two-tailed Mann-Whitney U test. (D) Box plot showing tumor volumes after 8
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weeks in sgNT and sgBMAL2 KP4 cells. Groups compared by two-tailed Mann-Whitney U test.
(E) Western Blot for HIF1A, HIF2A, BMAL2, LDHA and GAPDH in PANC1 cells carrying the
indicated sgRNA in the indicated oxygen environment (24h). Tubulin was the loading control. (F)
Input Control: Total cell lysates were subjected to Western blotting to verify the expression levels
of HIF1A, GFP and BMAL2. Co-IP. For Co-immunoprecipitation (Co-IP), GFP-tagged HIF 1A was
immunoprecipitated from cell lysates (top panel), and the presence of interacting proteins was
assessed by Western blotting using antibodies against HIF1A, BMAL2, and HIF1B (ARNT)
(bottom panel).

Methods

Patient population and samples generation

Patient population. Freshly frozen tissue samples were obtained from patients who underwent
surgical resection at the Pancreas Center at Columbia University Medical Center as described
previously ''. The clinical data of these patients are shown in Supplementary Tables S1 and S2.
Before surgery, all patients had given surgical informed consent, which was approved by the
institutional review board. Immediately after surgical removal, the specimens were cryopreserved,
sectioned, and microscopically evaluated by the Columbia University Tumor Bank (IRB
AAAB2667). Suitable samples were transferred into OCT medium (Tissue Tek) and snap-frozen
in a 2-methylbutane dry ice slurry. The tissue blocks were stored at -80°C until further processing.
H&E stained sections of frozen PDAC samples from the Tumor Bank were initially screened to
confirm the diagnosis and overall sample RNA quality was assessed by the Pancreas Center
supported Next Generation Tumor Banking program using gel electrophoresis, with samples

exhibiting high RNA quality utilized for subsequent analyses.

Laser Capture Microdissection (LCM), RNA sequencing, and gene expression
quantification. LCM-RNA-Seq was performed as described previously "%, Briefly, Cryosections
of OCT-embedded tissue blocks were transferred to PEN membrane glass slides and stained
with cresyl violet acetate. Adjacent sections were H&E stained for pathology review. Laser capture
microdissection was performed on a PALM MicroBeam microscope (Zeiss), collecting at least
1000 cells per compartment. RNA was extracted and libraries were prepared using the Ovation
RNA-Seq System V2 kit (NuGEN). Libraries were sequenced to a depth of 30million, 100bp,
single-end reads on an lllumina HiSeq 2000 or 4000, respectively, platform. Reads and transcripts

per million (TPM) were estimated for each transcript using the transcript sequences from the
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GENCODE Release 34 (GRCh38.p5) and the Salmon software (v1.3.0). Counts and TPM were

summarized at the gene level by summing up the transcript values for each corresponding gene.

Computational methods

Assembly of a PDAC regulatory model and network analysis. A cell regulatory network for
pancreatic carcinogenesis (CUMC-E interactome) was reverse-engineered by ARACNe-AP ’
using 242 epithelial LCM-RNA-Seq gene expression profiles. Genes with detection rates at 10
counts below 25% in all of the examined conditions (PanIN, IPMN, and PDAC) were removed
and the variance was stabilized by fitting the dispersion to a negative binomial distribution as
implemented in the DESeq2 R package 3. ARACNe was run with standard settings (using data
processing inequality (DPI), with 100 bootstrap iterations using human gene symbols mapping to
a set of 1665 transcription factors and 1025 transcription cofactors as described by AnimalTFDB
3.0 °, For the signaling network, a set of 3370 signaling-pathway-related genes was considered
which were annotated in the GO Biological Process database as GO0:0007165—'signal

transduction 'and in the GO Cellular Component database as G0:0005622—‘intracellular ’or

G0:0005886—plasma membrane’. Thresholds for the tolerated DPIl and mutual information P

value were set to 0 and 10-8, respectively. Using the strategy outlined above, we also generated
a stromal regulatory network leveraging a set of 159 stromal LCM gene expression profiles (124
PDAC, 19 PanIN, 12 IPMN). Cytoscape v3.7.1 °' was used to illustrate subnetworks of relevant
regulatory proteins. The CUMC-E interactome is available as R object from
https://doi.org/10.6084/m9.figshare.13160078.v2.

Master Regulator Analysis and inference of virtual protein activity. The enrichment of each
regulatory protein’s regulon in the progression and dedifferentiation signature, respectively, was
inferred by the MARINa algorithm as implemented in the msviper function from the viper R
package 242992 Statistical significance was estimated by permuting the sample labels uniformly
at random 1,000 times. For single-sample analysis including precursor and tumor samples,
unsupervised gene expression signatures were computed by a z-score transformation of the
variance-stabilized data. This was performed gene-by-gene, by first subtracting the mean
expression level across all samples and then dividing by its standard deviation. Relative protein
activity was then inferred for each sample with the VIPER algorithm. For a patient-based approach
including the assessment of whether significant dysregulation of an individual regulatory protein
occurs in a given tumor, single sample gene expression signatures were computed for each

primary sample by subtracting the mean of all precursor samples (n = 45) and dividing by their
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standard deviation. RP activity was then inferred by VIPER analysis of each PDAC gene
expression signature. P-values were estimated by the analytical approximation implemented in
the aREA algorithm, which is virtually equivalent to estimations obtained by permuting the genes
in the signature uniformly at random ?°. P-values were corrected to account for multiple hypothesis

testing by the Benjamini-Hochberg method.

Gene set enrichment analysis and scoring. One-tail gene set enrichment analysis was
implemented as described ®. Two-tailed gene set enrichment analysis and enrichment of
individual ARACNe regulons were carried out using analytic rank-based enrichment analysis
(aREA) ?°. Functional annotation of ARACNe-derived regulons was carried out by testing the
overrepresentation of HALLMARK gene sets (MSigDb v6.0) among all target genes of a given
regulatory protein with the gene universe set to all unique genes in the CUMC-E interactome

(n=18658) using a two-tailed Fisher's Exact test.

Differential gene expression. Genome-wide differential gene expression analysis was generally
calculated using the DESeq2 ® R package for RNA-Seq count data and the limma R package *
for microarray data. For comparisons including both RNA-Seq and microarray data, differential
gene expression for count data was repeated using the voom-limma framework for the sake of

consistency with the microarray analysis.

Survival signature and assessment of prognostic relevance. In an unbiased approach to
study the association of gene expression and protein activity with patient outcome, a genome-
wide survival signature was computed by fitting a multivariate Cox Proportional Hazards model
(CPHM) accounting for the age at diagnosis and the continuous, normalized expression of a
respective gene using the survival R package %°. Next, we extracted the ensuing Wald statistic of
the coefficient for gene expression with higher values corresponding to higher hazard ratios and
vice versa and applied MARINa with a gene permutation null model to this survival signature to

infer regulatory proteins controlling the survival signature.

Effect size meta-analysis. The effect size (i.e. logz fold change) and its standard error for BMAL2
were extracted from the respective genome-wide differential expression analysis of a total of 10
studies where global expression in normal vs. primary tumors and low-grade vs. high-grade
tumors, respectively, was contrasted. Similarly, the coefficient (log hazard ratio) and its standard

error for the upper tertile of BMAL2 expression and activity, respectively, were extracted from a
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CPHM in cohorts with available time-to-event data. Meta-analysis was carried out using the
metafor R package . Both random and fixed effect models were fit using the rma function
(method = “REML” and method = “FE”).

Molecular subtyping. Moffitt classes were determined for 197 primary PDAC LCM-RNA-Seq
profiles as described previously *2. Briefly, using the 50 (47 with a unique match in our data)
tumor-specific transcripts from Moffitt et al., we applied consensus clustering to our mRNA cohort
with Euclidean distance and the partitioning around medoids (PAM) algorithm, seeking and

reproducing two clusters of both genes and samples.

PAS family sequence alignment. Amino acid sequences for bHLH-PAS family members were
retrieved using functionality from the Universal Protein Resource Knowledgebase ¥. After
sequence alignment pair-wise distances determined based on sequence identity. Results were

illustrated using the ggtree and msatools R packages.

Hypoxia scoring. Using tumor epithelial expression data, hypoxia scores were calculated by
using mRNA-based signatures as described previously %°. For each gene in each of eight
signatures, TPM were extracted and if a tumor’s abundance value exceeded the median across

all tumors, +1 was added to its hypoxia score while -1 was added otherwise.

External data

Human PDAC cohorts. For the TCGA-PAAD cohort, raw count data were retrieved from the
GDC Data portal for 149 patients described previously * and the variance was stabilized as
described above. For the ICGC-PACA-AU cohort described previously “°, normalized gene
expression data for 96 patients were provided by the authors in Suppl. Table 2. Microarray data
of primary PDAC specimen from Collisson et al. % (n = 27), Moffitt et al. * (n = 252), and Puleo
et al. * (n = 309) were retrieved from GSE17891, GSE71729 and E-MTAB-6134, respectively.
Studies containing expression data from both normal pancreas and PDAC were processed and

analyzed as described previously %.
TCGA Pan-Cancer Atlas. Processed clinical and expression data were retrieved from the

Genomic Data Commons Pan-Cancer homepage  (https://gdc.cancer.gov/about-

data/publications/pancanatlas). Information on sample types was added using TCGA sample
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barcodes. For regulatory network assembly, only tumor types with at least 100 RNA-Seq samples
were retained and networks were generated using ARACNe as described above for CUMC

samples.

Gene perturbation signatures. Raw microarray data from a mouse model harboring a dox-
inducible oncogenic Kras®'?® were retrieved from GSE32277 ** and GSE58307 *° and processed
using the affy and gcrma R packages. Processed microarray data from normal murine ductal cells
in which oncogenic Kras®'??
from GSE89846 and E-MTAB-2592 “64®, Raw RNA-Seq data from human PDAC cell lines stably

transfected with shRNA targeting KRAS were retrieved from the European Nucleotide Archive

was turned on using adenoviral Cre recombinase were retrieved

under accession PRJEB25797 #" and quantified using the pipeline outlined above for CUMC
samples. RNA-Seq counts were analyzed using the voom-limma framework implemented in the

edgeR and limma R packages.

ChlIP-Atlas. We identified ChlP-Seq experiments concerning transcription factors in a cellular
context pertinent to pancreatic ductal adenocarcinoma via the ChIP-Atlas  website. The results
of this search are listed in Supplementary Table S3. For each experiment and transcription factor,
we tested whether ARACNe-inferred targets of the respective transcription factor were
overrepresented among ChIP-Seq inferred targets (10kb window) using a Fisher’s Exact test with

subsequent adjustment of p-values using the Benjamini-Hochberg method.

Experimental methods

Cell culture. KP4, PANC1, MIAPACA2 (MP2), PATU8902, ASPC1 cell lines were obtained from
ATCC and tested negative for mycoplasma infection. Cells were maintained under standard

conditions at 37°C and 5% CO; using manufactured cell media conditions.

Genome editing and transfection protocol. The sgRNA (small-guide RNA) for knocking out
BMAL?2 as well as a non-targeting (NT) sequence were purchased from GenScript (Piscataway,
NJ) using the pLentiGuide-Puro vector as a backbone. Human PDAC cells were first infected with
a pLentiCas9-Blast vector (Addgene, #52962) for a constitutive Cas9 expression and selected
with Blasticidin (AG Scientific, #B-1247-SOL). Cells expressing Cas9 were then infected with
selected virus carrying sgBMAL2 and sgNT, respectively, using the lentiviral protocol according

to the manufacturer's instructions.

Viability, lactate and migration assays. Cells were seeded at 3x10° cells per well in 96 well

plates and incubated for five days either under normoxia or moved to the hypoxia chamber with
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1% Oz (StemCell, #27310). Lactate assay was performed using 5 pl of media and the luminometric
Lactate-Glo assay kit (Promega, #J5021) according to the manufacturer’s protocol. To measure
cell viability, Alamar Blue reagent (Bio-rad, # BUF012) was added to the culture media for 4 h,
and absorbance was determined at 570 and 600 nm using a Varioskan LUX Multimode Microplate
Reader (Thermo, #3020-80389). For the migration assay, PDAC cells carrying sgNT or sgBMAL2,
respectively were seeded (1x10°) into transwell membrane inserts in serum-free culture media (5
um pore, Corning #3412) and regular media was added to the lower chamber. Cells were
incubated for 24h in regular conditions. After the incubation time, plates were incubated either
under normoxia (37°C, 5% CO-, 20%0:) or moved to the hypoxia chamber (37°C, 5% CO2, 1%05)
for 14 hours and cells that migrated across the membrane were fixed and stained with crystal
violet and counted under the microscope. For the dose-response assays, KP4 cell line was tested
for sensitivity to RMC-7977 in quintuplicates with serial dilutions of RMC-7977 (top concentration
of 10 uM) or DMSO. Cells were incubated for 72 h prior to measurement using Alamar Blue. A
total of 3 biological replicates were done. Growth percentage was calculated by normalizing drug-
treated values to DMSO control, which was set to 100%. Mean + s.d. was plotted for each tested

dilution.

Colony formation assays. KP4 cells carrying non-targeting control (NT) or sgBMAL2 (10°
cells/well) were cultured in 6-well plates at 37 °C under normoxia or hypoxia conditions. After ten

days, cells were stained with crystal violet solution and scanned.

Wound healing assay. KP4 cells carrying non-targeting control (NT) or sgBMAL2 were seeded
on the 6-well plate. Cells were grown into monolayer and manual scratching with a 200 ul pipette
tip. Cells were rinsed with PBS and incubated at 37 °C in serum-free media for 24h under
normoxia or hypoxia conditions. Photographs of the wounded areas were taken by phase-contrast

microscopy.

Immunoblotting. Cell pellets were lysed with RIPA lysis buffer (Cell Signaling, #9806S) and
protein concentrations were determined by BCA protein assay (Thermo Scientific, #23227)
according to the manufacture’s protocol. Proteins were separated on Mini-PROTEAN TGX gels
(Bio-Rad, #4561093) and transferred to nitrocellulose membrane (Bio-Rad, #1704156).
Membranes were incubated in blocking buffer (5% BSA, 0.1% Tween-20, 10 mM Tris at pH 7.6,
100 mM NacCl) for 1 hour and then with primary antibody overnight at 4 °C according to the
antibody datasheet. Antibodies used: HIF1A (1:1000, Cell Signaling, #36169S), beta-Actin
(1:1000, Cell Signaling, #4970S), HIF2A (1:1000, Cell Signaling, #7096S), BMAL2 (1:500,
Abcam, #ab221557), LDHA (1:1000, Cell Signaling, #3582S), GAPDH (1:1000, Cell Signaling,
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#2118S), AXL (1:1000, Cell Signaling, #8661), CCNA2 (1:1000, Cell Signaling, #67955) and
Tubulin (1:1000, Cell Signaling, #2146S). Anti-rabbit-HRP (Cell Signaling, #7074S) conjugated
antibodies was used to detect the desired protein by chemoluminescence with ECL (Bio-Rad,
#170-5061).

Metabolomics. Metabolites were extracted from cell pellets by adding 1mL of ice-cold 80%
MeOH / 20% H-O. Samples were vortexed and incubated on dry ice for 10 minutes, centrifuged
at 12,000g, with subsequent extraction of the supernatant. Supernatant was volume normalized
across sample groups and then concentrated using a SpeedVac Vacuum Concentrator (model:
SPD1030), and reconstituted in 50uL of 50% MeOH / 50% H20. Samples were run on a tandem
liquid-chromatography mass spectrometry (LC/MS) set up consisting of an Agilent 1290 Infinity Il
LC and Agilent 6470 Triple Quadrupole (QqQ) mass spectrometer. The method and column
parameters were as follows: Solvent A: 97% water and 3% methanol 15 mM acetic acid and 10
mM tributylamine (pH of 5). Solvent C: 15 mM acetic acid and 10 mM tributylamine in methanol.
Solvent D for washing is acetonitrile. LC system seal washing solvent: 90% water and 10%
isopropanol. Needle wash solvent: 75% methanol and 25% water. GC-grade Tributylamine 99%
(ACROS ORGANICS), LC/MS grade acetic acid Optima (Fisher Chemical), InfinityLab
Deactivator additive, ESI-L Low concentration Tuning mix (Agilent Technologies), LC-MS grade
solvents of water, and acetonitrile, methanol (Millipore), isopropanol (Fisher Chemical). Column:
Agilent ZORBAX RRHD Extend-C18, 2.1 x 1560 mm and a 1.8 ym and ZORBAX Extend Fast
Guards for ultra high-performance liquid chromatography (UHPLC). LC gradient profile: 0.25
mL/min, 0—-2.5 min, 100% A; 7.5 min, 80% A and 20% C; 13 min 55% A and 45% C; 20 min, 1%
A and 99% C; 24 min, 1% A and 99% C; 24.05 min, 1% A and 99% D; 27 min, 1% A and 99% D;
at 0.8 mL/min, 27.5-31.35 min, 1% A and 99% D; at 0.6 mL/min, 31.50 min, 1% A and 99% D; at
0.4 mL/min, 32.25-39.9 min, 100% A; and at 0.25 mL/min, 40 min, 100% A. Column temperature
was kept at 35°C, samples were at 4°C and the injection volume was 2 uL per sample.The 6470
Triple Quad MS is calibrated with the Agilent ESI-L Low concentration Tuning mix. Source
parameters: gas temperature 150°C, gas flow 10 L/min, nebulizer 45 psi, sheath gas temperature
325°C, sheath gas flow 12 L/min, capillary —2000 V, and delta EMV —200 V. Negative ion mode
was used. Dynamic multiple reaction monitoring (dMRM) scan type is used with 0.07 min peak
width, acquisition time is 24 min. Delta retention time of plus and minus 1 min, fragmentor of 40
eV, and cell accelerator of 5 eV are incorporated in the method. Data were pre-processed with
Agilent MassHunter Workstation Quantitative Analysis for QQQ version 10.1, build 10.1.733.0.
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Co-immunoprecipitation. HEK cells were transfected 24 h after plating. Mixed homemade PEI
3ul with 1ug of plasmid in 200pls of Opti MEM per well of a 6 well plate, incubated at room
temperature for 20mins, then gently added to the cells. Cells were lysed (6 wells of a 6 well plate
combined) per condition with RIPA buffer supplemented with protease inhibitor cocktail, sodium
orthovanadate, MgCl, DNasel and EDTA (final concentration of all these at 1mM). Lysates were
incubated on ice for 20mins, then spun down at 15,000rpm for 15mins, with subsequent collection
of the supernatant. 90% of supernatant volume were incubated with GFP beads (already washed
according to manufacturer’s protocol) and the remaining 10% were used as input control.
Incubation with GFP beads continued at 4°C for two hours while mixing. Afterwards, samples
were washed three times according to manufacturer’s protocol and then bead-bound protein was
diluted with 2X dye and boiled at 95°C for 10mins.

RNA extraction and RNA sequencing. Total RNA from proliferation assays was extracted using
TRIzol (Invitrogen) using the manufacturer ’protocol and the quality of the sample was analyzed

using the 2100 bioanalyzer system (Agilent). Samples were then sequenced using the Element
AVITI platform.

KPC Mice. LSL-Kras®'?P*, SL-Trp53%""*"*:Pdx1-Cre (KPC) mice were bred by crossing the
individual LSL-Kras®'??* LSL-Trp53%"72"* and Pdx1-Cre strains. Triple mutant mice were
palpated twice weekly for evidence of early tumors beginning at 8 weeks of age, followed by
subsequent B-mode ultrasound screening using a VisualSonics 2100 Vevo High Resolution
System. Following detection, tumors were monitored once weekly until reaching a mean diameter

of 6 mm.

Oxylite Measurements. Intratumoral partial oxygen pressures in KPC mice (n=16) were
measured using the OxyLite fluorescence quenching-based system (Oxford Optronics). Tumor-
bearing KPC mice were anesthetized with 2% isoflurane in either air or pure oxygen. Hair was
removed with depilatory cream around the abdomen and the tumor was visualized by ultrasound.
A syringe with a 21G needle was attached to a stereotactic mount and inserted through the skin
and abdominal wall. Real-time ultrasound imaging was used to visually guide the needle in-plane
with the image through the center of the tumor until reaching the far edge. With the needle in
place, the syringe was carefully removed and the bare-fiber oxygen-sensing OxyLite probe was
then attached to the stereotactic mount and threaded through the needle bore until the probe tip
was localized at the far edge of the tumor. The needle was fully retracted over the fiber and an
initial pO2, measurement was taken at the far site. Prior to each measurement, the probe was

allowed to equilibrate for 3-5 minutes until readings stabilized. After the initial reading, the fiber
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was retracted incrementally through the needle track, with readings taken every 1-2 mm, through
the full depth of the tumor (ranged from 6-12 mm in diameter). Measurements within 1 mm of the
edge of the tumor were excluded from the analysis since the needle frequently punctured the far
wall of the tumor, allowing oxygen from the abdominal cavity into the wound (as made apparent
by a sharp spike in readings). To compare tumor to normal tissue, partial pressures were also
measured in pancreas and kidney of wildtype mice (n=4) kept under anesthesia using
compressed air as vehicle. After completing measurements, mice were euthanized by isoflurane
overdose and tissue was harvested for formalin fixation for 24 h prior to paraffin embedding. All
tumors were verified as pancreatic ductal adenocarcinoma by a blinded observer experienced in

mouse tumor pathology.

In vivo xenograft studies. In order to generate orthotopic xenograft tumors, survival surgeries
were carried out and 1x10° to 1000 tumor cells in 30-50 yl media/Matrigel mixtures (1:1) were
implanted directly into the mouse pancreas using Panc1 and KP4 cell lines respectively. Body
weights were measured and tumor growth was measured by high-resolution 3D ultrasound

imaging weekly .

Single cell RNA sequencing. KPC samples used in Wasko et al. were submitted for Single-Cell
RNA-Sequencing to the Sulzberger Genome Center. Single-cell sequencing data were processed
using the Cell Ranger pipeline from 10X Genomics. FASTQ files were generated and aligned
using the mouse transcriptome as a reference (v. gex-mm10-2020-A). ScCRNA-seq profiles from
each of the samples (both Controls and drug-treated) were quality controlled and filtered based
on minimum and maximum UMIs per cell, (10® and 10°, respectively) and the percentage of
mitochondrial UMIs (max 25%). The resulting scRNA-Seq data were embedded in a Seurat object
for normalization and scaling using the procedure outlined in '®. The optimal number of clusters
was determined by the resolution-optimized Louvain algorithm, as described in "', Unbiased
inference of main cell types was performed using the SingleR package in combination with two
mouse datasets as references contained in the celldex package (MouseRNAseqData '%? and
ImmGenData '®). SingleR-inferred cell types were confirmed and refined after careful inspection
of the most differentially expressed genes per cluster determined using a Wilcoxon Rank Sum
test as implemented in the FindAllMarkers of the Seurat package. The malignancy status of the
clusters of putative tumor cells was confirmed by performing inferCNV analysis '**. Sample-
specific gene regulatory networks were inferred using the ARACNe3 algorithm % applied to the
malignant cells of the Control samples. ARACNe3 networks were then integrated across samples,

in order to create consensus regulatory models. The following ARACNe3 parameters were used:
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100 subnetworks, 0.25 FDR. Drug response gene expression signatures were computed by
comparing the expression level of each gene in each drug-treated sample with respect to the
average of the same gene in all vehicle controls. The resulting signatures were then converted

into protein activity using the NaRnEA algorithm "%

, in combination with the Malignant Cells
regulatory network. This produces a NES — a measure of the statistical significance — and a

proportional enrichment score (PES) — a measure of effect size, for each inferred regulator.

References

1. Murphy, S.J. et al. Genetic alterations associated with progression from pancreatic
intraepithelial neoplasia to invasive pancreatic tumor. Gastroenterology 145, 1098-
1109.e1 (2013).

2. Makohon-Moore, A.P. ef al. Limited heterogeneity of known driver gene mutations among
the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358-366
(2017).

3. Sodir, N.M. et al. MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype.
Cancer Discov 10, 588-607 (2020).

4, Schneeweis, C. et al. AP1/Fral confers resistance to MAPK cascade inhibition in
pancreatic cancer. Cell Mol Life Sci 80, 12 (2022).

5. Califano, A. & Alvarez, M.J. The recurrent architecture of tumour initiation, progression
and drug sensitivity. Nat. Rev. Cancer 17, 116-130 (2017).

6. Basso, K. ef al. Reverse engineering of regulatory networks in human B cells. Nat. Genet.

37, 382-390 (2005).

7. Lachmann, A., Giorgi, F.M., Lopez, G. & Califano, A. ARACNe-AP: gene network
reverse engineering through adaptive partitioning inference of mutual information.
Bioinformatics 32, 2233-2235 (2016).

8. Aytes, A. et al. Cross-species regulatory network analysis identifies a synergistic
interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer
Cell 25, 638-651 (2014).

9. Piovan, E. et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute
lymphoblastic leukemia. Cancer Cell 24, 766-776 (2013).

10. Carro, M.S. et al. The transcriptional network for mesenchymal transformation of brain
tumours. Nature 463, 318-325 (2010).

1. Maurer, C. et al. Experimental microdissection enables functional harmonisation of
pancreatic cancer subtypes. Gut 68, 1034-1043 (2019).

12.  Basturk, O. et al. A Revised Classification System and Recommendations From the

Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am. J.
Surg. Pathol. 39, 1730-1741 (2015).

13.  Maitra, A. & Leach, S.D. Disputed paternity: the uncertain ancestry of pancreatic ductal
neoplasia. Cancer Cell 22, 701-703 (2012).

27-


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533333; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

14. Patra, K.C., Bardeesy, N. & Mizukami, Y. Diversity of Precursor Lesions For Pancreatic
Cancer: The Genetics and Biology of Intraductal Papillary Mucinous Neoplasm. Clin.
Transl. Gastroenterol. 8, €86 (2017).

15.  Matthaei, H. er al. Presence of pancreatic intraepithelial neoplasia in the pancreatic
transection margin does not influence outcome in patients with RO resected pancreatic
cancer. Ann. Surg. Oncol. 18, 3493-3499 (2011).

16.  Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer
phenotypes. Nature 554, 62-68 (2018).

17. Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by
genomic events during tumor evolution. Nat. Genet. 52, 231-240 (2020).

18. Connor, A.A. et al. Integration of Genomic and Transcriptional Features in Pancreatic
Cancer Reveals Increased Cell Cycle Progression in Metastases. Cancer Cell 35, 267-
282.e7 (2019).

19. Somerville, T.D.D. et al. TP63-Mediated Enhancer Reprogramming Drives the Squamous
Subtype of Pancreatic Ductal Adenocarcinoma. Cell Rep. 25, 1741-1755.e¢7 (2018).

20.  Hayashi, A. ef al. A unifying paradigm for transcriptional heterogeneity and squamous
features in pancreatic ductal adenocarcinoma. Nature Cancer 1, 59-74 (2020).

21. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-kappaB in
diffuse large B-cell lymphoma. Nature 459, 717-721 (2009).

22.  Elyada, E. et al. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma
Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discov. 9, 1102-1123
(2019).

23.  OKki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-
seq data. EMBO Rep. 19(2018).

24.  Roe, J.-S. et al. Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell
170, 875-888.€20 (2017).

25.  Wang, L. et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway
activation and beta-catenin stabilization. Cancer Cell 15,207-219 (2009).

26. Collisson, E.A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing
responses to therapy. Nat. Med. 17, 500-503 (2011).

27.  Somerville, T.D.D. et al. ZBED?2 is an antagonist of interferon regulatory factor 1 and
modifies cell identity in pancreatic cancer. Proc. Natl. Acad. Sci. U. S. A. (2020).

28. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master
regulators of proliferation in germinal centers. Mol. Syst. Biol. 6,377 (2010).

29.  Alvarez, M.J. et al. Functional characterization of somatic mutations in cancer using
network-based inference of protein activity. Nat. Genet. 48, 838-847 (2016).

30.  Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set
collection. Cell Syst 1, 417-425 (2015).

31.  Kirby, M.K. ef al. RNA sequencing of pancreatic adenocarcinoma tumors yields novel
expression patterns associated with long-term survival and reveals a role for ANGPTLA.
Mol. Oncol. 10, 1169-1182 (2016).

32. Moffitt, R.A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific
subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168-1178 (2015).
33.  Pilarsky, C. et al. Activation of Wnt signalling in stroma from pancreatic cancer identified

by gene expression profiling. J. Cell. Mol. Med. 12, 2823-2835 (2008).

-28-


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533333; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

34.  Pei, H. et al. FKBP51 affects cancer cell response to chemotherapy by negatively
regulating Akt. Cancer Cell 16, 259-266 (2009).

35. Yang, S. ef al. A Novel MIF Signaling Pathway Drives the Malignant Character of
Pancreatic Cancer by Targeting NR3C2. Cancer Res. 76, 3838-3850 (2016).

36.  Hiraoka, N. ef al. CXCL17 and ICAM2 are associated with a potential anti-tumor immune
response in early intraepithelial stages of human pancreatic carcinogenesis.
Gastroenterology 140, 310-321 (2011).

37.  Donahue, T.R. ef al. Integrative survival-based molecular profiling of human pancreatic
cancer. Clin. Cancer Res. 18, 1352-1363 (2012).
38. Cancer Genome Atlas Research Network. Electronic address, a.a.d.h.e. & Cancer Genome

Atlas Research, N. Integrated Genomic Characterization of Pancreatic Ductal
Adenocarcinoma. Cancer Cell 32, 185-203.¢13 (2017).

39. Puleo, F. et al. Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and
Microenvironment Features. Gastroenterology 155, 1999-2013.e3 (2018).
40.  Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature

531, 47-52 (2016).

41.  The, G.C. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene
regulation in humans. Science 348, 648-660 (2015).

42.  Hoadley, K.A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of
10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304.e6 (2018).

43. Ghandi, M. ef al. Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569, 503-508 (2019).

44.  Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic
glucose metabolism. Cell 149, 656-670 (2012).

45.  Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on

mitochondrial function. Nature 514, 628-632 (2014).

46. Sivakumar, S., de Santiago, 1., Chlon, L. & Markowetz, F. Master Regulators of Oncogenic
KRAS Response in Pancreatic Cancer: An Integrative Network Biology Analysis. PLoS
Med. 14, ¢1002223 (2017).

47.  Bryant, K.L. et al. Combination of ERK and autophagy inhibition as a treatment approach
for pancreatic cancer. Nat. Med. 25, 628-640 (2019).

48.  Diersch, S. et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary
pancreatic ductal epithelial cells. Oncogene 35, 3880-6 (2016).

49.  Alvarez, M.J. et al. A precision oncology approach to the pharmacological targeting of
mechanistic dependencies in neuroendocrine tumors. Nat. Genet. 50, 979-989 (2018).

50.  Mundi, P.S. et al. A Transcriptome-Based Precision Oncology Platform for Patient-
Therapy Alignment in a Diverse Set of Treatment-Resistant Malignancies. Cancer Discov
13, 1386-1407 (2023).

51.  Wasko, U.N. ef al. Tumor-selective activity of RAS-GTP inhibition in pancreatic cancer.
Nature (2024).

52.  Holderfield, M. et al. Concurrent inhibition of oncogenic and wild-type RAS-GTP for
cancer therapy. Nature 629, 919-926 (2024).

53.  Labrecque, M.P., Prefontaine, G.G. & Beischlag, T.V. The aryl hydrocarbon receptor
nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-
functional protein interfaces. Curr. Mol. Med. 13, 1047-1065 (2013).

-29-


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533333; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

54.  Hogenesch, J.B. ef al. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific
heterodimeric partner of circadian and hypoxia factors. J Neurosci 20, Re83 (2000).

55.  Maemura, K. et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of
plasminogen activator inhibitor-1 gene expression. J Biol Chem 275, 36847-51 (2000).

56.  Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet
51, 308-318 (2019).

57.  Li, B.etal Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513,

251-5 (2014).

58. Hasselluhn, M.C. et al. Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and
VEGF Signals Driving Pancreatic Cancer Angiosuppression. Cancer Discov (2023).

59.  Olive, K.P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in
a mouse model of pancreatic cancer. Science 324, 1457-61 (2009).

60.  Koong, A.C. et al. Pancreatic tumors show high levels of hypoxia. International Journal
of Radiation Oncology*Biology*Physics 48, 919-922 (2000).

61. Vaupel, P., Thews, O. & Kelleher, D.K. Pancreatic tumors show high levels of hypoxia:
regarding Koong et al. [JROBP 2000;48:919-922. Int J Radiat Oncol Biol Phys 50, 1099-
100 (2001).

62. Varghese, A.J., Gulyas, S. & Mohindra, J.K. Hypoxia-dependent Reduction of 1-(2-Nitro-
1-imidazolyl)-3-methoxy-2-propanol by Chinese Hamster Ovary Cells and KHT Tumor
Cells in Vitro and in Vivol. Cancer Research 36, 3761-3765 (1976).

63. Saxena, K., Jolly, M.K. & Balamurugan, K. Hypoxia, partial EMT and collective
migration: Emerging culprits in metastasis. 7Transl Oncol 13, 100845 (2020).

64. Tam, S.Y., Wu, V.W.C. & Law, H.K.W. Hypoxia-Induced Epithelial-Mesenchymal
Transition in Cancers: HIF-1alpha and Beyond. Front Oncol 10, 486 (2020).

65.  Nakayama, K. & Kataoka, N. Regulation of Gene Expression under Hypoxic Conditions.
Int J Mol Sci 20(2019).

66.  Cui, X.-g. et al. HIF1/2&#x03B1; mediates hypoxia-induced LDHA expression in human
pancreatic cancer cells. Oncotarget; Vol 8, No 15 (2017).

67. Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cel/ 148, 399-408
(2012).

68.  Martinelli, P. et al. GATAG6 regulates EMT and tumour dissemination, and is a marker of
response to adjuvant chemotherapy in pancreatic cancer. Gut 66, 1665-1676 (2017).

69.  Martinelli, P. et al. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic
tumorigenesis in mice. Gut 65, 476-486 (2016).

70.  de Andrés, M.P. et al. GATA4 and GATAG6 loss-of-expression is associated with extinction
of the classical programme and poor outcome in pancreatic ductal adenocarcinoma. Gut
72, 535-548 (2023).

71. Roy, N. et al. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and
maintenance. Genes Dev. 30, 2669-2683 (2016).

72. Collisson, E.A., Bailey, P., Chang, D.K. & Biankin, A.V. Molecular subtypes of pancreatic
cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207-220 (2019).

73.  Connor, A.A. & Gallinger, S. Pancreatic cancer evolution and heterogeneity: integrating
omics and clinical data. Nat Rev Cancer 22, 131-142 (2022).
74. S, N.K. et al. Morphological classification of pancreatic ductal adenocarcinoma that

predicts molecular subtypes and correlates with clinical outcome. Gut 69, 317-328 (2020).

-30-


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533333; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

75. Hayes, T.K. et al. Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is
Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell
29, 75-89 (2016).

76. Plotnik, J.P., Budka, J.A., Ferris, M.W. & Hollenhorst, P.C. ETSI is a genome-wide
effector of RAS/ERK signaling in epithelial cells. Nucleic Acids Res 42, 11928-40 (2014).

77. Bryant, K.L., Mancias, J.D., Kimmelman, A.C. & Der, C.J. KRAS: feeding pancreatic
cancer proliferation. Trends Biochem Sci 39, 91-100 (2014).

78. Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support
cancer cell growth. Mol Syst Biol 7, 523 (2011).
79. Tiwari, A. et al. Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of

PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis. Gastroenterology
159, 1882-1897 5 (2020).

80. Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B. & Simon, M.C. Differential roles of
hypoxia-inducible factor lalpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation.
Mol Cell Biol 23, 9361-74 (2003).

81.  Keith, B., Johnson, R.S. & Simon, M.C. HIFla and HIF2a: sibling rivalry in hypoxic
tumour growth and progression. Nature Reviews Cancer 12, 9-22 (2012).

82.  Yuan, X., Ruan, W., Bobrow, B., Carmeliet, P. & Eltzschig, H.K. Targeting hypoxia-
inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 23, 175-
200 (2024).

83. Dantas-Ferreira, R. et al. Deletion of the Clock Gene Bmal2 Leads to Alterations in
Hypothalamic Clocks, Circadian Regulation of Feeding, and Energy Balance. J Neurosci
44(2024).

84.  Dost, AF.M. et al. Organoids Model Transcriptional Hallmarks of Oncogenic KRAS
Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell 27, 663-678.e8 (2020).

85.  Kostyrko, K. et al. UHRFI is a mediator of KRAS driven oncogenesis in lung
adenocarcinoma. Nat Commun 14, 3966 (2023).

86.  Mou, H. et al. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas
receptor-mediated apoptosis. Proceedings of the National Academy of Sciences 114, 3648-
3653 (2017).

87.  Martins, F. et al. Differential unfolded protein response regulation in KRAS silencing
sensitive and innately resistant colorectal cancer cells. Sci Rep 15, 14329 (2025).

88. Maurer, H.C. & Olive, K.P. Laser Capture Microdissection on Frozen Sections for
Extraction of High-Quality Nucleic Acids. Methods Mol. Biol. 1882, 253-259 (2019).

89. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

90.  Hu, H. et al. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of
animal transcription factors. Nucleic Acids Res. 47, D33-D38 (2019).
91. Shannon, P. et al. Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome Res. 13, 2498-2504 (2003).

92.  Alvarez, M.J., Giorgi, F. & Califano, A. Using viper, a package for Virtual Inference of
Protein-activity by Enriched Regulon analysis. Bioconductor, 1-14 (2014).

93. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. 4. 102, 15545-
15550 (2005).

-31-


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533333; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.
105.

available under aCC-BY-NC-ND 4.0 International license.

Ritchie, M.E. ef al. limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Res. 43, e47 (2015).

Therneau, T.M. & Grambsch, P.M. Modeling Survival Data: Extending the Cox Model,
350 (Springer Science & Business Media, 2013).

Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. Journal of
Statistical Software, Articles 36, 1-48 (2010).

Zaru, R. & Orchard, S. UniProt Tools: BLAST, Align, Peptide Search, and ID Mapping.
Curr Protoc 3, €697 (2023).

Badgley, M.A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice.
Science 368, 85-89 (2020).

Sastra, S.A. & Olive, K.P. Quantification of murine pancreatic tumors by high-resolution
ultrasound. Methods Mol Biol 980, 249-66 (2013).

Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-
seq data using regularized negative binomial regression. Genome Biol 20, 296 (2019).
Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated
renal tumor macrophages. Cel/l 184, 2988-3005.e16 (2021).

Benayoun, B.A. ef al. Remodeling of epigenome and transcriptome landscapes with aging
in mice reveals widespread induction of inflammatory responses. Genome Res 29, 697-709
(2019).

Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a
transitional profibrotic macrophage. Nat Immunol 20, 163-172 (2019).

inferCNV of the Trinity CTAT Project.

Griffin, A.T., Vlahos, L.J., Chiuzan, C. & Califano, A. NaRnEA: An Information Theoretic
Framework for Gene Set Analysis. Entropy (Basel) 25(2023).

-32-


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1

A bioRxiv preprint doi: https://doi.org/10. 501/2023 03.19. 535353953; this versﬁn po; 3 giger for this preprint
(which was not certified by peer review) is the author/ g has granted bioR i perpetui¥§Slt is made
UENE A5 Y _NCND 4.0 Internation alleans: L (i [ S |
0 [ L0 LI 3 0 3

- vailable
*y oo g E Mﬁ';,%m T IO ,
o o% § L= MET SMAD4||WM\ |_g M Lineage
d a KRAS TP53 | 1 5 orphogenic
I} 2 POU2AF1 o .
- 2 FOXA2 5
o e 7 : el 2
° 3
O Q’;‘- . 3 GATAB Mﬂg
a ‘i > . o PDX Il
Xy .’50-:' 3% HDGF
¢ o ¢ o3z BMAL2 s
) FOXN2|| |3
: : s L
°f MUCSAC  FOXAT B -t
- 0 I-IEEG U I 1) :
~N > £
SOV ZBED?2 I <
Sy 2 TP63 L 8
D E F
Initiation Progression Survival

109 Precursor /{ & o %TTow-grade //1 5 49 Good prognosis/‘

i 5 S o4 N S
g o & g o 0 ;9
N 10 PDAC v:? N N 54 High-grade | & ,& ) l/' Poor prognosis| &

LR <

NR6A1‘|mmu b e My ”'”””""l' Z|C2‘|un o ‘\Wlnlj SNA|2'Il‘ll‘\‘\llll\l‘llul‘Illlulk\llll‘HIlll"I‘I‘\I"I\\H‘H‘I;I“I‘II‘\\‘Hll\\‘\vl‘ll“\ﬂ\l‘\llﬁl\‘\;II;\l\‘\‘\\l\ll‘l\w‘llw\.|“ﬂ
NFE2 L3'|I\IIH\I | W"-ln FOXD'I‘Iluu TN T Rt mw"'lnl:l BMAL2'IIIHII\‘HH\H\HHHI\‘\‘I\‘I‘I\“IHI\‘\‘\IH\H‘\‘\”VHH\I\I\‘ I ‘l“'\“l'\m\"\\‘"\V“\'l'”‘f"\“\“w|=E
TFAP2A‘Inm\umm”\ e M-lnn BMAL2-|-IHIHII\ i ol nmu-lnm PLAG1‘l|u||uu|||\|‘\“\|‘\|\|‘w‘\‘\‘\|“u il i “\m\“wln
AR‘l\ b W ‘u\hm”:ll:l CBX4‘|‘\ SN T A R RN AL R AN ﬁ”:”:l MECP2‘|HH TR T T R IRRREATI u” ” |
DMRTA1‘|'M“ L o e |u||nm||||ﬁ ZFP36L2 _|||||u‘n‘m|m A ‘HH‘I‘MMD GATAS "™ i h‘l‘\l‘l\nnn‘l\“llﬁm
FOXQ1‘|'“"l M T \\”um\‘\Hwnhnlnnl|:| prDOM16 1™ MM NR3c2 1 ‘II‘HH\‘I“\“\WHI‘\‘I“IM‘H“Illl‘m‘\‘IH\I‘HIIH‘I‘I‘;\‘\WIII‘”D
SMAD4 """ ”l‘ Al |||ulmm|||||:| HNF1 B_lluuuummn WO \IH‘H‘I\H‘\H‘HIIHII- M PDX1 '\”'\” I I‘“‘I‘\I:I‘\‘\l\‘l\l‘\l‘”l‘IlH\‘H\“\‘WHH‘\HI‘IHI\I‘I‘I‘”\IlIIIIllﬁn

core

Wald stat

1 10K 20K 10K 1 10K 20K
DEG rank DEG rank Prognosis rank
G KRAS activity H
N - TE o
0 _HMGA2 Progression 5 7
2 r0.84
w = 057 BEND6 Survival
25 L
<5 . MYBL1 L0.82
2 ® 2000 10 i ETS1 :
S0 SERTADZFOXDY
o< r0.80
o B3 _LZBED2
x CCDC88A = LAG1
CDKSR1 m“\'MUB“« r0.78
TRIB3
, , F0.76
30 1

Rank


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

»)

BMAL2 Activity (NES)

Figure 2
B

er aCC- BY B AAD 4dntntesreational license.
Ilbrary (n=322)
m cell lines

Bryant ‘I e e T fl"l Iy |

ViaIe-I ' o o i aa " III“."'"".| 42 %? o :
Diersch ‘I T TR T CurE A TR TR T "““| ®® Sireis

LT I B [T TR IYN IlIIIIIII _ Gene Expression Protein Activity
Ylng‘l LUNITN] ||||||| m PLATE-Seq ¢

L L L (L L Ty Signatures

Sivakumar -IIIIHIII"II"II ai e e lll

UAD BMALZ2 regulon C .
L KRAS Off KRAS On NES BMAL2 Activity (NES)
TAK-733
Dost (KPY){ ' it o B4 L ﬁ 21
Y [t W L o ""-‘-|
D08t () s s R TP B 2.5
Kostyrko_lmuu TR UNEEE T O | WL mmnn IIII\II| I:I N pNIMETINIE
(A549) [II_10um WL Y 00ROV (Z)
wou [T B T R ] 2 O
BMAL2 regulon = PIMASERTIB
TRAMETINIB
COAD  yrasoff KRAS On e -3.5 -
HET 2 Taaa REFAMETINIB
Martins
(LS174T) _Iu-I e ||l||||||||
Martins ; 4
| Ill ""“ | IIIIIII III| m IIIIIII II IHIIIIII I III II e rrrmmnm 7"2*3 4
(SW480) T T T T T
(mg-ll'—t;q%)‘lmmnmn Gt W I|I|I-"||”I"| -4 -3.5 -3 25 -2
BMAL2 regulon ASPC1
PDAC CeII Lines E ERKiin PDAC Cell Lines F RAS(ON)i PDAC Cell Lines G RAS(ON)i KPC mice
— ©® DMSO ©® DMSO ® CTRL
. _ 0 2 |® RMC-7977 _|® rRMmC-7977 > 5l ® RMC-7977
0 ﬂ n s * %
3 3 g
ol 2 0 - i c —~ 07
=4 = © S
-2 <L(> <L() 2 5_2_
: < : e
< -9- 4] * % ] -
= -8 10PA14C @SW1990 ° @ MP2 L < 4
4 - ¢ AsPcC1 @ ® HPAC @ HPAFII o $ASPC1| =70.054 ® KP4 E 4
@ PANCT @PA04C ®@PAO1C _4 1@PANCT M BXPC3
MEK PI3K AKT MTOR 1 4 12 24 KRAS BMAL2 KRAS BMAL2 CTRL RMC-

Inhibitor targets Time (hours) 7977


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3

A B . C
bioRxiv ffin N&Aﬁ?tp;" Idoi.org/10.1101/2023703,19.533333; this VBQA&EEHHEW 5025, The copyrig tP q ﬁﬂp rint
(which was|not Nieally peersreviewy is theauthor/funder BNAAE® granied [bioRxiy a[licgnse to|dispIRNZRLEPeprint|in per betdity] It is nfadd
SIM2 [T ..available under aCC@W- D 4.0 Tniernationalllicense. HIF1A
SIM1 LRl BMAL1 NPAS2 -
HIF2A | HIF2A HIF1B
HIFIA | e o NPAS2 NPAS3
HIF3A | - NPAS3 - CLOCK 7
NPASA |- BN B NPAS1 HIF2A
EIVIATR| 180 SR - CLOCK - HIF3A
BMAL2 SIM1 10 S
(1 R | ’ Sé%g’\’@ 5§
HIF2EY |- e - HIF3A e §ToLITELS
HIF1BY |18 s o e HIF1A & < 65 21
NPASZ | i Bt 2 bt S HIF1B T @
S - PR INEF S
CLOCK § & & boq); ILE S
SSTIE §S$
D 4 0 1 & < 6& &
Spearman's rho TCGA Cancers @
] E GSEA of hypoxia genes on RMC- F Hypoxia signature enrichment in
BMAL2 7977 signature in PDAC cells epithelial cells of KPC mice
HIF1A _ _ 2 -
\PAS2 ES = -1.61, p = 0.0397 ™ *x
NPAS1 g o1 L
3 zZ
BMAL1 - é ~
HIF2A 1 o 0
35
CLOCK A1 —
©
HIF1B 1 K c
2
WL UL 22
NPAS4 o o
HIF3A ;f 3 é
NPAS3 = e 1
SIM1 A E I —4- q
T XL TN 0 O0LR & O O9 LA QN9 A& XL 10000 20000 30000
Q?s’g')g?oové) éblg g §§ M §\$—§) Oqogg@é’ 5@1/\@5‘}/ Rank in Ordered Dataset Control RMC-7977
G

[‘ Direct positive

Indirect positive

Hypoxia responsive genes ‘ Direct negative Indirect negative}

A‘1"
BI.B(‘TH‘ 6‘G1 SchAhG\APD)" ..‘
CE' ‘F‘ /

V@
c“g,\.‘u

B

P

s'.>3 ,\,(.Q.e3

A&m&'

1

!UT2
1250

,& . S RPINE y
R2F2
L DH EN } S ZNF33A HINT1
) / MI'XIPMPHOSPH8 v .TQPORS
(e, . TMEM45ACA12 a Foxpd\Fes®
1SUB » NEDD8 NCK41 CBX5 PFKFBEGLNL] 1] DMTF1 CDKI13: NFlA‘ ;RG‘ET\M
AR . o . el FLT1 ° s Y Npio TBX2ERC 1
¥ STK3 GLNY SETDZ _CTNND1 DDX54
p MAM]_ WDR61 RG A { X \
&, SNATZ ® g K1 TADAZAZKSCABHECUBHNF1AF0XP1CTDP1
/ CTN4
v * Hpac \ $
iy G AR STC2, *Lox" sDDITY pURAr C ARl Jakb PNRC ke
CA:hPH b . e MGAZSOXAYGLLs \ \ o TZEBAzza 2 ol W
9 )
y  TEAPEA b x4 > CP PGK PDK}} MlF WY ZFPM1 iNR0B2
» R v
MDFI % » | MAF EGFR ZEB2 ZBTB4Nle - 5
ACTB TFRO GPS2 v MECOM ADE¢
=1 b’ No'bz i TéFBB PIM1\ = paxup%"'E'S1 e = KLFO
v HDGF, - ,
ovoL1 PITXTRIP13 w U ZFPM2 N <~ PFKFB3 cams "7, - . NFB A
v MYBL1 * o CDKN1A 4HAM v MXD4SLTM Soxe S S e
HoxmoTIMELESS" OFF2mar2 )3P N FGFR2 - PDCD4
® FOXM1y g | % v gen NR3C e p)
®. TP73 =« : NDRG1 ~ TGFA ‘oxoRERE2 e THRB FCBD2
2 % g S o s 2 \ TOB2 SOX21  « N
¥ o) ¢ RUVBL2 JHMOX1  pLOD1 N «  TFCP2LY
' p’ ZNF445
Y A P4HA2 /. A BNIP3L .
AURKB VEGF CMH1


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4

- B KPC PDAC yO C_ 'KPC O, Sat. D ) Hypoxia probe staining
:/ldoi.org/10.1101/8623-63-19-533333; this versr;n—pestéd—éuge 10, 2025. T E;
peer review) is the authpr/fundegivio has granted bigRxiv a license to displ rint infpergetuity 4iis made
3 availablg under aCC-BY-NC-N[ 4|0 | ional licensd.00
=) . X [=))
L 10+ g £ ;'
€ £ £>
: : =
c © 40 o $ 200+ *%x
o o o
2 17 £ s®°
c ) y®
2 I ) o2
1. s 3 5% ns
g & 201 g% £~
_____ 55 5 E g o 50+ @ Normoxia
g 6\% ct/)‘j @ Hypoxia
0.01 0 3

Air O Panc. PDAC Pancreas Kidney Tumor


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5

A B C
bioRxéviprdprint doi: https:/doi®@i10.1101/202%93.19.533333; this versidhpusted - holder for this preprint
(wlz@ch wag not ceitified by peer|feyiew) is the author/f who has grantgdMyiBRxiv g . Itis made
e W PaTusgoAYailablénd Y NC-ND 4.@ rAtese@ti
E‘ 8 727 BMAL2 3
52 * © Normoxia | 5 oo | ® Normoxia
3 c Hypoxia 2 Hypoxia
ZE 707 o
3 3 o i
%) - é Interaction
g
= 6.8 ** 50
T T T T
sgNT sgBMAL2 sgNT sgBMAL2
D E F :
1% 0, - - + + 1%0,; - - + +
sgBMAL2: - + _ + @ Panct sgBMAL2: - + - +
1437 @ MP2
9 W PATU8902
o 70
AXL ® 1421 i! . BMAL2
23 ® Normoxi
,(_“\ E g ormo.XIa /‘“\ ‘
9 BMAL2 g é 141 Interaction Hypoxia 9 40 LDHA
= a5 % =
= 3 =
| 14.0
= coNm2 € = 7| S G === |cAPDH
== 13.91
Tubulin T T 50 o s | TUbulin
50_ SgNT  sgBMAL2 -
G MiaPaCa2 Cells H  wiapacaz ceils J vin [T | vex
@ sgNT Normoxia @ sgBMAL2 Normoxia
sgNT Hypoxia sgBMAL2 Hypoxia L0 e SQNT SQBMALZ
® r:0.67 i Normoxia Hypoxia Normoxia Hypoxia
) yp yp
) X =
% i = NDRG1
o8 - CDKN1A
g e - MIF i
3 S - PFKFB3
EGLN1
PC1 (41.6% of variance) A0 1 6er 10 P4HA1
» 59 P4HA2
I % 24 . sgNT in hypoxia PGK1
% 2 sgBMAL2 in hypoxia GAPDH
E 1100 PLOD1
H Hypoxia PGAM1
= | = repressed HK1
go, L . PFKFB4
Q
= 1
C 0.5|NES=-10.96 i
C p= 5.9e-28 ! VEGFA
T BNIP3L
0 11500 23000 MXI1
K ) L sgNT Glycolysis
MiaPaCaz2 Cells (Hypoxia) Gluconeogenesis
@ sgNT Normoxia @ sgBMAL2 Normoxia y Fructose and Mannose Degradation
sgNT Hypoxia © sgBMAL2 Hypoxia Warburg Effect
Pentose Phosphate Pathway
. Glycerolipid Metabolism
10 G3p Starch and Sucrose Metabolism
Q . Mannose 1- -phosphate Glycerol Phosphate Shuttle
% .. Fructdse eyhosphate og De Novo Triacpylgllycizrlol B’i\/Tstynbthﬁsis
= o 10 yrimidine Metabolism
S g Fructose 1,6-biphosphate -, Cardiolipin Biosynthesis
o \2 i Glucose-1-phosphate » Lactose Synthesis
o L i le® Mitochondrial Electron Transport Chain
e SgNT_ 4 ® Nucleotide Sugars Metabolism
‘ (Normoxia) : Lel-10 Plasmalogen Synthesis
-10 -10 0 10
PC1 SgNT SgBMAL2 1 0.01 0.0001
44.0% of variance (Hypoxia) (Hypoxia) FDR


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6
A

sgNT or sgBMAL2
bioRxiv preprint.doi: https://doi.org/10.1101/2023.03.19.533333; this version posted June}i%tzozs The copyright holder for this preprint
(which wa d by peer review) is the author/funder, who has granted bioRxiv a lice {8Rfi¥play the dreprint in perpetuity. It i made
available under aCC-BY-NC-ND 4.0 International I|cenI
Q. - .
W k‘// Orthotopic Weekly ultrasound measurements ® /
InJeCt|On EEEEEEEEN] UN)
\ A Ax L I
4 y Week: | ) I I Illlllllll //?‘Growth
0 1 2 3 4 Endpoint Constant
Time
o PANCA1 cells
*
0.15
2
o
£
g 0.107
()]
—
o
g 0.05
20
0 T T
sgNT  sgBMAL2
D E F Input
0, L -
S sgBMAL2: - + - +
« 130 i
&> 1000 9
E 120 HIF1A 65 | el Y _JE
g 1007 ~— -
= Py 120 — HIF2A 42 Actin
= B —
g 10 . — HIF1a-
7 BMAL2 GFP
g ® L — - . IP: GFP
= 40 LDHA
: - o S| 1
© .
o € 9 37 !— -_p — GAPDH 2 130 S |BVAL2
T T [
sgNT  sgBMAL2 50 | com— c— — — Tubulin 100 - g | HIF1B
— HIF1a-

GFP


https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 1
A Grade Solid nests Large ducts B

bioRxiv preprint doi: https://doijor@ll0.1101/2023.03.19.33333; this version posted June 10, 2C25JJ.&mp¥ﬂgthﬂLdﬁLtaLthjs_p.L§£ﬂm
(which wals not certified by peer review) is the author/funder, who has granted bioRxiy a license to|display the preprint in perpetuityNR1& made
50 available under aCC-BY-NC-ND 4.0 Interngtional literse.
GATA6
25 h 7 % P63 .
= 1e°7
5 | | SSRRRREREEIEEIEEEEEEIIEY | g KLF5 FOXA2 o
2 % o June BRD4
@2 } ) ) S Te SIN3A
§ Mucinous Clear cell features Micropapillary cg MYC L3 KLFa
P & ®  Fos
TR i i — Bror zeB1
b 0.05 o .:::::. ..... e Lo
25 _ _ L ?(L':S ®inFra froFri .'
Sresr Tt ZBED2
5 e e e 1 ISMA\‘DZSREBle I
L e  oat -Fl!!-r.—v—-ﬁ-! i Al N 100 200 300
PC: 12345678910 12345678910 12345678910 Targets CUMC interactome
c E Initiation o R scor
Precursor Positive — ecocococococ00c00@oO00oo0| M
gf‘w" Negative | @ ® ° ° active
Pl T 1T T T T T T T T T T T T T T T T T 1
7] m Positive | o o e o o inactive
[0) g .
5 d Negatve | © © o o 0o 0o 00 000000000000
® 'ow-gracde T T T T T T T T T T T T T T T T T T
5 @ 8.0 Progression
$ L & ; | Positive 4 o © 000000000000 0000
g Negative ° active
5} S O O
& Positive | @ o oo oo ° inactive
i Negative—o e 0o 0 0 (N NN ENY NFENN KN KX
o T T T T T T T T T T T T T T T T T 11
cofeiadion .
kras mme———m KRAS Survival
Positve{ ¢ 0 @@e @0 - 000000 °@ @
Negative — e o o ° ) e o o poor prognosis
T T T T T 7T T T T T T T T T T T T T 1
Positive | ® @ e 000 0 e o good prognosis
Negative | ® ®© @ oo c0 0000000000000
D T T T T T T T T T T T T T T T T T T
100% - = KRAS
% ° Positive { o @0 00000 000000000000
Negative | @ o o ° correlated
S S O
- . Positive 4 o ® ® o o o anticorrelated
‘; Negative—oooooOooOOoOOOoOOOOO
E 50% 4] P rr T T T T T T T T T T T
SO 5 PSR = S S, K
& 4] FIEEESSFETFTS ST AL
2 ' FITFLIC SR8y 25¢ &
O XD RN
$F £EE TFes &8 §
A & &S S S EES Qo
0% A * ok ok > O g &< oL
T T T T T Q(D @ 0Q L s & "}fb
] Y NS NS
IPMN  PanIN LG HG Solid &« N

Supplementary Figure 1. (A) F-statistics (y-axis) from a linear model with the indicated principal component (PC, x-axis) as
dependent variable and the indicated histopathological characteristic as the independent variable. Blue bars indicate significant
results. (B) Scatter plot illustrating the relationship between number of ARACNe-inferred, context-specific targets for select
regulatory proteins (RP, x-axis) and the significance of their overlap with targets deduced from publically available ChIP
experiments as assessed by a two-tailed Fisher's Exact test. Circle size represents the number of publically available ChIP
experiments (range = 1-4) (C) Schematic illustrating the assessment of regulatory protein activity in various genome-wide
phenotype signatures. (D) KRAS protein activity across the indicated histological PDAC stages. Pairwise p-values are derived
from a post hoc Dunn test after Kruskal-Wallis one-way analysis of variance. LG = Low grade; HG = High grade. (E) For each
of 4 phenotypic signatures, regulons from the top 20 RP up (red color) and down (blue color) were divided into positive and
negative targets (y-axis) which were then scored for overlap with the indicated HALLMARK gene sets (x-axis). Circle size
represents the fraction of RPs (20 each) whose positive and negative regulon tail, respectively, exhibits significant overlap as
assessed by a two-tailed Fisher's Exact test. **: p <0.01, ***: p <0.001

In boxplots, the box ranges from Q1 (the first quartile) to Q3 (the third quartile) of the distribution and the range represents the
IQR (interquartile range). The median is indicated by a dashed line across the box. The “whiskers” on box plots extend from
Q1 and Q3 to 1.5 times the IQR.
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Supplementary Figure 2. Fold changes and their 95% confidence interval between (A) primary tumors and adjacent normal
tissue, and (B) high-grade and low-grade tumors for the indicated data sets (y-axis). (C) Hazard ratios and their 95% confidence
interval for patients belonging to the highest BMAL2 activity and expression tertile, respectively. Lower panels in (A-C)
summarize the meta-analytic estimate from a fixed (FE) and random effects (RE) model, respectively. (D) BMAL2 activity
(Normalized Enrichment Score, NES) in the most aggressive vs. least aggressive subtype as determined by the indicated
classification scheme (y-axis) in each of the indicated data sets (x-axis). BMAL2 expression in the indicated units across (E)
various normal tissues, (F) 33 primary tumor cohorts profiled by the TCGA Pan-Cancer project, and (G) cancer cell lines derived
from various lineages profiled by the CCLE project. *: p <0.05 **: p < 0.01, ***: p £ 0.001, ns: not significant
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Supplementary Figure 3. (A) Experimental design of the single-cell RNA sequencing experiment experimental setup.
KrasLSL.G12D/+; p53LSL.R172H/+;Pdx1-Cretg/+(KPC) mice were treated with either vehicle or RMC-7977 (50 mg/kg g.2d.
p.o.) for 7 days. Tissue was collected and processed for scRNA sequencing. Finally, tumor cells were analyzed and inferred
differential activity of proteins was calculated based on the expression of their downstream target genes. (B) Heatmap of
photoacoustic data from a representative KPC tumor, where red indicates high % blood oxygenation and blue represents low
% blood oxygenation. Based on anatomical data from a co-registered B-mode image (not shown), tumor is outlined in yellow
and adjacent normal pancreas is outlined in green. (D) Heatmap of total hemoglobin content from a representative KPC tumor
(yellow) and adjacent normal pancreas (green). (D) Anti-pimonidazole (hydroxprobe) IHC stainings of FFPE blocks of normal
kidney (left), normal pancreas (middle) and KPC tumors (right) are shown from mice under normoxic (top) or hypoxic (bottom)
conditions. Scale bars = 20um.
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Supplementary Figure 4. (A) Representative transwell migration assay pictures of PANC1 cells carrying sgNT or sgBMAL2
under normoxic or hypoxic conditions. (B) Cell clone formation assessed using a plate-based assay in KP4 cells carrying sgNT
or sgBMAL2 under normoxic or hypoxic conditions (top panel) with the quantification (bottom panel) (C) Effect of BMAL2 knock
out on cell migration was detected using a scratch assay. The scratching area was photographed at starting point and 24h under
normoxia or hypoxia conditions (left panel) and quantified (right panel). (D) Principal component analysis (PCA) based on gene
expression of the indicated cell line carrying sgNT or sgBMAL?2 in hypoxic or normoxic environments, respectively. (E) Scatter
plot illustrating the relationship of a genome-wide transcriptional hypoxia signature found in the indicated cell lines carrying
Ee,IngT (x-)axis) and sgBMAL2 (y-axis) sgRNA, respectively. Red circles mark a set of HIF1A reporter genes described previously
ef. 57
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