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Summary 
 
KRAS is the archetypal oncogenic driver of pancreatic cancer. To identify new modulators of 

KRAS activity in human pancreatic ductal adenocarcinoma (PDAC), we performed regulatory 

network analysis on a large collection of expression profiles from laser capture microdissected 

samples of PDAC and benign controls. We discovered that BMAL2, a member of the PAS family 

of transcription factors, promotes tumor initiation, progression, and post-resection survival, and is 

highly correlated with KRAS activity. Functional analysis of BMAL2 target genes suggested a role 

in regulating the hypoxia response, a hallmark of PDAC. Knockout of BMAL2 in multiple human 

PDAC cell lines reduced cancer cell viability, invasion, and glycolysis, leading to broad 

dysregulation of cellular metabolism, particularly under hypoxic conditions. We find that BMAL2 

directly regulates hypoxia-responsive target genes and is necessary for the stabilization of HIF1A 

under low oxygen conditions, while simultaneously destabilizing HIF2A. Notably, in vivo xenograft 

studies demonstrated that BMAL2 loss significantly impairs tumor growth and reduces tumor 

volume, underscoring its functional importance in tumor progression. We conclude that BMAL2 is 

a master transcriptional regulator of hypoxia responses in PDAC that works downstream of KRAS 

signaling, possibly serving as a long-sought molecular switch that distinguishes HIF1A- and 

HIF2A-dependent modes of hypoxic metabolism. 
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Statement of Significance 
 
We annotate the landscape of KRAS-associated transcriptional drivers of pancreatic cancer 

initiation, progression, and overall survival, leading to the identification of BMAL2 as a novel  

regulator of hypoxic metabolism. BMAL2 helps execute the oncogenic transcriptional programs 

of KRAS and serves as a long-sought switch between HIF1A- and HIF2A-dependent modes of 

hypoxic metabolism.   

 

Introduction 
 
DNA sequencing of hundreds of human pancreatic tumors has helped define the genetic drivers 

of pancreatic ductal adenocarcinoma (PDAC). However, mutations alone poorly predict key, 

clinically-relevant traits of the disease, such as tumor stage or therapeutic response 1,2. This 

suggests that non-genetic factors may control vital, biological characteristics of PDAC, such as 

differentiation state, metastasis, and clinical outcome. Defining these factors is a necessary first 

step towards intervening in these complex pathologies. 

Among genetic drivers, activating mutations in KRAS are the most penetrant, driving ~95% of 

human PDAC tumors. Though extensive work has delineated the signal transduction pathways 

that effect its activity, there is a comparatively poor understanding of how the downstream 

transcriptional outputs of mutant KRAS drive contribute to the manifold phenotypes attributed to 

RAS activity. While MYC and AP1 serve as canonical effectors of RAS signaling, hyperactivation 

of these transcription factors alone does not recapitulate the tumorigenic phenotype of Kras 

mutation in the pancreas 3,4.  The advent of RAS inhibitors for clinical use has served to highlight 

the need for a more detailed understanding of how RAS signaling drives pancreatic tumors, not 

only from a classical genetic standpoint, but from a system-wide, cellular view.  

RNA sequencing (RNA-Seq) has been widely used to identify correlations between gene 

expression and phenotypes. However, recent advances in the area of regulatory network analysis 

have enabled the identification of proteins that causally drive phenotypes using RNA expression 

data 5. Briefly, this approach quantifies the signaling activity of transcription factors and other 

transcriptional regulators (collectively, “regulatory proteins” or RPs) by integrating the expression 

of their positive and negative target genes using algorithms such as VIPER 6,7. This approach is 

founded on algorithms such as ARACNe, which can accurately infer context-specific sets of target 

genes for thousands of RPs using context-specific gene expression datasets 8-10. Within this 

framework, master regulators (MRs) are a distinct subset of RP whose activity is both necessary 
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and sufficient to drive specific cellular phenotypes. Here we apply regulatory network analysis to 

a set of 242 laser capture microdissected samples of human PDAC or precursor lesions in order 

to understand how mutant KRAS drives malignant phenotypes in PDAC on a comprehensive 

scale. 

Results 

BMAL2 Drives PDAC Phenotypes 
To link clinical and pathological phenotypes to gene expression data in PDAC, we first augmented 

our previous collection of RNA-Seq profiles derived from the malignant epithelium of laser-

captured, microdissected (LCM) human PDAC  (CUMC-E, 11) to now include a total of 197 

adenocarcinomas, 26 low-grade pancreatic intraepithelial neoplasms (PanINs), and 19 low-grade 

intraductal papillary mucinous neoplasms (IPMNs) 12. Together, the PanIN and IPMN samples 

served as “benign controls” that are committed to the neoplastic lineage 13,14 but unlikely to 

progress to PDAC 12,15. Each sample was associated with clinical data including demographics, 

surgical features, treatment class, survival time, and histopathological analysis performed on a 

section adjacent that used for LCM. Unsupervised clustering by Principal Component Analysis 

(PCA) showed a clear distinction between precursor and PDAC expression profiles (Figure 1A). 

 

To benchmark the dataset, we conducted an unbiased analysis of associations between gene 

expression and histopathological features, as drawn from observations of adjacent tissue sections 

(Supplementary Figure S1A). We found that poorly differentiated tumors had elevated 

expression of KRAS 16,17, of proliferation markers (TOP2A, BUB1B, CDC20, and TK1) 18, and 

indicators of squamous PDAC lineage (KRT5, KRT6A, PTHLH, and S100A2) 19,20 (Figure 1B). 

Conversely, hallmarks of differentiation (MUC1, MUC5AC) and GI lineage (TFF1, TFF2) 

decreased during tumor initiation and progression, providing strong validation from these 

established biomarkers. 

 

While correlations identified through differential gene expression analysis can yield some insights, 

regulatory network analysis can connect phenotypes to their mechanistic drivers 6,8,10,21,22. We 

therefore applied ARACNe 6,7 to the full set of 242 epithelial expression profiles to generate a 

regulatory network specific to PDAC epithelia, compiling a total of 263,085 inferred transcriptional 

targets for 2,211 regulatory proteins (RP). For 26 of these RPs, ChIP-Seq data were publicly 

available in human PDAC cells 23. Half of these (13/26) showed a significant overlap with the 
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ARACNe target gene sets, despite the difference of in vivo versus in vitro contexts 

(Supplementary Figure S1B), providing experimental validation for the accuracy of the 

regulatory network. Finally, to benchmark the regulatory network against established PDAC 

biology, we examined the inferred activities of RPs with well-studied roles in PDAC (Figure 1C). 

Principal component 1 (PC1) effectively captured the progression from benign precursors through 

low-grade PDAC, to high-grade PDAC with squamous features. These phenotypic changes were 

accompanied by the repression of canonical PDAC tumor suppressors TP53 and SMAD4, and 

activation of RPs with known oncogenic functions in PDAC, such as FOXA1 24 and TRIM29 25 

(Figure 1C). GI transcription factors GATA6, FOXA2, and PDX1, which have been described as 

being “overexpressed” in some PDAC molecular subtypes  17,26, were more highly active in low-

grade PDAC than in high grade. However, in comparison to benign precursors, their activity in 

low-grade tumors was down-regulated, consistent with the progressive loss of GI identity during 

tumor initiation and progression. Finally, drivers of squamous histology such as TP63 19 and 

ZBED2 27 were hyperactivated in high-grade PDAC, particularly those with annotated squamous 

histopathology. Together these findings demonstrate the ability of MR analysis to accurately 

identify known drivers of specific PDAC phenotypes. 
  

Next we examined the RPs whose activities were most associated either with KRAS activity or 

with key malignant phenotypes, including tumor initiation, tumor progression, and patient survival 

(Supplementary Figure 1C). We used MARINa analysis 28 to identify MRs of PDAC initiation 

(comparing precursors to adenocarcinoma, Figure 1D) and progression (comparing PDAC with 

low-grade versus high-grade histopathology, Figure 1E). For survival, we constructed a survival 

signature from a multi-variate Cox proportional hazards model and identified RPs controlling the 

expression of the most prognostic target genes (Figure 1F). Lastly, we calculated KRAS activity 

by iterating a new PDAC regulatory network comprising the transcriptional targets for a total of 

2,523 signaling factors (see Methods) (Figure 1G). In this analysis, the inferred target genes of 

each signaling protein serve as a bespoke reporter gene set, providing an indirect, but unbiased, 

measure of their signaling activity in PDAC 9,29. As expected, the inferred activity of KRAS 

increased significantly during tumor initiation and tumor progression (Supplementary Figure 1D), 

peaking among tumors growing in solid nests.  

 

The positive and negative MRs of all four of these phenotypes were widely associated with the 

oncogenic programs of the HALLMARK signature set 30 (Supplementary Figure S1E). However, 

in contradistinction to the processes of PDAC initiation and progression, overall survival was not 
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associated with proliferation gene sets. Rather, MRs of patient survival were most strongly 

associated with hypoxia, KRAS signaling, immune signaling, and EMT, suggesting that clinical 

outcome is not solely dependent on growth rate 31. To identify new global drivers of PDAC 

malignancy, we integrated the ranked lists of MRs for PDAC initiation, progression, survival, and 

KRAS activity. We found that BMAL2, a member of the PAS superfamily, was the top candidate 

master transcriptional regulator of PDAC malignancy (Figure 1H). 

 

BMAL2 is associated with aggressiveness in multiple PDAC datasets  
 
BMAL2 has not previously been defined as a key driver of PDAC. To assess the reproducibility 

of our findings, we performed a meta-analysis across a total of 10 published PDAC expression 

studies 26,32-40 and found that BMAL2 expression was elevated relative to normal pancreas 

(Supplementary Figure S2A) and elevated in high-grade versus low-grade PDAC specimens 

(Supplementary Figure S2B). Concordant with our findings in the CUMC-E cohort, high BMAL2 

activity consistently identified patients with worse outcomes (Supplementary Figure S2C). Next, 

we evaluated each combination of five subtype classification schemes and six PDAC expression 

data sets for differences in BMAL2 activity between tumors of the most aggressive versus least 

aggressive subtype (Supplementary Figure S2D), and found that BMAL2 was consistently 

hyperactivated in the most aggressive subtype 41-43.  

 

Finally, we found BMAL2 expression in normal tissues (Supplementary Figure S2E) 41 to be 

highest in squamous epithelia, whereas expression in the normal pancreas was comparatively 

low. By contrast, PDAC tumor samples had among the highest levels of BMAL2 expression 

across multiple cancers (Supplementary Fig. S2F) 42 and PDAC cell lines had the highest 

median expression across cell lines from different lineages 43 (Supplementary Figure S2G). 

Together these results validate our identification of BMAL2 as a key driver of initiation, 

progression, and outcome in multiple independent PDAC datasets.  

 

 

Oncogenic KRAS activates BMAL2 through ERK 
 

In addition to driving the three PDAC malignancy phenotypes, BMAL2 stood out as the single RP 

most highly correlated with KRAS activity (out of 2211 measured), leading us to hypothesize that 

BMAL2 is regulated by KRAS signaling. To test this, we reanalyzed published expression 

datasets in which mutant KRAS activity was experimental manipulated to assess BMAL2 activity: 
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KrasG12D activation in murine pancreatic ductal cells (Sivakumar, Diersch); KrasG12D reactivation 

in PDAC cells that survived mutant Kras withdrawal (Viale);  and mutant Kras inactivation in 

murine and human PDAC cells (Ying, Bryant) 44-48. In all five independent experiments, BMAL2 

activity was regulated as predicted by KRAS, suggesting that BMAL2 may serve as a 

transcriptional effector downstream of mutant KRAS (Figure 2A). To determine whether this 

association extended beyond PDAC, we examined similar RAS modulation experiments in five 

datasets from lung adenocarcinoma models (LUAD) and three datasets from colorectal 

adenocarcinoma models (COAD). In all save one LUAD experiment, BMAL2 activity was 

significantly regulated in coordination with RAS (Figure 2A), suggesting a more general 

association of BMAL2 function in RAS-driven cancers.  

 
To evaluate potential regulators of BMAL2 in an unbiased manner, we leveraged results from a 

recent analysis that presented high throughput RNA-Seq data from two human PDAC cell lines 

treated with 322 different drugs 49,50 (Figure 2B). This exercise revealed a strong 

overrepresentation of MEK inhibitors among the agents most capable of reducing BMAL2 activity 

in PDAC lines (Figure 2C). By contrast, we did not observe effects of this magnitude for inhibitors 

of other KRAS effector proteins, including PI3K, AKT, and MTOR (Figure 2D). Although this 

screen lacked ERK inhibitors, a reanalysis of experimental expression data from PDAC cells 

treated with the ERK1/2 inhibitor SCH772984 found decreasing BMAL2 activity over the course 

of 24 hours after treatment 47 (Figure 2E).  

Finally, to directly test whether RAS inhibition controls BMAL2, we performed RNA-Seq on four 

human PDAC cell lines treated with RMC-7977, a RAS(ON) multi-selective inhibitor that potently 

inhibits mutant and wild-type variants of KRAS, HRAS, and NRAS51,52. In vitro, we found that 

BMAL2 activity was significantly decreased upon RAS inhibition in three PDAC lines that were 

sensitive to RMC-7977 (Figure 2F), despite having no impact to BMAL2 expression levels, 

consistent with a post-translational mechanism of regulation. Interestingly, in two lines with low 

sensitivity to RAS inhibition due to a BRAF mutation (BXPC3) and MYC amplification (KP4), RMC-

7977 treatment did not alter BMAL2 activity. Next, we examined single cell RNA sequencing 

(scRNA-Seq) data from a collection of pancreatic tumors arising in the KrasLSL.G12D/+; 

Trp53LSL.R172H/+; Pdx1-Cretg/+ (KPC) mouse model (manuscript in preparation) and applied 

regulatory network analysis to malignant epithelial cells from mice treated either for one week with 

RMC-7977 versus controls (Supplementary Figure S3A). We found in this in vivo experiment 

that pan-RAS inhibition significantly reduced the activity of BMAL2 in the malignant epithelial cells 
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of PDAC (Figure 2G). Together, these data demonstrate that BMAL2 activity is regulated by 

oncogenic KRAS via the RAF/MEK/ERK effector pathway in pancreatic cancer. 

 

BMAL2 controls hypoxia response targets 
 
BMAL2 belongs to the basic helix–loop–helix PER-ARNT-SIM (bHLH-PAS) family of transcription 

factors that heterodimerize to drive varied functions including circadian rhythm programs, innate 

and adaptive immune responses, oxygen-sensing mechanisms, and response to deleterious 

environmental exposures 53. BMAL2 is classically associated with circadian processes, serving 

as a binding partner for CLOCK 54,55, but sequence conservation analysis shows that BMAL1 and 

BMAL2 are most closely related to ARNT (HIF1B) and ARNT2 (HIF2B), the binding partners of 

the hypoxia-responsive HIF1A and HIF2A proteins (Figure 3A). As hypoxia plays an important 

role in cancer, we examined the association of activities for each bHLH-PAS family member in 

our 197 PDAC epithelial profiles with eight publicly available hypoxia transcriptional signatures56. 

We found BMAL2 exhibited the highest average positive correlation (Spearman’s rho 0.46, Figure 
3B) with hypoxia signatures of any bHLH-PAS family member. Interestingly, neither HIF1A nor 

HIF1B (ARNT) were strongly correlated with hypoxia signatures in PDAC epithelial samples, 

despite being among the top correlated PAS family members in laser capture microdissected 

PDAC stromal samples from the same tumors (N=124, Figure 3C). To assess whether BMAL2 

activity is associated with hypoxia signatures more broadly in cancer, we built bespoke regulatory 

networks for multiple tumor types from TCGA datasets and found that BMAL2 was frequently 

among the most hypoxia-associated bHLH-PAS family members, along with HIF1A and HIF1B 

(Figure 3D). These data suggest that BMAL2 may play an underappreciated role in hypoxia 

responses across human tumors and a particularly prominent role in the hypoxia response of 

PDAC.  

 

Next, we returned to the RNA-Seq data from RMC-7977 treated PDAC cells and found that RAS 

inhibition led to a decrease in hypoxia signature scores (Figure 3E), concordant with the observed 

downregulation of BMAL2 activity (Figure 2F). This was further validated in vivo in the KPC tumor 

scRNA-Seq dataset, which showed a decrease in hypoxia signature enrichment in malignant 

epithelial cells following RMC-7977 treatment (Figure 3F, Supplementary Figure 3A). To 

investigate whether BMAL2 could plausibly play a direct role in transcriptionally regulating hypoxia 

programs, we analyzed the inferred target genes of BMAL2 in the CUMC-E regulatory network 

and evaluated enrichment for genes canonically controlled by HIF1A 57. We found that BMAL2 
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impacts 33 out of 44 hypoxia genes from a published hypoxia signature 57 were regulated in a net 

positive manner, including metabolic proteins such as SLC2A1 (GLUT1), GAPDH, and LDHA 

(Figure 3G); none of the canonical HIF1A target genes were regulated by BMAL2 in a net 

negative manner. Together, these analyses support the hypothesis that BMAL2 contributes to the 

transcriptional regulation of hypoxia genes in PDAC.   

 

 

Autochthonous pancreatic tumors are severely hypoxic 
The activation of oncogenic KRAS in PDAC provokes a cascade of paracrine signals that 

suppresses angiogenesis 58, resulting in low tumor vascularity and limited perfusion59. By 

inference, these tumors are widely expected to be severely hypoxic, but there are few direct 

measurements of partial oxygen pressure (pO2) in PDAC tissues. Oxygen microelectrode 

measurements on a small set of human PDAC patients previously indicated the presence of 

extreme hypoxia (ranging from 0 – 5.3 mmHg) 60, but technical concerns limited interpretation 61. 

We therefore measured the oxygenation of autochthonous pancreatic tumors arising in KPC mice 

– a model system widely utilized for its physiological accuracy to human PDAC. We first measured 

intratumoral pO2 using ultrasound-guided placement of an OxyLite sensor (a gold-standard 

physical sensor of oxygen) and found that pO2 levels were <1mmHg in KPC mouse pancreatic 

tumors (Figure 4A, B), reflecting a setting of extreme hypoxia. This finding was further supported 

via photoacoustic imaging on KPC pancreatic tumors, which revealed an average hemoglobin 

saturation of just 17%, significantly lower than in adjacent pancreas tissue (Figure 4C and 
Supplementary Figures 3B-D). Finally, we measured activation of the hypoxia probe 

pimonidazole 62 following its administration to KPC mice respiring normoxic or hypoxic (10% O2) 

air. In these mice, normal tissues showed marker staining only upon exposure to hypoxia whereas 

PDAC tissues showed equally high levels of staining under both normoxic and hypoxic conditions 

(Figure 4D, Supplementary Figure 3B). Together these experiments demonstrate that 

autochthonous pancreatic tumors in a physiologically relevant model system naturally exist in a 

state of extreme hypoxia, underscoring the importance of hypoxia response programs to PDAC 

biology.  

 

 
BMAL2 drives PDAC cell proliferation and hypoxic metabolism 
We next examined the consequences of BMAL2 loss in four human PDAC cell lines (KP4, 

PANC1, MIAPACA2, and PATU8902) under both normoxic and hypoxic conditions (1% O2), using 
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CRISPR/Cas9 genome editing. Under normoxia, loss of BMAL2 significantly reduced both cell 

viability, trans-well cell migration, clonogenic growth at low density, and in a scratch invasion 

assay (Figure 5A, B and Supplementary Figure 4A-C). We noted that BMAL2 drove the activity 

of a number of other regulatory proteins, including several several direct positive targets 

associated with proliferation, including: Cyclin A2 (CCNA2), MET, NRAS, ETS1, BUB1, and AXL 

(Figure 5C). We selected two of these for (AXL and CCNA2) for validation by western blotting in  

in PDAC cells and confirmed their downregulation in response to BMAL2 loss (Figure 5D). The 

effects of BMAL2 loss on proliferation were also apparent upon exposure to hypoxia; BMAL2 

knockout reduced cell viability, clonogenic growth, and scratch invasion to a similar degree 

regardless of oxygen levels (Figure 5A and Supplementary Figure 4A-C). However, BMAL2 

loss had a particularly potent effect on trans-well cell migration, synergistically reducing the ability 

of PDAC cells move through a porous membrane under hypoxia (Figure 5B, pinteraction= 0.004), 

highlighting a specific contribution of BMAL2 to the hypoxia response of PDAC cells. This is 

consistent with a deep body of literature linking hypoxia to cell migration and places BMAL2 as a 

key transcriptional mediator of hypoxia-induced migration 63,64. 

 

A key component of hypoxic metabolism in all cells is the production and secretion of the glycolytic 

product lactate 65. We examined the impact of BMAL2 knockout on lactate secretion in PDAC 

cells after five days in culture. As expected, exposure to hypoxia significantly increased 

extracellular lactate levels of control cells expressing a non-targeting sgRNA (sgNT). However, 

upon loss of BMAL2, hypoxia no longer increased lactate secretion (Figure 5E, pinteraction = 0.025), 

indicating a strong reliance of PDAC cells on BMAL2 function to facilitate the hypoxia-induced 

shift to glycolytic metabolism. Indeed, Western blots for LDHA and GAPDH, two glycolysis 

proteins that were identified in the PDAC regulatory network as indirect targets of BMAL2, found 

that both were reduced in response to BMAL2 knockout. Moreover, expression of Lactate 

Dehydrogenase A (LDHA), which is directly responsible for cellular lactate production in the final 

step of glycolysis, was decreased in BMAL2 null PDAC cells after 24 hours under hypoxia (Figure 
5F), further supporting the role of BMAL2 in driving hypoxic metabolism.   

 
To better understand the molecular consequences of BMAL2 loss in PDAC cells, we performed 

transcriptomic profiling of KP4 and MIAPACA2 cells from hypoxic and normoxic environments. 

Unsupervised clustering of gene expression profiles showed that hypoxia exposure and BMAL2 

knockout dominated the global variance in both cell lines (Figure 5G and Supplementary Figure 
4D). In both BMAL2 wild type and knockout lines, exposure to hypoxia induced transcriptional 
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programs enriched for HIF1A target genes (Figure 5H and Supplementary Figure 4E), indicating 

that BMAL2 knockout cells are still capable of mounting a transcriptional response to hypoxia. 

However, the magnitude of their response to hypoxia was significantly blunted upon loss of 

BMAL2 in both cell lines, as demonstrated by directly comparing the enrichment of hypoxia 

signatures in sgNT versus sgBMAL2 cells (Figure 5I). Moreover, we found that 19 out of 44 

hypoxia signature genes 57 were significantly less activated by hypoxia upon BMAL2 deletion 

(FDRinteraction < 0.05, Figure 5J).  

 

Next, we examined whether the transcriptional programs altered by BMAL2 loss impacted the 

metabolic programs induced by hypoxia in PDAC cells. We used an LC/MS metabolomic panel 

to quantify ~230 metabolites from BMAL2 wild type or knockout PDAC cells exposed to normoxia 

or hypoxia (Figure 5K). Guided by our transcriptional findings, we focused on metabolites that 

increased in hypoxic conditions but to a lesser degree in BMAL2 knockout cells compared to 

wildtype cells (Figure 5L). Among these, metabolite set analysis found significant 

overrepresentation of metabolites associated with glycolysis and related metabolic pathways 

(Figure 5M) including fructose 6-phosphate, fructose 1,6-bisphosphate, and glyceraldehyde 3-

phosphate (G3P). Together these results that BMAL2 broadly sculpts the transcriptional 

responses of PDAC cells to modulate the metabolic responses to hypoxia.  

 
Finally, to determine whether the phenotypes we observed in cultured PDAC cells ultimately 

impact tumor growth, we assessed the effect of BMAL2 knockout in vivo using two human PDAC 

cell line-derived xenografts (CDX) implanted orthotopically in the pancreas of immune-deficient 

mice (Figure 6A). First, in orthotopic PANC1-derived tumors, we found that loss of BMAL2 

significantly reduced tumor growth rates, as measured by longitudinal 3D high resolution 

ultrasound (Figure 6B,C). We then repeated the experiment using KP4 cells and found that 

BMAL2 had a profound impact on tumor engraftment, with 0 of 12 implanted mice exhibiting 

tumors after 8 weeks, compared to 8 of 12 (66.67%) from sgNT expressing cells (Figure 6D). We 

conclude that BMAL2 is a master transcriptional regulator of PDAC malignancy that both 

promotes cell proliferation and drives the transcriptional and metabolic responses to hypoxia.  

 
 
BMAL2 reciprocally regulates the stability of HIFα proteins 
The classical cellular responses to hypoxia are mediated by the hypoxia inducible factors HIF1α 

and HIF2α 66, which are stabilized in response to low oxygen levels. The HIFα proteins are first 
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stabilized through loss of (oxygen-dependent) proteasomal degradation, followed by further 

stabilization through heterodimerization with the transcription factor HIF1β 67 . To assess the 

impact of BMAL2 on HIF-dependent hypoxia regulation, we performed western blots for HIF1α 

and HIF2α on BMAL2 knockout and wild type PDAC cells, cultured in normoxia and hypoxia 

(Figure 6E). Strikingly, knockout of BMAL2 fully prevented the stabilization HIF1α under hypoxia 

in four different PDAC cell lines, consistent with the observed decrease in LDHA expression. In 

contrast, HIF2α accumulated to even higher levels in BMAL2 knockout cells than in wild-type 

cells, suggesting that BMAL2 can serve as a switch between HIF1α- and HIF2α-dependent 

modes of hypoxia response.  

 

Given the evolutionary conservation of BMAL2 and HIF1β, we considered whether BMAL2 

contribute to HIF1α stabilization by serving as a heterodimerization partner. To test this, we 

transfected HEK293 cells with a GFP-tagged HIF1α construct and performed 

coimmunoprecipitation and western blotting (Figure 6F). In addition to detecting the canonical 

partner HIF1 we were able to detect both endogenous BMAL2 and HIF1β in complex with HIF1α, 

suggesting that BMAL2 may play a direct role in regulating the stability of HIFα family members. 

In summary, we find that BMAL2 serves as a RAS-dependent regulator of hypoxia transcriptional 

programs that drive PDAC malignancy. 

 

 

Discussion 
 
The stability of key genetic mutations throughout PDAC progression, from precursor lesions to 

metastasis, suggests that while these mutations initiate the disease, additional, non-genetic 

mechanisms must drive the dynamic changes in tumor behavior and aggressiveness observed in 

later stages. Here we utilized regulatory network analysis to explore the landscape of non-genetic 

regulators of PDAC. Anchoring our expression profiles to histopathological annotation, we find 

that epithelial differentiation state is closely mirrored by transcriptional regulatory programs. The 

availability of profiles from benign precursors contextualizes our observations of malignant 

samples. For example, oncogenic properties have frequently been ascribed to transcription 

factors, such as GATA6, that are “overexpressed” in the (well-differentiated) Classical subtype, 

relative to other PDAC tumors 17,26. However, GATA6 activity was significantly higher in benign 

precursors than in low-grade tumors. We infer that the comparatively high activity of GATA6 in 

low-grade tumors reflects an incomplete loss of differentiation state—consistent with functional 

characterizations 68,69—that point to a largely tumor-suppressive role for GATA6. We find a similar 
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pattern of downregulation in PDAC for the majority of pancreatic transcription factors, including 

PDX1, HNF1B, and SOX9. These data prompt a reevaluation of their strict classification as 

'drivers' of low-grade, classical tumors, especially considering that loss of differentiation in high-

grade tumors is associated with worse prognosis 70,71. We urge caution in attempts to target GI 

transcription factors therapeutically, at any stage of disease, and would instead favor strategies 

that target consistent RPs of multiple malignant phenotypes. 

While virtually all aspects of PDAC biology are influenced by activating mutations in KRAS, their 

association to histopathological phenotypes is limited 72,73. We find KRAS activity is lowest in low-

grade precursor lesions, despite the high prevalence of activating KRAS mutations 1 in PanIN. 

With the progression to PDAC and eventual loss of differentiation 74, KRAS activity increases 

steadily. Among the 2,211 regulatory proteins we measured, this pattern was most strongly 

correlated with the activity of BMAL2, a transcription factor that is largely undescribed in 

pancreatic cancer. Our pharmacologic perturbation data, particularly the treatment of PDAC cell 

lines with RAS, MEK and ERK inhibitors, demonstrates that BMAL2 activity is effectively regulated 

by RAS/MAPK signaling. This finding places BMAL2 in company with well-validated downstream 

effectors of the RAS-MEK-ERK cascade such as MYC 44,75 and ETS1 76 (the latter of which is a 

direct target of BMAL2 in our regulatory network).  

Although BMAL2 is classically associated with circadian rhythm function 53, our results show that 

BMAL2 is a critical regulator of hypoxia responses. As we demonstrate, the hypovascularity of 

PDAC 59 results in a state of profound hypoxia, begging the question of how these tumors can 

survive and thrive in such an adverse environment. Certainly, severe hypoxia can confer several 

advantageous phenotypes, including immunosuppression, inflammation, invasiveness, and EMT, 

and an associate between RAS signaling and glycolysis has long been apparent from cell culture 

studies 44,77,78. However, the precise mechanisms by which PDAC cells survive such an extreme 

environment have remained cryptic given that tumor-cell specific deletion of Hif1a in KPC mice 

counterintuitively accelerates PDAC progression 79. Our current findings on BMAL2 demonstrate 

that KRAS mutation is directly linked both to the paracrine suppression of angiogenesis in PDAC58 

and to a cell-autonomous regulatory program that enables survival in the resulting hypoxic 

microenvironment. 

It has long been appreciated that HIF1α and HIF2α are differentially regulated through an 

unknown mechanism and that they drive distinct metabolic and transcriptional responses 80,81. 

The possibility that BMAL2 can serve as a functional switch between HIF1α- and HIF2α-

dependent hypoxic responses provides a potential answer to the long-standing question of how 
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these proteins are differentially regulated. With multiple HIF-targeted drugs entering clinical 

development 82, it will be critical to understand in which settings these proteins serve as critical 

dependencies and for which they are dispensable. Moreover, given that BMAL2 knockout mice 

are viable into adulthood with only modest physical phenotypes 83, we anticipate that parallel 

chemical approaches for targeting BMAL2 and other bHLH-PAS proteins may enable yield novel 

therapeutic strategies for targeting the hypoxia response of a broad range of cancers.  
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Figure Legends 
Figure 1. Master regulator analysis of PDAC nominates BMAL2 as a PDAC driver 

(A) Principal component analysis (PCA) of precursor and PDAC LCM RNA-Seq samples used to 

assemble a regulatory model (interactome) of PDAC carcinogenesis. (B) Heatmap depicting 

select differentially expressed genes between the indicated histopathological groups (x-axis). 

Wald test statistics were derived from a negative-binomial linear model comparing the respective 

group against all other groups. (C) Heatmap of protein activity scores (NES) for select regulatory 

proteins during PDAC progression. The samples are ordered by their value in the first principal 

component, essentially capturing progression and dedifferentiation. (D) Select results from 

master regulator analysis on a genome-wide PDAC initiation gene expression signature (x-axis) 

represented by Z-scores for each gene. Each regulatory protein's regulon is represented by red 

(positive targets) and blue (negative targets) vertical bars. The rank of each RP based on activity 

and expression, respectively, is illustrated on the right. (E) Select results from master regulator 

analysis on a genome-wide PDAC progression gene expression signature (x-axis) (F) Select 

results from master regulator analysis on a genome-wide survival signature (x-axis) represented 

by Wald test statistics from a multivariate Cox Proportional Hazards model testing the coefficient 

for each gene’s continuous expression while accounting for patient age (G) Genome-wide 

Pearson correlation between KRAS and RP activity with illustration of the most positively 

correlated RPs (H) Heatmap of rank positions for the indicated regulatory proteins (x-axis) in each 

of four critical phenotypic PDAC transitions yields a conserved core set of non-oncogene 
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dependency candidates for PDAC. A low rank represents activation in a given phenotype 

signature.  

 

Figure 2. Oncogenic KRAS activates BMAL2 via the ERK mitogen-activated protein kinase 
cascade 

(A) BMAL2 regulon enrichment in the indicated genome-wide response gene expression 

signatures to the experimental modification of oncogenic Kras mutation (Refs. 44-48) in PDAC (top 

panel), lung adenocarcinoma (LUAD, Refs. 84-86) and colon adenocarcinoma (COAD, Ref. 87). 

Positive and negative targets, respectively, are represented by red and blue vertical bars, 

respectively. Normalized enrichment score (NES) and p-values are calculated by two-tailed 

analytic rank-based enrichment analysis (aREA, p-values are Bonferroni corrected) (B) 

Schematic of the experimental design to study the effect of a library of antineoplastic compounds 

on regulatory protein activity as part of the OncoTreat framework (Refs. 49,50) (C) Effects of 322 

antineoplastic compounds on BMAL2 activity (NES) in ASPC1 (x-axis) and PANC1 (y-axis) cells. 

Zoomed area shows compounds with consistent and potent reversal of BMAL2 activity. Red 

circles mark MEK inhibitors, all other compounds are grey. (D) Reversal of BMAL2 activity (y-

axis, normalized enrichment score, NES) for the indicated compound classes (x-axis). P-values 

are derived from pairwise t-tests with post hoc Bonferroni correction. (E) Reversal of BMAL2 

activity (y-axis, NES) at the indicated time points of treatment with an ERK inhibitor (SCH772984) 

in 7 PDAC cell lines. (F) Inferred changes in KRAS and BMAL2 protein activity in pancreatic 

cancer cell lines upon RMC-7977 (100nM) treatment for 24h. Statistical significance was 

determined by a paired, two-tailed t-test, and p-values are indicated where significant (*p < 0.05, 

**p < 0.01, ***p < 0.001). (G) Box plots showing Normalized Enrichment Score (NES) of BMAL2 

activity in tumor cells from single-cell RNA sequencing from control and 1-week RMC-7977 

treated mice51 

Figure 3. The bHLH-PAS family member BMAL2 controls hypoxia response targets 

(A) Phylogenetic tree illustrating the pairwise distance based on sequence alignment of bHLH-

PAS family transcription factors. Blue rectangle highlights the closest family members for BMAL2. 

Vertical bars represent specific amino acids at the indicated position (1-1300). (B) Heatmap of 

Spearman's rank correlation between transcriptional hypoxia scores using signatures from the 

indicated references (x-axis) and epithelial protein activity for bHLH-PAS family members (y-axis). 

(C) Heatmap of Spearman's rank correlation between transcriptional hypoxia scores using 

signatures from the indicated references (x-axis) and stromal protein activity for bHLH-PAS family 
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members (y-axis). (D) Heatmap of the average Spearman's rank correlation between eight 

transcriptional hypoxia scores in the indicated TCGA tumor cohorts (x-axis) and protein activity 

for bHLH-PAS family members (y-axis). (E) Gene Set Enrichment Analysis (GSEA) of hypoxia-

related gene signatures upon RAS inhibition in five human PDAC cell lines treated with 100nM of 

the RAS(ON) inhibitor RMC-7977 for 24 hours. (F) Box plots showing Normalized Enrichment 

Score (NES) of a hypoxia-related gene set57 in tumor cells from single-cell RNA sequencing from 

control and 1-week RMC-7977 treated mice51. The normalized enrichment score (NES) and p-

value are indicated. (G) HIF target genes (Ref. 57, orange) controlled directly or indirectly by 

BMAL2 (green). Indirect control involves both BMAL2's negative influence on first (dark blue) or 

second tier (light blue) RP repressing HIF target genes, and positive influence on first (dark red) 

and second (light red) tier RP activating HIF target genes. 

Figure 4. Severe hypoxia in pancreatic tumors is highlighted by multiple methods 

(A) Image (top) shows a KPC mouse (M) being imaged with an ultrasound transducer (T), with 

percutaneous insertion of the OxyLite probe (arrow). An ultrasound image (bottom) shows the 

probe (red hashline, offset) extending through the abdominal wall and through the depth of the 

tumor (outlined in blue). (B) Oxygen tension (y-axis) as determined by an OxyLite probe in tumors 

from KPC mice breathing ambient air or pure oxygen (x-axis). Dark blue circles represent 

averages per tumor and boxplots illustrate their distribution. Light blue circles represent repeat 

measurements per tumor at different sites. (C) Fraction of saturated hemoglobin (y-axis) in the 

indicated tissue (x-axis). (D) Hypoxia marker pimonidazole staining intensity in the indicated 

tissues and oxygen conditions. **: p ≤ 0.01, ***: p ≤ 0.001, ns: not significant 

In boxplots, the box ranges from Q1 (the first quartile) to Q3 (the third quartile) of the distribution 

and the range represents the IQR (interquartile range). The median is indicated by a dashed line 

across the box. The “whiskers” on box plots extend from Q1 and Q3 to 1.5 times the IQR. 

Figure 5. BMAL2 knockout phenotypes in pancreatic cancer cells are pronounced by 
hypoxic environments and blunts its transcriptional and metabolic response. 

(A) Cell numbers represented by luminescence in pancreatic cancer cells expressing non-

targeting (sgNT) or BMAL2-directed (sgBMAL2) sgRNA in the indicated oxygen environment and 

cell line. (B) Number of migrated cells for pancreatic cancer cells expressing sgNT or sgBMAL2 

in the indicated oxygen environment and cell line. P-value stems from testing the interaction 

coefficient between BMAL2 knockout and hypoxic conditions from a log linear regression model. 
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(C) Depiction of a subset of target genes inferred for BMAL2 from the PDAC regulatory network, 

focused on those associated with proliferation. (D) Western Blot for direct targets AXL and CCNA2 

in KP4 cells carrying the indicated sgRNA in the indicated oxygen environment (24h). Tubulin was 

the loading control.  (E) Extracellular lactate levels after 5 days in pancreatic cancer cells 

expressing sgNT or sgBMAL2 in the indicated oxygen environment and cell line. P-value stems 

from testing the interaction coefficient between BMAL2 knockout and hypoxic conditions from a 

log linear regression model. *: p ≤ 0.05, **: p ≤ 0.01. (F) Western Blot for hypoxia targets LDHA 

and GAPDH in Patu8902 cells carrying the indicated sgRNA in the indicated oxygen environment 

(24h). Tubulin was the loading control. (G)  Principal component analysis (PCA) based on gene 

expression of the indicated cell line carrying sgNT or sgBMAL2 in hypoxic or normoxic 

environments, respectively. (H) Scatter plot illustrating the relationship of a genome-wide 

transcriptional hypoxia signature found in the indicated cell lines carrying sgNT (x-axis) and 

sgBMAL2 (y-axis) sgRNA, respectively. Red circles mark a set of HIF1A reporter genes described 

previously (Ref. 57) (I) 2-tailed GSEA of the top 100 transcripts induced (red) and repressed (blue) 

by hypoxia in PDAC cells on a gene expression signature between hypoxic sgBMAL2 cells (left) 

and sgNT cells (right). (J) Heatmap illustrating HIF1A reporter gene expression (Ref. 57) for a 

subset with a differential hypoxia response between cells carrying sgNT or sgBMAL2, 

respectively. (K) PCA based on metabolite abundances in sgBMAL2 vs sgNT MP2 cells in 

hypoxic or normoxic environments, respectively. (L) Differential abundance signatures of 230 

metabolites in MP2 cells comparing the effects of hypoxia treatment (y-axis) and knockout of 

BMAL2 (x-axis). We focused on metabolites that were upregulated under hypoxia more in BMAL2 

wild-type cells than in BMAL2 knockout cells (inset). (M) shows metabolite sets that are 

overrepresented among this group. 

Figure 6. HIF1A interacts with BMAL2 and depends on it for stabilization in pancreatic 
cancer cells  

(A) Experimental design of the in vivo experimental setup. Immunodeficient NOD/SCID mice were 

orthotopically injected with PANC1-Cas9 or KP4-Cas9 cells carrying non-targeting control (sgNT) 

or sgBMAL2. Tumor growth was monitored weekly using longitudinal, high-resolution 3D 

ultrasound imaging. At endpoint, tissue was collected and processed for analysis. (B) 

Representative ultrasound images of orthotopic tumors derived from PANC1 sgNT and sgBMAL2 

cells. Yellow arrowheads indicate tumor boundaries. Scale = 2mm. (C) Box plot showing tumor 

growth rates (y-axis) in tumors carrying the indicated sgRNA (x-axis) in PANC1 cells. Groups 

were compared by two-tailed Mann-Whitney U test. (D) Box plot showing tumor volumes after 8 
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weeks in sgNT and sgBMAL2 KP4 cells. Groups compared by two-tailed Mann-Whitney U test. 

(E) Western Blot for HIF1A, HIF2A, BMAL2, LDHA and GAPDH in PANC1 cells carrying the 

indicated sgRNA in the indicated oxygen environment (24h). Tubulin was the loading control. (F) 

Input Control: Total cell lysates were subjected to Western blotting to verify the expression levels 

of HIF1A, GFP and BMAL2. Co-IP. For Co-immunoprecipitation (Co-IP), GFP-tagged HIF1A was 

immunoprecipitated from cell lysates (top panel), and the presence of interacting proteins was 

assessed by Western blotting using antibodies against HIF1A, BMAL2, and HIF1B (ARNT) 

(bottom panel). 

Methods 
 
Patient population and samples generation 

Patient population. Freshly frozen tissue samples were obtained from patients who underwent 

surgical resection at the Pancreas Center at Columbia University Medical Center as described 

previously 11. The clinical data of these patients are shown in Supplementary Tables S1 and S2. 

Before surgery, all patients had given surgical informed consent, which was approved by the 

institutional review board. Immediately after surgical removal, the specimens were cryopreserved, 

sectioned, and microscopically evaluated by the Columbia University Tumor Bank (IRB 

AAAB2667). Suitable samples were transferred into OCT medium (Tissue Tek) and snap-frozen 

in a 2-methylbutane dry ice slurry. The tissue blocks were stored at -80°C until further processing. 

H&E stained sections of frozen PDAC samples from the Tumor Bank were initially screened to 

confirm the diagnosis and overall sample RNA quality was assessed by the Pancreas Center 

supported Next Generation Tumor Banking program using gel electrophoresis, with samples 

exhibiting high RNA quality utilized for subsequent analyses. 

 

Laser Capture Microdissection (LCM), RNA sequencing, and gene expression 
quantification. LCM-RNA-Seq was performed as described previously 11,88. Briefly, Cryosections 

of OCT-embedded tissue blocks were transferred to PEN membrane glass slides and stained 

with cresyl violet acetate. Adjacent sections were H&E stained for pathology review. Laser capture 

microdissection was performed on a PALM MicroBeam microscope (Zeiss), collecting at least 

1000 cells per compartment. RNA was extracted and libraries were prepared using the Ovation 

RNA-Seq System V2 kit (NuGEN). Libraries were sequenced to a depth of 30million, 100bp, 

single-end reads on an Illumina HiSeq 2000 or 4000, respectively, platform. Reads and transcripts 

per million (TPM) were estimated for each transcript using the transcript sequences from the 
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GENCODE Release 34 (GRCh38.p5) and the Salmon software (v1.3.0). Counts and TPM were 

summarized at the gene level by summing up the transcript values for each corresponding gene.  

Computational methods 

Assembly of a PDAC regulatory model and network analysis. A cell regulatory network for 

pancreatic carcinogenesis (CUMC-E interactome) was reverse-engineered by ARACNe-AP 7 

using 242 epithelial LCM-RNA-Seq gene expression profiles. Genes with detection rates at 10 

counts below 25% in all of the examined conditions (PanIN, IPMN, and PDAC) were removed 

and the variance was stabilized by fitting the dispersion to a negative binomial distribution as 

implemented in the DESeq2 R package 89. ARACNe was run with standard settings (using data 

processing inequality (DPI), with 100 bootstrap iterations using human gene symbols mapping to 

a set of 1665 transcription factors and 1025 transcription cofactors as described by AnimalTFDB 

3.0 90. For the signaling network, a set of 3370 signaling-pathway-related genes was considered 

which were annotated in the GO Biological Process database as GO:0007165—‘signal 

transduction  ’and in the GO Cellular Component database as GO:0005622—‘intracellular  ’or 

GO:0005886—‘plasma membrane’. Thresholds for the tolerated DPI and mutual information P 

value were set to 0 and 10–8, respectively. Using the strategy outlined above, we also generated 

a stromal regulatory network leveraging a set of 159 stromal LCM gene expression profiles (124 

PDAC, 19 PanIN, 12 IPMN). Cytoscape v3.7.1 91 was used to illustrate subnetworks of relevant 

regulatory proteins. The CUMC-E interactome is available as R object from 

https://doi.org/10.6084/m9.figshare.13160078.v2. 

 

Master Regulator Analysis and inference of virtual protein activity. The enrichment of each 

regulatory protein’s regulon in the progression and dedifferentiation signature, respectively, was 

inferred by the MARINa algorithm as implemented in the msviper function from the viper R 

package 28,29,92. Statistical significance was estimated by permuting the sample labels uniformly 

at random 1,000 times. For single-sample analysis including precursor and tumor samples, 

unsupervised gene expression signatures were computed by a z-score transformation of the 

variance-stabilized data. This was performed gene-by-gene, by first subtracting the mean 

expression level across all samples and then dividing by its standard deviation. Relative protein 

activity was then inferred for each sample with the VIPER algorithm. For a patient-based approach 

including the assessment of whether significant dysregulation of an individual regulatory protein 

occurs in a given tumor, single sample gene expression signatures were computed for each 

primary sample by subtracting the mean of all precursor samples (n = 45) and dividing by their 
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standard deviation. RP activity was then inferred by VIPER analysis of each PDAC gene 

expression signature. P-values were estimated by the analytical approximation implemented in 

the aREA algorithm, which is virtually equivalent to estimations obtained by permuting the genes 

in the signature uniformly at random 29. P-values were corrected to account for multiple hypothesis 

testing by the Benjamini-Hochberg method. 

 
Gene set enrichment analysis and scoring. One-tail gene set enrichment analysis was 

implemented as described 93. Two-tailed gene set enrichment analysis and enrichment of 

individual ARACNe regulons were carried out using analytic rank-based enrichment analysis 

(aREA) 29. Functional annotation of ARACNe-derived regulons was carried out by testing the 

overrepresentation of HALLMARK gene sets (MSigDb v6.0) among all target genes of a given 

regulatory protein with the gene universe set to all unique genes in the CUMC-E interactome 

(n=18658) using a two-tailed Fisher’s Exact test.  

 

Differential gene expression. Genome-wide differential gene expression analysis was generally 

calculated using the DESeq2 89 R package for RNA-Seq count data  and the limma R package 94 

for microarray data. For comparisons including both RNA-Seq and microarray data, differential 

gene expression for count data was repeated using the voom-limma framework for the sake of 

consistency with the microarray analysis.  

 

Survival signature and assessment of prognostic relevance. In an unbiased approach to 

study the association of gene expression and protein activity with patient outcome, a genome-

wide survival signature was computed by fitting a multivariate Cox Proportional Hazards model 

(CPHM) accounting for the age at diagnosis and the continuous, normalized expression of a 

respective gene using the survival R package 95. Next, we extracted the ensuing Wald statistic of 

the coefficient for gene expression with higher values corresponding to higher hazard ratios and 

vice versa and applied MARINa with a gene permutation null model to this survival signature to 

infer regulatory proteins controlling the survival signature.  

 

Effect size meta-analysis. The effect size (i.e. log2 fold change) and its standard error for BMAL2 

were extracted from the respective genome-wide differential expression analysis of a total of 10 

studies where global expression in normal vs. primary tumors and low-grade vs. high-grade 

tumors, respectively, was contrasted. Similarly, the coefficient (log hazard ratio) and its standard 

error for the upper tertile of BMAL2 expression and activity, respectively, were extracted from a 
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CPHM in cohorts with available time-to-event data. Meta-analysis was carried out using the 

metafor R package 96. Both random and fixed effect models were fit using the rma function 

(method = “REML” and method = “FE”). 

 

Molecular subtyping. Moffitt classes were determined for 197 primary PDAC LCM-RNA-Seq 

profiles as described previously 32. Briefly, using the 50 (47 with a unique match in our data) 

tumor-specific transcripts from Moffitt et al., we applied consensus clustering to our mRNA cohort 

with Euclidean distance and the partitioning around medoids (PAM) algorithm, seeking and 

reproducing two clusters of both genes and samples.  

 

PAS family sequence alignment. Amino acid sequences for bHLH-PAS family members were 

retrieved using functionality from the Universal Protein Resource Knowledgebase 97. After 

sequence alignment pair-wise distances determined based on sequence identity. Results were 

illustrated using the ggtree and msatools R packages.  

 

Hypoxia scoring. Using tumor epithelial expression data, hypoxia scores were calculated by 

using mRNA-based signatures as described previously 56. For each gene in each of eight 

signatures, TPM were extracted and if a tumor’s abundance value exceeded the median across 

all tumors, +1 was added to its hypoxia score while -1 was added otherwise.  

 

External data 
 
Human PDAC cohorts. For the TCGA-PAAD cohort, raw count data were retrieved from the 

GDC Data portal for 149 patients described previously 38 and the variance was stabilized as 

described above. For the ICGC-PACA-AU cohort described previously 40, normalized gene 

expression data for 96 patients were provided by the authors in Suppl. Table 2. Microarray data 

of primary PDAC specimen from Collisson et al. 26 (n = 27), Moffitt et al. 32 (n = 252), and Puleo 

et al. 39 (n = 309) were retrieved from GSE17891, GSE71729 and E-MTAB-6134, respectively. 

Studies containing expression data from both normal pancreas and PDAC were processed and 

analyzed as described previously 98.  

 

TCGA Pan-Cancer Atlas. Processed clinical and expression data were retrieved from the 

Genomic Data Commons Pan-Cancer homepage (https://gdc.cancer.gov/about-

data/publications/pancanatlas). Information on sample types was added using TCGA sample 
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barcodes. For regulatory network assembly, only tumor types with at least 100 RNA-Seq samples 

were retained and networks were generated using ARACNe as described above for CUMC 

samples.  

Gene perturbation signatures. Raw microarray data from a mouse model harboring a dox-

inducible oncogenic KrasG12D were retrieved from GSE32277 44 and GSE58307 45 and processed 

using the affy and gcrma R packages. Processed microarray data from normal murine ductal cells 

in which oncogenic KrasG12D was turned on using adenoviral Cre recombinase were retrieved 

from GSE89846 and E-MTAB-2592 46,48. Raw RNA-Seq data from human PDAC cell lines stably 

transfected with shRNA targeting KRAS were retrieved from the European Nucleotide Archive 

under accession PRJEB25797 47 and quantified using the pipeline outlined above for CUMC 

samples. RNA-Seq counts were analyzed using the voom-limma framework implemented in the 

edgeR and limma R packages. 

ChIP-Atlas. We identified ChIP-Seq experiments concerning transcription factors in a cellular 

context pertinent to pancreatic ductal adenocarcinoma via the ChIP-Atlas 23 website. The results 

of this search are listed in Supplementary Table S3. For each experiment and transcription factor, 

we tested whether ARACNe-inferred targets of the respective transcription factor were 

overrepresented among ChIP-Seq inferred targets (10kb window) using a Fisher’s Exact test with 

subsequent adjustment of p-values using the Benjamini-Hochberg method. 

Experimental methods 
 
Cell culture. KP4, PANC1, MIAPACA2 (MP2), PATU8902, ASPC1 cell lines were obtained from 

ATCC and tested negative for mycoplasma infection. Cells were maintained under standard 

conditions at 37ºC and 5% CO2 using manufactured cell media conditions. 

Genome editing and transfection protocol. The sgRNA (small-guide RNA) for knocking out 

BMAL2 as well as a non-targeting (NT) sequence were purchased from GenScript (Piscataway, 

NJ) using the pLentiGuide-Puro vector as a backbone. Human PDAC cells were first infected with 

a pLentiCas9-Blast vector (Addgene, #52962) for a constitutive Cas9 expression and selected 

with Blasticidin (AG Scientific, #B-1247-SOL). Cells expressing Cas9 were then infected with 

selected virus carrying sgBMAL2 and sgNT, respectively, using the lentiviral protocol according 

to the manufacturer's instructions.  

Viability, lactate and migration assays. Cells were seeded at 3x103 cells per well in 96 well 

plates and incubated for five days either under normoxia or moved to the hypoxia chamber with 
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1% O2 (StemCell, #27310). Lactate assay was performed using 5 µl of media and the luminometric 

Lactate-Glo assay kit (Promega, #J5021) according to the manufacturer’s protocol. To measure 

cell viability, Alamar Blue reagent (Bio-rad, # BUF012) was added to the culture media for 4 h, 

and absorbance was determined at 570 and 600 nm using a Varioskan LUX Multimode Microplate 

Reader (Thermo, #3020-80389). For the migration assay, PDAC cells carrying sgNT or sgBMAL2, 

respectively were seeded (1×105) into transwell membrane inserts in serum-free culture media (5 

µm pore, Corning #3412) and regular media was added to the lower chamber. Cells were 

incubated for 24h in regular conditions. After the incubation time, plates were incubated either 

under normoxia (37°C, 5% CO2, 20%O2) or moved to the hypoxia chamber (37°C, 5% CO2, 1%O2) 

for 14 hours and cells that migrated across the membrane were fixed and stained with crystal 

violet and counted under the microscope. For the dose-response assays, KP4 cell line was tested 

for sensitivity to RMC-7977 in quintuplicates with serial dilutions of RMC-7977 (top concentration 

of 10 µM) or DMSO. Cells were incubated for 72 h prior to measurement using Alamar Blue. A 

total of 3 biological replicates were done. Growth percentage was calculated by normalizing drug-

treated values to DMSO control, which was set to 100%. Mean ± s.d. was plotted for each tested 

dilution. 

Colony formation assays. KP4 cells carrying non-targeting control (NT) or sgBMAL2 ( 103 

cells/well) were cultured in 6-well plates at 37 °C under normoxia or hypoxia conditions. After ten 

days, cells were stained with crystal violet solution and scanned. 

Wound healing assay. KP4 cells carrying non-targeting control (NT) or sgBMAL2 were seeded 

on the 6-well plate. Cells were grown into monolayer and manual scratching with a 200 μl pipette 

tip. Cells were rinsed with PBS and incubated at 37 °C in serum-free media for 24h under 

normoxia or hypoxia conditions. Photographs of the wounded areas were taken by phase-contrast 

microscopy. 

Immunoblotting. Cell pellets were lysed with RIPA lysis buffer (Cell Signaling, #9806S) and 

protein concentrations were determined by BCA protein assay (Thermo Scientific, #23227) 

according to the manufacture’s protocol. Proteins were separated on Mini-PROTEAN TGX gels 

(Bio-Rad, #4561093) and transferred to nitrocellulose membrane (Bio-Rad, #1704156). 

Membranes were incubated in blocking buffer (5% BSA, 0.1% Tween-20, 10 mM Tris at pH 7.6, 

100 mM NaCl) for 1 hour and then with primary antibody overnight at 4 °C according to the 

antibody datasheet. Antibodies used: HIF1A (1:1000, Cell Signaling, #36169S), beta-Actin 

(1:1000, Cell Signaling, #4970S), HIF2A (1:1000, Cell Signaling, #7096S), BMAL2 (1:500, 

Abcam, #ab221557), LDHA (1:1000, Cell Signaling, #3582S), GAPDH (1:1000, Cell Signaling, 
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#2118S), AXL (1:1000, Cell Signaling, #8661), CCNA2 (1:1000, Cell Signaling, #67955) and 

Tubulin (1:1000, Cell Signaling, #2146S). Anti-rabbit-HRP (Cell Signaling, #7074S) conjugated 

antibodies was used to detect the desired protein by chemoluminescence with ECL (Bio-Rad, 

#170-5061).  

Metabolomics. Metabolites were extracted from cell pellets by adding 1mL of ice-cold 80% 

MeOH / 20% H2O. Samples were vortexed and incubated on dry ice for 10 minutes, centrifuged 

at 12,000g, with subsequent extraction of the supernatant. Supernatant was volume normalized 

across sample groups and then concentrated using a SpeedVac Vacuum Concentrator (model: 

SPD1030), and reconstituted in 50uL of 50% MeOH / 50% H2O. Samples were run on a tandem 

liquid-chromatography mass spectrometry (LC/MS) set up consisting of an Agilent 1290 Infinity II 

LC and Agilent 6470 Triple Quadrupole (QqQ) mass spectrometer. The method and column 

parameters were as follows: Solvent A: 97% water and 3% methanol 15 mM acetic acid and 10 

mM tributylamine (pH of 5). Solvent C: 15 mM acetic acid and 10 mM tributylamine in methanol. 

Solvent D for washing is acetonitrile. LC system seal washing solvent: 90% water and 10% 

isopropanol. Needle wash solvent: 75% methanol and 25% water. GC-grade Tributylamine 99% 

(ACROS ORGANICS), LC/MS grade acetic acid Optima (Fisher Chemical), InfinityLab 

Deactivator additive, ESI–L Low concentration Tuning mix (Agilent Technologies), LC-MS grade 

solvents of water, and acetonitrile, methanol (Millipore), isopropanol (Fisher Chemical). Column: 

Agilent ZORBAX RRHD Extend-C18, 2.1 × 150 mm and a 1.8 µm and ZORBAX Extend Fast 

Guards for ultra high-performance liquid chromatography (UHPLC). LC gradient profile: 0.25 

mL/min, 0–2.5 min, 100% A; 7.5 min, 80% A and 20% C; 13 min 55% A and 45% C; 20 min, 1% 

A and 99% C; 24 min, 1% A and 99% C; 24.05 min, 1% A and 99% D; 27 min, 1% A and 99% D; 

at 0.8 mL/min, 27.5–31.35 min, 1% A and 99% D; at 0.6 mL/min, 31.50 min, 1% A and 99% D; at 

0.4 mL/min, 32.25–39.9 min, 100% A; and at 0.25 mL/min, 40 min, 100% A. Column temperature 

was kept at 35°C, samples were at 4°C and the injection volume was 2 µL per sample.The 6470 

Triple Quad MS is calibrated with the Agilent ESI-L Low concentration Tuning mix. Source 

parameters: gas temperature 150°C, gas flow 10 L/min, nebulizer 45 psi, sheath gas temperature 

325°C, sheath gas flow 12 L/min, capillary –2000 V, and delta EMV –200 V. Negative ion mode 

was used. Dynamic multiple reaction monitoring (dMRM) scan type is used with 0.07 min peak 

width, acquisition time is 24 min. Delta retention time of plus and minus 1 min, fragmentor of 40 

eV, and cell accelerator of 5 eV are incorporated in the method. Data were pre-processed with 

Agilent MassHunter Workstation Quantitative Analysis for QQQ version 10.1, build 10.1.733.0. 
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Co-immunoprecipitation. HEK cells were transfected 24 h after plating. Mixed homemade PEI 

3µl with 1µg of plasmid in 200µls of Opti MEM per well of a 6 well plate, incubated at room 

temperature for 20mins, then gently added to the cells. Cells were lysed (6 wells of a 6 well plate 

combined) per condition with RIPA buffer supplemented with protease inhibitor cocktail, sodium 

orthovanadate, MgCl, DNaseI and EDTA (final concentration of all these at 1mM). Lysates were 

incubated on ice for 20mins, then spun down at 15,000rpm for 15mins, with subsequent collection 

of the supernatant. 90% of supernatant volume were incubated with GFP beads (already washed 

according to manufacturer’s protocol) and the remaining 10% were used as input control. 

Incubation with GFP beads continued at 4°C for two hours while mixing. Afterwards, samples 

were washed three times according to manufacturer’s protocol and then bead-bound protein was  

diluted with 2X dye and boiled at 95°C for 10mins.  

RNA extraction and RNA sequencing. Total RNA from proliferation assays was extracted using 

TRIzol (Invitrogen) using the manufacturer ’protocol and the quality of the sample was analyzed 

using the 2100 bioanalyzer system (Agilent). Samples were then sequenced using the Element 

AVITI platform. 

KPC Mice. LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx1-Cre (KPC) mice were bred by crossing the 

individual LSL-KrasG12D/+, LSL-Trp53R172H/+, and Pdx1-Cre strains. Triple mutant mice were 

palpated twice weekly for evidence of early tumors beginning at 8 weeks of age, followed by 

subsequent B-mode ultrasound screening using a VisualSonics 2100 Vevo High Resolution 

System. Following detection, tumors were monitored once weekly until reaching a mean diameter 

of 6 mm. 

Oxylite Measurements. Intratumoral partial oxygen pressures in KPC mice (n=16) were 

measured using the OxyLite fluorescence quenching-based system (Oxford Optronics). Tumor-

bearing KPC mice were anesthetized with 2% isoflurane in either air or pure oxygen. Hair was 

removed with depilatory cream around the abdomen and the tumor was visualized by ultrasound. 

A syringe with a 21G needle was attached to a stereotactic mount and inserted through the skin 

and abdominal wall. Real-time ultrasound imaging was used to visually guide the needle in-plane 

with the image through the center of the tumor until reaching the far edge. With the needle in 

place, the syringe was carefully removed and the bare-fiber oxygen-sensing OxyLite probe was 

then attached to the stereotactic mount and threaded through the needle bore until the probe tip 

was localized at the far edge of the tumor. The needle was fully retracted over the fiber and an 

initial pO2 measurement was taken at the far site. Prior to each measurement, the probe was 

allowed to equilibrate for 3-5 minutes until readings stabilized. After the initial reading, the fiber 
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was retracted incrementally through the needle track, with readings taken every 1-2 mm, through 

the full depth of the tumor (ranged from 6-12 mm in diameter). Measurements within 1 mm of the 

edge of the tumor were excluded from the analysis since the needle frequently punctured the far 

wall of the tumor, allowing oxygen from the abdominal cavity into the wound (as made apparent 

by a sharp spike in readings). To compare tumor to normal tissue, partial pressures were also 

measured in pancreas and kidney of wildtype mice (n=4) kept under anesthesia using 

compressed air as vehicle. After completing measurements, mice were euthanized by isoflurane 

overdose and tissue was harvested for formalin fixation for 24 h prior to paraffin embedding. All 

tumors were verified as pancreatic ductal adenocarcinoma by a blinded observer experienced in 

mouse tumor pathology. 

In vivo xenograft studies. In order to generate orthotopic xenograft tumors, survival surgeries 

were carried out and 1x105 to 1000 tumor cells in 30–50 µl media/Matrigel mixtures (1:1) were 

implanted directly into the mouse pancreas using Panc1 and KP4 cell lines respectively. Body 

weights were measured and tumor growth was measured by high-resolution 3D ultrasound 

imaging weekly 99.  

Single cell RNA sequencing. KPC samples used in Wasko et al. were submitted for Single-Cell 

RNA-Sequencing to the Sulzberger Genome Center. Single-cell sequencing data were processed 

using the Cell Ranger pipeline from 10X Genomics. FASTQ files were generated and aligned 

using the mouse transcriptome as a reference (v. gex-mm10-2020-A). ScRNA-seq profiles from 

each of the samples (both Controls and drug-treated) were quality controlled and filtered based 

on minimum and maximum UMIs per cell, (103 and 105, respectively) and the percentage of 

mitochondrial UMIs (max 25%). The resulting scRNA-Seq data were embedded in a Seurat object 

for normalization and scaling using the procedure outlined in 100. The optimal number of clusters 

was determined by the resolution-optimized Louvain algorithm, as described in 101. Unbiased 

inference of main cell types was performed using the SingleR package in combination with two 

mouse datasets as references contained in the celldex package (MouseRNAseqData 102 and 

ImmGenData 103). SingleR-inferred cell types were confirmed and refined after careful inspection 

of the most differentially expressed genes per cluster determined using a Wilcoxon Rank Sum 

test as implemented in the FindAllMarkers of the Seurat package. The malignancy status of the 

clusters of putative tumor cells was confirmed by performing inferCNV analysis 104. Sample-

specific gene regulatory networks were inferred using the ARACNe3 algorithm 105 applied to the 

malignant cells of the Control samples. ARACNe3 networks were then integrated across samples, 

in order to create consensus regulatory models.  The following ARACNe3 parameters were used: 
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100 subnetworks, 0.25 FDR. Drug response gene expression signatures were computed by 

comparing the expression level of each gene in each drug-treated sample with respect to the 

average of the same gene in all vehicle controls. The resulting signatures were then converted 

into protein activity using the NaRnEA algorithm 105, in combination with the Malignant Cells 

regulatory network. This produces a NES – a measure of the statistical significance – and a 

proportional enrichment score (PES) – a measure of effect size, for each inferred regulator. 

 

References 

 
1. Murphy, S.J. et al. Genetic alterations associated with progression from pancreatic 

intraepithelial neoplasia to invasive pancreatic tumor. Gastroenterology 145, 1098-
1109.e1 (2013). 

2. Makohon-Moore, A.P. et al. Limited heterogeneity of known driver gene mutations among 
the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358-366 
(2017). 

3. Sodir, N.M. et al. MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype. 
Cancer Discov 10, 588-607 (2020). 

4. Schneeweis, C. et al. AP1/Fra1 confers resistance to MAPK cascade inhibition in 
pancreatic cancer. Cell Mol Life Sci 80, 12 (2022). 

5. Califano, A. & Alvarez, M.J. The recurrent architecture of tumour initiation, progression 
and drug sensitivity. Nat. Rev. Cancer 17, 116-130 (2017). 

6. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 
37, 382-390 (2005). 

7. Lachmann, A., Giorgi, F.M., Lopez, G. & Califano, A. ARACNe-AP: gene network 
reverse engineering through adaptive partitioning inference of mutual information. 
Bioinformatics 32, 2233-2235 (2016). 

8. Aytes, A. et al. Cross-species regulatory network analysis identifies a synergistic 
interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer 
Cell 25, 638-651 (2014). 

9. Piovan, E. et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute 
lymphoblastic leukemia. Cancer Cell 24, 766-776 (2013). 

10. Carro, M.S. et al. The transcriptional network for mesenchymal transformation of brain 
tumours. Nature 463, 318-325 (2010). 

11. Maurer, C. et al. Experimental microdissection enables functional harmonisation of 
pancreatic cancer subtypes. Gut 68, 1034-1043 (2019). 

12. Basturk, O. et al. A Revised Classification System and Recommendations From the 
Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am. J. 
Surg. Pathol. 39, 1730-1741 (2015). 

13. Maitra, A. & Leach, S.D. Disputed paternity: the uncertain ancestry of pancreatic ductal 
neoplasia. Cancer Cell 22, 701-703 (2012). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


-28- 

14. Patra, K.C., Bardeesy, N. & Mizukami, Y. Diversity of Precursor Lesions For Pancreatic 
Cancer: The Genetics and Biology of Intraductal Papillary Mucinous Neoplasm. Clin. 
Transl. Gastroenterol. 8, e86 (2017). 

15. Matthaei, H. et al. Presence of pancreatic intraepithelial neoplasia in the pancreatic 
transection margin does not influence outcome in patients with R0 resected pancreatic 
cancer. Ann. Surg. Oncol. 18, 3493-3499 (2011). 

16. Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer 
phenotypes. Nature 554, 62-68 (2018). 

17. Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by 
genomic events during tumor evolution. Nat. Genet. 52, 231-240 (2020). 

18. Connor, A.A. et al. Integration of Genomic and Transcriptional Features in Pancreatic 
Cancer Reveals Increased Cell Cycle Progression in Metastases. Cancer Cell 35, 267-
282.e7 (2019). 

19. Somerville, T.D.D. et al. TP63-Mediated Enhancer Reprogramming Drives the Squamous 
Subtype of Pancreatic Ductal Adenocarcinoma. Cell Rep. 25, 1741-1755.e7 (2018). 

20. Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous 
features in pancreatic ductal adenocarcinoma. Nature Cancer 1, 59-74 (2020). 

21. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-kappaB in 
diffuse large B-cell lymphoma. Nature 459, 717-721 (2009). 

22. Elyada, E. et al. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma 
Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discov. 9, 1102-1123 
(2019). 

23. Oki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-
seq data. EMBO Rep. 19(2018). 

24. Roe, J.-S. et al. Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell 
170, 875-888.e20 (2017). 

25. Wang, L. et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway 
activation and beta-catenin stabilization. Cancer Cell 15, 207-219 (2009). 

26. Collisson, E.A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing 
responses to therapy. Nat. Med. 17, 500-503 (2011). 

27. Somerville, T.D.D. et al. ZBED2 is an antagonist of interferon regulatory factor 1 and 
modifies cell identity in pancreatic cancer. Proc. Natl. Acad. Sci. U. S. A. (2020). 

28. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master 
regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010). 

29. Alvarez, M.J. et al. Functional characterization of somatic mutations in cancer using 
network-based inference of protein activity. Nat. Genet. 48, 838-847 (2016). 

30. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set 
collection. Cell Syst 1, 417-425 (2015). 

31. Kirby, M.K. et al. RNA sequencing of pancreatic adenocarcinoma tumors yields novel 
expression patterns associated with long-term survival and reveals a role for ANGPTL4. 
Mol. Oncol. 10, 1169-1182 (2016). 

32. Moffitt, R.A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific 
subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168-1178 (2015). 

33. Pilarsky, C. et al. Activation of Wnt signalling in stroma from pancreatic cancer identified 
by gene expression profiling. J. Cell. Mol. Med. 12, 2823-2835 (2008). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


-29- 

34. Pei, H. et al. FKBP51 affects cancer cell response to chemotherapy by negatively 
regulating Akt. Cancer Cell 16, 259-266 (2009). 

35. Yang, S. et al. A Novel MIF Signaling Pathway Drives the Malignant Character of 
Pancreatic Cancer by Targeting NR3C2. Cancer Res. 76, 3838-3850 (2016). 

36. Hiraoka, N. et al. CXCL17 and ICAM2 are associated with a potential anti-tumor immune 
response in early intraepithelial stages of human pancreatic carcinogenesis. 
Gastroenterology 140, 310-321 (2011). 

37. Donahue, T.R. et al. Integrative survival-based molecular profiling of human pancreatic 
cancer. Clin. Cancer Res. 18, 1352-1363 (2012). 

38. Cancer Genome Atlas Research Network. Electronic address, a.a.d.h.e. & Cancer Genome 
Atlas Research, N. Integrated Genomic Characterization of Pancreatic Ductal 
Adenocarcinoma. Cancer Cell 32, 185-203.e13 (2017). 

39. Puleo, F. et al. Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and 
Microenvironment Features. Gastroenterology 155, 1999-2013.e3 (2018). 

40. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 
531, 47-52 (2016). 

41. The, G.C. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene 
regulation in humans. Science 348, 648-660 (2015). 

42. Hoadley, K.A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 
10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304.e6 (2018). 

43. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. 
Nature 569, 503-508 (2019). 

44. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic 
glucose metabolism. Cell 149, 656-670 (2012). 

45. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on 
mitochondrial function. Nature 514, 628-632 (2014). 

46. Sivakumar, S., de Santiago, I., Chlon, L. & Markowetz, F. Master Regulators of Oncogenic 
KRAS Response in Pancreatic Cancer: An Integrative Network Biology Analysis. PLoS 
Med. 14, e1002223 (2017). 

47. Bryant, K.L. et al. Combination of ERK and autophagy inhibition as a treatment approach 
for pancreatic cancer. Nat. Med. 25, 628-640 (2019). 

48. Diersch, S. et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary 
pancreatic ductal epithelial cells. Oncogene 35, 3880-6 (2016). 

49. Alvarez, M.J. et al. A precision oncology approach to the pharmacological targeting of 
mechanistic dependencies in neuroendocrine tumors. Nat. Genet. 50, 979-989 (2018). 

50. Mundi, P.S. et al. A Transcriptome-Based Precision Oncology Platform for Patient-
Therapy Alignment in a Diverse Set of Treatment-Resistant Malignancies. Cancer Discov 
13, 1386-1407 (2023). 

51. Wasko, U.N. et al. Tumor-selective activity of RAS-GTP inhibition in pancreatic cancer. 
Nature (2024). 

52. Holderfield, M. et al. Concurrent inhibition of oncogenic and wild-type RAS-GTP for 
cancer therapy. Nature 629, 919-926 (2024). 

53. Labrecque, M.P., Prefontaine, G.G. & Beischlag, T.V. The aryl hydrocarbon receptor 
nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-
functional protein interfaces. Curr. Mol. Med. 13, 1047-1065 (2013). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


-30- 

54. Hogenesch, J.B. et al. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific 
heterodimeric partner of circadian and hypoxia factors. J Neurosci 20, Rc83 (2000). 

55. Maemura, K. et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of 
plasminogen activator inhibitor-1 gene expression. J Biol Chem 275, 36847-51 (2000). 

56. Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet 
51, 308-318 (2019). 

57. Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 
251-5 (2014). 

58. Hasselluhn, M.C. et al. Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and 
VEGF Signals Driving Pancreatic Cancer Angiosuppression. Cancer Discov (2023). 

59. Olive, K.P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in 
a mouse model of pancreatic cancer. Science 324, 1457-61 (2009). 

60. Koong, A.C. et al. Pancreatic tumors show high levels of hypoxia. International Journal 
of Radiation Oncology*Biology*Physics 48, 919-922 (2000). 

61. Vaupel, P., Thews, O. & Kelleher, D.K. Pancreatic tumors show high levels of hypoxia: 
regarding Koong et al. IJROBP 2000;48:919-922. Int J Radiat Oncol Biol Phys 50, 1099-
100 (2001). 

62. Varghese, A.J., Gulyas, S. & Mohindra, J.K. Hypoxia-dependent Reduction of 1-(2-Nitro-
1-imidazolyl)-3-methoxy-2-propanol by Chinese Hamster Ovary Cells and KHT Tumor 
Cells in Vitro and in Vivo1. Cancer Research 36, 3761-3765 (1976). 

63. Saxena, K., Jolly, M.K. & Balamurugan, K. Hypoxia, partial EMT and collective 
migration: Emerging culprits in metastasis. Transl Oncol 13, 100845 (2020). 

64. Tam, S.Y., Wu, V.W.C. & Law, H.K.W. Hypoxia-Induced Epithelial-Mesenchymal 
Transition in Cancers: HIF-1alpha and Beyond. Front Oncol 10, 486 (2020). 

65. Nakayama, K. & Kataoka, N. Regulation of Gene Expression under Hypoxic Conditions. 
Int J Mol Sci 20(2019). 

66. Cui, X.-g. et al. HIF1/2&#x03B1; mediates hypoxia-induced LDHA expression in human 
pancreatic cancer cells. Oncotarget; Vol 8, No 15 (2017). 

67. Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408 
(2012). 

68. Martinelli, P. et al. GATA6 regulates EMT and tumour dissemination, and is a marker of 
response to adjuvant chemotherapy in pancreatic cancer. Gut 66, 1665-1676 (2017). 

69. Martinelli, P. et al. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic 
tumorigenesis in mice. Gut 65, 476-486 (2016). 

70. de Andrés, M.P. et al. GATA4 and GATA6 loss-of-expression is associated with extinction 
of the classical programme and poor outcome in pancreatic ductal adenocarcinoma. Gut 
72, 535-548 (2023). 

71. Roy, N. et al. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and 
maintenance. Genes Dev. 30, 2669-2683 (2016). 

72. Collisson, E.A., Bailey, P., Chang, D.K. & Biankin, A.V. Molecular subtypes of pancreatic 
cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207-220 (2019). 

73. Connor, A.A. & Gallinger, S. Pancreatic cancer evolution and heterogeneity: integrating 
omics and clinical data. Nat Rev Cancer 22, 131-142 (2022). 

74. S, N.K. et al. Morphological classification of pancreatic ductal adenocarcinoma that 
predicts molecular subtypes and correlates with clinical outcome. Gut 69, 317-328 (2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


-31- 

75. Hayes, T.K. et al. Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is 
Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell 
29, 75-89 (2016). 

76. Plotnik, J.P., Budka, J.A., Ferris, M.W. & Hollenhorst, P.C. ETS1 is a genome-wide 
effector of RAS/ERK signaling in epithelial cells. Nucleic Acids Res 42, 11928-40 (2014). 

77. Bryant, K.L., Mancias, J.D., Kimmelman, A.C. & Der, C.J. KRAS: feeding pancreatic 
cancer proliferation. Trends Biochem Sci 39, 91-100 (2014). 

78. Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support 
cancer cell growth. Mol Syst Biol 7, 523 (2011). 

79. Tiwari, A. et al. Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of 
PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis. Gastroenterology 
159, 1882-1897 e5 (2020). 

80. Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B. & Simon, M.C. Differential roles of 
hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. 
Mol Cell Biol 23, 9361-74 (2003). 

81. Keith, B., Johnson, R.S. & Simon, M.C. HIF1α and HIF2α: sibling rivalry in hypoxic 
tumour growth and progression. Nature Reviews Cancer 12, 9-22 (2012). 

82. Yuan, X., Ruan, W., Bobrow, B., Carmeliet, P. & Eltzschig, H.K. Targeting hypoxia-
inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 23, 175-
200 (2024). 

83. Dantas-Ferreira, R. et al. Deletion of the Clock Gene Bmal2 Leads to Alterations in 
Hypothalamic Clocks, Circadian Regulation of Feeding, and Energy Balance. J Neurosci 
44(2024). 

84. Dost, A.F.M. et al. Organoids Model Transcriptional Hallmarks of Oncogenic KRAS 
Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell 27, 663-678.e8 (2020). 

85. Kostyrko, K. et al. UHRF1 is a mediator of KRAS driven oncogenesis in lung 
adenocarcinoma. Nat Commun 14, 3966 (2023). 

86. Mou, H. et al. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas 
receptor-mediated apoptosis. Proceedings of the National Academy of Sciences 114, 3648-
3653 (2017). 

87. Martins, F. et al. Differential unfolded protein response regulation in KRAS silencing 
sensitive and innately resistant colorectal cancer cells. Sci Rep 15, 14329 (2025). 

88. Maurer, H.C. & Olive, K.P. Laser Capture Microdissection on Frozen Sections for 
Extraction of High-Quality Nucleic Acids. Methods Mol. Biol. 1882, 253-259 (2019). 

89. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 

90. Hu, H. et al. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of 
animal transcription factors. Nucleic Acids Res. 47, D33-D38 (2019). 

91. Shannon, P. et al. Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res. 13, 2498-2504 (2003). 

92. Alvarez, M.J., Giorgi, F. & Califano, A. Using viper, a package for Virtual Inference of 
Protein-activity by Enriched Regulon analysis. Bioconductor, 1-14 (2014). 

93. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545-
15550 (2005). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


-32- 

94. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing 
and microarray studies. Nucleic Acids Res. 43, e47 (2015). 

95. Therneau, T.M. & Grambsch, P.M. Modeling Survival Data: Extending the Cox Model, 
350 (Springer Science & Business Media, 2013). 

96. Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. Journal of 
Statistical Software, Articles 36, 1-48 (2010). 

97. Zaru, R. & Orchard, S. UniProt Tools: BLAST, Align, Peptide Search, and ID Mapping. 
Curr Protoc 3, e697 (2023). 

98. Badgley, M.A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. 
Science 368, 85-89 (2020). 

99. Sastra, S.A. & Olive, K.P. Quantification of murine pancreatic tumors by high-resolution 
ultrasound. Methods Mol Biol 980, 249-66 (2013). 

100. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-
seq data using regularized negative binomial regression. Genome Biol 20, 296 (2019). 

101. Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated 
renal tumor macrophages. Cell 184, 2988-3005.e16 (2021). 

102. Benayoun, B.A. et al. Remodeling of epigenome and transcriptome landscapes with aging 
in mice reveals widespread induction of inflammatory responses. Genome Res 29, 697-709 
(2019). 

103. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a 
transitional profibrotic macrophage. Nat Immunol 20, 163-172 (2019). 

104. inferCNV of the Trinity CTAT Project. 
105. Griffin, A.T., Vlahos, L.J., Chiuzan, C. & Califano, A. NaRnEA: An Information Theoretic 

Framework for Gene Set Analysis. Entropy (Basel) 25(2023). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B C

-3 0

NES

3

Lineage
Morphogenic

Classical
Basal-like

Non-solid
Solid

IPMN
PanIN
low-grade
high-grade

PC1

S
qu

am
ou

s
D

riv
er

G
at

ek
ee

pe
r

P
ro

gr
es

si
on

D E F

G
DEG rank DEG rank Prognosis rank

H

PC 1

PC
 2

PDAC
IPMN
PanIN

KRAS

Overall

Survival

Progression

Initiation

1 10 26 2 43 39 16 42 6 3 9 13 7 49 8

5 51 7 4 49 32 75 96 28 14 6 93 61 10 12

6 3 13 41 33 21 52 18 4 10 101 5 7 120 27

94 57 87 88 18 78 29 17 140 154 63 70 106 6 144

  B
M

AL
2

CB
X3

EN
O1

HM
GA

2
HO

XB
7

FO
XJ

1
SI

X1
OV

OL
1

FO
XD

1
M

YB
L1

PL
AG

1
TR

IB
3

SE
RT

AD
2

TF
AP

2A
ZB

ED
2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KRAS
MET
MAP2K1

SMAD4
TP53

POU2AF1
FOXA2
NR3C2
GATA4
GATA6

PDX1
HDGF

BMAL2
FOXN2
OVOL1

TRIM29
FOXA1

IRF6
HES2

ZBED2
TP63

EGFR

KRT5
KRT6A
PTHLH
S100A2

TOP2A
BUB1B
CDC20
TK1

IP
M

N
Pa

nI
N G1 G2 G3

So
lid

MUC1
MUC5AC
TFF1
TFF2

-5 0 5
Wald statistic:

2000 10

30 1
0.76

0.78

0.80

0.82

0.84

0.86BMAL2

HMGA2

BEND6
MYBL1

ETS1
FOXD1SERTAD2

ZBED2
PLAG1

CBX3

CCDC88A
AJUBA

TRIB3

CDK5R1
RBL1

P
ea

rs
on

's
 r 

K
R

A
S

  a
ct

iv
ity

Rank

Good prognosisLow-gradePrecursor

PDAC High-grade Poor prognosis

1 79

89

729

5

6

1274 12246

21681

21466

21699

2205

2207

2208

4

0

-4

5

0

-5

10
0

-10

SNAI2

BMAL2

PLAG1

MECP2

GATA6

NR3C2
PDX1

ZIC2

FOXD1

BMAL2

CBX4

ZFP36L2

PRDM16
HNF1B

1 10K 20K1 10K 20K1 10K 20K

NR6A1

NFE2L3

TFAP2A
AR

DMRTA1
FOXQ1
SMAD4

Ac
tiv

ity
Ex

pr
es

si
on

Ac
tiv

ity
Ex

pr
es

si
on

Ac
tiv

ity
Ex

pr
es

si
on

1

4

6

999

2202

2207

2210

1

5

6

996

2204

2207

2211

6140

6050

89

19452

20242

21611

21702

837

75

14

7680

21557

20977

21438

W
al

d 
st

at

Z
-s

co
re

Z
-s

co
re

Figure 1

R
as

 
pa

th
w

ay
S

qu
am

ou
s

C
el

l 
cy

cl
e

G
I 

lin
ea

ge

Initiation

KRAS activity

Progression Survival

-0.5

0

0.5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


PDAC 
cell lines

Small molecule 
library (n=322)

Gene Expression Protein Activity
SignaturesPLATE-Seq

OncoTreat high-throughput drug profiling

PIMASERTIB

TAK-733

TRAMETINIB

PD0325901

REFAMETINIB

BINIMETINIB

BMAL2 Activity (NES)

-4

-4

-3.5

-3

-2.5

PA
N

C
1

-2

-3.5 -3
ASPC1

-2.5 -2

-2.5 0 2.5

KRAS Off

KRAS Off

KRAS Off

PDAC KRAS On

KRAS On

KRAS On

Bryant

Viale

Diersch

Ying

Sivakumar
BMAL2 regulon

BMAL2 regulon

BMAL2 regulon

NES
pVal

NES
pVal

NES
pVal

5.03
***

4.62
***

4.20
***

3.24
**

2.39
0.07

ASPC1
PANC1

B
M

A
L2

 A
ct

iv
ity

 (
N

E
S

)

P
ro

te
in

 A
ct

iv
ity

 (
N

E
S

)

B
M

A
L2

 A
ct

iv
ity

 (
N

E
S

)** *****

**

**

p= 0.054-4

-2

0

CTRL RMC-
7977

MEK PI3K AKT MTOR 1 4 12 24

0

-4

-8
PANC1
PA14C SW1990

PA04C PA01C
HPAFIIHPAC

ERKi in PDAC Cell LinesPDAC Cell Lines RAS(ON)i KPC miceRAS(ON)i PDAC Cell Lines

Time (hours)Inhibitor targets

ns

*
**

**
B

M
A

L2
 P

ro
te

in
 A

ct
iv

ity
 

(N
E

S
)

G

A

D E F

B

CLUAD

COAD

Dost (KPY)
Kostyrko

(H358)
Dost (KY)
Kostyrko

(A549)
Mou

9.62
***

9.15
***

8.39
***

4.75
***

-0.72
ns

Martins
(LS174T)
Martins

(SW480)
Martins

(HCT116)

8.09
***

7.28
***

6.61
***

-4

-2

0

2

DMSO
RMC-7977

CTRL
RMC-7977

DMSO
RMC-7977

MP2
ASPC1
PANC1

KRAS BMAL2
4

2

0

2

KRAS BMAL2

KP4
BXPC3

Figure 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

Hypoxia responsive genesDirect positive Direct negative Indirect negativeIndirect positive

PIM1

PFKFB
4

LOX

EGLN1
EGLN3 FLT1

HK1

TGFB3

PLOD1

P4HA1

PDK1

CA12
TMEM45A

HMOX1

CDKN1A

CP

IGFBP3

STC2

VEGFA

PGK1

LDHA

DDIT4

SERPINE
1ENO1

MIF

PGAM1

GAPDHSLC2A1

P4HA2

PFKFB3

TGFANDRG1

BNIP3L

TFRC

SLTM

EPC1

CTDP1

NR2F2

ZFPM1

CTNND1

HNF1A

HINT1

DDX54

NFIX
JADE1

NFIA

KLF9

ZBED3

ZNF33A

FGFR2

ERG

ZKSCAN1

ZNF33B
TOPORS

INSRPNRC1

GATA4
MEIS1

TFCP2L1

SCMH1

NR3C
2

NFIC TBX2

TOB2

NR1I2

SRCAP

ANXA
4

PCBD2

TESC
PURA

RERE

ZNF445

SOX21 THRB

ZBTB4

ONECUT3

MLXIP

MXD4

CDK13

FOXA3BAZ2B

FOXP4
MPHOSPH8

FOXA2

KMT2E

GPS2

DMTF1

PBXIP1

SETD2

FOXP1TADA2A

ZNF334

SOX9

NR0B2

MECOM

PDCD4 POU2AF1

NFIB

DACH1

ETV4

PRDM8

MYBL1

E2F8

GLI2

HMGA2

MAML
2

TP73

CBX5

EZH2

GATA3

RUVBL2

NCK1

PHF1
9

HDAC9

PITX1

TAF9

PTTG1

DPF2
FOXM1

XRCC6

NRG1
TNNI2

SUB
1

WDR61

NEDD8

MDFI

CALR

FLNA

VGLL3

NOD2

TIMELESS

MEF2A

PHB

OVOL1

SNAI2

TCF19

ACTB

ZFPM2

ACTN4

TAF2

STK3

RAD21

SOX4

HDGF
TRIP13

HOXA10

AURKB
CENPA

TFAP2A
EGFRMAF ZEB2

PDX1

HIPK2
SSBP3

TOX3
MAML3

ASH1
L

GATA6
MEIS2 ONECUT2

HNF4GERN1

CREB3L1
PIAS1

NFX1

REPIN1

ZNF629 HNF4A

ZFP64

CLU

HNF1B LPIN1

ZNF652

ASCC1

THAP10BIRC5

PLK1 ETS1

PLAG1

YBX3
HMGA1

CDK1

CENPF

CCNA2

VGLL1CBX3

E2F7

NAB1

BMAL2

HIF3A
HIF2A

CLOCK
NPAS3
HIF1B
NPAS2
HIF1A

BMAL2

Se
ign

ac

Ra
gn

um
W

int
er

Bu
ffa

El
vid

ge Hu
So

er
en

se
n

W
es

t

Se
ign

ac

Ra
gn

um
W

int
er

Bu
ffa

El
vid

ge Hu
So

er
en

se
n

W
es

t

HIF1B
HIF1A
HIF3A

SIM1
CLOCK
NPAS1
NPAS3
NPAS2
HIF2A
BMAL1

SIM2
BMAL2

Spearman's rho

-1 10

Spearman's rho

-1 10

CLOCK
NPAS2
HIF1B
HIF2B
BMAL2
BMAL1
NPAS4
HIF3A
HIF1A
HIF2A
SIM1
SIM2
NPAS1
NPAS3

ES = -1.61, p = 0.0397

GSEA of hypoxia genes on RMC-
7977 signature in PDAC cells

Rank in Ordered Dataset
10000 20000 30000

Hypoxia signature enrichment in 
epithelial cells of KPC mice

PDAC Epithelium PDAC Stroma
BL

CA
BR

CA
CE

SC
CO

AD
ES

CA
GB

M
HN

SC
KI

RC
KI

RP
LA

M
L

LG
G

LI
HC

LU
AD

LU
SC OV

PC
PG

PR
AD

SK
CM

ST
AD

TG
CT

TH
CA

UC
EC

SIM1

NPAS3

HIF3A

NPAS4

SIM2

HIF1B

CLOCK

HIF2A

BMAL1

NPAS1

NPAS2

HIF1A

BMAL2

Control RMC-7977

4

2

0

2

H
yp

ox
ia

 s
ig

na
tu

re
 (

N
E

S
) **

A B C

D

E

G

F
TCGA Cancers

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4

0

20

40

60

S
at

ur
at

ed
 H

em
og

lo
bi

n 
(%

) * * *

Pancreas Kidney TumorAir

KPC PDAC pO2 KPC O2 Sat. Hypoxia probe staining

O2 Panc. PDAC

0.01

0.1

1

10

100

O
yg

en
 te

ns
io

n 
(m

m
H

g)

50

200

400

P
im

on
id

az
ol

e 
st

ai
ni

ng
(o

pt
ic

al
 d

en
si

ty
)

Normoxia
Hypoxia

**

ns

***

M

T

2

D
epth (m

m
)

6

4

8

3

7

5T
N

S

A B C D

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2025. ; https://doi.org/10.1101/2023.03.19.533333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533333
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5
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Figure 6
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Supplementary Figure 1
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Supplementary Figure 1. (A) F-statistics (y-axis) from a linear model with the indicated principal component (PC, x-axis) as 
dependent variable and the indicated histopathological characteristic as the independent variable. Blue bars indicate significant 
results. (B) Scatter plot illustrating the relationship between number of ARACNe-inferred, context-specific targets for select 
regulatory proteins (RP, x-axis) and the significance of their overlap with targets deduced from publically available ChIP 
experiments as assessed by a two-tailed Fisher's Exact test. Circle size represents the number of publically available ChIP 
experiments (range = 1-4) (C) Schematic illustrating the assessment of regulatory protein activity in various genome-wide 
phenotype signatures. (D) KRAS protein activity across the indicated histological PDAC stages. Pairwise p-values are derived 
from a post hoc Dunn test after Kruskal-Wallis one-way analysis of variance. LG = Low grade; HG = High grade. (E) For each 
of 4 phenotypic signatures, regulons from the top 20 RP up (red color) and down (blue color) were divided into positive and 
negative targets (y-axis) which were then scored for overlap with the indicated HALLMARK gene sets (x-axis). Circle size 
represents the fraction of RPs (20 each) whose positive and negative regulon tail, respectively, exhibits significant overlap as 
assessed by a two-tailed Fisher's Exact test.  **: p ≤ 0.01, ***: p ≤ 0.001 

In boxplots, the box ranges from Q1 (the first quartile) to Q3 (the third quartile) of the distribution and the range represents the 
IQR (interquartile range). The median is indicated by a dashed line across the box. The “whiskers” on box plots extend from 
Q1 and Q3 to 1.5 times the IQR. 
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Supplementary Figure 2
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Supplementary Figure 2. Fold changes and their 95% confidence interval between (A) primary tumors and adjacent normal 
tissue, and (B) high-grade and low-grade tumors for the indicated data sets (y-axis). (C) Hazard ratios and their 95% confidence 
interval for patients belonging to the highest BMAL2 activity and expression tertile, respectively. Lower panels in (A-C) 
summarize the meta-analytic estimate from a fixed (FE) and random effects (RE) model, respectively. (D) BMAL2 activity 
(Normalized Enrichment Score, NES) in the most aggressive vs. least aggressive subtype as determined by the indicated 
classification scheme (y-axis) in each of the indicated data sets (x-axis). BMAL2 expression in the indicated units across (E) 
various normal tissues, (F) 33 primary tumor cohorts profiled by the TCGA Pan-Cancer project, and (G) cancer cell lines derived 
from various lineages profiled by the CCLE project. *: p ≤ 0.05 **: p ≤ 0.01, ***: p ≤ 0.001, ns: not significant
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Supplementary Figure 3
A

Supplementary Figure 3. (A) Experimental design of the single-cell RNA sequencing experiment experimental setup.  
KrasLSL.G12D/+; p53LSL.R172H/+;Pdx1-Cretg/+(KPC) mice were treated with either vehicle or RMC-7977 (50 mg/kg q.2d. 
p.o.) for 7 days. Tissue was collected and processed for scRNA sequencing. Finally, tumor cells were analyzed and inferred 
differential activity of proteins was calculated based on the expression of their downstream target genes. (B)  Heatmap of 
photoacoustic data from a representative KPC tumor, where red indicates high % blood oxygenation and blue represents low 
% blood oxygenation. Based on anatomical data from a co-registered B-mode image (not shown), tumor is outlined in yellow 
and adjacent normal pancreas is outlined in green. (D) Heatmap of total hemoglobin content from a representative KPC tumor 
(yellow) and adjacent normal pancreas (green). (D) Anti-pimonidazole (hydroxprobe) IHC stainings of FFPE blocks of normal 
kidney (left), normal pancreas (middle) and KPC tumors (right) are shown from mice under normoxic (top) or hypoxic (bottom) 
conditions. Scale bars = 20um.
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Supplementary Figure 4
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Supplementary Figure 4. (A) Representative transwell migration assay pictures of PANC1 cells carrying sgNT or sgBMAL2 
under normoxic or hypoxic conditions. (B) Cell clone formation assessed using a plate-based assay in KP4 cells carrying sgNT 
or sgBMAL2 under normoxic or hypoxic conditions (top panel) with the quantification (bottom panel) (C) Effect of BMAL2 knock 
out on cell migration was detected using a scratch assay. The scratching area was photographed at starting point and 24h under 
normoxia or hypoxia conditions (left panel) and quantified (right panel). (D) Principal component analysis (PCA) based on gene 
expression of the indicated cell line carrying sgNT or sgBMAL2 in hypoxic or normoxic environments, respectively. (E) Scatter 
plot illustrating the relationship of a genome-wide transcriptional hypoxia signature found in the indicated cell lines carrying 
sgNT (x-axis) and sgBMAL2 (y-axis) sgRNA, respectively. Red circles mark a set of HIF1A reporter genes described previously 
(Ref. 57) 
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