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Abstract 27 

Although local adaptation influences species distributions, its role in driving evolutionary 28 

resilience under climate change remains unclear. Current predictive models focus on genetic 29 

adaptation to present climates, providing limited insight into future adaptive capacity. We 30 

hypothesise that historical responses to climatic shifts can reveal future adaptive potential. 31 

Combining ecological niche modelling and genomic analyses, we investigated spatiotemporal 32 

patterns and mechanisms of local adaptation of the Western Palearctic barn owl (Tyto alba). 33 

Ecological modelling revealed that barn owls now occupy a broader climatic niche than 34 

during the Last Glacial Maximum. Genomic analyses indicated ongoing adaptation, with 35 

regions under selection linked to environmental factors across all populations. Our findings 36 

demonstrate that local adaptation drives evolutionary changes across populations, enabling 37 

colonisation of new habitats and shaping responses to climate change in resident 38 

populations. We demonstrate that standing genetic diversity plays a crucial role in 39 

adaptation to past, present, and future environmental shifts. 40 

Key words 41 

Local adaptation, Climate change, Genomics, Diversity, Chromosomal inversion 42 
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Introduction 43 

Climatic variations affect biodiversity by impacting individual’s fitness, by driving population 44 

differentiation, and ultimately by shaping species distributions1–3. The extent of these 45 

impacts, however, depends on the speed and intensity of climatic variations4: sudden or 46 

extreme shifts can lead to local or global extinction if individuals fail to survive or 47 

reproduce5. In case of more gradual changes, the persistence of populations and species will 48 

depend on individuals' ability to migrate or cope with their new environment1,6,7. Through 49 

migration, individuals track their suitable conditions in time and space to survive, inducing a 50 

shift in species distribution1. Individuals can also change physiologically, morphologically, or 51 

phenologically to cope with the new local conditions7. These changes can occur via 52 

phenotypic plasticity, the ability of individual genotypes to produce different phenotypes 53 

when exposed to various environmental conditions8 or through genetic adaptation, 54 

favouring different genotypes better adapted to the local ecological conditions9. 55 

Considering the critical role of local adaptation in determining population persistence10, 56 

understanding whether individuals possess the intrinsic capacity to adapt to new 57 

environmental conditions is critical. In recent years, genomic offset has emerged as a key 58 

metric for predicting genetic maladaptation to future climates by linking environmental 59 

factors to allele frequencies and estimating the genetic changes needed for individuals to 60 

survive to new conditions11–13. However, while such predictions provide valuable insights 61 

into potential risks, these predictions assume populations are adapted to current conditions 62 

and cannot evolve further, overlooking their adaptive potential. Therefore, a key challenge 63 

remains understanding whether standing genetic variation can fuel adaptation to new 64 

climate - a question our study seeks to answer.  65 
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At the end of the Last Glacial Maximum (LGM) temperatures rose and ice caps melted, 66 

allowing species to (re-)colonise previously unsuitable lands2,14,15. Climatic variations since 67 

the LGM offer an excellent opportunity to study species’ adaptation. The interplay between 68 

migration and selection gives rise to several possible scenarios for how local adaptation may 69 

occur: In populations that migrated northward, individuals either tracked their suitable niche 70 

or faced new conditions. In the latter case, selection may have driven local adaptation by 71 

favouring the most suited individuals9, but repeated migration events eventually caused 72 

founder effects and a loss of adaptive potential along the front of colonisation16. In contrast, 73 

populations that remained at the core of the distribution may also have faced a change in 74 

conditions. These populations often harbour a higher genetic diversity17, possibly enhancing 75 

their ability to adapt to their changing environment. Given these three main scenarios, 76 

where and how local adaptation happens remains elusive and exploring these questions can 77 

enhance our understanding of the adaptive potential of populations. 78 

The barn owl (Tyto alba), a nonmigratory raptor distributed all over the Western Palearctic, 79 

faces heterogeneous climates. The species recolonised the Northern part of Europe at the 80 

end of the LGM from two main glacial refugia located in the Iberian Peninsula and the Italian 81 

and Balkan Peninsulas15. Presently, its range stretches across the Western Palearctic15. 82 

Despite a generally low level of genetic differentiation across its range, southern populations 83 

host a higher genetic diversity than northern populations15,18,19, and exhibit notable 84 

phenotypic variation, such as a cline in plumage coloration between southern and northern 85 

populations18–21. A previous study demonstrated that the colour cline cannot be explained 86 

by purely neutral processes and argued that selection for local adaptation was or is still 87 

acting on this phenotype21. The well-understood history of the barn owl in Europe since the 88 

Last Glacial Maximum, combined with the low genetic structure at the continental level and 89 
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previous evidence of adaptive selection throughout its range, make this species an attractive 90 

model to test and quantify the extent and location of local adaptation. 91 

Here, we evaluated where and how heterogeneous climate induce local adaptation using the 92 

European barn owl as a model organism. We first used ecological information and Species 93 

Distribution Modelling to (i) quantify the climatic heterogeneity faced by the barn owl 94 

nowadays and (ii) measure how these climatic conditions differ from those experienced 95 

during the Last Glacial Maximum. We then looked for an association between climatic 96 

variables and genomic variants from the entire genome of 74 owls from 9 different localities 97 

across Europe. We combined these results with a new approach to scan the genomes for 98 

traces of selection and identified genomic regions and genes potentially involved in the local 99 

adaptation of the different populations. We found a strong and common signal in southern 100 

populations. Overall, our results demonstrate how the most diverse populations, often 101 

located at the core of the distribution, may host the adaptive potential to face climate 102 

change, giving clues on how standing genetic variation can fuel local adaptation. 103 

Results 104 

Suitable conditions nowadays are more diverse than during the 105 

Last Glacial Maximum 106 

The spatial prediction obtained by the species distribution model (SDM)22 highlights a 107 

striking increase of the area occupied by the barn owl since the Last Glacial Maximum23 108 

(LGM, ~ 20,000 years ago), similar to what was observed in trees24, mammals25, and birds26. 109 

During the LGM, suitable habitats were mostly confined to regions around the 110 

Mediterranean — covering northern Africa as well as the Iberian, Italian, and Greek 111 
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peninsulas (Supplementary Figure 1). Today, favourable conditions extend well into 112 

Western, Central, and Northern Europe, making most of the continent suitable for barn 113 

owls. This notable northward and inland expansion prompted us to investigate the climatic 114 

variables driving these changes. 115 

To identify the climatic factors defining the climatic niche of the barn owl, we performed a 116 

Principal Component Analysis (PCA) fitting a multidimensional climatic space both from the 117 

LGM and modern periods. The first three principal components explain 91.50% of the 118 

variance (Figure 1b). The first component, explaining 49.66% of the variance, is driven by 119 

temperature-related variables - such as the Mean Temperature of the Coldest Month (bio6), 120 

Temperature Annual Range (bio7), and Mean Temperature of the Wettest Quarter (bio8) - 121 

which differentiate the Mediterranean region from the rest of Europe (Figure 1c). The 122 

second component, explaining 33.6% variance, is mainly influenced by precipitation factors, 123 

including Precipitation Seasonality (bio15), Precipitation of the Driest Quarter (bio17), and 124 

Precipitation of the Coldest Quarter (bio19), effectively distinguishing coastal areas from the 125 

continental interior (Figure 1c). The third component, explaining 8.25% variance, is largely 126 

driven by the Minimum Temperature of the Coldest Month (bio6; Supplementary Figure 2 127 

and 3).  128 

We next explored the overlap between past and present climatic conditions in areas suitable 129 

for barn owls and showed that owls now occupy a wider variety of climatic conditions than 130 

during the LGM24. We found that only a small fraction of today’s suitable habitats shares 131 

characteristics with those from the LGM. We found that only 25.54% of modern suitable 132 

cells exhibit LGM-like climatic conditions (Figure 1a, dark grey areas). These overlapping 133 

regions are found in northern Africa, the northwestern Iberian Peninsula, western France, 134 

the British Isles, and western Turkey. In contrast, 74.45% of current suitable cells are 135 
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characterized by climatic conditions that did not exist during the LGM (Figure 1a, RGB-136 

coloured areas). This significant shift suggests that most of today’s barn owl habitats are 137 

defined by new climatic conditions, potentially driving local adaptation to these emerging 138 

environments.  139 

Species-wide sampling reveals that a substantial portion of the 140 

genome is under climatic selection 141 

To test the hypothesis that local climates may have driven the local adaptation of the barn 142 

owl in the Western Palearctic, we have sampled and sequenced 79 individuals from nine 143 

populations across the climatic and European geographical distribution of the species 144 

(Supplementary Figure 4 and 5, Supplementary Table 1) and identified 12,309,943 Single 145 

Nucleotide Polymorphisms (SNPs). The overall differentiation was low (overall FST = 0.034) 146 

and in line with previous estimates15. The first axis of the genomic PCA (explaining 3.88% of 147 

the total variance) contrasted individuals from the Levant populations (Israel—IS) to all other 148 

individuals (Figure 1d). The second axis of the PCA (explaining 2.26% of the variance) 149 

opposed individuals from the most diverse population (from the Iberic peninsula—PT) to all 150 

others (Figure 1d, Table 1). Overall, southern populations (PT, IT, GR, AE, IS) were more 151 

genetically diverse than northern populations (CH, FR, DK, SB) (Table 1). Next, we employed 152 

two complementary approaches - a genome scan for selection and a Genotype-Environment 153 

Association (GEA) analysis - to pinpoint genomic regions potentially influenced by these 154 

climatic conditions. 155 

In our first approach, we scanned the genomes for signatures of selection using population-156 

specific FST27. This metric, which accounts for population structure, enables the detection of 157 

regions of the genome where individuals have higher genetic similarity than what is 158 
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observed along the rest of the genome - a pattern possibly resulting from selective 159 

events27,28. Out of 52,429 windows of 100 kbp (with a 20 kbp slide), we identified 10,607 160 

outlier windows: 7,034 were unique to a single population, and 3,573 were shared between 161 

at least two populations. On average, each population had about 1,756 outlier windows 162 

(Table S2), with Israel and France at the extremes (989 and 2,087 outliers, respectively). 163 

To ensure that selection signals were caused by climatic conditions, we directly linked 164 

genetic variation to temperature and precipitation conditions with a Genotype-Environment 165 

Association (GEA). We conducted a Redundancy Analysis (RDA, Supplementary Figure 6)29 166 

that we integrated into genomic windows with the Weighted-Z Analysis (WZA) method30. 167 

We detected 2,181 outlier windows significantly linked to temperature and precipitation 168 

variables (Supplementary Figure 7) and overlaid it with the population-specific FST scans. 169 

This combined analysis yielded a refined list of 1,246 outlier windows (displayed in dark blue 170 

in Figure 2a; Table S2). 59.71% were unique to a single population while the rest was shared 171 

between at least two populations. By merging successive outlier windows, we delineated 172 

270 genomic regions, many forming distinct adaptive peaks along the genome. Particularly 173 

striking associations were observed on Super-Scaffold 14 and 45 (Figure 2b). Additionally, we 174 

detected a high density of outlier windows in the first half of Super-Scaffold 22 (Figure 2b-d); 175 

this signal, shared by owls from France, Italy, and Portugal, corresponded with a marked 176 

increase of population-specific FST in these genomic regions (Supplementary Figure 8), 177 

indicating that individuals within each of these populations are significantly more similar to 178 

one another than to the rest of the samples. 179 
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Metabolic pathways associated with climate 180 

To explore the functional implications of selection and climatic adaptation, we extracted a 181 

total of 550 genes from the 270 genomic regions that showed signatures of selection and 182 

variants associated with climatic variables. Among them, 324 genes were unique to a single 183 

population (Table S3). Within the 550 extracted genes, we detected significant enrichments 184 

in pathways related to cellular physiology (details of the Gene Ontology (GO) terms are 185 

provided in Table S4). We observed the same results when we used the population-specific 186 

list of genes from Greece, Israel and Serbia (Table S5). For the other populations, the GO 187 

enrichment analysis did not yield any significant results. Overall, the functional grouping of 188 

the 550 genes included functions such as immunity, locomotion, and anatomy in all the 189 

populations, with different genes in each population (Table S6). 190 

Climatic differences drive differential selection between 191 

Southern and Northern populations 192 

Our analysis of the region with the highest signal of association with climate reveals that 193 

differential selection has led to marked genetic differentiation between populations at 194 

opposite ends of the temperature gradient. To explore the signal located on Super-Scaffold 195 

45, we first examined climatic association values within this genomic region (Figure 3). Out 196 

of the 8 outlier windows showing the highest association with climate (red dots in Figure 3a-197 

b), all were outliers in the population-specific FST scan for the Danish population, and two of 198 

them were also outliers in the Portuguese population, two populations at the opposite ends 199 

of the temperature gradient (first axis of Supplementary Figure 4). We assessed the extent of 200 

genetic similarity in this genomic region between the two populations by computing the 201 

population-pair FST, an estimate of the standardised mean kinship of individuals31. With this 202 
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statistic, we detected a substantial reduction of the genetic similarity between the 203 

individuals from these two populations within the region harbouring the highest association 204 

with climatic conditions (red rectangle on Figure 3c). Consistently, we observed an increase 205 

of genetic dissimilarity by using a pairwise FST computed on an SNP basis between the two 206 

populations (Figure 3d). We examined the haplotypes within the highest section of the peak 207 

which showed a clear distinction between the Danish and Portuguese populations (Figure 208 

3e).  209 

A putative inversion linked to climatic adaptation in past refugia 210 

We identified a long consecutive signal of climatic association shared between populations 211 

from France, Italy, and Portugal in the first half of Super-Scaffold 22 (Figure 2b-c; Figure 4a). 212 

We used the population-pair FST to assess whether the same genomic variants were shared 213 

in the three populations. We detected a higher genetic similarity between the three pairs of 214 

populations (FR-IT, FR-PT, and IT-PT) within a 14 Mb region at the beginning of the Scaffold 215 

than along the rest of the genome (Figure 4b). This coincides with a climatic convergence in 216 

former glacial refugia, where shifting conditions may have contributed to the shared 217 

adaptive signals (Supplementary Figure 9, 10, 11 and 12).  218 

To further investigate the genomic features of this region, we applied a PCA to the first 14 219 

Mb of the scaffold, encompassing 120,953 SNPs, using data from all 74 individuals (Figure 4c 220 

illustrates the first two axes, explaining respectively 26.91 and 2.73% of the variation). 221 

Individuals were divided along the first axis into three distinct clusters, corresponding to the 222 

expected genomic pattern in case of a chromosomal inversion32. The leftmost cluster 223 

included more individuals than the one on the rightmost part of the x-axis. In comparison, 224 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2025. ; https://doi.org/10.1101/2023.03.17.533108doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533108
http://creativecommons.org/licenses/by-nc/4.0/


 

12 
 

the PCA conducted on the whole genome only separates the Portuguese samples from the 225 

rest along the x-axis and the Israel individuals from the rest along the y-axis (Figure 1d). 226 

Discussion 227 

Climatic conditions and their past fluctuations are known to have shaped today’s distribution 228 

and genetic diversity of many species1–3. While genetic local adaptation is widely recognized 229 

as a key mechanism driving species persistence6, its role in shaping populations' capacity to 230 

respond to future climatic shifts remains unclear. In this study, we integrated niche-based 231 

species distribution modelling (SDM22) with genome-wide analyses to investigate how 232 

climate-driven changes since the Last Glacial Maximum (LGM) have shaped the genetic 233 

composition and adaptive potential of the Western Palearctic barn owl. First, we showed 234 

that suitable conditions nowadays are more climatically diverse than the ones from the 235 

LGM24–26, exposing the individuals to heterogeneous and new selective pressures. Then, we 236 

identified genomic regions harbouring strong signals of selection and carrying variants 237 

associated with climatic variables. We observed signals of genomic adaptation in all the 238 

population we sampled across the species’ range, with a particularly strong signal shared 239 

among southern populations. Overall, our findings challenge the hypothesis that local 240 

adaptation primarily occurs at recolonising margins33,34, showing instead that genetically 241 

diverse populations such as past glacial refugia are a key source for adaptation35. We 242 

highlight that refugial populations, by maintaining standing genetic variation, serve as crucial 243 

reservoirs of adaptive potential, enhancing species’ ability to respond to future climatic 244 

changes35–37. 245 

Species distribution modelling of the European barn owl based on its realized climatic niche 246 

suggests that the latter is broader nowadays than it was during the Last Glacial Maximum 247 
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(LGM). We used the Maximum Entropy method38 for fitting the SDM and project it onto past 248 

climatic conditions to compare the extent of suitable habitat under current versus historical 249 

climates. Our results indicate that some contemporary climatic conditions along the Atlantic 250 

coast, up to the UK, were already present 20,000 years ago. This supports the hypothesis 251 

that, as temperatures rose at the end of the LGM, favourable conditions shifted toward 252 

northwestern Europe, facilitating barn owl range expansion39. However, we also identified 253 

newly emerged suitable climatic conditions that were absent during the LGM in recolonised 254 

Central and Eastern Europe as well as in the glacial refugia where conditions changed for 255 

resident populations. All these results suggest that the realised climatic niche of the barn owl 256 

was contracted during the Last Glacial Maximum and extended with the subsequent 257 

warming. We advance that genetic adaptation played a significant role in this process and 258 

further explored this hypothesis. 259 

By combining population-specific FST scans27,28 to identify genomic regions under selection 260 

with genome-environment association approaches, we found genomic evidence of local 261 

adaptation to humidity and temperature in all populations. Genes among selected regions 262 

showed significant GO term enrichment in several populations, but we found no clear link to 263 

climate adaptation. However, the functional clustering revealed a concentration of genes 264 

related to immunity, with GO terms such as "immune system process" and "immune 265 

response" (Table S6). This finding aligns with previous research showing that pathogens and 266 

infectious diseases exert strong selective pressures on both humans and birds40,41. 267 

Moreover, temperature and rainfall significantly influence pathogen community 268 

composition42,43. Supporting this connection between climate and immune genes, O’Connor 269 

et al. (2020) demonstrated that MHC-I genes in birds vary in diversity according to 270 

humidity44. GO terms related to anatomy and growth were also found across population, 271 
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encompassing several dozens of genes linked to “anatomical structure morphogenesis”, 272 

“regulation of the developmental process” and “growth” (Table S6). This result was 273 

consistent with Bergmann’s rule which predicts that body sizes of warm-blooded vertebrates 274 

negatively correlate with temperature, leading to smaller body sizes in warmer climates45,46. 275 

Overall, our results suggest an implication of these genes in local adaptation to various 276 

climates, but further work is needed to identify and confirm their precise role. 277 

A closer look at the regions of the genome with many variants linked to the environment and 278 

with strong traces of selection revealed a wide range of mechanisms shaping the barn owl’s 279 

local adaptation, from opposite directional selection to recurrent evolution. 280 

The region located on the Super-Scaffold 45 showed a clear signal of association with 281 

climatic variables. In this region, population-specific FST highlights the high differentiation 282 

between the Portuguese and Danish populations, which lie at the opposite ends of the 283 

temperature gradient (Supplementary Figure 4). This, along with their distinct haplotypic 284 

structure (Figure 3), suggests that different alleles or haplotypes are under selection in these 285 

populations47. A closer look at the genes present in the region did not reveal any genes that 286 

can easily be linked to temperature adaptation and further work should confirm whether 287 

this region plays a role in thermal adaptation. 288 

Our results also revealed a strong and consistent genomic signal of selection linked to 289 

climate across all individuals from three populations, one in a region with a climate similar to 290 

that of the LGM (France) and two in past glacial refugia (the Iberic and Italian peninsulas). 291 

The size of the region involved; the pronounced pattern of genetic differentiation compared 292 

to the rest of the populations as well as the cluster patterns found by our local PCA strongly 293 

suggest the presence of an inversion in this region32. Supported by the growing body of 294 

literature linking inversion and adaptation48–50, we suggest that this inversion is adaptive to 295 
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climatic conditions. Briefly, considering the genomic disruption that breakpoints can cause, 296 

as well as the fact that nearly suppressing recombination will prevent purging of deleterious 297 

alleles in the inverted haplotype, it is unlikely for a newly appeared inversion to persist and 298 

spread in a population51. However, by bringing adaptive alleles together and averting 299 

maladapted gene flow by blocking recombination, an inversion can promote local adaptation 300 

and thus be favoured by selection50,52,53. 301 

The history of this inversion remains to be explored. The pattern of selection is shared 302 

between the two peninsulas that hosted the species during the LGM. Considering the 303 

isolation of the two populations at the time and the reduced connectivity nowadays (see 304 

Figure 4 in Cumer et al., 2021 for details)27 we suppose that this inversion predates the LGM, 305 

and that independent and recurrent selection drove the increase of frequency of this 306 

haplotype independently in these two populations. Further work should formally test this 307 

hypothesis. 308 

A key question is the origin of adaptive alleles and given the pattern of genomic traces of 309 

local adaptation we observed, we propose that standing variation played a crucial role in this 310 

process54,55. One possibility for local adaptation to occur is de novo mutations bringing new 311 

favourable alleles in the different populations54,56. Considering the low mutation rate57,58 and 312 

the even lower probability of a mutation being both advantageous and occurring in the right 313 

environmental context59, this mechanism is unlikely to fully explain the extent of genomic 314 

regions involved in local adaptation (Figure 2). A more parsimonious explanation relies on 315 

adaptation to pre-existing genetic variation55. In this scenario, allele sorting from standing 316 

genetic variation would have driven adaptation60. This occurs when previously neutral or 317 

mildly deleterious alleles become advantageous following shifts in selective pressures, such 318 

as habitat colonisation or climate change60. This scenario implied that within glacial refugia, 319 
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a pool of segregating alleles was maintained in sufficiently large populations61. These alleles 320 

were then sorted through space by local adaptation, with different environments (biotic and 321 

abiotic) acting as a filter on deleterious and/or less advantageous alleles. This whole process 322 

has been reported in species as diverse as insects (Drosophila melanogaster
62), birds 323 

(Darwin’s finches63) mammals (humans59,64) and fish (sticklebacks65). We did not explicitly 324 

test whether local adaptation in barn owls resulted from de novo mutations, allele sorting 325 

from standing variation, or a combination of both. Therefore, additional work, focusing on 326 

the date of mutations66 as well as the timing of selection67, should confirm our results. 327 

However, the pattern of local adaptation that we identified in populations from past glacial 328 

refugia already provides insight into how standing variation fuels adaptation during climatic 329 

fluctuations. 330 

The climatic variation since the Last Glacial Maximum provides a good framework to gain 331 

knowledge on where and how populations adapt to climate change. A wide body of 332 

literature explored many aspects of what happens in populations that expanded into newly 333 

available habitat, from dispersal limitation68,69 to the genetic load accumulated during an 334 

expansion70–74, and how these mechanisms interact with local adaptation75–78. However, the 335 

fate of refugial populations remains, to our knowledge, understudied. In this work, we first 336 

demonstrate that the climatic conditions experienced by these populations have changed 337 

over time, creating ongoing pressures for adaptation. Our findings suggest that refugial 338 

populations are not only well adapted to their current environments but are also continuing 339 

to adapt. Based on our results, we propose that adaptation in refugial populations is a 340 

recurrent and dynamic process. As the climate continues to shift, the species’ optimal niche 341 

moves northward, and southern populations will be among the first to experience novel 342 

climatic conditions. These populations often harbour the highest levels of genetic diversity17, 343 
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which likely confers them the greatest adaptive potential in the face of climate change. This 344 

underscores the importance of conserving these genetically diverse populations, whose 345 

adaptive capacity may be critical for the long-term resilience of the species. While we 346 

acknowledge that the pace of current climate change is far more rapid compared to shifts 347 

since the Last Glacial Maximum, our study las the groundwork for a deeper of the genomic 348 

foundations of adaptative potential. Future research will be essential to unravel the 349 

mechanisms that enable species to persist and thrive in rapidly changing environments. 350 

Material and methods 351 

Ecological modelling 352 

Species distribution modelling 353 

We first conducted species distribution modelling (SDM22) to identify suitable areas for the 354 

species during the Last Glacial Maximum and nowadays. We fitted SDM using the Maximum 355 

Entropy modelling software (MaxEnt38,79, v.3.4.3), a presence-only based procedure in a 356 

similar approach as the one described in Cumer et al. (2022)15.  357 

First, we extracted 19 bioclimatic variables at a 5 arc-minute (~9.3 km at the equator) 358 

resolution from the WorldClim 1.4 database80 using the rbioclim R package81. To avoid 359 

redundancy between variables, we removed variables with a correlation equal to or higher 360 

than 0.882, leading to a set of 7 uncorrelated climatic variables: Mean Diurnal Range (Bio2), 361 

Min Temperature of Coldest Month (Bio6), Temperature Annual Range (Bio7), Mean 362 

Temperature of Wettest Quarter (Bio8), Precipitation Seasonality (Bio15), Precipitation of 363 

Driest Quarter (Bio17), and Precipitation of Coldest Quarter (Bio19). 364 

We performed the analysis using the dismo R package83 v.1.3-14 on R v.4.3.2. To determine 365 

which combination of parameters optimised the model without over-complexifying it84, we 366 
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built models with linear, quadratic, and hinge features, using a range of regularisation 367 

multipliers from 1 to 5 (as recommended in Warren & Seifert, 201185). A quadratic feature 368 

with a regularisation multiplier of 1 yielded the lowest AIC and was chosen for further 369 

modelling. We ran a total of 100 quadratic MaxEnt models (with a regularisation multiplier = 370 

1), omitting 25% of the data during training to test the model and using 10’000 background 371 

points randomly sampled across the study area. For each model, we randomly sampled 372 

1,000 presence points from the IUCN distribution map86. We evaluated the predictive 373 

performances of the models by assessing the area under the curve (AUC) of the receiver 374 

operating characteristic (ROC) plot of the test data87. All models had an AUC between 0.756 375 

and 0.807 (see Supplementary Figure 13), thus classified as fair to good according to Li et al. 376 

(2020)88. 377 

We projected the 100 models to the present climatic conditions and to the climatic 378 

conditions from the Last Glacial Maximum (about 20’000 years ago), also extracted from the 379 

WorldClim 1.4 database (scenario CCSM from PMIP280) at 5 arc-minute resolution. We used 380 

the “maximum training sensitivity plus specificity” (MaxSSS) threshold, as recommended for 381 

presence-only data89, to transform the projected output from the models into binary 382 

suitability maps (0 unsuitable, 1 suitable). Finally, we averaged the values among replicates 383 

and retained cells as suitable only if they were so in at least 90% of the models. To avoid 384 

model extrapolation when projecting the models in the past, we used the Multivariate 385 

Environmental Similarity Surface (MESS) approach90 to identify and discard areas from the 386 

past with climatic conditions absent from those in the calibration data. 387 

Identification of newly suitable conditions absent from the LGM 388 

Then, we determined whether currently suitable areas display climatic conditions different 389 

from those found during the LGM. To do so, we extracted values of the 7 climatic variables 390 
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used in the SDM (see Species distribution modelling section for details) at every continental 391 

cell of the studied area for both past and present and performed a Principal Component 392 

Analysis (PCA) to represent the environmental space. We retained the first three principal 393 

components that explained up to 91.50% of the climatic variance. In this environmental 394 

space, we generated a “multidimensional climatic space”, representing the entire range of 395 

climatic conditions suitable for the barn owl, by combining past and present suitable pixels 396 

within this PCA space. We then characterised the past suitable conditions for the species by 397 

creating a polygon around the LGM suitable conditions, using the alphashape3d R package 398 

(α = 0.5, keeping all the data91). Next, we classified the suitable conditions at current time as 399 

located inside or outside the polygon, thus respectively present or absent from the range of 400 

LGM suitable conditions. 401 

Estimation of the shift of climate within suitable areas 402 

To quantify shifts in climatic conditions between LGM and now, we identified cells that were 403 

suitable both during the LGM and present time (Supplementary Figure 9) and computed the 404 

Euclidean distance between their past and present positions in the multidimensional climatic 405 

space. We then rescaled the distance values from 0 to 1 (Supplementary Figure 10). 406 

Because we discovered a strong signal of selection shared between the two glacial refugia 407 

populations (see Results section), we investigated how the climate has changed since the 408 

LGM in the two peninsulas to assess whether the climate converged or diverged in these two 409 

locations. We extracted values of the 7 climatic variables used in the ecological modelling for 410 

the LGM and today (see Species distribution modelling section) at the GPS coordinates for 411 

the Italian and Portuguese samples. We projected these conditions inside the 412 

multidimensional climatic space (Supplementary Figure 11). Then, we computed the 413 

pairwise Euclidean distances between all sampling localities of the two peninsulas during the 414 
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LGM and the present time (8 (IT) x 8 (PT) pairwise distances at both time points). This way, 415 

we quantified the climatic difference between the Italian and Portuguese sampling localities 416 

at the two different time points (Supplementary Figure 12). 417 

Individual barn owl sampling 418 

Biological samples 419 

This study took advantage of the datasets of European barn owls previously published by 420 

Cumer et al. (2022), Machado, Cumer, et al. (2021), and Machado, Topaloudis, et al. 421 

(2021)15,27,92. We retrieved the whole genome sequences from the Sequence Read Archive 422 

(SRA - Bioprojects PRJNA700797, PRJNA727915, and PRJNA727977, Table S1). 423 

Genetic data preparation 424 

We performed the read mapping, variant discovery, and variant filtering following Cumer et 425 

al. (2022)15. In brief, we mapped raw reads to the reference barn owl genome (GenBank 426 

accession GCA_018691265.139) with BWA-MEM v.0.7.1593. We performed Base quality score 427 

recalibration (BQSR) in GATK v.4.1.3 using high-confidence calls described in Cumer et al. 428 

(2022)15. We called variants with GATK’s HaplotypeCaller and GenotypeGVCF v.4.1.3 from 429 

the recalibrated BAM files. We filtered genotype calls using a hard-filtering approach as 430 

suggested for nonmodel organisms, using GATK and VCFtools94. Details of technical filtration 431 

can be retrieved from Cumer et al. (2022)15.  432 

To prevent some alleles from being over-represented in the dataset (relatedness statistic 433 

based on the method of Manichaikul et al., 201095, implemented in VCFtools v0.1.1494), we 434 

identified pairs of individuals with a relatedness higher than 0.1. We removed one of the two 435 

individuals for each identified pair, leading to a dataset of 74 individuals (Table S1). 436 
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We then excluded genomic regions with uncertain SNP calling by removing regions of the 437 

genome where our ability to confidently map reads is limited (i.e., a "mappability" mask). To 438 

achieve this, we followed the procedure documented at 439 

lh3lh3.users.sourceforge.net/snpable.shtml. In summary, we divided the reference genome 440 

into reads of 150 base pairs (bp) with a sliding window of 1 bp. These artificial reads were 441 

then mapped back to the reference using BWA-MEM v.0.7.17. Regions of the sequence 442 

where less than 90% of the reads mapped perfectly and uniquely were discarded by 443 

excluding variants using a bed file in VCFtools v0.1.14. We retained only bi-allelic SNPs, 444 

removed loci with more than 5% missing data, and excluded from the analysis 15 scaffolds 445 

(out of 60) showing less than 1000 SNPs and one extra sexual scaffold. 446 

At the end of the filtration process, we retained a set of 12,309,943 SNPs from 39 scaffolds, 447 

genotyped in 74 European barn owls (10 individuals from the Aegean Islands (AE), 10 from 448 

Denmark (DK), 4 from France (FR), 9 from Greece (GR), 9 from Italy (IT), 10 from Israel (IS), 9 449 

from Portugal (PT), 5 from Serbia (SB), and 9 from Switzerland (CH)).  450 

To explore the genome-wide variations of the Western palearctic populations and check its 451 

concordance with previous results, we conducted a PCA with the SNPRelate R package96 452 

using this entire set of SNPs and individuals. Additionally, we assessed genetic diversity 453 

among the 9 sampled populations following the procedure of Cumer et al., (2022)15. Briefly, 454 

we identified the number of polymorphic sites, private alleles, rare alleles and the whole 455 

genome population-specific FST for each population independently. To account for 456 

differences in sample sizes (ranging from 4 to 10), we randomly sampled 5 individuals from 457 

each population - except for FR and SB - and calculated these diversity estimates on the 458 

resulting subsets. This resampling process was repeated 10 times, and we reported the 459 

mean and standard deviation of the diversity estimates. 460 
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Phasing process and evaluation 461 

We performed the phasing and imputation of the individuals’ genotypes in two steps. First, 462 

we conducted a read-based phasing of each individual using WhatsHap v1.097. During this 463 

step, we reconstructed haplotypes based on the mapped sequencing reads covering multiple 464 

variants. Between the two filtering steps, we applied a Minor Allele Frequency (MAF) filter to 465 

ensure it was higher than 5% using VCFtools v.0.1.1494, thereby removing rare alleles from 466 

the dataset that could influence the second round of phasing, resulting in a dataset of 467 

4’689’284 SNPs. Then, we conducted the complementary round of phasing with ShapeIt4 468 

v4.1.398 with default parameters. The latter uses a statistical approach to infer individuals’ 469 

haplotypes based on the population genotypes99 and incorporates the phase information 470 

from the read based phasing.  471 

To evaluate phasing performance, we calculated the switch error rate (SER) of the phasing 472 

generated by ShapeIt4 for each individual100. For each individual, we conducted a statistical 473 

phasing using ShapeIt without considering the read-based phasing from WhatsHap for the 474 

focal individual. Subsequently, we compared this phasing to the "true" local phasing, 475 

inferred from the read-based approach (WhatsHap). We estimated the switch error rate 476 

between both sets of phasing using the switchError code (available at 477 

https://github.com/SPG-group/switchError). Among the 74 phased individuals, the mean 478 

error rate was 2.23 * 10-4 and none exceeded 0.7% (Supplementary Figure 14).  479 

Detection of traces of selection in each population 480 

We computed a single summary statistic to identify genomic regions potentially under 481 

selection: population-specific FST, using the hierfstat R package101. The statistic was 482 

calculated across the genome in overlapping windows of 100 kbp with 20 kbp steps for each 483 
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independent population. Only windows containing at least 250 SNPs, corresponding to two 484 

standard deviations below the mean, were included in the analysis. 485 

To identify outlier windows (regions with extreme values of positive population-specific FST), 486 

we first transformed the statistic into Z-scores by subtracting the population mean from 487 

each estimate and dividing it by the standard deviation for each population independently. 488 

We then combined Z-scores from all populations and considered a window as an outlier in 489 

each population if its Z-score for population-specific FST was equal to or higher than 2 490 

standard deviations from the mean of the merged Z-scores. This approach allowed us to 491 

focus on regions exhibiting an excess similarity in the population compared to the rest of the 492 

genome (high population-specific FST). For further details about this method, refer to Cumer 493 

et al. (2022)27. We computed the statistic on the set of 12,309,943 SNPs, unfiltered for Minor 494 

Allele Frequency (MAF). To ensure that rare alleles did not influence population-specific FST, 495 

we also calculated this statistic on the filtered variants from MAF (set of 12’309’943 SNPs). 496 

The high consistency between the two estimates (with and without MAF filtering), as 497 

depicted in Supplementary Figure 15, supported our decision to retain the statistic 498 

computed on the unfiltered variants set (12,309,943 SNPs).  499 

Genotype-Environment Association 500 

Redundancy Analysis  501 

We independently conducted a Genotype-Environment Association (GEA) analysis to assess 502 

the relationship between the genotypes of the barn owl and their surrounding environment 503 

for all populations simultaneously.  504 

Based on the GPS coordinates of the 74 samples (Table S1), we extracted values for the 505 

same 7 climatic variables as those used in the species distribution modelling (Mean Diurnal 506 
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Range (Bio2), Min Temperature of Coldest Month (Bio6), Temperature Annual Range (Bio7), 507 

Mean Temperature of Wettest Quarter (Bio8), Precipitation Seasonality (Bio15), 508 

Precipitation of Driest Quarter (Bio17), and Precipitation of Coldest Quarter (Bio19); see 509 

Species distribution modelling section for details). We conducted a Principal Component 510 

Analysis (PCA) on these climatic data to assess the level of climatic dissimilarity experienced 511 

by the barn owls sampled in this study nowadays. We retained the first three principal 512 

components, explaining 94.97% of the climatic variance. 513 

We then associated variants with genomic information using Redundancy Analysis (RDA) 514 

with the vegan R package29,102. This method relies on a multiple linear regression of the 515 

observed genotypes on a set of abiotic or biotic predictors. The expected genotypes based 516 

on the model (also called fitted values) are then extracted and used as input for a PCA called 517 

RDA space. The projection of the principal axes and components in this RDA space allows the 518 

detection of the SNPs that contribute the most to the RDA axis and whose allelic frequency 519 

might be putatively driven by the explanatory variables29. We used the imputed genotype 520 

matrix (phased set of 4’689’284 SNPs) as the response matrix and the bioclimatic variables 521 

extracted at each sampling locality for the multiple linear regression.  522 

To evaluate the significance of the relationship between genotypes and climatic variables, 523 

we performed a permutation test103. In brief, we computed a test statistic (F-statistic) from 524 

the regression using the true data. Afterwards, we carried out 999 additional regressions on 525 

permuted rows of the response data (i.e., the genotype matrix), allowing us to establish the 526 

empirical null distribution of the statistics, to which we compared the observed statistic103. 527 

From this test, we found a significant relationship between the environmental variables and 528 

genetic components (Table S7). To select the number of RDA axes to retain, we also 529 

performed a permutation test for each axis (n = 100) by following the procedure given by 530 
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Borcard et al. (2011)103. Applying this method, we kept the first five RDA axes, explaining 531 

80.41% of the constrained variance (Table S8). To detect loci that strongly contribute to the 532 

individual’s discrimination in the RDA space (outlier loci), we followed the procedure 533 

described in Capblancq et al. (2018)104: we computed Mahalanobis distances between each 534 

locus and the centre of the RDA space using the previously retained five axes. P-values were 535 

adjusted for the false discovery rate (FDR) by computing q-values using the qvalue R 536 

package105. We considered a SNP as an outlier if its q-value was less than 0.1, following 537 

Capblancq et al. (2018)104. 538 

Weighted-Z analysis 539 

To improve the robustness of our GEA approach, we decided to transform the SNPs p-values 540 

from the Redundancy Analysis into window-based statistics through the Weighted-Z analysis 541 

(WZA) proposed by Booker et al. (2021)30. This method takes as input individual p-values 542 

from any SNP-based GEA approach and calculates a weighted-Z statistic for a given genomic 543 

region. To do so, it transforms the p-values of the focal window into z-scores and computes 544 

the weighted-Z statistic using the equation provided by Booker et al. (2021)30, which 545 

considers the variation in the number of SNPs among windows along the genome.  546 

We computed the weighted-Z statistics on the same windows as population-specific FST. 547 

Since WZA does not support overlapping windows, we split the window set based into five 548 

sets of non-overlapping windows. We ran 5 separate weighted-Z analyses, one with each 549 

input file, and merged the outputs to obtain the final one. We considered a window as an 550 

outlier when the -log10 of its p-value was equal to or higher than 2 standard deviations from 551 

the mean of all windows (equivalent to a p-value of 0.03 assuming a normal distribution).  552 
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Genomic signal of local adaptation to climate 553 

Concordance between the genome scans and landscape genomics 554 

Because the study aimed to detect traces of selection linked with local climatic conditions, 555 

we considered the final list of outlier windows as the overlap between the outlier set from 556 

the genome scans (see Detection of traces of selection in each population section) and the 557 

one from the Genotype-Environment Association analysis (see Weighted-Z Analysis section). 558 

Based on the annotated barn owl genome (GenBank Assembly Accession: 559 

GCA_018691265.1), we considered genes that partially or fully overlapped the final list of 560 

outlier windows as potentially involved in local adaptation to climate and extracted a list of 561 

genes for each population. 562 

Gene Ontology Enrichment 563 

We conducted Gene Ontology Enrichment (GOE) analyses using ShinyGo v.0.8106 to assess 564 

which biological pathways the genes located in the final list of outlier windows could be 565 

involved in and whether we could link some to local adaptation to abiotic conditions. We 566 

performed GOEs for each set of genes from each population separately and one additional 567 

GOE using all genes detected in at least one population. As a baseline set of genes against 568 

which we compared the observed enrichment signature, also called the background list, we 569 

used all the genes annotated in the barn owl genome that could have been detected with 570 

our 52’429 non-overlapping windows from the genome scans or WZA. For each analysis, we 571 

used the default pathway databases, namely KEGG (Kyoto Encyclopedia of Genes and 572 

Genomes), as well as the GO Biological Process database. 573 
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Exploration of signals specific to some populations 574 

Population-pair FST
 

on Super-Scaffold 45 575 

We identified a strong environmental association in Denmark and Portugal, two populations 576 

at the opposite of our environmental gradient, with strong population-specific FST in this 577 

region in each of them. To know whether populations have the same genetic variants or 578 

opposite ones, we assessed the level of genetic (dis)similarity between pairs of populations 579 

on this part of the genome. To do so, we computed a population-pair FST, described in detail 580 

in Goudet & Weir (2023)31, using the hierfstat R package101. In brief, for every pair of 581 

populations, we calculated the average kinship among pairs of individuals and standardised 582 

it by the average kinship between all populations using the same dataset and windows 583 

employed for population-specific FST analysis. A schematic example is provided in 584 

Supplementary Figure 16 for the Denmark - Portugal population pair. 585 

Pairwise FST at the SNP level 586 

To calculate a pairwise FST at the SNP level31 and confirm the signal obtained through 587 

population-pair FST, we used the fs.dosage function of the hierfstat R package101. We 588 

computed this pairwise FST on the entire Super-Scaffold 45 between Denmark and Portugal 589 

using the same dataset as for population-specific FST or population-pair FST.  590 

Local PCA on Super-Scaffold 22  591 

As we detected a strong signal of selection related to climate in the first half of Super-592 

Scaffold 22, we decided to investigate the genetic architecture of this region. To do so, we 593 

conducted a PCA on the first 14 Mb of the scaffold (120,953 SNPs) using all individuals, using 594 

the SNPRelate R package96. 595 
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Figures and tables 855 

 856 

 857 

Figure 1 - Environmental and genetic variation across the suitable range of the European 858 

barn owl. (a) Map depicting the climatic heterogeneity across the range of the European 859 

barn owl according to the species distribution modelling. Dark grey cells surrounded by a 860 

white border have suitable climatic conditions similar to conditions present during the Last 861 

glacial Maximum (LGM). Coloured cells outside the white-bordered polygon have climatic 862 

conditions not present during the LGM. Colours are based on the multidimensional climatic 863 

space of bioclimatic data shown in (b): the scores of the first three principal components 864 

(PCs) were converted into values of RGB (PC1: red; PC2: green; PC3: blue) to represent 865 

variation in climate. Similar colours represent similar climates. Symbols represent sampling 866 

coordinates of individuals from 9 different populations. A jitter has been added for better 867 

visualisation (longitude: 0.425; latitude: 0.42). (b) Variance explained by the 7 first principal 868 

components of the PCA made on bioclimatic variables from the entire study area pictured on 869 
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(a). Climatic variables came both from the LGM and today to picture the overall climatic 870 
variability. (c) Correlation between climatic variables and the two first axes of the PCA. Dark 871 
to white gradients picture the contribution of each axis projected at the European scale - 872 
Abbreviations : CT = Coldest ; DT = Driest ; MTH = Month ; Precip = Precipitation ; QR = 873 
Quarter ; Temp = Temperature ; WT = Wettest (d) PCA based on the whole genome of the 74 874 
European barn owls identified in (a). Symbols legend is the same as for panel (a). Only the 875 
two first principal components are represented.  876 
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 901 

Figure 2 - Genomic signatures of selection linked to climate in the European barn owls. (a) 902 

Scatterplot of genomic windows (100kbp each) across nine populations. Vertical and 903 

horizontal dashed lines are at 2 standard deviation from the mean of z-scores (population-904 

specific FST) and z-scores (p-values) of WZA respectively. Each colour presents a class of 905 

windows. Dark blue dots represent outlier windows in both population-specific FST and WZA 906 

scans. Light blue dots are outlier according to WZA and have a population-specific FST higher 907 

than 1 standard deviation from the mean; (b) Genome-wide distribution of the WZA score. 908 

Dark blue dots corresponding to the windows identified in panel (a). A switch between light 909 

and dark grey represents a change in the scaffold. The names of all scaffolds are displayed 910 

on the upper x-axis. (c) Distribution of outlier windows in the different populations. Each row 911 

represents a population (DK: Denmark; FR: France; CH: Switzerland; PT: Portugal; IT: Italy; 912 

SB: Serbia; GR: Greece; AG: Aegean islands; IS: Israel). Each column is a window along the 913 

genome, coloured according to the classification in (a). (d) Barplot of outlier windows per 914 

population. Dark blue bars picture the outlier windows shared with at least one other 915 

population while white dashed bars picture the number of outlier windows unique to each 916 

population.  917 
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 925 

Figure 3 - Divergent selection drives the strong climate-driven signal on Super-Scaffold 45 926 

(a) WZA signal across Super-Scaffold 45 with the main peak of outliers highlighted in grey. 927 

Dark blue circles are outlier windows from WZA and population-specific FST. Red circles 928 

represent outliers with a -log10(p-values) higher than 8. (b) Zoom on this peak of the Super-929 

Scaffold 45. (c) Population-pair FST in this region between two populations at the extreme of 930 

the first climatic axis in Figure 1b (namely Denmark and Portugal). Lower value indicates a 931 

higher divergence in this region compared to the rest of the genome. (d) Pairwise FST 932 

between Denmark and Portugal, computed on a SNP-basis. (e) Genotypes of each SNP within 933 

the highlighted region (red rectangle on panel (B), (C) and (D)), using phased haplotypes 934 

from Denmark and Portugal. Beige represents the reference allele, and red represents the 935 

alternative allele.  936 
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 944 

Figure 4 - The shared signal in southern populations point to a putative inversion linked 945 

with local adaptation in the European barn owl (a) WZA signal along Super-Scaffold 22 with 946 

the first 14 Mb highlighted in grey. Dark blue circles are outlier windows from WZA and 947 

population-specific FST. (b) Population-pair FST along the entire Super-Scaffold 22, higher 948 

value indicates a higher similarity in this region compared to the rest of the genome. As in 949 

(A), the first 14 Mb are highlighted in grey. Pairwise comparisons include France (FR), Italy 950 

(IT) and Portugal (PT). (c) PCA made on the first 14 Mb of the Super-Scaffold 22, (120,953 951 
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SNPs - DK: Denmark; FR: France; CH: Switzerland; PT: Portugal; IT: Italy; SB: Serbia; GR: 952 
Greece; AG: Aegean islands; IS: Israel). 953 

Population N # PolymorphicS # PrivateA # RareA PopSpecificFST 

AE 10 4,231,387 (44,618) 193,178 (16,440) 687,423 (28,433) 0.03 

CH 9 4,259,867 (19,877) 170,886 (4,123) 642,071 (9,990) 0.038 

DK 10 4,102,932 (17,633) 135,566 (3,939) 560,136 (9,451) 0.049 

FR 4 3,722,772 (0) 124,430 (1,292) 487,175 (1,859) 0.045 

GR 9 4,176,443 (19,842) 144,856 (3,756) 606,164 (8,453) 0.046 

IS 9 4,402,055 (12,195) 626,578 (7,595) 1,173,410 (6,991) 0.009 

IT 9 4,120,120 (10,620) 214,759 (2,352) 679,772 (5,274) 0.054 

PT 9 4,678,275 (25,247) 492,983 (7,476) 1,090,608 (12,569) -0.018 

SB 5 4,005,667 (0) 106,496 (2,004) 514,405 (2,428) 0.06 

 954 

Table 1 - Genetic diversity estimated for 9 populations of Western Palearctic barn owls. 955 
Standard deviations are found between brackets. See Material and Methods for details on 956 
calculation. N, sample size; # PolymorphicS, number of polymorphic sites; # PrivateA, 957 
number of private alleles; # RareA, number of rare alleles; PopSpecificFST, population-958 
specific FST computed at the whole genome level. 959 
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