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27 Abstract

28  Although local adaptation influences species distributions, its role in driving evolutionary
29 resilience under climate change remains unclear. Current predictive models focus on genetic
30 adaptation to present climates, providing limited insight into future adaptive capacity. We
31 hypothesise that historical responses to climatic shifts can reveal future adaptive potential.
32  Combining ecological niche modelling and genomic analyses, we investigated spatiotemporal
33  patterns and mechanisms of local adaptation of the Western Palearctic barn owl (Tyto alba).
34  Ecological modelling revealed that barn owls now occupy a broader climatic niche than
35  during the Last Glacial Maximum. Genomic analyses indicated ongoing adaptation, with
36 regions under selection linked to environmental factors across all populations. Our findings
37 demonstrate that local adaptation drives evolutionary changes across populations, enabling
38 colonisation of new habitats and shaping responses to climate change in resident
39 populations. We demonstrate that standing genetic diversity plays a crucial role in

40 adaptation to past, present, and future environmental shifts.

11 Key words
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43 Introduction

44  Climatic variations affect biodiversity by impacting individual’s fitness, by driving population
45  differentiation, and ultimately by shaping species distributions’™. The extent of these
46  impacts, however, depends on the speed and intensity of climatic variations*: sudden or
47  extreme shifts can lead to local or global extinction if individuals fail to survive or
48  reproduce’. In case of more gradual changes, the persistence of populations and species will
49  depend on individuals' ability to migrate or cope with their new environment™®’. Through
50 migration, individuals track their suitable conditions in time and space to survive, inducing a
51  shift in species distribution®. Individuals can also change physiologically, morphologically, or
52 phenologically to cope with the new local conditions’. These changes can occur via
53  phenotypic plasticity, the ability of individual genotypes to produce different phenotypes
54  when exposed to various environmental conditions® or through genetic adaptation,
55  favouring different genotypes better adapted to the local ecological conditions®.

56  Considering the critical role of local adaptation in determining population persistence®®,
57 understanding whether individuals possess the intrinsic capacity to adapt to new
58 environmental conditions is critical. In recent years, genomic offset has emerged as a key
59  metric for predicting genetic maladaptation to future climates by linking environmental
60 factors to allele frequencies and estimating the genetic changes needed for individuals to

. oy 11-13
61  survive to new conditions

. However, while such predictions provide valuable insights
62  into potential risks, these predictions assume populations are adapted to current conditions
63 and cannot evolve further, overlooking their adaptive potential. Therefore, a key challenge

64 remains understanding whether standing genetic variation can fuel adaptation to new

65 climate - a question our study seeks to answer.
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66 At the end of the Last Glacial Maximum (LGM) temperatures rose and ice caps melted,

21415 Climatic variations since

67 allowing species to (re-)colonise previously unsuitable lands
68 the LGM offer an excellent opportunity to study species’ adaptation. The interplay between
69  migration and selection gives rise to several possible scenarios for how local adaptation may
70  occur: In populations that migrated northward, individuals either tracked their suitable niche
71  or faced new conditions. In the latter case, selection may have driven local adaptation by
72 favouring the most suited individuals®, but repeated migration events eventually caused
73 founder effects and a loss of adaptive potential along the front of colonisation™. In contrast,
74  populations that remained at the core of the distribution may also have faced a change in
75  conditions. These populations often harbour a higher genetic diversity'’, possibly enhancing
76  their ability to adapt to their changing environment. Given these three main scenarios,
77  where and how local adaptation happens remains elusive and exploring these questions can
78  enhance our understanding of the adaptive potential of populations.

79  The barn owl (Tyto alba), a nonmigratory raptor distributed all over the Western Palearctic,
80 faces heterogeneous climates. The species recolonised the Northern part of Europe at the
81 end of the LGM from two main glacial refugia located in the Iberian Peninsula and the Italian
82 and Balkan Peninsulas™. Presently, its range stretches across the Western Palearctic™.
83  Despite a generally low level of genetic differentiation across its range, southern populations
84 host a higher genetic diversity than northern populations™***°, and exhibit notable
85  phenotypic variation, such as a cline in plumage coloration between southern and northern

18-21

86  populations . A previous study demonstrated that the colour cline cannot be explained
87 by purely neutral processes and argued that selection for local adaptation was or is still

88  acting on this phenotype®". The well-understood history of the barn owl in Europe since the

89  Last Glacial Maximum, combined with the low genetic structure at the continental level and
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90 previous evidence of adaptive selection throughout its range, make this species an attractive
91 model to test and quantify the extent and location of local adaptation.

92  Here, we evaluated where and how heterogeneous climate induce local adaptation using the
93  European barn owl as a model organism. We first used ecological information and Species
94  Distribution Modelling to (i) quantify the climatic heterogeneity faced by the barn owl
95 nowadays and (ii) measure how these climatic conditions differ from those experienced
96  during the Last Glacial Maximum. We then looked for an association between climatic
97  variables and genomic variants from the entire genome of 74 owls from 9 different localities
98  across Europe. We combined these results with a new approach to scan the genomes for
99 traces of selection and identified genomic regions and genes potentially involved in the local
100 adaptation of the different populations. We found a strong and common signal in southern
101  populations. Overall, our results demonstrate how the most diverse populations, often
102 located at the core of the distribution, may host the adaptive potential to face climate

103  change, giving clues on how standing genetic variation can fuel local adaptation.

104 Results

105 Suitable conditions nowadays are more diverse than during the

106 Last Glacial Maximum

107 The spatial prediction obtained by the species distribution model (SDM)* highlights a
108  striking increase of the area occupied by the barn owl since the Last Glacial Maximum?®
109  (LGM, ~ 20,000 years ago), similar to what was observed in trees® mammals®, and birds®®.
110  During the LGM, suitable habitats were mostly confined to regions around the

111  Mediterranean — covering northern Africa as well as the lIberian, ltalian, and Greek
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112 peninsulas (Supplementary Figure 1). Today, favourable conditions extend well into
113  Western, Central, and Northern Europe, making most of the continent suitable for barn
114  owils. This notable northward and inland expansion prompted us to investigate the climatic
115  variables driving these changes.

116  To identify the climatic factors defining the climatic niche of the barn owl, we performed a
117  Principal Component Analysis (PCA) fitting a multidimensional climatic space both from the
118 LGM and modern periods. The first three principal components explain 91.50% of the
119  variance (Figure 1b). The first component, explaining 49.66% of the variance, is driven by
120  temperature-related variables - such as the Mean Temperature of the Coldest Month (bio6),
121  Temperature Annual Range (bio7), and Mean Temperature of the Wettest Quarter (bio8) -
122 which differentiate the Mediterranean region from the rest of Europe (Figure 1c). The
123  second component, explaining 33.6% variance, is mainly influenced by precipitation factors,
124  including Precipitation Seasonality (bio15), Precipitation of the Driest Quarter (bio17), and
125  Precipitation of the Coldest Quarter (bio19), effectively distinguishing coastal areas from the
126  continental interior (Figure 1c). The third component, explaining 8.25% variance, is largely
127  driven by the Minimum Temperature of the Coldest Month (bio6; Supplementary Figure 2
128 and 3).

129  We next explored the overlap between past and present climatic conditions in areas suitable
130 for barn owls and showed that owls now occupy a wider variety of climatic conditions than
131 during the LGM**. We found that only a small fraction of today’s suitable habitats shares
132 characteristics with those from the LGM. We found that only 25.54% of modern suitable
133 cells exhibit LGM-like climatic conditions (Figure 1a, dark grey areas). These overlapping
134  regions are found in northern Africa, the northwestern Iberian Peninsula, western France,

135  the British Isles, and western Turkey. In contrast, 74.45% of current suitable cells are
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136  characterized by climatic conditions that did not exist during the LGM (Figure 1a, RGB-
137  coloured areas). This significant shift suggests that most of today’s barn owl habitats are
138 defined by new climatic conditions, potentially driving local adaptation to these emerging

139 environments.

140 Species-wide sampling reveals that a substantial portion of the

141 genome is under climatic selection

142  To test the hypothesis that local climates may have driven the local adaptation of the barn
143  owl in the Western Palearctic, we have sampled and sequenced 79 individuals from nine
144  populations across the climatic and European geographical distribution of the species
145  (Supplementary Figure 4 and 5, Supplementary Table 1) and identified 12,309,943 Single
146  Nucleotide Polymorphisms (SNPs). The overall differentiation was low (overall Fst = 0.034)
147  and in line with previous estimates™. The first axis of the genomic PCA (explaining 3.88% of
148  the total variance) contrasted individuals from the Levant populations (Israel—IS) to all other
149  individuals (Figure 1d). The second axis of the PCA (explaining 2.26% of the variance)
150 opposed individuals from the most diverse population (from the Iberic peninsula—PT) to all
151  others (Figure 1d, Table 1). Overall, southern populations (PT, IT, GR, AE, IS) were more
152  genetically diverse than northern populations (CH, FR, DK, SB) (Table 1). Next, we employed
153  two complementary approaches - a genome scan for selection and a Genotype-Environment
154  Association (GEA) analysis - to pinpoint genomic regions potentially influenced by these
155  climatic conditions.

156  In our first approach, we scanned the genomes for signatures of selection using population-
157  specific FST?’. This metric, which accounts for population structure, enables the detection of

158 regions of the genome where individuals have higher genetic similarity than what is
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159 observed along the rest of the genome - a pattern possibly resulting from selective
160  events*”*®. Out of 52,429 windows of 100 kbp (with a 20 kbp slide), we identified 10,607
161  outlier windows: 7,034 were unique to a single population, and 3,573 were shared between
162  at least two populations. On average, each population had about 1,756 outlier windows
163  (Table S2), with Israel and France at the extremes (989 and 2,087 outliers, respectively).

164 To ensure that selection signals were caused by climatic conditions, we directly linked
165  genetic variation to temperature and precipitation conditions with a Genotype-Environment
166  Association (GEA). We conducted a Redundancy Analysis (RDA, Supplementary Figure 6)*°
167  that we integrated into genomic windows with the Weighted-Z Analysis (WZA) method*°.
168 We detected 2,181 outlier windows significantly linked to temperature and precipitation
169  variables (Supplementary Figure 7) and overlaid it with the population-specific FST scans.
170  This combined analysis yielded a refined list of 1,246 outlier windows (displayed in dark blue
171  in Figure 2a; Table S2). 59.71% were unique to a single population while the rest was shared
172  between at least two populations. By merging successive outlier windows, we delineated
173 270 genomic regions, many forming distinct adaptive peaks along the genome. Particularly
174  striking associations were observed on Super-Scaffold 14 and 45 (Figure 2b). Additionally, we
175  detected a high density of outlier windows in the first half of Super-Scaffold 22 (Figure 2b-d);
176  this signal, shared by owls from France, Italy, and Portugal, corresponded with a marked
177  increase of population-specific FST in these genomic regions (Supplementary Figure 8),
178 indicating that individuals within each of these populations are significantly more similar to

179  one another than to the rest of the samples.
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180 Metabolic pathways associated with climate

181 To explore the functional implications of selection and climatic adaptation, we extracted a
182  total of 550 genes from the 270 genomic regions that showed signatures of selection and
183  variants associated with climatic variables. Among them, 324 genes were unique to a single
184  population (Table S3). Within the 550 extracted genes, we detected significant enrichments
185 in pathways related to cellular physiology (details of the Gene Ontology (GO) terms are
186  provided in Table S4). We observed the same results when we used the population-specific
187  list of genes from Greece, Israel and Serbia (Table S5). For the other populations, the GO
188  enrichment analysis did not yield any significant results. Overall, the functional grouping of
189  the 550 genes included functions such as immunity, locomotion, and anatomy in all the

190 populations, with different genes in each population (Table S6).

191 Climatic differences drive differential selection between

192 Southern and Northern populations

193  Our analysis of the region with the highest signal of association with climate reveals that
194  differential selection has led to marked genetic differentiation between populations at
195 opposite ends of the temperature gradient. To explore the signal located on Super-Scaffold
196 45, we first examined climatic association values within this genomic region (Figure 3). Out
197  of the 8 outlier windows showing the highest association with climate (red dots in Figure 3a-
198 b), all were outliers in the population-specific FST scan for the Danish population, and two of
199 them were also outliers in the Portuguese population, two populations at the opposite ends
200 of the temperature gradient (first axis of Supplementary Figure 4). We assessed the extent of
201  genetic similarity in this genomic region between the two populations by computing the

202  population-pair FST, an estimate of the standardised mean kinship of individuals®.. With this

10
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203  statistic,c, we detected a substantial reduction of the genetic similarity between the
204  individuals from these two populations within the region harbouring the highest association
205  with climatic conditions (red rectangle on Figure 3c). Consistently, we observed an increase
206  of genetic dissimilarity by using a pairwise FST computed on an SNP basis between the two
207  populations (Figure 3d). We examined the haplotypes within the highest section of the peak
208  which showed a clear distinction between the Danish and Portuguese populations (Figure

209 3e).

210 A putative inversion linked to climatic adaptation in past refugia

211  We identified a long consecutive signal of climatic association shared between populations
212 from France, Italy, and Portugal in the first half of Super-Scaffold 22 (Figure 2b-c; Figure 4a).
213 We used the population-pair FST to assess whether the same genomic variants were shared
214  inthe three populations. We detected a higher genetic similarity between the three pairs of
215  populations (FR-IT, FR-PT, and IT-PT) within a 14 Mb region at the beginning of the Scaffold
216  than along the rest of the genome (Figure 4b). This coincides with a climatic convergence in
217  former glacial refugia, where shifting conditions may have contributed to the shared
218 adaptive signals {Supplementary Figure 9, 10, 11 and 12).

219  To further investigate the genomic features of this region, we applied a PCA to the first 14
220  Mb of the scaffold, encompassing 120,953 SNPs, using data from all 74 individuals {Figure 4c
221  illustrates the first two axes, explaining respectively 26.91 and 2.73% of the variation).
222  Individuals were divided along the first axis into three distinct clusters, corresponding to the
223 expected genomic pattern in case of a chromosomal inversion®’. The leftmost cluster

224 included more individuals than the one on the rightmost part of the x-axis. In comparison,

11
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225  the PCA conducted on the whole genome only separates the Portuguese samples from the

226  rest along the x-axis and the Israel individuals from the rest along the y-axis (Figure 1d).

227 Discussion

228  Climatic conditions and their past fluctuations are known to have shaped today’s distribution
229  and genetic diversity of many species'. While genetic local adaptation is widely recognized
230  as a key mechanism driving species persistence®, its role in shaping populations' capacity to
231  respond to future climatic shifts remains unclear. In this study, we integrated niche-based
232 species distribution modelling (SDM*’) with genome-wide analyses to investigate how
233 climate-driven changes since the Last Glacial Maximum (LGM) have shaped the genetic
234  composition and adaptive potential of the Western Palearctic barn owl. First, we showed
235  that suitable conditions nowadays are more climatically diverse than the ones from the
236 LGM**?, exposing the individuals to heterogeneous and new selective pressures. Then, we
237 identified genomic regions harbouring strong signals of selection and carrying variants
238  associated with climatic variables. We observed signals of genomic adaptation in all the
239  population we sampled across the species’ range, with a particularly strong signal shared
240 among southern populations. Overall, our findings challenge the hypothesis that local

241  adaptation primarily occurs at recolonising margins>>>*

, showing instead that genetically
242 diverse populations such as past glacial refugia are a key source for adaptation®. We
243  highlight that refugial populations, by maintaining standing genetic variation, serve as crucial
244  reservoirs of adaptive potential, enhancing species’ ability to respond to future climatic
245  changes®*?’.

246  Species distribution modelling of the European barn owl based on its realized climatic niche

247  suggests that the latter is broader nowadays than it was during the Last Glacial Maximum

12


https://doi.org/10.1101/2023.03.17.533108
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533108; this version posted May 9, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

248  (LGM). We used the Maximum Entropy method™ for fitting the SDM and project it onto past
249  climatic conditions to compare the extent of suitable habitat under current versus historical
250 climates. Our results indicate that some contemporary climatic conditions along the Atlantic
251  coast, up to the UK, were already present 20,000 years ago. This supports the hypothesis
252  that, as temperatures rose at the end of the LGM, favourable conditions shifted toward
253 northwestern Europe, facilitating barn owl range expansion®’. However, we also identified
254  newly emerged suitable climatic conditions that were absent during the LGM in recolonised
255  Central and Eastern Europe as well as in the glacial refugia where conditions changed for
256  resident populations. All these results suggest that the realised climatic niche of the barn owl
257  was contracted during the Last Glacial Maximum and extended with the subsequent
258 warming. We advance that genetic adaptation played a significant role in this process and
259  further explored this hypothesis.

27,28 . . . . .
“® to identify genomic regions under selection

260 By combining population-specific FST scans
261  with genome-environment association approaches, we found genomic evidence of local
262  adaptation to humidity and temperature in all populations. Genes among selected regions
263  showed significant GO term enrichment in several populations, but we found no clear link to
264  climate adaptation. However, the functional clustering revealed a concentration of genes
265 related to immunity, with GO terms such as "immune system process” and "immune
266  response” (Table S6). This finding aligns with previous research showing that pathogens and
267 infectious diseases exert strong selective pressures on both humans and birds***.
268  Moreover, temperature and rainfall significantly influence pathogen community

269 composition42'43

. Supporting this connection between climate and immune genes, O’Connor
270 et al. (2020) demonstrated that MHC-I genes in birds vary in diversity according to

271  humidity*®. GO terms related to anatomy and growth were also found across population,

13
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272 encompassing several dozens of genes linked to “anatomical structure morphogenesis”,
273  “regulation of the developmental process” and “growth” (Table S6). This result was
274  consistent with Bergmann’s rule which predicts that body sizes of warm-blooded vertebrates
275  negatively correlate with temperature, leading to smaller body sizes in warmer climates*>*®.
276  Overall, our results suggest an implication of these genes in local adaptation to various
277  climates, but further work is needed to identify and confirm their precise role.

278  Acloser look at the regions of the genome with many variants linked to the environment and
279  with strong traces of selection revealed a wide range of mechanisms shaping the barn owl’s
280 local adaptation, from opposite directional selection to recurrent evolution.

281 The region located on the Super-Scaffold 45 showed a clear signal of association with
282  climatic variables. In this region, population-specific FST highlights the high differentiation
283  between the Portuguese and Danish populations, which lie at the opposite ends of the
284  temperature gradient (Supplementary Figure 4). This, along with their distinct haplotypic
285  structure (Figure 3), suggests that different alleles or haplotypes are under selection in these
286  populations®’. A closer look at the genes present in the region did not reveal any genes that
287  can easily be linked to temperature adaptation and further work should confirm whether
288  this region plays a role in thermal adaptation.

289  Our results also revealed a strong and consistent genomic signal of selection linked to
290 climate across all individuals from three populations, one in a region with a climate similar to
291  that of the LGM (France) and two in past glacial refugia (the Iberic and Italian peninsulas).
292  The size of the region involved; the pronounced pattern of genetic differentiation compared
293  to the rest of the populations as well as the cluster patterns found by our local PCA strongly
294  suggest the presence of an inversion in this region®. Supported by the growing body of

295 literature linking inversion and adaptation**™°, we suggest that this inversion is adaptive to

14
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296 climatic conditions. Briefly, considering the genomic disruption that breakpoints can cause,
297  as well as the fact that nearly suppressing recombination will prevent purging of deleterious
298 alleles in the inverted haplotype, it is unlikely for a newly appeared inversion to persist and
299 spread in a population®. However, by bringing adaptive alleles together and averting
300 maladapted gene flow by blocking recombination, an inversion can promote local adaptation
301  and thus be favoured by selection®***%.

302 The history of this inversion remains to be explored. The pattern of selection is shared
303 between the two peninsulas that hosted the species during the LGM. Considering the
304 isolation of the two populations at the time and the reduced connectivity nowadays (see
305  Figure 4 in Cumer et al., 2021 for details)®” we suppose that this inversion predates the LGM,
306 and that independent and recurrent selection drove the increase of frequency of this
307 haplotype independently in these two populations. Further work should formally test this
308 hypothesis.

309 A key question is the origin of adaptive alleles and given the pattern of genomic traces of

310 local adaptation we observed, we propose that standing variation played a crucial role in this

311  process™™>. One possibility for local adaptation to occur is de novo mutations bringing new

54,56 57,58

312 favourable alleles in the different populations®™™. Considering the low mutation rate and
313  the even lower probability of a mutation being both advantageous and occurring in the right
314  environmental context®, this mechanism is unlikely to fully explain the extent of genomic
315  regions involved in local adaptation (Figure 2). A more parsimonious explanation relies on
316 adaptation to pre-existing genetic variation>. In this scenario, allele sorting from standing
317  genetic variation would have driven adaptation®®. This occurs when previously neutral or

318 mildly deleterious alleles become advantageous following shifts in selective pressures, such

319  as habitat colonisation or climate change®. This scenario implied that within glacial refugia,

15
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320  a pool of segregating alleles was maintained in sufficiently large populations®’. These alleles
321  were then sorted through space by local adaptation, with different environments (biotic and
322  abiotic) acting as a filter on deleterious and/or less advantageous alleles. This whole process
323  has been reported in species as diverse as insects (Drosophila melanogaster®®), birds

>%%) and fish (sticklebacks®®). We did not explicitly

324  (Darwin’s finches®®) mammals (humans
325  test whether local adaptation in barn owls resulted from de novo mutations, allele sorting
326 from standing variation, or a combination of both. Therefore, additional work, focusing on
327  the date of mutations®® as well as the timing of selection®, should confirm our results.
328 However, the pattern of local adaptation that we identified in populations from past glacial
329 refugia already provides insight into how standing variation fuels adaptation during climatic
330 fluctuations.

331  The climatic variation since the Last Glacial Maximum provides a good framework to gain
332 knowledge on where and how populations adapt to climate change. A wide body of
333  literature explored many aspects of what happens in populations that expanded into newly

68,69

334  available habitat, from dispersal limitation to the genetic load accumulated during an

70-74 75-78

335 expansion” ", and how these mechanisms interact with local adaptation . However, the
336 fate of refugial populations remains, to our knowledge, understudied. In this work, we first
337 demonstrate that the climatic conditions experienced by these populations have changed
338 over time, creating ongoing pressures for adaptation. Our findings suggest that refugial
339 populations are not only well adapted to their current environments but are also continuing
340 to adapt. Based on our results, we propose that adaptation in refugial populations is a
341  recurrent and dynamic process. As the climate continues to shift, the species’ optimal niche

342  moves northward, and southern populations will be among the first to experience novel

343 climatic conditions. These populations often harbour the highest levels of genetic diversity",
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344  which likely confers them the greatest adaptive potential in the face of climate change. This
345  underscores the importance of conserving these genetically diverse populations, whose
346  adaptive capacity may be critical for the long-term resilience of the species. While we
347  acknowledge that the pace of current climate change is far more rapid compared to shifts
348  since the Last Glacial Maximum, our study las the groundwork for a deeper of the genomic
349 foundations of adaptative potential. Future research will be essential to unravel the

350 mechanisms that enable species to persist and thrive in rapidly changing environments.

;51 Material and methods

352 Ecological modelling

353  Species distribution modelling

354  We first conducted species distribution modelling (SDM*?) to identify suitable areas for the
355  species during the Last Glacial Maximum and nowadays. We fitted SDM using the Maximum

38,79 .
"%, v.3.4.3), a presence-only based procedure in a

356  Entropy modelling software (MaxEnt
357  similar approach as the one described in Cumer et al. (2022)".

358  First, we extracted 19 bioclimatic variables at a 5 arc-minute (~9.3 km at the equator)
359  resolution from the WorldClim 1.4 database®™ using the rbioclim R package®'. To avoid
360 redundancy between variables, we removed variables with a correlation equal to or higher
361 than 0.8%, leading to a set of 7 uncorrelated climatic variables: Mean Diurnal Range (Bio2),
362 Min Temperature of Coldest Month (Bio6), Temperature Annual Range (Bio7), Mean
363 Temperature of Wettest Quarter (Bio8), Precipitation Seasonality (Biol5), Precipitation of
364  Driest Quarter (Bio17), and Precipitation of Coldest Quarter (Bio19).

365 We performed the analysis using the dismo R package® v.1.3-14 on R v.4.3.2. To determine

366  which combination of parameters optimised the model without over-complexifying it**, we
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367  built models with linear, quadratic, and hinge features, using a range of regularisation
368  multipliers from 1 to 5 (as recommended in Warren & Seifert, 2011%). A quadratic feature
369 with a regularisation multiplier of 1 yielded the lowest AIC and was chosen for further
370  modelling. We ran a total of 100 quadratic MaxEnt models {with a regularisation multiplier =
371 1), omitting 25% of the data during training to test the model and using 10’000 background
372  points randomly sampled across the study area. For each model, we randomly sampled
373 1,000 presence points from the IUCN distribution map®. We evaluated the predictive
374  performances of the models by assessing the area under the curve {AUC) of the receiver
375  operating characteristic (ROC) plot of the test data®’. All models had an AUC between 0.756
376  and 0.807 (see Supplementary Figure 13), thus classified as fair to good according to Li et al.
377  (2020)%.

378 We projected the 100 models to the present climatic conditions and to the climatic
379  conditions from the Last Glacial Maximum (about 20’000 years ago), also extracted from the
380  WorldClim 1.4 database (scenario CCSM from PMIP2%) at 5 arc-minute resolution. We used
381 the “maximum training sensitivity plus specificity” (MaxSSS) threshold, as recommended for
382  presence-only data®, to transform the projected output from the models into binary
383  suitability maps (O unsuitable, 1 suitable). Finally, we averaged the values among replicates
384  and retained cells as suitable only if they were so in at least 90% of the models. To avoid
385 model extrapolation when projecting the models in the past, we used the Multivariate
386  Environmental Similarity Surface (MESS) approach®™ to identify and discard areas from the

387  past with climatic conditions absent from those in the calibration data.
388 Identification of newly suitable conditions absent from the LGM

389 Then, we determined whether currently suitable areas display climatic conditions different

390 from those found during the LGM. To do so, we extracted values of the 7 climatic variables
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391 used in the SDM (see Species distribution modelling section for details) at every continental
392  cell of the studied area for both past and present and performed a Principal Component
393  Analysis (PCA) to represent the environmental space. We retained the first three principal
394  components that explained up to 91.50% of the climatic variance. In this environmental
395  space, we generated a “multidimensional climatic space”, representing the entire range of
396 climatic conditions suitable for the barn owl, by combining past and present suitable pixels
397  within this PCA space. We then characterised the past suitable conditions for the species by
398 creating a polygon around the LGM suitable conditions, using the alphashape3d R package
399 (a=0.5, keeping all the datagl). Next, we classified the suitable conditions at current time as
400 located inside or outside the polygon, thus respectively present or absent from the range of

401 LGM suitable conditions.

402  Estimation of the shift of climate within suitable areas

403  To quantify shifts in climatic conditions between LGM and now, we identified cells that were
404  suitable both during the LGM and present time (Supplementary Figure 9) and computed the
405  Euclidean distance between their past and present positions in the multidimensional climatic
406  space. We then rescaled the distance values from 0 to 1 (Supplementary Figure 10).

407 Because we discovered a strong signal of selection shared between the two glacial refugia
408 populations (see Results section), we investigated how the climate has changed since the
409 LGM in the two peninsulas to assess whether the climate converged or diverged in these two
410 locations. We extracted values of the 7 climatic variables used in the ecological modelling for
411  the LGM and today (see Species distribution modelling section) at the GPS coordinates for
412  the Italian and Portuguese samples. We projected these conditions inside the
413  multidimensional climatic space (Supplementary Figure 11). Then, we computed the

414  pairwise Euclidean distances between all sampling localities of the two peninsulas during the

19


https://doi.org/10.1101/2023.03.17.533108
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533108; this version posted May 9, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

415 LGM and the present time (8 (IT) x 8 (PT) pairwise distances at both time points). This way,
416  we quantified the climatic difference between the Italian and Portuguese sampling localities

417  at the two different time points (Supplementary Figure 12).

418 Individual barn owl sampling

419 Biological samples

420  This study took advantage of the datasets of European barn owls previously published by
421  Cumer et al. (2022), Machado, Cumer, et al. (2021), and Machado, Topaloudis, et al.
422 (2021)**"*% We retrieved the whole genome sequences from the Sequence Read Archive

423  (SRA - Bioprojects PRINA700797, PRINA727915, and PRINA727977, Table S1).

424  Genetic data preparation

425  We performed the read mapping, variant discovery, and variant filtering following Cumer et
426  al. (2022)"™. In brief, we mapped raw reads to the reference barn owl genome (GenBank
427  accession GCA_018691265.1*) with BWA-MEM v.0.7.15%%. We performed Base quality score
428  recalibration (BQSR) in GATK v.4.1.3 using high-confidence calls described in Cumer et al.
429  (2022)". We called variants with GATK’s HaplotypeCaller and GenotypeGVCF v.4.1.3 from
430 the recalibrated BAM files. We filtered genotype calls using a hard-filtering approach as
431  suggested for nonmodel organisms, using GATK and VCFtools®*. Details of technical filtration
432 can be retrieved from Cumer et al. (2022)".

433  To prevent some alleles from being over-represented in the dataset (relatedness statistic
434  based on the method of Manichaikul et al., 2010, implemented in VCFtools v0.1.14*"), we
435  identified pairs of individuals with a relatedness higher than 0.1. We removed one of the two

436  individuals for each identified pair, leading to a dataset of 74 individuals (Table S1).
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437  We then excluded genomic regions with uncertain SNP calling by removing regions of the
438 genome where our ability to confidently map reads is limited (i.e., a "mappability" mask). To
439  achieve this, we followed the procedure documented at
440  |h3lh3.users.sourceforge.net/snpable.shtml. In summary, we divided the reference genome
441  into reads of 150 base pairs (bp) with a sliding window of 1 bp. These artificial reads were
442  then mapped back to the reference using BWA-MEM v.0.7.17. Regions of the sequence
443  where less than 90% of the reads mapped perfectly and uniquely were discarded by
444  excluding variants using a bed file in VCFtools v0.1.14. We retained only bi-allelic SNPs,
445  removed loci with more than 5% missing data, and excluded from the analysis 15 scaffolds
446  (out of 60) showing less than 1000 SNPs and one extra sexual scaffold.

447 At the end of the filtration process, we retained a set of 12,309,943 SNPs from 39 scaffolds,
448  genotyped in 74 European barn owls (10 individuals from the Aegean Islands {AE), 10 from
449  Denmark (DK), 4 from France (FR), 9 from Greece (GR), 9 from lItaly (IT), 10 from Israel (IS), 9
450  from Portugal (PT), 5 from Serbia (SB), and 9 from Switzerland (CH)).

451  To explore the genome-wide variations of the Western palearctic populations and check its
452  concordance with previous results, we conducted a PCA with the SNPRelate R package®
453  using this entire set of SNPs and individuals. Additionally, we assessed genetic diversity
454  among the 9 sampled populations following the procedure of Cumer et al., (2022)". Briefly,
455  we identified the number of polymorphic sites, private alleles, rare alleles and the whole
456 genome population-specific FST for each population independently. To account for
457  differences in sample sizes (ranging from 4 to 10), we randomly sampled 5 individuals from
458  each population - except for FR and SB - and calculated these diversity estimates on the
459  resulting subsets. This resampling process was repeated 10 times, and we reported the

460 mean and standard deviation of the diversity estimates.
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461 Phasing process and evaluation

462  We performed the phasing and imputation of the individuals’ genotypes in two steps. First,
463  we conducted a read-based phasing of each individual using WhatsHap v1.0%”. During this
464  step, we reconstructed haplotypes based on the mapped sequencing reads covering multiple
465  variants. Between the two filtering steps, we applied a Minor Allele Frequency (MAF) filter to
466  ensure it was higher than 5% using VCFtools v.0.1.14%*, thereby removing rare alleles from
467  the dataset that could influence the second round of phasing, resulting in a dataset of
468  4'689'284 SNPs. Then, we conducted the complementary round of phasing with Shapelt4
469  v4.1.3°® with default parameters. The latter uses a statistical approach to infer individuals’
470  haplotypes based on the population genotypes® and incorporates the phase information
471  from the read based phasing.

472  To evaluate phasing performance, we calculated the switch error rate (SER) of the phasing
473  generated by Shapelt4 for each individual'®. For each individual, we conducted a statistical
474  phasing using Shapelt without considering the read-based phasing from WhatsHap for the
475  focal individual. Subsequently, we compared this phasing to the "true" local phasing,
476  inferred from the read-based approach {WhatsHap). We estimated the switch error rate

477  between both sets of phasing using the switchError code (available at

478  https://github.com/SPG-group/switchError). Among the 74 phased individuals, the mean

479  error rate was 2.23 * 10 and none exceeded 0.7% (Supplementary Figure 14).

280 Detection of traces of selection in each population

481 We computed a single summary statistic to identify genomic regions potentially under

1

482  selection: population-specific FST, using the hierfstat R package'®'. The statistic was

483  calculated across the genome in overlapping windows of 100 kbp with 20 kbp steps for each
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484  independent population. Only windows containing at least 250 SNPs, corresponding to two
485  standard deviations below the mean, were included in the analysis.

486  To identify outlier windows (regions with extreme values of positive population-specific FST),
487  we first transformed the statistic into Z-scores by subtracting the population mean from
488  each estimate and dividing it by the standard deviation for each population independently.
489  We then combined Z-scores from all populations and considered a window as an outlier in
490 each population if its Z-score for population-specific FST was equal to or higher than 2
491  standard deviations from the mean of the merged Z-scores. This approach allowed us to
492  focus on regions exhibiting an excess similarity in the population compared to the rest of the
493  genome (high population-specific FST). For further details about this method, refer to Cumer
494  etal. (2022)27. We computed the statistic on the set of 12,309,943 SNPs, unfiltered for Minor
495  Allele Frequency {MAF). To ensure that rare alleles did not influence population-specific FST,
496  we also calculated this statistic on the filtered variants from MAF (set of 12'309°943 SNPs).
497  The high consistency between the two estimates (with and without MAF filtering), as
498  depicted in Supplementary Figure 15, supported our decision to retain the statistic

499  computed on the unfiltered variants set (12,309,943 SNPs).

500 Genotype-Environment Association

501 Redundancy Analysis

502 We independently conducted a Genotype-Environment Association (GEA) analysis to assess
503 the relationship between the genotypes of the barn owl and their surrounding environment
504  for all populations simultaneously.

505 Based on the GPS coordinates of the 74 samples (Table S1), we extracted values for the

506  same 7 climatic variables as those used in the species distribution modelling (Mean Diurnal
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507 Range (Bio2), Min Temperature of Coldest Month (Bio6), Temperature Annual Range (Bio7),
508 Mean Temperature of Wettest Quarter (Bio8), Precipitation Seasonality (Biol5),
509 Precipitation of Driest Quarter (Bio17), and Precipitation of Coldest Quarter (Bio19); see
510 Species distribution modelling section for details). We conducted a Principal Component
511  Analysis (PCA) on these climatic data to assess the level of climatic dissimilarity experienced
512 by the barn owls sampled in this study nowadays. We retained the first three principal
513  components, explaining 94.97% of the climatic variance.

514  We then associated variants with genomic information using Redundancy Analysis (RDA)

29,102 . . . . .
**. This method relies on a multiple linear regression of the

515  with the vegan R package
516  observed genotypes on a set of abiotic or biotic predictors. The expected genotypes based
517 on the model (also called fitted values) are then extracted and used as input for a PCA called
518 RDA space. The projection of the principal axes and components in this RDA space allows the
519  detection of the SNPs that contribute the most to the RDA axis and whaose allelic frequency
520 might be putatively driven by the explanatory variables®. We used the imputed genotype
521  matrix (phased set of 4'689'284 SNPs) as the response matrix and the bioclimatic variables
522  extracted at each sampling locality for the multiple linear regression.

523  To evaluate the significance of the relationship between genotypes and climatic variables,

524  we performed a permutation test'®

. In brief, we computed a test statistic (F-statistic) from
525  the regression using the true data. Afterwards, we carried out 999 additional regressions on
526  permuted rows of the response data (i.e., the genotype matrix), allowing us to establish the
527  empirical null distribution of the statistics, to which we compared the observed statistic'®.
528  From this test, we found a significant relationship between the environmental variables and

529  genetic components (Table S7). To select the number of RDA axes to retain, we also

530 performed a permutation test for each axis (n = 100) by following the procedure given by
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531  Borcard et al. (2011)'®. Applying this method, we kept the first five RDA axes, explaining
532  80.41% of the constrained variance (Table S8). To detect loci that strongly contribute to the
533  individual’s discrimination in the RDA space {outlier loci), we followed the procedure
534  described in Capblancq et al. (2018)'®: we computed Mahalanobis distances between each
535  locus and the centre of the RDA space using the previously retained five axes. P-values were
536  adjusted for the false discovery rate (FDR) by computing g-values using the qvalue R

105

537 package . We considered a SNP as an outlier if its g-value was less than 0.1, following

538  Capblancq et al. (2018)™.
539 Weighted-Z analysis

540  To improve the robustness of our GEA approach, we decided to transform the SNPs p-values
541  from the Redundancy Analysis into window-based statistics through the Weighted-Z analysis
542  (WZA) proposed by Booker et al. (2021)*. This method takes as input individual p-values
543  from any SNP-based GEA approach and calculates a weighted-Z statistic for a given genomic
544  region. To do so, it transforms the p-values of the focal window into z-scores and computes
545  the weighted-Z statistic using the equation provided by Booker et al. (2021)*, which
546  considers the variation in the number of SNPs among windows along the genome.

547  We computed the weighted-Z statistics on the same windows as population-specific FST.
548  Since WZA does not support overlapping windows, we split the window set based into five
549  sets of non-overlapping windows. We ran 5 separate weighted-Z analyses, one with each
550 input file, and merged the outputs to obtain the final one. We considered a window as an
551  outlier when the -log10 of its p-value was equal to or higher than 2 standard deviations from

552  the mean of all windows (equivalent to a p-value of 0.03 assuming a normal distribution).
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553  Genomic signal of local adaptation to climate

554 Concordance between the genome scans and landscape genomics

555 Because the study aimed to detect traces of selection linked with local climatic conditions,
556  we considered the final list of outlier windows as the overlap between the outlier set from
557 the genome scans {see Detection of traces of selection in each population section) and the
558 one from the Genotype-Environment Association analysis (see Weighted-Z Analysis section).
559 Based on the annotated barn owl genome (GenBank Assembly Accession:
560 GCA 018691265.1), we considered genes that partially or fully overlapped the final list of
561 outlier windows as potentially involved in local adaptation to climate and extracted a list of
562  genes for each population.

563 Gene Ontology Enrichment

106
to assess

564  We conducted Gene Ontology Enrichment (GOE) analyses using ShinyGo v.0.8
565  which biological pathways the genes located in the final list of outlier windows could be
566 involved in and whether we could link some to local adaptation to abiotic conditions. We
567 performed GOEs for each set of genes from each population separately and one additional
568  GOE using all genes detected in at least one population. As a baseline set of genes against
569  which we compared the observed enrichment signature, also called the background list, we
570 used all the genes annotated in the barn owl genome that could have been detected with
571  our 52’429 non-overlapping windows from the genome scans or WZA. For each analysis, we

572  used the default pathway databases, namely KEGG (Kyoto Encyclopedia of Genes and

573  Genomes), as well as the GO Biological Process database.
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574 Exploration of signals specific to some populations

575  Population-pair FST on Super-Scaffold 45

576  We identified a strong environmental association in Denmark and Portugal, two populations
577  at the opposite of our environmental gradient, with strong population-specific FST in this
578 region in each of them. To know whether populations have the same genetic variants or
579  opposite ones, we assessed the level of genetic (dis)similarity between pairs of populations
580 on this part of the genome. To do so, we computed a population-pair FST, described in detail
581 in Goudet & Weir (2023)*, using the hierfstat R package'. In brief, for every pair of
582  populations, we calculated the average kinship among pairs of individuals and standardised
583 it by the average kinship between all populations using the same dataset and windows
584  employed for population-specific FST analysis. A schematic example is provided in

585  Supplementary Figure 16 for the Denmark - Portugal population pair.

586 Pairwise FST at the SNP level

587  To calculate a pairwise FST at the SNP level®* and confirm the signal obtained through
588  population-pair FST, we used the fs.dosage function of the hierfstat R package'’. We
589  computed this pairwise FST on the entire Super-Scaffold 45 between Denmark and Portugal

590 using the same dataset as for population-specific FST or population-pair FST.
591 Local PCA on Super-Scaffold 22

592  As we detected a strong signal of selection related to climate in the first half of Super-
593  Scaffold 22, we decided to investigate the genetic architecture of this region. To do so, we
594  conducted a PCA on the first 14 Mb of the scaffold (120,953 SNPs) using all individuals, using

595  the SNPRelate R package™.
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858  Figure 1 - Environmental and genetic variation across the suitable range of the European
859 barn owl. (a) Map depicting the climatic heterogeneity across the range of the European
860  barn owl according to the species distribution modelling. Dark grey cells surrounded by a
861  white border have suitable climatic conditions similar to conditions present during the Last
862  glacial Maximum (LGM). Coloured cells outside the white-bordered polygon have climatic
863  conditions not present during the LGM. Colours are based on the multidimensional climatic
864  space of bioclimatic data shown in (b): the scores of the first three principal components
865 (PCs) were converted into values of RGB (PC1: red; PC2: green; PC3: blue) to represent
866  variation in climate. Similar colours represent similar climates. Symbols represent sampling
867 coordinates of individuals from 9 different populations. A jitter has been added for better
868  visualisation (longitude: 0.425; latitude: 0.42). (b) Variance explained by the 7 first principal
869 components of the PCA made on bioclimatic variables from the entire study area pictured on
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870  (a). Climatic variables came both from the LGM and today to picture the overall climatic
871  variability. (c) Correlation between climatic variables and the two first axes of the PCA. Dark
872  to white gradients picture the contribution of each axis projected at the European scale -
873  Abbreviations : CT = Coldest ; DT = Driest ; MTH = Month ; Precip = Precipitation ; QR =
874  Quarter ; Temp = Temperature ; WT = Wettest (d) PCA based on the whole genome of the 74
875  European barn owls identified in (a). Symbols legend is the same as for panel (a). Only the
876  two first principal components are represented.
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902  Figure 2 - Genomic signatures of selection linked to climate in the European barn owls. {a)
903  Scatterplot of genomic windows (100kbp each) across nine populations. Vertical and
904  horizontal dashed lines are at 2 standard deviation from the mean of z-scores (population-
905 specific FST) and z-scores (p-values) of WZA respectively. Each colour presents a class of
906  windows. Dark blue dots represent outlier windows in both population-specific FST and WZA
907  scans. Light blue dots are outlier according to WZA and have a population-specific FST higher
908 than 1 standard deviation from the mean; {(b) Genome-wide distribution of the WZA score.
909 Dark blue dots corresponding to the windows identified in panel (a). A switch between light
910 and dark grey represents a change in the scaffold. The names of all scaffolds are displayed
911 on the upper x-axis. (c) Distribution of outlier windows in the different populations. Each row
912  represents a population (DK: Denmark; FR: France; CH: Switzerland; PT: Portugal; IT: Italy;
913  SB: Serbia; GR: Greece; AG: Aegean islands; IS: Israel). Each column is a window along the
914 genome, coloured according to the classification in (a). (d) Barplot of outlier windows per
915  population. Dark blue bars picture the outlier windows shared with at least one other
916  population while white dashed bars picture the number of outlier windows unique to each
917  population.
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926  Figure 3 - Divergent selection drives the strong climate-driven signal on Super-Scaffold 45
927 (a) WZA signal across Super-Scaffold 45 with the main peak of outliers highlighted in grey.
928 Dark blue circles are outlier windows from WZA and population-specific FST. Red circles
929 represent outliers with a -log10{p-values) higher than 8. {(b) Zoom on this peak of the Super-
930 Scaffold 45. (c) Population-pair FST in this region between two populations at the extreme of
931  the first climatic axis in Figure 1b (namely Denmark and Portugal). Lower value indicates a
932  higher divergence in this region compared to the rest of the genome. (d) Pairwise FST
933  between Denmark and Portugal, computed on a SNP-basis. (e) Genotypes of each SNP within
934  the highlighted region (red rectangle on panel (B), (C) and (D)), using phased haplotypes
935 from Denmark and Portugal. Beige represents the reference allele, and red represents the
936 alternative allele.
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945  Figure 4 - The shared signal in southern populations point to a putative inversion linked
946  with local adaptation in the European barn owl (a) WZA signal along Super-Scaffold 22 with
947  the first 14 Mb highlighted in grey. Dark blue circles are outlier windows from WZA and
948  population-specific FST. (b) Population-pair FST along the entire Super-Scaffold 22, higher
949 value indicates a higher similarity in this region compared to the rest of the genome. As in
950 (A), the first 14 Mb are highlighted in grey. Pairwise comparisons include France (FR), Italy
951  (IT) and Portugal (PT). (c) PCA made on the first 14 Mb of the Super-Scaffold 22, (120,953
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SNPs - DK: Denmark; FR: France; CH: Switzerland; PT: Portugal; IT: Italy; SB: Serbia; GR:

Greece; AG: Aegean islands; IS: Israel).

Population
AE
CH
DK
FR

GR

PT

SB

N
10
9

10

10,1

# PolymorphicS
4,231,387 (44,618)
4,259,867 (19,877)
4,102,932 (17,633)
3,722,772 (0)
4,176,443 (19,842)
4,402,055 (12,195)
4,120,120 (10,620)
4,678,275 (25,247)

4,005,667 (0)

# PrivateA
193,178 (16,440)
170,886 (4,123)
135,566 (3,939)
124,430 (1,292)
144,856 (3,756)
626,578 (7,595)
214,759 (2,352)
492,983 (7,476)

106,496 (2,004)

# RareA
687,423 (28,433)
642,071 (9,990)
560,136 (9,451)
487,175 (1,859)
606,164 (8,453)
1,173,410 (6,991)

679,772 (5,274)

1,090,608 (12,569)

514,405 (2,428)

PopSpecificFST
0.03
0.038
0.049
0.045
0.046
0.009
0.054
-0.018

0.06

Table 1 - Genetic diversity estimated for 9 populations of Western Palearctic barn owls.
Standard deviations are found between brackets. See Material and Methods for details on
calculation. N, sample size; # PolymorphicS, number of polymorphic sites; # PrivateA,
number of private alleles; # RareA, number of rare alleles; PopSpecificFST, population-
specific FST computed at the whole genome level.
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