
Bipartite invariance
in mouse primary visual cortex

Zhiwei Ding1,2,*, Dat T. Tran1,2,*, Kayla Ponder1-5, Zhuokun Ding1-5, Rachel Froebe1-5, Lydia Ntanavara1-5, Paul G. Fahey1-5,
Erick Cobos1,2, Luca Baroni6, Maria Diamantaki7,8, Eric Y. Wang1,2, Andersen Chang1,2, Stelios Papadopoulos1-5,

Jiakun Fu1,2, Taliah Muhammad1,2, Christos Papadopoulos1,2, Santiago A. Cadena9, Alexandros Evangelou7,8,
Konstantin Willeke3-5,9,10, Fabio Anselmi11, Sophia Sanborn3-5, Jan Antolik6, Emmanouil Froudarakis7,8, Saumil Patel1-5,

Edgar Y. Walker12,13, Jacob Reimer1,2, Fabian H. Sinz1,2,9,10, Alexander S. Ecker9,14, Katrin Franke1-5,
Xaq Pitkow1,2,15-18, and Andreas S. Tolias1-5,19

1Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
2Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA

3Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, US
4Stanford Bio-X, Stanford University, Stanford, CA, USA

5Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
6Charles University, Prague, Czech Republic

7Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology - Hellas, Heraklion, Crete, Greece
8School of Medicine, University of Crete, Heraklion, Crete, Greece

9Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Göttingen, Germany
10Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany

11Department of Mathematics, Informatics and Geoscience, University of Trieste, Trieste, Italy
12Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA

13Computational Neuroscience Center, University of Washington, Seattle, WA, USA
14Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany

15Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
16Department of Computer Science, Rice University, Houston, TX, USA

17Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
18Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA

19Department of Electrical Engineering, Stanford University, Stanford, CA, USA
*These authors contributed equally: Zhiwei Ding, Dat T. Tran.

A primary goal of sensory systems is to extract robust and
meaningful features that are invariant to variations in the sen-
sory input. Characterizing these invariances at the neuronal
level is crucial for understanding how the visual system sup-
ports generalization, but the high-dimensional nature of ecolog-5

ical stimuli poses major challenges. Consequently, our under-
standing of how the brain represents invariances has historically
depended on a few examples, such as phase invariance to grat-
ing stimuli in V1 complex cells. Here, we leverage the inception
loop paradigm —iterating between large-scale recordings, deep10

learning neuronal predictive models, and in silico experiments
with in vivo verification—to characterize neuronal invariances
in mouse V1. Using a neuronal predictive model, we synthesized
Diverse Exciting Inputs (DEIs) that strongly drive target neu-
rons while differing substantially in image space. These DEIs re-15

vealed a novel bipartite invariance: one portion of the receptive
field encodes shift-invariant, high-frequency textures, while the
other encodes a fixed, low-frequency spatial pattern. This sub-
field division aligned with object boundaries defined by spatial
frequency differences in highly activating stimuli, suggesting bi-20

partite invariance contributes to segmentation. Our analysis of
computational models and anatomical data from the MICrONS
dataset revealed a hierarchical organization of excitatory neu-
rons in mouse V1 Layers 2/3: We found that postsynaptic neu-
rons exhibited greater invariance than their presynaptic inputs,25

while neurons with lower invariance formed more connections.
These findings suggest a synaptic-level hierarchy that progres-
sively increases neural invariance within the primary visual cor-
tex. Intriguingly, similar high-low frequency bipartite patterns
strongly activate certain units in artificial neural networks, sug-30

gesting that universal visual representations govern both biolog-
ical and artificial systems, potentially aiding in the extraction of

visual features from complex backgrounds.

Correspondence: tolias@stanford.edu

Introduction35

A central challenge of visual perception is to infer stable, be-
haviorally relevant latent features in the world despite con-
tinual fluctuations in the raw sensory inputs. For example, to
recognize a familiar face in a crowded environment, the brain
must extract relevant features from patterns of light to consis-40

tently identify the person, despite variations such as viewing
distance, 3D pose, scale, and illumination. While these vari-
ations are often considered “nuisance” variables, the brain
must represent them because they play crucial roles in other
tasks, such as navigating through the crowd to approach the45

familiar face.
To understand how brains effectively disentangle high-
dimensional sensory inputs and robustly extract latent vari-
ables (DiCarlo and Cox, 2007; Karklin and Lewicki, 2009;
Higgins et al., 2022), it is essential to identify the features50

to which neurons exhibit selectivity (i.e. features that evoke
maximal response) and invariance (i.e. feature variations that
preserve high response magnitude). Identifying neuronal in-
variances is extremely challenging because of the enormous
search space of visual stimuli, the non-linear information pro-55

cessing in the brain, and the limited experimental time. As
a result, most previous studies have been limited to para-
metric stimuli (e.g., gratings) or semantic categories (e.g.,
objects and faces) (Gross et al., 1972; Tsao et al., 2006;
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Yamins and DiCarlo, 2016; Cadieu et al., 2007; Sharpee60

et al., 2013; El-Shamayleh and Pasupathy, 2016) that are cho-
sen based on strong assumptions about the structure of invari-
ances in the brain. The classic example of this approach is
Hubel & Wiesel’s complex cells in the primary visual cortex
(V1) (Hubel and Wiesel, 1962), which are tuned to gratings65

of a preferred orientation but are invariant to spatial phase (in
contrast to simple cells, which are selective to both orienta-
tion and spatial phase). So far, however, we know little about
other types of invariances in early visual areas beyond these
classes of parametric stimuli.70

Here, we take a data-driven, systematic approach to study
neuronal invariances, leveraging the previously introduced
“inception loop” paradigm (Walker et al., 2019). Using large-
scale calcium imaging data, we trained a deep neural network
model to accurately predict mouse V1 neuronal responses to75

arbitrary, new natural images. This model enables rapid and
high-throughput in silico experiments, revealing neuronal re-
sponse properties with precision and efficiency unattainable
through traditional in vivo methods.

Using the trained model as a “digital twin” of the visual cor-80

tex, we synthesized a set of stimuli for each individual neuron
that elicit strong responses while being maximally different
from each other—“Diverse Exciting Inputs" (DEIs, Fig. 1a).
The variation among a neuron’s DEIs reveal the visual fea-
tures that define its invariances. To validate these model-85

generated predictions, we closed the loop by presenting DEIs
back to the animal while recording the activity of the same
neurons in vivo. Our results confirm the model’s predictions,
demonstrating that DEIs reliably evoke strong responses in
their target neurons.90

The structure of the DEIs reveals a novel functional invari-
ance in V1 neurons, which we refer to as “bipartite invari-
ance”. These DEIs exhibit two distinct, non-overlapping sub-
fields. In one subfield, the neuron’s response is selective for a
particular texture while remaining robust across different spa-95

tial locations, resembling a response to different crops from
an underlying texture. In contrast, the other subfield responds
strongly only to a specific spatial pattern. Additionally, these
neurons show a preference for bipartite stimuli defined by
two regions of different spatial frequencies. The spatial di-100

vision arising from bipartite invariance closely aligns with
this bipartite frequency preference, suggesting that these V1
neurons may serve as specialized detectors for object bound-
aries, particularly those defined by abrupt changes in texture
and spatial frequency.105

Expanding our investigation, we adapted our methodology to
analyze the functional connectomics MICrONs dataset (MI-
CrONS Consortium et al., 2021) using a state-of-the-art foun-
dation model (Wang et al., 2023). This approach reveals a
novel hierarchical organization among excitatory neurons in110

mouse V1 Layer 2/3 that enhances single-neuron functional
invariance. Specifically, we find that postsynaptic neurons
exhibit greater invariance than their presynaptic partners, and
neurons with lower invariance form more connections com-

pared to those with higher invariance. Our findings collec-115

tively suggest a novel principle of receptive field organiza-
tion in the mouse primary visual cortex, offering new in-
sights into how the brain might extract visual features from
complex backgrounds and advancing our understanding of
circuit-level mechanisms underlying neuronal invariance.120

Results
Diverse Exciting Inputs (DEIs) identify neuronal invari-
ances. In this study, we employed inception loops (Walker
et al., 2019; Bashivan et al., 2019), a closed-loop experimen-
tal paradigm, to investigate the invariances of single neurons125

in mouse V1 (Fig. 1b). An inception loop consists of four
key steps:

1. Neuronal recordings: Conduct large-scale recordings with
high-entropy natural stimuli to capture diverse neuronal
responses (Fig. 1c).130

2. Predictive modeling: Train a deep convolutional neural
network (CNN) (Sinz et al., 2018; Walker et al., 2019;
Franke et al., 2022) to predict the activity of neurons
to arbitrary natural images. This model incorporates a
non-linear core of convolutional layers shared across all135

recorded neurons, followed by neuron-specific linear read-
outs (Fig. 1d).

3. In silico experiments: Utilize the deep predictive model
of the brain to systematically study the computations of
the modeled neurons in silico and derive experimentally140

testable predictions.

4. In vivo verification: Validate these predictions through ex-
periments in the actual brain.

We presented 5,100 unique natural images from ImageNet
(ILSVRC2012) (Russakovsky et al., 2015) to awake, head-145

fixed mice while recording the activity of thousands of V1
Layer 2/3 (L2/3) excitatory neurons using two-photon cal-
cium imaging (Fig. 1c). We used the recorded neuronal ac-
tivity to train CNNs to predict the responses of these neu-
rons to arbitrary natural images. The predictive model in-150

cluded a shifter network to compensate for eye movements
and a modulator network for predicting an adaptive gain
based on behavioral variables like running velocity and pupil
size (Sinz et al., 2018; Walker et al., 2019) (Fig. 1d). We
assessed model performance using a held-out set of natural155

images presented repeatedly during recording. For each neu-
ron, we evaluated the predictive accuracy as the correlation
between the recorded and the predicted responses to a novel
set of stimuli that were not included in model training (Suppl.
Fig. S1b). To account for noise in in vivo neuronal response,160

the correlation was normalized by neuronal self-reliability
that served as an estimated upper bound on the model per-
formance (Schoppe et al., 2016) (Suppl. Fig. S1a). The pre-
dictive models achieved a median normalized correlation co-
efficient of 0.71 (Schoppe et al., 2016) (Fig. 1e), comparable165

to state-of-the-art models of mouse V1 (Franke et al., 2022;
Willeke et al., 2022; Lurz et al., 2020).
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Fig. 1. A deep neural network model accurately predicts mouse V1 responses to natural scenes. a, Schematic of the optimization of Most Exciting Inputs (MEI) and
Diverse Exciting Inputs (DEIs). The vertical axes depict the activation of two model neurons as a function of two example image features. Left, neuron without obvious
invariance; right, neuron with phase invariance to its optimal stimulus. Black curves illustrate optimization trajectories for MEI from different initializations (left) and for DEIs
as perturbations starting from the MEI along the invariance ridge (right). b, Schematic of the inception loop paradigm. On day 1, we presented sequences of natural images
and recorded in vivo neuronal activity using two-photon calcium imaging. Overnight, we trained an ensemble of CNNs to reproduce the measured neuronal responses
and synthesized artificial stimuli for each target neuron in silico. On day 2, these stimuli were presented to the same neurons in vivo to compare measured and predicted
responses. c, We presented 5,100 unique natural images to an awake mouse for 500 ms each, interleaved with gray screen gaps of random length between 300 and 500
ms. A subset of 100 images was repeated 10 times to estimate neuronal response reliability. Neuronal activity in V1 L2/3 was recorded at 8 Hz using wide-field two-photon
microscopy. Behavioral traces including pupil dilation and locomotion velocity were also recorded. d, CNN model architecture schematic. The network is composed of a
3-layer convolutional core with a single-point readout predicting neuronal responses, a shifter network accounting for eye movements, and a behavioral modulator predicting
neuron-specific adaptive gain (Sinz et al., 2018; Walker et al., 2019). Right: average responses (gray) to test images for two example neurons with corresponding model
predictions (black). e, Performance of the model ensemble, measured as the normalized correlation coefficient between predicted and observed responses to the 100 held-out
images (CCnorm) (Schoppe et al., 2016). Data were pooled over 33,714 neurons from 14 mice (median=0.71, dashed line). Excessively noisy neurons (CCmax < 0.1)
were excluded (0.2% of all neurons). Neurons with CCnorm outside [0,1] were clipped (1.2%) for visualization.

We adapted and extended recently-developed optimal stimu-
lus synthesis frameworks to map both the selectivity (Walker
et al., 2019; Bashivan et al., 2019) and invariance (Cadena170

et al., 2018) of individual neurons in silico. In our study, “se-
lectivity” refers to the specific image features eliciting max-
imal neuronal responses, while “invariance” denotes image
variations preserving high response magnitude. Expanding

on our previous work (Walker et al., 2019), which identi-175

fied a single Most Exciting Input (MEI) for each neuron,
we now generate a set of 20 Diverse Exciting Inputs (DEIs;
Fig. 1a) to characterize neuronal functional invariance. These
DEIs, which we also refer to as “non-parametric DEIs” for
ease of comparison in subsequent analyses, are defined as180

images that are maximally dissimilar in image pixel space
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but all strongly activate the target neuron. Specifically, dur-
ing DEI synthesis, each stimulus was optimized to elicit at
least 85% of the in silico activity evoked by the MEI. This
threshold was chosen based on the Hubel & Wiesel model185

of complex cells (Hubel and Wiesel, 1962)—the most well-
understood model of computing invariance—where perfect
invariance was not achieved, yet Gabor patches in the pre-
ferred orientation and spatial frequency across all phases still
highly activated these neurons (i.e. Ø85% of the MEI activa-190

tion (Cadena et al., 2018)). This threshold represents a com-
promise where we maintain diversity through a regularization
term to create DEIs that are highly diverse while accepting
a small drop in activity (see our Methods and also (Cadena
et al., 2018)). To generate DEIs, we added different white195

noises to the neuron’s MEI to create multiple initial images
and then optimized these images to strongly drive the tar-
get neuron while maximizing their pixel-wise Euclidean dis-
tances from each other. This approach allows us to compre-
hensively map neuronal invariances while maintaining high200

activation levels, providing a more nuanced characterization
of the neuronal response manifold than the single maximal
response corresponding to the MEI.
Our DEI synthesis method successfully reproduced the ex-
pected functional invariances in simulated Hubel & Wiesel205

simple and complex cells (Fig. 2a). For simulated simple
cells, DEIs resembled Gabor patches with identical orienta-
tion, spatial frequency, and phase (Fig. 2a, simulated simple),
aligning with linear-nonlinear (LN) model predictions (Buss-
gang, 1952; Jones and Palmer, 1987a; Heeger, 1992). In con-210

trast, simulated complex cell DEIs included Gabor patches
with different phases, reflecting their known phase invariance
(Fig. 2a, simulated complex).
DEIs from mouse V1 neurons strongly resembled their cor-
responding MEIs while exhibiting specific variations indica-215

tive of different invariance types (Fig. 2a, mouse V1 neu-
rons, see more examples in Suppl. Fig. S2). Some neurons
produced nearly identical DEIs, suggesting a lack of invari-
ance akin to simulated simple cells (Fig. 2a, mouse simple).
A small subset of V1 neurons exhibited DEIs with varying220

phases while maintaining consistent orientation and spatial
frequency, closely resembling the behavior of simulated com-
plex cells (Fig. 2a, mouse complex).
Among neurons strongly activated by non-Gabor stim-
uli (Walker et al., 2019; Franke et al., 2022), some appeared225

to be stimulated strongly by random crops from an under-
lying texture pattern, demonstrating global shift invariance
(Fig. 2a, mouse texture). We termed these “texture cells”,
analogous to those observed in hidden layers of deep Arti-
ficial Neural Networks (ANNs) trained for object recogni-230

tion (Zeiler and Fergus, 2014; Olah et al., 2017; Cadena et al.,
2018). Intriguingly, many neurons exhibited a novel type of
invariance that we denoted as “bipartite receptive field (RF)
invariance” or equivalently, “bipartite invariance”, where one
portion of their RF preferred a fixed spatial pattern, while235

the other responded robustly to different spatial translations
of a specific texture image (Fig. 2a, mouse bipartite). In
other words, the neuron’s response to the variable subfield

remained strong when different crops of an underlying tex-
ture canvas were presented. We referred to these neurons as240

“bipartite cells”.
To quantify these phenomena, we computed a diversity index
for each neuron using its DEIs. This index was formulated as
the normalized average pairwise Euclidean distance in pixel
space across the DEIs, with values of 0 and 1 indicating char-245

acteristics akin to classical simple and complex cells, respec-
tively. The diversity indices of mouse V1 neurons spanned
a continuous spectrum, with those of simulated simple and
complex cells at the opposite extremes (Fig. 2b).
To assess whether the invariances captured by DEIs also ap-250

pear in natural images, we screened over 41 millions crops
to identify those that elicited DEI-like activation (Suppl.
Fig. S3a). We found that only a small fraction (0.006%)
of these images produced responses comparable to DEIs in
silico (i.e. Ø85% of the MEI activation, Suppl. Fig. S3b)255

and only 37% of neurons yielded more than 20 such highly
activating natural stimuli. Importantly, the highly activating
natural crops closely resembled DEIs (Suppl. Fig. S3c, d),
albeit with lower diversity (Suppl. Fig. S3e), highlighting
the extreme lifetime sparsity of the neural code (Froudarakis260

et al., 2014). Collectively, these findings suggest that DEIs
effectively capture naturally occurring invariances.
To test whether the DEIs synthesized in our deep neural pre-
dictive model indeed elicit strong neuronal activities as pre-
dicted, we turned to in vivo verification. All MEIs and DEIs265

were first standardized for mean luminance and root mean
square (RMS) contrast before presentation. We employed
two approaches for DEI verification: (1) randomly selecting
10 DEIs from the set of 20 DEIs synthesized per neuron and
presenting each stimulus 20 times, and (2) presenting all 20270

DEIs once for each neuron. Additionally, each neuron’s MEI
was presented with 20 repeats.
Our results validated that individual DEIs highly activated
neurons in vivo, eliciting responses comparable to those
evoked by MEIs (Fig. 2c–e, Suppl. Fig. S5a). Fig. 2c il-275

lustrates this for one example neuron, showing responses to
10 randomly selected DEIs alongside responses to the MEI
and 100 random full-field natural images. For this neu-
ron, only two out of ten DEIs elicited responses significantly
lower than 85% of the MEI response (one after Benjamini-280

Hochberg (BH) correction for multiple comparisons). To de-
termine whether our experimental procedure can reliably de-
tect reductions in neuronal responses relative to the MEI, we
analyzed the empirical probability of observing significantly
lower activation levels given our sample size. For each pre-285

defined activation level below 85%, we randomly sampled
two sets of 20 MEI trials with replacement for each neuron:
one set scaled at 85% (reference) and the other at the selected
activation level. We then applied a one-tailed Welch’s t-test
to assess whether the latter exhibited significantly lower ac-290

tivation than the former. By repeating this process across
149 neurons, we systematically estimated the relationship
between the observed fraction of significant tests and re-
sponse reductions compared to MEI activation in vivo (Suppl.
Fig. S5b). Empirically, across all neurons tested in closed-295
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Fig. 2. DEIs evoked strong and selective responses in target neurons while exhibiting population-decodable differences. a, Examples of MEI and DEIs for simulated
simple and complex cells, and mouse V1 neurons. For each neuron, zero-crossing contours from individual DEIs (i.e.locations where the image intensity transitions from
positive to negative values or vice versa) were overlaid. While DEIs strongly resembled the MEI, they exhibited complex features differing from the MEI and among themselves.
Two types of novel invariances were observed: global shift invariance (texture) and partial shift invariance (bipartite). b, Diversity indices for 60 simulated complex cells (red),
60 simulated simple cells (blue), and 10,228 V1 neurons pooled from 14 mice (gray), including 500 tested in closed-loop experiments from 8 mice (unfilled). Diversity index is
defined as the normalized average pairwise Euclidean distance in pixel space across the DEIs. Diversity indices for noiseless simple cells (0, blue dashed) and complex cells
(1, red dashed) were shown for reference. V1 neuron diversity indices differed from simulated simple and complex cells (P < 10≠9 for both, two-sided Welch’s t-test with
72.4 and 69.0 d.f., respectively). For closed-loop experiments, we randomly selected neurons with high diversity indices (see Methods for details). Example neurons from a
were indicated on the x axis with the corresponding colors. Diversity indices below ≠0.25 were clipped to ≠0.25 for visualization (0.09% of all V1 neurons). c, Response of
an example neuron to its MEI, 10 random DEIs, and 100 random full-field natural images. Only two out of the ten DEIs elicited responses lower than 85% of the MEI response
(one after Benjamini/ Hochberg (BH) correction for multiple comparison). d, Comparison of mean responses to MEI and one random DEI per neuron. DEIs stimulated in vivo

responses in target neurons close to the level predicted in silico relative to MEI (74 ± 4% versus 85%) (two-sided Wilcoxon signed-rank test, W = 4902, P = 0.19) with
only 274 out of 1490 DEIs (18.4%) showing responses lower than 85% of the corresponding MEI response (4.8% after BH correction) (P < 0.05, one-sided Welch’s t-test
with 32.6 average d.f.). e, Mean peak-normalized in vivo responses to MEI and 10 random DEIs per neuron, and 100 random full-field natural images. For each neuron,
responses were normalized by the largest mean response across all stimuli. Both MEI and individual DEIs elicited stronger responses in their target neurons compared
to full-field natural images (P < 10≠9 for both, two-sided Welch’s t-test with 148.7 and 1596.2 d.f., respectively). c–e, Responses to each MEI and individual DEI were
averaged across 20 repeats; responses to each natural image were averaged across 10 repeats. Data were pooled over 149 neurons from 2 mice. Error bar represented
95% confidence interval. f–i, DEI responses were averaged across 20 different DEI with each presented once. f, Both MEI and DEIs activated neurons with high specificity.
Confusion matrices showed responses of each neuron to MEI (left) and DEIs (right) for 61 neurons in one mouse. Responses of each neuron were normalized, with each
row scaled so the maximum response across all images equaled 1. Neurons’ responses to their own MEI and DEIs (along the diagonal) were larger than those to other MEIs
and DEIs, respectively (two-sided permutation test, P < 10≠4 for both cases). g, Predicted versus observed responses of one example neuron to its own MEI and DEIs
and 79 other neurons’ MEI and DEIs. h, Our model exhibited high predictive accuracy for both MEI and DEI responses (Pearson correlation coefficient between predicted
and observed neuronal responses r = 0.74 and 0.75, respectively). i, DEIs stimulated in vivo responses close to the level predicted in silico relative to MEI (75 ± 3%
versus 85%) (two-sided Wilcoxon signed-rank test, W = 51360, P = 4.9 ◊ 10≠4), with only 9.6% of all neurons showing different responses between DEIs and 85% of
MEI (1.2% after BH corrections) (P < 0.05, two-sided Welch’s t-test with 34.06 average d.f.). h, i, Data were pooled over 500 neurons from 8 mice. j, In vivo population
responses in mouse V1 Layer 2/3 discriminated between a randomly selected pair of DEIs for each neuron. DEI identity in individual trials was decoded using a logistic
regression classifier (see Method for details), with decoding accuracies across neurons (median = 80%) exceeded chance level (50%, dashed; one-sample t-test, t = 28.0,
P < 10≠9). Data were pooled over 149 neurons from 2 mice.
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loop experiments from two mice, only 274 out of 1,490 DEIs
(18.4%) elicited responses significantly lower than 85% of
their corresponding MEI (4.7% after BH correction). Thus,
we expect individual DEIs to evoke between 64 and 73% of
the MEI response in vivo (95% CI, Suppl. Fig. S5b). If a300

substantial proportion of DEIs had activation levels below
64%, we would have observed a significantly greater fraction
falling below the 85% threshold. Furthermore, finding nat-
ural images that elicit comparable activation is exceedingly
rare. When searching 41 million natural image patches, only305

0.17% produced responses exceeding 64% of the MEI re-
sponse, highlighting the extreme sparsity of high-activating
stimuli in natural vision. Thus, our results strongly support
that DEIs are highly activating by design, and the absence of
a larger fraction of weak DEIs is not due to insufficient sam-310

ple size but rather reflects the inherent effectiveness of DEIs
at driving neuronal responses.
We also evaluated whether a set of 20 DEIs, each presented
once, elicited the same overall activation as a single randomly
selected DEI presented 20 times. Our results demonstrated315

that this was the case, validating that DEI sets provide a re-
liable measure of neuronal activation. In subsequent exper-
iments, we utilized DEI sets alongside control stimuli and
systematic manipulations of DEIs to investigate their collec-
tive properties.320

We first demonstrated that, similar to MEIs, DEIs were se-
lective for the neurons they were designed to activate, con-
sistently eliciting higher activity in their target neurons com-
pared to non-target neurons (Fig. 2f, Suppl. Fig. S4). In
addition, the digital twin accurately predicted the magni-325

tude of neuronal responses to all synthesized MEIs and
DEIs yielding median Pearson correlation coefficients of
0.74 and 0.75, respectively, between predicted and observed
responses(Fig. 2g, h), further validating our approach. Im-
portantly, DEIs strongly activated their target neurons in vivo,330

achieving 75 ± 3% of their corresponding MEI activation
(Fig. 2i), close to the model prediction of 85%; this effect was
robust after controlling for eye movements (Suppl. Fig. S6).
One potential concern was that differences across DEIs might
be indistinguishable to the animal, given the spatial acuity335

limits of the mouse visual system. To address this, we tested
whether the mouse V1 population could detect differences
across DEIs by presenting one randomly selected DEI pair
for each neuron. We used a logistic regression classifier to
decode the DEI identity from the in vivo V1 population re-340

sponses. The analysis revealed a median classification ac-
curacy of 80% across all neurons, substantially higher than
the chance level of 50% (Fig. 2j). This result demonstrated
that mouse V1, as a whole, can reliably discriminate between
DEIs, indicating that the observed invariances in individual345

V1 neurons reflect relevant image transformations detectable
at the V1 population level.
To evaluate whether DEIs represent specific image directions
relative to the MEI, we conducted two control experiments
comparing DEIs to perturbations of the MEI along random350

directions and along the natural image manifold. For the first
control, we generated 20 synthetic images by perturbing the

MEI in random directions while ensuring these images were
closer to the MEI than the DEIs in pixel space (Fig. 3a, syn-
thesized controls; Eq. 6). Unlike DEIs, these controls were355

not optimized for high neuronal activation. The second con-
trol involved searching millions of natural image patches to
identify 20 images that were closer to the MEI than all DEIs,
as measured by Euclidean distance in pixel space (Fig. 3a,
natural image controls). During inception loop experiments,360

both synthetic and natural controls elicited lower responses
in their target neurons compared to the corresponding DEIs
(Fig. 3b, c). These results demonstrate that DEIs reflect in-
variances along specific directions away from the MEI in the
image manifold, and that mere proximity to the MEI does not365

guarantee strong neuronal activation.
To verify the robustness of our DEI synthesis and to en-
sure that the observed differences were not artifacts of our
methodology, we conducted control experiments varying key
aspects of our approach (Fig. 3d). We demonstrated robust-370

ness of DEIs across various factors, including image ini-
tialization, model initialization, diversity evaluation metric,
model architecture, and synthesis methodology (Fig. 3d).
More specifically, critical controls included:

1. Altering image and model initialization;375

2. Using cosine distance in V1 in silico population re-
sponse to evaluate image diversity (“neuronal-space
DEIs”);

3. Generating DEIs with an implicit neural representation
model (INRM) (Baroni et al., 2023);380

4. Using an alternative predictive model architec-
ture (Willeke et al., 2022).

DEIs generated under these conditions consistently showed
high specificity for target neurons (Fig. 3e, Suppl. Fig. S8a).
To assess the representational similarity between DEI sets385

produced by different methods and models, we projected the
images onto a latent space representing in silico population
responses from an independent mouse (see Methods for de-
tails). DEIs generated using different methods for the same
neurons exhibited higher similarity to the original DEIs than390

those from random neurons (Fig. 3f, Suppl. Fig. S8b). Addi-
tionally, DEIs from various methods displayed similar levels
of diversity (Suppl. Fig. S8c). In vivo validation confirmed
that “neuronal-space DEIs” activated target neurons compa-
rably to pixel space DEIs (Suppl. Fig. S7). These results395

demonstrate that DEIs generalize across various modeling
and synthesis conditions, suggesting the observed invariance
is an intrinsic neuronal property rather than a methodological
artifact.

Bipartite parameterization of DEIs. Thus far, we have de-400

scribed the bipartite structure of V1 invariances in primar-
ily qualitative terms. To further advance our understanding
of this phenomenon, we now introduce concise, quantitative
models that characterize these observed invariances with in-
terpretable parameters. We first employed a texture synthe-405

sis model to characterize global shift invariance observed in
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Fig. 3. DEIs evoked stronger responses than controls and generalized across different synthesis conditions. a, MEI, DEIs (top), synthesized controls (middle),
and natural controls (bottom) for one example neuron. Synthesized controls were generated by perturbing MEI in random directions, while natural controls were selected by
searching through random natural patches. For each neuron, both controls were restricted to be closer to the MEI than all the DEIs as measured by Euclidean distance in pixel
space. b, Synthesized controls failed to stimulate their target neurons in vivo compared to DEIs (55 ±2% of DEI activation, two-sided Wilcoxon signed-rank test, W = 3258,
P < 10≠9), with 36.8% neurons showing lower responses to synthesized controls compared to DEIs (20.8% after BH corrections; P < 0.05, two-sided Welch’s t-test with
30.4 average d.f.). c, Natural controls failed to stimulate their target neurons in vivo compared to DEIs (63 ± 3% of DEI activation, two-sided Wilcoxon signed-rank test,
W = 6442, P < 10≠9), with 31.5% neurons showing lower responses to synthesized controls compared to DEIs (16.0% after BH corrections; P < 0.05, two-sided Welch’s
t-test with 31.1 average d.f.). b, c Response to each stimulus type was averaged over 20 different images with single repeat. Data were pooled from 318 neurons across 5
mice. d, MEI and DEIs for the same neuron in a, synthesized under various conditions: 1) different image initialization, 2) different model initialization, 3) different diversity
metric, 4) different synthesis method (Baroni et al., 2023)), and 5) different model architecture (Willeke et al., 2022). e, DEIs synthesized under different conditions maintained
high specificity to their target neuron. Confusion matrices showed In silico representational similarity between original DEIs and DEIs from different image initialization (left)
or DEIs from a different synthesis method (Baroni et al., 2023) (right) (for other conditions, see Suppl. Fig. S8a). Each entry represents the mean pairwise cosine similarity
between two sets of DEIs (see Methods for details). Representational similarity between original DEIs and DEIs synthesized from different conditions for the same neurons
(diagonal) was larger than cross-neuron similarity (off-diagonal) (two-sided permutation test, P < 10≠4 for all conditions after BH corrections). f, DEIs synthesized under
different conditions closely resembled the original DEIs. The original DEIs were more similar to DEIs generated from various modifications in d than random neurons’ DEIs
generated using the original method (two-sided Wilcoxon signed-rank test, W = 0,0,1,0,0, and 426, respectively; P < 10≠9 for all conditions after BH correction). e,f,
Data were pooled from 97 V1 neurons randomly sampled across 8 mice.

neurons akin to classical complex cells. Neurons exhibiting
this type of invariance maintain high activation when dif-
ferent crops of their preferred texture image are presented
within the RFs. To model this, we extended the method410

from Cadena et al. (2018), synthesizing a full-field texture
image for each neuron by maximizing the average in silico
activation of randomly sampled crops (Fig. 4a, b, middle
rows). We then sampled random crops from this optimized
texture, which we termed “full-texture DEIs” (DEIsfull). For415

many neurons, this global shift-invariant model proved in-

adequate, and resulted in stimuli that visually deviated from
the original non-parametric DEIs (Fig. 4b, c, middle vs top
rows). This suggested a more nuanced form of invariance
in V1 cells with heterogeneous RFs (Fig. 2a, b). To cap-420

ture this complexity, we introduced the concept of “partial
shift invariance”. This approach parameterized DEIs as the
summation of two distinct, non-overlapping subfields within
a neuron’s RF (Fig. 4a, b, bottom rows). The first subfield,
directly cropped from the MEI, remained fixed across DEIs,425

and we denoted it as the “fixed subfield”. The second sub-
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Fig. 4. Bipartite parameterization reproduces the visual features and in vivo responses of non-parametric DEIs. a, b, Schematic of DEI synthesis using the non-
parametric approach (DEIs, blue), full-texture parameterization (DEIsfull , purple), and partial-texture parameterization (DEIspartial, orange) for an example V1 texture cell (left)
and V1 bipartite cell (right). DEIsfull were synthesized by optimizing an underlying texture canvas, from which random crops masked by the MEI mask maximally activated the
target neuron. In contrast, DEIspartial comprised two distinct, non-overlapping subfields: a fixed subfield directly masked from the MEI, and a shift-invariant subfield preferring
random crops from a texture image synthesized similarly to DEIsfull , but using only part of the MEI mask for texture optimization. c, MEI, DEIs, DEIsfull , and DEIspartial for three
example neurons, with each DEI type indicated by the corresponding color from a. d, DEIspartial were more similar to their corresponding non-parametric DEIs than DEIsfull

for both random V1 neurons and closed-loop neurons (two-sided Wilcoxon signed-rank test, W = 2783, P < 10≠9, and W = 65, P < 10≠9, respectively). e, DEIsfull

failed to stimulate their target neurons in vivo compared to non-parametric DEIs (31 ± 2 of DEI activation, two-sided Wilcoxon signed-rank test, W = 4389, P < 10≠9) with
43.4% of all neurons showing different responses to DEIsfull than DEIs (29.4% after BH corrections) (P < 0.05, two-sided Welch’s t-test with 29.4 average d.f.). f, DEIspartial

activated their target neurons in vivo similarly to non-parametric DEIs (86 ± 4 of DEI activation, two-sided Wilcoxon signed-rank test, W = 32429, P = 7.0 ◊ 10≠4) with
only 8.5% of all neurons showing different responses (0.0% after BH corrections) (P < 0.05, two-sided Welch’s t-test with 33.5 average d.f.). e, f, In vivo responses to DEIs,
DEIsfull , and DEIspartial were averaged across 20 different images with single repeat. g, Bipartite invariance indices of V1 neurons were larger than those of simulated simple
cells (60 cells, blue) and lower than those of simulated complex cells (60 cells, red) (P < 10≠9 for both, two-sided Welch’s t-test with 95.5 and 213.8 d.f., respectively; see
Bipartite invariance index in Methods for details). Data were pooled from 6 mice, displaying a total of 1200 neurons for random V1 neurons; closed-loop neurons comprised
401 neurons pooled from 8 mice.

field, which we denoted as the “variable subfield”, exhibited
shift invariance, maintaining high responses to different crops
of a preferred texture image.
To identify these subfields, we employed the following pro-430

cedure:

1. The variable subfield was defined by selecting the re-
gion with the highest pixel-wise variance across non-
parametric DEIs, progressively expanding it by adjust-
ing the threshold of pixel-wise variance.435

2. The fixed subfield was defined as the complement of
the variable subfield.

3. For each candidate variable subfield, we optimized a
full-field texture image and generated texture-based
DEIs by combining random crops from this texture440

with the corresponding fixed subfield from the MEI.

To quantify each neuron’s partial shift invariance, we ex-
amined the relationship between the in silico response and
variable subfield size (Suppl. Fig. S9a). We summa-
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rized this with a “bipartite invariance index”, calculated445

as the Area Under the Curve (AUC) of a quadratic spline
fit to the activation-subfield size trade-off curve (Suppl.
Fig. S9b, c). This index revealed differences between neu-
ron types: simulated simple cells exhibited the lowest val-
ues (median=0.53), simulated complex cells had the high-450

est values (median=0.87), while V1 neurons fell in between
(median=0.65) (Fig. 4g). The bipartition index showed
high consistency across model ensembles (Pearson r = 0.66,
Suppl. Fig. S9d). For each neuron, we selected the variable
subfield by maximizing the harmonic mean of the texture-455

based DEIs’ in silico response and their diversity. We termed
these optimized stimuli “partial-texture DEIs” (DEIspartial).
Remarkably, DEIspartial visually resembled the non-
parametric DEIs more closely than DEIsfull, as quantified by
representational similarity (Fig. 4d). During closed-loop ex-460

periments, DEIspartial activated neurons at a level comparable
to non-parametric DEIs (86% of the DEI response), while
DEIsfull elicited much weaker in vivo responses (31% of the
DEI response) (Fig. 4e, f). Notably, we still observed strong
in vivo responses to both DEIspartial and non-parametric465

DEIs even after excluding neurons whose DEIspartial were
dominated by fixed subfields resembling the MEI (Suppl.
Fig. S10).
We next tested the necessity and specificity of the two sub-
fields in DEIspartial by isolating or swapping the content470

within each subfield (Suppl. Fig. S11a). We found that both
subfields were necessary for high activation—masking out
the fixed or variable subfield content from the MEI reduced
in vivo responses in target neurons to 74% and 33%, respec-
tively (Suppl. Fig. S11b, c). Similarly, the contents within475

both subfields were highly specific. Replacing the fixed sub-
field content with random natural image patches, or swapping
the optimized texture image for the variable subfield with tex-
tures from other neurons in DEIspartial decreased activity to
55% and 74%, respectively (Suppl. Fig. S11d, e). While480

our closed-loop validation primarily focused on neurons ex-
hibiting high levels of invariance, we also randomly selected
neurons from all reliable and well-predicted V1 neurons (cor-
responding to 79.0%±0.5% of all neurons imaged per scan)
for closed-loop verification. This confirmed that our findings485

generalized to the broader population (Suppl. Fig. S12).
We also conducted a series of additional control experiments
to validate our findings and to rule out alternative explana-
tions for the observed bipartite RF structure:

1. Imaging contamination: To mitigate concerns about490

potential contamination in the calcium imaging data,
we replicated our findings using Neuropixels (Jun
et al., 2017) recordings from mouse V1 (Suppl.
Fig. S13, S14). The electrophysiology results revealed
similar distributions of diversity and bipartite invari-495

ance indices between spike-sorting-identified “single
units” and two-photon imaging units while “multi-unit
activity” (MUA) exhibited higher values for these in-
dices (Suppl. Fig. S14c, d; see Methods for details).
Importantly, across single units, we found no corre-500

lation between either metric and inter-spike-interval

(ISI) violations (Hill et al., 2011), a measurement of
unit contamination (Suppl. Fig. S14g, h). These find-
ings indicate that the observed bipartite structure re-
flects genuine properties of V1 L2/3 neurons rather505

than an artifact of single-unit contamination.

2. Shift invariance within fixed subfield and model com-
plexity: To address the possibility that the fixed sub-
field also exhibits shift invariance and to ensure that
the observed bipartite structure is not merely a conse-510

quence of increased model complexity, we developed a
“two-variable-subfield” model. This model optimized
two distinct textures independently for both the vari-
able and the fixed subfields (Suppl. Fig. S15a bottom,
b, c). While this approach produced slightly more di-515

verse images by design, these images were less similar
to the original DEIs and less effective at activating neu-
rons in silico (eliciting 69% of the DEIpartial activation,
Suppl. Fig. S15d–f). These findings underscore the
functional distinction between the two subfields and520

demonstrate that the efficacy of the bipartite parame-
terization is not simply due to increased model com-
plexity.

3. Necessity of spatial division: To determine whether
the spatial division of the receptive field is essen-525

tial for the observed bipartite invariance, we devel-
oped a “no-spatial-division” parameterization. In this
model, DEIs were parameterized as the summation
of two fully superimposed subfields, unlike the non-
overlapping subfields in the bipartite parameterization530

(Suppl. Fig. S16a–c). This alternative model per-
formed worse in capturing both in silico activation and
diversity of DEIs (88% of the DEIpartial activation and
75% of the DEIpartial diversity, Suppl. Fig. S16d-h),
confirming the importance of spatial division in our535

model.

4. Center-surround interaction: To determine whether the
observed bipartite structure might merely be a mani-
festation of center-surround organization arising from
extra-classical surround modulation, we performed ad-540

ditional experiments where we presented sparse noise
stimuli and natural images in the same scans. We found
that the fixed and variable subfields did not maintain a
consistent spatial relationship with the classical “min-
imum response field” (MRF) (Suppl. Fig. S17c, d). A545

companion paper also found that the extra-classical ex-
citatory contextual modulation fields in mice are much
larger than the size of the MEI (approximately 20 de-
grees larger; see Fig. 2e in Fu et al. (2024)). These
findings collectively indicate that the bipartite struc-550

ture represents a novel organization beyond the clas-
sical center-surround framework.

5. Eye movements: To address the potential influence
of trial-to-trial eye movements on the observed bipar-
tite RFs, we trained separate models on subsets of tri-555

als using inclusion criteria based on different thresh-
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olds of eye movement size. We found that the re-
sulting DEIs were highly similar across all models
(Suppl. Fig. S18a, b), and the bipartite invariance in-
dex showed no significant variation among these mod-560

els (Suppl. Fig. S18c). These results showed that the
observed bipartite RF structure is an intrinsic property
of V1 neuronal responses, rather than an artifact of eye
movements.

Collectively, these findings demonstrate that V1 neuron re-565

ceptive fields are best characterized by a bipartite structure,
featuring one subfield that prefers a fixed spatial pattern and
another that optimally responds to random crops of an under-
lying texture image.

Bipartite structure aligns with natural object bound-570

aries defined by spatial frequency differences. Previ-
ous studies have demonstrated that Most Exciting Inputs
(MEIs) capture complex spatial features prevalent in natu-
ral scenes (Walker et al., 2019). Building on this insight and
the bipartite RF structure we identified, we hypothesized that575

these neurons may play a role in visual segmentation by de-
tecting object boundaries through variations of texture (Zhan
and Baker Jr, 2006). Given our partial-texture model’s parti-
tioning of the RF into two often distinct subfields, we further
postulate that V1 neurons might preferentially respond to ob-580

ject boundaries defined by texture discontinuities.
To test this hypothesis, we utilized a natural image dataset
with manual segmentation labels, Caltech-UCSD Birds-200-
2011 (CUB) (Wah et al., 2011). The CUB dataset is a com-
prehensive collection of 11,788 images spanning 200 bird585

species, each annotated with pixel-resolution segmentation
masks for object and background. We screened over a mil-
lion crops from the CUB dataset in silico, matching mean
and RMS contrast to the MEI and DEIs, to identify highly
activating crops for each V1 neuron (Fig. 5a). Across the590

population, highly activating crops were more likely to con-
tain object boundaries than random crops (Suppl. Fig. S19b).
To further quantify the alignment between the bipartite RF
structure and the object boundaries in highly activating CUB
crops, we computed a matching score between the segmen-595

tation label and the “bipartite mask” defined from DEIspartial
(Fig. 5a, see Methods for details). Highly activating image
crops exhibited better alignment between bipartite subfield
divisions and object boundaries compared to random crops,
indicating a preferential response to object-background divi-600

sions (Suppl. Fig. S19a, Fig. 5b).
Next, we investigated which low-level visual statistics con-
tribute to these alignment results. Analysis of DEIspartial re-
vealed that most V1 neurons (76.5%) preferred spatial pat-
tern with higher median frequency in the variable subfield605

compared to the fixed subfield (Fig. 5c; see Methods for de-
tails). Notably, this preference was absent in simulated sim-
ple and complex cells subjected to the same optimization pro-
cedure (Fig. 5c). To test whether this bias extends to natu-
ral images, we analyzed in silico responses to natural image610

patches with varying frequency biases. We found that for
most neurons, natural patches with higher frequency content

in the variable subfield elicited stronger activation (64.8%),
whereas the fixed subfield exhibited the opposite trend, with
lower frequency content inducing stronger activation (79.1%)615

(Fig. 5d). These findings led us to hypothesize that V1 neu-
rons are particularly sensitive to object boundaries defined by
differences in spatial frequency.
To explicitly test this hypothesis, we created a modified CUB
dataset (“CUB-grating”) where natural image content was re-620

placed with grating stimuli of varying spatial frequencies and
orientations, while preserving naturalistic boundaries, and
presented crops from this dataset in silico (Fig. 5e). Our anal-
ysis revealed striking differences between simulated cells and
V1 neurons. While most simulated simple (83.3%) and com-625

plex (75%) cells preferred single grating images, V1 neurons
almost exclusively preferred images with object boundaries
(99.1%) (Fig. 5f). Specifically, V1 neurons showed prefer-
ences for boundaries defined by differences in spatial fre-
quency alone (39.2%), orientation alone (21.6%), or a com-630

bination of both (38.3%). Notably, the difference in prefer-
ence was greater for frequency than for orientation (Fig. 5f).
Similar to highly activating natural crops (Fig. 5c), segmen-
tation labels in highly activating CUB-grating images also
aligned with the bipartite mask (Fig. 5g). However, in highly635

activating CUB-grating patches, the variable and fixed por-
tions of the bipartite mask corresponded to high and low spa-
tial frequency regions, respectively, rather than the object or
background areas. Our analysis revealed that mouse V1 neu-
rons preferentially responded to object boundaries defined by640

frequency discontinuities, with the variable subfield favoring
higher spatial frequency than the fixed subfield.

The MICrONS dataset reveals synaptic connectivity re-
flecting a functional invariance hierarchy in V1 Layer
2/3. To gain insights into the synaptic-level cortical architec-645

ture and its relationship to neuronal response invariances, we
sought to connect functional properties of neurons with their
inter-neuronal connectivity patterns. This investigation was
made possible by recent advances in large-scale functional
connectomics, which allow for simultaneous measurement of650

neuronal activity and synaptic connectivity in the same tissue.
We utilized the MICrONS functional connectomics dataset,
which includes responses from over 75,000 excitatory neu-
rons to natural movies and reconstructed synaptic-level con-
nectivity derived from electron microscopy data at nanome-655

ter resolution (MICrONS Consortium et al., 2021). To quan-
tify functional invariances, we employed a dynamic digital
twin model of the MICrONS mouse that uses the foundation
core model from Wang et al. (2023) (see Methods for details),
which accurately predicted responses to various stimulus do-660

mains including natural movies, static images, and artificial
parametric stimuli.
We first validated our pipeline’s accuracy in computing DEIs
from the dynamic digital twins by conducting closed-loop ex-
periments on three new mice (Fig. 6a). These dynamic digital665

twins were trained following the same procedure as the MI-
CrONS mouse digital twin. For each mouse, we recorded
neuronal responses to both our static natural image sets and
the same dynamic movie stimuli (including natural and para-
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Fig. 5. Bipartite structure aligns with natural object boundaries formed by spatial frequency differences. a, We screened over 1 million crops from the Caltech-UCSD
Birds-200-2011 (CUB) dataset using our predictive model to find 100 most highly activating (red) and 100 random (blue) crops for each neuron, along with their corresponding
in silico responses and manual segmentation labels. We computed a matching score for each crop based on its segmentation label (white denotes object, black denotes
background) and the neuron’s “bipartite mask” defined by its DEIspartial (white denotes variable subfield, black denotes fixed subfield). A score of 1 indicated perfect matching
between the variable subfield and object (white to white) within the RF while a score of 0 indicated the opposite. b, Highly activating natural crops with object boundaries
yielded higher matching scores than random natural crops with object boundaries (two-sided Wilcoxon signed-rank test, W = 82849, P < 10≠9), with 51.4% of all neurons
showing greater matching scores for highly activating crops than random natural crops (46.4% after BH correction) while only 4.9% showing lower matching scores to
highly activating crops (4.1% after BH correction) (P < 0.05, two-sided Welch’s t-test, with 76.2 average d.f. respectively). One neuron (0.08%) was excluded from this
analysis as it strictly preferred crops without object boundaries. c, Most V1 neurons preferred higher spatial frequency content in the variable subfield compared to the fixed
subfield. The mean median frequency of texture crops was higher than that of DEIspartial (two-sided Wilcoxon signed-rank test, W = 34563, P = 3.0 ◊ 10≠6) with 76.5%
of all neurons preferring content with a higher median spatial frequency in the variable subfield than in the fixed subfield (75.5% after BH correction) while only 5.3% of
neurons preferring the opposite (5.0% after BH correction) (P < 0.05, two-sided Welch’s t-test with 33.3 average d.f. respectively). Texture crops were synthesized by
replacing content in DEIspartial fixed subfield with random crops from the texture optimized for the variable subfield. Median frequencies were averaged across 20 different
texture crops and DEIspartial, respectively. In contrast, simulated simple cells (blue cross) showed no preference for median frequency between the two subfields (two-sided
Wilcoxon signed-rank test, W = 284, P = 3.0 ◊ 10≠6). Simulated complex cells (red circle) preferred higher median frequency in the variable subfield (two-sided Wilcoxon
signed-rank test, W = 22, P < 10≠9), albeit with marginal effect. d, V1 neuronal responses correlate with spatial frequency within the variable and fixed subfield. We
applied the fixed subfield mask to the CUB natural image dataset to extract 10,000 crops and computed their median frequency. We then combined these crops with
the original variable subfield from the MEI and passed the resulting images through the predictive model to obtain the predicted responses. For the majority of neurons
(79.08%), we observed a negative correlation between the fixed subfield’s median frequency and the predicted response (median = ≠0.14, one-tailed one sample t-test
against mean of 0, t = ≠33.38, p < 10≠9, d.f. = 1089). In contrast, for most neurons (64.75%), we observed a positive correlation between the variable subfield’s
median frequency and the predicted response (median = 0.09, one-tailed one sample t-test against mean of 0, t = 16.23, p < 10≠9, d.f. = 1083). All p-values were
corrected for multiple comparison using BH procedure. Four neurons were excluded in the fixed subfield analysis due to excessively small fixed subfield size. e, Parametric
“CUB-grating” dataset with the CUB segmentation labels. The object and background content were replaced with grating patterns of four different types: 1) homogeneous
pattern without using segmentation labels (“single grating”); 2) same spatial frequency but different orientations; 3) same orientation but different spatial frequencies; and 4)
different frequencies and orientations (see Methods for more details). f, Using CUB-grating, we identified the most activating crop for each neuron (similar as in a). Simulated
simple and complex cells predominantly preferred single grating images (83.3% and 75%, respectively). In contrast, V1 neurons exhibited a different pattern of preference
(one-way chi-squared test, ‰2 = 8510, P < 10≠9, and ‰2 = 5538, P < 10≠9 for comparison against simulated simple and complex cells, respectively). While most
simulated simple (83.3%) and complex (75%) cells preferred single grating images, V1 neurons almost exclusively preferred images with object boundaries (99.1%). V1
neurons showed preferences for boundaries defined by differences in spatial frequency alone (39.2%), orientation alone (21.6%), or a combination of both (38.3%). The
marginal difference in preference was greater for spatial frequency than for orientation (p < 0.05, two-sided marginal difference bootstrapping). g, We divided CUB-grating
images with different object-background spatial frequencies into two datasets: 1) “high-frequency object” and 2) “low-frequency object”. Following the procedure in a, we
identified 100 most activating crops for each dataset and calculated the mean matching score for neurons preferring images containing different frequencies (from f). The
matching scores for “high-frequency object” dataset were higher than those for “low-frequency object” (two-sided Wilcoxon signed-rank test, W = 340648, P < 10≠9) with
66.4% of all neurons showed greater matching scores for “high-frequency object” crops (same after BH correction), while 23.4% showed smaller matching scores (23.3%
after correction) (P < 0.05, two-sided Welch’s t-test, 170.2 average d.f.). b, c, f, g, These results generalized across different inclusion criteria used to identify patches
containing object boundaries (Suppl. Fig. S20). a–g, Data were pooled from 6 mice, including 1200 randomly selected neurons. Simulated simple and complex cells included
60 neurons each.
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Fig. 6. MICrONS functional connectomics analysis a, Schematic of the MICrONS functional connectomics dataset (MICrONS Consortium et al., 2021), comprising
responses of >75k neurons to dynamic stimuli and their reconstructed sub-cellular connectivity from electron microscopy data. We employed the MICrONS “digital twin” (Wang
et al., 2023), trained on dynamic stimuli (denoted as “dynamic” model) to predict responses to natural images used in our experiments. A new model was trained on these
in silico predictions (“dynamic-static” or “DS” model) and used to synthesize MEIs, DEIs, and DEIspartial. b–d, In vivo verification of stimuli synthesized from the DS model.
b, MEIs and DEIs optimized using our standard model (“static” or “S”) and the DS model for two example neurons. c, DS-DEIs stimulated neurons in vivo at 80 ± 3% of
DS-MEI activation, close to the in silico prediction of 85% (two-sided Wilcoxon signed-rank test, W = 31534, P = 2.8 ◊ 10≠4), with only 10.3% of all neurons showing
different responses between DEIs and 85% of MEI (0.25% after BH correction) (P < 0.05, two-sided Welch’s t-test with 32.0 average d.f.). d, DS-DEIspartial activated target
neurons similarly to DS-DEIs (two-sided Wilcoxon signed-rank test, W = 29878, P = 1.4 ◊ 10≠5) with only 9.5% of all neurons showing different responses (0.0% after
BH correction) (P < 0.05, two-sided Welch’s t-test with 32.0 average d.f.). c, d, DS-MEI responses were averaged across 20 repeats of the same image while DS-DEIs and
DS-DEIspartial responses were averaged across 20 different images with single repeat. e–i, Like-to-like functional connectomics analysis in V1 Layer 2/3 using the MICrONS
dataset. e, DS-MEIs were more similar to S-MEIs of the same neuron than S-MEIs of other random neurons (two-sided Wilcoxon signed-rank test, W = 4537, P < 10≠9).
f, Similarly, DS-DEIs were more similar to S-DEIs of the same neuron than S-DEIs of other random neurons (two-sided Wilcoxon signed-rank test, W = 3969, P < 10≠9).
g MEIs and DEIs of connected pairs (0.06 ± 0.02 and 0.04 ± 0.02) are more similar than those of the Axonal-Dendritic Proximity (ADP) control pairs (Ding et al., 2023)
(0.03 ± 0.01 and 0.021 ± 0.004)(P < 10≠4, two-sided bootstrapped mean difference after BH correction). h, i, Synapse conversion rate increased linearly with the MEI
(h) and DEI (i) representational similarity for neuron pairs (P = 0.014 and 0.0034, respectively, two-sided t-test for linear coefficient against 0 using Poisson generalized
linear mixed model with random intercepts). Neuron pairs were binned by their MEI and DEI similarity, respectively. j–l, Invariance-hierarchy analysis in V1 Layer 2/3 using the
MICrONS dataset. j, Diversity indices from the DS model highly correlated with those from the S model (Pearson r = 0.46, P < 10≠9, two-sided t-test). k, Connected pairs
showed larger diversity index increase than Axonal-Dendritic Proximity (ADP) controls (0.16±0.02 and 0.14±0.01, respectively; P < 10≠4, two-sided bootstrapped mean
difference against 0 after BH correction). Diversity index difference is defined as the change in diversity index between the postsynaptic (or the ADP) and the presynaptic
neuron for a connected pair and a ADP control pair, respectively. l, Presynaptic neurons with lower diversity indices showed higher synapse conversion rate (Spearman’s
rank correlation coefficient fl = 0.52, P = 0.02, two-sided t-test). This relationship was well-modeled by an exponential decay (R2 = 0.56). c–j, Data for in vivo verification
of the dynamic-static model were pooled over 399 neurons from 3 mice. g–l, Data for MICrONS functional connectomics analysis were pooled over 19 presynaptic neurons
forming 706 connected pairs and 18,162 ADP controls. Error bars and shaded areas represented 95% confidence intervals from 10,000 bootstraps.
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metric movie clips) used in the MICrONS dataset. We then670

trained two deep CNN models for each mouse using the same
architecture as in our main experiments:

1. A “static” (S) model trained directly on in vivo re-
sponses to static natural images, replicating our stan-
dard approach.675

2. A “dynamic-static” (DS) model trained on in silico re-
sponses to static natural images generated by its dy-
namic digital twin counterpart.

Both S and DS models accurately predicted responses to a
held-out test set of static natural images (Suppl. Fig. S21a).680

We found that MEIs, DEIs, and DEIspartial synthesized from
the DS model were visually similar to those from the S model
(Fig. 6b), with high representational similarity (Fig. 6e, f,
Suppl. Fig. S21e). The diversity indices and bipartite in-
variance indices calculated from the DS model also closely685

matched those of the S model, yielding Pearson correlations
of 0.46 and 0.66, respectively (Fig. 6j, Suppl. Fig. S21f).
Moreover, when presented back to the animals during in-
ception loop experiments, the MEIs, DEIs, and DEIspartial
synthesized from the DS model elicited high activities in690

their target neurons (Suppl. Fig. S22, S23, S24). DEIs
achieved 80 ± 3% of their corresponding MEI activation in
vivo (Fig. 6c), closely matching the model’s prediction of
85%. DEIspartial evoked equally strong responses as DEIs
(Fig. 6d). This agreement between in silico predictions and695

in vivo responses demonstrated the validity of using dynamic
digital twins to study neuronal invariances. It confirms that
our analysis pipeline, when applied to the MICrONS dataset,
can reliably capture and replicate the functional properties of
real neurons, including their response invariances.700

In our analysis of the MICrONS dataset, we focused on V1
Layer 2/3 excitatory neurons that had anatomically matched
counterparts in the EM volume. We then restricted our analy-
sis to neurons with high response reliability (CCmax > 0.4),
accurate digital twin predictions (CCabs > 0.2), comprising705

77% of all functional recorded neurons. When combining
with the manually proofread connectivity graph of the MI-
CrONS dataset (MICrONS Consortium et al., 2021), these
resulted in 19 presynaptic neurons and 570 postsynaptic part-
ners, forming 706 connected pairs in V1 Layer 2/3.710

A well-established principle in the functional connectomics
domain is the like-to-like connectivity rule—excitatory neu-
rons with similar response properties are more likely to form
connections (Ko et al., 2011; Wertz et al., 2015; Lee et al.,
2016; Rossi et al., 2020; Ding et al., 2023). We reexamined715

the like-to-like connectivity rule through the lens of MEI and
DEI similarities, leveraging the synaptic-level resolution of
the MICrONS dataset. We employed the Axonal-Dendritic
Proximity (ADP) control—introduced in the companion pa-
per by Ding et al. (2023) and computed via the NEURD con-720

nectomics analysis package (Celii et al., 2023)—to identify
neuron pairs that have the physical opportunity to connect but
do not, accounting for the inhomogeneous distribution of ax-
ons and dendrites in the cortex. Our analysis confirmed that
synaptically connected neuron pairs have more similar MEIs725

and DEIs than ADP controls in V1 Layer 2/3 (Fig. 6g). These
results provide strong evidence that the like-to-like rule (Ko
et al., 2011; Wertz et al., 2015; Lee et al., 2016; Rossi et al.,
2020; Ding et al., 2023) operates with synaptic-level preci-
sion rather than being simply a byproduct of broader spatial730

patterns of neuronal organization. We further analyzed the
relationship between functional similarity and the synapse
conversion rate (Lee et al., 2016; Ding et al., 2023)—de-
fined as the number of synapses formed per unit length of
axon-dendrite overlap between neuron pairs. We found that735

the synapse conversion rate increased linearly with the rep-
resentational similarity of MEIs and DEIs for neuron pairs
(Fig. 6h, i). These findings further corroborate the results
reported by Ding et al. (2023), who demonstrated that the
like-to-like connectivity rule in the feature domain operates at740

the synaptic level across different types of connections, both
within and across cortical layers and areas.

We next investigated the relationship between neuronal in-
variance and circuit structure. Hierarchical models of the
cortex have long speculated that complex functional invari-745

ance could arise from the convergence of excitatory pre-
synaptic inputs with simpler invariances (Hubel and Wiesel,
1962; Riesenhuber and Poggio, 1999; Serre and Riesenhu-
ber, 2004). The seminal example is Hubel & Wiesel’s hy-
pothesis that complex cells achieve phase invariance by com-750

bining inputs from spatially aligned simple cells with sim-
ilar orientation but different phase preferences (Hubel and
Wiesel, 1962). However, evidence for this decades-old model
has primarily relied on correlational analyses (Alonso and
Martinez, 1998), with direct evidence remaining elusive due755

to the challenge of simultaneously measuring both physi-
ology and wiring of the same neurons. We hypothesized
that synaptically connected pairs of neurons would exhibit
a greater increase in functional invariance compared to ADP
controls. We first validated that the diversity indices calcu-760

lated from our DS model closely matched those from the S
model (Fig. 6j). Our analysis revealed that synaptically con-
nected neuron pairs indeed showed greater increases in di-
versity index than ADP controls (Fig. 6k), suggesting that
the increase in functional invariance occurs at the synaptic765

level. Intriguingly, we found no difference between the mean
diversity indices of postsynaptic partners and ADP controls
(Suppl. Fig. S25). Furthermore, we found that the synapse
conversion rate decreased exponentially as the presynaptic
neuron’s diversity index increases (Fig. 6l). This relationship770

implies that excitatory neurons with lower functional invari-
ance are more likely to form intralaminar connections in V1
Layer 2/3. Collectively, these findings provide evidence for a
hierarchical organization among excitatory neurons in mouse
V1 Layer 2/3 that enhances single-neuron functional invari-775

ance.

Our study demonstrates the utility of employing the dynamic
digital twin of the MICrONS mouse for novel downstream
analyses and experiments beyond the scope of the original
experimental design. This approach is particularly valuable780

given the scarcity and complexity of obtaining large-scale
data that integrate both dense synaptic-level structure and
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function within the same brain tissue.

Discussion
Invariant object recognition is a challenge central to visual785

perception. One perspective on how this is achieved by
the visual system is the object manifold disentanglement hy-
pothesis (DiCarlo and Cox, 2007). Within this framework,
an object manifold can be thought of as the continuous set
formed by applying all natural transformations to a given ob-790

ject—e.g. rotations, scalings, translations, lighting changes,
etc. In the pixel space, the manifolds corresponding to dif-
ferent objects are entangled and difficult to distinguish. The
idea core to this hypothesis is that the visual system gradually
disentangles these manifolds through stages of hierarchical795

processing along the ventral visual pathway, ultimately en-
abling the linear decoding of object identity from the popula-
tion representation at the top of the hierarchy. Experimental
evidence suggests that single neurons in higher visual areas
extract and integrate information from simpler feature detec-800

tors in lower areas to represent more complex features and
construct invariances to feature transformations such as trans-
lation, rotation or change of texture (Hubel and Wiesel, 1962;
Tanaka, 1996; Poggio and Bizzi, 2004; Yamins et al., 2014).
This idea inspired the original development of the convolu-805

tional neural network architecture (Fukushima, 1980), and is
reflected in the single neuron response properties that emerge
in networks trained on image recognition tasks (Olah et al.,
2017, 2020).
Characterizing the structure of neuronal invariances is crucial810

for understanding how the brain accomplishes the challeng-
ing task of object recognition. However, thus far, system-
atic characterization of single-cell invariance properties has
remained limited, with only a few classic examples discov-
ered using parametric or semantically meaningful stimuli that815

are heavily biased (Hubel and Wiesel, 1962; El-Shamayleh
and Pasupathy, 2016; Quiroga et al., 2005). Recent ad-
vances in building digital twins of the brain and using non-
parametric deep learning-based image synthesis have opened
new avenues for finding the preferred stimuli of visual neu-820

rons (Walker et al., 2019; Bashivan et al., 2019; Ponce et al.,
2019). Yet, most efforts in this direction have focused pri-
marily on characterizing neuronal selectivity rather than in-
variance, and have emphasized feature visualization without
further interpreting the invariant response properties of neu-825

rons.
In this study, we extended previous work combining large-
scale neuronal recording and deep neural networks for the
study of neuronal selectivity (Walker et al., 2019) to the in-
variance problem. Modifying a diverse feature visualiza-830

tion approach previously developed in ANNs (Cadena et al.,
2018), we synthesized Diverse Exciting Inputs (DEIs) for in-
dividual neurons in mouse V1 Layer 2/3. These highly acti-
vating images reveal novel natural-occurring invariance that
extend beyond the classical phase invariance described by835

Hubel and Wiesel (Hubel and Wiesel, 1962).
Particularly, we found a novel bipartite invariance in mouse
V1 neurons: one RF subfield preferred a fixed spatial pattern,

while the other preferred random crops from a texture image.
While previous studies suggested a bimodal distribution840

of phase invariance corresponding to simple and complex
cells (Niell and Stryker, 2008), our findings reveal that bi-
partite invariance in mouse V1 L2/3 cannot be explained as a
continuum between these classical models or as a combina-
tion of overlapping simple and complex cells. A null model845

that parameterizes DEIs as a learned weighted summation of
two fully overlapping subfields fail to produce DEIs as di-
verse and highly activating as bipartite DEIs, demonstrating
that bipartite structure is necessary. Moreover, shift invari-
ance is primarily localized to the variable subfield, as intro-850

ducing it in the fixed subfield reduces responses.
Additionally, we show that bipartite structure cannot be ex-
plained by classical center-surround interactions, consistent
with findings from (Fu et al., 2024), which demonstrated that
MEIs correspond well to classical RF measurements, while855

extra-classical surround modulation extends far beyond the
MEI. In particular, we observed no consistent spatial rela-
tionship between the minimum response field (MRF) and ei-
ther the fixed or variable subfields, further ruling out center-
surround mechanisms as an explanation for bipartite invari-860

ance.
While we have focused primarily on shift invariance, it is un-
likely to be the only type of invariance existing in mouse vi-
sual system. As an initial effort to parameterize novel em-
pirical invariances, it is also worth acknowledging that our865

partial-texture model proposes a simple hypothesis of a bi-
nary division of the presence and absence of shift invari-
ance in the RF without considering more complicated sce-
narios such as nonlinear cross-subfield interactions. We also
acknowledge that parameterizing complex invariances (e.g.,870

3D pose) for higher visual area remains challenging. Future
studies using photo-realistic rendering engines with explic-
itly defined latent variables and image transformation will al-
low for a more generalized parameterization of invariances
in a well-defined latent space, including 3D pose and other875

complex transformations. Nonetheless, we believe the novel
bipartite invariance can be of great use as a computational
principle for future designs of biologically-plausible or brain-
inspired computer vision systems (Dapello et al., 2020). On
the other hand, it can also serve as an empirical test for the-880

oretically driven (Maruyama et al., 1992; Poggio and Girosi,
1990; Anselmi et al., 2015) or data-driven models (Schrimpf
et al., 2018; Cadena et al., 2019; Schrimpf et al., 2020; Wang
and Ponce, 2022; Willeke et al., 2022) that aim to explain and
predict neuronal responses in the visual system.885

In our study, the two RF subfields of the bipartite struc-
ture exhibit distinct characteristics, differing in both level
of invariance and preferred spatial frequency. This prop-
erty bears a striking resemblance to “high-low frequency de-
tectors” observed in artificial neural networks, which detect890

low-frequency patterns on one side of their receptive field
and high-frequency patterns on the other (Schubert et al.,
2021). This parallel suggests that bipartite invariance with
frequency bias may be a common feature shared between
biological and artificial visual systems for boundary detec-895
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tion. Schubert et al. (2021) proposed these units encode nat-
ural boundaries defined by spatial frequency variation, align-
ing with our finding that V1 Layer 2/3 neurons prefer natu-
ral image patches containing object boundaries. While both
classical simple/complex cells and V1 neurons are strongly900

activated by object boundaries in natural images (Bieder-
man, 1987; von der Heydt and Peterhans, 1989; Gilbert and
Wiesel, 1990; Kapadia et al., 1995), they prefer distinct
boundary-constructing features. Classical cells prefer bound-
aries formed by rapid luminance changes (Hubel and Wiesel,905

1962; Zhan and Baker Jr, 2006), whereas V1 neurons pre-
fer boundaries defined by spatial frequency and orientation
heterogeneity.
Our findings further complement behavioral studies showing
that mice are able to use texture-based cues for segmenta-910

tion (Kirchberger et al., 2021; Schnabel et al., 2018). While
previous research emphasized boundaries constructed by ori-
entation or phase differences (Schnabel et al., 2018), our re-
sults indicate that spatial frequency variation could serve as
an additional second-order visual cue for boundary detection915

in the mouse visual system. Notably, humans also use spatial
frequency as a visual cue for object/background assignment,
often perceiving higher frequency regions as objects (Kly-
menko and Weisstein, 1986; Klymenko et al., 1989). This
preference mirrors that of V1 neurons, suggesting potential920

common strategies for object/background segmentation be-
tween mice and primates.
The brain’s ability to generalize has long been hypothesized
to rely on a cortical hierarchy where neurons tuned to sim-
pler features combine to build complex functional invari-925

ance (Riesenhuber and Poggio, 1999; Serre and Riesenhu-
ber, 2004; DiCarlo and Cox, 2007; DiCarlo et al., 2012; Pog-
gio and Bizzi, 2004). This concept originates from Hubel &
Wiesel’s model of complex cells achieving phase invariance
by integrating inputs from simple cells (Hubel and Wiesel,930

1962). Despite its longevity, empirical validation has been
challenging due to difficulties in simultaneously studying
physiology and wiring at the single-cell level (Lichtman and
Denk, 2011; Briggman and Bock, 2012), and accurately mod-
eling and measuring functional invariance (DiCarlo et al.,935

2012; Rust and DiCarlo, 2010).
Our study overcomes these challenges by utilizing the MI-
CrONS dataset, the largest functionally-imaged EM dataset
to date (MICrONS Consortium et al., 2021), and a digi-
tal twin model from a state-of-the-art foundation model for940

mouse visual cortex (Wang et al., 2023). This approach
enabled us to identify concrete evidence supporting this
decades-old hypothesis at the individual neuron level. We
uncovered two key findings supporting hierarchical organi-
zation within V1 Layer 2/3:945

1. Postsynaptic neurons exhibit higher level of functional
invariance than their presynaptic counterparts.

2. Lower invariance presynaptic neurons form exponen-
tially more synapses per unit of axon-dendrite co-
traveling distance.950

These findings provide the first evidence of a functional

invariance hierarchy at the individual neuron level within
the same cortical area and layer, mediated by horizon-
tal connections. This contrasts with previous models like
HMAX (Riesenhuber and Poggio, 1999; Serre and Riesen-955

huber, 2004; Poggio and Bizzi, 2004), which focused on hi-
erarchies between cortical areas. Our results indicate that
this hierarchical organization is regulated at both individ-
ual synapse and the presynaptic neuron level, revealing pre-
viously unrecognized computational flexibility. These find-960

ings align with studies demonstrating the importance of lat-
eral connections for invariant object representation (Keck and
Lücke, 2010; Crutcher, 2024), and could guide the design
of more biologically plausible AI systems. Although the
MEIs and DEIs synthesized from the dynamic-static digital965

twin elicited somewhat weaker responses compared to those
from our standard static model, this imperfect replication did
not impede our ability to extract meaningful insights and re-
veal significant relationships between neuronal structure and
function.970

As connectomics proofreading for the MICrONS dataset con-
tinues (MICrONS Consortium et al., 2021; Celii et al., 2023),
we anticipate to gain a more comprehensive understanding
of invariant object recognition mechanisms. Future access to
multiple presynaptic neurons per postsynaptic neuron will al-975

low detailed examination of how presynaptic inputs shape the
bipartite properties of postsynaptic neurons. We also aim to
extend our analysis to higher cortical areas to explore func-
tional invariance build-up across the visual processing hierar-
chy. Future studies using more sophisticated models or direct980

in vivo measurements could further validate and refine these
findings, potentially uncovering additional insights in cortical
processing organization. Moreover, it would be important to
compare the extent to which our current findings generalize
to other species, such as non-human primates, where there are985

some similarities but also important differences in the func-
tional organization of V1.
Overall, our work represents a significant advancement in un-
derstanding cortical processing and neuronal tuning. By de-
veloping a novel framework that combines large-scale neu-990

ronal recordings with advanced deep neural network tech-
niques, we have enabled the systematic characterization of
single-neuron invariances. The discovery of bipartite invari-
ance in mouse V1 challenges long-held assumptions about
receptive field homogeneity and offers new insights into nat-995

ural image segmentation. Furthermore, leveraging the MI-
CrONS dataset has allowed us to provide the first empiri-
cal evidence for a functional invariance hierarchy within V1
Layer 2/3, validating and extending theoretical models of cor-
tical organization. The flexibility of our paradigm opens up1000

possibilities for exploring neuronal invariances across vari-
ous cortical regions, sensory modalities, and species, promis-
ing to illuminate the complex nature of neuronal coding
more broadly, and potentially informing the development
of more sophisticated, biologically-plausible artificial intel-1005

ligence systems.
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Methods
Neurophysiological experiments.

Two-photon calcium imaging. The following procedures
were approved by the Institutional Animal Care and Use1070

Committee of Baylor College of Medicine. 17 mice (Mus
musculus: 9 male, 8 female) aged from 6 to 17 weeks,
expressing GCaMP6s in excitatory neurons via Slc17a7-
Cre and Ai162 transgenic lines (stock nos. 023527 and
031562, respectively; The Jackson Laboratory) were selected1075

for experiments. The mice were anesthetized and a 4-mm
craniotomy was made over the visual cortex of the right
hemisphere as described previously (Reimer et al., 2014;
Froudarakis et al., 2014). For functional imaging, mice
were head-mounted above a cylindrical treadmill and calcium1080

imaging was performed using a Chameleon Ti-Sapphire laser

(Coherent) tuned to 920 nm and a large field-of-view meso-
scope equipped with a custom objective (0.6 numerical aper-
ture, 21 mm focal length) (Sofroniew et al., 2016). Laser
power at the cortical surface was kept between 13.18 mW1085

and 21.96 mW and maximum laser output of 61 mW was
used at 245 µm from the surface.
We also recorded the rostro-caudal treadmill movement as
well as the pupil dilation and movement. The treadmill move-
ment was measured via a rotary optical encoder with a res-1090

olution of 8,000 pulses per revolution and was recorded at
approximately 100 Hz in order to extract locomotion veloc-
ity. Light diffusing from the laser during scanning through
the pupil was used to capture pupil diameter and eye move-
ments. The images of the left eye were reflected through a hot1095

mirror and captured with a GigE CMOS camera (Genie Nano
C1920M; Teledyne Dalsa) at 20 fps with a resolution of 246-
384 pixels ◊ 299-488 pixels. A DeepLabCut model (Mathis
et al., 2018) was trained on 17 manually labeled samples from
11 animals to label each frame of the compressed eye video1100

with 8 eyelid points and 8 pupil points at cardinal and inter-
cardinal positions. Pupil points with high likelihood were fit
with the smallest enclosing circle, and the radius and center
of this circle was extracted.
We delineated visual areas by manually annotating the retino-1105

topic map generated by pixel-wise response to a drifting
bar stimulus across a 4,000 ◊ 3,600µm

2 region of inter-
est (0.2pxµm

≠1) at 200 µm depth from the cortical sur-
face. The imaging site in V1 was chosen to minimize blood
vessel occlusion and maximize stability. Imaging was per-1110

formed using a remote objective to sequentially collect ten
630 ◊ 630µm

2 fields per frame at 0.4 pxµm
≠1 xy resolu-

tion at approximately 8 Hz for all scans. We allowed only
5µm spacing across depths to achieve dense imaging cover-
age of a 630 ◊ 630 ◊ 45µm

3
xyz volume. The most super-1115

ficial plane positioned in L2/3 was around 200µm from the
surface of the cortex. Thanks to our dense sampling, cells
in the imaged volume were heavily over-sampled, often ap-
pearing in at least 2 or more imaging planes. This allowed
matching across days with 2.5 ± 2.6µm vertical distance be-1120

tween masks (see details below). We performed raster and
motion correction on the imaging data and then deployed
CNMF algorithm (Pnevmatikakis et al., 2016) implemented
by the CaImAn pipeline (Giovannucci et al., 2019) to seg-
ment and deconvolve the raw fluorescence traces. Addition-1125

ally, cells were selected by a classifier (Giovannucci et al.,
2019) trained to detect somata based on the segmented cell
masks to result in 7,049–8,238 soma masks per scan. The
full two-photon imaging processing pipeline is available at
(https://github.com/cajal/pipeline).1130

We did not employ any statistical methods to predetermine
sample sizes but our sample sizes are similar to those reported
in previous publications. Data collection and analysis were
not performed blind to the conditions of the experiments but
no animal or collected data point was excluded for any anal-1135

ysis performed.

Electrophysiological recording. Six mice (Mus musculus: 2
male, 4 female) aged from 14 to 27 weeks were selected for
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experiments, with 2 females expressing GCaMP6s in exci-
tatory neurons via Slc17a7-Cre and Ai162 transgenic lines1140

(stock nos. 023527 and 031562, respectively; The Jackson
Laboratory) and the rest being C57BL/6J wildtype (stock
no. 000664; The Jackson Laboratory). We performed acute
recordings using Neuropixels probes 1.0 in awake, head-fixed
mice according to (Jun et al., 2017). In brief, animals were1145

implanted with a headpost and habituated to the experimen-
tal setup (head fixation on a treadmill) after recovery. On the
recording day, the animals were briefly anaesthetized with
isoflourane and a 1-mm craniotomy was made above visual
cortex (approximately 2.9 mm lateral to the midline sagittal1150

suture and anterior to the lambda suture) (Froudarakis et al.,
2014). The animals were then transferred to the experimental
setup and allowed to recover from anaesthesia. Location of
probe insertion was chosen according to stereotaxic coordi-
nates for targeting V1 using Pinpoint (Birman et al., 2023),1155

with all penetrations ranging from 600µm to 1100µm on the
anteroposterior axis, 2900µm to 3500µm on the mediolat-
eral axis, and at an angle of 55° or 60° with respect to the
ventrodorsal axis. One probe was smoothly lowered through
the craniotomy to the final depth according to the trajectory1160

planning with Pinpoint (Birman et al., 2023) to cover the
whole cortex (covering 1800 ≠ 2000µm of the probe) and
allowed to settle for approximately 20 minutes before any
recording. Visual area segmentation were performed by map-
ping the reversals of the retinotopy based on the RF progres-1165

sion along the probe as described previously (Tafazoli et al.,
2017). Neuronal activity recordings were made with custom-
written software in LabView and then automatically spike
sorted with the Kilosort3 spike sorting software (Pachitariu
et al., 2023). An external infrared light was used as the light1170

source for capturing pupil diameter and eye movements. A
DeepLabCut model (Mathis et al., 2018) was trained on 13
manually labeled samples from 4 animals to label each frame
of the compressed eye video with 8 eyelid points and 8 pupil
points at cardinal and intercardinal positions. Pupil location1175

and radius was extracted following the identical procedure
described in Two-photon calcium imaging. From a total of 9
recording sessions, 3283 neurons were detected by the spike-
sorting algorithm (136–547 per session), with 364 neurons
from V1 Layer 2/3 (12–95 per session). All V1 Layer 2/31180

neurons were compiled together for predictive model train-
ing, and then neurons classified as “single units” or “multi-
unit activity” (MUA) were used separately for downstream
analysis. We evaluated the level of unit contamination using
inter-spike-interval (ISI) violations, following the approach1185

introduced by Hill et al. (2011). This metric represents the
relative firing rate of hypothetical contaminating sources that
produce these violations, with higher ISI violations indicat-
ing greater level of contamination.

Visual stimuli presentation. Visual stimuli were presented 151190

cm away from the left eye with a 25" LCD monitor (31.8 x
56.5 cm, ASUS PB258Q) at a resolution 1080 ◊ 1920 pixels
and refresh rate of 60 Hz. We positioned the monitor so that it
was centered on and perpendicular to the surface of the eye at
the closest point, corresponding to a visual angle of 2.2¶/cm1195

on the monitor. In order to estimate the luminance level of
the stimuli presented on the monitor, we taped a photodiote
at the top left corner of the monitor and recorded its voltage
during stimulus presentation, which is approximated linearly
correlated with the monitor luminance. The conversion be-1200

tween photodiode voltage and luminance was estimated from
luminance measurements from a luminance meter (LS-100
Konica Minolta) for 16 equidistant pixel values ranging from
0 to 255 while simultaneously recording photodiode voltage.
Since the relationship between photodiode voltage and lumi-1205

nance is usually stable, we only perform such measurement
every a few months. In the beginning of every experimental
session, we computed the gamma between pixel intensity and
photodiode voltage by measuring photodiode voltage at 52
equidistant pixel values ranging from 0 to 255; then we fur-1210

ther interpolated the corresponding luminance at each pixel
intensity. For closed-loop experiments, the pixel-luminance
interpolation computed on day 1 was used throughout the
loop. All stimuli used in the current study were presented
at gamma value ranging from 1.59 to 1.77 and monitor lumi-1215

nance ranging from 0.07±0.16cd/m
2 to 9.58±0.65cd/m

2.

Presentation of natural stimuli. To fit neurons’ responses,
5,100 natural images from ImageNet (ILSVRC2012) were
cropped to fit a 16:9 monitor aspect ratio and converted to
gray scale. To collect data for training a predictive model of1220

the brain, we showed 5,000 unique images as well as 100 ad-
ditional images repeated 10 times each. This set of 100 im-
ages were shown in every scan for evaluating cell response
reliability within and between scans. Each image was pre-
sented on the monitor for 500 ms followed by a blank screen1225

lasting between 300 and 500 ms, sampled uniformly. Iden-
tical natural stimuli were used for two-photon imaging and
electrophysiological experiments. To maintain the animal’s
alertness throughout each scan, we interspersed an additional
set of six brief movie clips at regular intervals.1230

Neuronal data processing and predictive modeling.

Preprocessing of neuronal responses and behavioral data.

Neuronal responses were deconvolved using constrained
nonnegative calcium deconvolution and then accumulated
between 50 and 550ms after stimulus onset of each trial us-1235

ing a Hamming window. All the segmented neuronal masks
from each individual scan were used for model trainig, in-
cluding duplicates resulting from dense imaging. The cor-
responding pupil movement and treadmill velocity for each
trial were also extracted and integrated using the same Ham-1240

ming window. Each dataset consists of 4500 and 500 unique
images for training and validation, respectively; an additional
set of 100 images presented with 10 repeats was used for
model evaluation. The original stimuli presented to the an-
imals were isotropically downsampled to 64×36 pixels for1245

model training. For day 1 model training scans, input images,
neuronal responses, and behavioral traces were normalized
(z-scored for input images and divided by standard deviation
for the rest) across the training set during model training and
evaluation. Trials with invalid behavioral data (0.8 ± 1.2%)1250
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were excluded from model training. For closed-loop verifi-
cation scans, neuronal responses and behavioral traces were
normalized across all trials.

Predictive model architecture and model training. We fol-
lowed the same network architecture and training procedure1255

as described previously (Sinz et al., 2018; Walker et al.,
2019). Each model comprises: a shared non-linear core
(157,920 parameters), neuron-specific linear readouts at six
different spatial scales (579 parameters per neuron), a be-
havioral modulator (150 shared parameters across all neu-1260

rons and 84,007 parameters per neuron), and a pupil position
shifter network shared across all neurons (57 parameters).
The common core is a 3-layer CNN with full skip connec-
tions. Each layer contains a convolutional layer with no bias,
followed by batch normalization, and an exponential linear1265

unit (ELU) nonlinearity. The readout models the neuronal
response as an affine function of the core outputs followed
by ELU nonlinearity and an offset of 1 to guarantee positive-
ness. Additionally, we model the location of a neuron’s RF
with a spatial transformer layer reading from a single grid1270

point that extracts the feature vector from the same location
at different scales of the downsampled feature outputs. The
modulator computes a gain factor for each neuron that simply
scales the output of the readout layer using a two-layer fully
connected multi-layer perceptron (MLP) with rectified lin-1275

ear unit (RELU) nonlinearity and a shifted exponential non-
linearity to ensure positive outputs. Finally, because train-
ing mice to fixate their gaze is impractical, we estimated the
trial-by-trial RF displacement shared across all neurons us-
ing a shifter network composed of a three-layer MLP with a1280

tanh nonlinearity. For all model training, we adhered to the
methodology outlined in Walker et al. (2019), training four
instances of the same network with different initializations
by minimizing the Poisson loss 1

m

qm
i=1

!
r̂

(i) ≠r
(i) log r̂

(i)"

where m denotes the number of neurons, r̂ the predicted neu-1285

ronal response, and r the observed response.

Evaluation of model performance and neuronal reliability.

Predictions from all four models are averaged for model
benchmarking and image generation. We computed the
model performance CCabs for each neuron on the same held-1290

out data as the correlation between the model predicted re-
sponse x and the recorded responses y averaged across 10
repetitions:

CCabs = Cov(x,y)
V ar(x)V ar(y)

. (1)

. To assess reliability of neuronal responses, we computed
CCmax (Schoppe et al., 2016) as1295

CCmax =

Û
NV ar(y)≠V ar(y)

(N ≠1)V ar(y) , (2)

where y is the in vivo responses, and N is the number of
trials. This metric captures the consistency of neuronal re-
sponses to identical visual stimuli in held-out data, serv-
ing as an upper bound for our model’s potential perfor-

mance. We then estimated the normalized correlation coeffi-1300

cient (CCnorm) (Schoppe et al., 2016) as the fraction of vari-
ation in neuronal responses to identical stimuli accounted for
by the model prediction:

CCnorm = CCabs

CCmax
. (3)

.

Non-parametric synthesis of optimal stimuli and con-1305

trols.

Neuron selection. This section describes neuron section for
stimulus synthesis for 14 out of the 17 mice used for all ex-
periments except for dynamic-static model validation. We
first excluded neuronal masks within 10µm from the edge1310

of the imaging volume, and then ranked the remaining masks
based on descending model predictive accuracy. To avoid du-
plicated neurons, we started from the lowest-ranked neuron
and iteratively added neurons such that they are at least 25µm
apart and have functional correlation < 0.4 with all neurons1315

selected. This filtering left us with 2,081–2,676 unique neu-
rons for each scan. We restricted all analyses to neurons that
exhibit reasonable levels of response reliability as well as
model predictive accuracy. We evaluated neuronal reliabil-
ity using “oracle score” (Walker et al., 2019) (a metric highly1320

correlated with CCmax (Schoppe et al., 2016), Pearson cor-
relation r = 0.9) for each neuron by correlating its leave-one-
out mean response with that of the remaining trial across 100
images in the held-out test set. For synthetic stimulus gener-
ation, we applied hard thresholds on oracle score and model1325

test correlation to include 19.9% of the population for mouse
1 and 79.0±0.5% of the population for mice 2–14.

Generation of Most Exciting Input (MEI). For each individual
neuron, we adapted the activation maximization procedure
described earlier (Walker et al., 2019) to find the stimulus that1330

optimally drive each individual neuron. Starting with Gaus-
sian white noise, we iteratively refined the image by adding
the gradient of the target neuron’s predicted response using a
SGD optimizer with learning rate of 1.0 for 1000 iterations.
To mitigate high-frequency artifacts in image synthesis, we1335

applied a Gaussian filter (‡ = 1.0) to smoothen the gradi-
ent at every optimization step. To determine the appropri-
ate root mean square (RMS) contrast value for our synthetic
stimuli, we conducted a pilot analysis in which we aggre-
gated MEI masks from thousands of neurons into an average1340

mask and measured mean contrast within this average mask
across all the training set natural images presented. To pre-
vent saturation and ensure that the synthetic stimuli remain
within the well-trained contrast domain of the natural images
used during model training, we standardized the image to a1345

fixed mean of 0 and RMS contrast of 0.25—the value ob-
tained from the pilot analysis—following each gradient as-
cent step.
We computed a weighted mask for each MEI to capture the
region containing the vast majority of the variance in the1350

MEI image. We computed a pixel-wise z-score on the MEI
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and thresholded at z-score above 1.5 to identify the highly
contributing pixels. Then we closed small holes/gaps using
binary closing, searched for the largest connected region to
create a binary mask M where M = 1 if the pixel is in the1355

largest region identified. Then, a convex hull was calculated
using the identified pixels. Lastly, to avoid edge artifacts, we
smoothed out the mask using a Gaussian filter with ‡ = 1.5
to avoid potential edge effects.

Generation of Diverse Exciting Inputs (DEIs). We modified1360

procedures described previously (Cadena et al., 2018) to op-
timize DEIs. For each individual neuron, we synthesized a
set of images initiating from MEI that preserve high activa-
tion while differ as much as possible from each other. To
optimize this set, we initiated from 20 instances of the target1365

neuron’s MEI with different additive Gaussian white noises
MEI + ‡i = Ii where 1 Æ i Æ 20 and iteratively minimize
the loss:

L = 1
n

qn
i=1 max(c≠ ri

rMEI
,0)≠⁄mini,j d(Ii, Ij) , (4)

where ri and rMEI are the model predicted response to DEIi

and MEI, c is the minimum activation relative to rMEI that1370

we target each DEIs for, d(Ii, Ij) is the Euclidean distance
in pixel space between DEIi and DEIj measured within the
MEI mask (i.e. the neuron’s receptive field). The first term
encourages all DEIs to achieve high activation, while the sec-
ond term maximizes the minimum pair-wise distance among1375

DEIs. Specifically, we required each DEI to evoke at least
85% of their corresponding MEI (c = 0.85). This thresh-
old was selected based on the previous finding that additional
decrease in target response leads to marginal gain in mini-
mum pair-wise distance among DEIs for simulated complex1380

cells (Cadena et al., 2018). Note that the minimum, instead
of average distance, is used in the second term to avoid solu-
tions that form the set of DEIs into clusters by pushing apart
the most similar pair of DEIs at every iteration. We employed
the same gradient blurring and post-gradient image standard-1385

ization as in MEI optimization. We optimized the DEI set
for 3000 iterations with a learning rate of 1000 for the first
2000 iterations and decayed to 100 for the last 1000 itera-
tions. This learning rate decay helped to further mitigate the
occurrence of high-frequency artifacts. We performed the1390

optimization for every target neuron with a series of diver-
sity regularization hyper-parameter ⁄, densely sampled from
1x10≠4 to 5x10≠2. For each neuron, the set optimized using
the largest ⁄ that preserved minimal response greater than
85% of the MEI response was selected as the DEIs and used1395

for downstream analyses and experiments.

Diversity index. To quantify the diversity level of each set of
DEIs we derived a diversity index based on the average pair-
wise Euclidean distance of the DEIs. To position this metric
on a meaningful spectrum with interpretable reference points,1400

we estimated diversity levels of idealized simple and complex
cells (see details in Simulation of simple and complex cells).
Particularly, we estimated the lower/upper bounds (dlower and
dupper) as the median average pairwise Euclidean distance of
DEIs from a population of noiseless simple/complex cells,1405

respectively. We performed an exhaustive search through the
Gabor parameter space to identify their DEIs. When stan-
dardized with a fixed mean and RMS contrast, DEIs from
idealized simple cells have the same average pairwise Eu-
clidean distance regardless of the underlying Gabor param-1410

eters. Similarly, idealized complex cells with different Ga-
bor parameters have identical yet higher average pairwise Eu-
clidean distance. For each real neuron, a diversity index (D)
is calculated for each mouse V1 neuron i based on the aver-
age pairwise Euclidean distance of its DEIs d

(i) as1415

D
(i) = d

(i) ≠dlower

dupper ≠dlower
. (5)

Natural image and synthesized controls for the invariance

manifold. To evaluate the specificity of the invariance mani-
fold represented by the DEIs, we designed two types of con-
trol stimuli: natural image controls and synthesized controls.
Both controls were strictly closer to the MEI than all the1420

DEIs, as quantified by the corresponding metric used in DEI
generation. For each neuron, we first computed the minimum
distance from the DEIs to the MEI within the MEI mask,
denoted as dtarget, which served as the distance budget for
control image selection or synthesis. For natural image con-1425

trols, we searched through more than 40 millions of natural
image patches to identify those with distances from the MEI
between 80% and 100% of dtarget. The synthesized controls
were generated using a modified version of our DEI synthe-
sis objective (Eqn. 4), where the first term aimed to match1430

the distance from control images to the MEI to dtarget rather
than encouraging high activation:

L = 1
n

qn
i=1 (dtarget ≠d(Ii,MEI))≠⁄mini,j d(Ii, Ij) . (6)

For both control types, we created 20 different images per
neuron and presented each once in vivo during closed-loop
experiments.1435

Generalization of DEIs. To test the generalizability of our DEI
synthesis methodology, we modified key components of the
synthesis pipeline and compared the resultant DEIs:

1. Image initialization: DEIs were initiated with full-field
random white noise instead of a combination of the1440

Most Exciting Inputs (MEI) and random white noises.

2. Model initialization: The in silico model ensemble was
trained from scratch using a different random initial-
ization seed.

3. Individual model synthesis: DEIs were generated us-1445

ing the response of a single model from the ensemble
rather than the average response of four models.

4. Diversity metric: DEIs were synthesized with diversity
measured in neuronal representational space instead of
pixel space, as detailed in Generation of DEIs in neu-1450

ronal representational space.

5. Synthesis methodology: DEIs were generated using an
alternative approach described in Generation of DEIs
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with implicit neural representation model and con-
trastive regularization.1455

6. Model architecture: DEIs were produced using the
distinct model architecture outlined in Willeke et al.
(2022).

We computed representational similarity (as detailed in Rep-
resentational similarity) and average pairwise Euclidean dis-1460

tance of DEIs generated from various conditions to assess the
robustness of DEIs.

Selection of natural DEIs. For each neuron, we searched
through 41 million ImageNet image patches in silico to iden-
tify natural crops that elicited activations equal to or greater1465

than 85% of the MEI response (i.e. DEI-like activation).
To mitigate the effect of contrast difference at the edges of
masked natural crops and MEIs, we refined MEI masks by
shrinking them until the activation of masked MEI dropped
below 95% of the original MEI activation, following the ap-1470

proach of Walker et al. (2019). Each crop was then masked
using the refined MEI mask, and its mean and RMS contrast
were adjusted to match those of the MEI. For neurons with
at least 20 highly activating crops, we selected 20 natural
DEIs—matching the number of synthesized DEIs per neu-1475

ron—by greedily maximizing their minimum pairwise dis-
tance, mirroring the DEI synthesis procedure. These selected
images are denoted as “natural DEIs”.

Generation of DEIs in neuronal representational space. We
utilized the same loss function as in 4 but quantified pair-1480

wise DEI diversity d(DEIi,DEIj) as the negative Pearson
correlation between model-predicted neuronal population re-
sponse vectors ri and rj to DEIi and DEIj :

d(DEIi,DEIj) = ≠
q

(ri≠µi)(rj≠µj)q
(ri≠µi)2

q
(rj≠µj)2

, (7)

where µi,µi represent the mean neuronal population re-
sponses. To compute these population responses, we aligned1485

all neurons’ receptive field (RF) centers with that of the target
neuron for which the DEIs were being optimized. We refer to
thee DEIs generated through this method as “neuronal-space
DEIs”.

Generation of DEIs from an implicit neural representation1490

model with contrastive regularization. Following the ap-
proach detailed in Baroni et al. (2023), we used an implicit
neural representation model (INRM) to map from a low-
dimensional periodic latent space (1D or 2D) to a manifold
in image space representing the invariant transformations of1495

a given neuron. The INRM we used was a fully connected
feed-forward neural network mapping from pixel coordinates
and latent inputs to pixel values. Our model consists of 4
layers of 50 hidden nodes, followed by an hyperbolic tangent
nonlinearity and a sigmoid function as final non-linearity. We1500

used positional encoding on both the latent space and the co-
ordinate space. Each latent input could be mapped to one
image and changing the latent input corresponded to mov-
ing along one invariant dimension of the neuron. The im-
ages were standardized to a fixed mean and RMS contrast1505

and clipped between values corresponding to the black and
white pixels on the monitor before being passed to the digital
twin to get the predicted response.
During training of an INRM, a jittering grid of uniformly dis-
tanced points was sampled from the latent space and mapped1510

into a set of images. The training objective was composed
of one activation term that maximizes the activation of the
generated images and one contrastive term that encourages
diversity across images and ensures smooth transitions in im-
age space when navigating the latent space. Specifically,1515

the contrastive regularization term achieved this by encour-
aging images corresponding to nearby points in latent space
to have high cosine similarity and those corresponding to dis-
tant points in latent space to have low cosine similarity. The
contrastive regularization temperature (Baroni et al., 2023)1520

was set to 0.3. The latent space grid size was 20 points in
1D and 7 points in 2D per dimension. The neighboring ra-
dius, which determined close-by points in the latent space,
was set to 10% of the grid in the 1D case and 20% of the
grid in the 2D. We used an Adam optimizer with learning1525

rate of 0.001 to optimized the INRM weights. After a mini-
mum of 500 weight updates, the regularization strength was
decreased by a factor of 0.8 every time the activity stopped
increasing (initial strength of 2.0, one check every 50 steps
with patience of 5). Training was stopped when the resultant1530

images achieved an average response larger than 85% of the
MEI response and a minimum response larger than 75% of
the MEI response. To avoid image artifacts, gradients were
Gaussian blurred (‡ = 1.0) and contrastive regularization was
applied only on pixels within the MEI mask.1535

This method learns a continuous manifold of stimuli. In the
1D case, we sampled 20 DEIs corresponding to uniformly
distant points in latent space. In the 2D case, since differ-
ent latent dimensions could learn transformations associated
with different image diversity, we obtained 20 DEIs by start-1540

ing from an initial set of images corresponding to randomly
sampled points in latent space and then optimizing them to
maximize the minimum pairwise distance.

Bipartite parameterization of DEIs.

Bipartite model. We proposed a texture generative model to1545

produce texture-based DEIs composed of two complemen-
tary subfields as follows:

DEIs = mV ·T +mF ·MEI , (8)

where the first term is the variable subfield randomly cropped
from an optimized texture canvas T using a mask mV . The
second term is a fixed subfield masked directly from the origi-1550

nal MEI. This model could be reduced to a full-texture model
to describe global shift invariance if the entire receptive field
(i.e. the MEI mask mMEI ) was used as mV . We generated
the texture T following Cadena et al. (2018) by maximizing
the average activation of randomly sampled crops from T us-1555

ing mV . We followed the same loss as in non-parametric
DEIs generation 4 to jointly maximize the activation and di-
versity of DEIs with the same regularizations (i.e. Gaus-
sian blurring on the gradient and learning rate decay) but in
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this case, DEIs were parameterized as in 8. The same post-1560

gradient image standardization was applied on these paramet-
ric DEIs.
To ensure that mV captures the region of the original non-
parametric DEIs from which we observed the most diversity,
we pre-computed a series of mV s by varying the threshold on1565

the pixel-wise variance across the DEIs. Specifically, start-
ing from the pixels with the largest variance across DEIs, we
kept expanding the mV by requesting increasing fraction of
the total variance from 0.2 to 0.6 within the variable subfield.
The complement to mV within mMEI was used as the fixed1570

subfield mask (mF ). In general, the average predicted acti-
vation of the texture-based DEIs decreased as the size of mV

increased. For each set of texture-based DEIs resultant from
each pair of subfield masks, we computed the harmonic mean
between normalized activation and diversity index.1575

Hj = 2 rj ·dDEIs,j

rj +dDEIs,j
, (9)

where rj is the average activation and dDEIs,j is the aver-
age pair-wise Euclidean distance, normalized by the maxi-
mal corresponding value across all different sets of DEIs us-
ing the series of MV s, respectively. We denoted the set of
texture-based DEIs with the maximum harmonic mean as the1580

“partial-texture DEIs” (DEIspartial). The set of texture-based
DEIs resultant from the full-texture model were denoted as
the “full-texture DEIs” (DEIsfull).

Bipartite invariance index. The “bipartite invariance index”
was devised to summarize the extent of partial shift in-1585

variance exhibited by a neuron. Using the series of sub-
fields masks and their corresponding texture-based DEIs as
described above, we fitted a quadratic-smoothing spline to
model the relationship between the in silico neuronal activa-
tion and the variable subfield size. To capture the full range of1590

this relationship, we uniformly sampled the variable subfield
size between 0 and 1 and evaluated the predicted response at
each point using the fitted spline. Finally, we calculated the
Area Under the Curve (AUC) of these predicted responses
across the range of subfield sizes. This AUC value serves1595

as our bipartite invariance index, encapsulating the neuron’s
response profile across various subfield sizes and thus pro-
viding a comprehensive measure of its degree of partial shift
invariance.

Preferred spatial frequency of bipartite RF subfields. Due to1600

challenges of direct frequency analysis on small image win-
dows (i.e. subfield masks), we employed an indirect com-
parative approach using two sets of images: 1) the full-field
DEIspartial 2) modified the full-field DEIspartial where the con-
tent in the fixed subfield was substituted by random crops1605

masked from the same texture optimized for variable subfield
using the fixed subfield mask and standardized to have the
same mean and RMS contrast as the original fixed subfield
content. Both sets of images maintain the identical bipar-
tite structure, differing only in the spatial content within the1610

fixed subfield mask, thus providing an indirect but equitable

way to compare frequency preferences of content from the
two subfields. For each set of images, we first computed the
radial power spectrum using 10 equally spaced bins. The re-
sulting power spectra were then averaged to obtain the mean1615

radial power spectrum, from which we estimated the median
frequency using linear interpolation.

Necessity and specificity of two subfields in the bipartite RF.

We masked out or swapped the content of either subfield to
evaluate its necessity and specificity in eliciting higher neu-1620

ronal responses, respectively. When isolating a subfield, we
prioritized maintaining the integrity of its pixels. This was
achieved by computing a binary mask for the subfield and
smoothing the edge only strictly outside this mask. As a re-
sult, some parts of the complementary subfield remained vis-1625

ible in the stimuli, potentially leading to an underestimation
of the complementary subfield’s necessity. Consequently,
parts of the complementary subfield were preserved in the
visual stimuli, making the measured necessity of the comple-
mentary subfield an underestimate of the actual effect. For1630

the specificity assessment, we either replaced the fixed sub-
fields with different random natural image crops or the vari-
able subfields by random crops masked from different ran-
dom neurons’ optimized textures.

Controls for bipartite RF structure.1635

Control parameterization: “two-variable-subfield DEIs”. To
investigate whether the fixed subfield exhibits shift invari-
ance and if DEIs can be better explained by a more complex
model, we modified the bipartite model such that both sub-
fields are treated as shift invariant, described by:1640

DEIs = mV ·T1 +(mMEI ≠mV ) ·T2 , (10)

Here, the first term mirrors the bipartite parameterization,
while the second term represents a second variable subfield,
randomly cropped from a second optimized texture canvas
T2. We followed the same procedure as in Bipartite model to
sample a series of mV and optimized T1 for each mV . Then1645

we used the complementary subfield mask within the MEI
mask mMEI ≠ mV to optimize for a second texture canvas
T2. We then combined crops masked from each subfield’s
preferred texture to get sets of texture-based DEIs and se-
lected the set with the highest harmonic mean of diversity1650

and in silico activation as the “two-invatiant-field DEIs”.

Control parameterization: “no-spatial-division DEIs”. To as-
sess the necessity of spatial division between the two sub-
fields in the bipartite model, we developed an alternative pa-
rameterization that represents DEIs as a weighted summation1655

of two fully overlapping subfields spanning the entire RF (es-
timated as the MEI mask mMEI ): a fixed component directly
from the MEI and a variable component cropped from a syn-
thesized full-field texture. This model was implemented as

DEIs = (1≠ c) ·mMEI ·T + c ·MEI , (11)

where the hyper-parameter c regulates the ratio between the1660

variable and fixed subfield contribution. We uniformly sam-
pled c between 0 and 1, where 0 signifies an ideal complex
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cell and 1 an ideal simple cell. For each c, we optimized
the texture T following the same procedure as described in
Bipartite model. We then combined the two overlapping sub-1665

fields to get sets of texture-based DEIs and selected the set
with the highest harmonic mean of diversity and in silico ac-
tivation as “no-spatial-division DEIs”. We also fit the in sil-
ico activation as a quadratic-smoothing spline of the average
pairwise Euclidean distance for each neuron (i.e. diversity).1670

The spline fit was utilized to interpolate the diversity of these
texture-based DEIs when their mean in silico activation was
matched to that of the non-parametric DEIs. Similarly, we in-
terpolated the mean in silico activation of these texture-based
DEIs when their diversity was matched to that of the non-1675

parametric DEIs. The same fitting and interpolation was also
done for the biparitite model, allowing a direct comparison of
how well these two parameterizations captured the diversity
and in silico activation of the non-parametric DEIs.

Replication of bipartite structure using electrophysiologi-1680

cal data. For Neuropixels electrophysiological data, we em-
ployed two strategies: training models from scratch, or uti-
lizing a core pretrained on two-photon imaging data and
then training the remaining components (including neuron-
specific readouts, shifter, and modulator components) using1685

Neuropixels data. The latter approach, particularly benefi-
cial due to the limited number of neurons available from each
Neuropixels recording session, improved the median normal-
ized correlation coefficient (CCnorm) from 0.64 to 0.73. We
then generated MEIs, DEIs, texture-based DEIs following the1690

same protocol as applied on the two-photon imaging mod-
els. For comparison of diversity and bipartite invariance in-
dices between neurons from imaging and electrophysiologi-
cal data, we applied identical functional thresholding (oracle
score > 0.22 and model test correlation > 0.42, respectively,1695

calculated as the median threshold from 14 mice used for
two-photon closed-loop experiments) on both neuron popu-
lations to ensure fair comparison.

Comparison of bipartite RF structure and the Minimum

Response Field (MRF). To investigate the relationship be-1700

tween classical receptive fields estimated with the Minimum
Response Field (MRF) Fu et al. (2024) and the bipartite
RF structure, we presented sparse noise stimuli (Jones and
Palmer, 1987b) prior to and after the natural image stimuli
(detailed in Presentation of natural stimuli) in the same two-1705

photon imaging scan. The stimuli comprised circular bright
(pixel value=255) and dark (pixel value=0) dots, each span-
ning 7 degrees in visual angle, presented against a gray back-
ground (pixel value=128) on a 9 ◊ 9 grid covering 40% of
the monitor’s central area. Each dot was displayed for 2501710

ms per location with 16 repetitions (8 prior to and 8 after the
natural stimuli). For both bright and dark dots, we aggre-
gated neuronal responses from 50 to 300 ms post stimulus
onset for each trial, creating separate ON and OFF maps.
We then applied one-way ANOVA to these maps to iden-1715

tify neurons exhibiting significant spatial variation in their
responses. The MRF was determined by aggregating ON and
OFF maps, maximizing the averaged response per location,

and fitting a 2D Gaussian. For quality control, we excluded
neurons with extreme MRF sizes (bottom 5% and top 95%)1720

and those with low Signal-to-Noise Ratio (SNR), calculated
as SNR(x) = µ(xmask=1)

‡(xmask=0) , where the mask was obtained by
thresholding the fitted Gaussian at 0.3. To evaluate the spa-
tial relationship between the MRF and the bipartite structure,
we calculated (1) the average pairwise distance between the1725

MRF and each subfield across all pixels; (2) the overlap be-
tween the MRF and each subfield. To estimate the diame-
ter of MEI, variable subfield, and MRF, we first binarized
their masks (threshold = 0.3) and defined the diameter as the
longest distance between points on the border of the mask.1730

Evaluation of pupil position uncertainty. To evaluate whether
the bipartite structure is related to uncertainty in the trial-by-
trial pupil shift predicted by the shifter network, we trained
three additional versions of the model by sub-sampling tri-
als based on the corresponding pupil movement: 1) minimal-1735

movement model, where we removed trials with pupil dis-
tance from the mean position larger than 3 units in the eye
camera coordinate system, which corresponded to approxi-
mately 1

20 of the median MEI diameter (2.86¶ visual angle);
the median percentage of trials included was 33.1%, 2) small-1740

movement model, where trials with the bottom 50 percentile
of pupil movements were included, and 3) large-movement
model, where trials with the top 50 percentile of pupil move-
ments were included. For each model we generated MEI,
DEIs, and partial texture DEIs for each neuron.1745

In vivo closed-loop verification of synthesized stimuli.

Neuron selection. This section describes neuron section for
stimulus synthesis for 14 out of the 17 mice used for all ex-
periments except for dynamic-static model validation. For 9
out of 14 mice, we randomly selected neurons with relatively1750

high level of invariance (detailed below); for the remaining
5 mice, we randomly selected neurons from all candidates
that survived our oracle score and model performance crite-
ria (see above). To remove the confounding effect of RF size
on neurons’ invariance level, we fit a least squares regres-1755

sion from the MEI mask size to the diversity index computed
from DEIs (see above) using 1000 random neurons compiled
across 8 pilot datasets. For each neuron, the residual between
the actual average DEIs pair-wise Euclidean distance and the
predicted distance from the MEI mask size was calculated1760

as its diversity residual. This diversity residual served as an
size-independent evaluation of neuron’s invariance level. For
each of the 9 mice, we randomly selected neurons from the
top 50 percentile among all neurons with positive diversity
residuals.1765

Presentation of synthetic stimuli. For all MEIs, DEIs,
texture-based DEIs, and control stimuli, we masked the stim-
uli with the MEI mask and standardized all masked stimuli
such that they have fixed value of mean (3.09cd/m

2) and
RMS contrast (0.25cd/m

2) in the luminance space with only1770

small amount of deviation due to clipping within the 8-bit
range. The fixed mean and contrast valued were chosen to
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be close to the corresponding values of the training set while
minimizing the amount of clipping when converting synthetic
stimuli from the z-score space to the 8-bit image space. All1775

pixels outside of the MEI mask are at 128, the same intensity
as the blank screen in between consecutive trials. For each
neuron, its MEI was presented for 20 repeats; for 2 mice, 10
random DEIs for each neuron werxe selected and each pre-
sented for 20 repeats, and the remaining mice, each of 201780

DEIs or control stimuli for each neuron were presented once.

Monitor positioning across days. In order to optimize the
monitor position for centered visual cortex stimulation, we
mapped the aggregate receptive field of the scan field re-
gion of interest (ROI) using sparse noise stimuli comprised of1785

bright (pixel value=255) and dark (pixel value=0) dots. We
tiled the center of the screen in a 10◊10 grid with single dots
in random locations, with 10 repetitions of 200 ms presen-
tation at each location. The RF was then estimated by aver-
aging the calcium trace of an approximately 150◊150µm

2
1790

window in the ROI from 0.5–1.5 s after stimulus onset across
all repetitions of the stimulus for each location. The re-
sulted two-dimensional map was fitted with an elliptic two-
dimensional Gaussian to find a center. To keep a consistent
monitor placement across all imaging sessions, we positioned1795

the monitor such that the aggregate RF of ROI in the first ses-
sion was placed at the center of the monitor and then fixed
the monitor position across the subsequent sessions within a
closed-loop experiment. An L-bracket on a six-dimensional
arm was fitted to the corner of the monitor at its location in1800

the first session and locked in position such that the moni-
tor could be returned to the same position between scans and
across imaging sessions.

Cell matching across days. In order to return to the same im-
age site, the craniotomy window was leveled with regard to1805

the objective with six d.f., five of which were locked between
days. A structural 3D stack encompassing the volume was
imaged at 0.8◊0.8◊1 px

3
µm

≠3
xyz resolution with 100 re-

peats. The stack contained two volumes each with 150 fields
spanning from 50 µm above the most superficial scanning1810

field to 50 µm below the deepest scanning field; each field
was 500◊800µm

2, together tiling a 800◊800µm
2 field of

view (300µm overlapped). This was used to register the
scan average image into a shared xyz frame of reference
between scans across days. To match cells across imaging1815

scans, each two-dimensional scanning plane was registered
to the three-dimensional stack through an affine transforma-
tion (with nine d.f.) to maximize the correlation between the
average recorded plane and the extracted plan from the stack.
Based on its estimated coordinates in the stack, each cell was1820

matched to its closest cell across scans. To further evaluate
the functional stability of neurons across scans, in each scan
we included an identical set of 100 natural images with each
repeated 10 times (referred as oracle images). For each pair
of matched neurons from two different scans, we compute1825

the correlation between their average-trial responses to the
oracle images. In order to be included for downstream anal-
yses, the matched cell pair need to (1) have an inter-cellular

distance smaller than 10µm; (2) achieve a functional corre-
lation equal to or greater than the top 1 percentile of correla-1830

tion distribution between all unmatched cell pairs (estimated
as 0.42); (3) survive manual curation of the matched pair’s
physical appearance in the processed average frame. Among
all closed-loop scans, 56 ± 16% of closed-loop neurons per
scan survived all three criteria.1835

Analysis of in vivo neuronal responses.

In vivo response comparisons and statistical analysis.

Recorded responses were normalized across all presented im-
ages within each scan. The responses of the matched neurons
were then averaged across either 20 repetitions of a single1840

image for MEI or single repetitions of 20 different images
for DEIs, texture-based DEIs, and different types of control
stimuli. For individual neurons, the statistical significance
of response differences across stimulus types was assessed
using two-sided Welch’s t-tests. The overall response differ-1845

ence across stimulus types compiled across all neurons was
assessed using two-sided Wilcoxon signed-rank tests.
Neuronal responses were normalized across all presented im-
ages within each scan. For matched neurons, we averaged
responses across either 20 repetitions of a single image (for1850

MEI) or single repetitions of 20 different images (for DEIs,
texture-based DEIs, and various control stimuli). To as-
sess the statistical significance of response differences, we
employed two-sided Welch’s t-tests for individual neurons.
For evaluating the overall difference in average responses1855

across all neurons, we utilized two-sided Wilcoxon signed-
rank tests.

Decoding DEIs from population responses. To assess
whether differences across DEIs can be represented by V1
population responses, we identified the most dissimilar pair1860

of DEIs for each neuron based on their corresponding di-
versity metric. We then presented each DEI of this pair
(DEI1 and DEI2) 20 times. To quantify the neuronal dis-
criminability between these DEIs, we implemented a 5-fold
cross-validated logistic classification with L2 regularization1865

on the V1 population responses. This classifier was trained
to distinguish whether each single-trial population response
originated from DEI1 or DEI2. The optimal regularization
strength was determined empirically by fitting the logistic re-
gression model on an independent pilot dataset.1870

Individual DEI response analysis. To compare the in vivo re-
sponses of individual DEIs to their corresponding MEI, we
randomly selected 10 DEIs for each neuron and presented
each DEI 20 times. Using a two-sided Welch’s test, we as-
sessed whether responses to individual DEIs differed from1875

85% of their corresponding MEI response. To investigate
whether the relative strength of DEI responses to MEI is in-
fluenced by whether single or multiple DEIs were presented,
we implemented two bootstrapping strategies on the same
data set: averaging across 20 repeats of the same DEI, and1880

averaging across 20 single trials from different DEIs. For
each bootstrap iteration, we estimated a robust linear coeffi-
cient between DEIs and MEI using the RANSAC algorithm
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(Fischler and Bolles, 1981). We then examined whether the
difference in linear coefficients estimated from the two boot-1885

strapping strategies differed from zero.

In silico quantification and analysis.

In silico stimuli presentation. To ensure the most reliable pre-
dictions from our model, we standardized all images to match
the training set statistics before presenting them in silico. The1890

training set images on average had approximately a mean of
0 and RMS contrast of 0.8 (after z-scoring) within the MEI
mask. Through synthesizing MEIs with a series of full-field
statistics constraints, we determined that full-field images
with a mean of 0 and RMS contrast of 0.25 best replicated1895

these statistics. Therefore, we adopted a uniform preprocess-
ing procedure for all images: first, we applied the correspond-
ing MEI mask to each image, then normalized the entire im-
age to mean of 0 and RMS contrast of 0.25.

Simulation of simple and complex cells. The response of an1900

idealized simple cell was modeled as convolution with a 2D
Gabor filter followed by a rectified linear activation function
(ReLU) (Jones and Palmer, 1987a). An idealized complex
cell was formulated by the classical energy model (Adelson
and Bergen, 1985), where the response was modeled as the1905

square root of the summation of squared outputs to a quadra-
ture pair of 2D Gabor filters. A Gabor image was generated
as

IGabor(x,y) = exp≠ 1
2‡2 ((x≠µx)2 +(y ≠µy)2)

cos(2fi(xcos◊ +y sin◊)
⁄

+Â)
(12)

, where µx and µy control the center of the Gabor, ‡ is the
standard deviation of the Gaussian envelope, and ◊, ⁄ and1910

Â control the orientation, spatial frequency and phase of the
grating, respectively. For all simulated cells, µx and µy were
set to 0; ◊ and psi were randomly sampled from the range
of [0,fi] and [0,2fi], respectively. We then selected ‡ and ⁄

values that closely match neuronal properties in our dataset.1915

‡ values were selected from the range of [4.4¶, 10.9¶] visual
angle, as inferred from MEI mask sizes from 1000 random
neurons in 8 pilot datasets. For ⁄, we first searched for Ga-
bor images with the highest predicted activation for real neu-
rons using a range of [0.02¶/cycle, 0.12¶/cycle] (Niell and1920

Stryker, 2008), and then randomly selected ⁄ values from
those corresponding to the optimal Gabor images. We then
randomly combined these parameters to simulate the ground-
truth Gabor stimuli for 60 simple and 60 complex cells. To
ensure sufficient frequency representation within the Gaus-1925

sian window, we constrained ⁄ to be no more than twice the
value of ‡.
For each simulated cell, we collected idealized responses to
5000 random ImageNet images, using each response as the
mean of a Poisson distribution from which we sampled a1930

noisy response. This noisy input-response dataset was then
used to train a predictive model with an architecture identical
to that used for real neurons. Finally, we applied the same im-
age optimization procedure described above to generate MEI

and DEIs using the simple and complex cell predictive mod-1935

els. This procedure aims to simulate the noise inherent in bi-
ological systems and create predictive models for simulated
cells that more closely resemble those of real neurons.

Representational similarity. To quantify similarity of visual
stimuli in a space that is relevant to mouse V1 population1940

functionality, we first obtained a low-dimensional latent rep-
resentation for each stimulus and then assessed the similarity
between stimulus pairs using this latent representation. We
used a model ensemble trained on a held-out dataset to pre-
dict population responses to a random set of MEIs from 141945

different animals (500 per animal) after these MEIs were cen-
tered and standardized. We then performed Principal Compo-
nent Analysis (PCA) to identify the top 53 principal compo-
nents (PCs) capable of explaining 95% of the response vari-
ance across all neurons. For any given stimulus, we centered1950

and standardized it, passed it through the designated model
ensemble, and projected the resultant population response
onto the 53-dimensional space to derive its latent neuronal
representation. We then computed representational similarity
of each pair of stimuli using cosine similarity in this latent1955

space. To compute similarity between sets of stimuli (e.g.
sets of DEIs generated from various conditions), we calcu-
lated the average pairwise representational similarity.

The CUB and CUB-grating datasets. To study the relation-
ship between invariance and natural stimuli, we sampled1960

over 1 million crops from the Caltech-UCSD Birds-200-2011
(CUB) image dataset (Wah et al., 2011). This dataset con-
tains 11,788 natural images across 200 bird categories, each
featuring a single bird in its natural habitat. We resized origi-
nal images to 64×64 pixels and sampled them using a 36×361965

pixel window with a stride of 2. Each image also includes a
manual semantic segmentation label identifying the bird re-
gion as a probability map, which we binarized using a thresh-
old of 0.5. To test whether object boundaries defined by spa-
tial frequency differences strongly activate V1 neurons, we1970

created a modified dataset, “CUB-grating”, by replacing ob-
ject and background content with grating patterns. We gen-
erated four equal-sized image types (2 million each):

1. Homogeneous grating pattern without using segmenta-
tion labels (“single grating”).1975

2. Same spatial frequency but varying orientations

3. Same orientation but varying spatial frequencies

4. Both varying frequencies and orientations

To determine the frequency range for high and low frequency
patterns, we sampled 1000 random neurons across 8 pilot1980

mice and fitted optimal Gabor-filter stimuli for each neu-
ron using their corresponding predictive model. We defined
high frequency as 5.83¶/cycle and 15.55¶/cycle (5th to 50th
percentile) and low frequency as 15.55¶/cycle to 58.3¶/cycle
(50th to 95th percentile). We independently uniformly sam-1985

pled frequency, orientations, and phases for both the object
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and background gratings, then normalized them to have iden-
tical mean and RMS contrast. We masked the grating im-
ages with their corresponding object and background masks
from the binarized segmentation label. To minimize edge ar-1990

tifacts, we applied a Gaussian filter (‡ = 1.5) to blur object-
background boundaries.

Analyses on highly activating crops in the CUB and CUB–

grating datasets. To assess the alignment of the spatial
structure between neurons’ bipartite RF and the object-1995

background division in the CUB dataset, we screened over
1 million CUB image crops in silico for each target neuron to
identify the 100 most highly activating ones. Each crop was
masked from a full-field image with the target neuron’s MEI
mask and standardized to match the MEI’s mean and RMS2000

contrast within the mask. We classified a crop as contain-
ing object boundary if it comprised at least 20% of both ob-
ject and background within the target neuron’s receptive field
(RF). We also reproduced our findings with 10% and 30%
thresholds. Crops without object boundaries were excluded2005

from downstream analyses. To obtain a bipartite mask for
each neuron, we binarized its MEI mask (mMEIb

) and vari-
able subfield mask (mVb

) by thresholding at 0.3, assigning a
value of 1 for each pixel within mVb

and ≠1 for each remain-
ing pixel within mMEIb

. Similarly, using the manual seg-2010

mentation label for each image crop, we assigned a value of
1 if the pixel is within the object and ≠1 if the pixel belongs
to the background. We quantified the alignment between a
crop’s segmentation label and the neuron’s bipartite mask

using a matching score defined as s =
q

mbipartiteúmsegq
mMEIb

,2015

where a score of 1 indicates perfect alignment of the vari-
able subfield with the object and fixed subfield with the back-
ground, and 0 indicates the reverse. The same procedure was
applied on 100 random images to serve as a baseline to ac-
count for inherent bias of the dataset. This protocol was also2020

used to evaluate matching in the CUB-grating dataset.

Spatial frequency tuning analysis in bipartite subfields. To
systematically study how neuronal responses vary with spa-
tial frequency in each subfield, we performed additional anal-
yses using natural images. For each target neuron, we applied2025

the fixed subfield mask to the CUB natural image dataset to
extract 10,000 random crops and computed their median spa-
tial frequency. These crops were then combined with the
original variable subfield (masked directly from the MEI),
and the resulting images were fed into our predictive model2030

to obtain predicted responses. For each neuron, we calcu-
lated the Pearson correlation coefficient between the median
frequency of the crops and the predicted responses. We re-
peated this process for the variable subfield as well. Fi-
nally, we corrected for multiple comparisons using the Ben-2035

jamini–Hochberg procedure and reported only those neurons
with a significant correlation (p < 0.05) after correction.

Functional connectomics analyses on the MICrONS
dataset.

Replication of DEIs in MICrONS and closed-loop validation.2040

Recently, a large-scale functional connectomics dataset of
mouse visual cortex (“MICrONS”), including responses of
>75k neurons to full-field natural movies and the recon-
structed sub-cellular connectivity of the same cells from elec-
tron microscopy data (MICrONS Consortium et al., 2021). A2045

dynamic digital twin model (Wang et al., 2023) of mouse vi-
sual cortex exhibits not only a high predictive performance
for natural movies, but also accurate out-of-domain perfor-
mance on other stimulus classes such as drifting Gabor fil-
ters, directional pink noise, and random dot kinematograms.2050

Here, we took advantage of the model’s ability to general-
ize to other visual stimulus domains and extracted specific
functional properties from this digital twin model in order to
relate them to the neurons’ connectivity and anatomical prop-
erties. Specifically, we first trained a dynamic digital twin2055

of the CvT-Lstm architecture (Wang et al., 2023) in the MI-
CrONS neuronal population using all movie clips from the
MICrONS stimulus set. We then presented a movie of 5100
unique natural images as described in Presentation of natu-
ral stimuli (except that every image was shown once since2060

the model prediction is deterministic) to the dynamic digi-
tal twin and used these in silico responses to train a static
model (“dynamic-to-static” model). MEIs, DEIs, and the
bipartite parameterization were subsequently extracted from
the “dynamic-to-static” model.2065

To validate the images generated from this “dynamic-to-
static” model, we recorded the visual activity of the same
neuronal population to static natural images as well as to
the identical natural movies that were used in the MICrONS
dataset in 3 new mice. Neurons across scans were matched2070

anatomically as described in Cell matching across days.
Based on neuronal responses we trained two versions of
static models: one directly on static image responses as de-
scribed in previous sections, and one “dynamic-to-static”
model. We then presented MEIs, DEIs, and partial texture2075

DEIs extracted from both static models back to the mice in
closed-loop experiments. Since the static and dynamic stim-
uli were presented in two separate scans on day 1, only neu-
rons that had unique one-to-one matching between the two
scans (54±3%) and had matching distance smaller than 5µm2080

(76 ± 5%) were considered for image synthesis. We further
excluded neurons with bottom 1 percentile of CCmax and
CCabs and then randomly selected neurons from the remain-
ing population for closed-loop validation. For scans with syn-
thesized images, only neurons that have good matching (cri-2085

teria as described in ) to both of the day 1 static and dynamics
scans were included for data analysis. On average, 33 ± 2%
of closed-loop neurons per scan were kept for data analysis.

Neuron selection for functional connectomics analysis. We
focused our analysis exclusively on V1 Layer 2/3 excitatory2090

neurons, using area membership labels per neuron provided
by the MICrONS release (MICrONS Consortium et al., 2021;
Ding et al., 2023). Neurons with reliable visual responses
(CCmax > 0.4) that are well predicted by the digital twin
model (CCabs > 0.2) were included in the downstream anal-2095

ysis, following the methodology described in Schoppe et al.
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(2016) and Ding et al. (2023). These criteria resulted in 19
presynaptic neurons and 706 connected pairs for downstream
analysis.
To control for neuronal connectivity at a finer synaptic level,2100

we followed the procedure outlined in Ding et al. (2023) to
identify Axonal-Dendritic Proximity (ADP) controls. These
neurons had a dendritic skeleton passing within 5µm of
the presynaptic neuron’s axonal skeleton (3D Euclidean dis-
tance) but were not observed to form a synapse with the2105

presynaptic neuron. This process produced 2,486 ADP neu-
rons and 18,162 pairs of ADP controls.

Functional analysis on the MICrONS dataset. To elucidate
functional differences between connected pairs and Axonal-
Dendritic Proximity (ADP) controls, we aggregated data2110

across all presynaptic neurons. However, naive aggregation is
problematic due to varying functional and connectivity met-
rics of different presynaptic neurons.
To address this, we performed the following corrections:
Correction on functional metric We implemented a two-step2115

standardization process for each pairwise metric, i.e. MEI
and DEI pairwise similarity, and diversity index difference.
First, we adjusted the pairwise value by subtracting the presy-
naptic neuron’s mean value, calculated as the average across
all its connected pairs and ADP control pairs. We then added2120

back a regional baseline level, computed as the mean value
across all connected pairs and ADP controls within V1 Layer
2/3. This correction was applied to all pairwise metrics for
both connected pairs and ADP controls.
Correction on connectivity metric When aggregating con-2125

nected pairs, we weighted each pair by the number of
synapses observed between them and then adjusted for presy-
naptic neuron synapse conversion rates. We calculated the
synapse conversion rate for each presynaptic neuron as the
ratio between the total number of synapses formed from its2130

axon and the total co-traveling distance with dendrites from
its postsynaptic targets and ADP controls within V1 Layer
2/3. The expected number of synapses between a pair was
then calculated as the product of this rate and the co-traveling
distance. We adjusted the observed number of synapses by2135

this expected value and added back a regional expected num-
ber of synapses based on the pair’s co-traveling distance and
the regional synapse conversion rate.
We then performed weighted bootstrapping on connected
and ADP pairs independently, using the adjusted number of2140

synapses as weight for connected pairs and co-traveling dis-
tance for ADP controls. To quantify synapse conversion rate
as a function of functional similarity, we adapted the pro-
cedure from Ding et al. (2023). We binned all neuron pairs
(both connected and ADP control) according to their pairwise2145

value. For each bin, synapse conversion rate was defined
as the ratio of the number of observed synapses to the to-
tal co-traveling distance between presynaptic neurons’ axon
arbors and their targets’ dendritic skeletons within the bin.
We included only bins containing more than 10 connected2150

neuron pairs and representing at least than 2.5% of all con-
nected neuron pairs. To estimate the standard deviation of
the synapse conversion rate, we resampled the connected and

ADP pairs with replacement, binned the resampled distribu-
tions, and calculated the standard deviation within each bin.2155

Statistics. All statistical tests were reported directly in fig-
ure captions with corresponding sample sizes, test statistics,
and p-values. Permutation tests and bootstrapping proce-
dures were conducted using 10,000 permutations or resam-
plings with replacement. P-values for permutation tests and2160

bootstrapping less than 10≠4 were reported as P < 10≠4;
otherwise, exact p-values were provided. The linear coeffi-
cient was computed as the average of values obtained from
1,000 independent robust regressions using the RANSAC al-
gorithm (Fischler and Bolles, 1981). For Welch’s t-tests and2165

one-sample t-tests, normality was assumed but not explic-
itly tested. In Wilcoxon signed-rank tests, p-values less than
10≠9 were reported as P < 10≠9; otherwise, exact p-values
were provided. For multiple comparisons, we applied the
Benjamini-Hochberg (BH) correction and reported both the2170

fraction of significant comparison before and after correction,
along with corrected p-values.

Software. Experiments and analysis are carried out with cus-
tom built data pipelines. The data pipeline is developed in
Matlab and Python with the following tools: Psychtoolbox,2175

ScanImage, DeepLabCut, CAIMAN, and Labview were used
for data collection. DataJoint, MySQL, and CAVE were
used for storing and managing data. Numpy, pandas, SciPy,
statsmodels, scikit-learn, and PyTorch were used for model
training and statistical analysis. Matplotlib, seaborn were2180

used for graphical visualization. Jupyter, Docker, and Ku-
bernetes were used for code development and deployment.

Data and code availability. All data and the analysis code
will be made publicly available in an online repository latest
upon journal publication. Please contact us if you would like2185

to get access before that time.
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