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Abstract 

The human cerebral cortex exhibits intricate interareal functional synchronization at the 
macroscale, with substantial individual variability in these functional connections. However, the 
spatial organization of functional connectivity (FC) variability across the human connectome 
edges and its significance in cognitive development remain unclear. Here, we identified a 
connectional axis in the edge-level FC variability. The variability declined continuously along this 
axis from within-network to between-network connections, and from the edges linking association 
networks to those linking the sensorimotor and association networks. This connectional axis of 
functional variability is associated with spatial pattern of structural connectivity variability. 
Moreover, the connectional variability axis evolves in youth with an increasing flatter axis slope. 
We also observed that the slope of connectional variability axis was positively related to the 
performance in the higher-order cognition. Together, our results reveal a connectional axis in 
functional variability that is linked with structural connectome variability, refines during 
development, and is relevant to cognition. 

 

Significance Statement 

Understanding the spatial organization of inter-individual variability in functional connectivity 
across the human connectome can offer insights into which connections are most susceptible to 
insults and interventions. We identify a stable axis on functional connectome along which 
connectivity variability continuously varies, aligning with structural connectivity variability. We find 
that the pattern of this axis evolves during development, marked by a decrease in functional 
connectivity variability among association connections. Moreover, the variability axis is associated 
with individual differences in higher-order cognitions, driven by increased variability in higher-
order association connections linked to enhanced cognitive performance. These findings highlight 
the importance of connectivity-specific plasticity in understanding both typical and atypical 
cognitive development across diverse populations. 

 
 
Main Text 
 
Introduction 
 
The human connectome comprises a complex network of interareal connections that facilitates 
dynamic communication between brain regions. This interregional communication can be 
represented as functional connectivity (FC) (1, 2), which exhibits substantial organizational 
differences between individuals(3). This inter-individual variability of functional connectivity is 
associated with individual differences in human development, cognitive functions, and a wide 
range of clinical psychopathology (2-5). Recent research has also shown that functional 
connectivity explains the propagation of neurostimulation-induced signals across the brain and 
individual variability in functional connectivity helps define the personalized neurostimulation 
target (6, 7). Accordingly, understanding the spatial patterning of individual variability of functional 
connections can offer insights into which connections are most susceptible to plasticity, 
influenced by various factors such as insults and interventions, thereby aiding in the development 
of connectivity-guided pharmaceuticals and neurostimulation techniques. 
 
Prior studies have examined the spatial organization of inter-individual variability in functional 
connectivity at the regional level, defined as the summary of connection strengths from one 
region to all others (3). The regional FC variability is heterogeneously distributed across the 
cortex and shows a spatially continuous increase along the macroscale cortical axis, which 
progresses from primary sensorimotor cortices to higher-order association cortices (3, 8, 9). 
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However, regional-level FC variability, being an aggregate measure, lacks the nuanced and rich 
information provided by studying variability at the level of individual functional connectivity edge 
(10, 11). Prior studies on functional connectivity related to development, cognition, 
psychopathology, and neurostimulation are mainly focused on edge-level connectivity rather than 
regional connectivity (5, 7, 12-14). Thus, examining the spatial patterning of inter-individual 
variability in edge-level functional connectivity could offer deeper cognitive and clinical insights 
than those provided by regional connectivity variability alone. Despite this potential, few studies 
have systematically analyzed the spatial organization of individual variability in functional 
connectivity at the edge level across the human connectome. 
 
Previous studies have introduced the concept of an axis to quantify the orderly spatial 
progression of neurobiological properties that change systematically across the brain (8, 15). In 
the present study, we aimed to empirically characterize the connectome-wide spatial 
heterochronous pattern of individual FC variability and hypothesized the presence of a stable, 
reproducible axis across connectome edges, referred to as the “connectional axis”, along which 
individual FC variability continuously varies. Additionally, convergent evidence from multiple 
independent studies has demonstrated that the structural connectivity of the white matter tracts 
both facilitates and constrains the transfer of functional signals, thereby forming the backbone for 
the emergence of functional connectivity (1, 16). Previous research has shown a similarity 
between the spatial patterns of regional FC variability and regional structural connectivity 
variability across the cortex (17, 18). However, the extent to which this relationship holds at the 
connectome edge level remains unclear. We hypothesized that the connectional axis of individual 
FC variability would be associated with structural connectivity variability across connections. 
 
Functional connectivity undergoes significant refinement throughout childhood and adolescence 
(19-22), with this neurodevelopmental process playing a critical role in shaping the spatial pattern 
of individual variability in functional connections. Connections among higher-order association 
regions exhibit prolonged maturation during youth, governed by conserved genetic programs. 
These include synaptic and axonal pruning of redundant or variable local connections (23), and 
activity-dependent myelination of evolutionarily conserved long-range pathways (24). While 
experience-driven plasticity may amplify individual differences, the shared genetically encoded 
process and environmental demands—such as social interaction and skill learning—could drive 
convergent optimization of association circuits across individuals. We therefore hypothesize that 
the development during this period ultimately reduce individual variability in association 
connectivity as these networks stabilize into efficient, conserved configurations. Here, we provide 
the first systematic examination of the development of the connectome-wide spatial pattern of FC 
variability during youth. Additionally, functional connectivity among association networks has 
been linked to individual differences in higher-order cognition, such as executive function (2, 25-
27). However, it remains unclear how the connectome-wide spatial organization of individual FC 
variability relates to cognitive performance. Prior work showed that greater neural flexibility is 
associated with better higher-order cognitive abilities (27-29). Therefore, we hypothesized that 
populations with greater individual variability in association connectivity would exhibit superior 
higher-order cognitive abilities (e.g., executive function) compared to those with lower variability. 
 
To address these hypotheses, we utilized functional MRI (fMRI) data from three independent, 
high-quality datasets to non-invasively study the spatial organization of individual FC variability 
across the human connectome. FC was defined as the synchronization of the blood oxygen level-
dependent (BOLD) fMRI signals between two brain regions. Prior research has defined the brain 
axes or gradients by ranking the magnitudes of neurobiological properties (30, 31). Following a 
similar methodology, we defined a connectional axis of individual FC variability across all edges 
of the cortical connectome. Our findings reveal that the connectional axis of FC variability extends 
from within-network connections to between-network connections, and from connections linking 
association networks to those linking sensorimotor networks. Interestingly, connections between 
association and sensorimotor networks exhibited the lowest FC variability, rather than the 
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connections within sensorimotor networks. Furthermore, we discovered that the pattern of FC 
variability along the connectional axis is associated with the spatial pattern of structural 
connectivity variability. Lastly, our results indicate that the connectional variability axis is refined 
during youth, and associates with higher-order cognitive functions. All primary findings were 
established using developmental and young adult datasets from the Human Connectome Project 
(32, 33), and subsequently replicated in an independent cohort of Chinese youth. 
 
 
Results 
 
We harnessed two independent datasets, namely the Human Connectome Project (HCP)-
development (HCP-D, n = 486, 265 females, aged 8–21 years) (33) and unrelated HCP-young 
adult (HCP-YA, n = 275, 146 females, aged 22–35 years) (32), to estimate the inter-individual 
variability of functional connectivity (FC). To this end, we included 26- and 58-min blood oxygen 
level-dependent (BOLD) functional MRI data from the HCP-D and HCP-YA datasets, respectively. 
Furthermore, we included a Chinese cohort, the Youth Executive function and Neurodevelopment 
(YEN, n = 218, 113 females, aged 6–22 years), as a replication dataset. This cohort consists of 18-
min BOLD functional MRI data for each participant. FC was calculated for each participant based 
on the a priori Schaefer cortical parcellation atlas of 400 regions (34). We determined FC as the 
Pearson correlation coefficients between pairs of regional time series, resulting in a 400×400 
symmetrical FC matrix for each participant. The Pearson correlation coefficients were then r-to-z 
transformed using the Fisher transformation. This full FC matrix is termed a functional connectome. 
The matrix contained 79,800 unique elements, and we denoted each element as an “edge” 
connecting two cortical regions. A linear mixed-effects model was applied to estimate the inter- and 
intra-individual variability of each FC edge (35). As in previous studies (3, 36), we used the intra-
class coefficient (ICC) to measure the adjusted inter-individual variability while accounting for intra-
individual variability. Finally, a 400×400 symmetrical inter-individual variability matrix was 
generated, with each element representing the variation in the connection strength for an edge 
across all participants. We grouped the 400 cortical regions into networks using the Yeo atlas (37), 
which consists of visual, somatomotor, dorsal attention, ventral attention, frontoparietal, default 
mode, and limbic networks. In general, the visual and somatomotor networks are assigned to 
sensorimotor networks, and the other five networks belong to association networks. However, the 
limbic network was excluded from subsequent analyses because of a substantial signal loss, 
especially in the orbitofrontal and ventral temporal cortex(38). Finally, we evaluated 374 cortical 
regions with 69,751 unique edges. 
 
Individual variability in edge-level FC progressively varies along a stable and reproducible 
connectional axis 
 
We arranged the 374 cortical regions based on their affiliations to the large-scale functional 
networks from priori Yeo atlas(37) (Fig. 1a), and generated matrices of individual FC variability for 
both the HCP-D (Fig. 1b) and HCP-YA (Fig. 1c) datasets. Visual inspection suggested that 
individual variability was heterogeneously distributed across connectome edges in both datasets. 
Specifically, high variability was prevalent in the connections within or between association 
networks, including the default mode, frontoparietal, ventral attention, and dorsal attention 
networks. In contrast, we observed lower individual variability in the between-network edges 
bridging the association and sensorimotor regions. We found a significant correlation (Spearman’s 
rho = 0.916, Pperm < 0.0001, confidence interval [CI] = [0.915, 0.918], two-sided) between the 
individual variability of the HCP-YA and HCP-D datasets across all edges, indicating a highly stable 
pattern of edge-wise individual variability across datasets. 
 
Next, we grouped the cortical regions into six major networks and averaged FC variabilities within 
and between the networks, generating network-level 6×6 matrices for the HCP-D (Fig. 1d) and 
HCP-YA (Fig. 1e) datasets. Prior studies have consistently defined a brain axis or gradient by 
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ranking the neurobiological properties from the highest to the lowest (30, 31). With this approach, 
we observed an axis of decline in inter-individual FC variability progressing from within-network 
connections to between-network connections for each large-scale network. For example, individual 
variability of the default mode network declined along an axis progressing from edges within the 
default mode network to those between the default mode and other association networks, further 
decreasing at the edges between the default mode and sensorimotor networks. We termed these 
axes of individual variability as the “connectional variability axis” for each network. These network-
level connectional axis patterns were highly consistent between the two independent datasets 
(Spearman’s rho = 0.987, P = 4.45×10-6, CI = [0.937, 0.999], two-sided). 
 
We separately ranked within-network and between-network variabilities for each network in the 
HCP-D (Fig. 1f) and HCP-YA (Fig. 1g) datasets to intuitively visualize the connectional variability 
axis. We found that the ranking for each network was highly consistent between HCP-D and HCP-
YA, suggesting the robustness and reproducibility of the connectional variability axis. The ranking 
demonstrated that for each association network, individual variability declined from within-network 
edges to edges between two association networks and further declined for connections between 
the sensorimotor and association networks. 
 
Having delineated the connectional variability axis for each association network, we examined the 
whole-brain connectome. We ranked the inter-individual variability of all 21 within-network and 
between-network connections for the HCP-D (Fig. 1h) and HCP-YA (Fig. 1i) datasets. The 
connections within the association networks were at the peak of this axis, whereas the between-
network edges connecting the sensorimotor and other networks were at the base. In particular, we 
introduced an axis slope to measure the heterogeneity of connectional variability across the 
connectome. The axis slope was quantified by performing a linear regression on the 21 ranked 
network-level variability values. The estimated axis slope is 0.24 for both HCP-D and HCP-YA. 
 
Then, we categorized all the 69,751 unique connections into three groups: within-association 
network edges (A-A), within-sensorimotor network edges (S-S), and between sensorimotor and 
association network edges (S-A). A permutation test of 10,000 iterations, permuting the edges 
across the groups, was performed to test for differences in variability levels between the three 
groups. We found that the individual variability of A-A connections was significantly higher than 
those of S-A and S-S connections (Pperm < 0.0001) in the HCP-D (Fig. 1j, Cohen’s d = 0.95, A-A 
vs. S-S; Cohen’s d = 1.44, A-A vs. S-A) and HCP-YA (Fig. 1k, Cohen’s d = 0.77, A-A vs. S-S; 
Cohen’s d = 1.26, A-A vs. S-A) datasets. Furthermore, S-S connections displayed significantly 
higher variability than S-A connections (Pperm < 0.0001) in both the HCP-D (Cohen’s d = 0.43) and 
HCP-YA (Cohen’s d = 0.49) datasets. 
 
The connectional axis pattern of FC variability is associated with the individual variability of 
structural connectivity communicability across connectome edges 
 
Previous studies have reported that structural connectivity constrains the dynamic communication 
between cortical regions and shapes FC patterns (1, 39), suggesting that structural connectivity 
variability can shape FC variability. Notably, direct structural connections alone do not capture the 
full spectrum of functional interactions, as FC can emerge from indirect or polysynaptic 
communication. However, the polysynaptic interactions between structurally unconnected brain 
areas can be measured using communicability (40, 41). Communicability is derived from the edge-
level structural connectivity and quantifies the potential of two regions to communicate through 
other regions via pathways of all possible topological lengths (41). A recent study has demonstrated 
that communicability provides the most accurate and robust accounts of stimulus propagation 
through white matter connectivity (40). We hypothesized that inter-individual variability in structural 
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connectome-based communicability would be associated with inter-individual variability in FC 
across connectome edges. 
 
We used diffusion MRI datasets to reconstruct whole-brain white matter tracts of individual 
participants via probabilistic fiber tractography with multi-shell, multi-tissue constrained spherical 
deconvolution (42). Anatomically constrained tractography (ACT) (43) and spherical deconvolution 
informed filtering of tractograms (SIFT) (44) were applied to improve the biological accuracy of fiber 
reconstruction. The reconstructed fiber tracts were visually inspected; see Fig. S1 for exemplar 
visualizations for four randomly selected participants. 
 
We quantified the number of streamlines connecting every pair of cortical regions as defined by the 
Schaefer atlas, resulting in a structural connectome of streamline counts for each participant (Fig. 
2a). We then calculated the communicability matrix of each participant’s structural connectome for 
the HCP-D and HCP-YA datasets, respectively, which provided a communicability measure for 
each edge. We acquired an inter-individual variability matrix of structural communicability for each 
dataset by evaluating the mean absolute deviation across all participants and log-transformed the 
variability matrices. 
 
Similar to the edge-level FC variability, we observed that individual variability in structural 
communicability was heterogeneously distributed across connectome edges. To facilitate 
comparison, we showed the upper triangle of the structural communicability variability and 
individual FC variability matrices side by side for the HCP-D (Fig. 2b) and HCP-YA (Fig. 2c) 
datasets. Network-level averages demonstrated a similar pattern between structural 
communicability variability and FC variability for both datasets (Fig. 2d and Fig. 2e). Individual 
variability in structural communicability declined from connections among association networks to 
those between association and sensorimotor networks, similar to that of FC variability. For 
example, structural communicability variability declined from the edges between the default mode 
network and other association networks to those between the default mode and sensorimotor 
networks. Finally, we found a significant correlation between FC variability and structural 
communicability variability across all edges for the HCP-D (Spearman’s rho = 0.30, Pperm < 0.0001, 
CI = [0.29, 0.31], two-sided; Fig. 2f) and HCP-YA (Spearman’s rho = 0.25, Pperm < 0.0001, CI = 
[0.24, 0.25], two-sided; Fig. 2g) datasets. This finding indicates that edges with higher individual 
variability in structural communicability showed relatively higher variability in FC. These results 
provide a potential structural basis for the observed pattern of connectional axis in individual FC 
variability. 
 
Connectional variability axis evolves in youth with a more uniform individual FC variability 
across connectome edges 
 
Prior studies have shown that age-related development contributes to variations in FC among 
individuals, and the neurodevelopmental timing of functional connections varies according to their 
spatial position in human connectome (8, 24, 45, 46). Therefore, we hypothesized that the 
connectional axis pattern of FC variability would evolve during youth, a critical period for the 
development of higher-order cognition. 
 
To test this hypothesis, we examined participants (aged 8–21) from the HCP-D dataset. We used 
a sliding-window approach to sort the participants by age and divided them into groups (Fig. 3a). 
The window length was set to 50 participants, with a step size of five participants. This procedure 
resulted in 88 groups with progressively increasing age ranges. For each group, we computed an 
individual variability matrix for edge-level FC across all the participants (Fig. 3b). A group-average 
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age and a group-average head motion were assigned to each group. The sex of each group is 
represented as the percentage of male participants. 
 
We evaluated how the connectional axis of the individual FC variability changed during youth. For 
each of the 88 groups, we computed the network-level average of individual FC variability. Then, 
we ranked the resulting 21 network-level variability values from the highest to the lowest for each 
group, respectively (Fig. 3c), as in Fig. 1h, i. Specifically, we observed that the axis slope for the 
21 network-level variability differs between children and young adults. An increase in the axis slope 
could indicate an increased difference between FC variabilities of connections among association 
networks at the top end of the connectional variability axis and that of sensorimotor-association 
connections at the bottom end, whereas a decrease in the axis slope could indicate a reduced 
difference between them. Using GAM analysis, we found that the slope of the network-level FC 
variability axis significantly declined during youth (partial R2 = -0.33, P = 1.80×10-10, Fig. 3d). This 
result suggests that individual FC variability becomes more uniform across connectome edges 
during development. 
 
We further examined the driving factors underlying the developmental changes of the connectional 
axis slope of FC variability. To do this, we evaluated the changes in the FC variability for each of 
the 21 network-level connections. We found that the FC variability of 10 connections was 
statistically significant (PFDR < 0.05, Fig. 3e). Particularly, the connections within the dorsal attention 
network, between dorsal and ventral attention networks, and within the default mode network 
exhibited the most pronounced decline of FC variability with age. In contrast, connections between 
the default mode network and visual/somatomotor network showed an increase in FC variability, 
though the effect size was limited. These results suggest that the prominent reduction in FC 
variability in association-to-association (A-A) connections primarily drives the developmental 
changes of the connectional axis slope of FC variability. 
 
Connectional variability axis is associated with individual differences in higher-order 
cognition 
 
Having found that the connectional axis of FC variability evolves during youth, we evaluated the 
implications of this variability axis on cognition. Higher-order cognitive functions, such as working 
memory and inhibition, exhibit prolonged development during youth and show significant individual 
differences in adulthood. Here, we examined the relationship between the connectional variability 
axis and individual differences in higher-order cognitive functions using the HCP-D and HCP-YA 
datasets. The composite score of fluid cognition provided by the datasets summarizes a broad 
range of higher-order cognitive functions, including flanker inhibition, dimensional change card sort 
(flexibility), picture sequence memory, list sorting working memory, and pattern comparison 
processing speed (47). 
 
The HCP-D dataset included 352 participants, whereas the HCP-YA dataset contained 274 
unrelated participants with fluid cognition scores. As in the developmental analysis, we sorted all 
participants based on their cognitive performance and divided them into groups using a sliding-
window approach for both datasets (Fig. 4a). Using a window size of 50 participants and a step 
size of 5 participants, we obtained 61 groups for the HCP-D and 45 groups for the HCP-YA. We 
computed a matrix of individual FC variability across all participants for each group (Fig. 4b). The 
ranking of network-level average FC variability indicated varying slope values for the variability axis 
across the different cognitive groups (Fig. 4c). After controlling for age, sex, and in-scanner motion, 
the GAM analysis revealed that a higher fluid cognition score was significantly associated with a 
steeper slope in the connectional variability axis in both the HCP-D (t = 3.53, P = 8.41×10-4, partial 
R2 = 0.15, Fig. 4d) and HCP-YA (t = 5.08, P = 9.62×10-6, partial R2 = 0.41, Fig. 4e) datasets. These 
results suggest that groups of participants with stronger higher-order cognition displayed a steeper 
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slope in the connectional axis, indicating a greater difference between among-association 
variabilities at the top end of the axis and sensorimotor-association variabilities at the bottom end. 
 
We further examined the driving factors underlying the cognitive effects of the connectional 
variability axis slope. In the HCP-YA dataset, by analyzing the association between FC variability 
and cognitive performance for each of the 21 network-level connections, we found that connections 
between the ventral attention network and the frontoparietal/default mode networks, as well as 
connections both within and between the default mode and frontoparietal networks, showed a 
significant (PFDR < 0.05) increase in FC variability with better cognitive performance (Fig. 4f). In 
contrast, the FC variability of connections linking dorsal attention and visual/somatomotor networks 
was negatively related to the cognitive performance. These results suggest that the increased FC 
variability in association-to-association (A-A) connections and the declined variability in 
sensorimotor-to-association (S-A) mainly drives the cognition-related changes of the connectional 
axis slope of FC variability. 
 
Sensitivity analyses 
 
We conducted sensitivity analyses to evaluate the robustness of our findings to methodological 
variations and confounding factors. Specifically, we evaluated whether our results remained similar 
under conditions including, 1) controlling for the influence of FC strength, 2) incorporating the inter-
regional distance as a covariate to minimize the effect of spatial proximity, 3) replicating with 
another widely used HCP multi-modal parcellation (48), and 4) replicating with global signal 
regression excluded from fMRI preprocessing. Our results indicated that these variations did not 
change our results regarding the association between FC and SC variability (Fig. S2) or 
developmental and cognitive associations with the connectional variability axis (Fig. S3). 
Additionally, we validated that FC variability also exhibits a significant correlation with variability in 
structural communicability even when communicability is derived from binarized structural 
connectomes (Supplementary Table S1). Finally, we confirmed that our developmental and 
cognitive results remain largely consistent regardless of the choice of window length and step size 
in our sliding window configurations (Supplementary Table S2-S3). 
 
Replication in an independent youth dataset 
 
We replicated all primary findings using an independent Chinese youth sample from the Youth 
Executive function and Neurodevelopment (YEN) study. Specifically, FC variability was first 
estimated at the regional level and then averaged at the network level (Fig. 5a). The 21 network-
level edges were ranked from highest to lowest, forming the connectional axis of the FC variability, 
with an estimated slope of 0.30 (Fig. 5b). A-A connections exhibited the highest individual 
variability, followed by S-S and S-A connections (Fig. 5c). Moreover, individual FC variability was 
positively correlated with individual variability of structural communicability across all edges (Fig. 
5d, Spearman’s rho = 0.33, Pperm < 0.0001, CI = [0.32, 0.34], two-sided). Finally, we found that the 
slope of the connectional variability axis declined significantly with age in youth (Fig. 5e, partial R2 
= -0.17, P = 0.014) and was positively correlated with executive function scores (Fig. 5f, t = 3.52, 
P = 0.002, partial R2 = 0.39). See Supplementary Materials for the details of data description.  
 
 
Discussion  
 
In this study, we have identified a connectional axis of individual FC variability and further 
demonstrated its structural correlates and significance for development and cognition. 
Particularly, we found that the inter-individual FC variability is organized along a continuous axis 
at the connectional level across connectome edges. This connectional axis of FC variability 
progresses from within-network to between-network connections, and from connections within 
and between association networks to connections linking association and sensorimotor networks. 
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We found that this connectional variability axis aligns with structural connectivity variability across 
all connections. Moreover, we demonstrated that the connectional variability axis developed in 
youth with a lower axis slope. Besides, the slope of connectional variability axis was positively 
associated with individual differences in higher-order cognitive performance. These results were 
highly consistent between HCP-D and HCP-YA datasets and remained stable under a range of 
methodological variations, with further replication in an independent cohort of Chinese youth. 
Overall, we revealed a connectional axis of individual FC variability at the edge level, associated 
with structural connectome, refined in development, and implicated in cognition. 
 
Prior studies have reported that individual variability in regional FC is heterogeneously distributed 
across the cortex along the sensorimotor-association cortical axis, with maximum variability in the 
association cortex and a gradual decrease along the axis towards the sensorimotor cortex (3, 8, 
9). However, since regional FC is an aggregate measure, these studies lack the information 
provided by studying FC variability at the edge level. Our findings identified a connectional axis 
for the organization of edge-level individual FC variability across human connectome. This 
connectional axis defines a spectrum where FC variability decreases from within-network to 
between-network connections, and from connections within and between association networks to 
those between association and sensorimotor networks. Interestingly, we found that the lowest FC 
variability exists in the connections between association and sensorimotor networks rather than 
the connections within sensorimotor networks. 
 
Our findings are consistent with the previous knowledge regarding the circuit architecture of the 
sensory and association cortices. Sensorimotor circuits primarily comprise circuits with canonical 
feedforward and feedback connectivity patterns (49). In contrast, higher-order association 
networks exhibit a noncanonical circuit architecture with distributed connections to many cortical 
areas (50), which may have contributed to the higher individual variability in the connections 
among these networks. One prominent theory suggests that the association connectivity may 
have emerged during evolution through the gradual untethering of connections from highly 
conserved patterns of sensorimotor connectivity and sensory-specific signaling molecules (51). 
This process may serve as the evolutionary basis of the FC variability axis from the edges 
connecting the sensorimotor network to the connections among the association networks. 
Moreover, in contrast to sensorimotor networks, association networks show much lower structural 
constraints in function (52), supporting the higher functional variations in the connections among 
association networks. 
 
While previous studies identified the lowest variability within the sensorimotor cortex when 
examining regional FC variability, our findings reveal that the connections between association 
and sensorimotor networks have the lowest FC variability localizing at the bottom end of the 
connectional variability axis, rather than connections within the sensorimotor networks. The 
connections between sensorimotor and association networks are crucial for integrating sensory 
and motor inputs with higher-order cognitive processes (49, 53, 54), thus playing a fundamental 
role in survival by supporting essential functions such as perception and coordinated actions. 
Moreover, these connections typically involve long-range wiring compared to within-sensorimotor 
connections (55), indicating a higher metabolic and structural cost (56-58). Due to their essential 
role and higher cost, the brain may prioritize the stability and robustness of these sensorimotor-
association connections (59), leading to lower inter-individual variability. Additionally, these 
integrative connections might be more evolutionarily conserved, as they are crucial for performing 
complex behaviors that require the synchronization of sensory, motor, and cognitive processes. 
Evolutionary pressure to maintain these connections may further contribute to their lower 
variability, ensuring reliable functionality across individuals. 
 
We found that the pattern of connectional axis in FC variability was associated with that of 
structural communicability variability across the connectome edges. Previous studies have 
demonstrated that structural connectivity supports the functional dynamics, and the network 
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communicability model explains functional propagation through structural connectivity using non-
invasive neuroimaging and invasive direct electrical stimulation data (1, 6, 39, 40, 60), supporting 
the association between structural and functional variability. We observed that edges with higher 
individual FC variability also exhibited higher individual variability in structural communicability, 
localized in the connections among the higher-order association networks. Regions in the 
association cortex receive more diverse and polysynaptic inputs from different brain areas than 
sensorimotor regions (50, 51), which could result in higher individual variability in both structural 
connectivity and FC edges among association networks compared with edges connected to 
sensorimotor networks. 
 
Our results provide a systematic examination of how the spatial patterning of edge-level FC 
variability is refined during youth, shedding light on broader neurodevelopmental processes. We 
observed that the spatial distribution of FC variability evolves with a notable decline in the slope 
of the connectional variability axis, driving by a pronounced reduction in FC variability of 
association connections, with relatively limited changes in connections involving sensorimotor 
areas. This finding aligns with the hierarchical cortical development framework, wherein youth is 
characterized by the maturation of higher-order association connections, while primary 
sensorimotor connections mature earlier (8, 25). Previous studies have highlighted a ubiquitous 
decline in short-range FC strength and an increase in long-range connectivity strength during 
youth (20, 61), both of which may contribute to the observed reduction in individual variability of 
FC among association networks. The decline in short-range FC strength likely reflects intense 
synaptic and axonal pruning procedure, which refines neural circuits by eliminating redundant or 
weaker connections (23), thereby reducing individual variability. Consistently, fMRI studies have 
shown a common developmental decline in connectivity strength among association networks at 
the group level across youth (19, 22). The long-range connection, which facilitate global 
information integration and support essential survival behaviors, may have been evolutionarily 
constrained to maintain stability. Therefore, the strengthening of long-range connectivity strength 
via myelination process (24) likely contributes to the reduction of FC variability. The synaptic and 
axonal pruning and myelination are both genetically encoded and shaped by experience-
dependent activity (23, 24). While distinct individual experience can increase variability, the 
common genetically encoded processes and shared environmental exposures—such social 
interactions and learning—reduce variability across individuals. The refinement of short- and 
long-range connectivity promotes greater global integration and local segregation of higher-order 
association networks, a general developmental principle consistently observed during youth (21). 
Together, these developmental findings on the spatial patterning of individual FC variability 
integrate well with existing neurodevelopmental frameworks, providing a deeper understanding of 
the distinct trajectories of connectivity maturation across the human connectome. 
 
Finally, we found that the slope of the connectional variability axis was positively correlated with 
higher-order cognition, a composite score of multiple cognitive tasks (47), such as working 
memory, inhibition, and flexibility. We further demonstrated that better performance in higher-
order cognition is associated with enhanced among-association variabilities at the top end of the 
connectional variability axis and a decline in association-sensorimotor variabilities at the bottom 
end. The higher-order cognitive abilities mainly rely on the association network, which is 
composed of a spatially distributed set of brain regions that span the frontal, parietal, and 
temporal areas (25, 62-64). Prior studies have proposed that, along with the emergence of 
higher-order cognition, association networks untethered from rigid canonical circuits have 
developed a highly variable and distributed pattern of connections during evolution (51). From this 
evolutionary perspective, higher variability in the connections among association networks, 
including fronto-parietal, default mode and attention networks, could explain improved 
performance in higher-order cognition. On the other hand, individuals with better higher-order 
cognition are likely to exhibit lower variability in connections with sensorimotor regions. This 
finding could explain how sensorimotor connections maintain stability, supporting the primary 
sensory and motor functions critical to survival and ensuring robustness against vulnerability.  
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Several methodological considerations must be considered when interpreting these findings. 
First, our analyses focused on the connections between cortical regions. Future studies should 
evaluate the variability axis of edges connected to subcortical and cerebellar structures. Second, 
accurately reconstructing individuals’ white matter structural connectivity poses significant 
challenges. Previous studies have shown that dMRI-based fiber tractography can yield both false 
positives and false negatives (65). In this study, we employed advanced probabilistic fiber 
tractography utilizing multi-shell, multi-tissue constrained spherical deconvolution, alongside 
anatomically constrained tractography (43) and spherical deconvolution-informed filtering of 
tractograms (44) to enhance biological accuracy (66). Third, while the correlation between FC 
variability and SC variability is relatively weak, our results are consistent with the effect sizes 
reported in prior literature evaluating the similarity between cortical maps or connectome matrices 
(17, 18). 

 
These limitations notwithstanding, we identified a stable and reproducible connectional axis of 
edge-level individual FC variability across connectome edges. This connectional axis of FC 
variability aligned with spatial variation of structural connectivity variability. While the human 
connectome exhibits extreme complexity, the connectional axis captures an important 
organizational motif, which might be fundamental for the human connectome. Moreover, the 
connectional axis of FC variability was refined during development and was related to higher-
order cognition, therefore this variability axis may be important for understanding the 
neurodevelopmental substrates of mental disorders, as well as in the design of personalized 
targets for neuromodulatory interventions. 
 
 
Materials and Methods 
 
Methods are summarized below; see SI Appendix for further detail. 
 
Study cohorts and participants 
 
This study utilized multi-modal neuroimaging data, including T1-weighted structural MRI, resting-
state functional MRI (fMRI), and diffusion MRI, from 339 unrelated participants (183 females, 
aged 22–37) in the HCP-YA dataset (Release S900) (32) and 633 participants (339 females, 
aged 8–21) obtained from the HCP-D dataset (Release 2.0) (33). The HCP-YA and HCP-D 
studies were approved by the Washington University Institutional Review Board, and informed 
consent was obtained from all participants. After data quality control, 275 participants from HCP-
YA and 486 participants from HCP-D were included in subsequent analyses. Four resting-state 
fMRI runs of each individual from HCP-YA and four resting-state fMRI runs of each individual 
from HCP-D were used to estimate intra- and inter-individual variability. 
 
FC measured using BOLD fMRI data 
 
Minimally preprocessed T1-weighted structural and functional MRI data were acquired from the 
HCP-D and HCP-YA datasets (67). Preprocessed fMRI data were then post-processed using the 
extensible connectivity pipelines (XCP-D, 0.2.2) (68). The regional BOLD time series were 
extracted using an a priori Schaefer parcellation with 400 parcels (34). FC was calculated as the 
Pearson correlation coefficient between each pair of regional time series, followed by Fisher’s r-
to-z transformation, resulting in a 400×400 FC matrix for each participant. The parcels were then 
mapped to six large-scale functional networks from the Yeo atlas (37), excluding the limbic 
network, as previous studies have consistently reported substantial signal loss in this 
network(38). This resulted in a 374×374 FC matrix with 69,751 unique edges per participant. 
 
Inter-individual variability of FC and the connectional variability axis 
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We estimated inter-individual variability in FC edges, and a split-session approach (69) was 
adopted to estimate intra-individual variability. For the HCP-YA dataset, we split four resting-state 
fMRI runs into twelve sessions, producing twelve FC matrices per participant. In the HCP-D 
dataset, we concatenated four resting-state and split them into eight sessions, yielding eight FC 
matrices per participant. 
 
We calculated inter- and intra-individual variability of each FC edge using a linear mixed-effects 
model with the R package Rex (35). This approach produced two 374×374 variability matrices for 
inter- and intra-individual variability for each dataset. Subsequently, we used the intra-class 
correlation to measure the adjusted inter-individual variability while accounting for intra-individual 
variability (3). 
 
To simplify, we averaged FC variability within and between the six large-scale networks, creating 
a 6×6 inter-individual variability matrix at the network level, represented by 21 unique FC 
variability values. We termed the axis in the individual variability matrix, which progresses from 
connections within and between association networks to the connections between association 
and sensorimotor networks, the “connectional axis” of FC variability. We further ranked the 21 FC 
variability values from highest to lowest, and calculated the slope of the connectional variability 
axis using linear regression to measure the heterogeneity of connectional variability across the 
connectome (See Supplementary Methods for details). 
 
Structural connectome construction with diffusion MRI based white matter tractography. 
 
Diffusion MRI data were preprocessed using Mrtrix3 (70) and QSIPrep (71). Whole-brain white 
matter tracts were reconstructed to create structural connectivity (SC) using the Schaefer-400 
atlas. Structural edge weights, representing the number of streamlines between regions, were 
normalized by dividing by the average volume of the two regions (72) and then log-transformed. A 
consistency-based thresholding method was applied to reduce spurious connections (73), using 
the 75th percentile for edge weight coefficient of variation (52). To account for both direct and 
indirect pathways, we calculated the communicability of the SC matrix for each participant (40, 
41). The mean absolute deviation of structural communicability across participants for each edge 
was used to define inter-individual variability in structural communicability. 
 
Development of connectional variability axis in youth 
 
To explore the maturation of connectional variability in youth, we divided HCP-D participants 
(aged 8–21) into subgroups and calculated the inter-individual variability matrix for each group. 
Using a sliding window approach (74), 486 participants were sorted by age and divided into 88 
overlapping groups (window length = 50, step size = 5), with average ages ranging from 9.2 to 
21.2 (Fig. 3a). We then calculated the FC variability matrix for each group.  
 
We estimated the “connectional axis slope” of FC variability for each of the 88 groups and 
evaluated developmental changes in the axis slope during youth. To assess both linear and 
nonlinear effects of development, we used a generalized additive model (GAM), with connectional 
axis slope as the dependent variable and age as a smooth term, controlling for sex and motion. 
The significance of the age term was assessed through analysis of variance (ANOVA) that 
compared the full GAM model to a nested, reduced model with no age term (75). The overall 
effect was measured by the partial R2 between the full GAM and reduced models (effect 
magnitude), and we signed the partial R2 by the sign of the age coefficient from an equivalent 
linear model (effect direction) (22, 75). Finally, to determine which connections drive the change 
in axis slope, we constructed the same GAM model for each network-level FC and estimated the 
developmental effects of its FC variability. 
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Association between connectional variability axis and cognitive performance 
 
We examined how the connectional variability axis associates with cognitive performances in the 
HCP-D and HCP-YA datasets. We used the composite score of fluid cognition from the NIH 
Toolbox Cognition Battery to quantify the participants’ cognitive abilities (47). This analysis 
included 352 participants from the HCP-D and 274 participants from the HCP-YA with fluid 
cognition composite scores.  
 
We ranked the participants based on their cognitive scores and then employed a sliding window 
approach (window length = 50, step size = 5) to divide them into multiple groups with increasing 
cognitive scores for each dataset (Fig. 4a). In total, 61 and 45 groups were obtained for HCP-D 
and HCP-YA, respectively. We estimated the inter-individual FC variability in each group and 
calculated the connectional axis slope with network-level average variability. A GAM analysis was 
performed to evaluate the relationship between the connectional axis slope of FC variability and 
fluid cognition composite scores while controlling for the linear and nonlinear effects of age, as 
well as the effects of sex and in-scanner motion. 
 
The t value associated with the cognition term in the GAM represents the direction of the slope-
cognition association, and its significance (P value) was also derived from the GAM model. The 
partial R2 between the full GAM and reduced models with no cognition term was calculated as the 
effect size. Similarly, to determine which connections drive the change in axis slope, we 
constructed the same GAM model for each network-level FC and estimated the cognitive effects 
of its FC variability. 
 
Replication in an independent Chinese youth dataset 
 
We further included an independent Chinese youth cohort, the Youth Executive function and 
Neurodevelopment (YEN) study (n = 253, 123 females, aged 6–22), to replicate all primary 
findings. The YEN study was approved by the Human Research Ethics Committee of the Chinese 
Institute for Brain Research, Beijing (CIBR-HREC-20230317-001). Written assent and informed 
consent were obtained from all participants. For participants under 18 years of age, consent was 
also obtained from their parents or legal guardians. After data quality control, 218 participants 
were included in subsequent analyses. We conducted all primary analyses on this dataset the 
same procedures as applied to the HCP-D dataset. Supplementary Materials for details of data 
parameters, preprocessing steps, and analysis procedures.   
 
Data, Materials, and Software Availability 
 
All code used to perform the analyses in this study, functional connectivity, individual variability in 
functional connectivity, and individual variability in structural communicability matrices can be 
found at https://github.com/CuiLabCIBR/Connectional_Variability_Axis. The HCP-YA and HCP-D 
datasets are available at https://db.humanconnectome.org/.  
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Figure 1. Individual variability in edge-level FC declines along a connectional axis. a, The 
Schafer-400 atlas excludes the limbic network. The cortical regions are assigned to each of the 
six large-scale functional networks from priori Yeo atlas, which include the default mode (DM), 
frontoparietal (FP), ventral attention (VA), dorsal attention (DA), somatomotor (SM), and visual 
(VS) networks. b, Inter-individual FC variability across all participants at the edge level in the 
HCP-D dataset. Individual variability was heterogeneously distributed across the functional 
connectome edges. c, Inter-individual FC variability across all participants at the edge level in the 
HCP-YA dataset. d,e, Network-level average individual FC variability indicates that for each 
association network, the FC variability continuously declines from within-network to between-
network connections for the HCP-D (d) and HCP-YA (e) datasets. f,g, Bar plots represent the 
connectional variability axis for each network separately in the HCP-D (f) and HCP-YA (g) 
datasets. For each network, individual FC variability declines from within-network to between-
network edges along a continuous axis. h,i, Ordering the individual variability across all the 21 
network-level edges reveals a continuous axis from edges within and between association 
networks to the edges between association and sensorimotor networks for HCP-D (h) and HCP-
YA (i) datasets. The variabilities of connections within networks and that between association 
networks were above the dotted line, whereas the variabilities of connections between 
association and sensorimotor networks were below the dotted line. j,k, Edge-wise individual 
variability within association networks (A-A) was significantly higher than those within 
sensorimotor networks (S-S) and between sensorimotor and association networks (S-A) in HCP-
D (j) and HCP-YA (k) datasets. Additionally, S-S connections exhibit higher variability than S-A 
connections in both datasets. A permutation test with 10,000 iterations was applied to test the 
group differences in average FC variability. *** indicates Pperm < 0.0001. FC, functional 
connectivity; HCP, Human Connectome Project; HCP-D, HCP development; HCP-YA, HCP 
young adult. 
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Figure 2. Individual variability in structural connectivity communicability is associated 
with the connectional axis pattern in FC variability across connectome edges. a, Structural 
connectomes were constructed using white matter tracts tractography from diffusion MRI data 
and the Schaefer atlas. Edge strengths in the structural connectome indicate the white matter 
fiber density between pairs of regions. The communicability matrix was derived from structural 
connectivity to account for the indirect communication between regions without direct structural 
connections in both datasets. b,c, Side-by-side comparison of the matrices for individual 
variability of structural communicability and individual FC variability in the HCP-D (b) and HCP-
YA (c) datasets. The communicability variability was log-transformed. d,e, Network-level average 
of structural communicability variability and FC variability in HCP-D (d) and HCP-YA (e). f,g, 
Individual FC variability was positively correlated with individual variability of structural 
communicability across all edges in both HCP-D (f, Spearman’s rho = 0.30, Pperm < 0.0001, CI = 
[0.29, 0.31], two-sided) and HCP-YA (g, Spearman’s rho = 0.25, Pperm < 0.0001, CI = [0.24, 0.25], 
two-sided) datasets. A permutation test was performed 10,000 iterations by randomly shuffling 
the rows and columns of the FC variability matrix, then a null distribution was built by evaluating 
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the Spearman’s rank correlation between random FC variability matrices and the true structural 
communicability matrix. CMY, communicability. 
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Figure 3. Connectional axis of FC variability evolves during youth. a, Participants in the 
HCP-D dataset were ordered based on age and subsequently divided into 88 groups using a 
sliding window approach. The window size and step were set to 50 and 5 participants, 
respectively. b, Inter-individual FC variability matrices were computed for each of the 88 groups 
within the HCP-D dataset. c, Network-level average FC variability was arranged in descending 
order to evaluate the axis of network-level variability and the slope of the variability axis was fitted 
for each group. d, A GAM analysis indicated that the slope of the connectional variability axis 
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declined significantly with age in youth, suggesting that the pattern of FC variability becomes 
more uniform across connectome edges during youth. e, The decline of FC variability in 
association-to-association (A-A) edges mainly drive the decline of variability axis slope during 
development. GAM analysis was performed for FC variability of the 21 network-level connections 
separately. The asterisk (*) indicates P < 0.05 (FDR adjusted). VS, visual; SM, somatomotor; DA, 
dorsal attention; VA, ventral attention; FP, frontoparietal; DM, default mode. 
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Figure 4. 
The connectional variability axis pattern is associated with the individual differences in 
higher-order cognitive functions. a, Participants were sorted based on their cognitive 
performance and divided into groups using a sliding window approach, with a window and step 
size of 50 and 5 participants, respectively. A total of 61 groups and 45 groups were obtained for 
the HCP-D and HCP-YA datasets, respectively. b, The matrix of individual FC variability was 
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computed across all participants for each cognitive subgroup. c. Illustration of changes in the 
connectional axis slope of FC variability with different higher-order cognitive performance. A 
linear regression was performed to acquire the slope of the variability axis for each group. d,e, 
The connectional axis slope of FC variability showed a significant positive association with the 
fluid cognition composite score in both the HCP-D (d) and HCP-YA (e) datasets. Each data point 
represents a specific group in the analysis. f, In the HCP-YA dataset, the increase of FC 
variability in association-to-association (A-A) edges and decline of sensorimotor-to-association 
(S-A) variability drives the increase of axis slope with better higher-order cognition. GAM analysis 
was performed for FC variability of the 21 network-level connections separately. The asterisk (*) 
indicates P < 0.05 (FDR adjusted). VS, visual; SM, somatomotor; DA, dorsal attention; VA, 
ventral attention; FP, frontoparietal; DM, default mode. 
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Figure 5. Replication in an independent developmental dataset. a, FC variability was 
estimated across participants from the Youth Executive function and Neurodevelopment (YEN) 
study at the regional level and subsequently averaged at the network level. The YEN study 
includes 218 participants, with 113 females, aged 6 to 22 years. b, The connectional axis of FC 
variability is represented by ordering the individual variability across all the 21 network-level 
edges (axis slope = 0.30). c, Edge-wise individual variability was highest within association 
networks (A-A), followed by those within sensorimotor networks (S-S), and between sensorimotor 
and association networks (S-A). A permutation test with 10,000 iterations was applied to test the 
group differences in average FC variability. *** indicates Pperm < 0.0001. d, Individual FC 
variability was positively correlated with individual variability of structural communicability across 
all connections (Spearman’s rho = 0.33, Pperm < 0.0001, CI = [0.32, 0.34], two-sided). e, A GAM 
analysis indicated that the slope of the connectional variability axis declined significantly with age 
in youth (partial R2 = -0.17, P = 0.014). f, A significant positive correlation exists between 
executive function score and the connectional axis slope of FC variability (t = 3.52, P = 0.002, 
partial R2 = 0.39). VS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; FP, 
frontoparietal; DM, default mode. 
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