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Abstract 
​ Myriad mechanisms diversify the sequence content of eukaryotic transcripts at both the DNA and RNA 
levels, leading to profound functional consequences. Examples of this diversity include RNA splicing and V(D)J 
recombination. Currently, these mechanisms are detected using fragmented bioinformatic tools that require 
predefining a form of transcript diversification and rely on alignment to an incomplete reference genome, 
filtering out unaligned sequences, potentially crucial for novel discoveries. Here, we present SPLASH+, 
significantly advancing biological discovery possible with SPLASH, our recently introduced efficient, 
reference-free statistical approach. Integrating a micro-assembly and biological interpretation framework, 
SPLASH+ enables new discoveries including broad and novel examples of transcript diversification in single 
cells de novo, without the need for cell type metadata, which is impossible with current algorithms. Applied to 
10,326 primary human single cells across 19 tissues profiled with SmartSeq2, SPLASH+ discovers a set of 
splicing and histone regulators with highly conserved intronic regions that are themselves subject to complex 
splicing regulation. Additionally, it reveals unreported transcript diversity in the heat shock protein HSP90AA1, 
as well as diversification in centromeric RNA expression, V(D)J recombination, RNA editing, and repeat 
expansion, all missed by existing methods. SPLASH+ is highly efficient, enabling the discovery of an 
unprecedented breadth of RNA regulation and diversification in single cells through a new automated paradigm 
of unbiased transcriptomic analysis. 

Introduction 
The diversity of transcripts in eukaryotes results from mechanisms such as alternative splicing, RNA 

editing, and alternative 5’ and 3’ UTR use as well as genetic changes in single cells including insertion of 
mobile elements, repeat expansions, or segmental duplications. The genome’s potential to create more than 
1013 genetic variants through V(D)J recombination (Schroeder 2006) in the adaptive immune system is crucial 
for determining the specificity and efficacy of defense mechanisms against pathogens. Transcript 
diversification can have significant functional consequences, including causal links to various diseases from 
cancer to neurodegeneration (Kung, Maggi, and Weber 2018; Yum, Wang, and Kalsotra 2017; Bonnal, 
López-Oreja, and Valcárcel 2020; Ma et al. 2021) 

Despite its importance to cell specialization, the extent to which transcript diversity is regulated in single 
cells remains a significant open question. Current computational approaches to detect transcript diversity in 
single cells are specialized for certain events such as alternative splicing (Olivieri, Dehghannasiri, and Salzman 
2022; Buen Abad Najar et al. 2022) or V(D)J recombination reconstruction (Lindeman et al. 2018) and also rely 
heavily on references, beginning with the alignment of reads to a reference genome, thus censoring unmapped 
reads and introducing mapping biases. Other tasks, such as identifying somatically acquired repeats or RNA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://paperpile.com/c/0ZUrap/vBeoW
https://paperpile.com/c/0ZUrap/xj80I+zQNC2+AH8zI+pLgxV
https://paperpile.com/c/0ZUrap/xj80I+zQNC2+AH8zI+pLgxV
https://paperpile.com/c/0ZUrap/0SyXO+KE8aB
https://paperpile.com/c/0ZUrap/0SyXO+KE8aB
https://paperpile.com/c/0ZUrap/GsWgA
https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
editing are not even attempted in scRNA-seq. Further, it is unclear whether these methods are sensitive to all 
events they aim to detect. For example, they may fail to align highly edited or spliced transcripts (Eisenberg 
and Levanon 2018), and most significantly, they are incapable of detecting sequences that are absent from a 
reference genome. 

Statistics is at the core of inference for single-cell genomics. Yet, current genomic inference is 
conditional on the results of partially heuristic alignment algorithms, which often discard reads that do not map 
to the reference genome (Figure 1A). Moreover, these reference-first approaches might miss sequence 
diversity in underrepresented populations, as the current human reference genome is mostly European-derived 
(Sherman et al. 2019). The statistical tests downstream of alignment are typically parametric or require 
randomized resampling, leading to inaccurate or inefficient p-values. De novo assembly approaches (Cmero et 
al. 2021; Swanson et al. 2013), while attempting to create more accurate references, also introduce 
fundamental biases and unknown false positive and negative rates as shown by previous studies (Freedman, 
Clamp, and Sackton 2021). Even with a more accurate reference genome, alignment could still bias 
downstream statistical inference. Together, there is a strong argument to bypass reference alignment prior to 
statistical inference to find regulated sequence diversity through an unbiased and unified framework, changing 
the field’s “reference-first” paradigm to “statistics-first”. 

SPLASH (Chaung et al. 2023) is a unified reference-free algorithm that performs statistical inference 
directly on raw sequencing reads to detect regulated sequence diversity. SPLASH’s core includes a statistical 
test to detect sample-specific sequence variation independent of any cell metadata such as cell type, by 
providing finite-sample valid p-value bounds, that unlike Pearson’s chi-squared test, better controls false 
positive calls under commonly used models such as negative binomial for scRNA-seq (Buen Abad Najar, 
Yosef, and Lareau 2020; Baharav, Tse, and Salzman 2023).  

A weakness of SPLASH that limits its utility for targeted studies is the interpretation of its results. 
Sequence diversity can arise from a wide range of biological processes such as RNA splicing, RNA editing, 
repetitive region variation, and V(D)J recombination. As a result, SPLASH requires substantial manual effort to 
identify the cause of diversity and needs a systematic classification approach to categorize the detected 
sequence diversity into biologically meaningful events (e.g., RNA splicing) to draw meaningful biological 
insight. SPLASH also lacks sequence context as the standard output for SPLASH includes very short 
sequences (default k=27), which are insufficient for accurately attributing biological mechanisms that require 
longer sequences. This is especially problematic in identifying transcript isoforms involving alternative splicing 
of multiple exons or complex recombination events like V(D)J, requiring sufficiently long sequences to define 
variability of the Variable, Diversity, and Joining segments.  

To address these shortcomings of SPLASH, in this manuscript, we build on SPLASH’s core to introduce 
SPLASH+, providing a systematic framework to analyze and interpret SPLASH’s output. This includes a new, 
reference-free statistical approach for de novo assembly of short sequences called by SPLASH to generate 
longer sequences called compactors, and also a framework to interpret and classify SPLASH’s results based 
on these compactor sequences (Figure 1A). We note that SPLASH+’s results are “reference-free” in the sense 
that statistical inference for detecting sample-specific sequence variation is completely independent of 
assembly and potential alignment biases. Alignment to the reference genome is used only after statistical 
inference in the subsequent classification step. Thus, SPLASH+ provides “the best of both worlds”: unbiased 
statistical guarantees of reference-free inference, along with the interpretability of reference-first approaches. 

 To systematically analyze transcript diversity in human cells, we applied SPLASH+ to 10,326 human 
cells across 346 cell types and 12 donors profiled with SmartSeq2 (SS2) from the Tabula Sapiens dataset 
(Tabula Sapiens Consortium* et al. 2022), a comprehensive human single-cell RNA sequencing dataset 
spanning multiple tissues and individuals. SPLASH+ reveals new insights into the regulation of transcript 
diversification in human single cells, including features of RNA splicing, RNA editing, and non-coding RNA 
expression missed by specialized, domain-specific bioinformatic pipelines. Novel findings include (i) regulated 
expression of repetitive loci such as RNU6 variants and higher order repeats in centromeres; (ii) complex 
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splicing programs, including un-annotated variants in genes like CD47, a major cancer immunotherapy target, 
and RPS24; (iii) pan-tissue regulation of splicing in splicing factors, histone modifications, and in the heat 
shock protein HSP90AA1; (iv) de novo rediscovery of immunoglobulin loci as the most transcriptionally diverse 
human loci with higher sensitivity than the current state-of-the-art for V(D)J rearrangement detection; and (v) 
the detection of single cells with transcribed repeat expansion and high levels of RNA editing. SPLASH+ 
makes unbiased discoveries by not relying on cell metadata or reference genomes. This is particularly 
important for scRNA-seq analysis, as cell types can be difficult to generate and remain imprecise (Zeng 2022) 
and can miss important variation within cell types, such as B cell receptor variation (Watson and Breden 2012). 
Our results demonstrate that SPLASH+ is a single algorithm that could replace numerous custom bioinformatic 
approaches for detecting different types of RNA variation and significantly expands our understanding of the 
transcriptome’s diversity. 

An integrated, reference free pipeline to discover regulated RNA expression 
SPLASH (Chaung et al. 2023) is an unbiased reference-free algorithm that operates directly on raw 

sequencing data to identify differentially diversified sequences. This variation can be a signature of alternative 
RNA splicing, RNA editing, V(D)J recombination, or other mechanisms. SPLASH parses reads from all input 
samples and identifies specific k-mers (substrings of length k), called anchors, where each anchor is followed 
by a set of diverse k-mers, called targets (Methods, Figure 1A). SPLASH then performs a statistical test for 
each anchor under the null hypothesis that target count distribution is the same across all samples, providing a 
closed-form p-value bound for each anchor. Anchors with significant multiple testing-corrected p-values have 
sample-specific target expression, reflecting inter-cell expression variation.  

Given that sequence diversity can arise from various mechanisms, SPLASH currently requires 
intensive manual interpretation to perform downstream analysis. Additionally, its output sequences (anchors 
and targets) are too short (both 27-mers by default) to provide sufficient context for inferring complex 
diversifying mechanisms (e.g., RNA alternative splicing involving multiple exons) or those spanning long loci 
(e.g., V(D)J rearrangement). These limitations hinder SPLASH’s potential to systematically analyze specific 
mechanisms (e.g., alternative splicing) in targeted studies. 

 To address these issues, we developed SPLASH+ by integrating SPLASH with a new seed-based 
statistical de novo assembly to establish longer sequence contexts, called compactors, for each short anchor 
called by SPLASH (Figure 1A). When compactors are built for each SPLASH-called anchor, they are used to 
classify the anchor into biologically-meaningful categories (Figure 1A). Integrating these two steps, SPLASH+ 
enhances the interpretability of SPLASH and facilitates targeted downstream analysis of specific events of 
biological interest.  

To generate compactors, SPLASH-called anchors are used as seeds (Figure 1B; Methods). First, the 
reads containing each anchor are collected by parsing the input FASTQ files. Then, the anchor sequence is 
extended using a recursive branching rule, where each new branch at a given position corresponds to a 
specific nucleotide in the assembled sequence. Starting from the first position downstream of the anchor, we 
compute the frequency of each nucleotide in the given position across all collected reads for the anchor. A new 
branch is created for each nucleotide that has a frequency exceeding a certain threshold derived from 
probabilistic analysis (Methods), thereby minimizing the likelihood of generating a new branch due to 
sequencing error. For each created branch, reads containing the corresponding nucleotide are then 
propagated to that branch (Figure 1B). In the next iteration, nucleotide frequencies at the next position are 
evaluated per branch using the propagated reads, and the sequence is extended accordingly. This procedure 
continues recursively until a user-defined number of iterations is reached or the number of reads drops below a 
user-defined threshold. Upon completion, an assembled sequence, called a compactor, (along with the number 
of reads supporting it, as a measure of its abundance) is reported for each path of branches. Our statistical 
analysis providing a conservative closed-form null probability shows it is highly unlikely for a branch arising 
from sequencing error – i.e., sequencing-error-induced branches or false positive contigs (Methods). 
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While the main output of SPLASH includes anchor and target sequences, as a post-hoc annotation 

step, SPLASH (Chaung et al. 2023) can also build a single consensus sequence for each anchor in each 
sample by simply taking the plurality vote of the reads (Suppl. Figure 1A), i.e., each position in consensus 
sequence contains the nucleotide with the highest count in the sample. The consensus sequences are then 
mapped to the genome for gene name and alignment annotation. However, this approach has several 
drawbacks. A key issue with consensus is that it reports only one sequence per sample (cell), potentially failing 
to capture sequence diversity variation across samples. For example, the consensus sequence for an anchor 
might be identical across samples (incorrectly implying no sequence variation across samples), yet the 
contribution of each target can differ across samples (e.g., splicing between multiple isoforms or masking of 
mutations that have lower counts compared to the dominant variant) (Suppl. Figures 1B). Additionally, using a 
simple plurality vote across all reads can theoretically result in misassembly, where the represented variant 
does not exist in the sample (Suppl. Figure 1B). The new compactors approach in SPLASH+ addresses these 
issues by employing a statistical assembly approach that incorporates branching, allowing for multiple 
assembled sequences for each anchor per sample. Also, by considering only the subset of reads propagated 
to each branch, it avoids the misassembled sequences that can arise by the consensus approach. Importantly, 
compactors also preserve count information by reporting the number of reads supporting each compactor, 
which is crucial for subsequent classification of anchors to biologically relevant mechanisms such as RNA 
splicing or V(D)J recombination that requires considering the most abundant sequences. In contrast, the 
consensus approach in SPLASH loses this count information, resulting in a lack of automated, systematic 
anchor classification in SPLASH.  

Compactors distinguish sequencing errors from inherent biological sequence variations, offering a 
straightforward and interpretable framework for dissecting transcriptome complexity and enabling the 
differentiation between different types of transcript diversification. To our knowledge, unlike any other de novo 
transcript assembly used for scRNA-seq, compactors can be statistically characterized to quantify the 
probability of generating an artifactual compactor due to sequencing error (Methods). Furthermore, compactors 
reduce the computational burden of downstream analysis, such as genome alignment. For example, in this 
study, compactors reduced the number of sequences 120 fold: from 183,471,175 raw reads to 1,515,555 
compactors.  

We tested if compactors could precisely reconstruct gene fusions using 5 simulated datasets from a 
benchmarking study (Haas et al. 2019). This widely-used dataset is a valuable resource for evaluating 
compactors, as it provides ground truth sequences (for gene fusions), which are essential for evaluating a 
sequence assembly method. We should note that there is no difference between gene fusions and other RNA 
variants (e.g., RNA splicing) from a sequence assembly viewpoint. We took the 27-mer immediately upstream 
of each fusion breakpoint as seeds and generated compactors (Suppl. Figure 2A, Methods). We then tested if 
generated compactors showed evidence for a fusion based on whether the compactor contained the fusion 
breakpoint (Suppl. Figure 2A). Compactors identified evidence for 57.8% (1,339 / 2,315) of total fusions (Suppl. 
Figure 2B; Suppl. Table 1). Compactor sensitivity surpassed that of two de novo assembly fusion detection 
methods (JAFFA-Assembly and TrinityFusion-D) in (Haas et al. 2019) and was comparable to the other two 
methods (TrinityFusion-C and TrinityFusion-UC) that exclusively utilized chimeric and unaligned reads, biased 
for fusion transcripts, and are highly computationally intensive (Figure S3 panel A in (Haas et al. 2019)). Our 
evaluation of compactors using a benchmarking dataset with ground truth sequences suggests that, despite 
being designed for general sequence assembly, compactors demonstrate comparable or even higher 
sensitivity for gene fusion detection than other de novo methods specifically optimized for this purpose. 
Notably, compactors detected the majority of sufficiently-expressed fusions as 98% of undetected fusions had 
TPM < 100 and only 2% of 965 fusions with TPM > 100 were undetected by compactors (Figure 1C). 

After generating compactors for each SPLASH-called anchor, they are used to classify the anchor into 
one of 6 different categories (Methods, Suppl. Figure 3): splicing, internal splicing, base pair change, 3’UTR, 
centromere, and repeat. The classification of each anchor is based on the two compactors with the most 
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aggregated assigned reads across all samples. This classification is either reference-free, utilizing string 
metrics such as Hamming and Levenshtein distances (for internal splicing and base pair change), or 
reference-based, by aligning to the human T2T reference genome using a spliced aligner such as STAR 
(Dobin et al. 2013) (for splicing, 3’UTR, centromere, and repeat).  

An anchor is classified as splicing if STAR reports spliced alignment for at least one of the top two 
compactors (Methods). When both compactors lack splice junctions, the anchor is classified as internal splicing 
or base pair change, based on the string distances between the two compactors (Methods). The mapping 
positions of the remaining unclassified anchors are intersected with annotation databases for 3’ UTRs, 
centromeric repeats, and repeats to classify them accordingly. Through our classification, each compactor, 
even if it fails to map, can still be annotated by association with the annotation of the most abundant compactor 
for the anchor (annotated-by-association) (Figure 1D). This crucially enables the annotation of unaligned 
compactors for loci that are difficult to map, such as those involved in V(D)J recombination or noncoding RNAs 
with repetitive structures or multiple copies, such as spliceosomal snRNAs (as discussed later in the 
manuscript). As shown later in the manuscript, this can increase the sensitivity of SPLASH+ for detecting these 
variants. By performing reference alignment only after statistical inference for interpretability and automated 
anchor classification, SPLASH+ combines the best of two worlds: ensuring statistically valid and unbiased 
inference along with convenient interpretation and allows for a direct comparison of the improvements it offers 
over existing algorithms. 

 
SPLASH+ detects transcript diversity in repetitive RNA loci including centromeres and U6 
spliceosomal RNA 

We ran SPLASH+ on 10,326 cells profiled with SmartSeq2 from 19 tissues and 12 donors (29 
donor-tissue pairs) and 346 cell types from the Tabula Sapiens Dataset (Tabula Sapiens Consortium* et al. 
2022) (Suppl. Figure 4), including 10 tissues (e.g., blood, muscle, lung) with at least two donors, allowing us to 
analyze reproducibility, as each donor-tissue was run separately. SPLASH is considerably more efficient than 
other approaches, as it utilizes k-mers instead of reference alignment and employs closed-form statistics. It is 
fully parallelized and implemented in a dockerized Nextflow pipeline, making it suitable for massive analyses 
on high-performance computing clusters. We report the runtime and required memory for each parallelized 
step to call significant anchors for multiple donor tissues (Suppl. Figure 5), demonstrating that SPLASH calls 
significant anchors in <40 minutes for a donor-tissue with 400 SS2 cells (provided there is sufficient capacity 
for full parallelization).  

Among called anchors, those classified as splicing had the highest average number of compactors per 
anchor (Suppl. Figure 6A), consistent with the fact that most genes have only few highly expressed splice 
variants per tissue (Ezkurdia et al. 2015).  

SPLASH+ classified 5.75% (20,891) of anchors as centromeric (19,989,187 reads) (Suppl. Figure 6B; 
Suppl. Table 2). The human centromere was assembled for the first time in the T2T genome (Altemose et al. 
2022); however, as T2T is based on a single cell line, it lacks population-level or single-cell variation. 
Supporting the limitations of genome alignment, 86% (46,348) of the compactors for centromeric anchors 
comprising 14% (2,800,038) of their reads failed to align to T2T. Pericentromeric DNA, including human 
satellite repeat families HSat1-3, is known to be transcribed in certain in vitro and in vivo contexts, but have not 
yet been studied at single-cell resolution (Altemose et al. 2022). SPLASH+ detected 6,418 anchors containing 
two consecutive CCATT repeats (or its reverse complement) which defines HSat2. We analyzed the 
compactors generated for a single anchor containing 2 consecutive CCATT repeats, 166 compactors in donors 
1, 2, 4, 7, 8, and 12 (Figure 2A). Compactor sequence diversity for this anchor is extensive as illustrated in the 
multiway alignment (Figure 2A). 73 compactors (accounting for 53% of total reads assigned to the compactors 
for this anchor) did not map to T2T by STAR but all compactors did BLAST perfectly to the T2T genome, 
supporting the idea that the compactors precisely recover true biological sequences. SPLASH+ detected 
substantial expression variation in multiple cell types including skeletal muscle satellite, mesenchymal, and 
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tongue basal cells that possess proliferative potential (Figure 2A). Basal cells in donor 4 tongue express 23 of 
the 26 compactors that were found in this donor and tissue (Suppl. Figure 7). The enrichment in proliferative 
cell populations suggests the hypothesis that expression levels of pericentromeric repeats and replication are 
linked, as has been explored in limited previous studies (Lu and Gilbert 2007; Probst et al. 2010). 

We also used SPLASH+ to identify expression variation in non-coding RNA. These loci are extremely 
difficult to map due to their high copy number and repetitive structure. We bypassed genome alignment and 
queried compactors against the Rfam (Kalvari et al. 2018), a database of non-coding and structured RNA 
families, using infernal cmscan (Mistry et al. 2013). The most highly expressed non-coding families were 
ribosomal RNA in Eukaryotes (6.9M reads, 66% of reads assigned to Rfam-annotated compactors), 
Prokaryotes (2.1M reads, 20.64%), Archaea (871K reads; 8.28%), and Microsporidia (432K reads; 4.11%) 
(Suppl. Figure 8, Suppl. Table 3). Some detected rRNA could represent contamination or microbiome 
composition, as has also been reported by a recent microbial analysis of human single cells (Mahmoudabadi, 
Tabula Sapiens Consortium, and Quake 2023). The most abundant non-ribosomal noncoding RNA was 
U6-snRNA (RNU6) (22K reads; 0.22% of all Rfam-annotated reads), a small nuclear RNA involved in the 
spliceosome. RNU6 has recently been shown to have high cytoplasmic representation (Mabin et al. 2021), 
suggesting this abundance may be expected due to polyadenylation. More than 75% of compactors assigned 
to RNU6 failed to map by STAR, due to multimapping to the 1000+ annotated RNU6 loci (Figure 2B). We 
employed the annotation-by-association approach for unaligned compactors associated with anchors with at 
least one RNU6-matching compactor. We computed the minimum Hamming distance for each 
annotated-by-association compactor and directly-annotated compactor (directly matched an RNU6 variant by 
Rfam mapping) relative to the reference set of RNU6 variants. Both groups had comparable hamming distance 
to the reference RNU6 variants (Figure 2C), suggesting that annotated-by-association compactors are 
potentially false negatives missed by Rfam annotation. There were eight distinct annotated RNU6 or 
RNU6-pseudogene variants that had uniquely-matching compactors with hamming distance 0, including 
RNU6-6P whose compactors had non-uniform single-cell expression in donor 2 skin (Figure 2D).  

 We also observed that 30% of RNU6 compactors had aligned past the 3’ end of the gene, while only 
3% mapped upstream of the gene. For example, compactors mapping to RNU6-8 (659 supporting reads) 
spanned 45 bps downstream of its 3’ end (Figure 2E). This strongly supports the expression of RNU6 variants 
with extended 3’ end, to our knowledge for the first time. There were also RNU6 variants with compactors 
mapping upstream of 5’ end (RNU6-6P, 315 supporting reads) or completely within the annotated locus 
(RNU6-116P) (Figure 2E). 

 
SPLASH+ improves precision of spliced calls and identifies extensive splicing in CD47 including novel 
isoforms 
​ Over 95% of human genes undergo alternative splicing (Pan et al. 2008), but the number of dominant 
expressed isoforms is mainly based on bulk tissue-level analyses and remains a topic of ongoing debate 
(Ezkurdia et al. 2015; Arzalluz-Luque and Conesa 2018). This debate arises from alignment-based 
reference-first approaches with approximate statistical inference due to problems associated with mapping to 
multiple isoforms (Zheng, Ma, and Kingsford 2022). 

Across all donors and tissues, SPLASH+ reported 20,385 anchors (11,995 unique anchor sequences 
from 3,700 genes) classified as splicing (i.e., anchors with spliced alignment for at least one of their top two 
compactors), referred to henceforth as splicing anchors, representing single-cell-regulated alternative splicing 
(Suppl. Table 4). 73.2% of splicing anchors corresponded to annotated alternative splicing junctions (Figure 
3A). 1,387 anchors had >10% reads mapping to the unannotated junction of which 706 anchors were found in 
more than one donor-tissue pair. 

 We compared SPLASH+ against SpliZ (Olivieri, Dehghannasiri, and Salzman 2022), an algorithm for 
predicting single-cell-regulated splicing and Leafcutter (Li et al. 2018), a method designed to detect differential 
splicing in bulk RNA-seq which has also been partially extended to scRNA-Seq. We define splicing genes 
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called by each method in each donor tissue as: genes with cell-type-specific splicing reported by SpliZ (as 
SpliZ essentially identifies splicing at gene level), genes with at least one splicing anchor reported by 
SPLASH+, and genes with at least one intron cluster detected by Leafcutter. 

We used Tabula Sapiens (Tabula Sapiens Consortium* et al. 2022) a scRNA-Seq dataset from primary 
tissues with no ground truth. Thus, for evaluation, we measured reproducibility of the called splicing across 
replicates, a standard practice for evaluating discoveries on such datasets. Focusing on the lung (800 cells, 2 
donors), blood (538 cells, 2 donors), and muscle (1200 cells, 3 donors) where >1 donor was available and are 
among the tissues with the most profiled cells, SPLASH+ achieved higher concordance for the same tissue 
between different donors than both SpliZ and Leafcutter (Figure 3B, top; Suppl. Figure 9 A,B,C). In all 3 
tissues, SPLASH+ showed significantly higher reproducibility for splicing genes. For example in blood, 
SPLASH+ found 20% (100/500) of splicing genes in both donors, whereas SpliZ and Leafcutter found only 
5.1% (14/272) and 4.2% (6/143) in both, respectively (Figure 3B). Similarly for lung, SPLASH+ found 25.1% 
(310/1,235) compared to SpliZ’s 9.5% (122/1,289) and Leafcutter’s 9.2% in both donors (Figure 3B). For 
muscle, both SPLASH+ and SpliZ called almost the same number of unique genes across three donors. Yet, 
204 genes (16.4%) by SPLASH+ were shared among all three donors, while SpliZ and Leafcutter only had 28 
and 88 shared genes, respectively (Figure 3B, Suppl. Table 5). 

 Except for Donor 1 lung and Donor 2 muscle, SPLASH+ called more splicing genes compared to both 
SpliZ and Leafcutter in all donor tissues (Suppl. Figure 9D). Also, for every donor tissue, the splicing genes 
called by both SPLASH+ and Leafcutter, and also by both SPLASH+ and SpliZ were more than expected by 
chance (significant binomial p-values, being less than <10^-6 except for two donor tissues for leafcutter and 
one donor tissue for SpliZ) (Figure 3B, bottom), providing orthogonal support for the validity of SPLASH+ calls. 
In summary, SPLASH+ achieved higher concordance than both SpliZ and Leafcutter while identifying more 
genes as differentially spliced than those methods and showed significant overlap with the calls of those 
methods. This improvement by SPLASH+ is noteworthy given that it did not use any cell type metadata for 
inference.  

The most highly expressed anchor missed by SpliZ but found by SPLASH+ in all three muscle 
replicates was noncoding RNA GAS5. GAS5 shows reproducible cell type- and compartment-specific 
alternative splicing, where cd8+ t cells in all replicates consistently show higher rates for the isoform with 
shorter intron (Figure 3C) compared to other cell types. Leafcutter detected GAS5 cell-type-specific splicing for 
cd8+ t cells only when comparing cd8+ t cells with skeletal muscle satellite stem cells in donor 4, but missed it 
when comparing cd8+ t cells with four other cell types shown in Figure 3C in donors 1, 2, and 4. We should 
also note that Leafcutter is blind to intron retention (e.g., the one corresponding to compactor 3) as it only 
considers split reads. While previous studies have shown opposing effects of GAS5 splice variants on 
promoting cell proliferation and apoptosis in tumorigenesis (Mazar et al. 2016; Lin et al. 2022), to our 
knowledge, this is the first report of the cell-type-specific splicing of GAS5. 

Recent reference-based metadata-guided studies on human cells and experimental validations have 
found that MYL6 and genes within the TPM family (TPM1, TPM2, TPM3) undergo highly cell-type-specific 
alternative splicing (Olivieri et al. 2021). All these genes were also found by SPLASH+, highlighting its power 
for detecting cell-type-specific patterns even without utilizing cell type metadata. In muscle, true positives 
MYL6 and TPM1 were significant in all three donors; in contrast, SpliZ only called TPM1 and MYL6 in donors 1 
and 2. Both SPLASH+ and SpliZ called TPM2 and TPM3 in only donor 4. 

We also investigated CD47, a clinical target for both cardiovascular events (Kojima et al. 2016) and 
cancer immunotherapy (Gordon et al. 2017) as our previous work showed CD47 isoform expression was 
compartment-specific (Olivieri et al. 2021). Among all CD47 anchors classified as splicing, SPLASH+ detected 
10 distinct spliced isoforms, including 5 novel isoforms. One of the CD47 anchors reveals expression of 8 
distinct isoforms including 2 novel isoforms (Figure 3D), all impacting either the cytoplasmic or transmembrane 
domains. Compartments prefer different isoforms: endothelial and stromal compartments predominantly 
express E7-F2-3’UT isoform, while immune and epithelial cells in addition to this isoform also express 
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F2-F3-F4-3’UT and E7-F2-F3-3’UT isoforms, respectively. One of the isoforms detected is intron-F2-3'UT (red, 
Figure 3D); if this isoform indeed represents full intron retention, it would also result in a stop codon after the 
first transmembrane domain, similar to E7-3'UT isoform. We also detected two novel isoforms: E3-3’UT and 
E7-F4-3’UT, being the only detected isoforms in 4 cells (Figure 3D). We independently tested for the existence 
of the novel junctions in these isoforms across all human RNA-seq data deposited in the SRA database 
(~285K datasets) via the Pebblescout (Shiryev and Agarwala 2024), a fast k-mer tool that queries RNA-seq 
studies for the existence of user-provided kmers (Methods). This analysis showed significantly higher 
prevalence of the two detected novel junctions (E3-3’UT and E7-F4-3’UT) in SRA compared to the control set 
of unannotated junctions generated by concatenating all exon pairs absent from annotated junctions in CD47 
(Suppl. Figure 10): Pebblescout reported 131K, 9,540, and 2,983 studies on average for the annotated 
junctions, the two SPLASH-detected unannotated junctions, and the control set, respectively.  

SPLASH+ revealed new insights into splicing of RPS24, a highly conserved essential component of the 
ribosome. RPS24 has 5 annotated isoforms that include ultraconserved intronic sequence and microexons 
(Olivieri et al. 2021). SPLASH+ detected 4 RPS24 isoforms in donor 2’s lung cells, consistent with our previous 
findings of compartment specificity for this gene. Moreover, SPLASH+ identified a novel isoform containing 
only a 3bp microexon which both STAR and BLAT missed and was detected only through multiple sequence 
alignment (Figure 3E). Given RPS24 is highly expressed, we were able to further validate its regulated splicing 
by analyzing 10x Visium spatial transcriptomic data from lung (SRR14851100). We used RPS24 anchors 
detected in scRNA-seq as seeds for compactor generation in the Visium data. We found significant spatial 
organization for the two compactors corresponding to the two most abundant RPS24 isoforms in scRNA-seq. 
The isoform containing the microexon had higher expression in the two bronchiolar structures marked by red 
ellipsis in the histology image (Figure 3F), comprising mostly club and ciliated cell types (Travaglini et al. 2020). 
Both cell types exhibited concordant enrichment of microexon containing isoform in both lung replicates in 
scRNA-seq, confirming our spatial predictions (Suppl. Figure 11). Together, this analysis shows that without 
using any cell metadata or reference, SPLASH+ can generate biologically consistent predictions for splicing in 
human tissue. 

 
Genes with pan-tissue, single-cell regulated splicing are enriched for splicing factors and histone 
regulation 
​  2,118 genes with splicing anchors called by SPLASH+ in more than one tissue, including 10 genes 
found in 18/19 tissues, being referred to as core genes (Figure 4A). We performed GO enrichment analysis on 
61 genes with splicing anchors detected in at least 15 tissues. Remarkably, enriched pathways with the highest 
log-fold change were all involved in mRNA processing and splicing regulation (Fisher test, FDR p-value < 0.05, 
Figure 4B). These results imply that splicing factors and histone modifications themselves are under tight 
splicing regulatory mechanisms in diverse tissues, possibly co-regulating their expression. 

SPLASH+ reveals diverse splicing regulation in the 10 core genes, detecting 71 isoform variants, 
including four unannotated isoforms, one in each of the HNRNPC, KMT2E, SRSF7, and SRSF11 genes. While 
each of the core genes are known to have significant regulatory roles, the extent and complexity of their 
splicing regulation, as revealed by SPLASH+, has been underappreciated. 

HSP90AA1 was the sole core gene found in all 19 tissues (Figure 4C). HSP90AA1 is one of two 
isoforms of the HSP90 heat shock protein functioning in myriad cellular processes including a chaperone of 
protein folding (Hoter, El-Sabban, and Naim 2018) and transcriptionally regulated under cell stress (Zuehlke et 
al. 2015). We detected anchors with 12 distinct differential intron retention events for 7 introns of this gene 
including unannotated intron retention events for introns 1 through 4 and intron 7, and a novel splicing between 
the first and fourth exons (Figures 4C,D). Detected intron retentions are highly compartment-specific, with 
higher expression fractions for immune and stromal cells compared to epithelial and endothelial cells (Figures 
4C,D). For 9 anchors, immune cells had the highest intron retention fraction compared to other cells. Anchor 6 
had the strongest differential pattern between compartments with 44%, 22%, 17% and 0% for intron retention 
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in immune, epithelial, stromal, and endothelial cells, respectively. Due to its known transcriptional regulation 
upon stress, we cannot exclude the possibility that the regulated intron retention is due to differential 
compartment-specific response to dissociation stress. However, compartment-specificity and abundance of 
intron retention forms suggest HSP90AA1 has previously-unknown post-transcriptional regulation, even if part 
of the detected signal is differentially regulated physiological response to dissociation. We also queried the 
novel junction (between exons E1 and E3) via Pebblescout, which indicated a 6-fold increase in prevalence 
compared to the control set of unannotated junctions (Figure 4E). To our knowledge, splicing regulation in 
HSP90AA1 represents a potentially novel mechanism to tune the protein levels of this critical molecular 
chaperone. 

Five core genes (50%) are themselves splicing factors, including nuclear ribonucleoproteins (hnRNPs) 
HNRNPC, HNRNPDL (Suppl. Figure 12), and SR family members SRSF5, SRSF7, SRSF11. The detected 
compactors represent complex isoforms, some un-annotated, and some including splicing into ultraconserved 
intronic regions known to create poison exons in SRSF5, SRSF7, SRSF11, and HNRNPDL (Lareau et al. 
2007; Königs et al. 2020; Raihan et al. 2019; Ni et al. 2007). The remaining four core genes are involved in 
histone regulation or nuclear co-repression: KMT2E a histone methyltransferase with known mutations in 
neurodevelopmental disorders (O’Donnell-Luria et al. 2019), PCMT1, another histone methyltransferase 
(Biterge et al. 2014), HMGN3, a high mobility group nucleosome-binding protein and transcriptional repressor 
and NCOR1, the nuclear co-repressor (Perissi et al. 2010). SPLASH+ detects a poison exon and intron 
retention event in NCOR1 (Figure 4F) and KMT2E, respectively, which are predicted to trigger nonsense 
mediated decay. Core genes all have portions of highly conserved intronic sequences, suggesting a 
mechanism for splicing regulation. Together, these results support the idea that alternative isoforms play a 
critical regulatory role that includes use of premature stop codons and complex alternative splicing in the 5’ 
UTR, gene body, and 3’ UTRs. While these isoforms had been predicted by analysis of EST data and in cell 
culture, to our knowledge, direct evidence of regulated splicing patterns of any of these regulators in single 
cells has been previously missing (Ding et al. 2022; Lareau et al. 2007).  

We also used SPLASH+ to identify genes classified as splicing with high numbers of variants, which 
are known to drive organization of complex tissues (Schmucker et al. 2000; Yagi 2008). We identified genes 
with the most unique splice junctions across the entire dataset (Figure 4G): IL32, GAS5, and RBM39 (33, 28, 
and 28 junctions, respectively). Additionally, 49 genes, including PRPF38B, TACC1, CCDC66, and TAX1BP3, 
had at least 15 distinct splice junctions (Figure 4G). Among these genes are known oncogenes TACC1 (Cully 
et al. 2005) and CDC37 (Gray et al. 2008) with 19 and 11 splice variants, respectively. Splicing factors SRSF10 
and RBM39 (each found in 17 tissues) were also highly ranked, having 16 and 28 splice variants, respectively, 
and are all associated with tumor initiation and growth (Kim et al. 2015; Xu et al. 2021; Shkreta et al. 2021). 
For PRPF38B, a splicing factor with prognostic biomarker potential in breast cancer (Abdel-Fatah et al. 2017), 
17 distinct splice junctions were detected (across all of its anchors) in 17 tissues. One of its anchors shows 
compactors with complex alternative splicing involving skipping of two cassette exons, alternative 5’ splice 
sites, intron retention, and a novel splice junction, which is the dominant isoform in 4 immune and stromal cells 
(Figure 4H). SPLASH+ reveals complexity of splicing regulated at the single cell level missed by current 
methods, and supports the idea that many human genes have single-cell-specific splicing patterns, rather than 
exclusively favoring a dominant form. 
 
SPLASH+ rediscovers and expands the scope of V(D)J transcript diversity 

Single cells can somatically acquire copy number variation, SNPs, or repeat expansions. Detection of 
genetic diversity in single cells has required custom experimental and computational workflows. Our statistical 
analysis demonstrates that under the null assumption where all cells in a donor express only two alleles of any 
given splice variant, the probability of observing many counts for compactors beyond the two genuine ones 
decays rapidly (Methods). Positive controls expected to violate the null include mitochondria where genomes 
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are polyploid (Barrett et al. 1983) or the rearrangement of immunoglobulin loci in B cells and T cell receptor loci 
which undergo V(D)J recombination. 

To investigate global trends, for each anchor, we collected all distinct compactors across donor-tissues 
(Suppl. Table 6). Anchors mapping to immunoglobulin genes had the highest number of distinct compactors 
and differentiated from other genes on this purely numerical criterion (Figure 5A). For example, an anchor 
mapping to immunoglobulin kappa chain (IGKC) had the highest number of compactors (140) across all donors 
and tissues. As expected, these anchors were observed only in immune tissues. Centromeric anchors defined 
as containing CCATTCCATT repeats also had substantial compactor diversity (Figure 5A), consistent with the 
fact that centromeres have substantial sequence diversity within and across individuals.  

Mitochondrial genes also had substantial diversity, notably in an anchor from gene MT-ND5 in donor 1 
lung that had 24 compactors. This was the highest number of compactors for a single anchor mapping to an 
annotated gene within a single donor-tissue. MT-ND5 is a component of the transmembrane electron transport 
chain in mitochondria with previously reported recurrent mutations with clinical significance (Jaberi et al. 2020; 
Wang et al. 2022). 

While current approaches require mapping to the genome on a read-by-read basis, SPLASH+ enables 
a statistics-first micro-assembly to detect variants in the B cell receptor (BCR) locus avoiding genome 
alignment. We compared SPLASH+ power to detect BCR rearrangement in B cells from spleen of donors 2 
and 7 against the state-of-the-art custom pipeline BraCeR (Lindeman et al. 2018). We name a compactor as 
an “IG-compactor” if STAR maps it to an immunoglobulin gene (Methods). As a more stringent criterion, we 
further annotated IG-compactors using IgBLAST (Ye et al. 2013) and considered only those IG-compactors 
that had both variable (V) and joining (J) immunoglobulin gene segments identified through IgBLAST 
(Methods). In donor 2 spleen, not only did SPLASH+ detect an IG-compactor with annotated V and J genes in 
every cell for which BraCeR reported a BCR contig, but it also found BCR evidence in 53 additional B cells (41 
memory B cell and 12 plasma cell) which BraCeR missed (Figure 5B; Suppl. Table 7). Similarly, in donor 7 
spleen both BraCeR and SPLASH+ found evidence of BCR rearrangement in the same 47 plasma B cells, but 
SPLASH+ also found BCR evidence in 2 additional plasma B cells (Figure 5B). SPLASH+ missed one cell 
among memory B cells and naive B cells from donor 7, which BraCeR called. We further investigated 
SPLASH+ calls missed by BraCeR to see if they had evidence of fully functional in-frame transcripts. 100% of 
plasma cells in both donors and 93% and 100% of memory B cells in donors 2 and 7, respectively, that were 
called only by SPLASH+ had at least one in-frame IG-compactor as predicted by IgBLAST (Figure 5B), 
suggesting that higher sensitivity of SPLASH+ can result in the identification of high-confidence fully-functional 
immunoglobulin transcripts with implications in adaptive immune response. 

Of the cells analyzed by both algorithms, SPLASH+ called IG-compactors in 136 cells from donor 2 
spleen, and 142 and 123 in donor 7 spleen and lymph node (Suppl. Table 7). We tested if SPLASH+’s 
IG-compactors were concordant with BraCeR’s calls in these cells by computing the minimum Hamming 
distance between the two sets of BraceR contigs and SPLASH+ IG-compactors for each cell (Figure 5C). A 
high fraction of cells had perfect matches between SPLASH+’s and BraCeR’s sequences: 58.1%, 65.8%, and 
64.1% for donor 2 spleen, donor 7 spleen, and donor 7 lymph node, respectively, with increasing concordance 
as a more relaxed minimum Hamming distance criterion is considered between IG-compactors and BraceR 
contigs (Figure 5C). To identify IG-compactors that were missed by BraCeR, compactors with Hamming 
distance of greater than 30 to all BraCeR contigs were collected. 416 anchors had more than 3 of such 
compactors. One of these anchors had 8 compactors in donor 2 spleen where each compactor had partial 
alignment to one or both of two different IGHV loci, likely representing distinct V segment inclusion (Figure 5D). 
In summary, SPLASH+ automatically detects V(D)J rearrangement, agreeing with and extending what is 
detected by BraCeR in expected B cell subtypes, with implications for downstream biological inference and 
opportunities to explore other sequences nominated by SPLASH+ that do not meet the stringent criteria used 
here. 
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Cell type-specific hypermutation or RNA editing including in intronic regions of AGO2, UTRs of 
ANAPC16 and the 5’ and translational start of ARPC2  

We investigated anchors that had either comparable or more distinct compactors across donor-tissues 
than those associated with V(D)J. This list includes anchors with compactors showing abundant canonical 
Adenosine-to-inosine (A-to-I) RNA editing in ANAPC16 (Figure 6A), a regulator of anaphase, and AGO2 
(Figure 6B), the argonaut protein involved in miRNA targeting.  

In AGO2, a critical enzyme for RNA interference, SPLASH+ generated 18 compactors from a single 
anchor across skin and lung from donor 2 and muscle from donor 4 (Figure 6B). Similar to ANAPC16, the 
majority of reads were assigned to edited variants, constituting 84%, 64%, and 85% of reads in skin, lung, and 
muscle, respectively. These compactors support A-to-I canonical intronic editing in an Alu element at 8 
positions, including one editing, supported by 36% of reads across the three donor-tissues, that is not reported 
in the REDIPortal database of RNA editing events in humans (Picardi et al. 2017). Also, a compactor 
representing 15% of reads in donor 2 skin was both edited and showed circular RNA backsplice junction 
(Figure 6B), suggesting that splicing precedes editing. The extent of editing in these loci and extremely low 
support from a comprehensive, ultra-deep reference database (each editing event being supported by at most 
14 studies out of 9,642 studies curated in REDI) suggest reads at this locus would be unmapped or 
mismapped with conventional pipelines (Eisenberg and Levanon 2018). In fact, as shown in the BLAT 
alignment of these compactors (Figure 6B), for the first and fifth compactors in donor 2 skin, BLAT missed a 
few editing events and instead reported a split alignment, illustrating the challenges of reference-based 
alignment method for detecting these events. 

Extensive RNA editing diversity was also found in ARPC2, the actin-related protein 2/3 complex subunit 
2. We focused our analysis on the single anchor from this gene with the most compactors in a single donor (16 
compactors). Compactors for this anchor represent prevalent base pair changes with respect to the reference, 
with consistent editing rates (~36%) in bone marrow cells from donors 11 and 13 (Figure 6C). These editing 
events lack a known mechanistic explanation as they are neither canonical A-to-I editing nor show signatures 
of reverse-transcriptase induced base pair changes due to RNA base modifications (Werner et al. 2020). 
Intriguingly, the changes are concentrated in the start codon and would likely affect translation initiation. 
ARPC2 has other known non-canonical translation regulation: an internal ribosome entry site in its 5’ UTR 
(Al-Zeer et al. 2019), and un-annotated splicing in its 5’ UTR, suggesting the possibility of non-canonical 
translation initiation. Because of its surprising nature, we tested if apparent editing in ARPC2 existed in other 
donors, but SPLASH+ was underpowered to detect it. We generated compactors using the above anchor for all 
cells in the study: 15% of all reads in the dataset containing this anchor had discrepant bases in the 17-bp 
window (chr2: 218,703,167–218,703,183), and 11% had base pair changes in the start codon, much higher 
than expected by chance under sequencing error rate (median error rate .01% for the Illumina NovaSeq 6000) 
(Stoler and Nekrutenko 2021). 

 We further used Pebblescout to test the frequency of editing events detected in ARPC2 (Methods). 
Editing events detected by SPLASH+ were reproducibly found in human RNA-seq samples (Suppl. Figure 
13A). To investigate if the detection rate is higher than base pair changes due to sequencing error, we also 
constructed and queried decoy sequences containing base pair changes not predicted by SPLASH+. The 
detection rate was significantly higher for the editing locations predicted by SPLASH+ (Suppl. Figure 13B) and 
the prevalence difference between editing and decoy sequences grew with the number of base pair changes. 
For example, k-mers with 2 detected edits by SPLASH+ were present in an average of 26K samples whereas 
decoys were detected in only 163 (~160-fold change). No decoys with 3 edits were detected whereas 
SPLASH+ kmers were detected on average in ~3K samples. 

The reproducibility across donors, tissue specificity, stereotyped positions, and the level of diversity are 
strong evidence against these base-pair changes being an artifact or arising in DNA. In summary, SPLASH+’s 
automatic statistical inference identifies extensive and novel editing in single cells. To our knowledge, these 
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events have not been and cannot be detected with current custom workflows (Cohen-Fultheim and Levanon 
2021). 

 
Evidence for repeat polymorphism including in BGN and VSNL1  

Other anchors with high compactor diversity show evidence of repeat polymorphism. For example, for 
an anchor mapping to 3’ UTR of BGN, compactors show multiple AG dinucleotide repeat lengths (Figure 6D). 
BGN codes for biglycan and has roles in metabolic pathways and cell proliferation (Ying et al. 2018; Morimoto 
et al. 2021). Dinucleotide repeats are known to be polymorphic, but repeat length variation could also be 
generated during PCR, through a process called slippage (Shinde 2003). Thus, we investigated if polymerase 
slippage could explain the repeat polymorphisms found by SPLASH+. The profile of in vitro Taq PCR slippage 
has been studied, showing that after each PCR cycle the repeat element is contracted with a non-negligible 
probability p (Shinde 2003). Under this error model, the contraction process is equivalent to a binomial process 
and therefore we should observe a unimodal probability distribution of repeat lengths shorter than the 
reference repeat in the genome.  

The top two dominant repeats in the vast majority of cells in donor 2 lung were of different lengths and 
distinct from the reference repeat (Figure 6D; Methods): 9 cells and 10 cells had contractions of 5 and 6 as 
their primary and secondary repeat, respectively. We tested if observed repeat variants in BGN are consistent 
with the slippage error model. In donor 2 lung, the dominant repeat lengths were 15 (reference repeat length) 
and 10 (20% and 53% of reads, respectively), inconsistent with being generated in vitro by PCR slippage, 
which would generate a unimodal probability distribution of repeats ranging from 15 to 10. Instead, this 
supports a model that donor 2 has two BGN alleles with 15 and 10 repeats. To further test if these variable 
repeat lengths could be explained by PCR artifacts, we generated compactors in donor 1 lung where 
SPLASH+ did not call the BGN anchor. The expression patterns for two repeat lengths in Donor 1 were 
compatible with being generated due to PCR artifacts as the reference allele comprised majority of reads 
(78%), while contractions of 1 or 2 AG dinucleotides accounted only for 22% of reads which is in contrast to 
what was observed in donor 2 lung. This, together with the donor-specific repeat polymorphism is strong 
evidence that SPLASH+ calls BGN because single cells express different allelic repeat lengths, perhaps due to 
allelic imbalance, rather than being due to PCR artifacts. 

Another repeat polymorphism found by SPLASH+ was in VSNL1 (Visinin like 1 protein), a neuronal 
sensor calcium protein (Figure 6E). Prior literature shows that repeat polymorphism in VSNL1, is highly 
conserved in vertebrates and implicated in dendritic targeting (Ola et al. 2012; Riley and Krieger 2009). 
Contractions of 6 and 7 repeats were most abundant (together 75% of reads, Figure 6E); Contractions of 0, 1 
and 2 repeats had 8%, 7%, and 10% of reads, respectively, with no intermediate repeats between these and 
contractions of 6 and 7. Highlighting the importance of avoiding cell type metadata for testing, VSNL1 
polymorphism was detected predominantly in one cell type: tongue basal cells, which are thought to be stem 
cell progenitors (Iwai et al. 2008). If these alleles were due to polymerase slippage, error models predict 
observing other contractions such as -8; however, none were observed. This, along with the diverse single-cell 
expression of non-allelic repeat variants, suggests donor-specific somatic diversification of repeat numbers, 
likely originating from somatic variation within a donor rather than PCR. 

 
Conclusion 
​ Alignment to the human reference genome is often considered a prerequisite for the analysis of 
RNA-sequencing, and great efforts have been made to provide complete and curated reference genomes and 
transcript annotations. Similarly, cell type metadata is currently viewed as a critical starting or ending point for 
the analysis of single-cell sequencing experiments. In this work, we demonstrated that novel aspects of 
transcriptome regulation can be discovered using a direct statistical approach to analyze sequencing data 
without cell type metadata, while using reference genomes only for post-inferential interpretation. 
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​ In addition to computational and conceptual unification, SPLASH+’s reference-free approach predicts 
biology in single cells that has been missed by customized bioinformatics methods in multiple domains. 
SPLASH+ enables automatic discovery of cell-specific diversity in non-coding RNAs, such as RNU6 and 
centromeric repeats, which, to our knowledge, are not captured with current bioinformatic approaches. In 
domains where custom algorithms exist, such as detection of RNA splicing, V(D)J recombination, or RNA 
editing, SPLASH+ unifies and extends discovery. SPLASH+’s findings of complex splicing regulation in splicing 
factors provide direct evidence of and extend previous predictions of such regulation from EST databases and 
DNA sequence. We also uncovered novel cell-regulated splicing in diverse genes, including noncoding RNAs 
such as GAS5, suggesting new candidates to prioritize for functional studies. The extent of splicing diversity 
uncovered by SPLASH+ further supports the idea that transcriptome complexity in primary single cells is 
extensive. This implies that a data science-driven approach will be needed to predict regulation and function 
for this transcriptome diversity, as experimental approaches cannot be scaled to the throughput required to 
study each isoform. 

This manuscript also demonstrates how SPLASH+’s approach unifies disparate areas beyond splicing 
discovery, including variation in noncoding RNA loci, centromeres, detecting genomic insertions such as Alus, 
V(D)J recombination, RNA editing, and repeat polymorphisms. This suggests further avenues for discovery of 
human disease biology in both RNA-seq and DNA-seq where SPLASH+ allows repeat polymorphisms to be 
further scrutinized. For example, dinucleotide repeats detected in this study are predicted to be bound by 
CUG-binding protein (MBNL1) and TDP-43 (Takahashi et al. 2000; Buratti and Baralle 2001). The repeat 
polymorphisms identified by SPLASH+ further suggest the potential for predicting cell-specific impacts of 
repeat expansions, including their contribution to stress granule formation and disease (Sproviero et al. 2017; 
Estany et al. 2007). To focus this work, we did not include a discussion of other dimensions of transcript 
diversity found by SPLASH+, including alternative polyadenylation within human transcripts, cell-level variation 
in indels, potential structural rearrangements within the human genome, and even non-human sequences 
found by SPLASH+ in this dataset, which include an enrichment of bacteriophages that may reflect the 
prokaryotic contribution to the human metatranscriptome. We should note that while SPLASH+ is applicable to 
diverse genomics problems, it may not be suitable for studies where the focus is on differential gene 
expression analysis. Also, providing better interpretation for those SPLASH+’s calls that do not have BLAST 
hits is part of the ongoing work. 

In this first unbiased systematic analysis of human transcriptomic diversity in single cells, SPLASH+ 
establishes a unified statistics-first approach to sequence analysis, which reveals prevalent transcript diversity 
variations overlooked by current bioinformatics tools. While examples discussed in this study provide a glimpse 
into its complexity due to subsampling of human cells and tissues, analysis of larger single-cell datasets, as 
well as DNA sequencing, hold potential for uncovering a new generation of genetic and transcriptomic diversity 
mechanisms as predictors of cellular phenotype or disease. Indeed, SPLASH+ is versatile and applicable to 
any RNA-seq or DNA-seq study, offering opportunities for a large-scale, statistically driven study of 
transcriptomes.  
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Figures: 

Figure 1. A unified reference-free approach to transcriptomic diversity analysis. (A) Current RNA-seq 
analysis methods, relying on read alignment to a reference genome, introduce biases and blindspots, and are 
tailored for specific applications. SPLASH offers a unified alignment-free solution for detecting myriad 
transcriptome diversifying mechanisms. SPLASH parses reads from all samples (cells) to extract constant 
kmers (anchors) that are followed by a set of diverse kmers (targets). For each anchor, SPLASH creates a 
contingency table and computes a closed-form p-value. Anchors with significant p-values are indicative of 
single-cell-dependent target distribution evidencing regulation and can subsequently be used for downstream 
analysis for a wide range of applications. SPLASH+ integrates SPLASH with a local assembly approach, called 
compactors, and an automated anchor classification based on compactors to facilitate biological interpretation 
and categorize anchors into biologically relevant events such as alternative splicing, SNP, and V(D)J 
recombination. (B) SPLASH-called anchors are extended to longer sequences or “compactors'' through a 
statistically valid local assembly approach. The process involves collecting reads containing the anchor, 
recursively extending the sequence beyond the anchor by comparing nucleotide frequencies at each position 
against a threshold based on sequencing error, resulting in distinct branches that correspond to compactors for 
the anchor. (C) The boxplot showing the expression values (TPM) for the detected and undetected fusions by 
compactors in the fusion benchmarking dataset, suggesting that compactors provided evidence for the majority 
of sufficiently-expressed fusions. (D) Unmapped compactors can be annotated by association through other 
compactors linked to the same anchor. ​
 
Figure 2. Transcript diversity variation in repetitive RNA loci. (A) SPLASH+ detects variation in 
centromeric repeat arrays, illustrated for the anchor ATTCCATTCCATTCCATTCCATTCCAC, containing 5 
contiguous repeats of ATTCC (the characteristic sequence for canonical pericentromeric). Among the anchors 
containing ATTCCATTCC, this anchor has the most diverse compactors (147 compactors) ordered through 
multiway alignment. The heatmap shows the cell-type-specific compactor expression (in logarithmic scale), 
displaying read counts per cell type (collapsed across donors and tissues). (B) The 71 detected RNU6 
compactors exhibit high conservation with RNU6 reference sequences, which include 1,281 gene and 
pseudo-gene loci across the human genome. (C) Direct and annotated-by-association RNU6 compactors show 
similar abundances and sequence similarities to RNU6 reference genes, indicating that the 
annotated-by-association compactors may be missing from the reference annotation. (D) Heatmap showing 
differential compactor counts per cell (skin cells from donor 2) for a compactor mapped to the pseudo-gene 
RNU6-6P and other non-uniquely aligned compactors from the same anchor. (E) Multiway alignments of 
compactors to annotated RNU6 loci demonstrate alignment both upstream and downstream of annotated 
boundaries. 
 
Figure 3. SPLASH+ enables de-novo analysis of alternative splicing in single cells. (A) Dot plot showing 
the number of distinct splicing anchors and the fraction of them representing annotated alternative splicing per 
donor-tissue pair, with >55% involving annotated alternative splicing events (based on T2T). Each dot 
represents a distinct donor corresponding to a specific tissue within the dataset. Muscle has the most number 
of donors (3 donors). (B) Heatmap (top) showing the concordance of splicing genes (fraction of genes called 
by a method that are shared in the same tissue from different donors) for SPLASH+, SpliZ (Olivieri, 
Dehghannasiri, and Salzman 2022), and Leafcutter (Li et al. 2018) in lung, blood, and muscle. This plot 
suggests that, despite not using cell metadata, SPLASH+ achieves higher concordance in all tissues compared 
to both Leafcutter and SpliZ. The numbers in parentheses indicate the absolute number of shared genes. 
Heatmap (bottom) shows the logarithmic binomial p-values (with the numbers in parentheses indicating the 
absolute number of genes called by both methods) for testing the significance of the number of genes called by 
both SPLASH+ and Leafcutter, and by both SPLASH+ and SpliZ for each donor tissue. To further emphasize 
on different cell type composition in tissue replicates, we used different symbols for a tissue from different 
donors. (C) The reproducible compartment-specific alternative splicing of GAS5 in muscle cells from 3 donors 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://paperpile.com/c/0ZUrap/0SyXO
https://paperpile.com/c/0ZUrap/0SyXO
https://paperpile.com/c/0ZUrap/yZcj
https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
(intervals are 95% binomial confidence interval), with cd8+, alpha-beta t cells consistently showing a higher 
inclusion rate for the isoform with shorter intron (green isoform). (D) SPLASH+ detects extensive single-cell 
expression variation of eight CD47 isoforms, including novel isoforms, for a single anchor across 10 donors 
and 14 tissues. The heatmap, sorted by hierarchical clustering, includes a novel CD47 isoform (yellow) with 
annotated junctions (isoform coordinates: chr3:110767091:110771730--chr3:110771761:110775311). Cells with 
>5 reads are included and horizontal bars show the donor, tissue, and compartment identity for each cell. (E) 
Four alternative splice variants of RPS24 in lung (from donor 2) involve inclusion/exclusion of ultraconserved 
cassette exons, including a 3-bp microexon. SPLASH+ detects a novel isoform with only the microexon, 
missed by both STAR and BLAT, confirmed through multiway alignment. The heatmap shows 
compartment-specific usage of four RPS24 isoforms, with the isoform containing the 3-nt and 21-nt exon 
predominantly expressed in epithelial cells while the novel isoform predominantly expressed in type ii 
pneumocytes. (F) Spatial validation of RPS24 alternative splicing using 10x Visium data of lung tissue. Top 
panels show isoform fractions (left: isoform excluding microexon, right: isoform including microexon). The 
histology image (bottom) shows bronchial structures (red ellipses), with higher expression of the isoform 
including the microexon. 
 
Figure 4. Pan-tissue alternative splicing regulation of splicing factors and histone modifications. (A) 
57% of genes (2,118) with significant splicing in at least 2 tissues, including 10 genes found in >= 18 tissues. 
Notably, 8 splicing factors (green) and histone modifications (brown) are present. (B) GO enrichment analysis 
of genes found in >15 tissues reveals pathways related to mRNA processing and splicing regulation (Fisher 
test, FDR corrected p-value< 0.05). (C, D) Pan-tissue intron retention diversity in HSP90AA1, the only 
SPLASH+ core gene found in all 19 tissues. Twelve anchors detect differential intron retention events in 7 (out 
of 8) HSP90AA1 introns. The compartment-specific expression of compactors corresponding to intron retention 
(pink) and splice junctions (green); the barplot on the right shows total read counts for intron retention and 
splicing isoform for each anchor. Fractional isoform distribution is depicted for the anchor with the most 
compactors (anchor 1) and the anchor found in the most tissues (anchor 3). (E) Number of SRA studies 
containing each HSP90AA1 junction reported by Pebblescout supports SPLASH+’s novel splice prediction. 
Junctions are grouped as annotated, unannotated, and one detected unannotated junction (between exons E1 
and E4). (F) Single-cell dependent alternative splicing of gene NCOR1, involving 3 different splicing isoforms 
for the NCOR1 anchor found in the most tissues. (G) Plot showing the number of tissues and unique splice 
junctions for each gene with a splicing anchor. IL32, RBM39, and IGKC have the most unique splice junctions. 
(H) Alternative splicing of PRPF38B involving an intron retention and six splicing isoforms, showing one of the 
most diverse isoform structures with significant alternative splicing in 11 donors and 17 tissues. 
 
Figure 5. SPLASH+ detects V(D)J recombination with highest levels of transcriptome diversity and 
achieves higher sensitivity than BraCeR. (A) Plot showing the number of compactors and donors for each 
anchor, indicating that anchors with the most compactor diversity extend known biology of V(D)J 
recombination. The top marginal histogram shows the probability that each compactor category falls into a 
specific range of number of compactors per anchor. The right marginal histogram shows the probability of each 
category as a function of the number of donors. Multiple sequence alignment of the anchor mapping to an 
immunoglobulin gene with the most distinct compactors. (B) Comparison of SPLASH+ and BraCeR for spleen 
cells (that are analyzed by both methods) from donors 2 and 7 shows higher sensitivity for SPLASH+. Cells are 
called by BraCeR or SPLASH+ based on the presence of at least one BraCeR contig or IG-compactor, 
respectively. The x-axis shows the highest count for an IG-compactor in each cell and we also show the 
percentage of cells called only by SPLASH+ (green) within each cell type having at least one in-frame V(D)J 
transcript as confirmed by IgBLAST. (C) Cells called by both SPLASH+ and BraCeR increase with the 
minimum Hamming distance between IG-compactors and BraCeR contigs per cell. (D) Alignment of multiple 
compactors from the same anchor to IGHV3 shows split mapping to IGHV3-43-201 and IGHV3-15-201. 
 
Figure 6. Single-cell-regulated RNA editing and repeat polymorphism detected de novo by SPLASH+. 
(A) Multiple sequence alignment of compactors generated de novo by SPLASH+ reveals extensive cell-type 
regulated editing in 5’ UTR of ANAPC16. Red indicates A-to-I edits, and compactors matching the reference 
allele for each donor-tissue are highlighted in orange boxes. Side bar plots show total counts for each 
compactor in each donor tissue, with top 4 compactors in each donor tissue color-coded by shared sequences 
across donor tissues. Predicted miRNA binding site (Chen and Wang 2020) in ANAPC16 is disrupted by 
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observed edits in all four donor-tissues. (B) Similar analysis for AGO2 identifies RNA editing within an Alu 
element including a circular RNA in the third compactor from donor 2 skin. (C) ARPC2 sequence diversity 
shows 20 distinct variants in a 17-bp region (positions 58-74 in the compactor sequences). Multiple sequence 
alignment reveals base-pair changes between the 5’ UTR and translational start (chr2: 
218,703,167–218,703,183; T2T assembly). All kmer counts from donor bone marrow exceed expected 
sequencing error rate by orders of magnitude. (D) Sankey plot displays cell counts for primary (repeat with the 
highest count in cell) and secondary (repeat with the second highest count in cell) repeat lengths in donor 2 
lung (donor tissue in which the anchor was called). The reference repeat length is indicated as 0 and repeat 
contractions are indicated relative to this reference length. Bar plot shows cell counts with reference or one 
repeat contraction. Each cell is counted for a repeat length if either its primary or secondary repeat matches 
that length. (E) Similar analysis for repeat polymorphism in VSNL1 shows cell counts for each combination of 
secondary and primary repeat lengths.  
 
Suppl. Figure 1. (A) In SPLASH, a single consensus sequence is constructed for each sample (cell) by taking 
the plurality of bases at each position across targets. This approach loses both within-cell diversity and count 
information, as it reports only one sequence and may even lead to misassembly. The consensus sequence is 
then aligned to the genome for gene name and alignment information. Notably, SPLASH lacks automated 
anchor classification, limiting its application for targeted studies on specific events such as alternative splicing. 
In contrast, SPLASH+ employs a branching approach to construct long assembled sequences (compactors) 
with assigned counts for each sample. The most abundant compactors for each anchor are then used to 
assign biologically relevant events (e.g., alternative splicing, V(D)J recombination) to each anchor. (B) 
Consensus (used in original SPLASH) fails to capture sequence diversity variation across cells as it produces 
only one sequence per cell. For example, for the given gene with 4 transcript isoforms (each exon is assumed 
to have two nucleotides as shown), the consensus sequence for both Cells 1 and 2 is isoform 1 (i1), the 
dominant isoform in both cells, implying no diversity variation between these cells. However, Cells 1 and 2 
have different count distributions of isoforms 2, 3, and 4. For Cell 3, the consensus approach incorrectly 
represents isoform 4, which has the lowest count. Similarly when sequence diversity is due to SNPs, the 
consensus approach might fail to show diversity variation as seen with Cells 1 and 2, where both are 
represented by variant V1 despite their different distributions for other variants. In Cell 3, the consensus 
incorrectly represents a non-existent variant. We show the details of how the consensus sequence is produced 
for Cell 3 (for both splicing and SNP diversity). 
 
Suppl. Figure 2. (A) Overview of compactor benchmarking analysis using the fusion benchmarking dataset. 
The dataset provides the sequence and breakpoint position for each true positive gene fusion. We constructed 
seed anchors from the 27 base pairs immediately upstream of each breakpoint and generated compactors 
using these seed anchors using FASTQ files. Each compactor was assigned to a true positive gene fusion if it 
matched the 20-mer junctional sequence for that fusion, which was created by taking 10 base pairs on each 
side of the gene fusion junction. For each dataset, the number of unique gene fusions with associated 
compactors is counted, representing the number of detected fusions reconstructed by compactors for that 
dataset. (B) Number of detected fusions per simulated datasets. In total 57.8% (1339/2315) of fusions were 
detected by compactors.  
 
Suppl. Figure 3. Post-facto classification assigns distinct biologically relevant RNA events to each anchor 
based on its compactors' characteristics. Six categories are considered: splicing, internal splicing, base pair 
change, 3' UTR, centromere, and repeat (ordered by priority). An anchor that cannot be assigned to any of 
these categories is referred to as unclassified. Reference-free categories include internal splicing and base 
pair change; and splicing, 3' UTR, centromere, and repeats are assigned based on compactors' alignment to 
the genome. 
 
Suppl. Figure 4. SPLASH+ was run on 10,326 SmartSeq2 cells from 12 donors and 19 tissues (29 
donor-tissue pairs), including replicates for several tissues from multiple donors, enabling reproducibility 
analysis. 
 
Suppl. Figure 5. (A) Run time and (B) memory usage per step (extracting and counting anchor and target 
sequences from input sample in parallel for each input sample, stratification of anchor sequences to allow for 
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parallelization of p-value calculation, p-value calculation in parallel for each set of stratified anchors, and 
multiple testing correction) in SPLASH across eight donor tissues. SPLASH, being fully parallelized, allows the 
initial step of parsing input reads and extracting anchor and target sequences to run concurrently for each cell. 
Thus, the run time for this step is presented for individual cells. Memory requirements are displayed for the two 
steps consuming the most memory. 
 
Suppl. Figure 6. (A) Compactor count per anchor in each tissue, categorized by anchor class, with splicing 
anchors exhibiting the lowest compactor diversity. (B) Fraction of reads assigned to each anchor category in 
each tissue, with base pair change anchors having the highest fraction of reads. 
 
Suppl. Figure 7. Single-cell-regulated expression of the anchor containing pericentromeric repeat CCATT in 
tongue replicates (donors 4 and 7). Tongue basal cells consistently exhibit the highest expression in both 
replicates. 
 
Suppl. Figure 8. The barplot showing the total read count across the entire dataset for each category of 
noncoding RNAs. 
 
Suppl. Figure 9. (A, B, C) Upset plots showing the comparison of the SpliZ, Leafcutter, and SPLASH+ for 
detecting genes with significant alternative splicing in lung, blood, and muscle tissues from each donor. (D) 
Barplots show the number of splicing genes called by each method and in each donor tissue. 
 
Suppl. Figure 10. Number of SRA studies reported by Pebblescout for CD47 junctions, providing further 
evidence for the expression of the two novel splice predictions made by SPLASH+ for CD47. 
 
Suppl. Figure 11. The two overrepresented cell types in bronchiole epithelium (ciliated and club cells) exhibit 
the highest expression fraction of the isoform with the microexon (dark blue isoform in Figure 3E) in lung 
replicates from donors 1 and 2, which is consistent with findings in the Visium data. Ciliated cells show 93 
reads in 5 cells and 38 reads in 2 cells for donors 1 and 2, respectively, while club cells exhibit 22 reads in 2 
cells for donor 2. 
 
Suppl. Figure 12. Single-cell dependent alternative splicing of two hnRNPs: (A) HNRNPDL and (B) HNRNPC 
illustrated for the anchor expressed in the most tissues for each of these genes. 
 
Suppl. Figure 13. Query of the editing events detected in ARPC2 using Pebblescout. (A) Number of studies 
reported by Pebblescout for the 25-mers with changes in the 6 RNA editing locations, as shown in Figure 6C. 
(B) Pebblescout reported compactors with editing in significantly more studies than decoy events or kmers 
constructed with base pair changes not predicted by SPLASH+.​
 
Tables: 

Table 1: Compactor benchmarking. This table contains the list of compactors that have matched to the 
fusions in simulated benchmarking datasets. 

Table 2: Centromeric anchors summary. This table contains the sequence, read count, T2T CenSat 
annotation, and donor id, for each compactor of the centromeric anchors.  

Table 3: Noncoding RNA summary. Number of called noncoding RNAs separated by each category for each 
donor and tissue. 

Table 4: Alternative splicing calls. For each detected splicing anchor across the entire dataset, this table 
provides gene name, donor and tissue information, effect size, number of reads for the anchor, number of cells, 
the coordinates for the associated splice junctions, and whether the alternative splicing is annotated according 
to human T2T annotation. 

Table 5: SPLASH+ Comparison with SpliZ and Leafcutter. This table contains significantly spliced genes 
detected by SPLASH+, SpliZ, and Leafcutter in lung, blood, and muscle tissues of Tabula Sapiens dataset.  
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Table 6: Compactor diversity summary. The number of distinct compactor sequences for each anchor in 
each donor. 

Table 7: SPLASH+ vs BraceR comparison. This table contains the SPLASH+ IG compactor sequences 
along with their IgBLAST annotations and BraCeR contig sequences from the same cell for spleen and lymph 
node cells from donors 2 and 7 of Tabula Sapiens. 
 
METHODS 
 
Code availability 
The code used in this work, including compactor generation, biological interpretation, is available at: 
https://github.com/salzman-lab/SPLASH-plus/. The code for splicing benchmarking can be found at: 
https://github.com/salzman-lab/SPLASH-plus/tree/main/Splicing_concordance_analysis  
​
Data availability 
The FASTQ files for the Tabula Sapiens data were downloaded from 
https://tabula-sapiens-portal.ds.czbiohub.org/. Tabula Sapiens gene count table were obtained from the Tabula 
Sapiens AWS bucket. The Visium lung data was downloaded from SRA with accession ID SRR14851100. 
Filtered BraCeR contigs for V(D)J analysis were downloaded from: 
s3://czb-tabula-sapiens/Pilot*/immune-repertoire-analysis/bracer. The five fusion simulated datasets for 
compactor benchmarking were downloaded from: 
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/sim_50/rea
ds. The TPM values for simulated fusions were downloaded from: 
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/sim_50/me
tadata/sim_50.fusion_TPM_values.dat.  
 
SPLASH overview 
SPLASH is a reference-free, annotation-free method that can be directly applied to raw sequencing reads and 
provide a unified statistical approach for the (co-)detection of various transcript diversification mechanisms 
(Chaung et al. 2023). Not requiring computational alignment of the reads to a reference genome, a feature 
commonplace in conventional RNA expression analysis methods, SPLASH can bypass inherent biases and 
blindspots in aligners. SPLASH takes sequencing files (FASTQ or FASTA) for input samples, and parses 
sequencing reads to find specific k-mers (substrings of length k) called anchors that are followed by a set 
diverse k-mers called targets across all reads from all input samples. In our analysis, we set the lengths for 
both anchors and targets to 27. SPLASH then builds a contingency table for each extracted anchor containing 
the read counts of each anchor’s target in each sample, i.e., each row and each column of an anchor’s 
contingency table corresponds to a target and a sample, respectively. Using these contingency tables, 
SPLASH then performs a statistical test for each anchor under the null hypothesis that the frequencies of 
anchor’s targets are independent of sample identity, yielding a closed-form valid p-value (Chaung et al. 2023). 
A significant p-value implies that the anchor has sample-dependent target distribution. The test statistic is 
constructed through random partitioning of the samples, and using random hash functions to map each target 
to a random value in [0,1]. As the test statistic is computed for different random choices of sample partitioning 
and random hashes per split, the p-value is Bonferroni-corrected to account for multiple testing across random 
sample partitioning and number of generated random hashes per split. SPLASH+ utilizes significant anchors 
for further downstream analysis by integrating a statistically valid local assembly approach, called compactors, 
and a framework for biological interpretation. 
 
SPLASH runs 
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Overall 19 tissues and 12 donors from the Tabula Sapiens dataset (Tabula Sapiens Consortium* et al. 2022) 
that have been profiled by SmartSeq2 were used for our analysis (Suppl. Figure 4). SPLASH was run in 
unsupervised mode on each donor and tissue separately. For donor tissues with >400 cells, we randomly 
selected 400 annotated cells to ensure implicit cell count normalization (and approximately read depth). Eight 
donor-tissues had fewer than 400 cells: donor 2 trachea (119 cells), donor 5 eye (134 cells), donor 1 blood 
(138 cells), donor 4 tongue (209 cells), donor 12 heart (277 cells), donor 3 eye (291 cells), donor 6 trachea 
(358 cells), donor 2 kidney (370 cells). In total, we ran SPLASH on 13,500 SmartSeq2 cells from 136 cell 
types. SPLASH was run with default parameters except for the number of random partitions of input cells (set 
to 300) and number of random hashes per partition (set to 10). Anchors with >50 reads in >10 cells that have 
SPLASH’s p-value < 0.05 and SPLASH’s effect_size > 0.2 were called as significant anchors. 
 
Compactor generation 
To generate compactors for each anchor called as significant by SPLASH, first the input FASTQ files are 
searched for each anchor and the reads with exact match to the anchor are collected. The portion of the read 
that is upstream (left) of the anchor is clipped, i.e., for each anchor all the collected read sequences used for 
assembly start with the anchor sequence. Since there is no variation within the anchor, we always include the 
anchor as the starting sequence in the assembled sequence. Starting from the first position after the anchor, 
the frequency of each nucleotide is computed across the collected reads for the anchor and a new branch 
corresponding to a nucleotide whose frequency exceeds a certain threshold is created (Figure 1B). To create a 
new branch, we used the criterion that the nucleotide is in >10% of collected reads (if its count is >20) or in 
>80% of collected reads (if its count is >5). These thresholds are chosen based on the typical sequencing error 
rate and that we desire that the creation of a new branch due to sequencing error be highly unlikely, which is 
supported by our statistical analysis in the following section. Once a branch for a nucleotide is created at a 
given position, the subset of reads representing that nucleotide at that position are propagated to that branch 
(Figure 1B). If only one nucleotide satisfies the frequency criterion at a position, no extra branch is created and 
all reads are propagated to the subsequent iteration in the current branch. Corresponding to each position of a 
branch, the compactor sequence is defined as the anchor sequence extended by the nucleotides added at 
each position from the start of extension up to that position of the branch (Figure 1B). This process is repeated 
for each subsequent position and branch, using the reads propagated to each branch. It continues recursively 
until a user-specified number of recursions is reached (thereby fixing the compactor length for each set) or until 
the number of reads falls below a user-specified threshold. After this process, we report the set of compactors 
for each anchor where each compactor sequence corresponds to a specific path of branches and each 
compactor is reported with the count and set of reads representing it exactly.  
 
Compactor sequencing error model 
Consider the compactor generation process, where we aim to decide on the nucleotide at a given position with 
N reads. Let  denote the nucleotide for read  at the given position. Under the 
null hypothesis, all variation in  is due to sequencing error. Assuming that sequencing errors occur 
independently and uniformly across the sequenced regions at rate , considering without loss of generality that 
A is the ground truth nucleotide, we model the probability of observing each nucleotide in each read as:  

 
For each noisy nucleotide that is due to sequencing error (nucleotides other than A), the number of reads can 

be modeled as a binomial random variable with success probability  and  trials denoted by . The 
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probability of observing each noisy nucleotide  at least  times can be computed as the upper tail of 

, which can be upper bounded using Chernoff bound (Arratia and Gordon 1989) as follows: 
 

, 
where  denotes the Kullback–Leibler divergence between two independent bernoulli random 
variables with heads probabilities  and : 

 
We can now compute a closed-form null probability for creating a new branch due to sequencing error at a 
given position with N reads and sequencing error rate  when the criterion for generating a new branch for a 

nucleotide is to observe the nucleotide at that position in at least 10% of reads (i.e., ). We use a 
conservative estimate of 1% for sequencing error rate. NovaSeq 6000 sequencing platform, the machine used 
to generate the Tabula Sapiens dataset, has a median error rate of 0.11% (Stoler and Nekrutenko 2021) and 
almost all studied datasets generated by NovaSeq 6000 had an error rate below 1% (Figure 2A in (Stoler and 
Nekrutenko 2021)). Under such sequencing error rate assumption, the null probability of creating a new branch 
for  is 0.012, , and , respectively, suggesting that it is highly 
unlikely to generate a new branch due to sequencing error when we consider a threshold of 10% for nucleotide 
frequency.​
 
Compactors benchmarking 
We considered five simulated fusion datasets (sim_adipose, sim_brain, sim_colon, sim_heart, and sim_testis), 
each having 500 true positive (TP) fusions. We downloaded the ground truth sequences for TP fusions from: 
(https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/simulated
_fusion_transcript_sequences/). We used the breakpoint position provided for each TP fusion sequence in the 
downloaded files to obtain the seed anchor for each fusion, which was then used by compactors to reconstruct 
the fusion sequence. For each TP fusion, the seed anchor is extracted from its sequence as the sequence 
from breakpoint_pos-26 to breakpoint_pos (Suppl. Figure 2A). We then employed these anchors 
and generated compactors by using the FASTQ files (we used R1 FASTQ files for compactor generation) 
(Suppl. Figure 2A). In order to find compactors that have evidence for TP fusion junctions, for each TP fusion 
we extract a junctional 20-mer sequence (10 bp on each side of the breakpoint_pos from the ground truth 
fusion sequence). Generated compactors that have a match to the 20-mer junctional sequences are then 
selected as the compactors with evidence for TP fusions. We report the number of fusions identified by 
compactors for each dataset as the number of unique fusions with at least one matched compactor. We 
discarded 185 fusions from our benchmarking analysis that did not have reads in R1 FASTQ files for their 
corresponding seed anchors. 
 
Classification of anchors into biologically relevant categories 
To increase interpretability of the called anchors and to facilitate targeted downstream analysis for specific 
applications, we designed a biological interpretation step in SPLASH+ to assign a biologically relevant RNA 
diversifying event to each anchor based on the features directly derived from its compactors. We consider six 
categories for anchors (Suppl. Figure 3): splicing, internal splicing, base pair change, 3’UTR, centromere, and 
repeat. If an anchor is not assigned to any of these categories, it will be categorized as an unclassified anchor. 
We used a hybrid approach to assign classes to anchors, with some classes assigned independently of 
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reference genome alignment (e.g., internal splicing and base pair change) and others assigned based on 
alignment (e.g., splicing, 3’UTR, centromere, and repeat). As each anchor might be qualified for more than one 
class, we prioritize classes in the following order: splicing, internal splicing, base pair change, 3’UTR, 
centromere, repeat. To classify anchors, we consider only the top two most abundant compactors for each 
anchor (i.e., those with the highest fraction of anchor reads). If one compactor is longer than the other, we 
consider its substring equal in length to the shorter compactor. We then compute two different string metrics: 
Hamming distance and Levenstein distance. We should note that both Levenstein and Hamming distance for 
the two compactors are computed after removing the anchor sequence. Anchors with the same Hamming and 
Levenstein distances are classified as base pair change as this criterion suggests that only substitutions (i.e., 
nucleotide changes) account for the difference between the two compactors. We also utilize the sequence of 
Levenstein operations (comprising insertions, deletions, and substitutions) and classify an anchor as “internal 
splicing” if the Levenstein distance is less than the sum of of the longest stretch of deletions (Run_D) and 
insertions (Run_I) plus one (Suppl. Figure 3). 

Other anchor categories (such as splicing) are assigned based on the alignment of compactors to the 
reference genome. To identify anchors potentially explained by alternative splicing, we align the two 
compactors for each anchor to the T2T human reference genome using STAR v2.7.5.a (Dobin et al. 2013) with 
the following parameters:​
 ​
--twopassMode Basic --alignIntronMax 1000000 --chimJunctionOverhangMin 10 
--chimSegmentReadGapMax 0 --chimOutJunctionFormat 1 --chimSegmentMin 12 
--chimScoreJunctionNonGTAG -4 --chimNonchimScoreDropMin 10 --outSAMtype SAM 
--chimOutType SeparateSAMold --outSAMunmapped None --clip3pAdapterSeq AAAAAAAAA 
--outSAMattributes NH HI AS nM NM  

We then extract information about the mapping flag, chromosome, coordinate, CIGAR string, and number of 
mismatches from the STAR BAM file (1st, 2nd, 3rd, 4th, 6th, and 16th columns). If at least one of the two 
compactors involves a split alignment, and the Hamming distance and Levenstein distance are not equal (as 
this would indicate a base pair change), we classify the anchor as “splicing”. This classification is based on the 
presence of a splice junction in at least one compactor and that the difference between the compactor 
sequences cannot be explained by simple substitutions. Note that both compactors should overlap with the 
same gene to be considered as splicing anchor.​ ​
​ Anchors not classified as splicing, base pair change, or internal splicing are considered for further 
classification. We intersect compactor mapping positions with annotated 3'UTRs, centromere satellite elements 
(from T2T CenSat database), and repetitive elements (from RepeatMasker database) using BEDTools v2.25.0 
(Quinlan 2014) intersect command. Anchors are then categorized to one of these categories based on this 
intersection (Suppl. Figure 3). 
 
Comparison to SpliZ and Leafcutter for alternative splicing 
SpliZ is a statistical method for detecting genes with cell type-specific alternative splicing in scRNA-Seq 
(Olivieri, Dehghannasiri, and Salzman 2022). It assigns a single score to each pair of cell and gene and is 
reference-dependent in the sense that it needs the split reads mapping to the splice junctions of the gene. To 
obtain high confidence splice junctions needed for SpliZ analysis, we first aligned reads to human reference 
genome using STAR and then ran SICILIAN (Dehghannasiri, Olivieri, and Salzman 2020), a statistical wrapper 
for detecting high-confidence splice junctions from spliced aligners, on the STAR BAM files. We applied SpliZ 
to the reads aligned to the detected splice junctions. SpliZ was run on each donor separately and to avoid 
calling genes with tissue-specific splicing rather than cell type-specific splicing, its statistical test was 
performed separately across cell types within each tissue from that donor. Both SpliZ and SICILIAN were run 
with default parameters.  
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For performing splicing analysis using Leafcutter (Li et al. 2018), we first extracted junctional reads by 

running RegTools v0.5.2 (Cotto et al. 2023) on STAR BAM files with parameters suggested on Leafcutter 
GitHub (https://davidaknowles.github.io/leafcutter/articles/Usage.html): minimum anchor length of 8bp on each 
side of the junction, minimum intron length of 50 and maximum intron length of 500 kb. Junctions from each 
cell within a donor tissue were then clustered (i.e., clusters with overlapping exon start/ends) using Leafcutter 
clustering script (leafcutter_cluster_regtools.py) with default value of 50 minimum total reads per 
cluster to create a matrix of junction counts across all cells within each donor tissue which are subsequently 
used for differential splicing analysis. Since Leafcutter is a supervised method for differential analysis between 
samples from two groups, we performed differential splicing analysis for each pair of cell types within a donor 
tissue that had at least five cells. We chose this threshold because Leafcutter warns that p-values are not 
calibrated for groups with fewer than four samples: “p-values are not calibrated for less than four samples” 
(though it is still possible to run on less than four samples)”. To annotate intron clusters called by Leafcutter, we 
used the gtf_to_exons.R script (downloaded from Leafcutter repository) on the T2T annotation GTF file to 
create an exons file required for Leafcutter annotation. Intron clusters with an adjusted p-value (p.adjust) < 
0.05 and an absolute log effect size (logef) > 1.5 were considered significant. A gene is called as significantly 
differentially spliced in a donor tissue by Leafcutter, if it had at least one significant intron cluster in any tested 
cell type pair for that donor tissue. 

We tested the significance of the overlap in splicing genes called by SPLASH+ and each of the other 
two methods (Leafcutter and SpliZ) for every donor tissue. Let N1 ​and N2 be the number of splicing genes 
called by SPLASH+ and the other method, respectively in a donor tissue. Under the null hypothesis, the 

probability that a gene is identified by both methods is  , where N is the total number of genes. Observing 
𝑁
1
×𝑁

2

𝑁2

Ns genes identified by both methods, we can now compute the binomial p-values to test the significance of this 
overlap. We report the -log10(p-value) for the significance of the overlap between SPLASH+ and SPliZ, and 
between SPLASH+ and Leafcutter for each donor tissue (Figure 3B, bottom). The resulting p-values were 
significant for all comparisons, with the overlap between SPLASH+ and Leafcutter showing greater significance 
than the overlap between SPLASH+ and SpliZ for all donor tissues except for blood donor 1. 
 
Querying SRA human RNA-Seq database using Pebblescout for novel splicing and RNA editing 
Pebblescout (Shiryev and Agarwala 2024) is a kmer-based query tool designed to take input sequences and 
report studies (RNA-Seq sequencing samples) within its indexed database that share matches with the 
provided input. Pebblescout randomly samples a 25-mer from every 42-mer in the query sequence, 
guaranteeing a match between the query and the study if the match is at least 42bp long. Given that 
Pebblescout reports matches based on any 25-mer in the input sequence, for each queried CD47 and 
HSP90AA1 isoform a 42-mer (the minimum acceptable length by Pebblescout for a query) is constructed by 
taking 21 bps from both the 5’ and 3’ sides of the junctions. For queries regarding ARPC2 (Figure 6C), we 
extended each 20-mer by 22 bps. We further aligned the reported 25-mer matches by Pebblescout to the 
reference genome using Bowtie2 v2.2.1 ​​to confirm their unique mapping to the CD47, HSP90AA1, and ARPC2 
loci.  

To create a control set of unannotated junctions for novel CD47 and HSP90AA1 junctions, we first 
extracted exonic 21 bps leading to each annotated 5’ and 3’ exon boundary for each gene. We then 
concatenated the 21 bps from each 5’ splice site with those from its downstream 3’ splice sites to form 
42-mers. These junctions that are not part of the annotated gene structure were then used as a control set for 
evaluating the prevalence of detected unannotated junctions by SPLASH+. 
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V(D)J rearrangement analysis and comparison to BraCeR​
We defined immunoglobulin compactors (being referred to as “IG-compactors”) as the compactors mapped to 
an immunoglobulin gene IGH, IGK, or IGV by STAR. We further defined immunoglobulin-anchors 
(“IG-anchors”) as anchors with >20% of reads associated with IG-compactors. The unaligned compactors of an 
IG-anchor are still considered IG-compactors through “annotation-by-association”. To compare the SPLASH+ 
with BraCeR (Lindeman et al. 2018), we considered a stringent criterion for IG-compactors where we first 
annotated IG-compactors with AssignGenes.py (ChangeO v1.3.0) (Gupta et al. 2015) and IgBLAST v1.21.0 
(Ye et al. 2013) and considered only those IG-compactors that had both variable (V) and joining (J) 
immunoglobulin gene segments identified through IgBLAST. The IG-compactors are annotated as in-frame by 
IgBLAST if the last triplet of the annotated V gene is in-frame with the first triplet of the annotated J gene. Also, 
to test whether SPLASH+ provides support for the detection of the same B cell receptors (BCRs) as BraCeR, 
for each cell we computed the minimum Hamming distance between the compactors of IG-anchors and the 
filtered BraCeR contigs. 

 
Repeat expansion analysis​
For each cell, we obtain total read count for each repeat length by summing the reads across all compactors 
associated with that repeat length. To characterize the repeat length for the two dominant alleles per cell, we 
refer to the repeat length with the highest read count as the “primary repeat length” and the repeat length with 
the second-highest read count as the “secondary repeat length”. 
 
Analyzing the abundance of the third most abundant target under a two-true-target assumption  
We statistically quantify how unlikely it is that we observe a high count for the third most common target when 
there are only two ground truth targets and all others are due to sequencing error. This could arise when the 
anchor corresponds to alternative splicing involving two isoforms (each target represents an isoform) or 
corresponds to an SNP (one target represents the transcript without SNP and the other target represents the 
transcript with SNP). We assume that the anchors are observed without sequencing error. We also make the 
same assumption of uniformity and independence for sequencing error rate  as discussed in the section on 
analyzing sequencing errors in compactor construction. Under these assumptions, we can provide p-values on 
the abundance of the third most frequent target, showing that it is very unlikely to observe a high count for the 
third most abundant target when only two ground truth targets exist, with all others attributed to sequencing 
errors. 

Let  be the total number of counts, and  be the target length. The two ground truth targets are 

denoted by  and . For each possible target (a sequence of length  from A/G/C/T) , we 
define  to be the minimum of the hamming distance between  and , and  and , i.e., 

, where  denotes the hamming distance between two strings. Note that 
 is always between 1 and . We can now compute the probability of observing a noisy target  due to 

sequencing error using its minimum hamming distance  relative to the two true targets. For this target , 
assuming that targets are generated randomly from  and that : 

 
We used the law of total probability for the first equality, and the last upper bound is because both hamming 
distances  are greater than . 
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We can now compute probability of observing more than  counts for the third most abundant target. 

Let  to be the counts of the  possible targets. We consider  and  to be the counts for 
the top two true targets  and , respectively. Under the null,  are due to sequencing error, and 
we assume these are arbitrarily ordered (e.g., lexicographically), with the target sequence corresponding to  
being . Therefore, the counts for the third target is obtained as . We can now compute 
the probability of at least  counts for the third target as follows: 

 
The first equality implies that in order for the maximum count of noisy targets be greater than , at least one 
noisy target must have counts greater than . The third equality states that  can be modeled as a Binomial 

random variable  using the total count and probability of observing  which is a function of its 

minimum hamming distance to the top two targets. The fourth equality is because there are  targets with 

minimum hamming distance . For , there are exactly  targets of hamming distance exactly  from  
(choose  out of the  possible locations, and which of the 3 nucleotides to observe at each of the  

locations), and therefore there are at most  targets with minimum hamming distance  between . 
The final inequality utilizes a Chernoff bound (Arratia and Gordon 1989) for the binomial distribution. This 
bound we obtained for the count of the third target decays very quickly as a function of . For example, for 

 and ,  yields ,  yields , and  yields . We have 
provided a rigorous statistical framework to show that it is very unlikely to observe many counts for noisy 
targets that are due to sequencing error. 

Bibliography 

Abdel-Fatah, Tarek M. A., Robert C. Rees, A. Graham Pockley, Paul Moseley, Graham R. Ball, Stephen Y. T. 
Chan, Ian O. Ellis, and Amanda K. Miles. 2017. “The Localization of Pre mRNA Splicing Factor PRPF38B 
Is a Novel Prognostic Biomarker That May Predict Survival Benefit of Trastuzumab in Patients with Breast 
Cancer Overexpressing HER2.” Oncotarget 8 (68): 112245–57. 

Altemose, Nicolas, Glennis A. Logsdon, Andrey V. Bzikadze, Pragya Sidhwani, Sasha A. Langley, Gina V. 
Caldas, Savannah J. Hoyt, et al. 2022. “Complete Genomic and Epigenetic Maps of Human Centromeres.” 
Science 376 (6588): eabl4178. 

Al-Zeer, Munir A., Mariola Dutkiewicz, Annekathrin von Hacht, Denise Kreuzmann, Viola Röhrs, and Jens 
Kurreck. 2019. “Alternatively Spliced Variants of the 5’-UTR of the ARPC2 mRNA Regulate Translation by 
an Internal Ribosome Entry Site (IRES) Harboring a Guanine-Quadruplex Motif.” RNA Biology. 
https://doi.org/10.1080/15476286.2019.1652524. 

Arratia, R., and L. Gordon. 1989. “Tutorial on Large Deviations for the Binomial Distribution.” Bulletin of 
Mathematical Biology 51 (1): 125–31. 

Arzalluz-Luque, Ángeles, and Ana Conesa. 2018. “Single-Cell RNAseq for the Study of Isoforms-How Is That 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=X_1%2C%20X_2%2C%20%5Chdots%2C%20X_%7B4%5EL%7D#0
https://www.codecogs.com/eqnedit.php?latex=4%5EL#0
https://www.codecogs.com/eqnedit.php?latex=X_1#0
https://www.codecogs.com/eqnedit.php?latex=X_2#0
https://www.codecogs.com/eqnedit.php?latex=y_1#0
https://www.codecogs.com/eqnedit.php?latex=y_2#0
https://www.codecogs.com/eqnedit.php?latex=X_3%2C%20%5Chdots%2C%20X_k#0
https://www.codecogs.com/eqnedit.php?latex=X_i#0
https://www.codecogs.com/eqnedit.php?latex=y_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmax%20(X_3%2C%5Chdots%2CX_%7B4%5EL%7D)#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=X_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BBin%7D(M%2Cp_%7B%5Cell(y_i)%7D)#0
https://www.codecogs.com/eqnedit.php?latex=y_i#0
https://www.codecogs.com/eqnedit.php?latex=2%7BL%20%5Cchoose%20%5Cell%7D%203%5E%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=y_1#0
https://www.codecogs.com/eqnedit.php?latex=%7BL%20%5Cchoose%20%5Cell%7D%203%5E%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=y_1#0
https://www.codecogs.com/eqnedit.php?latex=%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=L#0
https://www.codecogs.com/eqnedit.php?latex=%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=2%7BL%20%5Cchoose%20%5Cell%7D%203%5E%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=y_1%2C%20y_2#0
https://paperpile.com/c/0ZUrap/2RjI
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=M%3D50#0
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon%3D0.01#0
https://www.codecogs.com/eqnedit.php?latex=K%3D4#0
https://www.codecogs.com/eqnedit.php?latex=.01#0
https://www.codecogs.com/eqnedit.php?latex=K%3D5#0
https://www.codecogs.com/eqnedit.php?latex=1E-5#0
https://www.codecogs.com/eqnedit.php?latex=K%3D7#0
https://www.codecogs.com/eqnedit.php?latex=1E-10#0
http://paperpile.com/b/0ZUrap/LrNxw
http://paperpile.com/b/0ZUrap/LrNxw
http://paperpile.com/b/0ZUrap/LrNxw
http://paperpile.com/b/0ZUrap/LrNxw
http://paperpile.com/b/0ZUrap/BCknQ
http://paperpile.com/b/0ZUrap/BCknQ
http://paperpile.com/b/0ZUrap/BCknQ
http://paperpile.com/b/0ZUrap/KW0Ki
http://paperpile.com/b/0ZUrap/KW0Ki
http://paperpile.com/b/0ZUrap/KW0Ki
http://paperpile.com/b/0ZUrap/KW0Ki
http://dx.doi.org/10.1080/15476286.2019.1652524
http://paperpile.com/b/0ZUrap/KW0Ki
http://paperpile.com/b/0ZUrap/2RjI
http://paperpile.com/b/0ZUrap/2RjI
http://paperpile.com/b/0ZUrap/p0uqQ
https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
Possible?” Genome Biology 19 (1): 110. 

Baharav, Tavor Z., David Tse, and Julia Salzman. 2023. “OASIS: An Interpretable, Finite-Sample Valid 
Alternative to Pearson’s X2 for Scientific Discovery.” bioRxiv. https://doi.org/10.1101/2023.03.16.533008. 

Barrett, T. B., P. Sampson, G. K. Owens, S. M. Schwartz, and E. P. Benditt. 1983. “Polyploid Nuclei in Human 
Artery Wall Smooth Muscle Cells.” Proceedings of the National Academy of Sciences of the United States 
of America 80 (3): 882–85. 

Biterge, Burcu, Florian Richter, Gerhard Mittler, and Robert Schneider. 2014. “Methylation of Histone H4 at 
Aspartate 24 by Protein L-Isoaspartate O-Methyltransferase (PCMT1) Links Histone Modifications with 
Protein Homeostasis.” Scientific Reports 4 (October):6674. 

Bonnal, Sophie C., Irene López-Oreja, and Juan Valcárcel. 2020. “Roles and Mechanisms of Alternative 
Splicing in Cancer — Implications for Care.” Nature Reviews Clinical Oncology. 
https://doi.org/10.1038/s41571-020-0350-x. 

Buen Abad Najar, Carlos F., Prakruthi Burra, Nir Yosef, and Liana F. Lareau. 2022. “Identifying Cell 
State-Associated Alternative Splicing Events and Their Coregulation.” Genome Research, July. 
https://doi.org/10.1101/gr.276109.121. 

Buen Abad Najar, Carlos F., Nir Yosef, and Liana F. Lareau. 2020. “Coverage-Dependent Bias Creates the 
Appearance of Binary Splicing in Single Cells.” eLife 9 (June). https://doi.org/10.7554/eLife.54603. 

Buratti, Emanuele, and Francisco E. Baralle. 2001. “Characterization and Functional Implications of the RNA 
Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9.” Journal of 
Biological Chemistry. https://doi.org/10.1074/jbc.m104236200. 

Chaung, Kaitlin, Tavor Z. Baharav, George Henderson, Ivan N. Zheludev, Peter L. Wang, and Julia Salzman. 
2023. “SPLASH: A Statistical, Reference-Free Genomic Algorithm Unifies Biological Discovery.” Cell 186 
(25): 5440–56.e26. 

Chen, Yuhao, and Xiaowei Wang. 2020. “miRDB: An Online Database for Prediction of Functional microRNA 
Targets.” Nucleic Acids Research 48 (D1): D127–31. 

Cmero, Marek, Breon Schmidt, Ian J. Majewski, Paul G. Ekert, Alicia Oshlack, and Nadia M. Davidson. 2021. 
“MINTIE: Identifying Novel Structural and Splice Variants in Transcriptomes Using RNA-Seq Data.” 
Genome Biology 22 (1): 296. 

Cohen-Fultheim, Roni, and Erez Y. Levanon. 2021. “Detection of A-to-I Hyper-Edited RNA Sequences.” 
Methods in Molecular Biology  2181:213–27. 

Cotto, Kelsy C., Yang-Yang Feng, Avinash Ramu, Megan Richters, Sharon L. Freshour, Zachary L. Skidmore, 
Huiming Xia, et al. 2023. “Integrated Analysis of Genomic and Transcriptomic Data for the Discovery of 
Splice-Associated Variants in Cancer.” Nature Communications 14 (1): 1589. 

Cully, Megan, Jessica Shiu, Roland P. Piekorz, William J. Muller, Susan J. Done, and Tak W. Mak. 2005. 
“Transforming Acidic Coiled Coil 1 Promotes Transformation and Mammary Tumorigenesis.” Cancer 
Research 65 (22): 10363–70. 

Dehghannasiri, Roozbeh, Julia Eve Olivieri, and Julia Salzman. 2020. “Specific Splice Junction Detection in 
Single Cells with SICILIAN.” bioRxiv. https://doi.org/10.1101/2020.04.14.041905. 

Ding, Fangyuan, Christina J. Su, Kehuan Kuo Edmonds, Guohao Liang, and Michael B. Elowitz. 2022. 
“Dynamics and Functional Roles of Splicing Factor Autoregulation.” Cell Reports 39 (12): 110985. 

Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, 
Mark Chaisson, and Thomas R. Gingeras. 2013. “STAR: Ultrafast Universal RNA-Seq Aligner.” 
Bioinformatics  29 (1): 15–21. 

Eisenberg, Eli, and Erez Y. Levanon. 2018. “A-to-I RNA Editing — Immune Protector and Transcriptome 
Diversifier.” Nature Reviews Genetics. https://doi.org/10.1038/s41576-018-0006-1. 

Estany, Joan, Marc Tor, Daniel Villalba, Lluís Bosch, David Gallardo, Neus Jiménez, Laura Altet, et al. 2007. 
“Association of CA Repeat Polymorphism at Intron 1 of Insulin-like Growth Factor (IGF-I) Gene with 
Circulating IGF-I Concentration, Growth, and Fatness in Swine.” Physiological Genomics 31 (2): 236–43. 

Ezkurdia, Iakes, Jose Manuel Rodriguez, Enrique Carrillo-de Santa Pau, Jesús Vázquez, Alfonso Valencia, 
and Michael L. Tress. 2015. “Most Highly Expressed Protein-Coding Genes Have a Single Dominant 
Isoform.” Journal of Proteome Research. https://doi.org/10.1021/pr501286b. 

Freedman, Adam H., Michele Clamp, and Timothy B. Sackton. 2021. “Error, Noise and Bias in de Novo 
Transcriptome Assemblies.” Molecular Ecology Resources 21 (1): 18–29. 

Gordon, Sydney R., Roy L. Maute, Ben W. Dulken, Gregor Hutter, Benson M. George, Melissa N. McCracken, 
Rohit Gupta, et al. 2017. “PD-1 Expression by Tumour-Associated Macrophages Inhibits Phagocytosis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

http://paperpile.com/b/0ZUrap/p0uqQ
http://paperpile.com/b/0ZUrap/0aa5
http://paperpile.com/b/0ZUrap/0aa5
http://dx.doi.org/10.1101/2023.03.16.533008
http://paperpile.com/b/0ZUrap/0aa5
http://paperpile.com/b/0ZUrap/4ewmH
http://paperpile.com/b/0ZUrap/4ewmH
http://paperpile.com/b/0ZUrap/4ewmH
http://paperpile.com/b/0ZUrap/IavWL
http://paperpile.com/b/0ZUrap/IavWL
http://paperpile.com/b/0ZUrap/IavWL
http://paperpile.com/b/0ZUrap/AH8zI
http://paperpile.com/b/0ZUrap/AH8zI
http://paperpile.com/b/0ZUrap/AH8zI
http://dx.doi.org/10.1038/s41571-020-0350-x
http://paperpile.com/b/0ZUrap/AH8zI
http://paperpile.com/b/0ZUrap/KE8aB
http://paperpile.com/b/0ZUrap/KE8aB
http://paperpile.com/b/0ZUrap/KE8aB
http://dx.doi.org/10.1101/gr.276109.121
http://paperpile.com/b/0ZUrap/KE8aB
http://paperpile.com/b/0ZUrap/v6TN1
http://paperpile.com/b/0ZUrap/v6TN1
http://dx.doi.org/10.7554/eLife.54603
http://paperpile.com/b/0ZUrap/v6TN1
http://paperpile.com/b/0ZUrap/gFkdo
http://paperpile.com/b/0ZUrap/gFkdo
http://paperpile.com/b/0ZUrap/gFkdo
http://dx.doi.org/10.1074/jbc.m104236200
http://paperpile.com/b/0ZUrap/gFkdo
http://paperpile.com/b/0ZUrap/fh55
http://paperpile.com/b/0ZUrap/fh55
http://paperpile.com/b/0ZUrap/fh55
http://paperpile.com/b/0ZUrap/Ddprx
http://paperpile.com/b/0ZUrap/Ddprx
http://paperpile.com/b/0ZUrap/YxKM
http://paperpile.com/b/0ZUrap/YxKM
http://paperpile.com/b/0ZUrap/YxKM
http://paperpile.com/b/0ZUrap/yOuwp
http://paperpile.com/b/0ZUrap/yOuwp
http://paperpile.com/b/0ZUrap/14s7
http://paperpile.com/b/0ZUrap/14s7
http://paperpile.com/b/0ZUrap/14s7
http://paperpile.com/b/0ZUrap/Ltzkz
http://paperpile.com/b/0ZUrap/Ltzkz
http://paperpile.com/b/0ZUrap/Ltzkz
http://paperpile.com/b/0ZUrap/QIfs5
http://paperpile.com/b/0ZUrap/QIfs5
http://dx.doi.org/10.1101/2020.04.14.041905
http://paperpile.com/b/0ZUrap/QIfs5
http://paperpile.com/b/0ZUrap/jeIA4
http://paperpile.com/b/0ZUrap/jeIA4
http://paperpile.com/b/0ZUrap/lGyIO
http://paperpile.com/b/0ZUrap/lGyIO
http://paperpile.com/b/0ZUrap/lGyIO
http://paperpile.com/b/0ZUrap/HVwxY
http://paperpile.com/b/0ZUrap/HVwxY
http://dx.doi.org/10.1038/s41576-018-0006-1
http://paperpile.com/b/0ZUrap/HVwxY
http://paperpile.com/b/0ZUrap/k6Eou
http://paperpile.com/b/0ZUrap/k6Eou
http://paperpile.com/b/0ZUrap/k6Eou
http://paperpile.com/b/0ZUrap/LWu3G
http://paperpile.com/b/0ZUrap/LWu3G
http://paperpile.com/b/0ZUrap/LWu3G
http://dx.doi.org/10.1021/pr501286b
http://paperpile.com/b/0ZUrap/LWu3G
http://paperpile.com/b/0ZUrap/eYDl
http://paperpile.com/b/0ZUrap/eYDl
http://paperpile.com/b/0ZUrap/VectE
http://paperpile.com/b/0ZUrap/VectE
https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
and Tumour Immunity.” Nature 545 (7655): 495–99. 

Gray, Phillip J., Thomas Prince, Jinrong Cheng, Mary Ann Stevenson, and Stuart K. Calderwood. 2008. 
“Targeting the Oncogene and Kinome Chaperone CDC37.” Nature Reviews. Cancer 8 (7): 491–95. 

Gupta, Namita T., Jason A. Vander Heiden, Mohamed Uduman, Daniel Gadala-Maria, Gur Yaari, and Steven 
H. Kleinstein. 2015. “Change-O: A Toolkit for Analyzing Large-Scale B Cell Immunoglobulin Repertoire 
Sequencing Data.” Bioinformatics  31 (20): 3356–58. 

Haas, Brian J., Alexander Dobin, Bo Li, Nicolas Stransky, Nathalie Pochet, and Aviv Regev. 2019. “Accuracy 
Assessment of Fusion Transcript Detection via Read-Mapping and de Novo Fusion Transcript 
Assembly-Based Methods.” Genome Biology 20 (1): 213. 

Hoter, Abdullah, Marwan E. El-Sabban, and Hassan Y. Naim. 2018. “The HSP90 Family: Structure, Regulation, 
Function, and Implications in Health and Disease.” International Journal of Molecular Sciences 19 (9). 
https://doi.org/10.3390/ijms19092560. 

Iwai, Naomi, Zhijian Zhou, Dennis R. Roop, and Richard R. Behringer. 2008. “Horizontal Basal Cells Are 
Multipotent Progenitors in Normal and Injured Adult Olfactory Epithelium.” Stem Cells 26 (5): 1298–1306. 

Jaberi, Elham, Emilie Tresse, Kirsten Grønbæk, Joachim Weischenfeldt, and Shohreh Issazadeh-Navikas. 
2020. “Identification of Unique and Shared Mitochondrial DNA Mutations in Neurodegeneration and 
Cancer by Single-Cell Mitochondrial DNA Structural Variation Sequencing (MitoSV-Seq).” EBioMedicine 
57 (July):102868. 

Kalvari, Ioanna, Eric P. Nawrocki, Joanna Argasinska, Natalia Quinones-Olvera, Robert D. Finn, Alex Bateman, 
and Anton I. Petrov. 2018. “Non-Coding RNA Analysis Using the Rfam Database.” Current Protocols in 
Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.] 62 (1): e51. 

Kim, Eunhee, Janine O. Ilagan, Yang Liang, Gerrit M. Daubner, Stanley C-W Lee, Aravind Ramakrishnan, Yue 
Li, et al. 2015. “SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon 
Recognition.” Cancer Cell 27 (5): 617–30. 

Kojima, Yoko, Jens-Peter Volkmer, Kelly McKenna, Mete Civelek, Aldons Jake Lusis, Clint L. Miller, Daniel 
Direnzo, et al. 2016. “CD47-Blocking Antibodies Restore Phagocytosis and Prevent Atherosclerosis.” 
Nature 536 (7614): 86–90. 

Königs, Vanessa, Camila de Oliveira Freitas Machado, Benjamin Arnold, Nicole Blümel, Anfisa Solovyeva, 
Sinah Löbbert, Michal Schafranek, et al. 2020. “SRSF7 Maintains Its Homeostasis through the Expression 
of Split-ORFs and Nuclear Body Assembly.” Nature Structural & Molecular Biology 27 (3): 260–73. 

Kung, Che-Pei, Leonard B. Maggi Jr, and Jason D. Weber. 2018. “The Role of RNA Editing in Cancer 
Development and Metabolic Disorders.” Frontiers in Endocrinology 9 (December):762. 

Lareau, Liana F., Maki Inada, Richard E. Green, Jordan C. Wengrod, and Steven E. Brenner. 2007. 
“Unproductive Splicing of SR Genes Associated with Highly Conserved and Ultraconserved DNA 
Elements.” Nature 446 (7138): 926–29. 

Lindeman, Ida, Guy Emerton, Lira Mamanova, Omri Snir, Krzysztof Polanski, Shuo-Wang Qiao, Ludvig M. 
Sollid, Sarah A. Teichmann, and Michael J. T. Stubbington. 2018. “BraCeR: B-Cell-Receptor 
Reconstruction and Clonality Inference from Single-Cell RNA-Seq.” Nature Methods 15 (8): 563–65. 

Lin, Guohong, Tianzhun Wu, Xing Gao, Ziqin He, and Wenwei Nong. 2022. “Research Progress of Long 
Non-Coding RNA GAS5 in Malignant Tumors.” Frontiers in Oncology 12 (June):846497. 

Li, Yang I., David A. Knowles, Jack Humphrey, Alvaro N. Barbeira, Scott P. Dickinson, Hae Kyung Im, and 
Jonathan K. Pritchard. 2018. “Annotation-Free Quantification of RNA Splicing Using LeafCutter.” Nature 
Genetics 50 (1): 151–58. 

Lu, Junjie, and David M. Gilbert. 2007. “Proliferation-Dependent and Cell Cycle Regulated Transcription of 
Mouse Pericentric Heterochromatin.” The Journal of Cell Biology 179 (3): 411–21. 

Mabin, Justin W., Peter W. Lewis, David A. Brow, and Heidi Dvinge. 2021. “Human Spliceosomal snRNA 
Sequence Variants Generate Variant Spliceosomes.” RNA  27 (10): 1186–1203. 

Mahmoudabadi, Gita, Tabula Sapiens Consortium, and Stephen R. Quake. 2023. “Single Cell Transcriptomics 
Reveals the Hidden Microbiomes of Human Tissues.” bioRxiv. https://doi.org/10.1101/2022.10.11.511790. 

Ma, Yiyi, Eric B. Dammer, Daniel Felsky, Duc M. Duong, Hans-Ulrich Klein, Charles C. White, Maotian Zhou, et 
al. 2021. “Atlas of RNA Editing Events Affecting Protein Expression in Aged and Alzheimer’s Disease 
Human Brain Tissue.” Nature Communications. https://doi.org/10.1038/s41467-021-27204-9. 

Mazar, Joseph, Amy Rosado, John Shelley, John Marchica, and Tamarah J. Westmoreland. 2016. “The Long 
Non-Coding RNA GAS5 Differentially Regulates Cell Cycle Arrest and Apoptosis through Activation of 
BRCA1 and p53 in Human Neuroblastoma.” Oncotarget 8 (4): 6589–6607. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

http://paperpile.com/b/0ZUrap/VectE
http://paperpile.com/b/0ZUrap/Gookq
http://paperpile.com/b/0ZUrap/Gookq
http://paperpile.com/b/0ZUrap/DEnE
http://paperpile.com/b/0ZUrap/DEnE
http://paperpile.com/b/0ZUrap/DEnE
http://paperpile.com/b/0ZUrap/Alme
http://paperpile.com/b/0ZUrap/Alme
http://paperpile.com/b/0ZUrap/Alme
http://paperpile.com/b/0ZUrap/jUSQX
http://paperpile.com/b/0ZUrap/jUSQX
http://paperpile.com/b/0ZUrap/jUSQX
http://dx.doi.org/10.3390/ijms19092560
http://paperpile.com/b/0ZUrap/jUSQX
http://paperpile.com/b/0ZUrap/J4vcn
http://paperpile.com/b/0ZUrap/J4vcn
http://paperpile.com/b/0ZUrap/NSB9x
http://paperpile.com/b/0ZUrap/NSB9x
http://paperpile.com/b/0ZUrap/NSB9x
http://paperpile.com/b/0ZUrap/NSB9x
http://paperpile.com/b/0ZUrap/O4BH
http://paperpile.com/b/0ZUrap/O4BH
http://paperpile.com/b/0ZUrap/O4BH
http://paperpile.com/b/0ZUrap/SPMas
http://paperpile.com/b/0ZUrap/SPMas
http://paperpile.com/b/0ZUrap/SPMas
http://paperpile.com/b/0ZUrap/LTQ11
http://paperpile.com/b/0ZUrap/LTQ11
http://paperpile.com/b/0ZUrap/LTQ11
http://paperpile.com/b/0ZUrap/Lp2HJ
http://paperpile.com/b/0ZUrap/Lp2HJ
http://paperpile.com/b/0ZUrap/Lp2HJ
http://paperpile.com/b/0ZUrap/xj80I
http://paperpile.com/b/0ZUrap/xj80I
http://paperpile.com/b/0ZUrap/3F2JT
http://paperpile.com/b/0ZUrap/3F2JT
http://paperpile.com/b/0ZUrap/3F2JT
http://paperpile.com/b/0ZUrap/GsWgA
http://paperpile.com/b/0ZUrap/GsWgA
http://paperpile.com/b/0ZUrap/GsWgA
http://paperpile.com/b/0ZUrap/nIRp
http://paperpile.com/b/0ZUrap/nIRp
http://paperpile.com/b/0ZUrap/yZcj
http://paperpile.com/b/0ZUrap/yZcj
http://paperpile.com/b/0ZUrap/yZcj
http://paperpile.com/b/0ZUrap/nUfu
http://paperpile.com/b/0ZUrap/nUfu
http://paperpile.com/b/0ZUrap/P7U4L
http://paperpile.com/b/0ZUrap/P7U4L
http://paperpile.com/b/0ZUrap/0IqrU
http://paperpile.com/b/0ZUrap/0IqrU
http://dx.doi.org/10.1101/2022.10.11.511790
http://paperpile.com/b/0ZUrap/0IqrU
http://paperpile.com/b/0ZUrap/pLgxV
http://paperpile.com/b/0ZUrap/pLgxV
http://paperpile.com/b/0ZUrap/pLgxV
http://dx.doi.org/10.1038/s41467-021-27204-9
http://paperpile.com/b/0ZUrap/pLgxV
http://paperpile.com/b/0ZUrap/oh0w
http://paperpile.com/b/0ZUrap/oh0w
http://paperpile.com/b/0ZUrap/oh0w
https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
Mistry, Jaina, Robert D. Finn, Sean R. Eddy, Alex Bateman, and Marco Punta. 2013. “Challenges in Homology 

Search: HMMER3 and Convergent Evolution of Coiled-Coil Regions.” Nucleic Acids Research 41 (12): 
e121. 

Morimoto, Hirofumi, Yasuhiro Hida, Nako Maishi, Hiroshi Nishihara, Yutaka Hatanaka, Cong Li, Yoshihiro 
Matsuno, Toru Nakamura, Satoshi Hirano, and Kyoko Hida. 2021. “Biglycan, Tumor Endothelial Cell 
Secreting Proteoglycan, as Possible Biomarker for Lung Cancer.” Thoracic Cancer 12 (9): 1347–57. 

Ni, Julie Z., Leslie Grate, John Paul Donohue, Christine Preston, Naomi Nobida, Georgeann O’Brien, Lily 
Shiue, Tyson A. Clark, John E. Blume, and Manuel Ares Jr. 2007. “Ultraconserved Elements Are 
Associated with Homeostatic Control of Splicing Regulators by Alternative Splicing and 
Nonsense-Mediated Decay.” Genes & Development 21 (6): 708–18. 

O’Donnell-Luria, Anne H., Lynn S. Pais, Víctor Faundes, Jordan C. Wood, Abigail Sveden, Victor Luria, Rami 
Abou Jamra, et al. 2019. “Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental 
Disorders and Epilepsy.” American Journal of Human Genetics 104 (6): 1210–22. 

Ola, Roxana, Sylvie Lefebvre, Karl-Heinz Braunewell, Kirsi Sainio, and Hannu Sariola. 2012. “The Expression 
of Visinin-like 1 during Mouse Embryonic Development.” Gene Expression Patterns: GEP 12 (1-2): 53–62. 

Olivieri, Julia Eve, Roozbeh Dehghannasiri, and Julia Salzman. 2022. “The SpliZ Generalizes ‘Percent Spliced 
in’ to Reveal Regulated Splicing at Single-Cell Resolution.” Nature Methods 19 (3): 307–10. 

Olivieri, Julia Eve, Roozbeh Dehghannasiri, Peter Wang, Sori Jang, Antoine de Morree, Serena Y. Tan, Jingsi 
Ming, et al. 2021. “RNA Splicing Programs Define Tissue Compartments and Cell Types at Single Cell 
Resolution.” bioRxiv. https://doi.org/10.1101/2021.05.01.442281. 

Pan, Qun, Ofer Shai, Leo J. Lee, Brendan J. Frey, and Benjamin J. Blencowe. 2008. “Deep Surveying of 
Alternative Splicing Complexity in the Human Transcriptome by High-Throughput Sequencing.” Nature 
Genetics 40 (12): 1413–15. 

Perissi, Valentina, Kristen Jepsen, Christopher K. Glass, and Michael G. Rosenfeld. 2010. “Deconstructing 
Repression: Evolving Models of Co-Repressor Action.” Nature Reviews. Genetics 11 (2): 109–23. 

Picardi, Ernesto, Anna Maria D’Erchia, Claudio Lo Giudice, and Graziano Pesole. 2017. “REDIportal: A 
Comprehensive Database of A-to-I RNA Editing Events in Humans.” Nucleic Acids Research 45 (D1): 
D750–57. 

Probst, Aline V., Ikuhiro Okamoto, Miguel Casanova, Fatima El Marjou, Patricia Le Baccon, and Geneviève 
Almouzni. 2010. “A Strand-Specific Burst in Transcription of Pericentric Satellites Is Required for 
Chromocenter Formation and Early Mouse Development.” Developmental Cell 19 (4): 625–38. 

Quinlan, Aaron R. 2014. “BEDTools: The Swiss-Army Tool for Genome Feature Analysis.” Current Protocols in 
Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.] 47 (September):11.12.1–34. 

Raihan, Obayed, Afrina Brishti, Qin Li, Qilun Zhang, Dingfeng Li, Xiaohui Li, Qingyang Zhang, et al. 2019. 
“SRSF11 Loss Leads to Aging-Associated Cognitive Decline by Modulating LRP8 and ApoE.” Cell 
Reports. https://doi.org/10.1016/j.celrep.2019.06.002. 

Riley, Donald E., and John N. Krieger. 2009. “UTR Dinucleotide Simple Sequence Repeat Evolution Exhibits 
Recurring Patterns Including Regulatory Sequence Motif Replacements.” Gene 429 (1-2): 80–86. 

Schmucker, D., J. C. Clemens, H. Shu, C. A. Worby, J. Xiao, M. Muda, J. E. Dixon, and S. L. Zipursky. 2000. 
“Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity.” Cell 101 
(6): 671–84. 

Schroeder, Harry W., Jr. 2006. “Similarity and Divergence in the Development and Expression of the Mouse 
and Human Antibody Repertoires.” Developmental and Comparative Immunology 30 (1-2): 119–35. 

Sherman, Rachel M., Juliet Forman, Valentin Antonescu, Daniela Puiu, Michelle Daya, Nicholas Rafaels, 
Meher Preethi Boorgula, et al. 2019. “Assembly of a Pan-Genome from Deep Sequencing of 910 Humans 
of African Descent.” Nature Genetics 51 (1): 30–35. 

Shinde, D. 2003. “Taq DNA Polymerase Slippage Mutation Rates Measured by PCR and Quasi-Likelihood 
Analysis: (CA/GT)n and (A/T)n Microsatellites.” Nucleic Acids Research. 
https://doi.org/10.1093/nar/gkg178. 

Shiryev, Sergey A., and Richa Agarwala. 2024. “Indexing and Searching Petabase-Scale Nucleotide 
Resources.” Nature Methods 21 (6): 994–1002. 

Shkreta, Lulzim, Aurélie Delannoy, Anna Salvetti, and Benoit Chabot. 2021. “SRSF10: An Atypical Splicing 
Regulator with Critical Roles in Stress Response, Organ Development, and Viral Replication.” RNA  27 
(11): 1302–17. 

Sproviero, William, Aleksey Shatunov, Daniel Stahl, Maryam Shoai, Wouter van Rheenen, Ashley R. Jones, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

http://paperpile.com/b/0ZUrap/5bmHX
http://paperpile.com/b/0ZUrap/5bmHX
http://paperpile.com/b/0ZUrap/5bmHX
http://paperpile.com/b/0ZUrap/3z4WJ
http://paperpile.com/b/0ZUrap/3z4WJ
http://paperpile.com/b/0ZUrap/3z4WJ
http://paperpile.com/b/0ZUrap/hEiVA
http://paperpile.com/b/0ZUrap/hEiVA
http://paperpile.com/b/0ZUrap/hEiVA
http://paperpile.com/b/0ZUrap/hEiVA
http://paperpile.com/b/0ZUrap/wT7n4
http://paperpile.com/b/0ZUrap/wT7n4
http://paperpile.com/b/0ZUrap/wT7n4
http://paperpile.com/b/0ZUrap/Uqfgd
http://paperpile.com/b/0ZUrap/Uqfgd
http://paperpile.com/b/0ZUrap/0SyXO
http://paperpile.com/b/0ZUrap/0SyXO
http://paperpile.com/b/0ZUrap/peXGl
http://paperpile.com/b/0ZUrap/peXGl
http://paperpile.com/b/0ZUrap/peXGl
http://dx.doi.org/10.1101/2021.05.01.442281
http://paperpile.com/b/0ZUrap/peXGl
http://paperpile.com/b/0ZUrap/RXbwB
http://paperpile.com/b/0ZUrap/RXbwB
http://paperpile.com/b/0ZUrap/RXbwB
http://paperpile.com/b/0ZUrap/HmCtr
http://paperpile.com/b/0ZUrap/HmCtr
http://paperpile.com/b/0ZUrap/vkET
http://paperpile.com/b/0ZUrap/vkET
http://paperpile.com/b/0ZUrap/vkET
http://paperpile.com/b/0ZUrap/ndVE
http://paperpile.com/b/0ZUrap/ndVE
http://paperpile.com/b/0ZUrap/ndVE
http://paperpile.com/b/0ZUrap/Qukw
http://paperpile.com/b/0ZUrap/Qukw
http://paperpile.com/b/0ZUrap/IN0XL
http://paperpile.com/b/0ZUrap/IN0XL
http://paperpile.com/b/0ZUrap/IN0XL
http://dx.doi.org/10.1016/j.celrep.2019.06.002
http://paperpile.com/b/0ZUrap/IN0XL
http://paperpile.com/b/0ZUrap/tp9V3
http://paperpile.com/b/0ZUrap/tp9V3
http://paperpile.com/b/0ZUrap/mMkj4
http://paperpile.com/b/0ZUrap/mMkj4
http://paperpile.com/b/0ZUrap/mMkj4
http://paperpile.com/b/0ZUrap/vBeoW
http://paperpile.com/b/0ZUrap/vBeoW
http://paperpile.com/b/0ZUrap/WHw4N
http://paperpile.com/b/0ZUrap/WHw4N
http://paperpile.com/b/0ZUrap/WHw4N
http://paperpile.com/b/0ZUrap/JaQVm
http://paperpile.com/b/0ZUrap/JaQVm
http://paperpile.com/b/0ZUrap/JaQVm
http://dx.doi.org/10.1093/nar/gkg178
http://paperpile.com/b/0ZUrap/JaQVm
http://paperpile.com/b/0ZUrap/fDGV
http://paperpile.com/b/0ZUrap/fDGV
http://paperpile.com/b/0ZUrap/zzblM
http://paperpile.com/b/0ZUrap/zzblM
http://paperpile.com/b/0ZUrap/zzblM
http://paperpile.com/b/0ZUrap/HOWRH
https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
Safa Al-Sarraj, et al. 2017. “ATXN2 Trinucleotide Repeat Length Correlates with Risk of ALS.” 
Neurobiology of Aging 51 (March):178.e1–178.e9. 

Stoler, Nicholas, and Anton Nekrutenko. 2021. “Sequencing Error Profiles of Illumina Sequencing Instruments.” 
NAR Genomics and Bioinformatics 3 (1): lqab019. 

Swanson, Lucas, Gordon Robertson, Karen L. Mungall, Yaron S. Butterfield, Readman Chiu, Richard D. 
Corbett, T. Roderick Docking, et al. 2013. “Barnacle: Detecting and Characterizing Tandem Duplications 
and Fusions in Transcriptome Assemblies.” BMC Genomics 14 (August):550. 

Tabula Sapiens Consortium*, Robert C. Jones, Jim Karkanias, Mark A. Krasnow, Angela Oliveira Pisco, 
Stephen R. Quake, Julia Salzman, et al. 2022. “The Tabula Sapiens: A Multiple-Organ, Single-Cell 
Transcriptomic Atlas of Humans.” Science 376 (6594): eabl4896. 

Takahashi, Nobuhiro, Noboru Sasagawa, Koichi Suzuki, and Shoichi Ishiura. 2000. “The CUG-Binding Protein 
Binds Specifically to UG Dinucleotide Repeats in a Yeast Three-Hybrid System.” Biochemical and 
Biophysical Research Communications. https://doi.org/10.1006/bbrc.2000.3694. 

Travaglini, Kyle J., Ahmad N. Nabhan, Lolita Penland, Rahul Sinha, Astrid Gillich, Rene V. Sit, Stephen Chang, 
et al. 2020. “A Molecular Cell Atlas of the Human Lung from Single-Cell RNA Sequencing.” Nature 587 
(7835): 619–25. 

Wang, Rui, Jingyun Li, Xin Zhou, Yunuo Mao, Wendong Wang, Shuai Gao, Wei Wang, et al. 2022. “Single-Cell 
Genomic and Transcriptomic Landscapes of Primary and Metastatic Colorectal Cancer Tumors.” Genome 
Medicine 14 (1): 93. 

Watson, C. T., and F. Breden. 2012. “The Immunoglobulin Heavy Chain Locus: Genetic Variation, Missing 
Data, and Implications for Human Disease.” Genes and Immunity 13 (5): 363–73. 

Werner, Stephan, Lukas Schmidt, Virginie Marchand, Thomas Kemmer, Christoph Falschlunger, Maksim V. 
Sednev, Guillaume Bec, et al. 2020. “Machine Learning of Reverse Transcription Signatures of Variegated 
Polymerases Allows Mapping and Discrimination of Methylated Purines in Limited Transcriptomes.” 
Nucleic Acids Research 48 (7): 3734–46. 

Xu, Caipeng, Xiaohua Chen, Xuetian Zhang, Dapeng Zhao, Zhihui Dou, Xiaodong Xie, Hongyan Li, et al. 2021. 
“RNA-Binding Protein 39: A Promising Therapeutic Target for Cancer.” Cell Death Discovery 7 (1): 214. 

Yagi, Takeshi. 2008. “Clustered Protocadherin Family.” Development, Growth & Differentiation 50 Suppl 1 
(June):S131–40. 

Ye, Jian, Ning Ma, Thomas L. Madden, and James M. Ostell. 2013. “IgBLAST: An Immunoglobulin Variable 
Domain Sequence Analysis Tool.” Nucleic Acids Research 41 (Web Server issue): W34–40. 

Ying, Zhe, Hyae Ran Byun, Qingying Meng, Emily Noble, Guanglin Zhang, Xia Yang, and Fernando 
Gomez-Pinilla. 2018. “Biglycan Gene Connects Metabolic Dysfunction with Brain Disorder.” Biochimica et 
Biophysica Acta, Molecular Basis of Disease 1864 (12): 3679–87. 

Yum, Kevin, Eric T. Wang, and Auinash Kalsotra. 2017. “Myotonic Dystrophy: Disease Repeat Range, 
Penetrance, Age of Onset, and Relationship between Repeat Size and Phenotypes.” Current Opinion in 
Genetics & Development 44 (June):30–37. 

Zeng, Hongkui. 2022. “What Is a Cell Type and How to Define It?” Cell 185 (15): 2739–55. 
Zheng, Hongyu, Cong Ma, and Carl Kingsford. 2022. “Deriving Ranges of Optimal Estimated Transcript 

Expression due to Nonidentifiability.” Journal of Computational Biology: A Journal of Computational 
Molecular Cell Biology 29 (2): 121–39. 

Zuehlke, Abbey D., Kristin Beebe, Len Neckers, and Thomas Prince. 2015. “Regulation and Function of the 
Human HSP90AA1 Gene.” Gene 570 (1): 8–16. 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

http://paperpile.com/b/0ZUrap/HOWRH
http://paperpile.com/b/0ZUrap/HOWRH
http://paperpile.com/b/0ZUrap/hMJDa
http://paperpile.com/b/0ZUrap/hMJDa
http://paperpile.com/b/0ZUrap/0uoz
http://paperpile.com/b/0ZUrap/0uoz
http://paperpile.com/b/0ZUrap/0uoz
http://paperpile.com/b/0ZUrap/i2JnQ
http://paperpile.com/b/0ZUrap/i2JnQ
http://paperpile.com/b/0ZUrap/i2JnQ
http://paperpile.com/b/0ZUrap/8gEbE
http://paperpile.com/b/0ZUrap/8gEbE
http://paperpile.com/b/0ZUrap/8gEbE
http://dx.doi.org/10.1006/bbrc.2000.3694
http://paperpile.com/b/0ZUrap/8gEbE
http://paperpile.com/b/0ZUrap/SguF
http://paperpile.com/b/0ZUrap/SguF
http://paperpile.com/b/0ZUrap/SguF
http://paperpile.com/b/0ZUrap/Q1d1D
http://paperpile.com/b/0ZUrap/Q1d1D
http://paperpile.com/b/0ZUrap/Q1d1D
http://paperpile.com/b/0ZUrap/SjUWm
http://paperpile.com/b/0ZUrap/SjUWm
http://paperpile.com/b/0ZUrap/9PFC
http://paperpile.com/b/0ZUrap/9PFC
http://paperpile.com/b/0ZUrap/9PFC
http://paperpile.com/b/0ZUrap/9PFC
http://paperpile.com/b/0ZUrap/1JGhR
http://paperpile.com/b/0ZUrap/1JGhR
http://paperpile.com/b/0ZUrap/S0IRP
http://paperpile.com/b/0ZUrap/S0IRP
http://paperpile.com/b/0ZUrap/QALf
http://paperpile.com/b/0ZUrap/QALf
http://paperpile.com/b/0ZUrap/rppZm
http://paperpile.com/b/0ZUrap/rppZm
http://paperpile.com/b/0ZUrap/rppZm
http://paperpile.com/b/0ZUrap/zQNC2
http://paperpile.com/b/0ZUrap/zQNC2
http://paperpile.com/b/0ZUrap/zQNC2
http://paperpile.com/b/0ZUrap/JtM7p
http://paperpile.com/b/0ZUrap/mfy2Q
http://paperpile.com/b/0ZUrap/mfy2Q
http://paperpile.com/b/0ZUrap/mfy2Q
http://paperpile.com/b/0ZUrap/5RORv
http://paperpile.com/b/0ZUrap/5RORv
https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


CACGTACTTCGCAT

Figure 1.A.

B.

Sequencing
Reads 

Post-detection statistical analysis
CONVENTIONAL

S
eq

ue
nc

in
g 

R
ea

ds

Read alignment

discarded reads 
(failed to map to genome)

Specialized analysis

Anchor-target count tables

Reference  

Alternative splicing

RNA editing

Antibody diversity

Alternative splicing

SNP

Internal splicing

Antibody diversity

Repeat expansion

A
nc

ho
r 1

A
nc

ho
r 2

A
nc

ho
r 3

Sam
ple

 1
Sam

ple
 2

Statistical 
inference

Compactors

Automated anchor
classificationSPLASH

SPLASH+
Anchors with 

sample-dependent 
target distribution 

Targets
Long assembled 

sequences

Compactors 

statistically classified as sequencing error
 (not used for compactor generation)

Anchor

Step 1 Step 2

…

…

Step 3

…

AACCACGTGGAGG
AACCACGTAGAGG

CCACGTAGAGGATC
CACGTAGCGGATCT
ACGTAGCGGATCTA

ACCACGTACTTCGC
AACCACGTACTTCGC

ACGTA ACGTAG

ACGTAC

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(reads 2,3,4,
          5,6,7,8)

(reads 2,3,4,5)

(reads 6,7,8)

…
…

…
…
…

…
…

…

ACGTAGA

ACGTAGC

ACGTACT

(reads 2,3)

(reads 4,5)

(reads 6,8)

Step n

C.

Fu
si

on
 e

xp
re

ss
io

n 
va

lu
e 

(T
P

M
)

Undetected by compactors Detected by compactors

10-1

100

101

102

103

104

ACGT

ACGTG
(read 1)

Statistical 
threshold

Statistical 
threshold

Statistical 
threshold

Statistical 
threshold

3
1
1

1
1
4

2
1

2
2

1 1
1 2

Sample 1 Sample 2

……

…

Anchor Compactors

Annotation 
By-association

Gene1

Gene1
Gene1

Direct

Annotating the two unmapped compactors through
 their assoication with the aligned compactor

D.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2.

Sequence diversity detected 
by SPLASH+

C
om

pa
ct

or
 re

ad
 c

ou
nt

 
pe

r c
el

l t
yp

e

C
om

pa
ct

or

Clas
sic

al 
mon

oc
yte

 (6
9)

Ske
let

al 
mus

cle
 sa

tel
lite

 st
em

 ce
ll (

19
)

Fibr
ob

las
t o

f b
rea

st 
(17

)

T ce
ll (

10
)

Mac
rop

ha
ge

 (1
8)

Neu
tro

ph
il (

21
)

Epit
he

lia
l c

ell
 (1

4)

Lu
mina

l e
pit

he
lia

l c
ell

 of
 m

am
mary

 gl
an

d (
9)

Mes
yn

ch
em

al 
ste

m ce
ll (

16
)

Cap
illa

ry 
en

do
the

lia
l c

ell
 (8

)

Inn
ate

 ly
mph

oid
 ce

ll (
7)

CD4+
 T ce

ll (
6)

Mem
ory

 B
 ce

ll (
15

)

B ce
ll (

17
)

Eryt
hro

cy
te 

(9)

Peri
cy

te 
ce

ll (
7)

Stro
mal 

ce
ll (

5)

CD8+
 T ce

ll (
14

)

Bas
al 

ce
ll (

32
)

30010 20 30 40 50 60 70 80 90

End
oth

eli
al 

 ce
ll o

f v
as

cu
lar

 tre
e (

4)

Donor11 Lung
Donor12 Heart
Donor2 Muscle
Donor2 Spleen
Donor4 Mammary
Donor4 Muscle
Donor4 Tongue
Donor7 Blood
Donor7 Lymph node
Donor8 Prostate

Donor-tissues represented
 in each cell type

GA T C

A

100

101

102

200

1000100

410
367

20

S
TA

R
 M

ap
pi

ng
U

6 
R

FA
M

A
bu

nd
an

ce
R

N
U

6 
re

fe
re

nc
es

C
om

pa
ct

or
s

B

Annotated by association

Directly annotated

Minimum Hamming distance
 to an annotated RNU6

Fr
ac

tio
n 

of
 c

om
pa

ct
or

s

0
10 20 30 40

0.2

0.4

0.6

0.8

1

0

C

D

RNU6-6P

Multimapped

Multimapped

Multimapped

Compactor count per cell

30 2 6 16

14

12 4 2

886 6

8 8 6

3 3

121212
RNU6-8

RNU6-6P

RNU6-116P

CG T G C T CG C T T CGG C AG C A C A T A T A C T A A A A T T GG A A CG A T A C AG AG A AG A T T AG C A T GG C C C C T G CG C A AGG A T G A C A CG C A A A T T CG T G A AG CG T T C C A T A T T T T G CG C AG T C T G TCG T G C T CG C T T CGG C AG C A C A T A T A C T A A A A T T GG A A CG A T A C AG AG A AG A T T AG C A T GG C C C C T G CG C A AGG A T G A C A CG C A A A T T CG T G A AG CG T T C C A T A T T T T G CG C AG T C T G TC

C T T CGG C AG C A C A T A T A C T A A A A T T GG A A CG A T A C AG AG A AG A T T AG C A T GG C C C C T G CG C A AGG A T G A C A CG C A A A T T CG T G A AG CG T T C C A T A T T TC T T CGG C AG C A C A T A T A C T A A A A T T GG A A CG A T A C AG AG A AG A T T AG C A T GG C C C C T G CG C A AGG A T G A C A CG C A A A T T CG T G A AG CG T T C C A T A T T T

AG T G C T CG C T T C AG C AG C A C A T A T A T A C T A A A A T T GG A A T G A T A C AG AG A AG A T T AG C A T GG C C C C T G CG C A A AG A T G A C A CG C A A AAG T G C T CG C T T C AG C AG C A C A T A T A T A C T A A A A T T GG A A T G A T A C AG AG A AG A T T AG C A T GG C C C C T G CG C A A AG A T G A C A CG C A A A

Compactor extends beyond 
3’ end of RNU6 geneGA T C

Chr9

Chr13

Chr10

Chr14

Chr11

Chr12

Chr15
Chr16

Chr1
Chr2
Chr3
Chr4
Chr5

Chr7
Chr6

Chr8

Chr17

Chr21

Chr18

Chr22

Chr19
Chr20

ChrY

ChrX

Total abundance

Pericentromeric repeat

Anchor

Hundreds of RNU6 variants across human genome
make mapping to these loci challenging

E

ATTCCATTCC

Compactor extends beyond 
5’ end of RNU6 gene

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 7 2

Figure 3.A. B.

C.

0.00

0.25

0.50

0.75

capillary endothelial

cd8+, alpha−beta t c
ell

endothelial cell of va
scular tre

e

mesenchymal stem cell

skeletal muscle satellite
 stem cell

celltype

C
om

pa
ct

or
 fr

ac
tio

n

Donor
1
2
4

chr1: 173,223,401

GAS5-202

GAS5-213

GAS5-214

173,223,590

173,223,666

173,223,976

Compactor 1

D.

Tiss
ueDonor

Donor
1
2
4
5
6
7
8

Tissue
Blood
Bone marrow
Eye
Fat
Heart
Lung
Lymph node
Muscle
Prostate
Salivary gland
Skin
Spleen
Tongue
Trachea

0

40
80

100

0.00

0.25

0.50

0.75

1.00

Is
of

or
m

 fr
ac

tio
n

R
ea

d 
co

un
t

pe
r c

el
l

10
11
12

Cell

Compart
men

t

Compartment
Endothelial
Stromal
Immune
Epithelial

TS
P

2 M
uscle m

ature nk t cell
TS

P
2 M

uscle cd8+, alpha-beta t cell

TS
P

12 H
eart vascular associated sm

ooth m
uscle cell

TS
P

1 Lung non-classical m
onocyte 

E1 E2 E3 E4 E5 E6 E7 3ʹUT

anchor

E7-F2-3ʹUT
F2-F3-F4-3ʹUT
E7-F2-F3-3ʹUT
intron-3ʹUT
E7-3’UT

E3-3ʹUT
E7-F4-3ʹUT

intron-F2-3ʹUT

IgV
NH2

COOH

E3 E4 E5 E6 E7

R
ea

d 
co

un
t

Isoform

ENF2 F3F4

11
0,7

67
,09

1

11
0,7

69
,41

0

11
0,7

69
,44

2

11
0,7

70
,36

9

11
0,7

71
,73

0

11
0,7

71
,76

1

11
0,7

77
,26

8

11
0,7

70
,39

3

11
0,7

90
,88

5

chr3

CAT + Liftoff Gene Annotations (T2T assembly)CD47-201
CD47-204

CD47-203
CD47-205CD47-202

CD47-206

Novel splice junction
Novel isoform with 

annotated splice junctions

E.

100

101

102

103

Isoform

R
ea

d 
co

un
t

chr10: 78,038,000 78,039,000 78,040,000 78,040,500
GENCODE V41 (hg38 genome assembly)

100 vertebrates Basewise Conservation by PhyloP

Annotated RPS24
isoforms

4 _

-0.5 _

novel RPS24 isoform with only
 3bp microexon included

CHM13_T0156184

F.
Bronchiole

100

101

102

103

11
0,

76
7,

09
1

11
0,

77
0,

36
9

11
0,

76
9,

41
0

11
0,

77
1,

73
0

11
0,

77
5,

31
0

11
0,

77
7,

26
8

11
0,

79
9,

78
2

SPLASH+

Leafcutter

SpliZ

Blood Lung

Fraction

Muscle Muscle Muscle Muscle

9.5% (122)

9.2% (126)

25.1% (310)

5.1% (14)

4.2% (6)

20% (100)

9.5% (122)

28.3% (156)

32.3% (321)

10.2% (37)

22.9% (117)

30% (306)

6.1% (82)

26.5% (150)

30.2% (300)

2% (28)

12.8% (88)

16.4% (204)

-log10(p value)Leafcutter
SpliZ

2.0 (7)

20.2 (27)

101.0 (50)

11.0 (18)

5.6 (84)

0.6 (50)

Inf (311)

173.8 (179)

95.5 (133)

26.3 (49)

111.2 (158)

49.4 (164)

105.9 (142)

31.8 (57)

10
20
30

50
100
150

vs. vs. vs. vs. vs. vs. vs.

Blood Blood Lung Lung Muscle Muscle Muscle

GAS5 splicing

CD47 splicing

Compactor 2

Compactor 3

1 247 1 1 1 122 2 4 4

1 2 4

Fraction of splicing genes shared in tissues from different donors (Concordance)

Overlap between SPLASH+ and other methods for each donor tissue

- - - - - - - - - - - - - - - - - - - A A A G T C A G G G G G A C T G C A A A G G C C A A T G T T G G T G C T G G C A A A A A G - - - T G A G C T G G A G A T T G G A T C A C A G CCGAAGGAGTAAAGGTGCTGCAATGATGTTAGC

- - - - - - - - - - - - - - - - - - - - - - G T C A G G G G G A C T G C A A A G G C C A A T G T T G G T G C T G G C A A A A A G A A G T G A G C T G G A G A T T G G A T C A C A G CCGAAGGAGTAAAGGTGCTGCAATGATGTTAGC

A C G C A A G A A C A G A A T G A A G A A A G T C A G G G G G A C T G C A A A G G C C A A T G T T G G T G C T G G C A A A A A G - - - - - - - - - - - - - - - - - - - - - - - - - CCGAAGGAGTAAAGGTGCTGCAATGATGTTAGC

A C G C A A G A A C A G A A T G A A G A A A G T C A G G G G G A C T G C A A A G G C C A A T G T T G G T G C T G G C A A A A A G A A G - - - - - - - - - - - - - - - - - - - - - - CCGAAGGAGTAAAGGTGCTGCAATGATCTTAGC

21bp exon3bp microexon

RPS24 splicing

Fraction of each RPS24 isoform

Isoform with only 21bp exon Isoform with both 3bp
 and 21bp exons

0.60

0.65

0.70

0.75

Tr
ac

he
a

To
ng

ue Ey
e

M
us

cle
Pr

os
ta

te
Lu

ng
M

am
m

ar
y

Sa
liv

ar
y G

lan
d

He
ar

t
Fa

t
Bl

oo
d

Bo
ne

 M
ar

ro
w

Sp
lee

n
Sk

in
Va

sc
ula

tu
re

Sm
all

 In
te

sti
ne

Ly
m

ph
 N

od
e

Th
ym

us
Liv

er

Number of distinct
 splicing anchors

500
1000
1500

CAT + Liftoff Gene Annotations (T2T assembly)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4.A.

1 3 5 7 9 11 13 15 17 19
# tissues

# 
ge

ne
s 

w
ith

 
sp

lic
in

g 
an

ch
or

0

500

1000

1500

2000

negative regulation of mRNA splicing, via spliceosome
negative regulation of mRNA processing

negative regulation of RNA splicing
regulation of mRNA splicing, via spliceosome

negative regulation of mRNA metabolic process
regulation of mRNA processing

regulation of RNA splicing
mRNA splicing, via spliceosome

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
RNA splicing, via transesterification reactions

0 20 40 60
Fold enrichment

B.

SRSF5, SRSF7, SRSF11, HNRNPDL, HNRNPC  
HMGN3, PCMT1, KMT2E HSP90AA1

Histone modification
Splicing factorNCOR1

C.

0.00

0.25

0.50

0.75

1.00

E1-E2

E1-E4

0
10
20
30
40

Compartment
Tissue
Donor

Donor
1
2
4
7
8

Tissue
Blood
Bone marrow
Heart
Lung
Lymph node
Mammary
Muscle
Prostate
Salivary gland
Small intestine
Spleen
Thymus

Compartment
Endothelial
Stromal
Immune
Epithelial

0
100
200
300

12
13

E2-E3
IR (E2-I2)

0.00
0.25

0.50

0.75

1.00

 R
ea

d 
co

un
t 

pe
r c

el
l

To
ta

l r
ea

ds
 

pe
r c

el
l

Cell
Cell

Isoform Isoform

Is
of

or
m

 fr
ac

tio
n

Is
of

or
m

 fr
ac

tio
n

100

101

102

103

R
ea

d 
co

un
t

R
ea

d 
co

un
t

HSP90AA1

IR (E1:I1)

E1 E2 E3 E4 E5 E6 E7 E8 E9I1 I2 I3 I4 I5 I6 I7 I8

F. 15,930,000 15,970,000 16,010,000 16,050,000 16,090,000 16,110,000

NCOR1

To
ta

l r
ea

ds
 

pe
r i

so
fo

rm

16
,05

1,8
26

16
,05

4,2
55

16
,05

3,9
25

Anchor

Annotated
 isoforms

1
2
4
5
6
7
8

Blood
Bone marrow
Eye
Fat
Heart
Lung
Lymph node
Mammary
Muscle
Prostate
Salivary gland
Skin
Small intestine
Spleen
Thymus
Trachea
Vasculature

Compartment
Endothelial
Stromal
Immune
Epithelial

Donor

10
11
12
13

To
ta

l r
ea

ds
 p

er
 is

of
or

m

Isoform

Donor
Tissue

0.00
0.25
0.50
0.75
1.00

Cell

Is
of

or
m

 
fra

ct
io

n
R

ea
d 

co
un

t 
pe

r c
el

l

0
100
200
300

Compartment

5

10

15

0 10 20 30
Number of unique 

splice junctions

N
um

be
r o

f t
is

su
es

IGKC

IL32
RBM39

GAS5

MUC16

PRPF38BHSP90AA1

G.

18

Tissue

4

H.

100 vertebrates Basewise Conservation by PhyloP4 _

-0.5 _

108,729,602 108,729,616 108,731,063 108,731,200 108,731,857

PRPF38B

100

101

102

103

104

R
ea

d 
co

un
t

1 2 3 4 5 6 7 8 9 10 1112

2 4 5 6 7 8 9 10 11 12
Anchor

Splice junction
Intron retention

0.25

0.50

0.75

End
.

Epi.
Im

m.
Str.

Fr
ac

tio
n

Epi.
Im

m.

0.25

0.50

0.75

Fr
ac

tio
n

0

1

1
2
4
6
7
8

Blood
Bone marrow
Fat
Heart
Lymph node
Mammary
Muscle
Prostate
Salivary gland
Skin
Spleen
Thymus
Trachea
Vasculature

Endothelial
Stromal
Immune
Epithelial

0

50

100

150

Compartm
ent

TissueDonor

10
12
13

Compartment

TissueDonor

Is
of

or
m

 fr
ac

tio
n

 R
ea

d 
co

un
t 

pe
r c

el
l

Cell
0.00
0.25
0.50
0.75

1.00

Anchor 1 Anchor 3

End.Epi.Imm.Str.

0.25
0.50
0.75

0

1

Fr
ac

tio
n

0.25

0.50

0.75

Fr
ac

tio
n

End. Imm.

0.25

0.50

0.75

Fr
ac

tio
n

End.Epi. Imm.Str.

0.25
0.50
0.75

0

1

Fr
ac

tio
n

Epi. Imm. Str.

Anchor 2 Anchor 4 Anchor 6 Anchor 10

D.

E.

100
101
102
103
104

100

101

102

103

104

101

102

103

104

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


(A)

(C)

Minimum Hamming Distance

P
er

ce
nt

 c
el

ls
 B

ra
C

eR
 m

at
ch

Compactor category 

(B)
missed  /  called

called    /  called
called    /  missed

0 200 400 600

Memory B cell
Plasma cell

Read count per cell

Donor 7 Spleen

0 50 100 150 200

Naive B cell

Read count per cell

Memory B cell

Plasma cell

Donor 2 Spleen

BraCeR SPLASH+

41 (93%)
76

12 (100%)
7

2 (100%)

47

2 (100%)
1

77

14
1

(D) Compactor 1
Compactor 2
Compactor 3
Compactor 4
Compactor 5
Compactor 6
Compactor 7
Compactor 8

100,791,000 100,791,100 100,791,150
Chr14

10 20 30 40 50 60 70 80 90

Anchor

Figure 5
.CC-BY-NC-ND 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


D

E
Primary 

repeat length
Secondary

 repeat length
0

-1
-2

-6

-7

0

-1
-2

-6

-7

2

2

3

15

5

4

4

2

6

11

1
1
1
1
1
2

3
2

10

1

4

D
on

or
 2

 S
ki

n
D

on
or

 2
 

Lu
ng

D
on

or
 4

 M
us

cl
e

85
%

 e
di

te
d 

va
ria

nt
s

Read count100

150

50
25 50 75

100

20 40 60

B

0

-1

-2

-5

-6

0

-1

-2

-5

-6

1
1

4

3

2

9

4

6

3

2

9

4

5

4

1

4

10

Primary 
repeat length

Secondary
 repeat length

Donor 2 Lung
(anchor called)

Donor 4 Tongue

C

35.82% of reads 
disagree with
T2T reference

35.71% of reads 
disagree with 
T2T reference

Bone Marrow
(Donor 11)

Total number of assigned readsUnmodified start codon
Modified start codon

Start codon

ARPC2

0

100

200

300

400

500 0
100
200
300
400
500
600

Bone Marrow
(Donor 13)

chrX:
151,781,500

151,782,500

BGN-201
BGN-203
BGN-204
BGN-205

151,780,500
15 CT repeats

chr2: 17,687,199

VSNL1-202

VSNL1-201

VSNL1-203

26 AC repeats
17,687,250

Figure 6.A
D

on
or

 4
 M

am
m

ar
y

D
on

or
 4

 M
us

cl
e

D
on

or
 7

 
S

al
iv

ar
y 

G
la

nd
D

on
or

 7
 

To
ng

ue

Reference sequence

A to I edited position

200

Read count

ANAPC16

GCAGGAGA

AluYk3#SINE/Alu
AluSx#SINE/Alu

AGO2

Unreported by REDI

100
100

150500

10050

100

50

100

chr8: 141,732,881 141,732,848141,732,859141,732,870

Donor 1 Lung  
(anchor not called) 

Repeat lengthN
um

be
r o

f c
el

ls
 w

ith
 re

pe
at

 le
ng

th
 b

ei
ng

 e
ith

er
 p

rim
ar

y 
or

 s
ec

on
da

ry

0-10

8

6

4

2

Disrupted MIR1976
 binding site

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Isoform 1 (i1)

Isoform 2 (i2)

Isoform 3 (i3)

i1

i2

i3

Isoform 4 (i4)

i4

Isoform 
counts

2

3

3

4

E1 E2 E3 E4 E5
Gene Structure

mRNA transcripts due
 to alternative splicing

6, 3, 3 4, 5, 3 5, 4

Suppl. Figure 1

B

A         A         A         A         A
A         T          T         G         A
A         G         G         A         A
A         A         T          G         A

Variant 1 (V1)
Variant 2 (V2)
Variant 3 (V3)
Variant 4 (V4)

V1

V2

V3
V4

Variant 
counts

2
3

3

4

12 6, 3, 3 4, 5, 3 7, 5 12

A         A           T         A         A

A  A  A  A  A
A  T   T  G  A
A  G  G  A  A
A  A  T  G  A

A.

12
highest count at each position

 is boxed

AA GG CC TT AG

AA GG CC TT

AA TT AG

AA TT AG

AA GG TT AG

AA GG CC TT

AA TT AG
AA TT AG
AA GG TT AG

CC

CC

AA GG TT AG

P
lurality

Alternative splicing SNP diversity

i1

i2

i3

6

0

0

Consensus (SPLASH)

Compactors (SPLASH+)

i1 i1

i1 (6) i1 (8)
i4 (4) i3 (2)

i4 4

4

3

2

0

Isoform counts
per cell 

multiple assembled sequences 
with counts per cell representing 
the entirety of diversity per cell

one sequence without count 
representing only the 

dominant isoform per cell

Consensus method loses intra-cell diversity

V1

V2

V3

6

0

0

Consensus (SPLASH)

Compactors (SPLASH+)

V1 V1

V1 (6)
V4 (4)

V4 4

4

3

2

0

Variant counts
per cell 

V1 (4)
V2 (3)
V3 (2)

one sequence 
without count per cell

multiple assembled sequences 
with counts per cell 

Consensus method can mis-assemble (give erroneous sequences) within a cell

Consensus produces isoform 4,
 but isoform 1 is the dominant isoform

Obtaining the consensus 
sequence for this cell

Obtaining the consensus
 sequence for this cell

P
lurality

Consensus produces variant 4,
 but variant 1 is the dominant variant

• one sequence per cell
reported

consensus generation

• loses within-cell diversity
• possible mis-assembly
• loses count information

• multiple sequences
per cell reported
• tracks counts per 
sequence

compactor generation

• alignment to genome
• annotate gene name 
and coordinates

consensus annotation

• alignment to genome
• annotate gene name 
and coordinates

compactor annotation
(may be multiple per cell) assign anchor class

using most abundant compactors
• splicing
• SNP
• VDJ
• repeat
• … 

(No automated 
classification of anchor type)

anchor classification

Post-hoc annotation in original SPLASH

SPLASH+
SPLASH-called

anchors

Cell 1 Cell 2

Cell 3 Cell 3

Cell 1 Cell 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Suppl. Figure 2

ATC...CGAAAGGT...GCTCCT     27 
GAGAA...TTCGATCG...GTA 29 
                         :                                 :
GGTAAGC...CTATATTA...TCA    31

TP gene fusion sequences and 
breakpoints (Ground truth)

ATC...CGAA
GAA...TTCG
AGC...CTAT

Seed anchors (27bp)

Generating compactors
 using seed anchors 

and FASTQ files 

Compactors

20-mer junctional 
fusion sequences 

Has a match to 
a 20-mer 
junctional 

fusion 
sequence?

Yes

Compactors with 
evidence for TP fusions

FASTQ

...CGAAAGGT...

...TTCGATCG...
            :
...CTATATTA...

10bp10bp

A

FASTQ files

B

0

100

200

sim
_a

dip
os

e

sim
_b

rai
n

sim
_c

olo
n

sim
_h

ea
rt

sim
_te

sti
s

Dataset

N
um

be
r o

f d
et

ec
te

d 
fu

si
on

s 
pe

r s
im

ul
at

ed
 d

at
as

et

283
253

269
255

279

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Splicing

SJ > 0
Lev. dist != Ham dist

(Run_D > 1) OR (Run_I > 1)
Lev. dist < (Run_D + Run_I + 1) 

Internal 
Splicing

Lev. dist == Ham dist

Base 
pair 

change

3’UTR

3’ UTR
Centromere

Centromere
Repeat

Repeat Unclassified

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

Reference-based

Reference-free

Suppl. Figure 3 .CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Suppl. Figure 4

Donor 10

Donor 1

Donor 2

Donor 11

Donor 13

Donor 4

Donor 7

Donor 6

Donor 12
Donor 3
Donor 5
Donor 8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 9

10.8 8

7.3 9

5.3 6

10.3 6.1

1.8 2.5

2 2

5.8 8

Compute p-value
(per set of stratified p-values)

Multiple testing correction

246810

0 2 4 6 8 10

1.2

1.3

1.4

1

5.7

1.2

1.6

1.4

Donor 5 Eye (134 cells)

Donor 12 Heart (277 cells)

Donor 2 Lung (400 cells)

Donor 7 Lymph node (400 cells)

Donor 4 Muscle (400 cells)

Donor 7 Salivary gland (400 cells)

Donor 7 Tongue (400 cells)

Donor 2 Trachea (119 cells)

Anc
ho

r/T
arg

et 

ret
rie

va
l (p

er 
ce

ll)

22

33

31

15

18

10.5

13

23

Stra
tify

102030
Run time per step (minutes) 0 10 20 30 40

A

B

Total run time (minutes)
assuming full parallelization 

Total memory (GB) 

8 0.7

3.3 2

10 3

2 0.5

7 4

6.8 1

7.7 1

10 2

Com
pu

te 
p-v

alu
e 

(pe
rse

t o
f s

tra
tifi

ed
 an

ch
ors

)

Mult
ipl

e t
es

tin
g c

orr
ec

tio
n

Memory required per step (GB)

Suppl. Figure 5

Donor 5 Eye (134 cells)

Donor 12 Heart (277 cells)

Donor 2 Lung (400 cells)

Donor 7 Lymph node (400 cells)

Donor 4 Muscle (400 cells)

Donor 7 Salivary gland (400 cells)

Donor 7 Tongue (400 cells)

Donor 2 Trachea (119 cells)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Suppl. Figure 6

A

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Donor 4 Tongue

Donor 7 Tongue

Four CCATT repeats

Compactor read count per cell type

Suppl. Figure 7

B
as

al
 c

el
l

Im
m

un
e 

ce
ll

V
ei

n 
en

do
th

el
ia

l c
el

l

Compactor read count per cell type

B
as

al
 c

el
l

K
er

at
in

oc
yt

e

Fi
br

ob
la

st

P
er

ic
yt

e 
ce

ll

Im
m

un
e 

ce
ll

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


100

LS
U_rR

NA_e
uk

ary
a

SSU_rR
NA_e

uk
ary

a

LS
U_rR

NA_b
ac

ter
ia

SSU_rR
NA_b

ac
ter

ia

LS
U_rR

NA_a
rch

ae
a

SSU_rR
NA_m

icr
os

po
rid

ia

SSU_rR
NA_a

rch
ae

a
U6

SNORA81

5_
8S

_rR
NA

IR
E_I

tR
NA

mi
r−6
50

sn
aR
−A

5S
_rR

NA U1

CR
IS
PR
−D
R2

IR
ES_B

ip
7S

K U5

Noncoding RNA

To
ta

l r
ea

d 
co

un
t

102

104

106

Suppl. Figure 8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Suppl. Figure 9

76
9

16
5

15
2

14
2

78 74
46 43 35 60 55 53 44 38 29 24 19 18 17 16 16 12 12 11
61

19 18 11 10

0

200

400

600

800

In
te

rs
ec

tio
n 

S
iz

e

Leafcutter donor 1
Leafcutter donor 2
Leafcutter donor 4
SPLASH+ donor 1
SPLASH+ donor 2
SPLASH+ donor 4

SpliZ donor 1
SpliZ donor 2
SpliZ donor 4

025050075010001250
Set Size

211

1218

187

652

642

674

318

398

309

C.

A. B.

1223

1307

1

2

Tissue Donor 1

7

Tissue Donor

Set Size

30
3

24
2

42 30
13

8
11

2
97 74 44 41 39 38 74 37 26 23 22 14 33 190

200

400

600

Leafcutter

Leafcutter

SPLASH+

SPLASH+

SpliZ

SpliZ

0
50

0
10

00

20
3

12
4

11
5

80
63

1
55

20 13 10 9 8 7 7 2 2 2 18 9 6 4

0

50

100

150

200

Leafcutter

Leafcutter

SPLASH+

SPLASH+

SpliZ

SpliZ

010
0

20
0

30
0

Set Size

In
te

rs
ec

tio
n 

S
iz

e

In
te

rs
ec

tio
n 

S
iz

e

73
5

64
3

188

743

800

184

120

166

351

249

134

15

Blood Lung Muscle

1 7 1 2 1 2 4
0

500

1000

Donor

# 
of

 c
al

le
d 

ge
ne

s

Method
SpliZ
Leafcutter
SPLASH+

D.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Suppl. Figure 10 .CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Suppl. Figure 11
A.

B.

0.00

0.25

0.50

0.75

lu
ng

 c
ili

at
ed

 c
el

l

ty
pe

 ii
 p

ne
um

oc
yt

e

ca
pi

lla
ry

 e
nd

ot
he

lia
l c

el
l

ba
sa

l c
el

l

al
ve

ol
ar

 fi
br

ob
la

st

de
nd

rit
ic

 c
el

l

m
ac

ro
ph

ag
e

cd
4−

po
si

tiv
e,

 a
lp

ha
−b

et
a 

t c
el

l

cd
8−

po
si

tiv
e,

 a
lp

ha
−b

et
a 

t c
el

l

cl
as

si
ca

l m
on

oc
yt

e

Fr
ac

tio
n 

of
 is

of
or

m
 w

ith
 m

ic
ro

 e
xo

n

400

800

1200

1600

5

10

15

20

25

30
Number of cells per celltype

Read count per cell type

0.0

0.2

0.4

0.6

0.8

lu
ng

 c
ili

at
ed

 c
el

l
ty

pe
 ii

 p
ne

um
oc

yt
e

cl
ub

 c
el

l
re

sp
ira

to
ry

 g
ob

le
t c

el
l

ty
pe

 i 
pn

eu
m

oc
yt

e
ba

sa
l c

el
l

ca
pi

lla
ry

 e
nd

ot
he

lia
l c

el
l

en
do

th
el

ia
l c

el
l o

f a
rte

ry
lu

ng
 m

ic
ro

va
sc

ul
ar

 e
nd

ot
he

lia
l c

el
l

cl
as

si
ca

l m
on

oc
yt

e
m

ac
ro

ph
ag

e
pl

as
m

a 
ce

ll
al

ve
ol

ar
 fi

br
ob

la
st

ad
ve

nt
iti

al
 c

el
l

br
on

ch
ia

l s
m

oo
th

 m
us

cl
e 

ce
ll

ca
pi

lla
ry

 a
er

oc
yt

e
va

sc
ul

ar
 a

ss
oc

ia
te

d 
sm

oo
th

 m
us

cl
e

ve
in

 e
nd

ot
he

lia
l c

el
l

20

40

60

500

1000

Fr
ac

tio
n 

of
 is

of
or

m
 w

ith
 m

ic
ro

 e
xo

n

Donor 2 Lung

Donor 1 Lung

Number of cells per celltype

Read count per cell type

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


HNRNPC
B

A
Suppl. Figure 12

Donor 1
Donor 2
Donor 4
Donor 7
Donor 10
Donor 12

Donor 1
Donor 2
Donor 4
Donor 5
Donor 6
Donor 7
Donor 10

R
ea

d 
co

un
t

R
ea

d 
co

un
t

pe
r c

el
l

R
ea

d 
co

un
t

R
ea

d 
co

un
t

pe
r c

el
l

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

Suppl. Figure 13

Number of RNA-seq samples with exact match

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2025. ; https://doi.org/10.1101/2022.12.06.519414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519414
http://creativecommons.org/licenses/by-nc-nd/4.0/

	SS2_draft.pdf
	Roozbeh Dehghannasiri1,2,*, George Henderson1,*, Rob Bierman2,1, Tavor Baharav3, Kaitlin Chaung1, Peter Wang1, Julia Salzman1,2,4,† 
	V(D)J rearrangement analysis and comparison to BraCeR​We defined immunoglobulin compactors (being referred to as “IG-compactors”) as the compactors mapped to an immunoglobulin gene IGH, IGK, or IGV by STAR. We further defined immunoglobulin-anchors (“IG-anchors”) as anchors with >20% of reads associated with IG-compactors. The unaligned compactors of an IG-anchor are still considered IG-compactors through “annotation-by-association”. To compare the SPLASH+ with BraCeR (Lindeman et al. 2018), we considered a stringent criterion for IG-compactors where we first annotated IG-compactors with AssignGenes.py (ChangeO v1.3.0) (Gupta et al. 2015) and IgBLAST v1.21.0 (Ye et al. 2013) and considered only those IG-compactors that had both variable (V) and joining (J) immunoglobulin gene segments identified through IgBLAST. The IG-compactors are annotated as in-frame by IgBLAST if the last triplet of the annotated V gene is in-frame with the first triplet of the annotated J gene. Also, to test whether SPLASH+ provides support for the detection of the same B cell receptors (BCRs) as BraCeR, for each cell we computed the minimum Hamming distance between the compactors of IG-anchors and the filtered BraCeR contigs. 


	Main_figures
	Figure1.pdf
	Figure2.pdf
	Figure3_rasterized.pdf
	Figure4.pdf
	Figure5_rasterized.pdf
	Figure6_rasterized.pdf

	Supplementary_figures
	Suppl_figure_1.pdf
	Suppl_figure_2
	Suppl_figure_3.pdf
	Suppl_figure_4.pdf
	NOMAD_TS_SUPPLEMENT

	Suppl_figure_5.pdf
	Suppl_figure_6.pdf
	Suppl_figure_7.pdf
	Suppl_figure_6.pdf

	Suppl_figure_8.pdf
	Suppl_figure_9.pdf
	Suppl_figure_10.pdf
	Suppl_figure_11.pdf
	Suppl_fig_9

	Suppl_figure_12.pdf
	NOMAD_TS_SUPPLEMENT

	Suppl_figure_13.pdf




