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Abstract11

Untargeted metabolomics can detect hundreds of biochemicals in food, yet without stan-12

dards, it cannot quantify them. Here we show that we can take advantage of the universal13

scaling of nutrient concentrations to estimate the concentration of all biochemicals detected14

by untargeted metabolomics. We validate our method on 20 raw foods, finding an excellent15

agreement between the predicted and the experimentally observed concentrations.16
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The documented impact of diet on health has prompted national efforts to catalogue17

the biochemical composition of food1, like the USDA Standard Reference2 that reports the18

concentration of 150 nutrients in 9,759 foods. The data was collected using gravimetry19

(AOAC934.06), liquid chromatography (AOAC988.15), and fluorimetry (AOAC967.22), ex-20

perimental methodologies that can detect and quantify the concentration of a biochemical21

in food. Meanwhile untargeted metabolomics can detect hundreds more compounds within22

a single experiment, but only relative concentration are inferred, mainly because of the23

unknown fraction of molecules ionized for each compound3,4. Targeted metabolomics cir-24

cumvents ionization efficiency5 by using standard curves to determine the concentration, a25

low-throughput procedure that eliminates the advantages of untargeted metabolomics over26

established methodologies by increasing the time and cost over current AOAC methods.27

Untargeted metabolomics needs to move beyond relative concentrations for adoption by28

food composition catalogues. Here we report a method to predict concentrations from un-29

targeted metabolomics, offering researchers a way to extend their results beyond relative30

concentrations. This is advantageous for food composition catalogues which can leverage31

the predictions to report expected concentrations and their potential variance for foods in a32

high-throughput way.33

We show that the universal scaling of nutrient concentrations across the food supply6
34

allows us to determine nutrient concentration in untargeted metabolomics. We performed35

metabolomics experiments on 20 raw plant ingredients to minimize the influence of human36

processing and span the phylogenetic tree as well as edible parts of plants (fruits, leaves,37

roots) to get a representative diversity of plant composition across the food supply (SI Ex-38

perimental Design). Focusing on the 295 biochemicals found in at least 10 ingredients, we39

obtained their nutrient distribution across the food samples using the experimentally mea-40

sured peak areas. In metabolomics, the peak area for each compound, n, in each food, f ,41

measures only the ionized concentration, cionizedf,n . It is unknown what fraction of a com-42

pound’s total concentration becomes ionized, preventing peak area from directly measuring43
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the total concentration, cf,n. The primary contributors to this loss in efficiency (Ef,n) are44

sample preparation (Eprep
f,n ), extraction protocols (Eext

f,n), and ionizability (Eion
f,n) such that45

Ef,n = Eprep
f,n · Eext

f,n · Eion
f,n . Since our experiments used the same experimental protocol for46

each food item, cf,n differs from cionizedf,n by Ef,n where only the food sample matrix provides47

the largest deviations between measured peak areas across the foods for each compound.48

To apply the universal scaling of nutrient concentration to the measured peak areas49

in untargeted metabolomics, we need cionizedf,n to follow the universal features of nutrient50

concentration7: (i) constant standard deviation (⟨sn⟩), (ii) symmetric distribution, and (iii)51

translational invariance. A universality rooted in the biochemical mechanisms responsible52

for the synthesis and consumption of each compound within an organism. If it holds for53

peak areas, this would mean that we can use the universality to find the total concentrations54

from peak areas; however, Ef,n can break the universality if it greatly varies between food.55

Yet, we find that (i)-(iii) apply to the peak areas as well, with ⟨sn⟩ = 1.41 ± 0.50. This56

suggests that57

Ef,n ≈ ⟨En⟩ (1)

for each compound, where ⟨En⟩ is the mean efficiency across all foods, conserving the uni-58

versality. We also find that the peak areas follow log-normal distributions similar to the59

nutrient concentrations in [7] (SI Universal Scaling Law of Metabolomics). Lastly, we com-60

pare the universal scaling observed for nutrients reported by the USDA (Fig 1a) with the61

biochemicals obtained by our experiments (Fig 1b). We find that the linear standard devi-62

ation of peak areas for a biochemical in MassSpec (σMS
n ) relates to the mean peak area for63

a biochemical in MassSpec (µMS
n ) in the log-space via σMS

n = eα
MS
σ (µMS

n )β
MS
σ , where α and64

β are parameters of the power law fit, in excellent agreement with the USDA. These results65

indicate that the efficiencies of the experiment (Eprep
f,n , Eext

f,n , E
ion
f,n , etc.) are largely invariant66

across food sample matrices.67

Next, we test the correlations between the metabolomics variables (σMS
n , µMS

n ) and their68

respective counterparts of the USDA (σUS
n , µUS

n ). Focusing on 19 foods and 31 biochemicals69
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reported in both datasets (SI USDA – Metabolomics Overlap), we find low correlation (R2
70

= 0.566), confirming that ionization efficiency obscures the relationship between the peak71

areas measured in MassSpec and the concentrations reported in the USDA via µUS
n = ⟨En⟩72

µMS
n . We can, however, estimate the concentration from peak area by leveraging (1) and the73

universal features (i)-(iii), followed by both metabolomics and USDA, indicating that the74

position of foods within the nutrient distributions between the datasets is largely conserved.75

For example, we can see that for pyridoxine (vitamin B6) the relative position of potato76

is the same in the metabolomics and the USDA distributions (Fig 1c). This suggests that77

we can use the distance between the individual food measurements and the median in the78

linear-space to connect the two distributions via79

xUS
(f,n)

emUS
n

≈
xMS
(f,n)

emMS
n

, (2)

where xUS
(f,n) is the concentration of the biochemical for a food from the USDA, mUS

n is the80

mean log concentration of the nutrient in the USDA, xMS
(f,n) is the peak area of the biochemical81

in the food from experiments, and mMS
n is the mean log peak area of the biochemical in the82

experiments (SI Proportionality Validation).83

To assess the validity of (2) we curate 113 high-quality food-biochemical pairs in overlap84

between the two datasets by filtering to analytical values with at least 4 measurements (SI85

Curated Pairs), then estimate xUS
(f,n) and compare to the reported value in the USDA by86

calculating prediction error,87

error =


xest
(f,n)

xUS
(f,n)

xUS
(f,n) < xest

(f,n)

xUS
(f,n)

xest
(f,n)

xUS
(f,n) ≥ xest

(f,n)

(3)

where xest
(f,n) is the estimated concentration as found by Equation (2), xest

(f,n) =
xMS
(f,n)

em
MS
n

em
US
n .88

When the estimated and reported concentrations are equal, the prediction error is 1.0 and so89

values closer to 1.0 is desirable. Using (3), we observe a 3.1 mean error and a 2.4 median error90
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for the xest
(f,n) values (Fig 2a, blue line) with 73% of the values below 4.0 error, an outcome91

comparable with other untargeted metabolomics estimation methods8, which report a 2.0-92

4.0 mean error. Importantly, this approach should work for any sample where biological and93

volumetric constraints synergistically determine the concentration (SI Method Guidelines).94

The methodology (2) requires the concentration mUS
n of the biochemicals, known only95

for nutrients reported in the USDA. To overcome this limitation, we rely on the finding that96

compound concentrations in bacterial and human cells are correlated with their chemical97

properties of the compounds9, allowing us to infermUS
n for nutrients not present in the USDA.98

We created a XGBoost model to predict xUS
(f,n), taking as input the chemical properties of99

biochemicals (molecular weight, logP, logS, hydrogen bonding inventory, number of charged100

atoms, non-polar surface area) and phylogenetic lineages of foods (class, order, family, genus101

classifications). Leave-one-out validation of the trained model shows 70% of the xUS
(f,n) values102

within 2.0 error and 90% within 4.0 error of the true value (R2 = 0.931, Fig 2b), confirming103

the model is accurate (SI Gradient Boosting Methodology).104

Using XGBoost to estimate mUS
n , (2) can estimate xUS

(f,n) in individual foods using the105

peak areas, observing a 3.4 mean error (Fig 2a, red line) and 73% of the values below a 4.0106

error. XGBoost allows us to determine the concentration of biochemicals not reported in107

the USDA, but detected in our experiments. For example, while S-allylcysteine in garlic is108

not reported by USDA, our untargeted experiments allow us to estimate its concentration as109

0.158 g/100g. Using FoodMine10, we found six published measurements for S-allylcysteine110

in garlic, with an average at 0.115 g/100g, giving a 1.4 error, demonstrating the possibility111

of using ML-models to extend the estimated concentrations from (2) beyond the USDA.112

While promising, the accuracy and generalizability of such models require further study (SI113

Beyond the USDA).114

The proposed methodology offers actionable concentration estimates to complement the115

standard presence/absence information delivered by untargeted metabolomics, helping man-116

aging costs and resources of future studies. We find that our method estimates concentration117
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in untargeted metabolomics with a 3.1 mean error, relying on the universal features of nu-118

trient distributions and offers comparable performance to the current structural similarity119

method (4.3 mean error) without requiring chemical standards and ionization efficiency pre-120

diction method (2.1 mean error) without needing rarely measured ionization efficiencies8.121

Here, we rely on publicly available training data, facilitating the seamless integration of122

our methodology in the decision-making process of health risk assessments, as seen with123

established methods11 considering food-borne compounds.124
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Figure 1: Estimating Concentrations in Untargeted Metabolomics. (a) Universal
scaling law for nutrients within the USDA subset, relating the standard deviation, σUS

n

vertical axis, to the average nutrient concentration, µUS
n horizontal axis, for 94 nutrients in

510 foods. Dashed lines are confidence intervals. Colored dots are compounds we selected to
compare their relative positions between a) and b). (b) Universal scaling for our untargeted
metabolomics experiments, relating the standard deviation, σMS

n , to the mean peak area,
µMS
n , for 295 biochemicals in 20 foods. (c) Nutrient distributions using the 19 foods in

overlap between the USDA and our experiments for pyridoxine: experiments (peak area,
red) and USDA (g/100g, blue). The position of potato is shown in each distribution (black
lines).
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Figure 2: Prediction Error Curves. The proportion of estimated nutrient concentrations
in individual food items below specified error values. (a) Error curve plots using the cu-
rated 113 biochemical-food pairs for the calculated µUS

n from the USDA (blue) and predicted
µUS
n from a XGBoost model (yellow), taking as input the chemical properties of biochemi-

cals (molecular weight, logP, logS, hydrogen bonding inventory, number of charged atoms,
non-polar surface area) and phylogenetic lineages of foods (class, order, family, genus clas-
sifications). (b) Error curve of the Leave-one-out predicted concentrations for the 18,458
biochemical-food pairs in the training data. Inset: the relationship between calculated xUS

(f,n)

from the USDA and predicted xUS
(f,n) from the XGBoost model. This shows that we can

predict the concentrations reported in the USDA with a correlation of R2 = 0.931 between
the predicted and real concentrations.
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