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1 Abstract

12 Untargeted metabolomics can detect hundreds of biochemicals in food, yet without stan-
13 dards, it cannot quantify them. Here we show that we can take advantage of the universal
1 scaling of nutrient concentrations to estimate the concentration of all biochemicals detected
15 by untargeted metabolomics. We validate our method on 20 raw foods, finding an excellent

16 agreement between the predicted and the experimentally observed concentrations.
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17 The documented impact of diet on health has prompted national efforts to catalogue
15 the biochemical composition of food!, like the USDA Standard Reference? that reports the
19 concentration of 150 nutrients in 9,759 foods. The data was collected using gravimetry
20 (AOAC934.06), liquid chromatography (AOAC988.15), and fluorimetry (AOAC967.22), ex-
a1 perimental methodologies that can detect and quantify the concentration of a biochemical
2 in food. Meanwhile untargeted metabolomics can detect hundreds more compounds within
23 a single experiment, but only relative concentration are inferred, mainly because of the
2« unknown fraction of molecules ionized for each compound?*. Targeted metabolomics cir-
s cumvents ionization efficiency® by using standard curves to determine the concentration, a
% low-throughput procedure that eliminates the advantages of untargeted metabolomics over
27 established methodologies by increasing the time and cost over current AOAC methods.
s Untargeted metabolomics needs to move beyond relative concentrations for adoption by
2 food composition catalogues. Here we report a method to predict concentrations from un-
% targeted metabolomics, offering researchers a way to extend their results beyond relative
a1 concentrations. This is advantageous for food composition catalogues which can leverage
5 the predictions to report expected concentrations and their potential variance for foods in a
33 high-throughput way.

34 We show that the universal scaling of nutrient concentrations across the food supply®
5 allows us to determine nutrient concentration in untargeted metabolomics. We performed
s metabolomics experiments on 20 raw plant ingredients to minimize the influence of human
w processing and span the phylogenetic tree as well as edible parts of plants (fruits, leaves,
1 roots) to get a representative diversity of plant composition across the food supply (SI Ex-
3 perimental Design). Focusing on the 295 biochemicals found in at least 10 ingredients, we
w0 obtained their nutrient distribution across the food samples using the experimentally mea-
s sured peak areas. In metabolomics, the peak area for each compound, n, in each food, f,

ionized

2 measures only the lonized concentration, ¢ It is unknown what fraction of a com-

s pound’s total concentration becomes ionized, preventing peak area from directly measuring
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« the total concentration, c¢y,. The primary contributors to this loss in efficiency (Ey,,) are
s sample preparation (E7*), extraction protocols (Ef), and ionizability (E¥7) such that
w B, = E77 - Ef - E¥r. Since our experiments used the same experimental protocol for
s each food item, cy,, differs from czjfjﬁi”d by Ey, where only the food sample matrix provides
s the largest deviations between measured peak areas across the foods for each compound.

49 To apply the universal scaling of nutrient concentration to the measured peak areas
s in untargeted metabolomics, we need c?‘jﬁized to follow the universal features of nutrient
51 concentration”: (i) constant standard deviation ({s,)), (ii) symmetric distribution, and (iii)
s2 translational invariance. A universality rooted in the biochemical mechanisms responsible
53 for the synthesis and consumption of each compound within an organism. If it holds for
s« peak areas, this would mean that we can use the universality to find the total concentrations
s from peak areas; however, Fy,, can break the universality if it greatly varies between food.
ss Yet, we find that (i)-(iii) apply to the peak areas as well, with (s,) = 1.41 + 0.50. This

st suggests that
Efpn = (En) (1)

s for each compound, where (F,) is the mean efficiency across all foods, conserving the uni-
so versality. We also find that the peak areas follow log-normal distributions similar to the
o nutrient concentrations in [7] (SI Universal Scaling Law of Metabolomics). Lastly, we com-
s pare the universal scaling observed for nutrients reported by the USDA (Fig la) with the
2 biochemicals obtained by our experiments (Fig 1b). We find that the linear standard devi-
s ation of peak areas for a biochemical in MassSpec (c) relates to the mean peak area for
& a biochemical in MassSpec (1M5) in the log-space via oM5 = e (1 MS)55"  where a and
s (3 are parameters of the power law fit, in excellent agreement with the USDA. These results
s indicate that the efficiencies of the experiment (E}*, E¢%, E¢7, etc.) are largely invariant
&7 across food sample matrices.

68 Next, we test the correlations between the metabolomics variables (% ;M5 and their

e respective counterparts of the USDA (a9 uUS). Focusing on 19 foods and 31 biochemicals
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w0 reported in both datasets (SI USDA — Metabolomics Overlap), we find low correlation (R?
n = 0.566), confirming that ionization efficiency obscures the relationship between the peak
» areas measured in MassSpec and the concentrations reported in the USDA via uY% = (E,,)
xS We can, however, estimate the concentration from peak area by leveraging (1) and the
7+ universal features (i)-(iii), followed by both metabolomics and USDA, indicating that the
s position of foods within the nutrient distributions between the datasets is largely conserved.
7 For example, we can see that for pyridoxine (vitamin B6) the relative position of potato
77 is the same in the metabolomics and the USDA distributions (Fig 1c). This suggests that
7z we can use the distance between the individual food measurements and the median in the

70 linear-space to connect the two distributions via

) o, Flim
7S N 2)

~
emUS emis”

so Where x[(JfSn) is the concentration of the biochemical for a food from the USDA, m{® is the

s1 mean log concentration of the nutrient in the USDA, xé‘]{i) is the peak area of the biochemical
e in the food from experiments, and m*?¥ is the mean log peak area of the biochemical in the
&3 experiments (SI Proportionality Validation).

84 To assess the validity of (2) we curate 113 high-quality food-biochemical pairs in overlap
s between the two datasets by filtering to analytical values with at least 4 measurements (SI
ss  Curated Pairs), then estimate x(ﬁ and compare to the reported value in the USDA by

&7 calculating prediction error,

Z(fim) est

TS <z
x?fsn) > est
T ) Z )
]V 1S
s where 2(7,) is the estimated concentration as found by Equation (2), 27, = ”—A};emm.

g0 When the estimated and reported concentrations are equal, the prediction error is 1.0 and so

o values closer to 1.0 is desirable. Using (3), we observe a 3.1 mean error and a 2.4 median error

4
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oo for the z{} ) values (Fig 2a, blue line) with 73% of the values below 4.0 error, an outcome

2 comparable with other untargeted metabolomics estimation methods®, which report a 2.0-
o3 4.0 mean error. Importantly, this approach should work for any sample where biological and
s« volumetric constraints synergistically determine the concentration (SI Method Guidelines).
o The methodology (2) requires the concentration mY of the biochemicals, known only
o for nutrients reported in the USDA. To overcome this limitation, we rely on the finding that
o7 compound concentrations in bacterial and human cells are correlated with their chemical
o properties of the compounds?, allowing us to infer mY? for nutrients not present in the USDA.
o We created a XGBoost model to predict :cg;’gn), taking as input the chemical properties of
10 biochemicals (molecular weight, logP, logS, hydrogen bonding inventory, number of charged
1 atoms, non-polar surface area) and phylogenetic lineages of foods (class, order, family, genus
02 classifications). Leave-one-out validation of the trained model shows 70% of the zgjfsn) values
103 within 2.0 error and 90% within 4.0 error of the true value (R* = 0.931, Fig 2b), confirming
e the model is accurate (SI Gradient Boosting Methodology).

105 Using XGBoost to estimate mU9, (2) can estimate x(Ufsn) in individual foods using the
s peak areas, observing a 3.4 mean error (Fig 2a, red line) and 73% of the values below a 4.0
w7 error. XGBoost allows us to determine the concentration of biochemicals not reported in
s the USDA, but detected in our experiments. For example, while S-allylcysteine in garlic is
1o not reported by USDA, our untargeted experiments allow us to estimate its concentration as
o 0.158 g/100g. Using FoodMine!®, we found six published measurements for S-allylcysteine
w in garlic, with an average at 0.115 g/100g, giving a 1.4 error, demonstrating the possibility
2 of using ML-models to extend the estimated concentrations from (2) beyond the USDA.
1z While promising, the accuracy and generalizability of such models require further study (SI
us  Beyond the USDA).

115 The proposed methodology offers actionable concentration estimates to complement the

us standard presence/absence information delivered by untargeted metabolomics, helping man-

ur aging costs and resources of future studies. We find that our method estimates concentration
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us in untargeted metabolomics with a 3.1 mean error, relying on the universal features of nu-
ne trient distributions and offers comparable performance to the current structural similarity
120 method (4.3 mean error) without requiring chemical standards and ionization efficiency pre-
121 diction method (2.1 mean error) without needing rarely measured ionization efficiencies®.
12 Here, we rely on publicly available training data, facilitating the seamless integration of

123 our methodology in the decision-making process of health risk assessments, as seen with

122 established methods!! considering food-borne compounds.
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Figure 1: Estimating Concentrations in Untargeted Metabolomics. (a) Universal
scaling law for nutrients within the USDA subset, relating the standard deviation, o9
vertical axis, to the average nutrient concentration, uU° horizontal axis, for 94 nutrients in
510 foods. Dashed lines are confidence intervals. Colored dots are compounds we selected to
compare their relative positions between a) and b). (b) Universal scaling for our untargeted
metabolomics experiments, relating the standard deviation, oM to the mean peak area,
uMSfor 295 biochemicals in 20 foods. (c) Nutrient distributions using the 19 foods in
overlap between the USDA and our experiments for pyridoxine: experiments (peak area,
red) and USDA (g/100g, blue). The position of potato is shown in each distribution (black

lines).
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Figure 2: Prediction Error Curves. The proportion of estimated nutrient concentrations
in individual food items below specified error values. (a) Error curve plots using the cu-
rated 113 biochemical-food pairs for the calculated u7° from the USDA (blue) and predicted
pl% from a XGBoost model (yellow), taking as input the chemical properties of biochemi-
cals (molecular weight, logP, logS, hydrogen bonding inventory, number of charged atoms,
non-polar surface area) and phylogenetic lineages of foods (class, order, family, genus clas-
sifications). (b) Error curve of the Leave-one-out predicted concentrations for the 18,458
biochemical-food pairs in the training data. Inset: the relationship between calculated x(UfSn)

from the USDA and predicted xgcsn) from the XGBoost model. This shows that we can

predict the concentrations reported in the USDA with a correlation of B2 = 0.931 between
the predicted and real concentrations.
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