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ABSTRACT 

The power of electrophysiologically measured cortical activity decays with an approximately 

1/fX function. The slope of this decay (i.e. the spectral exponent, X) is modulated by various 

factors such as age, cognitive states or psychiatric/neurological disorders. Interestingly, a 

mostly parallel line of research has also uncovered similar effects for the spectral slope in 

the electrocardiogram (ECG). This raises the question whether these bodywide changes in 

spectral slopes are (in-)dependent. Focusing on well-established age-related changes in 

spectral slopes we analyzed a total of 1282 recordings of magnetoencephalography (MEG) 

resting state measurements with concurrent ECG in an age-diverse sample (18-88 years). 

Using a diverse array of analytical approaches, we demonstrate that the aperiodic signal 

recorded via surface electrodes/sensors originates from multiple physiological sources.  

Furthermore, our results suggest that common “artifact” rejection approaches (i.e. ICA) may 

not be sufficient to separate cardiac from neural activity. In particular, significant parts of 

age-related changes in aperiodic activity normally interpreted to be of neural origin can be 

explained by cardiac activity. Moreover, our results suggest that changes 

(flattening/steepening) of the spectral slope with age are dependent on the recording site 

and investigated frequency range. Our results highlight the complexity of aperiodic activity 

while raising concerns when interpreting aperiodic activity as “cortical“ without considering 

physiological influences. 

 

INTRODUCTION 

Aperiodic neural activity is omnipresent both in invasive (e.g. ECoG1) and non-invasive (e.g. 

MEG/EEG2,3) recordings of electrophysiological brain activity and even in hemodynamic 

responses (e.g. fMRI4). In the frequency domain, when visualized in log-log coordinates 

(log-frequency/log-power), aperiodic activity manifests as a linear decay in power with an 

increase in frequency1 (i.e. the spectral slope). This part of the signal - following a so-called 

“power-law” distribution - is often referred to as “scale-free”, “1/f noise” or more recently 

“aperiodic activity”5 (see Figure 1A for an illustration of aperiodic activity with different 

spectral slopes in the time and frequency domain).​

In the past, aperiodic neural activity was often treated as noise and simply removed from 

the signal e.g. via pre-whitening6,7, so that analyses could focus on periodic neural activity 
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(local peaks that rise above the “power-law” distribution, which are commonly thought to 

reflect neural oscillations). However, in recent years the analysis of aperiodic neural activity 

has gained interest (see Figure 1D). Several studies have shown that aperiodic neural 

activity is meaningfully modulated by various factors, such as age8, cognitive state (e.g. 

awake vs. sleep4) and disorders like Parkinson’s disease and epilepsy9,10. However, 

aperiodic activity is not only present in recordings of neural activity, but also part of other 

physiological signals such as cardiac and muscle activity, commonly measured using 

electrocardiography (ECG11) and electromyography12. Interestingly, and mostly overlooked 

by the neuroscience community (see Figure 1C), aperiodic activity measured using ECG 

(often referred to as power law or 1/f activity) is modulated by similar factors as neural 

aperiodic activity, including aging13, different cognitive states (eg. awake vs. sleep12,14) and 

disorders such as Parkinson’s disease and epilepsy15,16 (see also Figure 1B).​

Furthermore, it is well-known that, via volume conduction, cardiac activity can also be 

captured in both invasive and non-invasive recordings of neural activity17–19. Hence, it is also 

considered best practice to measure and remove cardiac activity from M/EEG recordings20. 

However, an analysis of openly accessible M/EEG articles that investigate aperiodic activity 

(NArticles=279; see Methods - Literature Analysis for further details) revealed that only 17.1% 

of EEG studies explicitly mention that cardiac activity was removed and only 16.5% 

measure ECG (45.9% of MEG studies removed cardiac activity and 31.1% of MEG studies 

mention that ECG was measured; see Figure 1EF). Additionally, investigations of aperiodic 

activity vary strongly by both the upper and lower bounds and the general width of the 

analyzed frequency ranges (1GHI). This further complicates the comparison of results 

across studies as physiological signals (e.g., cardiac activity) may have varying impacts 

across frequency ranges—for instance, exerting a stronger influence on lower frequencies 

than on higher ones. 
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Figure 1: Literature analysis of aperiodic activity investigated using M/EEG and ECG. A) Illustration 
of different types of aperiodic activity in the time and frequency domain. BC) We analyzed 489 
abstracts indexed on PubMed using LISC21, a package for collecting and analyzing scientific 
literature. B) This analysis revealed that changes in aperiodic activity are related to similar traits, 
states and disorders in measures of both neural and cardiac activity. C) We further noted a tiny 
overlap of studies (N=4) that refer to both cardiac and cortical aperiodic activity in their abstracts. 
Yet, none of these studies considers confounding influences of cardiac aperiodic activity on the 
measurement of cortical aperiodic activity. D) We additionally found a steep increase related to the 
investigation of neural aperiodic activity in the 2020s highlighting the current interest of the topic in 
the neuroscience community. EF) We further downloaded and analyzed freely available full-texts of 
M/EEG studies investigating aperiodic activity to see to which extent and how cardiac activity was 
handled. This analysis revealed that only 17.1% of EEG studies remove cardiac activity and only 
16.5% measure ECG (for MEG 45.9% removed cardiac; 31.1% mention ECG was measured). We 
were further interested in determining which artifact rejection approaches were most commonly used 
to remove cardiac activity, such as independent component analysis (ICA22), singular value 
decomposition (SVD23), signal space separation (SSS24), signal space projections (SSP25) and 
denoising source separation (DSS26). We found that the most commonly applied method both in EEG 
and MEG recordings was independent component analysis (ICA). GH) An arbitrary selection of 
previous studies (N = 60) shows a vast amount of different frequency ranges are used to investigate 
aperiodic activity. While a significant amount of  studies looked into a range between ~0.1-50 Hz 
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(~30%), most studies used a unique frequency range. I) Not only do the upper and lower bounds 
vary between studies, but also the general width of the fitting range can vary from 0.9 to 290 Hz. 

 

Considering that A) aperiodic neural and cardiac activity are modulated by similar traits, 

states, and disorders, and B) cardiac activity is often present but rarely removed from neural 

recordings, we ask: Are changes in aperiodic neural activity (in-)dependent from changes in 

aperiodic cardiac activity? To address this question, we turn our attention to the recently 

reported5,8 and replicated27 association between aperiodic activity and chronological age. 

Using the publicly available Cam-CAN dataset28,29, we find that the aperiodic signal 

measured using M/EEG originates from multiple physiological sources. In particular, 

significant portions of age-related changes in aperiodic activity –normally attributed to 

neural processes– can be better explained by cardiac activity. This observation holds 

across a wide range of processing options and control analyses (see Supplementary S1), 

and was replicable on a separate MEG dataset. However, the extent to which cardiac 

activity accounts for age-related changes in aperiodic activity varies with the investigated 

frequency range and recording site. Importantly, in some frequency ranges and sensor 

locations, age-related changes in neural aperiodic activity still prevail. But does the 

influence of cardiac activity on the aperiodic spectrum extend beyond age? In a preliminary 

analysis, we demonstrate that working memory load modulates the aperiodic spectrum of 

“pure” ECG recordings. The direction of this working memory effect mirrors previous 

findings on EEG data5 suggesting that the impact of cardiac activity goes well beyond 

aging. In sum, our results highlight the complexity of aperiodic activity while cautioning 

against interpreting it as solely “neural“ without considering physiological influences. 

 

RESULTS  

Aperiodic signals recorded using ECG are associated with aging and heart rate 

variability 

Changes of aperiodic activity in recordings of neural and cardiac activity are associated with 

aging8,13. However, analyses of ECG signals - in the frequency domain - typically focus on 

(a-)periodic signals <0.4Hz30. These (compared to neural time series) slowly fluctuating 
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signals are related to heart rate variability31. Changes in (a-)periodic activity at these low 

frequencies are well established physiological measures32. However, substantially less is 

known about aperiodic activity above 0.4Hz in the ECG. Yet, common ECG setups for 

adults capture activity at a broad bandwidth of 0.05 - 150Hz33,34. Importantly, a lot of the 

physiological meaningful spectral information rests between 1-50Hz35, similarly to M/EEG 

recordings. Furthermore, meaningful information can be extracted at much higher 

frequencies. For instance, ventricular late potentials have a broader frequency band 

(~40-250Hz35). However, that’s not all, as further meaningful information can be extracted at 

even higher frequencies (>100Hz). For instance, the so-called high-frequency QRS seems to 

be highly informative for the early detection of myocardial ischemia and other cardiac 

abnormalities that may not yet be evident in the standard frequency range36,37. Yet, the exact 

physiological mechanisms underlying the high-frequency QRS remain unclear (see 37 for a 

review discussing possible mechanisms).  

To understand whether aperiodic activity recorded using ECG carries meaningful 

information about aging –at frequency ranges common in M/EEG recordings– the ECG data 

of 4 age-diverse populations with a total of 2286 subjects were analyzed.​

After pre-processing (see Methods), age was used to predict the spectral slope of the ECG 

over various different frequency ranges (see Figure 2C). Due to the presence of a “knee” in 

the ECG data (for details regarding “knees” in power spectra see1,5,38), slopes were fitted 

individually to each subject's power spectrum in several lower (0.25 – 20 Hz) and a higher 

(10-145 Hz) frequency ranges. The split in lower and higher frequency ranges was 

performed to avoid spectral knees at ~15 Hz in the center of the slope fitting range (see 

Supplementary Figure 1B for the distribution of knee frequencies across datasets). Our 

results show that the spectral slope flattened with age over a vast amount of different 

frequency ranges (see Figure 2C). These results are similar to what was reported in previous 

studies measuring “cortical” aperiodic activity. However, we also noted an age-related 

steepening of the spectral slope in one dataset (ECG Dataset 3 - Cam-Can) in the low 

frequency range (0.25 – 12 Hz, see Discussion).  

But do these aperiodic changes at the ECG also correspond to established indices of 

cardiac health and function? To better understand this, we conducted an exploratory 

analysis, where we related the spectral slope of the aperiodic ECG signal in various 

frequency ranges to 90 different indices of heart rate variability (implemented in NeuroKit239) 
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across all 4 datasets. The results show that spectral slopes both in lower (0.25 - 20 Hz) and 

higher (10 - 145 Hz) frequency ranges relate to several indices of heart rate variability (see 

Figure 2D). Overall, spectral slopes in lower frequency ranges were more consistently 

related to heart rate variability indices (39.4-74.6% percent of all investigated indices) than 

spectral slopes in higher frequency ranges (16-30.01% percent of all investigated indices; 

see Figure 2D). In the lower frequency ranges (0.25 - 20Hz), spectral slopes were 

consistently related to most measures of heart rate variability; i.e. significant effects were 

detected in all 4 datasets (see Figure 2D). This includes fractal, multifractal, time and 

frequency domain analyses as well as indices extracted from the Poincaré plot. In the higher 

frequency ranges (10 - 145 Hz) spectral slopes were most consistently related to fractal and 

time domain indices of heart rate variability, but not so much to frequency-domain indices 

assessing spectral power in frequency ranges < 0.4 Hz. This suggests that spectral slopes 

> 10 Hz carry meaningful information about cardiac activity that is largely distinct from the 

frequency-domain information that is commonly investigated using ECG. In sum, these 

findings show that aperiodic activity, in frequency ranges that vastly exceeds those 

commonly explored in ECG analyses, may carry meaningful information about cardiac 

activity. 

With regards to aging, the conducted analyses show that aperiodic activity measured via 

ECG is associated with aging at frequency ranges vastly exceeding those typically 

investigated via ECG, but overlapping with frequency ranges commonly measured in 

recordings of neural activity (see Figure 1G). Importantly, the direction of the association 

between age and aperiodic ECG activity is largely identical to that reported for age and 

aperiodic EEG activity5,8, motivating the investigation of these relationships in combined 

neural and cardiac measurements. 
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Figure 2: Aperiodic signals recorded using ECG are related to aging and heart rate variability. A) 
grand average power spectra plotted separately per Dataset and the associated aperiodic power 
spectra for the lower (0.25-20 Hz) and higher (10-145 Hz) frequency ranges. BC) Age was used to 
predict the spectral slope using different upper and lower slope limits for higher (10 - 145 Hz) and 
lower (0.25 - 20Hz) frequency ranges. Significant effects, i.e. effects with credible intervals not 
overlapping with a region of practical equivalence (ROPE; see Methods - Statistical Inference), are 
highlighted in red or blue (see colorbar). Null effects, which were defined as effects with credible 
intervals completely within a ROPE, are highlighted in green. Results where no decision to accept or 
reject (see40) an effect could be made, are masked using hatches. D) To understand whether 
aperiodic cardiac activity also relates to common measures of heart rate variability we predicted the 
spectral slope using 90 different measures of heart rate variability. We find consistent (yet different) 
associations with mostly fractal and time domain measures in both lower and higher frequency 
ranges. 

 

Cardiac activity is directly captured in EEG and MEG recordings  

Aperiodic activity recorded using ECG (see Figure 2C) and EEG/ECoG8 is similarly 

modulated by age. In MEG and some EEG recordings cardiac activity is measured via 

ECG20. Components of the signal related to cardiac activity are then commonly removed via 

independent component analysis (ICA22; see Figure 1EF). In recordings of EEG the influence 

of cardiac activity is often deemed less problematic17, as a result ECG is rarely recorded 

(see Figure 1E).​

We utilized concurrent ECG, EEG and MEG resting state recordings to examine to what 

extent ECG signals are present in the signals measured using MEG and EEG. We calculated 

so-called temporal response functions (see Methods), to detect whether the signals 
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recorded at different locations (M/EEG vs. ECG) are instantaneously related (zero-time-lags; 

and therefore likely correspond to the same source) or if one lags behind the other (non 

zero-time-lags; likely different sources influencing each other e.g. via interoception see41). 

After pre-processing (see Methods) the data was split in three conditions using an ICA22. 

Independent components that were correlated (at r > 0.4; see Methods: MEG/EEG 

Processing - pre-processing) with the ECG electrode were either not removed from the data 

(Figure 3ABCD - blue), removed from the data (Figure 2ABCD - orange) or projected back 

into the sensor space (Figure 3ABCD - green). Afterwards, temporal response functions 

(encoding models; see Methods) between the signal recorded at the ECG electrode and the 

MEG/EEG sensors and feature reconstruction models (decoding models) were computed 

(for each condition respectively). Our results show that if ECG components are not removed 

via ICA, the ECG signal is captured equally strong at zero-time-lags both in EEG and MEG 

recordings (see Figure 3ACD). Even after removing ECG related components from the data 

TRF peaks emerged (although reduced) at zero-time-lags in EEG, but not in MEG 

recordings (see Figure 3AB). Furthermore, reconstruction (decoding) of the ECG signal was 

reduced, but remained above chance even after rejecting the ICA signal using ECG both in 

MEG and EEG recordings (r > 0). Interestingly, the presence of the ECG signal was more 

pronounced in EEG compared to MEG recordings, after removing ECG related components 

(βstandardized (EEG > MEG) = 0.97, HDI = [0.42, 1.52]; Figure 3D). Additionally, ECG related 

components extracted from MEG recordings were more related to the ECG signal than the 

components extracted from the EEG (βstandardized (EEG > MEG) = -0.76, HDI = [-1.35, -0.18]; Figure 

3D). These results show that A) residual ECG activity remains in surface neural recordings, 

even after applying a very sensitive threshold to detect and remove ECG components via 

ICA and B) neural and cardiac activity are more difficult to separate in EEG as opposed to 

MEG recordings (see Figure 3ACD) resulting in more residual (after ICA) ECG related activity 

in EEG recordings.​

To further illustrate how changes in aperiodic cardiac activity might impact “cortical” 

aperiodic activity recorded via M/EEG we simulated cardiac and neural time series data (see 

Figure 3E). The neural time series data was simulated as in Gao et al.42 with an EI ratio of 

1:2. The cardiac time series consists of a simulated template PQRST-Complex at a rate of 

~1Hz (with jittered onsets) and different types of additional aperiodic activity. Combining 

both cardiac and neural time series data shows that even if the PQRST-Complex is barely 
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visible in the combined time domain signal, the resulting power spectrum can be heavily 

affected by simulated changes in aperiodic cardiac activity (see Figure 3GH). 

 

Figure 3: Cardiac activity is captured in EEG and MEG recordings. AB) Cardiac activity is captured 
at zero time lags in concurrent MEG and EEG recordings, if the ECG signal is rejected via ICA this 
effect disappears in MEG, but not completely in EEG data. CD) Reconstruction of the ECG signal 
was impaired, but remained possible even after rejecting the ICA signal using ECG (both in MEG and 
EEG data). Notably, reconstruction of the ECG signal (after ICA) worked better in EEG than MEG 
data. A * indicates a “significant” effect (see Methods - Statistical Inference). E) To illustrate how 
aperiodic activity recorded using ECG might impact neural aperiodic activity we simulated cardiac 
and neural time series data. The neural time series data was simulated as in Gao et al.42  with an EI 
ratio of 1:2. The cardiac time series consists of a PQRST-Complex and different types of 1/f noise. G) 
Combining both cardiac and neural time series data shows that even if the PQRST-Complex is barely 
visible in the combined time domain signal, the resulting power spectrum can be heavily affected by 
simulated changes in aperiodic cardiac activity (GH). 

 

Age-related changes in aperiodic brain activity are most pronounced in 

cardiac components 

ECG signals are captured in brain activity recorded using M/EEG (see Figure 3ABCD). 

Furthermore, aperiodic activity recorded using ECG is –just like aperiodic activity recorded 
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using EEG/ECoG– modulated by age (see Figure 2C). However, it is unclear whether these 

bodywide changes in aperiodic activity are (in-)dependent.​

To answer this question we are leveraging resting state MEG recordings of an age-diverse 

population obtained from the Cam-CAN inventory (N = 62728,29). After pre-processing (see 

Methods) an ICA was applied to separate MEG activity from activity related to the ECG. ICA 

components that were related to the ECG signal were identified using a correlation 

threshold (r > 0.4; same threshold as in 3ABCD). The data was split into three conditions 

(MEGECG not rejected, MEGECG rejected and MEGECG component; see Figure 3A) and projected back to the 

sensor space respectively. Age was then used to predict the spectral slope across 102 

magnetometers and over a wide variety of frequency ranges with lower limits starting at 0.5 

Hz in 1 Hz steps ranging until 10 Hz and upper limits starting at 45 Hz in 5 Hz steps ranging 

until 145 Hz (see Figure 4B) per subject (split by condition).​

This analysis, which is depicted in Figure 4, shows that over a broad amount of individual 

fitting ranges and sensors, aging resulted in a steepening of spectral slopes across 

conditions (see Figure 4B) with “steepening effects” observed in 25% of the slope fits in 

MEGECG not rejected, 0.5% in MEGECG rejected, and 60% for MEGECG components. The second largest 

category of effects were “null effects” in 13% of the options for MEGECG not rejected, 30% in 

MEGECG rejected, and 7% for MEGECG components. However, we also found “flattening effects” in 

the spectral slope for 0.16% of the processing options in MEGECG not rejected, 0.3% in MEGECG 

rejected, and 0.46% in MEGECG components. 
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Figure 4: Age-related changes in aperiodic brain activity are most pronounced in cardiac 
components. Age was used to predict the spectral slope at rest in three different conditions (ECG 
components not rejected, ECG components rejected and ECG components only) per channel across 
a variety of frequency ranges. A) Standardized beta coefficients either per channel averaged across 
all frequency ranges (left) or per frequency range (right) averaged across all channels. Age-related B) 
steepening, C) flattening and D) null effects in the spectral slope were observed and visualized in a 
similar manner as in A). EF) We further show the direction of results where we didn’t find enough 
evidence to support either a steepening, flattening or null effect. G) Summary of all observed findings 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2025. ; https://doi.org/10.1101/2022.11.07.515423doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.07.515423
http://creativecommons.org/licenses/by/4.0/


in %. H) at some frequency ranges neural and cardiac aperiodic activity change independently with 
age (see also BC). I) At other frequency ranges cardiac and neural aperiodic activity are similarly 
modulated by age. We used cardiac and neural aperiodic activity as predictors for age in a multiple 
regression model to test whether both explain unique variance in aging. This analysis reveals that 
when adding both MEGECG component and MEGECG rejected as predictors age-related flattening effects were 
reduced, yielding no longer significant flattening results (see Figure 5B; upper panel). However, in 
case of the observed steepening effects, significant effects for MEGECG components remained in 98.75% 
of the tested frequency ranges (see Figure 5B; lower panel). 

 

Interestingly, this analysis shows that over all options both flattening and steepening effects 

were most frequently observed on the MEGECG components. This analysis also indicates that a 

vast majority of observed effects irrespective of condition (ECG components, ECG not 

rejected, ECG rejected) show a steepening of the spectral slope with age across sensors 

and frequency ranges. This finding is contrary to previous findings showing a flattening of 

spectral slopes with age in recordings of both brain8 and cardiac activity13 (see also Figure 

2C). We therefore conducted several control analyses both on data averaged across 

sensors (see Supplementary Figure S2, S3, S4, S5, S6, S7) and on the level of single 

sensors (see Supplementary Figure S8 & S9) to investigate to what degree this observation 

is based on decisions made during preprocessing (see Supplementary Text S1 - Control 

Analyses: Age-related steepening of the spectral slope in the MEG). In sum, all performed 

control analyses indicate that aging can robustly cause a steepening of the spectral slope in 

“cortical” activity recorded using MEG that is not explainable by age-related changes in 

head-movements or EOG activity, the application of different blind source separation 

algorithms (e.g. ICA and SSS), the algorithm used to extract the spectral slope (IRASA vs. 

FOOOF), and replicable across two large MEG datasets. These steepening effects have 

previously not been reported in EEG recordings, which suggests that they may be in part 

linked to physiologically measured 1/f noise differently affecting magnetic and electric 

recording devices43 (see Discussion).​

However, despite the large amount of age-related steepening effects, we also noted 

age-related flattening in spectral slopes that occurred mainly at centrally and parietally 

located electrodes in lower frequency ranges between 0.5 and 45Hz (see Figure 4C). 

Importantly, these results overlap both in frequency range and recording site with some of 

the results previously reported in the literature8,44. A majority of results fall in the category 

“undecided” (see Figure 4EFG) as there was not enough evidence to either support a 

steepening, flattening or null effect40. Albeit undecided we still visualized the respective 

direction of these results labeling them either as “undecided/steepening” or 
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“undecided/flattening” to give a descriptive overview of the associated spatial locations and 

frequency ranges in which these results were observed (see Figure 4EF). In sum, this 

analysis suggests that a flattening of spectral slopes with age can be observed at some of 

the previously reported frequency ranges (~0.5-45Hz) and spatial locations (on central, 

parietal and occipital sensors). However, these results represented only 0.3% of effects 

across all processing settings (conditions, sensors and frequency ranges). Even when 

restrictively looking only at the investigated frequency ranges between 0.5 and 50Hz, only 

1.2% (0.4% after maxfilter see Supplementary S8) of effects across these residual settings 

were showing an age related flattening of the spectral slope. This suggests that age-related 

flattening of the spectral slope is tied to specific recording sites and frequency ranges.  

 

Age-related changes in aperiodic brain activity are linked to cardiac activity in 

a frequency dependent manner 

So far we have shown that age-related steepening/flattening of the spectral slope in the 

MEG is both dependent on the investigated frequency range and the sensor selection. 

While a vast majority of our results indicate an age-related steepening of the spectral slope 

(in contrast to previous findings), we also noted a flattening of the spectral slope at a subset 

of central sensors in the lower frequency range (~0.5-45Hz; in line with previous findings; 
8,44). Some of the observed age-related flattening and steepening effects were solely present 

in one of the tested conditions (see Figure 4H). This suggests that aperiodic brain activity 

(MEGECG rejected), at some frequency ranges, changes with age independently of cardiac 

activity (MEGECG component) and vice versa. However, we also noted shared effects at other 

frequency ranges (i.e. effects present both in the MEGECG rejected and MEGECG component 

condition; see Figure 4I). 

To see if MEGECG rejected and MEGECG component  explain unique variance in aging at frequency 

ranges where we noticed shared effects, we averaged the spectral slope across significant 

channels and calculated a multiple regression model with MEGECG component and MEGECG rejected 

as predictors for age (to statistically control for the effect of MEGECG components and MEGECG 

rejected on age). This analysis was performed to understand whether the observed shared 

age-related effects (MEGECG rejected and MEGECG component) are (in-)dependent. The analysis 

revealed that when adding both MEGECG component and MEGECG rejected as predictors, age-related 
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flattening effects were reduced, yielding no longer significant flattening results (see Figure 

4B; upper panel). However, in case of the observed steepening effects, significant effects 

for MEGECG components remained in 98.75% of the tested frequency ranges (see Figure 4B; 

lower panel). In sum, these results suggest that whether or not aperiodic brain activity 

changes independently from cardiac activity with age depends on the recording site and the 

selected frequency range. 

Outlook​

So far, we have shown that slow physiological changes (e.g. aging) can modulate aperiodic 

cardiac activity. To further understand the extent by which aperiodic ECG signals are also 

co-modulated by rapid event-related changes e.g. in cognitive tasks, we investigated the 

ECG recordings of a dataset employing a working memory paradigm45,46(see Figure 5A; for 

details Methods - Working Memory Analysis). Similarly, as in Donoghue et al.5 we 

compared a prestimulus “Baseline” to a post stimulus “Delay” period during a working 

memory task. Interestingly, akin to the EEG results reported by Donoghue et al.5, we 

observed a consistent flattening of the aperiodic slope for cardiac activity in the delay 

period (see Figure 5BD; βstandardized = 0.23, HDI = [0.16, 0.32]). Furthermore, upon 

comparing the change of slope relative to the baseline period across different levels of 

cognitive load we noticed that the flattening effect of the slope was modulated by 

cognitive load (see Figure 5E). The slope flattened the most in the condition with the 

highest working memory load (13 items; βstandardized = 0.42, HDI = [0.33, 0.52]), followed by 

the high load (9 items; βstandardized = 0.39, HDI = [0.29, 0.48]) and the low load condition (5 

items;  βstandardized = 0.25, HDI = [0.15, 0.35]). These results highlight the importance of 

considering the influence of cardiac activity when investigating changes in aperiodic 

activity in a state dependent manner. 
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Figure 5: event-related spectral parametrization of working-memory in the ECG. A) Subjects were 
asked to either “listen” to or “memorize” a sequence of 5,9 and 13 digits (adapted from 45,46). Spectra 
in the “Baseline” period were compared to the “Delay” period of the “memorize” condition. B) The 
averaged evoked difference in the aperiodic spectrum between baseline and delay periods. The 
spectra were reconstructed from the aperiodic parameters of the spectral fits and plotted as a 
function of frequency past the average knee frequency (~5Hz; C). The spectral slope of the ECG 
signal was significantly flatter during the “Delay” compared to the “Baseline” period (D). E) The 
flattening of the spectral slope relative to “Baseline” was strongest in conditions with higher working 
memory load. Error bars indicate standard errors of the mean. A * indicates a “significant” effect (see 
Methods - Statistical Inference). 

 

DISCUSSION  

Aperiodic processes are ubiquitous in nature47. They can be observed not only in 

physiological recordings but are also found in earthquakes, economics, ecology, epidemics, 

speech, and music47,48. In measurements containing multiple aperiodic signals, aperiodic 

signals might even influence each other (e.g. neural speech tracking49,50). The signals 

measured using M/EEG reflect a mixture of physiological sources (eg. cortical, cardiac, 

myographic and ocular), each of which exhibits aperiodic and periodic properties. To 

understand the (a-)periodic signal measured using M/EEG it is inevitable to understand how 

these different sources contribute to the (a-)periodic M/EEG signal. This becomes especially 

important when multiple physiological sources are modulated by the same traits, states and 

disorders. Cardiac and cortical recordings of aperiodic electrophysiological signals are 
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related to age8,13, cognitive states (eg. awake vs. sleep4,14) and disorders such as 

Parkinson's disease and epilepsy9,10,15,16. So far cardiac and cortical activity were mostly 

analyzed separately (see Figure 1C). In the present study we investigated whether 

age-related changes in neural and cardiac aperiodic activity are (in-)dependent. Our results 

demonstrate that while cardiac activity significantly contributes to age-related changes in 

aperiodic activity, the extent of this influence varies by frequency range and sensor 

location—with neural aperiodic activity persisting in some instances. These findings, robust 

across diverse processing choices and replicable in an independent MEG dataset (see 

Supplementary S1), may also extend beyond aging. Notably, in a working memory 

paradigm, the aperiodic spectrum of “pure” ECG recordings is modulated by working 

memory load, mirroring previous findings5 and underscoring the potentially broader impact 

of cardiac activity on the aperiodic signal recorded using M/EEG.  

Differences in aperiodic activity between magnetic and electric field recordings​

Surprisingly, a vast amount of our results using MEG data indicate a steepening of the 

spectral slope with age. This is contrary to previous findings using mainly EEG/ECoG data8 

that commonly show a widespread flattening of the spectral slope with age8. Similarly, we 

also noticed an age-related flattening on simultaneous ECG recordings (see Figure 2C). So 

do these discrepancies reflect general differences between electric vs. magnetic recordings 

of physiological activity? Previous research has shown scaling differences in the spectral 

slope between MEG and EEG recordings43. These scaling differences are partly widespread 

(overall flatter sloped spectra in MEG data) and partly regionally-specific (steeper sloped 

spectra at vertex in MEG compared to EEG recordings and vice versa at frontal regions). 

These observations have been linked to non-resistive properties of tissue (i.e. the 

propagation of the electric field through tissue is frequency dependent43,51). This differently 

affects the signal recorded using MEG and EEG, as magnetic field recordings are not 

distorted by the tissue conductivity of the scalp, skull, cerebrospinal fluid and brain52. An 

alternative, but not exclusive, hypothesis suggests that even under the assumption of a 

purely resistive medium (which is unlikely53,54), frequency scaling differences between MEG 

and EEG may emerge in relation to the space/frequency structure of the recorded activity55. 

Under this hypothesis lower frequencies are suggested to involve synchronous activity in 

larger patches of cortex whereas higher frequencies involve synchronous activity in smaller 

cortical patches. Bénar et al.55 demonstrate that EEG typically integrates activity over larger 

volumes than MEG, resulting in differently shaped spectra across both recording methods. 
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During aging both changes in conductive tissue properties56,57 and functional connectivity 

occur58. Hypothetically, an interaction between several factors that differently affect MEG 

and EEG (e.g. age-related changes in non-resistive properties of tissue and in functional 

connectivity) may therefore potentially explain differently shaped spectra in MEG compared 

to EEG recordings. Future research is needed to explore the differences in magnetic and 

electric field recordings to understand the age-related changes to non-resistive tissue 

properties alongside age-related changes in functional connectivity. Differences in electric 

and magnetic field recordings aside, aperiodic activity may not change strictly linearly as we 

are ageing and studies looking at younger age groups (e.g. <22; 44) may capture different 

aspects of aging (e.g. brain maturation), than those looking at older subjects (>18 years; our 

sample). A recent report even shows some first evidence of an interesting putatively 

non-linear relationship with age in the sensorimotor cortex for resting recordings59. Another 

possible and not mutually exclusive explanation for the age-related steepening could be 

related to the ECG signal itself. We noticed an age-related steepening in the spectral slope 

of the ECG recording in the Cam-Can dataset between ~0.25 and 12Hz (see Figure 2C). 

Depending on how the power of the aperiodic ECG signal in this low frequency band is 

reflected on the MEG sensors, this could also bias the spectral slope of the combined 

MEG/ECG signal.  However, an age-related steepening of the ECG was only noted at a 

frequency range between ~0.25  and 12 Hz making it an unlikely explanation of all the 

effects we detected in the MEG that span frequency ranges vastly exceeding the 0.25 - 12 

Hz range. 

Influences of preprocessing decisions on age-related changes in aperiodic activity​

While differences between magnetic and electric field recordings may explain some 

observed differences in the widespread effects between electric and magnetic recordings of 

electrophysiological activity, we still observed flatter sloped spectra with age at a few MEG 

sensors across several frequency ranges (see Figure 4CHI). These findings are also in-line 

with previous analyses of MEG data investigating age-related changes in aperiodic 

activity60,61. The frequency dependence of the flattening/steepening effects (see Figure 4) 

suggests that the slope of the power spectrum can be very sensitive to different 

preprocessing decisions that may emphasize different aspects of (neuro-)physiological 

activity. In case of the MEG signal this may include the application of 

Signal-Space-Separation algorithms (SSS24,62), different thresholds for ICA component 

detection (see Figure S7), high and low pass filtering, choices during spectral density 
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estimation (window length/type etc.), different parametrization algorithms (e.g. IRASA vs 

FOOOF) and selection of frequency ranges for the aperiodic slope estimation. We therefore 

applied a wide variety of processing settings when analyzing our data. Our results indicate 

overall steeper sloped spectra with increasing age across datasets and processing options 

for MEG. These observed steepening effects can be explained by cardiac activity (see 

Figure 4HI). Cardiac activity, in the form of the ECG, is also captured in EEG recordings (via 

volume conduction; see Figure 3ABCD). Our data suggests that the ECG signal is captured 

equally strong in concurrent MEG and EEG recordings (see Figure 3ABCD). Furthermore, 

separating ECG related components from neural activity using ICA seems to work worse in 

EEG compared to MEG recordings (see Figure 3AB). Difficulties in removing ECG related 

components from EEG signals via ICA might be attributable to various reasons such as the 

number of available sensors or assumptions related to the non-gaussianity of the underlying 

sources. Further understanding of this matter is highly important given that ICA is the most 

widely used procedure to separate neural from peripheral physiological sources (see Figure 

1EF). Additionally, it is worth noting that the effectiveness of an ICA crucially depends on 

the quality of the extracted components63,64 and even widely suggested settings e.g. 

high-pass filtering at 1Hz before fitting an ICA may not be universally applicable (see 

supplementary material of 64). ​

Previous work12,65 has shown that a linked mastoid reference alone was particularly effective 

in reducing the impact of ECG related activity on aperiodic activity measured using EEG. 

However, it should be considered that depending on the montage, referencing can induce 

ambiguities to the measured EEG signal. Linked mastoid referencing for instance can distort 

temporal activity66, which is unproblematic in studies focussing on activity on central 

electrodes12,65, but should be considered when focusing on activity from other recording 

sites67.​

To better delineate cardiac and neural contributions when investigating aperiodic activity, 

ECG recordings should become more standard practice in EEG research. Additionally, 

further method development is needed to better separate cardiac from neural activity in 

M/EEG recordings.  

(Neuro-)physiological origins of aperiodic activity​

Aperiodic activity is present in recordings of different physiological signals, including 

neural4, cardiac11, and muscle activity12. Our study investigated age-related changes in 

aperiodic activity using MEG, and found that these changes vary depending on the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2025. ; https://doi.org/10.1101/2022.11.07.515423doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?YS5Yom
https://www.zotero.org/google-docs/?90C11h
https://www.zotero.org/google-docs/?uvvcOP
https://www.zotero.org/google-docs/?K2NHIn
https://www.zotero.org/google-docs/?fQzwvD
https://www.zotero.org/google-docs/?aV4uuu
https://www.zotero.org/google-docs/?i8nefA
https://www.zotero.org/google-docs/?nKDewf
https://www.zotero.org/google-docs/?ybhn5p
https://doi.org/10.1101/2022.11.07.515423
http://creativecommons.org/licenses/by/4.0/


frequency range and recording site. Specifically, some changes were found to be uniquely 

linked to either cardiac or brain activity, while others were present in both signals (Figure 

4H). Interestingly, some of these shared effects could be attributed to cardiac activity (see 

Figure 4I). However, some effects appeared to be equally influential in explaining 

age-related changes in both cardiac and brain activity, such that the individual effects 

disappeared when analyzed jointly (see Figure 4I, upper panel).​

These findings underscore the complexity of analyzing aperiodic activity, indicating that the 

aperiodic signal recorded non-invasively originates from multiple physiological sources. 

These shared effects are particularly interesting, as they suggest that a common 

mechanism across physiological signals exists that underlies age-related changes of 

aperiodic activity. In fact, neural and vascular processes are known to interact with each 

other68. Cardiovascular activity, in the form of the ECG, is also captured in M/EEG 

recordings (via volume conduction; see Figure 3ABCD). How longitudinal changes in neural 

and cardiac processes influence age-related changes in aperiodic activity is an exciting 

research question. This could be investigated in future studies utilizing longitudinal 

recordings of joint cardiac and neural activity. Understanding the relationship between 

neural and cardiac aperiodic activity is essential not only for identifying common underlying 

processes, but also for improving our understanding of the individual generative 

mechanisms of cardiac and neural aperiodic activity.​

For example, a current popular hypothesis states that the generative process underlying 

aperiodic neural activity is mainly attributed to differences in the ratio between excitatory 

(AMPA) and inhibitory (GABA) currents that influence the slope of the neural power 

spectrum42. Excitatory currents such as AMPA decay faster, then inhibitory currents like 

GABA. This means that flatter power spectra may be indicative for the presence of more 

excitatory than inhibitory currents and vice versa (steeper sloped power spectra42). This 

theory is (in part) based on research showing that GABAergic drugs like propofol42 and 

Glutamatergic drugs like ketamine69 modulate the slope of electrophysiologically measured 

power spectra. However, propofol and ketamine not only influence neural activity, but also 

influence heart rate variability (a core component of the ECG70,71). So, are drug induced 

effects on the slope of the power spectrum (measured using surface electrodes) conflated 

by changes in cardiac activity? Previous work has shown that propofol induced changes to 

the spectral slope were still present in EEG recordings after using ICA to reject ECG 

components from the data65. However, our results suggest that cardiac activity remains in 
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EEG signals even after separating cardiac from neural sources using an ICA with a very 

sensitive rejection criterion (see Figure 3ABCD). It is therefore plausible that drug induced 

effects on aperiodic “neural” activity can still be conflated by cardiac activity. Future work is 

needed to see to what extent drug induced changes in aperiodic neural activity can also be 

attributed to ECG signals. Similar caveats adhere to other findings of functional modulations 

in aperiodic signals in cognitive states (e.g. awake vs. sleep4,14) and disorders like 

Parkinson's disease and epilepsy9,10,15,16. This calls for the initiation of - ideally - multicenter 

coordinated activities aimed to replicate 1/f aperiodic neural activity effects (e.g., induced 

by anesthetic drugs) while considering cardiac activity. Another pending research question 

lies in understanding whether our findings on non-invasive data also translate to data from 

invasive recordings. Given that cardiac activity is also captured on e.g. ECoG19, an influence 

is not unlikely depending on the strength of cardiac activity relative to the measured neural 

activity. ​

It is worth noting that, apart from cardiac activity, muscle activity can also be captured in 

(non-)invasive recordings and may drastically influence measures of the spectral slope72. To 

ensure that persistent muscle activity does not bias our results we used changes in head 

movement velocity as a control analysis (see Supplementary Figure S9). However, it should 

be noted that this is only a proxy for the presence of persistent muscle activity. Ideally, 

studies investigating aperiodic activity should also be complemented by measurements of 

EMG. Whenever such measurements are not available creative approaches that use the 

steepness of the spectral slope (or the lack thereof) as an indicator to detect whether or not 

e.g. an independent component is driven by muscle activity are promising72,73. However, 

these approaches may require further validation to determine how well myographic 

aperiodic thresholds are transferable across the wide variety of different M/EEG devices. 

While the present analysis focuses on aperiodic activity, our results might also translate to 

older findings focusing on “presumably” periodic neural activity in canonical frequency 

bands (e.g. delta, theta, alpha). Until recently aperiodic activity was often discarded as 

noise. Recently developed algorithms have opened up possibilities to separately analyze 

aperiodic and periodic activity5,74. This has for instance revealed that previously suspected 

periodic age-related changes in alpha power may actually be attributable to differences in 

aperiodic activity5,27. As we have shown that age-related changes in aperiodic activity are 

linked to cardiac activity it is possible that our results also translate to previous studies 

conflating periodic and aperiodic activity. However, whether or not periodic activity (after 
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detection) should be detrended using approaches like FOOOF or IRASA still remains 

disputed, as incorrectly detrending the data may cause larger errors than not detrending at 

all75. 

Recommendations​

Changes in aperiodic activity of peripheral and neural signals are co-modulated by similar 

traits, states and disorders. To better disentangle physiological and neural sources of 

aperiodic activity, we propose the following steps to (1) measure and (2) account for 

physiological influences.  

1) Measure potential confounding physiological signals explicitly (e.g. ECG) and test 

whether there is an association between the respective (a-)periodic signal and the feature of 

interest (e.g. age). In case that the feature of interest co-modulates neural and physiological 

aperiodic activity it is necessary to account for this. ​

2) Reduce the influence of physiological signals on neural activity as much as possible. 

Currently, ICA can be used to at least reduce the impact of cardiac activity (see also Figure 

3). However, separating physiological from neural sources using an ICA is no guarantee that 

peripheral physiological activity is fully removed from the cortical signal. Even more 

sophisticated ICA based methods that e.g. apply wavelet transforms on the ICA 

components may still not provide a good separation of peripheral physiological and neural 

activity76,77. This turns the process of deciding whether or not an ICA component is e.g. 

either reflective of cardiac or neural activity into a challenging problem. For instance, when 

we only extract cardiac components using relatively high detection thresholds (e.g. r > 0.8), 

we might end up misclassifying residual cardiac activity as neural. In turn, we can’t always 

be sure that using lower thresholds won’t result in misinterpreting parts of the neural effects 

as cardiac. Both ways of analyzing the data can potentially result in misconceptions. In the 

present study, we show that our effects are largely consistent across different thresholds 

(see Supplementary Figure S7), but future research should be devoted to developing 

objective criteria that can be used to make informed decisions, when results are 

inconsistent. Additionally, it might be necessary to invest in the development of new 

methods to better separate peripheral from neural signals, for instance combinations of ICA 

with other methods such as e.g. empirical mode decomposition (see78,79). Other promising 

approaches may potentially involve bipolar referencing for EEG or spatial referencing 

approaches such as current source density80. How these approaches impact aperiodic 
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activity should be further investigated. For MEG source reconstruction approaches like 

beamforming may be promising (see e.g. for reduction of tACS artifacts in the MEG81). In 

the case that it is not possible to sufficiently reduce the influence of physiological signals on 

neural activity it is necessary to control for this in the statistical model (e.g. by using the 

confounding physiological aperiodic signal as a covariate). 

Conclusion​

The present study, focusing on age-related changes in aperiodic neural and cardiac activity 

indicates that the aperiodic signal recorded using surface sensors/electrodes originates 

from multiple physiological sources. Cardiac and neural age-related changes in aperiodic 

activity vary depending on the frequency range and recording site. Conflating cardiac and 

neural contributions to aperiodic activity obstructs our understanding of both neural and 

cardiac aperiodic processes and should be avoided. These results highlight the need for 

concurrent recordings of cardiac and neural activity to further increase our understanding of 

both cortical and cardiac aperiodic activity and its association with age, cognitive states, 

and disorders.  
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METHODS 

Sample 

The present study builds on resting-state data from several sources. ECG Datasets 1 & 2 

were obtained from PhysioNet82 containing 1121 healthy volunteers between 18 and 92 

years of age (divided into 15 age groups for anonymization purposes)83. The MEG data 

analyzed in this study was obtained from two different sources: the Cam-CAN repository 

(main manuscript28,29) and resting-state data routinely recorded at the University of Salzburg 

(Supplementary Figure S5). The sample obtained from Cam-CAN contained 655 healthy 

volunteers with an age range between 18 and 88 years of age with an average age of 54 

and a standard deviation of 18 years. The sample obtained from the University of Salzburg 

contained 684 healthy volunteers with an age range between 18 and 73 years of age with 

an average age of 32 and a standard deviation of 14 years. ECG was recorded alongside all 

MEG recordings. Notably the age distribution recorded at the University of Salzburg was 

bimodal (with 423 subjects being below 30, the sample does not reflect an age-diverse 

population; see Supplementary Figure S5). For the ECG data, no specific exclusion criteria 

for participants was applied. Data from MEG/EEG participants were excluded when no 

independent heart component (NCam-Can= 18) equal or above the threshold was found (r > 

0.4; see MEG/EEG Processing - pre-processing). Furthermore, when the automated 

processing procedure resulted in errors, data was considered as missing. This resulted in a 

total of 1104 ECG recordings from PhysioNet, 627 MEG recordings from Cam-CAN and 655 

MEG recordings from the University of Salzburg. 

Literature analysis 

The literature analysis was performed using the Literature Scanner (LISC)21 toolbox and 

custom written python functions. Briefly, LISC allows for the collection and analysis of 

abstracts and meta information from scientific articles through a list of search terms. In this 

manuscript, we used lists of terms for aperiodic activity (e.g. 1/f, power law, scale-free, 

etc.), recording devices (ECG, MEG and EEG) and related association terms (e.g. aging, 

working memory etc.) with relevant synonyms. The articles (NArticles=489) that reference 

these terms in their abstracts were extracted from the PubMed database. We extracted the 

proportion of articles related to aperiodic activity and associated with ECG and/or M/EEG 

(see Figure 1A). Furthermore, we displayed the publishing dates of articles in ECG or 
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M/EEG over time (see Figure 1B). Additionally, we extracted the article counts of several 

association terms (e.g. aging) and visualized them separately for ECG and M/EEG. We then 

extracted the doi’s of the articles associated with MEG and EEG separately and sequentially 

extracted the HTML of the full-texts (whenever the texts were accessible). This resulted in 

213 articles for EEG and 66 articles for MEG. Afterwards we extracted search words related 

to ECG and cardiac activity (with relevant synonyms and word stems; cardio, cardiac,  

heart, ecg) from each manuscript along the respective word context (400 signs before and 

600 after each search term; for each time a search word was mentioned in one of the 

extracted manuscripts). Manuscripts in which the word stems “reject” (and related 

synonyms and word stems; remov, discard, reject) were mentioned in one of the word 

contexts were temporally marked as “valid”. The word contexts were further queried for 

search terms related to common blind source separation artifact rejection approaches such 

as independent component analysis (ICA22), singular value decomposition (SVD23), signal 

space separation (SSS24), signal space projections (SSP25) and denoising source separation 

(DSS26). All valid word contexts were then manually inspected by scanning the respective 

word context to ensure that the removal of “artifacts” was related specifically to cardiac and 

not e.g. ocular activity or the rejection of artifacts in general (without specifying which 

“artifactual” source was rejected in which case the manuscript t was marked as invalid). 

This means that the results of our literature analysis likely present a lower bound for the 

rejection of cardiac activity in the M/EEG literature investigating aperiodic activity. Finally, 

we visualized the proportion of articles in relation to the respective search words (see Figure 

1DE). Furthermore, we arbitrarily selected 60 articles investigating aperiodic activity and 

visualized the investigated frequency ranges alongside their respective upper and lower 

bounds (1FGH). 

Statistical Inference 

To investigate the relationship between age and aperiodic activity recorded using MEG, we 

used bayesian generalized linear models (GLMs) either built directly in PyMC (a python 

package for probabilistic programming84) or in Bambi (a high-level interface to PyMC85). 

Decisions for either Bambi or PyMC were made based on the accessibility of appropriate 

statistical families for the respective dependent variables in a GLM. Priors were chosen to 

be weakly informative86 (exact prior specifications for each model can be obtained from the 

code in the corresponding authors github repository; see Data and Code availability). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2025. ; https://doi.org/10.1101/2022.11.07.515423doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?SvrzT8
https://www.zotero.org/google-docs/?IewKrZ
https://www.zotero.org/google-docs/?b5hj7G
https://www.zotero.org/google-docs/?5plZR1
https://www.zotero.org/google-docs/?iH9UJY
https://www.zotero.org/google-docs/?7xzcDH
https://www.zotero.org/google-docs/?LT7d5R
https://www.zotero.org/google-docs/?nu0VBt
https://doi.org/10.1101/2022.11.07.515423
http://creativecommons.org/licenses/by/4.0/


Results were considered statistically significant if 94% of the highest (probability) density 

interval (HDI) of the posterior for a given standardized β-coefficient or (partial) correlation 

coefficient was not overlapping with a region of practical equivalence between -0.1 and 0.1 

as suggested by Kruschke40 based on negligible effect sizes according to Cohen (1988). 

Furthermore, it was ensured that for all models there were no divergent transitions (Rhat < 

1.05 for all relevant parameters) and an effective sample size > 400 (an exhaustive summary 

of bayesian model diagnostics can be found in 88). 

MEG/EEG Processing 

MEG/EEG Processing - Data acquisition 

MEG data (Cam-CAN; Figure 2ABCD, 3, 4 & 5) was recorded at the University of 

Cambridge, using a 306 VectorView system (Elekta Neuromag, Helsinki). MEG data 

(Salzburg; Figure 3 & Supplementary Figure S5) was recorded at the University of Salzburg, 

using a 306 channel TRIUX system (MEGIN Oy, Helsinki). Both systems are equipped with 

102 magnetometers and 204 planar gradiometers and positioned in magnetically shielded 

rooms. In order to facilitate offline artifact correction, electrooculogram (VEOG, HEOG) as 

well as ECG was measured continuously in both recording sites. In a subset of the Salzburg 

recordings EEG was measured additionally (see Figure 3ABCD) using a 32-channel system 

provided by the MEG manufacturer. Data recorded at Cambridge was online filtered at 

0.03-330 Hz, whereas data recorded at Salzburg was online filtered at 0.1-333 Hz with a 

1000 Hz sampling rate at both recording sites. Five Head-Position Indicator coils were used 

to measure the position of the head. All data used in the present study contains passive 

resting-state measurements lasting about ~8min (Cambridge) and ~5min (Salzburg). Further 

data processing at both recording sites was conducted similarly and will therefore be 

reported together. 

MEG/EEG Processing - pre-processing 

Initially, a Signal-Space-Separation (SSS24,62) algorithm was used to find and repair bad 

channels (implemented in MNE-Python version 1.289). The data was further processed by 

either not applying further SSS cleaning (main manuscript) or by applying an SSS algorithm 

for additional data cleaning (Supplementary Figure S6 & S8; implemented in MNE-Python 

version 1.289). The data were afterwards high-pass filtered at 0.1Hz using a finite impulse 

response (FIR) filter (Hamming window). EEG data was re-referenced to the common 
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average (common practice in the field67). For extracting physiological “artifacts” from the 

data, 50 independent components were calculated using the fastica algorithm22 

(implemented in MNE-Python version 1.2; with the parallel/symmetric setting; note: 50 

components were selected for MEG for computational reasons for the analysis of EEG data 

no threshold was applied). As ICA is sensitive to low-frequency drifts, independent 

components were calculated on a copy of the data high-pass filtered at 1Hz. Components 

related to cardiac and ocular activity were determined via correlation with concurrent ECG, 

VEOG and HEOG recordings. A threshold of r > 0.4 was applied to detect the ECG 

components and a threshold r > 0.8 for detecting EOG components in the data. The more 

sensitive threshold used for ECG component detection was decided upon based on the 

strong presence of ECG signals in resting state M/EEG recordings (see Figure 2EFGH). The 

computed ICA was then applied to the original data, either rejecting all components apart 

from those related to the ECG, or rejecting only EOG related components, or ECG and EOG 

related components. This resulted in three conditions MEGECG not rejected , MEGECG rejected  and 

MEGECG component. The data were then split into 2 second epochs and residual artifacts were 

determined using an adaptive and automatic artifact detection method (the “Riemannian 

Potato” implemented in pyriemann90). Epochs were rejected when the covariance matrix of 

an epoch differed by >2.5 standard deviations from a centroid covariance matrix. 

MEG/EEG Processing - Temporal Response Functions 

To estimate the extent at which ECG activity is captured by MEG/EEG recordings, we 

calculated temporal response functions (TRFs). In brief, the assumption behind a TRF is that 

a dependent variable is the result of one (or several) predictor variables. This approach can 

be used to model a time-series as a linear function of one (or several) time series and can 

be formulated (for a single predictor91) as: 

  𝑦
𝑡
 =

  τ=τ
𝑚𝑖𝑛

τ
𝑚𝑎𝑥     

∑ ℎ
τ
𝑥

𝑡−τ

Where h represents the TRF, sometimes described as filter kernel, and ​​  represents τ

potential delays between y and x (for an extensive explanation of the algorithm used herein 

see 91). Typically, this approach is used to estimate spectro-temporal receptive fields, e.g. in 

response to auditory stimuli92, where the interpretation of a TRF follows that of an ERP/F in 
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response to a continuous input signal93. This model can be used as a forward or encoding 

model to predict the brain response from a stimulus representation or as a backward or 

decoding model to reconstruct a stimulus representation from brain recordings. We used 

this approach here to detect whether ECG and M/EEG influence each other. Concurrent 

recordings of MEG and EEG data alongside ECG were only available for a subset of 

subjects (N = 20). We therefore selected those subjects from the subjects data pool of the 

Salzburg sample to perform the TRF analysis. Forward and Backward models were 

calculated between the M/EEG signal and the signal recorded using ECG. This was done to 

see if signals measured using M/EEG and ECG follow/precede each other (non zero-time 

lags; e.g. via interoception see41) or if the signals are instantaneously related (zero-time-lags; 

therefore likely corresponding to the same underlying signal source). As computations of 

TRFs are memory and time extensive, the MEG, EEG and ECG data were additionally low 

pass filtered at 45Hz (to avoid aliasing) and downsampled to 100Hz before the analysis (a 

common practice when computing TRFs; see 91). For the computation of the TRFs, the ECG 

and M/EEG data were normalized (z-scored), and an integration window from -250 to 250 

ms with a kernel basis of 50 ms Hamming windows was defined. To prevent overfitting, 

model parameters were adjusted using a four-fold nested cross validation (two training 

folds, one validation fold, and one test fold), each partition served as a test set once. The 

accuracy of the model was assessed by calculating the Pearson correlation coefficient 

between the respective predicted and measured time series. We calculated the same model 

in the forward direction (encoding model; i.e. predicting M/EEG data in a multivariate model 

from the ECG signal) and backward direction (decoding model; i.e. predicting the ECG 

signal using all M/EEG channels as predictors). The accuracy of the decoding model was 

used in Figure 3CD to assess how well the ECG time series was decodable from M/EEG 

data. For the respective encoding model we visualized the non-normalized encoding 

weights (see Figure 3AB). The TRF time courses visualized in Figure 3A were obtained by 

computing a principle component analysis (PCA94) within subject and across all channels, 

whereas the distribution of peaks visualized in Figure 3B was obtained by calculating the 

root mean square across channels and extracting the maximum value. 

MEG/EEG Processing - Spectral analysis 

Power spectra were computed using Welch's method95 between 0.1 and 145Hz (0.5 Hz 

resolution). Aperiodic activity was extracted using the IRASA method 74 implemented in the 
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YASA package96. Furthermore, in addition to the main model fit between 0.1-145Hz, 

additional slopes were fitted to the aperiodic spectrum in 5Hz steps starting from 45Hz as 

upper frequency limit and in 1Hz steps from 0.5Hz to 10Hz as lower frequency limit. 

Additionally, to investigate the robustness of our result the spectral parameterization 

algorithm (implemented in FOOOF version 1.0.05) was used to parametrize raw power 

spectra. Power spectra were parameterized across frequency ranges of 0.5–145 Hz. FOOOF 

models were fit using the following settings: peak width limits: [1 – 6]; max number of 

peaks: 2; minimum peak height: 0.0; peak threshold: 2.0; aperiodic mode: ‘fixed’. Goodness 

of fit metrics for both IRASA and FOOOF can be found in Supplementary S2. 

ECG Processing 

The ECG data recorded as part of the MEG recordings were processed alongside the MEG 

data. Therefore the pre-processing and spectral analysis settings from the section 

“MEG/EEG Processing” also apply to the ECG aspect of datasets 3 & 4 (see Figure 2). 

Below, ECG processing for the data obtained from PhysioNet are described. 

ECG Processing - Data acquisition 

The ECG data obtained from PhysioNet were acquired at the Jena university hospital 83. The 

study was approved by the ethics committee of the Medical Faculty of the Friedrich Schiller 

University Jena. All research was performed in accordance with relevant guidelines and 

regulations. The informed written consent was obtained from all subjects. ECG data were 

recorded at a sampling rate of 1000 Hz using one of two different recording devices. Either 

an MP150 (ECG100C, BIOPAC systems inc., Golata, CA, USA) or a Task Force Monitor 

system (CNSystems Medizintechnik GmbH, Graz AUT). More detailed information about the 

ECG recordings can be obtained from physionet.org. The data were  further analyzed using 

spectral analysis.  

ECG Processing - Spectral analysis 

Power spectra were computed using Welch's method95 implemented in neurodsp97 between 

0.25 and 145Hz (0.1 Hz resolution).  The spectral parameterization algorithm (implemented 

in FOOOF version 1.0.05) and IRASA (implemented in the YASA package96) were then used 

to parametrize the power spectra. Power spectra were parameterized across a frequency 

range of 0.25–145 Hz using the same settings specified in “MEG/EEG Processing - Spectral 
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analysis”). However, the aperiodic mode was set to ‘knee’ given that the power spectra (on 

average) showed a clear ‘knee’ in log-log coordinates (see Supplementary Figure S1). 

Additionally, we fitted several slopes to the aperiodic spectrum split in a lower range (0.25 – 

20 Hz) and a higher range (10 – 145 Hz). The split in low and high frequency range was 

performed to avoid spectral knees at ~15 Hz in the center of the slope fitting range. 

ECG Processing - Heart rate variability analysis 

Heart rate variability (HRV) was computed using the NeuroKit2 toolbox, a high level tool for 

the analysis of physiological signals. First, the raw electrocardiogram (ECG) data were 

preprocessed, by highpass filtering the signal at 0.5Hz using an infinite impulse response 

(IIR) butterworth filter(order=5) and by smoothing the signal with a moving average kernel 

with the width of one period of 50Hz to remove the powerline noise (default settings of 

neurokit.ecg.ecg_clean). Afterwards, QRS complexes were detected based on the 

steepness of the absolute gradient of the ECG signal. Subsequently, R-Peaks were 

detected as local maxima in the QRS complexes (default settings of 

neurokit.ecg.ecg_peaks; see 98 for a validation of the algorithm). From the cleaned R-R 

intervals, 90 HRV indices were derived, encompassing time-domain, frequency-domain, 

and non-linear measures. Time-domain indices included standard metrics such as the 

mean and standard deviation of the normalized R-R intervals , the root mean square of 

successive differences, and other statistical descriptors of interbeat interval variability. 

Frequency-domain analyses were performed using power spectral density estimation, 

yielding for instance low frequency (0.04-0.15Hz) and high frequency (0.15-0.4Hz) power 

components. Additionally, non-linear dynamics were characterized through measures such 

as sample entropy, detrended fluctuation analysis and various Poincaré plot descriptors. All 

these measures were then related to the slopes of the low frequency (0.25 – 20 Hz) and high 

frequency (10 – 145 Hz) aperiodic spectrum of the raw ECG. 

 

Working Memory Analysis​

Sample 

As an outlook to which extent the present findings, focussed on aging, may translate to 

studies investigating changes in “cortical” aperiodic in other settings (e.g. in a state 

dependent) we analyzed data from a working memory paradigm45,46 (see Figure 5A for an 
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overview of the experimental paradigm). The original study included 86 healthy volunteers, 

due to technical difficulties ECG and EEG recordings were only available for a subset of 

subjects. In the present study we analyzed the data of 48 Subjects. The age-range of the 

investigated sample was between 18 and  24 years with an average age of 20 years. 

Informed consent was obtained from each participant and the experimental protocol was 

approved by the Ural Federal University ethics committee. 

Digit span task 

Each trial began with an exclamation mark for 0.5 s along with a recorded voice command 

“begin” – indicating the start of the trial. The exclamation mark was followed by an 

instruction to either memorize the subsequent digits in the correct order (memory condition) 

or to just listen to the digits without attempting to memorize them (control condition). The 

instruction was followed by a three-second “Baseline” period. Then either 5, 9, or 13 digits 

were presented auditorily with an interstimulus interval of 2  seconds. The digits were 

presented with a female voice in Russian. Each of the digits from 0 to 9 was used, and the 

mean duration of each digit was 664 ms (min: 462 ms, max: 813 ms). The last digit in the 

sequence was followed by a 3-sec “Delay” period. During the baseline, encoding, and 

”Delay” period, participants were fixating a cross (1.2 cm in diameter) on the screen. In the 

memory condition, the participants were asked to recall each digit out loud in the correct 

order starting from the first one (i.e., serial recall). The retrieval was recorded by a computer 

microphone controlled by PsychoPy99. The participants had 7, 11, and 15 seconds for 5, 9, 

and 13 digit sequences, respectively, to recall the digits. The retrieval was followed by an 

inter-trial interval of 5 s. In the control condition (passive listening), presentation of the digits 

and the “Delay” period was followed immediately by an inter-trial interval of the same 

duration. There were 9 blocks in total with 54 passive listening and 108 memory trials 

overall. Each block consisted of 3 control (one of each load) followed by 12 memory (4 trials 

on each level of load, in random order) followed again by 3 control trials. Before the main 

working memory task, each participant completed 6 practice trials (3 passive listening and 3 

memory trials). 
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Data acquisition 

ECG was recorded from one channel with the active electrode placed on the right wrist and 

the reference electrode on the left wrist, and the ground on the left inner forearm at 3 cm 

distally from the elbow.  

Data analysis 

The continuous ECG data was high-pass filtered at 0.1Hz using a finite impulse response 

(FIR) filter (Hamming window) and downsampled to 500Hz after applying an anti-aliasing 

filter. The downsampled data was then split in 3 second epochs separately for the 

“Baseline” and “Delay” periods, as well as the amount of presented digits (5, 9 or 13).  The 

epoched data was further analyzed either by calculating power spectra over the data split in 

the “Baseline” and “Delay” condition irrespective of the amount of presented digits (Figure 

5BCD) or by retaining the information about the amount of presented digits (Figure 5E). 

Power spectra were computed using Welch's method95 between 0.1 and 245 Hz (0.333 Hz 

resolution).  The spectral parameterization algorithm (implemented in FOOOF version 1.0.05) 

was then used to parametrize the power spectra. Power spectra were parameterized across 

a frequency range of 0.1–245 Hz using the same settings specified in “MEG/EEG 

Processing - Spectral analysis”). However, the aperiodic mode was set to ‘knee’ given that 

the power spectra (on average) showed a clear ‘knee’ in log-log coordinates.  

Statistical analysis 

To investigate the relationship between working memory load and aperiodic activity 

recorded via ECG we implemented bayesian linear mixed effect models in Bambi85 using 

the following formulas according to the Wilkinson notation100 with the “Baseline” condition 

set as Intercept in the following models.  

 [Figure 5D] 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑠𝑙𝑜𝑝𝑒 ~ 1 +  𝐷𝑒𝑙𝑎𝑦 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑑)

 [Figure 5E] 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑠𝑙𝑜𝑝𝑒 ~ 1 +  𝑁 𝐷𝑖𝑔𝑖𝑡𝑠 𝑡𝑜 𝑟𝑒𝑐𝑎𝑙𝑙  +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑑)

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2025. ; https://doi.org/10.1101/2022.11.07.515423doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?8t1Q21
https://www.zotero.org/google-docs/?nfTLhm
https://www.zotero.org/google-docs/?7TABWi
https://www.zotero.org/google-docs/?VEeVtT
https://doi.org/10.1101/2022.11.07.515423
http://creativecommons.org/licenses/by/4.0/


Data Visualization  

Individual plots were generated in python using matplotlib, seaborn, and mne-python. Plots 

were then arranged as cohesive figures with affinity designer 

(https://affinity.serif.com/en-us/designer/). 

 

Data availability  

The data analyzed in the main manuscript are mostly obtained from open data sources. The 

ECG data (Dataset 1 & 2; Figure 2) were obtained from physionet.org. The MEG/EEG 

dataset (Figure 3) was obtained at the University of Salzburg as part of routine resting state 

MEG recordings and is available upon request. The data for the MEG analysis in the main 

manuscript (Figure 4) are obtained from cam-can.org. The data for the working memory 

analysis was obtained from openneuro.org (Figure 5).   

 

Code availability 

All code used for the analysis is publicly available on GitHub at: 

https://github.com/schmidtfa/cardiac_1_f & https://github.com/schmidtfa/ecg_1f_memory. 
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SUPPLEMENTARY MATERIAL 

Supplementary Text S1 - Control Analyses: Age-related steepening of the 

spectral slope in the MEG  

First, we conducted a median split of age to compare the raw power spectra averaged 

across channels (see Supplementary Figure 2A). This shows that on the grand average 

across channels the spectral slope was slightly steeper in older subjects even before 

spectral parametrization. Furthermore, the use of blind source separation artifact rejection 

approaches may influence power spectral densities by reducing external noise in the signal. 

We therefore investigated whether and how the use of a Signal-Space-Separation algorithm 

(SSS24,62) and different ICA thresholds influence the reported results. On the grand average 

across sensors slightly stronger steepening effects were observed for the MEGECG not rejected 

data compared to MEGECG rejected when not cleaning the data using SSS and vice versa (see 

Supplementary Figure S6 for a comparison). On the level of single sensors the application 

of SSS resulted in a further reduction of both flattening and steepening effects in all 

conditions except for MEGECG components, where we noted a 20% increase in steepening 

effects (see Supplementary Figure S7). Considering that we detected less and weaker 

aperiodic effects when using SSS maxfilter is it now advisable to omit maxfilter, when 

analyzing aperiodic signals? We don’t think that we can make such a judgment based on 

our current results. This is because it's unclear whether or not the reduction of effects 

stems from an additional removal of peripheral information (e.g. muscle activity; that may be 

correlated with aging) or is induced by the SSS maxfiltering procedure itself. As the use of 

maxfilter in detecting changes of aperiodic activity was not subject of analysis that we are 

aware of, we suggest that this should be the topic of additional methodological research.​

To ensure that the effects shown are not dependent on the ICA thresholds we used, an 

analysis predicting the grand average spectral slope based on age was also conducted for 

other correlation thresholds showing an overall similar pattern (see Supplementary Figure 

S6). We further managed to replicate the finding that age has the strongest impact on the 

spectral slope of the ECG components using a different algorithm to extract aperiodic 

activity (FOOOF5; see Supplementary Figure S2 & S3). Using FOOOF5, we also investigated 

the impact of different slope fitting options (fixed vs. knee model fits) on the aperiodic age 

relationship (see Supplementary Figure S4). The results that we obtained from these 

analyses using FOOOF offer converging evidence with our main analysis using IRASA. We 
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further replicated our findings on an additional dataset containing resting state recordings 

(N = 655) obtained as part of MEG studies routinely conducted at the University of Salzburg 

(see Supplementary Figure S4).​

While all these control analyses indicate that the age-related steepening effects occur 

robustly in the MEG it is unclear whether they can be exclusively attributed to cardiac 

activity. Crucially, the topography of the observed steepening effects is present across the 

scalp and prominent at frontal and temporal sensors around the MEG helmet (albeit also 

observable at central locations; see MEGECG Components). This topography is suggestive of 

artifacts induced by muscle activity (e.g. head/eye movements). We therefore used the 

subject's head movement information obtained via continuous hpi measurements as a 

covariate (i.e. 5 coils continuously emitting sinusoidal waves at 293 Hz, 307 Hz, 314 Hz, 321 

Hz and 328 Hz to localize the head position in the scanner). While head movements 

increased significantly with aging (βstandardized = 0.23, HDI = [0.18, 0.28], see Supplementary 

Figure S8) it was not sufficient to explain the observed steepening or flattening effects in the 

spectral slope (see Supplementary Figure S8). We further investigated age-related changes 

to the spectral slope of the vertical and horizontal EOG channels indicating no significant 

age-related steepening/flattening across the investigated frequency ranges (see 

Supplementary Figure S8). Surprisingly, all these results indicate an age-related steepening 

in the spectral slope of MEG data both when averaged across sensors and on most 

individual sensors across two large datasets. This finding is contrary to previous findings 

showing a flattening of spectral slopes with age in recordings of brain activity8 and cardiac 

activity13 (see also Figure 2C). This discrepancy can potentially be explained by multiple 

factors including, physiologically measured 1/f noise differently affecting magnetic and 

electric recording devices43, preprocessing choices, fitting ranges for the 1/f slope, 

electrode selection etc. (see discussion). 
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Supplementary Figure S1 - ECG Spectra + Knee Frequency: 

​
Supplementary Figure S1: Aperiodic signals recorded using ECG can be associated with aging. A) 
grand average power spectra plotted separately per Dataset B) indicating a strong “knee” from 
~15Hz. CD) The spectral slope recorded using ECG was calculated using different upper frequency 
limits and correlated with age. This analysis shows that the association between age and spectral 
slope increased until ~145 Hz in 3 of 4 datasets.  
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Supplementary Figure S2 - Raw Spectra + Goodness of fit metrics: 

 

Supplementary Figure S2: Grand average power spectra for the MEG data recorded at Cambridge 
and split in the three conditions MEGECG not rejected, MEGECG rejected, MEGECG components. A) Spectra averaged 
across channels split in older and younger subjects (median split). B) Aperiodic activity was extracted 
from the power spectra using the IRASA method 74 implemented in the YASA package 96. * indicate a 
“significant” effect (see Methods - Statistical Inference). C) Goodness of fit was assessed using R2 for 
both the IRASA and FOOOF model fit (see Supplementary S2/S3 for FOOOF fits). D) The spectral 
exponent obtained from FOOOF was compared to the spectral slope extracted from IRASA showing 
that both are highly related. 
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Supplementary Figure S3 - Replication FOOOF: 

 

Supplementary Figure S3: Age-related changes in aperiodic brain activity can be explained by 
cardiac components A) Age was used to predict the spectral slope at rest in three different 
conditions (ECG components not rejected [blue], ECG components rejected [orange], ECG 
components only [green]. B) Age distribution in the sample recorded at the University of Cambridge. 
C) Comparison of standardized beta coefficients shows that the strongest association with age is 
present on the data reflecting only ECG components * indicate a “significant” effect (see Methods - 
Statistical Inference). 
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Supplementary Figure S4 - Replication FOOOF Comparison of Knee vs Fixed 

aperiodic modes: 

 

Supplementary Figure S4: Comparison between Fixed and Knee model fits using FOOOF A) Age 
was used to predict the spectral slope at rest in three different conditions (ECG components not 
rejected [blue], ECG components rejected [orange], ECG components only [green]. B) Goodness of 
fit was assessed using R2 and compared between “Fixed” and “Knee” models. C) Comparison of the 
“Knee” and “Fixed” model fits shows that not fitting the knee was offering on average the better 
balance between goodness-of-fit and model complexity as suggested by the Bayesian Information 
Criterion (BIC).  Error bars indicate confidence intervals. 
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Supplementary Figure S5 - Replication Salzburg Sample: 

 

Supplementary Figure S5: Age-related changes in aperiodic brain activity can be explained by 
cardiac components A) Age was used to predict the spectral slope at rest in three different 
conditions (ECG components not rejected [blue], ECG components rejected [orange], ECG 
components only [green]. B) Age distribution in the sample routinely recorded as part of MEG 
measurements at the University of Salzburg. C) Comparison of standardized beta coefficients shows 
that the strongest association with age is present on the data reflecting only ECG components * 
indicate a “significant” effect (see Methods - Statistical Inference).  
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Supplementary Figure S6 - SSS Maxfilter Analysis: 

 

Supplementary Figure S6: Age-related changes in aperiodic brain activity are most prominent on  
cardiac components irrespective of maxfiltering the data using signal space separation (SSS) or not 
AC) Age was used to predict the spectral slope (fitted at 0.1-145Hz) averaged across sensors at rest 
in three different conditions (ECG components not rejected [blue], ECG components rejected 
[orange], ECG components only [green]. BD) The analysis in AC) was repeated for different fitting 
ranges with lower limits starting at 0.5 Hz in 1Hz steps ranging until 10 Hz and upper limits starting at 
45 Hz in 5 Hz steps ranging until 145 Hz. Significant effects, i.e. effects with credible intervals not 
overlapping with a region of practical equivalence (ROPE; see Methods - Statistical Inference), are 
highlighted in red or blue (see colorbar). Null effects, which were defined as effects with credible 
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intervals completely within a ROPE, are highlighted in green. Results where no decision to accept or 
reject (see40) an effect could be made,  are masked using hatches.  
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Supplementary Figure S7 - ICA Thresholds: 

 

Supplementary Figure S7: A) The relationship between age and the aperiodic slope was compared 
within three conditions (MEGECG not rejected [blue], MEGECG rejected [orange] and MEGECG component [green] 
across different thresholds to select cardiac components from independent components of the MEG 
signal via ICA. Importantly, we always detected a significant relationship between age and aperiodic 
activity for the ECG component. While we did not always detect a significant relationship between 
age and aperiodic activity in MEG ECG not rejected  and MEG ECG rejected conditions,  the standardized β 
coefficients are heavily overlapping within each condition. Notably using a high threshold (r > 0.8) 
failed to identify cardiac components in >50% of the subjects. We therefore opted for a lower 
threshold of 0.4 for all related analysis in the main manuscript. Significant effects, i.e. effects with 
credible intervals not overlapping with a region of practical equivalence (ROPE; see Methods - 
Statistical Inference), are highlighted using a star. B) The amount of extracted ECG components per 
subject as a function of different ICA thresholds. On average, less than cardiac 2 components were 
extracted per subject irrespective of the used threshold. However, using high thresholds e.g. > 0.8 
only allowed for the detection of cardiac components in less than 50% of the subjects. 
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Supplementary Figure S8 - SSS Maxfilter Analysis: 

 

Supplementary Figure S8: SSS Maxfilter Analysis: Steepening and flattening of the spectral slope 
with age is dependent on the sensor location and the investigated frequency range. Age was used to 
predict the spectral slope at rest in three different conditions (ECG components not rejected, ECG 
components rejected and ECG components only) per channel across a variety of frequency ranges 
(see Figure 1B). A) Standardized beta coefficients either per channel averaged across all frequency 
ranges (left) or per frequency range (right) averaged across all channels. Age-related B) steepening, 
C) flattening and D) null effects in the spectral slope were observed and visualized in a similar 
manner as in A). EF) We further show the direction of results where we didn’t find enough evidence 
to support either a steepening, flattening or null effect. G) Summary of all observed findings in %.
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Supplementary Figure S9 - Head Movement, EOG control analysis: 

 

Supplementary Figure S9: Steepening and flattening of the spectral slope with age is dependent on 
the recording site and the investigated frequency range, when controlling for head movements. A) 
Head movement velocity was estimated using information obtained from the cHPI measurement. B) 
Spectral slopes were obtained also for horizontal and vertical EOG electrodes on the same frequency 
ranges as in Figure 4. Age was used to predict the spectral slope at rest in three different conditions 
(ECG components not rejected, ECG components rejected and ECG components only) per channel 
across a variety of frequency ranges. C) Standardized beta coefficients either per channel averaged 
across all frequency ranges (left) or per frequency range (right) averaged across all channels. 
Age-related D) steepening, E) flattening. Significant effects, i.e. effects with credible intervals not 
overlapping with a region of practical equivalence (ROPE; see Methods - Statistical Inference), are 
highlighted in red or blue (see colorbar). Null effects, which were defined as effects with credible 
intervals completely within a ROPE, are highlighted in green. Results where no decision to accept or 
reject (see40) an effect could be made,  are masked using hatches. 
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