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ABSTRACT

The power of electrophysiologically measured cortical activity decays with an approximately
1/ function. The slope of this decay (i.e. the spectral exponent, X) is modulated by various
factors such as age, cognitive states or psychiatric/neurological disorders. Interestingly, a
mostly parallel line of research has also uncovered similar effects for the spectral slope in
the electrocardiogram (ECG). This raises the question whether these bodywide changes in
spectral slopes are (in-)dependent. Focusing on well-established age-related changes in
spectral slopes we analyzed a total of 1282 recordings of magnetoencephalography (MEG)
resting state measurements with concurrent ECG in an age-diverse sample (18-88 years).
Using a diverse array of analytical approaches, we demonstrate that the aperiodic signal
recorded via surface electrodes/sensors originates from multiple physiological sources.
Furthermore, our results suggest that common “artifact” rejection approaches (i.e. ICA) may
not be sufficient to separate cardiac from neural activity. In particular, significant parts of
age-related changes in aperiodic activity normally interpreted to be of neural origin can be
explained by cardiac activity. Moreover, our results suggest that changes
(flattening/steepening) of the spectral slope with age are dependent on the recording site
and investigated frequency range. Our results highlight the complexity of aperiodic activity
while raising concerns when interpreting aperiodic activity as “cortical“ without considering

physiological influences.

INTRODUCTION

Aperiodic neural activity is omnipresent both in invasive (e.g. ECoG') and non-invasive (e.g.
MEG/EEG?®) recordings of electrophysiological brain activity and even in hemodynamic
responses (e.g. fMRI?). In the frequency domain, when visualized in log-log coordinates
(log-frequency/log-power), aperiodic activity manifests as a linear decay in power with an
increase in frequency’ (i.e. the spectral slope). This part of the signal - following a so-called
“power-law” distribution - is often referred to as “scale-free”, “1/f noise” or more recently

“aperiodic activity”®

(see Figure 1A for an illustration of aperiodic activity with different
spectral slopes in the time and frequency domain).
In the past, aperiodic neural activity was often treated as noise and simply removed from

the signal e.g. via pre-whitening®’, so that analyses could focus on periodic neural activity
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(local peaks that rise above the “power-law” distribution, which are commonly thought to
reflect neural oscillations). However, in recent years the analysis of aperiodic neural activity
has gained interest (see Figure 1D). Several studies have shown that aperiodic neural
activity is meaningfully modulated by various factors, such as age®, cognitive state (e.g.

awake vs. sleep) and disorders like Parkinson’s disease and epilepsy®'.

However,
aperiodic activity is not only present in recordings of neural activity, but also part of other
physiological signals such as cardiac and muscle activity, commonly measured using
electrocardiography (ECG'') and electromyography'. Interestingly, and mostly overlooked
by the neuroscience community (see Figure 1C), aperiodic activity measured using ECG
(often referred to as power law or 1/f activity) is modulated by similar factors as neural

1214) gand

aperiodic activity, including aging'®, different cognitive states (eg. awake vs. sleep
disorders such as Parkinson’s disease and epilepsy'>'® (see also Figure 1B).

Furthermore, it is well-known that, via volume conduction, cardiac activity can also be
captured in both invasive and non-invasive recordings of neural activity'~'°. Hence, it is also
considered best practice to measure and remove cardiac activity from M/EEG recordings®.
However, an analysis of openly accessible M/EEG articles that investigate aperiodic activity
(N aricies=279; see Methods - Literature Analysis for further details) revealed that only 17.1%
of EEG studies explicitly mention that cardiac activity was removed and only 16.5%
measure ECG (45.9% of MEG studies removed cardiac activity and 31.1% of MEG studies
mention that ECG was measured; see Figure 1EF). Additionally, investigations of aperiodic
activity vary strongly by both the upper and lower bounds and the general width of the
analyzed frequency ranges (1GHI). This further complicates the comparison of results
across studies as physiological signals (e.g., cardiac activity) may have varying impacts

across frequency ranges—for instance, exerting a stronger influence on lower frequencies

than on higher ones.
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Figure 1: Literature analysis of aperiodic activity investigated using M/EEG and ECG. A) lllustration
of different types of aperiodic activity in the time and frequency domain. BC) We analyzed 489
abstracts indexed on PubMed using LISC?', a package for collecting and analyzing scientific
literature. B) This analysis revealed that changes in aperiodic activity are related to similar traits,
states and disorders in measures of both neural and cardiac activity. C) We further noted a tiny
overlap of studies (N=4) that refer to both cardiac and cortical aperiodic activity in their abstracts.
Yet, none of these studies considers confounding influences of cardiac aperiodic activity on the
measurement of cortical aperiodic activity. D) We additionally found a steep increase related to the
investigation of neural aperiodic activity in the 2020s highlighting the current interest of the topic in
the neuroscience community. EF) We further downloaded and analyzed freely available full-texts of
M/EEG studies investigating aperiodic activity to see to which extent and how cardiac activity was
handled. This analysis revealed that only 17.1% of EEG studies remove cardiac activity and only
16.5% measure ECG (for MEG 45.9% removed cardiac; 31.1% mention ECG was measured). We
were further interested in determining which artifact rejection approaches were most commonly used
to remove cardiac activity, such as independent component analysis (ICA*), singular value
decomposition (SVD?%), signal space separation (SSS?%), signal space projections (SSP*) and
denoising source separation (DSS*). We found that the most commonly applied method both in EEG
and MEG recordings was independent component analysis (ICA). GH) An arbitrary selection of
previous studies (N = 60) shows a vast amount of different frequency ranges are used to investigate
aperiodic activity. While a significant amount of studies looked into a range between ~0.1-50 Hz
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(~30%), most studies used a unique frequency range. I) Not only do the upper and lower bounds
vary between studies, but also the general width of the fitting range can vary from 0.9 to 290 Hz.

Considering that A) aperiodic neural and cardiac activity are modulated by similar traits,
states, and disorders, and B) cardiac activity is often present but rarely removed from neural
recordings, we ask: Are changes in aperiodic neural activity (in-)dependent from changes in
aperiodic cardiac activity? To address this question, we turn our attention to the recently
reported®® and replicated?” association between aperiodic activity and chronological age.

28,2
t8,9

Using the publicly available Cam-CAN datase , we find that the aperiodic signal
measured using M/EEG originates from multiple physiological sources. In particular,
significant portions of age-related changes in aperiodic activity —normally attributed to
neural processes— can be better explained by cardiac activity. This observation holds
across a wide range of processing options and control analyses (see Supplementary S1),
and was replicable on a separate MEG dataset. However, the extent to which cardiac
activity accounts for age-related changes in aperiodic activity varies with the investigated
frequency range and recording site. Importantly, in some frequency ranges and sensor
locations, age-related changes in neural aperiodic activity still prevail. But does the
influence of cardiac activity on the aperiodic spectrum extend beyond age? In a preliminary
analysis, we demonstrate that working memory load modulates the aperiodic spectrum of
“pure” ECG recordings. The direction of this working memory effect mirrors previous
findings on EEG data® suggesting that the impact of cardiac activity goes well beyond

aging. In sum, our results highlight the complexity of aperiodic activity while cautioning

against interpreting it as solely “neural” without considering physiological influences.

RESULTS

Aperiodic signals recorded using ECG are associated with aging and heart rate

variability

Changes of aperiodic activity in recordings of neural and cardiac activity are associated with
aging®'®. However, analyses of ECG signals - in the frequency domain - typically focus on

(a-)periodic signals <0.4Hz*. These (compared to neural time series) slowly fluctuating
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signals are related to heart rate variability®’. Changes in (a-)periodic activity at these low
frequencies are well established physiological measures®. However, substantially less is
known about aperiodic activity above 0.4Hz in the ECG. Yet, common ECG setups for
adults capture activity at a broad bandwidth of 0.05 - 150Hz****. Importantly, a lot of the
physiological meaningful spectral information rests between 1-50Hz*°, similarly to M/EEG
recordings. Furthermore, meaningful information can be extracted at much higher
frequencies. For instance, ventricular late potentials have a broader frequency band
(~40-250HZz%*). However, that’s not all, as further meaningful information can be extracted at
even higher frequencies (>100Hz). For instance, the so-called high-frequency QRS seems to
be highly informative for the early detection of myocardial ischemia and other cardiac
abnormalities that may not yet be evident in the standard frequency range®*’. Yet, the exact
physiological mechanisms underlying the high-frequency QRS remain unclear (see * for a

review discussing possible mechanisms).

To understand whether aperiodic activity recorded using ECG carries meaningful
information about aging —at frequency ranges common in M/EEG recordings— the ECG data
of 4 age-diverse populations with a total of 2286 subjects were analyzed.

After pre-processing (see Methods), age was used to predict the spectral slope of the ECG
over various different frequency ranges (see Figure 2C). Due to the presence of a “knee” in

the ECG data (for details regarding “knees” in power spectra see'*)

, slopes were fitted
individually to each subject's power spectrum in several lower (0.25 — 20 Hz) and a higher
(10-145 Hz) frequency ranges. The split in lower and higher frequency ranges was
performed to avoid spectral knees at ~15 Hz in the center of the slope fitting range (see
Supplementary Figure 1B for the distribution of knee frequencies across datasets). Our
results show that the spectral slope flattened with age over a vast amount of different
frequency ranges (see Figure 2C). These results are similar to what was reported in previous
studies measuring “cortical” aperiodic activity. However, we also noted an age-related
steepening of the spectral slope in one dataset (ECG Dataset 3 - Cam-Can) in the low

frequency range (0.25 — 12 Hz, see Discussion).

But do these aperiodic changes at the ECG also correspond to established indices of
cardiac health and function? To better understand this, we conducted an exploratory
analysis, where we related the spectral slope of the aperiodic ECG signal in various

frequency ranges to 90 different indices of heart rate variability (implemented in NeuroKit2*)
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across all 4 datasets. The results show that spectral slopes both in lower (0.25 - 20 Hz) and
higher (10 - 145 Hz) frequency ranges relate to several indices of heart rate variability (see
Figure 2D). Overall, spectral slopes in lower frequency ranges were more consistently
related to heart rate variability indices (39.4-74.6% percent of all investigated indices) than
spectral slopes in higher frequency ranges (16-30.01% percent of all investigated indices;
see Figure 2D). In the lower frequency ranges (0.25 - 20Hz), spectral slopes were
consistently related to most measures of heart rate variability; i.e. significant effects were
detected in all 4 datasets (see Figure 2D). This includes fractal, multifractal, time and
frequency domain analyses as well as indices extracted from the Poincaré plot. In the higher
frequency ranges (10 - 145 Hz) spectral slopes were most consistently related to fractal and
time domain indices of heart rate variability, but not so much to frequency-domain indices
assessing spectral power in frequency ranges < 0.4 Hz. This suggests that spectral slopes
> 10 Hz carry meaningful information about cardiac activity that is largely distinct from the
frequency-domain information that is commonly investigated using ECG. In sum, these
findings show that aperiodic activity, in frequency ranges that vastly exceeds those
commonly explored in ECG analyses, may carry meaningful information about cardiac

activity.

With regards to aging, the conducted analyses show that aperiodic activity measured via
ECG is associated with aging at frequency ranges vastly exceeding those typically
investigated via ECG, but overlapping with frequency ranges commonly measured in
recordings of neural activity (see Figure 1G). Importantly, the direction of the association
between age and aperiodic ECG activity is largely identical to that reported for age and
aperiodic EEG activity®®, motivating the investigation of these relationships in combined

neural and cardiac measurements.
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Figure 2: Aperiodic signals recorded using ECG are related to aging and heart rate variability. A)
grand average power spectra plotted separately per Dataset and the associated aperiodic power
spectra for the lower (0.25-20 Hz) and higher (10-145 Hz) frequency ranges. BC) Age was used to
predict the spectral slope using different upper and lower slope limits for higher (10 - 145 Hz) and
lower (0.25 - 20Hz) frequency ranges. Significant effects, i.e. effects with credible intervals not
overlapping with a region of practical equivalence (ROPE; see Methods - Statistical Inference), are
highlighted in red or blue (see colorbar). Null effects, which were defined as effects with credible
intervals completely within a ROPE, are highlighted in green. Results where no decision to accept or
reject (see’) an effect could be made, are masked using hatches. D) To understand whether
aperiodic cardiac activity also relates to common measures of heart rate variability we predicted the
spectral slope using 90 different measures of heart rate variability. We find consistent (yet different)
associations with mostly fractal and time domain measures in both lower and higher frequency
ranges.

Cardiac activity is directly captured in EEG and MEG recordings

Aperiodic activity recorded using ECG (see Figure 2C) and EEG/ECoG® is similarly
modulated by age. In MEG and some EEG recordings cardiac activity is measured via
ECG?°. Components of the signal related to cardiac activity are then commonly removed via
independent component analysis (ICA%; see Figure 1EF). In recordings of EEG the influence
of cardiac activity is often deemed less problematic'’, as a result ECG is rarely recorded
(see Figure 1E).

We utilized concurrent ECG, EEG and MEG resting state recordings to examine to what
extent ECG signals are present in the signals measured using MEG and EEG. We calculated

so-called temporal response functions (see Methods), to detect whether the signals
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recorded at different locations (M/EEG vs. ECG) are instantaneously related (zero-time-lags;
and therefore likely correspond to the same source) or if one lags behind the other (non
zero-time-lags; likely different sources influencing each other e.g. via interoception see*').
After pre-processing (see Methods) the data was split in three conditions using an ICA%.
Independent components that were correlated (at r > 0.4; see Methods: MEG/EEG
Processing - pre-processing) with the ECG electrode were either not removed from the data
(Figure 3ABCD - blue), removed from the data (Figure 2ABCD - orange) or projected back
into the sensor space (Figure 3ABCD - green). Afterwards, temporal response functions
(encoding models; see Methods) between the signal recorded at the ECG electrode and the
MEG/EEG sensors and feature reconstruction models (decoding models) were computed
(for each condition respectively). Our results show that if ECG components are not removed
via ICA, the ECG signal is captured equally strong at zero-time-lags both in EEG and MEG
recordings (see Figure 3ACD). Even after removing ECG related components from the data
TRF peaks emerged (although reduced) at zero-time-lags in EEG, but not in MEG
recordings (see Figure 3AB). Furthermore, reconstruction (decoding) of the ECG signal was
reduced, but remained above chance even after rejecting the ICA signal using ECG both in
MEG and EEG recordings (r > 0). Interestingly, the presence of the ECG signal was more
pronounced in EEG compared to MEG recordings, after removing ECG related components
(Bstandardized Eec > meqy = 0.97, HDI = [0.42, 1.52]; Figure 3D). Additionally, ECG related
components extracted from MEG recordings were more related to the ECG signal than the
components extracted from the EEG (Bsngardized 6 > meg) = -0.76, HDI = [-1.35, -0.18]; Figure
3D). These results show that A) residual ECG activity remains in surface neural recordings,
even after applying a very sensitive threshold to detect and remove ECG components via
ICA and B) neural and cardiac activity are more difficult to separate in EEG as opposed to
MEG recordings (see Figure 3ACD) resulting in more residual (after ICA) ECG related activity
in EEG recordings.

To further illustrate how changes in aperiodic cardiac activity might impact “cortical”
aperiodic activity recorded via M/EEG we simulated cardiac and neural time series data (see
Figure 3E). The neural time series data was simulated as in Gao et al.** with an El ratio of
1:2. The cardiac time series consists of a simulated template PQRST-Complex at a rate of
~1Hz (with jittered onsets) and different types of additional aperiodic activity. Combining

both cardiac and neural time series data shows that even if the PQRST-Complex is barely
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visible in the combined time domain signal, the resulting power spectrum can be heavily

affected by simulated changes in aperiodic cardiac activity (see Figure 3GH).
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Figure 3: Cardiac activity is captured in EEG and MEG recordings. AB) Cardiac activity is captured
at zero time lags in concurrent MEG and EEG recordings, if the ECG signal is rejected via ICA this
effect disappears in MEG, but not completely in EEG data. CD) Reconstruction of the ECG signal
was impaired, but remained possible even after rejecting the ICA signal using ECG (both in MEG and
EEG data). Notably, reconstruction of the ECG signal (after ICA) worked better in EEG than MEG
data. A * indicates a “significant” effect (see Methods - Statistical Inference). E) To illustrate how
aperiodic activity recorded using ECG might impact neural aperiodic activity we simulated cardiac
and neural time series data. The neural time series data was simulated as in Gao et al.** with an El
ratio of 1:2. The cardiac time series consists of a PQRST-Complex and different types of 1/f noise. G)
Combining both cardiac and neural time series data shows that even if the PQRST-Complex is barely
visible in the combined time domain signal, the resulting power spectrum can be heavily affected by
simulated changes in aperiodic cardiac activity (GH).

Age-related changes in aperiodic brain activity are most pronounced in

cardiac components

ECG signals are captured in brain activity recorded using M/EEG (see Figure 3ABCD).

Furthermore, aperiodic activity recorded using ECG is —just like aperiodic activity recorded
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using EEG/ECoG- modulated by age (see Figure 2C). However, it is unclear whether these
bodywide changes in aperiodic activity are (in-)dependent.

To answer this question we are leveraging resting state MEG recordings of an age-diverse
population obtained from the Cam-CAN inventory (N = 627%2°), After pre-processing (see
Methods) an ICA was applied to separate MEG activity from activity related to the ECG. ICA
components that were related to the ECG signal were identified using a correlation
threshold (r > 0.4; same threshold as in 3ABCD). The data was split into three conditions
(MEGigcG not rejecteds MEGigca rejected @NA MEGigcg component; S€€ Figure 3A) and projected back to the
sensor space respectively. Age was then used to predict the spectral slope across 102
magnetometers and over a wide variety of frequency ranges with lower limits starting at 0.5
Hz in 1 Hz steps ranging until 10 Hz and upper limits starting at 45 Hz in 5 Hz steps ranging
until 145 Hz (see Figure 4B) per subject (split by condition).

This analysis, which is depicted in Figure 4, shows that over a broad amount of individual
fitting ranges and sensors, aging resulted in a steepening of spectral slopes across
conditions (see Figure 4B) with “steepening effects” observed in 25% of the slope fits in
MEGecs not rejecteds 0-5% iN MEGigcq rejecteds @NA 60% for MEGiecg components: 1h€ second largest
category of effects were “null effects” in 13% of the options for MEGgcg not rejecteay 30% in
MEGecg rejecteds @Nd 7% for MEGecg components: HOWever, we also found “flattening effects” in
the spectral slope for 0.16% of the processing options in MEGgcg not rejecteds 0-3% i MEGgcg

rejecteds and 046% in IVIEGECG components*
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Figure 4: Age-related changes in aperiodic brain activity are most pronounced in cardiac
components. Age was used to predict the spectral slope at rest in three different conditions (ECG
components not rejected, ECG components rejected and ECG components only) per channel across
a variety of frequency ranges. A) Standardized beta coefficients either per channel averaged across
all frequency ranges (left) or per frequency range (right) averaged across all channels. Age-related B)
steepening, C) flattening and D) null effects in the spectral slope were observed and visualized in a
similar manner as in A). EF) We further show the direction of results where we didn’t find enough
evidence to support either a steepening, flattening or null effect. G) Summary of all observed findings
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in %. H) at some frequency ranges neural and cardiac aperiodic activity change independently with
age (see also BC). I) At other frequency ranges cardiac and neural aperiodic activity are similarly
modulated by age. We used cardiac and neural aperiodic activity as predictors for age in a multiple
regression model to test whether both explain unique variance in aging. This analysis reveals that
when adding both MEGecg component @aNd MEGigcq eiectes @S Predictors age-related flattening effects were
reduced, yielding no longer significant flattening results (see Figure 5B; upper panel). However, in
case of the observed steepening effects, significant effects for MEGegcg components femained in 98.75%
of the tested frequency ranges (see Figure 5B; lower panel).

Interestingly, this analysis shows that over all options both flattening and steepening effects
were most frequently observed on the MEGgcg components- 1NiS analysis also indicates that a
vast majority of observed effects irrespective of condition (ECG components, ECG not
rejected, ECG rejected) show a steepening of the spectral slope with age across sensors
and frequency ranges. This finding is contrary to previous findings showing a flattening of
spectral slopes with age in recordings of both brain® and cardiac activity'® (see also Figure
2C). We therefore conducted several control analyses both on data averaged across
sensors (see Supplementary Figure S2, S3, S4, S5, S6, S7) and on the level of single
sensors (see Supplementary Figure S8 & S9) to investigate to what degree this observation
is based on decisions made during preprocessing (see Supplementary Text S1 - Control
Analyses: Age-related steepening of the spectral slope in the MEG). In sum, all performed
control analyses indicate that aging can robustly cause a steepening of the spectral slope in
“cortical” activity recorded using MEG that is not explainable by age-related changes in
head-movements or EOG activity, the application of different blind source separation
algorithms (e.g. ICA and SSS), the algorithm used to extract the spectral slope (IRASA vs.
FOOOF), and replicable across two large MEG datasets. These steepening effects have
previously not been reported in EEG recordings, which suggests that they may be in part
linked to physiologically measured 1/f noise differently affecting magnetic and electric
recording devices* (see Discussion).

However, despite the large amount of age-related steepening effects, we also noted
age-related flattening in spectral slopes that occurred mainly at centrally and parietally
located electrodes in lower frequency ranges between 0.5 and 45Hz (see Figure 4C).
Importantly, these results overlap both in frequency range and recording site with some of
the results previously reported in the literature®**. A majority of results fall in the category
“undecided” (see Figure 4EFG) as there was not enough evidence to either support a
steepening, flattening or null effect’®. Albeit undecided we still visualized the respective

direction of these results labeling them either as “undecided/steepening” or
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“undecided/flattening” to give a descriptive overview of the associated spatial locations and
frequency ranges in which these results were observed (see Figure 4EF). In sum, this
analysis suggests that a flattening of spectral slopes with age can be observed at some of
the previously reported frequency ranges (~0.5-45Hz) and spatial locations (on central,
parietal and occipital sensors). However, these results represented only 0.3% of effects
across all processing settings (conditions, sensors and frequency ranges). Even when
restrictively looking only at the investigated frequency ranges between 0.5 and 50Hz, only
1.2% (0.4% after maxfilter see Supplementary S8) of effects across these residual settings
were showing an age related flattening of the spectral slope. This suggests that age-related

flattening of the spectral slope is tied to specific recording sites and frequency ranges.

Age-related changes in aperiodic brain activity are linked to cardiac activity in

a frequency dependent manner

So far we have shown that age-related steepening/flattening of the spectral slope in the
MEG is both dependent on the investigated frequency range and the sensor selection.
While a vast majority of our results indicate an age-related steepening of the spectral slope
(in contrast to previous findings), we also noted a flattening of the spectral slope at a subset
of central sensors in the lower frequency range (~0.5-45Hz; in line with previous findings;
84%). Some of the observed age-related flattening and steepening effects were solely present
in one of the tested conditions (see Figure 4H). This suggests that aperiodic brain activity
(MEGegcs rected), @t some frequency ranges, changes with age independently of cardiac
activity (MEGgcs component) @Nd vice versa. However, we also noted shared effects at other

frequency ranges (i.e. effects present both in the MEGegcg rejectea @Nd MEGecg component

condition; see Figure 4l).

To see if MEGgcg rejected @A MEGEcg component €XPIAIN UNique variance in aging at frequency
ranges where we noticed shared effects, we averaged the spectral slope across significant
channels and calculated a multiple regression model with MEGgsg component @Nd MEGigcg rejected
as predictors for age (to statistically control for the effect of MEGecg components aNd MEGgcg
iected ON age). This analysis was performed to understand whether the observed shared
age-related effects (MEGgcg rejectes @A MEGecg component) are (in-)dependent. The analysis

revealed that when adding both MEGicg component 8Nd MEGiecg rejectea @S Predictors, age-related
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flattening effects were reduced, yielding no longer significant flattening results (see Figure
4B; upper panel). However, in case of the observed steepening effects, significant effects
for MEGecg components feémained in 98.75% of the tested frequency ranges (see Figure 4B;
lower panel). In sum, these results suggest that whether or not aperiodic brain activity
changes independently from cardiac activity with age depends on the recording site and the

selected frequency range.

Outlook

So far, we have shown that slow physiological changes (e.g. aging) can modulate aperiodic
cardiac activity. To further understand the extent by which aperiodic ECG signals are also
co-modulated by rapid event-related changes e.g. in cognitive tasks, we investigated the

ECG recordings of a dataset employing a working memory paradigm**¢(

see Figure 5A; for
details Methods - Working Memory Analysis). Similarly, as in Donoghue et al.® we
compared a prestimulus “Baseline” to a post stimulus “Delay” period during a working
memory task. Interestingly, akin to the EEG results reported by Donoghue et al.®, we
observed a consistent flattening of the aperiodic slope for cardiac activity in the delay
period (see Figure 5BD; Bgandardes = 0.23, HDI = [0.16, 0.32]). Furthermore, upon
comparing the change of slope relative to the baseline period across different levels of
cognitive load we noticed that the flattening effect of the slope was modulated by
cognitive load (see Figure 5E). The slope flattened the most in the condition with the
highest working memory load (13 items; Bsangardizes = 0-42, HDI = [0.33, 0.52]), followed by
the high load (9 items; Bsungargizes = 0-39, HDI = [0.29, 0.48]) and the low load condition (5
items;  Bsuandargzes = 0.25, HDI = [0.15, 0.35]). These results highlight the importance of
considering the influence of cardiac activity when investigating changes in aperiodic

activity in a state dependent manner.
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Figure 5: event-related spectral parametrization of working-memory in the ECG. A) Subjects were
asked to either “listen” to or “memorize” a sequence of 5,9 and 13 digits (adapted from “>*°). Spectra
in the “Baseline” period were compared to the “Delay” period of the “memorize” condition. B) The
averaged evoked difference in the aperiodic spectrum between baseline and delay periods. The
spectra were reconstructed from the aperiodic parameters of the spectral fits and plotted as a
function of frequency past the average knee frequency (~5Hz; C). The spectral slope of the ECG
signal was significantly flatter during the “Delay” compared to the “Baseline” period (D). E) The
flattening of the spectral slope relative to “Baseline” was strongest in conditions with higher working
memory load. Error bars indicate standard errors of the mean. A * indicates a “significant” effect (see
Methods - Statistical Inference).

DISCUSSION

Aperiodic processes are ubiquitous in nature*’. They can be observed not only in
physiological recordings but are also found in earthquakes, economics, ecology, epidemics,

speech, and music*’*®

. In measurements containing multiple aperiodic signals, aperiodic
signals might even influence each other (e.g. neural speech tracking**®®). The signals
measured using M/EEG reflect a mixture of physiological sources (eg. cortical, cardiac,
myographic and ocular), each of which exhibits aperiodic and periodic properties. To
understand the (a-)periodic signal measured using M/EEG it is inevitable to understand how
these different sources contribute to the (a-)periodic M/EEG signal. This becomes especially
important when multiple physiological sources are modulated by the same traits, states and

disorders. Cardiac and cortical recordings of aperiodic electrophysiological signals are
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related to age®'®, cognitive states (eg. awake vs. sleep*'®) and disorders such as
Parkinson's disease and epilepsy®'®'>'°. So far cardiac and cortical activity were mostly
analyzed separately (see Figure 1C). In the present study we investigated whether
age-related changes in neural and cardiac aperiodic activity are (in-)Jdependent. Our results
demonstrate that while cardiac activity significantly contributes to age-related changes in
aperiodic activity, the extent of this influence varies by frequency range and sensor
location—with neural aperiodic activity persisting in some instances. These findings, robust
across diverse processing choices and replicable in an independent MEG dataset (see
Supplementary S1), may also extend beyond aging. Notably, in a working memory
paradigm, the aperiodic spectrum of “pure” ECG recordings is modulated by working
memory load, mirroring previous findings® and underscoring the potentially broader impact

of cardiac activity on the aperiodic signal recorded using M/EEG.

Differences in aperiodic activity between magnetic and electric field recordings

Surprisingly, a vast amount of our results using MEG data indicate a steepening of the
spectral slope with age. This is contrary to previous findings using mainly EEG/ECoG data®
that commonly show a widespread flattening of the spectral slope with age®. Similarly, we
also noticed an age-related flattening on simultaneous ECG recordings (see Figure 2C). So
do these discrepancies reflect general differences between electric vs. magnetic recordings
of physiological activity? Previous research has shown scaling differences in the spectral
slope between MEG and EEG recordings*®. These scaling differences are partly widespread
(overall flatter sloped spectra in MEG data) and partly regionally-specific (steeper sloped
spectra at vertex in MEG compared to EEG recordings and vice versa at frontal regions).
These observations have been linked to non-resistive properties of tissue (i.e. the
propagation of the electric field through tissue is frequency dependent*®®’). This differently
affects the signal recorded using MEG and EEG, as magnetic field recordings are not
distorted by the tissue conductivity of the scalp, skull, cerebrospinal fluid and brain®?. An
alternative, but not exclusive, hypothesis suggests that even under the assumption of a

purely resistive medium (which is unlikely®*%%)

, frequency scaling differences between MEG
and EEG may emerge in relation to the space/frequency structure of the recorded activity®.
Under this hypothesis lower frequencies are suggested to involve synchronous activity in
larger patches of cortex whereas higher frequencies involve synchronous activity in smaller
cortical patches. Bénar et al.>® demonstrate that EEG typically integrates activity over larger

volumes than MEG, resulting in differently shaped spectra across both recording methods.
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During aging both changes in conductive tissue properties®®®” and functional connectivity
occur®®. Hypothetically, an interaction between several factors that differently affect MEG
and EEG (e.g. age-related changes in non-resistive properties of tissue and in functional
connectivity) may therefore potentially explain differently shaped spectra in MEG compared
to EEG recordings. Future research is needed to explore the differences in magnetic and
electric field recordings to understand the age-related changes to non-resistive tissue
properties alongside age-related changes in functional connectivity. Differences in electric
and magnetic field recordings aside, aperiodic activity may not change strictly linearly as we
are ageing and studies looking at younger age groups (e.g. <22; **) may capture different
aspects of aging (e.g. brain maturation), than those looking at older subjects (>18 years; our
sample). A recent report even shows some first evidence of an interesting putatively
non-linear relationship with age in the sensorimotor cortex for resting recordings®. Another
possible and not mutually exclusive explanation for the age-related steepening could be
related to the ECG signal itself. We noticed an age-related steepening in the spectral slope
of the ECG recording in the Cam-Can dataset between ~0.25 and 12Hz (see Figure 2C).
Depending on how the power of the aperiodic ECG signal in this low frequency band is
reflected on the MEG sensors, this could also bias the spectral slope of the combined
MEG/ECG signal. However, an age-related steepening of the ECG was only noted at a
frequency range between ~0.25 and 12 Hz making it an unlikely explanation of all the
effects we detected in the MEG that span frequency ranges vastly exceeding the 0.25 - 12

Hz range.

Influences of preprocessing decisions on age-related changes in aperiodic activity

While differences between magnetic and electric field recordings may explain some
observed differences in the widespread effects between electric and magnetic recordings of
electrophysiological activity, we still observed flatter sloped spectra with age at a few MEG
sensors across several frequency ranges (see Figure 4CHI). These findings are also in-line
with previous analyses of MEG data investigating age-related changes in aperiodic

activity®®'

. The frequency dependence of the flattening/steepening effects (see Figure 4)
suggests that the slope of the power spectrum can be very sensitive to different
preprocessing decisions that may emphasize different aspects of (neuro-)physiological
activity. In case of the MEG signal this may include the application of
Signal-Space-Separation algorithms (SSS?*%?), different thresholds for ICA component

detection (see Figure S7), high and low pass filtering, choices during spectral density
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estimation (window length/type etc.), different parametrization algorithms (e.g. IRASA vs
FOOOF) and selection of frequency ranges for the aperiodic slope estimation. We therefore
applied a wide variety of processing settings when analyzing our data. Our results indicate
overall steeper sloped spectra with increasing age across datasets and processing options
for MEG. These observed steepening effects can be explained by cardiac activity (see
Figure 4HI). Cardiac activity, in the form of the ECG, is also captured in EEG recordings (via
volume conduction; see Figure 3ABCD). Our data suggests that the ECG signal is captured
equally strong in concurrent MEG and EEG recordings (see Figure 3ABCD). Furthermore,
separating ECG related components from neural activity using ICA seems to work worse in
EEG compared to MEG recordings (see Figure 3AB). Difficulties in removing ECG related
components from EEG signals via ICA might be attributable to various reasons such as the
number of available sensors or assumptions related to the non-gaussianity of the underlying
sources. Further understanding of this matter is highly important given that ICA is the most
widely used procedure to separate neural from peripheral physiological sources (see Figure
1EF). Additionally, it is worth noting that the effectiveness of an ICA crucially depends on

the quality of the extracted components®®

and even widely suggested settings e.g.
high-pass filtering at 1Hz before fitting an ICA may not be universally applicable (see
supplementary material of %).

Previous work'?®® has shown that a linked mastoid reference alone was particularly effective
in reducing the impact of ECG related activity on aperiodic activity measured using EEG.
However, it should be considered that depending on the montage, referencing can induce
ambiguities to the measured EEG signal. Linked mastoid referencing for instance can distort
temporal activity®®, which is unproblematic in studies focussing on activity on central
electrodes'®®, but should be considered when focusing on activity from other recording
sites®’.

To better delineate cardiac and neural contributions when investigating aperiodic activity,
ECG recordings should become more standard practice in EEG research. Additionally,

further method development is needed to better separate cardiac from neural activity in

M/EEG recordings.

(Neuro-)physiological origins of aperiodic activity
Aperiodic activity is present in recordings of different physiological signals, including
neural®, cardiac'', and muscle activity'?>. Our study investigated age-related changes in

aperiodic activity using MEG, and found that these changes vary depending on the
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frequency range and recording site. Specifically, some changes were found to be uniquely
linked to either cardiac or brain activity, while others were present in both signals (Figure
4H). Interestingly, some of these shared effects could be attributed to cardiac activity (see
Figure 4l). However, some effects appeared to be equally influential in explaining
age-related changes in both cardiac and brain activity, such that the individual effects
disappeared when analyzed jointly (see Figure 41, upper panel).

These findings underscore the complexity of analyzing aperiodic activity, indicating that the
aperiodic signal recorded non-invasively originates from multiple physiological sources.
These shared effects are particularly interesting, as they suggest that a common
mechanism across physiological signals exists that underlies age-related changes of
aperiodic activity. In fact, neural and vascular processes are known to interact with each
other®®. Cardiovascular activity, in the form of the ECG, is also captured in M/EEG
recordings (via volume conduction; see Figure 3ABCD). How longitudinal changes in neural
and cardiac processes influence age-related changes in aperiodic activity is an exciting
research question. This could be investigated in future studies utilizing longitudinal
recordings of joint cardiac and neural activity. Understanding the relationship between
neural and cardiac aperiodic activity is essential not only for identifying common underlying
processes, but also for improving our understanding of the individual generative
mechanisms of cardiac and neural aperiodic activity.

For example, a current popular hypothesis states that the generative process underlying
aperiodic neural activity is mainly attributed to differences in the ratio between excitatory
(AMPA) and inhibitory (GABA) currents that influence the slope of the neural power
spectrum*. Excitatory currents such as AMPA decay faster, then inhibitory currents like
GABA. This means that flatter power spectra may be indicative for the presence of more
excitatory than inhibitory currents and vice versa (steeper sloped power spectra®). This
theory is (in part) based on research showing that GABAergic drugs like propofol** and
Glutamatergic drugs like ketamine® modulate the slope of electrophysiologically measured
power spectra. However, propofol and ketamine not only influence neural activity, but also
influence heart rate variability (a core component of the ECG’®™"). So, are drug induced
effects on the slope of the power spectrum (measured using surface electrodes) conflated
by changes in cardiac activity? Previous work has shown that propofol induced changes to
the spectral slope were still present in EEG recordings after using ICA to reject ECG

components from the data®. However, our results suggest that cardiac activity remains in
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EEG signals even after separating cardiac from neural sources using an ICA with a very
sensitive rejection criterion (see Figure 3ABCD). It is therefore plausible that drug induced
effects on aperiodic “neural” activity can still be conflated by cardiac activity. Future work is
needed to see to what extent drug induced changes in aperiodic neural activity can also be
attributed to ECG signals. Similar caveats adhere to other findings of functional modulations

“1% and disorders like

in aperiodic signals in cognitive states (e.g. awake vs. sleep
Parkinson's disease and epilepsy®'®'>'. This calls for the initiation of - ideally - multicenter
coordinated activities aimed to replicate 1/f aperiodic neural activity effects (e.g., induced
by anesthetic drugs) while considering cardiac activity. Another pending research question
lies in understanding whether our findings on non-invasive data also translate to data from
invasive recordings. Given that cardiac activity is also captured on e.g. ECoG", an influence
is not unlikely depending on the strength of cardiac activity relative to the measured neural
activity.

It is worth noting that, apart from cardiac activity, muscle activity can also be captured in
(non-)invasive recordings and may drastically influence measures of the spectral slope™. To
ensure that persistent muscle activity does not bias our results we used changes in head
movement velocity as a control analysis (see Supplementary Figure S9). However, it should
be noted that this is only a proxy for the presence of persistent muscle activity. Ideally,
studies investigating aperiodic activity should also be complemented by measurements of
EMG. Whenever such measurements are not available creative approaches that use the
steepness of the spectral slope (or the lack thereof) as an indicator to detect whether or not
e.g. an independent component is driven by muscle activity are promising’®’®. However,
these approaches may require further validation to determine how well myographic

aperiodic thresholds are transferable across the wide variety of different M/EEG devices.

While the present analysis focuses on aperiodic activity, our results might also translate to
older findings focusing on “presumably” periodic neural activity in canonical frequency
bands (e.g. delta, theta, alpha). Until recently aperiodic activity was often discarded as
noise. Recently developed algorithms have opened up possibilities to separately analyze
aperiodic and periodic activity>*. This has for instance revealed that previously suspected
periodic age-related changes in alpha power may actually be attributable to differences in
aperiodic activity®?’. As we have shown that age-related changes in aperiodic activity are
linked to cardiac activity it is possible that our results also translate to previous studies

conflating periodic and aperiodic activity. However, whether or not periodic activity (after
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detection) should be detrended using approaches like FOOOF or IRASA still remains
disputed, as incorrectly detrending the data may cause larger errors than not detrending at
all”.

Recommendations

Changes in aperiodic activity of peripheral and neural signals are co-modulated by similar
traits, states and disorders. To better disentangle physiological and neural sources of
aperiodic activity, we propose the following steps to (1) measure and (2) account for

physiological influences.

1) Measure potential confounding physiological signals explicitly (e.g. ECG) and test
whether there is an association between the respective (a-)periodic signal and the feature of
interest (e.g. age). In case that the feature of interest co-modulates neural and physiological
aperiodic activity it is necessary to account for this.

2) Reduce the influence of physiological signals on neural activity as much as possible.
Currently, ICA can be used to at least reduce the impact of cardiac activity (see also Figure
3). However, separating physiological from neural sources using an ICA is no guarantee that
peripheral physiological activity is fully removed from the cortical signal. Even more
sophisticated ICA based methods that e.g. apply wavelet transforms on the ICA
components may still not provide a good separation of peripheral physiological and neural
activity’®’’. This turns the process of deciding whether or not an ICA component is e.g.
either reflective of cardiac or neural activity into a challenging problem. For instance, when
we only extract cardiac components using relatively high detection thresholds (e.g. r > 0.8),
we might end up misclassifying residual cardiac activity as neural. In turn, we can’t always
be sure that using lower thresholds won’t result in misinterpreting parts of the neural effects
as cardiac. Both ways of analyzing the data can potentially result in misconceptions. In the
present study, we show that our effects are largely consistent across different thresholds
(see Supplementary Figure S7), but future research should be devoted to developing
objective criteria that can be used to make informed decisions, when results are
inconsistent. Additionally, it might be necessary to invest in the development of new
methods to better separate peripheral from neural signals, for instance combinations of ICA

with other methods such as e.g. empirical mode decomposition (see’®’)

. Other promising
approaches may potentially involve bipolar referencing for EEG or spatial referencing

approaches such as current source density®*. How these approaches impact aperiodic
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activity should be further investigated. For MEG source reconstruction approaches like
beamforming may be promising (see e.g. for reduction of tACS artifacts in the MEG?"). In
the case that it is not possible to sufficiently reduce the influence of physiological signals on
neural activity it is necessary to control for this in the statistical model (e.g. by using the

confounding physiological aperiodic signal as a covariate).

Conclusion

The present study, focusing on age-related changes in aperiodic neural and cardiac activity
indicates that the aperiodic signal recorded using surface sensors/electrodes originates
from multiple physiological sources. Cardiac and neural age-related changes in aperiodic
activity vary depending on the frequency range and recording site. Conflating cardiac and
neural contributions to aperiodic activity obstructs our understanding of both neural and
cardiac aperiodic processes and should be avoided. These results highlight the need for
concurrent recordings of cardiac and neural activity to further increase our understanding of
both cortical and cardiac aperiodic activity and its association with age, cognitive states,

and disorders.
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METHODS

Sample

The present study builds on resting-state data from several sources. ECG Datasets 1 & 2
were obtained from PhysioNet® containing 1121 healthy volunteers between 18 and 92
years of age (divided into 15 age groups for anonymization purposes)®®. The MEG data
analyzed in this study was obtained from two different sources: the Cam-CAN repository
(main manuscript?®?°) and resting-state data routinely recorded at the University of Salzburg
(Supplementary Figure S5). The sample obtained from Cam-CAN contained 655 healthy
volunteers with an age range between 18 and 88 years of age with an average age of 54
and a standard deviation of 18 years. The sample obtained from the University of Salzburg
contained 684 healthy volunteers with an age range between 18 and 73 years of age with
an average age of 32 and a standard deviation of 14 years. ECG was recorded alongside all
MEG recordings. Notably the age distribution recorded at the University of Salzburg was
bimodal (with 423 subjects being below 30, the sample does not reflect an age-diverse
population; see Supplementary Figure S5). For the ECG data, no specific exclusion criteria
for participants was applied. Data from MEG/EEG participants were excluded when no
independent heart component (Ngam-can= 18) equal or above the threshold was found (r >
0.4; see MEG/EEG Processing - pre-processing). Furthermore, when the automated
processing procedure resulted in errors, data was considered as missing. This resulted in a
total of 1104 ECG recordings from PhysioNet, 627 MEG recordings from Cam-CAN and 655
MEG recordings from the University of Salzburg.

Literature analysis

The literature analysis was performed using the Literature Scanner (LISC)?' toolbox and
custom written python functions. Briefly, LISC allows for the collection and analysis of
abstracts and meta information from scientific articles through a list of search terms. In this
manuscript, we used lists of terms for aperiodic activity (e.g. 1/f, power law, scale-free,
etc.), recording devices (ECG, MEG and EEG) and related association terms (e.g. aging,
working memory etc.) with relevant synonyms. The articles (Na4qes=489) that reference
these terms in their abstracts were extracted from the PubMed database. We extracted the
proportion of articles related to aperiodic activity and associated with ECG and/or M/EEG

(see Figure 1A). Furthermore, we displayed the publishing dates of articles in ECG or
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M/EEG over time (see Figure 1B). Additionally, we extracted the article counts of several
association terms (e.g. aging) and visualized them separately for ECG and M/EEG. We then
extracted the doi’s of the articles associated with MEG and EEG separately and sequentially
extracted the HTML of the full-texts (whenever the texts were accessible). This resulted in
213 articles for EEG and 66 articles for MEG. Afterwards we extracted search words related
to ECG and cardiac activity (with relevant synonyms and word stems; cardio, cardiac,
heart, ecg) from each manuscript along the respective word context (400 signs before and
600 after each search term; for each time a search word was mentioned in one of the
extracted manuscripts). Manuscripts in which the word stems “reject” (and related
synonyms and word stems; remov, discard, reject) were mentioned in one of the word
contexts were temporally marked as “valid”. The word contexts were further queried for
search terms related to common blind source separation artifact rejection approaches such
as independent component analysis (ICA%), singular value decomposition (SVD?), signal
space separation (SSS*), signal space projections (SSP?°) and denoising source separation
(DSS?). All valid word contexts were then manually inspected by scanning the respective
word context to ensure that the removal of “artifacts” was related specifically to cardiac and
not e.g. ocular activity or the rejection of artifacts in general (without specifying which
“artifactual” source was rejected in which case the manuscript t was marked as invalid).
This means that the results of our literature analysis likely present a lower bound for the
rejection of cardiac activity in the M/EEG literature investigating aperiodic activity. Finally,
we visualized the proportion of articles in relation to the respective search words (see Figure
1DE). Furthermore, we arbitrarily selected 60 articles investigating aperiodic activity and
visualized the investigated frequency ranges alongside their respective upper and lower

bounds (1FGH).
Statistical Inference

To investigate the relationship between age and aperiodic activity recorded using MEG, we
used bayesian generalized linear models (GLMs) either built directly in PyMC (a python
package for probabilistic programming®) or in Bambi (a high-level interface to PyMC®).
Decisions for either Bambi or PyMC were made based on the accessibility of appropriate
statistical families for the respective dependent variables in a GLM. Priors were chosen to
be weakly informative® (exact prior specifications for each model can be obtained from the

code in the corresponding authors github repository; see Data and Code availability).
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Results were considered statistically significant if 94% of the highest (probability) density
interval (HDI) of the posterior for a given standardized B-coefficient or (partial) correlation
coefficient was not overlapping with a region of practical equivalence between -0.1 and 0.1
as suggested by Kruschke® based on negligible effect sizes according to Cohen (1988).
Furthermore, it was ensured that for all models there were no divergent transitions (R, <
1.05 for all relevant parameters) and an effective sample size > 400 (an exhaustive summary

of bayesian model diagnostics can be found in ).

MEG/EEG Processing

MEG/EEG Processing - Data acquisition

MEG data (Cam-CAN; Figure 2ABCD, 3, 4 & 5) was recorded at the University of
Cambridge, using a 306 VectorView system (Elekta Neuromag, Helsinki). MEG data
(Salzburg; Figure 3 & Supplementary Figure S5) was recorded at the University of Salzburg,
using a 306 channel TRIUX system (MEGIN Oy, Helsinki). Both systems are equipped with
102 magnetometers and 204 planar gradiometers and positioned in magnetically shielded
rooms. In order to facilitate offline artifact correction, electrooculogram (VEOG, HEOG) as
well as ECG was measured continuously in both recording sites. In a subset of the Salzburg
recordings EEG was measured additionally (see Figure 3ABCD) using a 32-channel system
provided by the MEG manufacturer. Data recorded at Cambridge was online filtered at
0.03-330 Hz, whereas data recorded at Salzburg was online filtered at 0.1-333 Hz with a
1000 Hz sampling rate at both recording sites. Five Head-Position Indicator coils were used
to measure the position of the head. All data used in the present study contains passive
resting-state measurements lasting about ~8min (Cambridge) and ~5min (Salzburg). Further
data processing at both recording sites was conducted similarly and will therefore be

reported together.

MEG/EEG Processing - pre-processing

Initially, a Signal-Space-Separation (SSS?*%?) algorithm was used to find and repair bad
channels (implemented in MNE-Python version 1.2%°). The data was further processed by
either not applying further SSS cleaning (main manuscript) or by applying an SSS algorithm
for additional data cleaning (Supplementary Figure S6 & S8; implemented in MNE-Python
version 1.2%°). The data were afterwards high-pass filtered at 0.1Hz using a finite impulse

response (FIR) filter (Hamming window). EEG data was re-referenced to the common
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average (common practice in the field®). For extracting physiological “artifacts” from the
data, 50 independent components were calculated using the fastica algorithm?
(implemented in MNE-Python version 1.2; with the parallel/symmetric setting; note: 50
components were selected for MEG for computational reasons for the analysis of EEG data
no threshold was applied). As ICA is sensitive to low-frequency drifts, independent
components were calculated on a copy of the data high-pass filtered at 1Hz. Components
related to cardiac and ocular activity were determined via correlation with concurrent ECG,
VEOG and HEOG recordings. A threshold of r > 0.4 was applied to detect the ECG
components and a threshold r > 0.8 for detecting EOG components in the data. The more
sensitive threshold used for ECG component detection was decided upon based on the
strong presence of ECG signals in resting state M/EEG recordings (see Figure 2EFGH). The
computed ICA was then applied to the original data, either rejecting all components apart
from those related to the ECG, or rejecting only EOG related components, or ECG and EOG
related components. This resulted in three conditions MEGgcg not rejected » MEGiecg rejectea @Nd
MEGecs component- 1€ data were then split into 2 second epochs and residual artifacts were
determined using an adaptive and automatic artifact detection method (the “Riemannian
Potato” implemented in pyriemann®). Epochs were rejected when the covariance matrix of

an epoch differed by >2.5 standard deviations from a centroid covariance matrix.

MEG/EEG Processing - Temporal Response Functions

To estimate the extent at which ECG activity is captured by MEG/EEG recordings, we
calculated temporal response functions (TRFs). In brief, the assumption behind a TRF is that
a dependent variable is the result of one (or several) predictor variables. This approach can
be used to model a time-series as a linear function of one (or several) time series and can

be formulated (for a single predictor®') as:

Where h represents the TRF, sometimes described as filter kernel, and t represents
potential delays between y and x (for an extensive explanation of the algorithm used herein
see 7). Typically, this approach is used to estimate spectro-temporal receptive fields, e.g. in

response to auditory stimuli®?, where the interpretation of a TRF follows that of an ERP/F in
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response to a continuous input signal®. This model can be used as a forward or encoding
model to predict the brain response from a stimulus representation or as a backward or
decoding model to reconstruct a stimulus representation from brain recordings. We used
this approach here to detect whether ECG and M/EEG influence each other. Concurrent
recordings of MEG and EEG data alongside ECG were only available for a subset of
subjects (N = 20). We therefore selected those subjects from the subjects data pool of the
Salzburg sample to perform the TRF analysis. Forward and Backward models were
calculated between the M/EEG signal and the signal recorded using ECG. This was done to
see if signals measured using M/EEG and ECG follow/precede each other (non zero-time
lags; e.g. via interoception see*') or if the signals are instantaneously related (zero-time-lags;
therefore likely corresponding to the same underlying signal source). As computations of
TRFs are memory and time extensive, the MEG, EEG and ECG data were additionally low
pass filtered at 45Hz (to avoid aliasing) and downsampled to 100Hz before the analysis (a
common practice when computing TRFs; see ?"). For the computation of the TRFs, the ECG
and M/EEG data were normalized (z-scored), and an integration window from -250 to 250
ms with a kernel basis of 50 ms Hamming windows was defined. To prevent overfitting,
model parameters were adjusted using a four-fold nested cross validation (two training
folds, one validation fold, and one test fold), each partition served as a test set once. The
accuracy of the model was assessed by calculating the Pearson correlation coefficient
between the respective predicted and measured time series. We calculated the same model
in the forward direction (encoding model; i.e. predicting M/EEG data in a multivariate model
from the ECG signal) and backward direction (decoding model; i.e. predicting the ECG
signal using all M/EEG channels as predictors). The accuracy of the decoding model was
used in Figure 3CD to assess how well the ECG time series was decodable from M/EEG
data. For the respective encoding model we visualized the non-normalized encoding
weights (see Figure 3AB). The TRF time courses visualized in Figure 3A were obtained by
computing a principle component analysis (PCA®) within subject and across all channels,
whereas the distribution of peaks visualized in Figure 3B was obtained by calculating the

root mean square across channels and extracting the maximum value.

MEG/EEG Processing - Spectral analysis

Power spectra were computed using Welch's method® between 0.1 and 145Hz (0.5 Hz

resolution). Aperiodic activity was extracted using the IRASA method " implemented in the
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YASA package®. Furthermore, in addition to the main model fit between 0.1-145Hz,
additional slopes were fitted to the aperiodic spectrum in 5Hz steps starting from 45Hz as
upper frequency limit and in 1Hz steps from 0.5Hz to 10Hz as lower frequency limit.
Additionally, to investigate the robustness of our result the spectral parameterization
algorithm (implemented in FOOOF version 1.0.0°) was used to parametrize raw power
spectra. Power spectra were parameterized across frequency ranges of 0.5-145 Hz. FOOOF
models were fit using the following settings: peak width limits: [1 — 6]; max number of
peaks: 2; minimum peak height: 0.0; peak threshold: 2.0; aperiodic mode: ‘fixed’. Goodness

of fit metrics for both IRASA and FOOOF can be found in Supplementary S2.
ECG Processing

The ECG data recorded as part of the MEG recordings were processed alongside the MEG
data. Therefore the pre-processing and spectral analysis settings from the section
“MEG/EEG Processing” also apply to the ECG aspect of datasets 3 & 4 (see Figure 2).

Below, ECG processing for the data obtained from PhysioNet are described.

ECG Processing - Data acquisition

The ECG data obtained from PhysioNet were acquired at the Jena university hospital ®. The
study was approved by the ethics committee of the Medical Faculty of the Friedrich Schiller
University Jena. All research was performed in accordance with relevant guidelines and
regulations. The informed written consent was obtained from all subjects. ECG data were
recorded at a sampling rate of 1000 Hz using one of two different recording devices. Either
an MP150 (ECG100C, BIOPAC systems inc., Golata, CA, USA) or a Task Force Monitor
system (CNSystems Medizintechnik GmbH, Graz AUT). More detailed information about the
ECG recordings can be obtained from physionet.org. The data were further analyzed using

spectral analysis.

ECG Processing - Spectral analysis

Power spectra were computed using Welch's method® implemented in neurodsp® between
0.25 and 145Hz (0.1 Hz resolution). The spectral parameterization algorithm (implemented
in FOOOF version 1.0.0°) and IRASA (implemented in the YASA package®) were then used
to parametrize the power spectra. Power spectra were parameterized across a frequency

range of 0.25-145 Hz using the same settings specified in “MEG/EEG Processing - Spectral
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analysis”). However, the aperiodic mode was set to ‘knee’ given that the power spectra (on
average) showed a clear ‘knee’ in log-log coordinates (see Supplementary Figure S1).
Additionally, we fitted several slopes to the aperiodic spectrum split in a lower range (0.25 -
20 Hz) and a higher range (10 — 145 Hz). The split in low and high frequency range was

performed to avoid spectral knees at ~15 Hz in the center of the slope fitting range.

ECG Processing - Heart rate variability analysis

Heart rate variability (HRV) was computed using the NeuroKit2 toolbox, a high level tool for
the analysis of physiological signals. First, the raw electrocardiogram (ECG) data were
preprocessed, by highpass filtering the signal at 0.5Hz using an infinite impulse response
(IIR) butterworth filter(order=5) and by smoothing the signal with a moving average kernel
with the width of one period of 50Hz to remove the powerline noise (default settings of
neurokit.ecg.ecg_clean). Afterwards, QRS complexes were detected based on the
steepness of the absolute gradient of the ECG signal. Subsequently, R-Peaks were
detected as local maxima in the QRS complexes (default settings of
neurokit.ecg.ecg_peaks; see * for a validation of the algorithm). From the cleaned R-R
intervals, 90 HRV indices were derived, encompassing time-domain, frequency-domain,
and non-linear measures. Time-domain indices included standard metrics such as the
mean and standard deviation of the normalized R-R intervals , the root mean square of
successive differences, and other statistical descriptors of interbeat interval variability.
Frequency-domain analyses were performed using power spectral density estimation,
yielding for instance low frequency (0.04-0.15Hz) and high frequency (0.15-0.4Hz) power
components. Additionally, non-linear dynamics were characterized through measures such
as sample entropy, detrended fluctuation analysis and various Poincaré plot descriptors. All
these measures were then related to the slopes of the low frequency (0.25 — 20 Hz) and high

frequency (10 — 145 Hz) aperiodic spectrum of the raw ECG.

Working Memory Analysis

Sample

As an outlook to which extent the present findings, focussed on aging, may translate to
studies investigating changes in “cortical” aperiodic in other settings (e.g. in a state

dependent) we analyzed data from a working memory paradigm*“® (see Figure 5A for an


https://www.zotero.org/google-docs/?LvfuZU
https://www.zotero.org/google-docs/?i2Szr6
https://doi.org/10.1101/2022.11.07.515423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.07.515423; this version posted February 27, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

overview of the experimental paradigm). The original study included 86 healthy volunteers,
due to technical difficulties ECG and EEG recordings were only available for a subset of
subjects. In the present study we analyzed the data of 48 Subjects. The age-range of the
investigated sample was between 18 and 24 years with an average age of 20 years.
Informed consent was obtained from each participant and the experimental protocol was

approved by the Ural Federal University ethics committee.

Digit span task

Each trial began with an exclamation mark for 0.5 s along with a recorded voice command
“begin” - indicating the start of the trial. The exclamation mark was followed by an
instruction to either memorize the subsequent digits in the correct order (memory condition)
or to just listen to the digits without attempting to memorize them (control condition). The
instruction was followed by a three-second “Baseline” period. Then either 5, 9, or 13 digits
were presented auditorily with an interstimulus interval of 2 seconds. The digits were
presented with a female voice in Russian. Each of the digits from 0 to 9 was used, and the
mean duration of each digit was 664 ms (min: 462 ms, max: 813 ms). The last digit in the
sequence was followed by a 3-sec “Delay” period. During the baseline, encoding, and
"Delay” period, participants were fixating a cross (1.2 cm in diameter) on the screen. In the
memory condition, the participants were asked to recall each digit out loud in the correct
order starting from the first one (i.e., serial recall). The retrieval was recorded by a computer
microphone controlled by PsychoPy®. The participants had 7, 11, and 15 seconds for 5, 9,
and 13 digit sequences, respectively, to recall the digits. The retrieval was followed by an
inter-trial interval of 5s. In the control condition (passive listening), presentation of the digits
and the “Delay” period was followed immediately by an inter-trial interval of the same
duration. There were 9 blocks in total with 54 passive listening and 108 memory trials
overall. Each block consisted of 3 control (one of each load) followed by 12 memory (4 trials
on each level of load, in random order) followed again by 3 control trials. Before the main
working memory task, each participant completed 6 practice trials (3 passive listening and 3

memory trials).
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Data acquisition

ECG was recorded from one channel with the active electrode placed on the right wrist and
the reference electrode on the left wrist, and the ground on the left inner forearm at 3cm

distally from the elbow.

Data analysis

The continuous ECG data was high-pass filtered at 0.1Hz using a finite impulse response
(FIR) filter (Hamming window) and downsampled to 500Hz after applying an anti-aliasing
fiter. The downsampled data was then split in 3 second epochs separately for the
“Baseline” and “Delay” periods, as well as the amount of presented digits (5, 9 or 13). The
epoched data was further analyzed either by calculating power spectra over the data split in
the “Baseline” and “Delay” condition irrespective of the amount of presented digits (Figure
5BCD) or by retaining the information about the amount of presented digits (Figure 5E).
Power spectra were computed using Welch's method® between 0.1 and 245 Hz (0.333 Hz
resolution). The spectral parameterization algorithm (implemented in FOOOF version 1.0.0°)
was then used to parametrize the power spectra. Power spectra were parameterized across
a frequency range of 0.1-245 Hz using the same settings specified in “MEG/EEG
Processing - Spectral analysis”). However, the aperiodic mode was set to ‘knee’ given that

the power spectra (on average) showed a clear ‘knee’ in log-log coordinates.

Statistical analysis

To investigate the relationship between working memory load and aperiodic activity
recorded via ECG we implemented bayesian linear mixed effect models in Bambi® using
the following formulas according to the Wilkinson notation'® with the “Baseline” condition

set as Intercept in the following models.
spectral slope ~1 + Delay + (1|subjectid) [Figure 5D]

spectral slope ~1 + N Digitstorecall + (1|subject id) [Figure 5E]
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Data Visualization

Individual plots were generated in python using matplotlib, seaborn, and mne-python. Plots

were then arranged as cohesive figures with affinity designer

(https://affini it en-us/designers).

Data availability

The data analyzed in the main manuscript are mostly obtained from open data sources. The
ECG data (Dataset 1 & 2; Figure 2) were obtained from physionet.org. The MEG/EEG
dataset (Figure 3) was obtained at the University of Salzburg as part of routine resting state
MEG recordings and is available upon request. The data for the MEG analysis in the main
manuscript (Figure 4) are obtained from cam-can.org. The data for the working memory

analysis was obtained from openneuro.org (Figure 5).

Code availability

All code used for the analysis is publicly available on GitHub at:

https://qithub.com/schmidtfa/cardiac 1 f & https://qgithub.com/schmidtfa/ecg 1f memory.
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SUPPLEMENTARY MATERIAL

Supplementary Text S1 - Control Analyses: Age-related steepening of the

spectral slope in the MEG

First, we conducted a median split of age to compare the raw power spectra averaged
across channels (see Supplementary Figure 2A). This shows that on the grand average
across channels the spectral slope was slightly steeper in older subjects even before
spectral parametrization. Furthermore, the use of blind source separation artifact rejection
approaches may influence power spectral densities by reducing external noise in the signal.
We therefore investigated whether and how the use of a Signal-Space-Separation algorithm
(SSS**#?) and different ICA thresholds influence the reported results. On the grand average
across sensors slightly stronger steepening effects were observed for the MEGeg not rejected
data compared to MEGecg reiectes When not cleaning the data using SSS and vice versa (see
Supplementary Figure S6 for a comparison). On the level of single sensors the application
of SSS resulted in a further reduction of both flattening and steepening effects in all
conditions except for MEGgcs componentss Where we noted a 20% increase in steepening
effects (see Supplementary Figure S7). Considering that we detected less and weaker
aperiodic effects when using SSS maxfilter is it now advisable to omit maxfilter, when
analyzing aperiodic signals? We don’t think that we can make such a judgment based on
our current results. This is because it's unclear whether or not the reduction of effects
stems from an additional removal of peripheral information (e.g. muscle activity; that may be
correlated with aging) or is induced by the SSS maxfiltering procedure itself. As the use of
maxfilter in detecting changes of aperiodic activity was not subject of analysis that we are
aware of, we suggest that this should be the topic of additional methodological research.

To ensure that the effects shown are not dependent on the ICA thresholds we used, an
analysis predicting the grand average spectral slope based on age was also conducted for
other correlation thresholds showing an overall similar pattern (see Supplementary Figure
S6). We further managed to replicate the finding that age has the strongest impact on the
spectral slope of the ECG components using a different algorithm to extract aperiodic
activity (FOOOF®; see Supplementary Figure S2 & S3). Using FOOOF®, we also investigated
the impact of different slope fitting options (fixed vs. knee model fits) on the aperiodic age
relationship (see Supplementary Figure S4). The results that we obtained from these

analyses using FOOOF offer converging evidence with our main analysis using IRASA. We
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further replicated our findings on an additional dataset containing resting state recordings
(N = 655) obtained as part of MEG studies routinely conducted at the University of Salzburg
(see Supplementary Figure S4).

While all these control analyses indicate that the age-related steepening effects occur
robustly in the MEG it is unclear whether they can be exclusively attributed to cardiac
activity. Crucially, the topography of the observed steepening effects is present across the
scalp and prominent at frontal and temporal sensors around the MEG helmet (albeit also
observable at central locations; see MEGgcs components)- This topography is suggestive of
artifacts induced by muscle activity (e.g. head/eye movements). We therefore used the
subject's head movement information obtained via continuous hpi measurements as a
covariate (i.e. 5 coils continuously emitting sinusoidal waves at 293 Hz, 307 Hz, 314 Hz, 321
Hz and 328 Hz to localize the head position in the scanner). While head movements
increased significantly with aging (Bstneargizes = 0.23, HDI = [0.18, 0.28], see Supplementary
Figure S8) it was not sufficient to explain the observed steepening or flattening effects in the
spectral slope (see Supplementary Figure S8). We further investigated age-related changes
to the spectral slope of the vertical and horizontal EOG channels indicating no significant
age-related steepening/flattening across the investigated frequency ranges (see
Supplementary Figure S8). Surprisingly, all these results indicate an age-related steepening
in the spectral slope of MEG data both when averaged across sensors and on most
individual sensors across two large datasets. This finding is contrary to previous findings
showing a flattening of spectral slopes with age in recordings of brain activity® and cardiac
activity'® (see also Figure 2C). This discrepancy can potentially be explained by multiple
factors including, physiologically measured 1/f noise differently affecting magnetic and
electric recording devices*, preprocessing choices, fitting ranges for the 1/f slope,

electrode selection etc. (see discussion).
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Supplementary Figure S1 - ECG Spectra + Knee Frequency:
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Supplementary Figure S1: Aperiodic signals recorded using ECG can be associated with aging. A)
grand average power spectra plotted separately per Dataset B) indicating a strong “knee” from
~15Hz. CD) The spectral slope recorded using ECG was calculated using different upper frequency
limits and correlated with age. This analysis shows that the association between age and spectral
slope increased until ~145 Hz in 3 of 4 datasets.
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Supplementary Figure S2 - Raw Spectra + Goodness of fit metrics:
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Supplementary Figure S2: Grand average power spectra for the MEG data recorded at Cambridge
and split in the three conditions MEGgcg not rejecteds MEGieca rejecteds MEGieca components- A) Spectra averaged
across channels split in older and younger subjects (median split). B) Aperiodic activity was extracted
from the power spectra using the IRASA method " implemented in the YASA package . * indicate a
“significant” effect (see Methods - Statistical Inference). C) Goodness of fit was assessed using R*for
both the IRASA and FOOOF model fit (see Supplementary S2/S3 for FOOOF fits). D) The spectral
exponent obtained from FOOOF was compared to the spectral slope extracted from IRASA showing
that both are highly related.
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Supplementary Figure S3 - Replication FOOOF:
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Supplementary Figure S3: Age-related changes in aperiodic brain activity can be explained by
cardiac components A) Age was used to predict the spectral slope at rest in three different
conditions (ECG components not rejected [blue], ECG components rejected [orange], ECG
components only [green]. B) Age distribution in the sample recorded at the University of Cambridge.
C) Comparison of standardized beta coefficients shows that the strongest association with age is
present on the data reflecting only ECG components * indicate a “significant” effect (see Methods -

Statistical Inference).
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Supplementary Figure S4 - Replication FOOOF Comparison of Knee vs Fixed

aperiodic modes:
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Supplementary Figure S4: Comparison between Fixed and Knee model fits using FOOOF A) Age
was used to predict the spectral slope at rest in three different conditions (ECG components not
rejected [blue], ECG components rejected [orange], ECG components only [green]. B) Goodness of
fit was assessed using R?and compared between “Fixed” and “Knee” models. C) Comparison of the
“Knee” and “Fixed” model fits shows that not fitting the knee was offering on average the better
balance between goodness-of-fit and model complexity as suggested by the Bayesian Information
Criterion (BIC). Error bars indicate confidence intervals.
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Supplementary Figure S5 - Replication Salzburg Sample:
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Supplementary Figure S5: Age-related changes in aperiodic brain activity can be explained by
cardiac components A) Age was used to predict the spectral slope at rest in three different
conditions (ECG components not rejected [blue], ECG components rejected [orange], ECG
components only [green]. B) Age distribution in the sample routinely recorded as part of MEG
measurements at the University of Salzburg. C) Comparison of standardized beta coefficients shows
that the strongest association with age is present on the data reflecting only ECG components *
indicate a “significant” effect (see Methods - Statistical Inference).
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Supplementary Figure S6 - SSS Maxfilter Analysis:

SSS Maxfilter == False
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Supplementary Figure S6: Age-related changes in aperiodic brain activity are most prominent on
cardiac components irrespective of maxfiltering the data using signal space separation (SSS) or not
AC) Age was used to predict the spectral slope (fitted at 0.1-145Hz) averaged across sensors at rest
in three different conditions (ECG components not rejected [blue], ECG components rejected
[orange], ECG components only [green]. BD) The analysis in AC) was repeated for different fitting
ranges with lower limits starting at 0.5 Hz in 1Hz steps ranging until 10 Hz and upper limits starting at
45 Hz in 5 Hz steps ranging until 145 Hz. Significant effects, i.e. effects with credible intervals not
overlapping with a region of practical equivalence (ROPE; see Methods - Statistical Inference), are
highlighted in red or blue (see colorbar). Null effects, which were defined as effects with credible
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intervals completely within a ROPE, are highlighted in green. Results where no decision to accept or
reject (see®) an effect could be made, are masked using hatches.
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Supplementary Figure S7 - ICA Thresholds:
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Supplementary Figure S7: A) The relationship between age and the aperiodic slope was compared
within three conditions (MEGgcg not rejected [PIU€], MEGicq rejectea [Orange] and MEGecs component [Or€EN]
across different thresholds to select cardiac components from independent components of the MEG
signal via ICA. Importantly, we always detected a significant relationship between age and aperiodic
activity for the ECG component. While we did not always detect a significant relationship between
age and aperiodic activity in MEG gcg not rejectes @NA MEG £ rejected CONditions  the standardized B
coefficients are heavily overlapping within each condition. Notably using a high threshold (r > 0.8)
failed to identify cardiac components in >50% of the subjects. We therefore opted for a lower
threshold of 0.4 for all related analysis in the main manuscript. Significant effects, i.e. effects with
credible intervals not overlapping with a region of practical equivalence (ROPE; see Methods -
Statistical Inference), are highlighted using a star. B) The amount of extracted ECG components per
subject as a function of different ICA thresholds. On average, less than cardiac 2 components were
extracted per subject irrespective of the used threshold. However, using high thresholds e.g. > 0.8
only allowed for the detection of cardiac components in less than 50% of the subjects.
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Supplementary Figure S8 - SSS Maxfilter Analysis:
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Supplementary Figure S8: SSS Maxfilter Analysis: Steepening and flattening of the spectral slope
with age is dependent on the sensor location and the investigated frequency range. Age was used to
predict the spectral slope at rest in three different conditions (ECG components not rejected, ECG
components rejected and ECG components only) per channel across a variety of frequency ranges
(see Figure 1B). A) Standardized beta coefficients either per channel averaged across all frequency
ranges (left) or per frequency range (right) averaged across all channels. Age-related B) steepening,
C) flattening and D) null effects in the spectral slope were observed and visualized in a similar
manner as in A). EF) We further show the direction of results where we didn’t find enough evidence
to support either a steepening, flattening or null effect. G) Summary of all observed findings in %.
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Supplementary Figure S9 - Head Movement, EOG control analysis:
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Supplementary Figure S9: Steepening and flattening of the spectral slope with age is dependent on
the recording site and the investigated frequency range, when controlling for head movements. A)
Head movement velocity was estimated using information obtained from the cHPI measurement. B)
Spectral slopes were obtained also for horizontal and vertical EOG electrodes on the same frequency
ranges as in Figure 4. Age was used to predict the spectral slope at rest in three different conditions
(ECG components not rejected, ECG components rejected and ECG components only) per channel
across a variety of frequency ranges. C) Standardized beta coefficients either per channel averaged
across all frequency ranges (left) or per frequency range (right) averaged across all channels.
Age-related D) steepening, E) flattening. Significant effects, i.e. effects with credible intervals not
overlapping with a region of practical equivalence (ROPE; see Methods - Statistical Inference), are
highlighted in red or blue (see colorbar). Null effects, which were defined as effects with credible
intervals completely within a ROPE, are highlighted in green. Results where no decision to accept or
reject (see”) an effect could be made, are masked using hatches.
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