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Abstract 

Influential theories of cognitive effort-based decision-making suggest that shared brain regions 

process both potential reward and task demand, supporting the idea that a cost-benefit trade-off 

informs effort allocation. While the dorsal anterior cingulate cortex (dACC) has been proposed 

as a candidate region supporting this decision, it remains unclear whether dACC activity tracks 

rewards and costs independently or integrates them to reflect effort intensity. Recent accounts 

posit that the dACC plays a key role in mediating cost-benefit trade-offs. However, empirical 

evidence remains scarce. A systematic meta-analysis review of neuroimaging studies was 

conducted, using the activation-likelihood estimation method to quantify brain activity across 45 

studies (N = 1273 participants) investigating reward-guided effort. Results found reliable 

recruitment of the dACC, putamen, and anterior insula for processing larger rewards and 

increasing task demands. However, the dACC clusters sensitive to task demands and rewards 

were anatomically distinct with no significant overlap: caudal dACC activity tracked increasing 

task demands, while rostral dACC activity tracked increasing reward. We also observed that 

caudal dACC activity tracked the integration of costs and benefits. These findings suggest there 

are distinct signals for demand and effort in the dACC, which are integrated to support the 

decision to invest effort.  
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Introduction 

How do we decide whether pursuing a reward is worth the mental effort required to 

obtain it? On one hand, the experience of cognitive effort exertion is aversive (and often 

avoided), yet, on the other hand, individuals must often engage in effortful thinking to obtain 

rewards. Consequently, our decisions to engage in (versus avoid) cognitively costly processing 

often present a conflict between two opposing goals: maximizing rewards and minimizing the 

associated effort costs. To this point, prominent theories of motivated control posit that cognitive 

effort allocation decision-making requires the integration of the benefits (e.g., rewards) tied to 

effort exertion, the costs of effort, and the likelihood of successful performance (Frömer et al., 

2021; Kurzban et al., 2013; Shenhav et al., 2017; Silvetti et al., 2018). Indeed, a large and 

growing body of empirical work suggests that our decisions to allocate (versus withhold) effort 

result from an integration of costs and benefits. For example,  reward incentives motivate 

cognitive effort investment (Otto & Vassena, 2021; Westbrook & Braver, 2015), particularly for 

individuals with large effort costs (da Silva Castanheira et al., 2021; Sandra & Otto, 2018). 

Further, the subjective value of rewards—as evidenced by individuals’ choices between options 

with varying effort and reward levels—appears to be discounted by the effort required to earn 

these rewards (Chong et al., 2017; Otto & Vassena, 2021),  and people will even opt for a 

physically painful sensation over the prospect of exerting high levels of cognitive effort (Vogel 

et al., 2020).   

Influential theories suggests that the dorsal anterior cingulate cortex (dACC) plays a role 

in resolving this effort-reward trade-off by integrating specific neural signals representing both 

effort costs and anticipated rewards (Shenhav et al., 2013; Silvetti et al., 2018), with some debate 

regarding the dACC’s functional role (Shenhav et al., 2017; Vassena et al., 2017, 2020). 
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However, despite behavioral findings supporting the idea of an effort-reward trade off, the 

functional role of dACC in coding reward, effort cost, and/or the integration thereof, is less clear.  

In line with the predictions of cost-benefit accounts of dACC function (Shenhav et al., 

2013; Silvetti et al., 2018), some studies suggest that the dACC encodes both reward prospects 

and task demands. The anticipation of rewards has been consistently associated with greater 

activity in the dACC, anterior insula, thalamus, and ventral striatum (e.g., the nucleus accumbens 

and putamen; Bartra et al., 2013; Diekhof et al., 2012; Knutson & Greer, 2008). However, these 

observed patterns of neural activity were not specific to performance-contingent rewards, 

suggesting a general role for the dACC in encoding reward information. More recently, a meta-

analysis by Parro and colleagues (2018) investigated activation patterns underlying performance-

contingent reward incentives, finding reliable BOLD activity in the dACC, anterior insula, 

inferior frontal sulcus, and inferior parietal lobule in response to rewards. While both the dACC 

and anterior insula have been linked to subjective feelings of motivation on cognitive tasks, only 

the dACC has been found to encode integrated incentive values when performing effortful tasks 

(Yee et al., 2021). A parallel line of work has identified regions that encode costs associated with 

increasing task demands either during preparation for tasks or during task performance. When 

exerting control, increasing task demands engage the dACC, posterior parietal cortex, anterior 

insula, and prefrontal cortex (Laird et al., 2005; Niendam et al., 2012). When anticipating 

effortful tasks, activity in the dACC increases as a function of the subjective valuation of effort 

costs (Chong et al., 2017). Thus, activity in the dACC could either encode the effort level to be 

invested i.e., the integrated costs and benefits of effort exertion (Chong et al., 2017; Shenhav et 

al., 2016; Silvetti et al., 2018) or simply encode a representation of task demands (Lopez-

Gamundi et al., 2021).  
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Beyond simply tracking rewards and demand, the dACC has also been found to play a 

role in learning and monitoring task progress. For example, studies have observed that dACC 

activity tracks negative consequences of errors like negative feedback (i.e., response errors; 

Carter et al., 1998; Cole et al., 2009; Ito et al., 2003; Ridderinkhof et al., 2004), and pain (Jahn et 

al., 2016; Shackman et al., 2011). At the same time, the dACC has been found to play a role in 

monitoring the need for cognitive control (Botvinick, 2007; Venkatraman & Huettel, 2012), 

tracking prediction errors (Alexander & Brown, 2015; Brown & Alexander, 2017; Silvetti et al., 

2011),  and even coordinating effortful control over extended action sequences (Botvinick et al., 

2001; Holroyd & McClure, 2015). Together, these findings suggest a role for the dACC in the 

learning of control signal specifications to obtain rewards or avoid punishment (Shenhav et al., 

2016). Converging neurocomputational work on adaptive decision-making proposes that the 

dACC integrates costs and benefits through a meta-learning mechanism via interactions with 

catecholaminergic input from subcortical systems (the Reinforcement Meta Learner model; 

Silvetti et al. 2018). In this computational account, the dACC also contributes to the learning of 

optimal effort allocation over time (Verguts et al., 2015) and to other adaptive learning dynamics 

(i.e., control of learning rate, higher-order reinforcement learning, Silvetti et al. 2018). 

Importantly, most of these perspectives rely on the assumption that, to some extent, the dACC 

receives input signals indexing reward and cost to compute an integrated quantity (net value) that 

guides effort decisions. This reward signal is supplied via midbrain dopaminergic input, as 

extensive work in animals has shown (Haber et al., 2006; Haber & Knutson, 2010). On the 

contrary, the source and neural representation of the cost signal remain highly debated (Holroyd, 

2015; Kurzban et al., 2013; Musslick & Cohen, 2021; Wiehler et al., 2022). Whether the cost of 

cognitive effort is encoded by dACC, and to what extent a reliable signal representing the control 
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signal intensity based on the integration of the costs and benefits is traceable in dACC activity, 

remains unclear. 

However, individual studies are limited in their ability to draw conclusions on the neural 

representation of rewards and effort, particularly due to heterogeneity in both the putative 

cognitive processes required by tasks, and the reward prospects used to study motivated 

behaviour. This variability across studies is especially relevant in the case of inconsistent 

findings, often leading to robust debates in the literature—for example, in the case of the dACC 

(Ebitz & Hayden, 2016; Vassena et al., 2017). Meta-analytic synthesis offers the opportunity to 

isolate reliable effects of interest, allowing for joint investigation of parametric manipulations of 

demand and reward levels across multiple studies (Yarkoni et al., 2010). Here, we used the 

activation-likelihood estimation meta-analytic technique (Eickhoff et al., 2012), synthesizing 

brain activity across 45 studies, to examine whether the predictions of the cost-benefit account of 

dACC function are supported across diverse manipulations of cognitive effort and reward. By 

looking across studies that manipulated both demand level (i.e., effort cost) and performance-

contingent rewards, the present meta-analysis allows us to examine whether aggregate dACC 

activity is associated with effort investment reflecting an integrated representation of costs and 

benefits, versus a representation of only costs (or only benefits). 

 

 
 

Importantly, these different possibilities lead to contrasting hypotheses about the patterns 

of possible association between dACC activity, task demand and reward level (see Figure 1). If 

dACC activity only reflects performance-contingent rewards, BOLD responses should increase 

monotonically with larger rewards but not higher task demands (see Figure 1, left panel). And if 
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dACC activity reflects only raw effort costs, BOLD responses should increase monotonically 

with higher task demands but not larger rewards (see Figure 1, middle panel). However, if dACC 

activity reflects the control signal intensity, i.e., effort to be invested, then BOLD responses 

should depend collectively on costs, and demands. For example, in the Expected Value of 

Control (EVC) model (Shenhav et al., 2013), dACC activity is posited to increase with larger 

rewards and higher task demands (i.e., scales positively with net value; see Figure 1, right panel; 

Silvestrini et al., 2022). Little work has jointly assessed the neural representations underlying 

processing both prospective rewards and cognitive demand overlap. Yet, studies that have jointly 

investigated rewards and task demands have only observed increases in dACC BOLD activity 

for both larger rewards and task demands (Vassena et al. 2014). However, this study may be 

limited in its ability to capture the net-value discounting computation, as they contrasted 2 

demand levels with high overall accuracy (>90%), in so far that exerting effort was mostly 

rewarding (see Figure 1). In sum, whether dACC simply tracks effort costs, or integrates reward 

and demand information into a net value has yet to be corroborated.  

While two previous meta-analyses have found inconsistent results in overlapping regions 

of the dACC—finding that BOLD signal in the dACC decreases with increasing net value 

(Lopez-Gamundi et al., 2021), and increases as a function of available rewards (Parro et al., 

2018)—we sought to jointly and systematically examine task demands and rewards. Motivated 

by the inconsistency in the posited functional role of the dACC, the current meta-analysis aims to 

disentangle the common and unique patterns of activation observed across several, diverse fMRI 

studies which independently manipulate reward prospects tied to effort exertion, and task 

demands across a variety of operationalizations of cognitive demand and reward. Using this 

approach, we can assess 1) the regions uniquely involved in processing rewards, 2) the regions 
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uniquely involved in processing task demands and 3) the regions involved in both processes. We 

further assess the regions which track the interaction between reward and demand signals, 

encoding the integrated value of effort investment. Based on cost-benefit models of effort 

decision-making (Shenhav et al., 2013; Silvetti et al., 2018), we predict the dACC will not only 

serve to independently track the costs and benefits of effort but also serve to integrate these 

signals reflecting the effort level deemed worthy of investing.  

 

 

Materials and Methods 

Literature Search 

We conducted a systematic review of functional magnetic resonance imaging (fMRI) 

cognitive control studies which experimentally manipulated either available rewards, task 

demand, or both. Our literature search and exclusion process are depicted in the flow chart in 

Figure 2. We searched for articles published prior to February 3rd, 2025, on the online databases 

PubMed/MEDLINE, Web of Science, and PsychINFO, with an “all fields” search matching the 

following search string: ("REWARD*" OR "MONETARY INCENTIVE*" OR "MOTIVAT*" 

OR "INCENTIV*") AND ("COGNITIVE EFFORT" OR "MENTAL EFFORT" OR 

"COGNITIVE CONTROL" OR "EXECUTIVE FUNCT*" OR "WORKING MEMORY" OR 

"INHIBIT*" OR "SET SHIFTING" OR "SET-SHIFTING" OR "TASK SWITCHING" OR 

"TASK-SWITCHING" OR "LOAD" OR ”COGNITIVE LOAD" OR "DIFFICULT*" OR 

"EFFORT* " OR " DEMAND* ") AND ("FMRI" OR "FUNCTIONAL MAGNETIC 

RESONANCE IMAGING" OR "BRAIN IMAGING" OR “MRI”) AND ("HUMAN*" OR 

"PARTICIPANT*" OR "ADULT*” OR “SUBJECT*”). This search yielded 3849 articles. We 
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further included 82 articles which were obtained from manually searching the reference list of 

previous coordinate-based meta-analyses on either reward processing or effortful control (see 

Figure 2) (Diekhof et al., 2012; Laird et al., 2005; Lopez-Gamundi et al., 2021; Parro et al., 

2018).  

We screened the identified articles for the following inclusion criteria: the studies must 

be 1) empirical investigations (i.e., not review articles); 2) employ fMRI; 3) be performed in 

healthy young adult humans; 4) estimate effects using GLMs over the whole brain with reported 

Montreal Neurologic Institute (MNI) or Talairach coordinates; 5) and report main effects of 

reward and/or demand level upon fMRI BOLD activity. To be included in the meta-analysis, 

studies had to elicit a trade-off between rewards and effort by independently manipulating both 

reward incentives and demand levels within subjects. For the reward manipulations, the reward 

had to be 1) instrumental (i.e., based on responses) 2) performance-contingent (i.e., not random) 

3) mediated by the successful engagement of cognitive processes (e.g., attention, working 

memory, response inhibition, etc.) as opposed to physical exertion and 4) not serve as a distractor 

(e.g., Failing & Theeuwes, 2017). For the demand manipulations, demand level had to be 

manipulated experimentally—note, here we assume increasing task demands require greater 

effort to resolve (Shenhav et al., 2013). Finally, we excluded any studies which did not provide 

coordinates estimated in a healthy young adult population (i.e., clinical, or older adults) or used 

ROI analyses. 

Using these criteria, a total of 45 articles were accepted, with 46 independent samples as 

one paper reported 2 experiments (Ursu et al., 2008). It should be noted that we obtained two 

independent sets of contrasts from one article (Kouneiher et al., 2009) as it reported the effects of 
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both response preparation. Finally, one study collapsed analyses across young adults and 

adolescents which we chose to include (Magis-Weinberg et al., 2019). 

 

Coordinate based meta-analysis 

We ran a coordinate-based meta-analysis using the foci (i.e., coordinates in significant 

clusters) reported in the identified studies. To ensure all coordinates were in the same stereotaxic 

space, we transformed the coordinates reported in Talairach space to MNI space using the FSL 

transformation applied in GingerALE (Eickhoff et al., 2012). The x (left vs right) and y (anterior 

vs posterior) coordinates of one paper was identified as inverted based on the anatomical labels 

reported (Chikara et al., 2018), and accordingly, we multiplied these coordinates by -1 to convert 

them back into standard space. We excluded any coordinates identified to be outside the brain, 

this resulted in the removal of 3 foci (2 from Reward contrasts and 1 from Demand contrasts), 

and a final sample of 429 foci for rewards and 460 foci for task demands (see Table 1). In 

addition, our literature search revealed 32 foci associated with deactivations for increasing 

reward prospects, 16 each from 2 studies (Krebs et al., 2012; Pochon et al., 2002) and 8 foci 

increasing task demands (Krebs et al., 2012). We opted to exclude these coordinates from the 

analysis given our specific interest in identifying regions encoding raw effort costs and reward 

value. 

We preformed meta-analyses using GingerALE (3.0.2; Eickhoff et al., 2009, 2012; 

availalble at www.brainmap.org/ale). The Activation Likelihood Estimation (ALE) algorithm 

computes convergence of activation across coordinates reported from whole-brain analysis. To 

do so, ALE models the spatial uncertainty of coordinates using 3-dimensional full width at half 

maximum (FWHM) gaussian kernels centered at the foci, with a width inversely proportional to 
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the sample size. Thus, coordinates from studies with larger sample sizes are modeled with 

smaller Gaussian kernels, reflecting a more reliable approximation of the true spatial location of 

BOLD activity. Conversely, coordinates from studies with smaller sample sizes are modeled 

with larger Gaussian kernels, reflecting the uncertainty in the precise spatial location of activity. 

Using these activation likelihood estimates, GingerALE computes the overlap of activation 

probabilities and determines voxels where there is a convergence significantly higher than 

expected if results were independently distributed. The resulting images can then be corrected for 

multiple comparisons, using cluster correction. For the purposes of our analysis, we chose a 

relatively conservative threshold (p < 0.05 FWE; 5000 permutations, p < 0.001 cluster forming 

threshold). 

To test whether both rewards and effort reliably engage the dACC, we estimated three 

separate meta-analyses on studies manipulating 1) rewards (36 studies, 920 participants); 2) task 

demands (38 studies, 1095 participants) and 3) reported interactions between rewards and task 

demands (15 studies, 418 participants). Additionally, we ran a conjunction/contrast analyses 

comparing reward to effort. Conjunction between two sets of coordinates can be assessed using 

the voxel-wise minimum value of the activation likelihood estimates (Eickhoff et al., 2012). 

Contrasting the two sets of coordinates is done by subtracting the activation likelihood estimates 

between images and calculating voxel-wise Z-scores of the differences against a permuted 

distribution (Eickhoff et al., 2012). These resulting Z-scored differences are then subject to 

cluster analysis. For our contrast analysis, we conducted 100,000 permutations, and set a 

threshold p < 0.01 FWE and minimum cluster size of 300mm3. 

Given the diversity of the studies included, both in terms of cognitive task and reward 

manipulation, it is critical that statistical power be considered. Currently, the inclusion of a 
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minimum of 17-20 studies in a meta-analysis is recommended to ensure sufficient power to 

detect valid results, and prevent results from being driven by a single experiment (Eickhoff et al., 

2016; Müller et al., 2018). Our literature search revealed 45 studies (46 experiments), reporting a 

total of 36 reward contrasts and 38 demand contrasts of interest, resulting in 457 reward-related 

foci and 491 demand-related foci (see Table 1). Of the 46 experiments included, 34 reported both 

reward and effort contrasts. A total of three reward contrasts, and one demand contrasts found no 

significant foci for their contrast of interest. In terms of reward contrasts, most reward contrasts 

(21 studies) compared reward to no reward, while fewer reported a contrast between high and 

low reward (14 studies) only three studies reported a parametric effect of reward, and one used a 

repetition suppression paradigm (see Table 1). Regarding effort contrasts, the most common 

method for manipulating task demands involved response inhibition (20 studies), followed by 

working-memory (12 studies), attention (7 studies) and task switching (6 studies; see Table 1). 

Two additional papers used arithmetic of different difficulty levels to manipulate task demands 

(Lallement et al., 2014; Vassena et al., 2014). Critically, of the experiments which tested for 

reward effects on response times (RTs) or accuracy (45 experiments), 9 tested accuracy effects, 

16 tested RT effects, 15 tested both, and 3 used effort discounting choice paradigms. Of these 

studies, 22 studies reported significant RT speeding, and 16 studies reported significant accuracy 

effects with increasing rewards (see “Reward-RT Effect” and “Reward-Accuracy Effect” 

columns in Table 1). 

Results 

BOLD response to rewards 

First, we sought to test which brain regions reliably encoded information about 

performance-contingent rewards. To this end, we assessed the converging patterns of brain 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2025. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


COST-BENEFIT META-ANALYSIS 13 

activity in response reward contrasts and observed six clusters sensitive to performance-

contingent reward incentives whereby activity was found to increase in response to larger reward 

prospects. Our analysis revealed six clusters of activity across regions typically associated with 

reward-related processing (Bartra et al., 2013; Diekhof et al., 2012; Knutson & Greer, 2008)—

including the ventral striatum, the medial prefrontal, and insular cortex. Bilaterally, we observed 

two clusters encompassing the putamen and caudate, as well as a second cluster in the rostral 

portion of the dACC. We also found reliable patterns of activation in the right anterior insula and 

left inferior occipital cortex.  

BOLD response to task demand 

Next, we sought to test which brain areas encode raw effort costs by identifying regions 

where the activity shares a positive, monotonic relationship with increasing task demands. Our 

analysis revealed a reliable pattern of brain activity for increasing task demands which consisted 

of nine clusters across regions typically associated with cognitive control (Laird et al., 2005; 

Niendam et al., 2012)—the prefrontal, dorsal anterior cingulate, and parietal cortices. On the 

lateral aspect, we found two clusters in the left lateral PFC, one extending from the left middle 

frontal gyrus to the left precentral gyrus, and another located more dorsally in the left middle 

frontal gyrus, and one cluster in the right inferior frontal gyrus extending posteriorly to the 

precentral gyrus. Bilaterally, we observed robust activation of both the superior parietal lobule 

extending into the precuneus and the anterior insula. On the medial aspect of the brain, we 

observed reliable activation of the medial frontal gyrus, extending from the dACC into the 

Supplementary Motor Area. In the right hemisphere, our analysis revealed a reliable cluster in 

the thalamus. 
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We ran an additional follow-up analysis directly contrasting BOLD responses in studies 

where task demand level was cued against studies where demand level was not cued, to examine 

significant differences in convergence across these study types (see Figure S1 of the 

Supplemental Materials). However, owing to the composition of experimental designs included 

in our meta-analysis, this follow-up contrast analysis— which took as input only 16 cued studies 

and 14 uncued studies—was likely unpowered, and accordingly, the resultant contrasts between 

cued and uncued demand levels should be interpreted with caution. 

Differences in BOLD response between reward versus demand 

Next, we evaluated the strength of evidence for the effort cost (Lopez-Gamundi et al., 

2021) and integrated cost-benefit (Chong et al., 2017; Shenhav et al., 2013; Silvetti et al., 2018) 

accounts of dACC activity by assessing the patterns of unique and overlapping activity between 

reward- and demand-elicited activity. To assess the unique patterns of activity, we contrasted 

BOLD responses which were more responsive to increasing reward prospects than increasing 

task demand. Our analysis revealed a cluster of 728mm3 in the rostral aspect of the dACC which 

was reliably engaged by increasing reward prospects more than increasing task demands (see 

Table 2, and yellow cluster depicted in Figure 3). Contrasting demands level with reward level, 

our analysis revealed a total of six clusters in which activity was more reliably engaged in 

processing increasing task demands than increasing rewards (see Table 2; and blue clusters 

depicted in Figure 3), including a cluster of 2056mm3 in the caudal portion of the dACC 

extending into the Supplementary Motor Area (see Table 2, and blue clusters depicted in Figure 

3). On the lateral aspect of the frontal lobe, our analysis revealed two clusters in the left middle 

frontal gyrus which extended anteriorly from the precentral gyrus, a second cluster on the more 

superior portion of the middle frontal gyrus and left inferior parietal lobule. Caudally, we 
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observed three clusters more active in response to task demands than rewards in the left 

Precuneus, and bilaterally in the Inferior Parietal Lobule. In terms of overlapping patterns of 

BOLD responses, our conjunction analysis revealed one cluster where foci associated with both 

reward and task demand manipulations were found to converge (see Table 2, and green clusters 

depicted in Figure 3). We observed reliable overlap between reward- and demand-elicited BOLD 

activity in the right anterior insular cortex. Together, our analyses suggest a distinction between 

the dACC responses to rewards and task demands: across the task demand contrasts, foci 

converged in the caudal portion of the dACC, extending into the SMA, whereas reward foci 

converged in the rostral portion of the dACC. This distinction between reward and demand in the 

dACC provides preliminary evidence in favor of an effort cost representation as it is consistent 

with a positive relationship with task demands and no relationship with reward. Yet, these results 

alone cannot differentiate between the posited functional roles of activity in the dACC without 

considering integrated value of rewards and task demands. 

BOLD response to integrated cost-benefits  

 Next, we explored whether there were any reliable patterns of activation associated with 

the integrated cost-benefits of effort across 15 experiments (152 foci from 418 participants)—as 

indexed by BOLD response correlated with either computed subjective value in effort 

discounting tasks (Chong et al., 2017; Massar et al., 2015; Westbrook et al., 2019) or by 

interactions between reward and task demands in reward-motivated control studies. Of interest, 

we sought to assess the strength of evidence that the dACC, beyond encoding the costs 

associated with increased cognitive effort, also encodes the effort level to be invested based on 

the integrated costs-benefits of exertion. Our analysis revealed two clusters in the frontal lobe, 

one on the lateral aspect encompassing the middle frontal gyrus, and one on the medial aspect 
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extending form the SMA to the dACC (see Table 3, see the clusters depicted in warm colours in 

Figure 4). These two clusters representing the interaction between reward and demand were also 

found to partially overlap (568 mm3 for the medial cluster and 152mm3 for the lateral cluster) 

with the clusters previously identified as responsive increasing demands (Demand > Reward; see 

Figure 4). The first cluster, located in the medial frontal lobe, contained coordinates from four 

studies (Bahlmann et al., 2015; Padmala & Pessoa, 2011; Westbrook et al., 2019), three of which 

reported BOLD responses consistent with cost-benefit integration (see Figure 1 right panel). The 

second cluster, located in the lateral frontal lobe, contained coordinates from four studies (Chong 

et al., 2017; Leong et al., 2018; Padmala & Pessoa, 2010, 2011), two of which reported BOLD 

responses consistent with cost-benefit integration (see Figure 1 right panel). Thus, our analyses 

suggest that there is moderate evidence in support of dACC activity reflecting the integration of 

costs and benefits. 

Discussion 

A key tenet of recent neurocomputational accounts of effort-based decision-making 

proposing that activity in brain regions like the dACC reflect a trade-off between the costs and 

benefits of effortful cognitive processing (Silvetti et al., 2018; Verguts et al., 2015). Yet, the 

precise functional role of the dACC in effortful behaviour remains unresolved as activity could 

simply reflect effort costs which covary with effort outlay (Vassena et al., 2017). Here, we 

carried out a meta-analysis of neuroimaging studies jointly manipulating cognitive demand and 

reward incentives, and assessed whether dACC activity reflects rewards, effort costs, or an 

integration of the two decision variables. Our analyses revealed that increasing task demands 

were associated with increasing activity the dACC, as well as both the lateral and parietal 

cortices—replicating extant work (Laird et al., 2005; Niendam et al., 2012). The prospect of 
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larger reward was also observed to engage the dACC. Yet, we did not observe reliable overlap 

between the subregions of the dACC which coded for reward and effort. Instead, our analyses 

revealed two dissociable regions within dACC — the caudal portion tracking demand, and the 

rostral portion tracking reward, supporting the view that effort costs and rewards are represented 

separately in the brain. In support of an integrative cost-benefit signal, we found evidence for 

reliable engagement of the caudal dACC (Chong et al., 2017; Shenhav et al., 2013; Silvetti et al., 

2018; Soutschek & Tobler, 2020). Together, these results suggest anatomical specificity for the 

activity of the dACC: activity in the rostral region reflects increasing reward prospects, whereas 

activity in the caudal region reflects increases in task demand and also an integrated signal 

reflecting both task demands and reward prospects, but rewards alone are not sufficient to elicit 

increased caudal dACC activity.  

 Broadly, our results provide a clearer understanding of the dACC’s role in motivating 

effortful action. Prominent theories of cognitive effort support cost-benefit models where the 

control signal intensity is determined by the dACC which integrates both information about 

available rewards and the cost associated to exerting control (Shenhav et al., 2013, 2016). In line 

with extant work, we provide indication for a role of the dACC in tracking both effort costs 

(Lopez-Gamundi et al., 2021) and the control signal intensity afforded by the integrated value of 

effort and reward (Chong et al., 2017; Shenhav et al., 2013, 2016; Silvetti et al., 2018). Despite 

the observed integration in the dACC, we did not find a reliable overlap between for large 

reward and high demand in the dACC, unlike Vassena et al. (2014). Perhaps this previous 

overlap was observed due to the overall high accuracy of the two contrasted demand levels, 

thereby making effort exertion mostly rewarding. This raises the possibility that the probability 

of reward given effort exertion may also modulate dACC activity (Frömer et al., 2021; Grahek et 
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al., 2022; Otto et al., 2022). At the same time, previous work identifies a critical role for the 

dACC in monitoring the need for cognitive control (Botvinick, 2007; Venkatraman & Huettel, 

2012), but also linked to individuals’ avoidance of effort (McGuire & Botvinick, 2010), and 

effort-discounted rewards (Chong et al., 2017). Indeed, the results of our meta-analysis suggest 

that region of the dACC tracking the integrated cost-benefit signal also overlapped with the 

region tracking increasing task demands. Perhaps this overlap reflects the monotonic relationship 

between task demands and effort investment we assumed—that is; to achieve equivalent 

performance on tasks of differing demands, greater effort should be expended on the more 

demanding task. Given that the region tracking integrated cost-benefits and task demands 

overlapped, this suggests that a great deal of the high demand tasks used in this meta-analysis 

were difficult but achievable i.e., high effort was invested for harder tasks. However, this 

operationalization, which underlies a deal of research on cognitive effort, may not always be 

satisfied when greater effort does not yield better performance or when participants are given 

impossible tasks (Otto et al., 2021; Silvestrini et al., 2022).  

At the same time, converging neurocomputational work suggests that the dACC 

contributes to learning the optimal control signal specification (Silvetti et al., 2018; Verguts et 

al., 2015) by also tracking negative feedback (i.e., response errors) (Carter et al., 1998; Cole et 

al., 2009; Ito et al., 2003; Ridderinkhof et al., 2004). Recent work has outlined the importance of 

response efficacy—the relationship between effort and performance—in the decision to expend 

effort (Frömer et al., 2021). Under certain conditions, increasing effort allocation need not yield 

improved task performance implying a non-monotonic relationship between effort and 

performance. For example, for an impossible task where greater exertion would not improve 

performance, participants may choose to withhold effort. Indeed, some previous work has 
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implicitly taken advantage of the marginal value of effort by contrasting performance-contingent 

to random rewards (Frömer et al., 2021; Shenhav et al., 2013; Späti et al., 2014). On this view, 

effort should only be invested when increasing effort investment confers larger performance 

benefits—i.e., the marginal value of effort (Otto et al., 2021). This distinction between effort and 

demand is reified in established accounts of motivated behavior such as Motivation intensity 

theory (Brehm & Self, 1989) which posit that the prospect of larger rewards does not 

unwaveringly improve performance but may depend on the efficacy of effort exertion in 

improving task performance. As such, previous work has noted performance decrements in 

response to larger reward prospects (Lee & Grafton, 2015). Cost-benefit models, which suggest 

increasing dACC reflects a license for effort, predict that activity in the dACC should vary 

depending on the response efficacy (Frömer et al., 2021; Shenhav et al., 2013). When the task is 

feasible at high demand levels, dACC activity should grow monotonically with task demands. 

When the task is impossible (i.e., high demand), dACC activity should elicit an inverted-U 

pattern, with a drop in engagement when demand is too high. Together, these predictions could 

explain how increases in task demand—which purportedly decrease the net value of effort—

were associated with both increases and decreases in dACC activity in the literature. Beyond 

dACC activity, other physiological measures like cardiovascular reactivity (see Wright, 2008 for 

discussion), pupil dilation (da Silva Castanheira et al., 2021), and facial muscle activity 

(Cacioppo et al., 1985; de Morree & Marcora, 2010; Van Boxtel & Jessurun, 1993) have been 

proposed as a method for indirectly measuring effort exertion. To reconcile these conflicting 

findings regarding the functional role of the dACC in effortful behaviour, future work should 

approach triangulation by jointly considering rewards, task demands and efficacy alongside 

neural activity, and psychophysiological measures of effort exertion. 
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It is also worth noting that the studies examined in this meta-analysis were constrained to 

those which used monetary incentives to motivate cognitive effort. Beyond cognitive control, 

previous work has found evidence for the dACC’s involvement in processing and integrating 

both primary and secondary rewards (Yee et al., 2021). Similarly, the dACC has been found to 

integrate information about physical effort (Chong et al., 2017), pain and negative affect 

(Shackman et al., 2011). While cost-benefit models posit that the dACC integrates signals 

reflecting general costs and benefits, more work is needed to understand whether this pattern 

generalizes to other stimuli—particularly as there is some evidence for an anterior-posterior 

gradient of functional specialization from strategic to response-related conflict (Alexander & 

Brown, 2015; Venkatraman et al., 2009). The results of our reward-demand contrast analysis—in 

which the rostral portion of the dACC was found to respond more reliably to rewards while the 

caudal portion responds to demand—coincides with previous work which also suggests 

functional specialization of the dACC: a cognitive-affective gradient moving from caudal to 

rostral dACC (Bush et al., 2000). However, these distinctions have been inconsistent as others 

have found cognitive demand, affect and pain to overlap in the same region (Shackman et al., 

2011). Thus, more work is needed to better understand the functional organization of the dACC. 

The decision to invest effort is thought to rely on the coordinated activity between several 

brain regions (Ullsperger et al., 2014). While the literature as well as theoretical developments 

have strongly focused on ACC, empirical evidence indicates that other regions may be sensitive 

to both manipulations of reward and effort and can play a role in resolving cost-benefit trade-

offs. For example, the LPFC is thought to be involved in maintaining task relevant information 

in working-memory (Braver, 2012; Burgess & Braver, 2010) and executing cognitive control 

more generally (Miller & Cohen, 2001). While we found the LPFC was reliably engaged by 
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increasing task demands suggesting a role in cognitive control implementation, we also found 

that the LPFC was sensitive to integrated effort-reward signals. Aligned with these results, recent 

work suggests the lateral prefrontal cortex (LPFC) may encode the capacity to successfully meet 

task demands, thereby representing the probability of successfully receiving rewards (Soutschek 

& Tobler, 2020). The anterior insula, often coactive with the dACC (Bartra et al., 2013; Diekhof 

et al., 2012; Parro et al., 2018), is also thought to be engaged in monitoring the need for control 

(Shenhav et al., 2016). Supporting this view, we found that the anterior insula was reliably 

engaged by both increasing task demands and reward prospects—suggesting a broader role of 

the region in processing salient events (i.e., arousal; Uddin, 2015) and subjective awareness 

(Craig, 2002), both of which are foundational to effort allocation. Together, these results suggest 

a role for the anterior insula in monitoring one’s current state and detecting changes in the need 

for control (Nelson et al., 2010) and a role in cognitive processes more generally (Uddin et al., 

2014). The ventral striatum, although typically thought of as a reward-processing region 

(Diekhof et al., 2012), has been shown to be sensitive to effort costs in the absence of rewards 

(Schouppe et al., 2014; Vassena et al., 2014). In terms of the Basal Ganglia, the Ventral Striatum 

was reliably engaged in processing rewards and effort whereas an overlap was not found in the 

dACC. Previous work has shown a negative coupling between reward-related processing in the 

ventral striatum and dACC activation (Botvinick et al., 2009). Together with the literature, our 

results support the notion that the dACC along with a coordinated set of regions are involved in 

the integration of effort costs and the benefits conferred by rewards. Yet, given ALE-coordinate 

based analyses preclude network interpretations, our results are limited in their ability to draw 

conclusions on the coordination of regions. Thus, future work should aim to disentangle the 

underlying network dynamics contributing to the decision to expend effort. 
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Open Practices Statement 

The studies used as input in this meta-analysis (listed in Table 1) are all published articles 

which are publicly available. No new data were collected for this meta-analysis. 
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Table 1 List of reward and effort studies meeting inclusion criteria.  
 

First Author Year N  Study 
Type 

Reward 
Contrast 

Cognitive 
Task 
Domain 

N Foci 
Reward 

N 
Foci 
Effort 

N foci 
Interac-
tion 

Reward
-RT 
Effect 

Reward-
Accuracy 
Effect 

Reward 
cued 

Demand 
cued 

Aarts 2010 20 Execution High vs. Low  Task 
Switching 

11 14   n.a. n.a. Y N 

Alexander 2010 24 Execution High vs Low  Response 
Inhibition 

0 1 1 n.a. n.a. Y Y 

Asci 2019 22 Execution Reward vs 
None 

Response 
Inhibition 

0 6 3 - + T n.a. 

Bahlmann 2015 20 Execution High vs. Low Task 
Switching 

9 13 2 + + Y Y 

Belayachi 2015 18 Execution Reward vs 
None 

Working-
Memory 

4 9   n.s. n.s. Y Y 

Boehler 2014 16 Execution Reward vs 
None 

Response 
Inhibition 

12 29   - n.s. N N 

Brown 2007 21 Execution High vs. Low Response 
Inhibition 

1 0   n.s. n.s. Y Y 

Bruening 2018 22 Execution Reward vs 
None 

Working-
Memory 

9 20   n.s. + N n.a. 

Charron 2010 32 Execution High vs. Low Working-
Memory 

7 2   - + Y N 

Chikara 2018 20 Execution   Response 
Inhibition 

  12 16 n.s. n.s. Y N 

Cho  2022 33 Execution Reward vs. 
None 

Working-
Memory 

28 31   n.a. + Y N 
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First Author Year N  Study 
Type 

Reward 
Contrast 

Cognitive 
Task 
Domain 

N Foci 
Reward 

N 
Foci 
Effort 

N foci 
Interac-
tion 

Reward
-RT 
Effect 

Reward-
Accuracy 
Effect 

Reward 
cued 

Demand 
cued 

Chong 2017 34 Decision-
making 

  Attention     7 n.a. n.a. Y Y 

Dixon 2012 15 Execution Repetition 
Suppression 
Reward 
(novel > 
repeated) 

Attention 10 10   - n.s. Y Y 

Gaillard 2019 23 Execution Reward vs 
None  

Working-
Memory 

16 1 12 n.s. + Y Y 

Lallement 2014 30 Execution   Arithmetic   14   n.a. n.a. n.a. N 

Ivanov 2012 16 Execution High vs. Low Response 
Inhibition 

7 9 6 - n.s. Y N 

Jimura 2010 31 Execution Reward vs 
None 

Working-
Memory 

2     - n.a. Y n.a. 

Kostandyan 2020 25 Execution High vs. Low Response 
Inhibition 

10 6   - + Y & N N 

Kouneiher 2009 16 Execution High vs Low Task 
Switching 

3 1   n.a. n.a. N N 

Krebs 2012 14 Execution Reward vs 
None 

Attention 23 21 7 - + Y Y 

Krebs 2011 18 Execution Reward vs 
None 

Response 
Inhibition 

23     _ + N n.a. 

Lee 2017 18 Execution Reward vs 
None 

Response 
Inhibition 

14     n.s. + Y N 
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First Author Year N  Study 
Type 

Reward 
Contrast 

Cognitive 
Task 
Domain 

N Foci 
Reward 

N 
Foci 
Effort 

N foci 
Interac-
tion 

Reward
-RT 
Effect 

Reward-
Accuracy 
Effect 

Reward 
cued 

Demand 
cued 

Leong 2018 40 Execution Reward vs 
None 

Response 
Inhibition 

14 37 12 - + (go);      
- (no go) 

Y N 

Locke 2008 16 Execution Reward vs 
None 

Response 
Inhibition 

19     - + Y n.a. 

Longe 2009 10 Execution High vs. Low  Working-
Memory 

6 4   - n.s. Y Y 

Luethi 2016 88 Execution Reward vs 
None 

Response 
Inhibition 

54 15   n.s. n.s. Y N 

Magis-
Weinberg 

2019 50 Execution Reward vs 
None  

Working-
Memory 

25 14   - + Y n.a. 

Massar 2015 23 Decision-
making 

  Response 
Inhibition 

    33 n.a. n.a. n.a. n.a. 

Mizuno 2008 14 Execution   Working-
Memory 

  31   n.s. n.s. Y Y 

Nigam 2021 21 Execution Reward vs 
None 

Response 
Inhibition 

0 3   - + Y Y 

Orr 2019 19 Execution Reward vs 
None 

Task 
Switching 

26 10   + n.a. N N 

Padmala 2010 34 Execution   Response 
Inhibition 

  12 7 + 
(SSRT)
; - (Go-
RT) 

n.a. Y N 

Padmala 2017 57 Execution Reward vs 
None 

Attention 6 21 12 - + Y n.a. 
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First Author Year N  Study 
Type 

Reward 
Contrast 

Cognitive 
Task 
Domain 

N Foci 
Reward 

N 
Foci 
Effort 

N foci 
Interac-
tion 

Reward
-RT 
Effect 

Reward-
Accuracy 
Effect 

Reward 
cued 

Demand 
cued 

Padmala 2011 50 Execution Reward vs 
None  

Response 
Inhibition 

29 11 19 n.a. n.a. Y N 

Paschke 2015 11
5 

Execution   Response 
Inhibition 

  12   - n.s. Y N 

Pochon 2002 6 Execution Parametric 
effect of 
Reward 

Working-
Memory 

11     n.s. n.s. Y Y 

Rosell-
Negre 

2017 37 Execution Parametic 
effect of 
reward 

Response 
Inhibition 

1 11   n.a. n.a. Y N 

Soutschek 2015 20 Execution High vs. Low Response 
Inhibition 

3 4 5 - n.s. Y Y 

Stoppel 2011 18 Execution High vs. Low Attention 4 10   + n.s. Y Y 
Taylor 2004 12 Execution High vs. Low Working-

Memory 
6 16   - n.s. Y Y 

Ursu 2008 
(Exp
2) 

17 Execution Reward vs 
None  

Attention 19 5   - n.s. Y Y 

Ursu 2008 
(Exp
1) 

19 Execution Reward vs 
None 

Attention 16 4   - + Y Y 

Vassena 2014 22 Execution High vs. Low  Arithmetic 8 11   n.s. n.a. Y Y 

Wang 2019 24 Execution High vs. Low Task 
Switching 

4     - n.s. N N 
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First Author Year N  Study 
Type 

Reward 
Contrast 

Cognitive 
Task 
Domain 

N Foci 
Reward 

N 
Foci 
Effort 

N foci 
Interac-
tion 

Reward
-RT 
Effect 

Reward-
Accuracy 
Effect 

Reward 
cued 

Demand 
cued 

Westbrooke  2019 21 Decision-
making 

Parametric 
effect of 
reward 

Working-
Memory 

9 15 10 n.a. n.a. Y Y 

Wilbertz 2014 49 Execution Reward vs 
None 

Response 
Inhibition 

8 45   n.s. n.a. Y N 
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Table 2 Conjunction and difference of the ALE meta-analysis for demands and effort. For each coordinate, region label, hemisphere 
(right, left or bilateral), Brodmann area, MNI coordinates, ALE maxima, p values, Z values, cluster size (mm3), and number of studies 
are provided.  
 

Brain Region Hemi Cluster 
No. x y z N Studies (n 

Foci) 
Volume 
(mm3) Studies in Cluster 

 
Reward & Control  

Insula R 1 34 22 -4 6 (6) 416 

Cho et al., 2022; Ivanov et al., 
2012; Krebs et al., 2011; 
Boehler et al., 2014;  Magis-
Weinberg et al., 2019; 
Westbrook et al., 2019;  

 

Reward > Control  

ACC R/L 2 8 36 24 5 (5) 748 

Boehler et al., 2014; 
Kostandyan et al., 2020; 
Bahlman et al., 2015; Luethi et 
al. 2016; Magis-Weinberg et al., 
2019 

 

Control > Reward  

Middle frontal 
gyrus L 2 -

48.4 19.8 28.2 9 (11) 2368 

Bahlman et al., 2015; Mizuno et 
al., 2008; Vassena et al., 2014; 
Kostandyan et al. 2020; 
Kouneiher et al., 2009; Luethi et 
al., 2016; Leong et al., 2018; 
Paschke et al., 2015; Wilbertz et 
al., 2014 

 

Supplementary 
Motor, dACC L/R 4 2 12 50 7 (10) 2056 Westbrook et al., 2019; Krebs et 

al., 2012; Ursu et al., 2008; 
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Lallement et al., 2014; Taylor et 
al., 2004; Wilbertz et al., 2014; 
Padmala et al., 2011 

Middle frontal 
gyurs L 5 -38 6 51 3 (3) 864 Belayachi, et al. 2015;Wilbertz 

et al., 2014; Padmala et al. 2010 
 

Inferior Parietal 
Lobule L 6 -38 -48 40 4 (4) 848 

Cho et al., 2022; Luethi et al., 
2016; Boehler et al. 2014; 
Lallement et al., 2014; 

 

Inferior Parietal 
Lobule R 7 38 -42 40 4 (4) 568 

Cho et al., 2022; Orr et al., 
2019; Ivanov et al., 2012; 
Padmala et al., 2010 

 

Precuneus R 8 14 -70 52 1 (1) 304 Aarts et al., 2010  
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Table 3 The ALE meta-analysis for coordinates representing the interaction between rewards and demands. For each coordinate, 
region label, hemisphere (right, left or bilateral), Brodmann area, MNI coordinates, ALE maxima, cluster size (mm3), and number of 
studies are provided. 
 

Brain Region Hemi Cluster 
No. 

x y z N Studies 
(n Foci) 

Volume 
(mm3) 

Contributing studies 

Supplementary motor 
area, dorsal Anterior 
Cingulate 

L 1 -4 22 44 4 (5) 992 Westbrook et al, 2019; Bahlmann et 
al., 2015; Chong et al., 2017; 
Padmala et al., 2011; 

Middle frontal gyrus L 2 -46 24 26 4 (4) 839 Chong et al., 2017; Leong et al., 
2018; Padmala et al., 2010; Padmala 
et al. 2011 
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Figure 1 Hypothesized patterns of dACC BOLD signal based on what this signal is thought to reflect: costs only, benefits only, or the 
effort investment based on the expected value of control. For the reward model, where dACC activity is posited to only reflect reward 
prospects, BOLD signal is predicted to increase simply as a function of performance-contingent rewards. For the cost model, where 
dACC activity is posited to only reflect costs, BOLD signal is predicted to increase only as a function of task demands. And for the 
integration models, where dACC activity reflects the intensity of the control signal or effort to be invested, BOLD signal is predicted 
to increase in response to higher rewards and higher levels of task demands. 
 

 

Reward only Cost only Effort investment

Low High Low High Low High
0.2
0.3
0.4
0.5
0.6

Task Demands

Ch
an

ge
 in

 B
O

LD
 s

ig
na

l in
 d

AC
C 

a.
u.

Reward
High
Low

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2025. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


COST-BENEFIT META-ANALYSIS 49 

 

Figure 2 Flowchart of article screening and selection, following PRISMA guidelines. Adapted from (Page et al., 2021) Page MJ, 
McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for 
reporting systematic reviews.  
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Figure 3 Results of reward and effort ALE meta-analysis.  Brain areas showing converging activation for both increasing reward 
prospects and task demands, plotted in the volume (MNI152) with shades of green. Brain areas more actived by increasing task 
demands  than reward prospects plotted in the volume (MNI152) with shades of blue . Brain areas more actived by increasing reward 
prospects than task demands plotted in the volume (MNI152) with shades of yellow
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Figure 4 Results of interaction (reward X effort) ALE meta-analysis.  Brain areas showing converging activation for the interaction 
between rewards and effort plotted in the volume (MNI152) with shades of red. Brain areas activated by task demands plotted in the 
volume (MNI152) with shades of blue. Blue clusters were rendered transparent to depict the overlap between clusters. 
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