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COST-BENEFIT META-ANALYSIS 2

Abstract

Influential theories of cognitive effort-based decision-making suggest that shared brain regions
process both potential reward and task demand, supporting the idea that a cost-benefit trade-off
informs effort allocation. While the dorsal anterior cingulate cortex (dACC) has been proposed
as a candidate region supporting this decision, it remains unclear whether dACC activity tracks
rewards and costs independently or integrates them to reflect effort intensity. Recent accounts
posit that the dACC plays a key role in mediating cost-benefit trade-offs. However, empirical
evidence remains scarce. A systematic meta-analysis review of neuroimaging studies was
conducted, using the activation-likelihood estimation method to quantify brain activity across 45
studies (N = 1273 participants) investigating reward-guided effort. Results found reliable
recruitment of the dACC, putamen, and anterior insula for processing larger rewards and
increasing task demands. However, the dACC clusters sensitive to task demands and rewards
were anatomically distinct with no significant overlap: caudal dACC activity tracked increasing
task demands, while rostral dACC activity tracked increasing reward. We also observed that
caudal dACC activity tracked the integration of costs and benefits. These findings suggest there
are distinct signals for demand and effort in the dACC, which are integrated to support the

decision to invest effort.
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Introduction

How do we decide whether pursuing a reward is worth the mental effort required to
obtain it? On one hand, the experience of cognitive effort exertion is aversive (and often
avoided), yet, on the other hand, individuals must often engage in effortful thinking to obtain
rewards. Consequently, our decisions to engage in (versus avoid) cognitively costly processing
often present a conflict between two opposing goals: maximizing rewards and minimizing the
associated effort costs. To this point, prominent theories of motivated control posit that cognitive
effort allocation decision-making requires the integration of the benefits (e.g., rewards) tied to
effort exertion, the costs of effort, and the likelihood of successful performance (Fromer et al.,
2021; Kurzban et al., 2013; Shenhav et al., 2017; Silvetti et al., 2018). Indeed, a large and
growing body of empirical work suggests that our decisions to allocate (versus withhold) effort
result from an integration of costs and benefits. For example, reward incentives motivate
cognitive effort investment (Otto & Vassena, 2021; Westbrook & Braver, 2015), particularly for
individuals with large effort costs (da Silva Castanheira et al., 2021; Sandra & Otto, 2018).
Further, the subjective value of rewards—as evidenced by individuals’ choices between options
with varying effort and reward levels—appears to be discounted by the effort required to earn
these rewards (Chong et al., 2017; Otto & Vassena, 2021), and people will even opt for a
physically painful sensation over the prospect of exerting high levels of cognitive effort (Vogel
et al., 2020).

Influential theories suggests that the dorsal anterior cingulate cortex (dACC) plays a role
in resolving this effort-reward trade-off by integrating specific neural signals representing both
effort costs and anticipated rewards (Shenhav et al., 2013; Silvetti et al., 2018), with some debate

regarding the dACC’s functional role (Shenhav et al., 2017; Vassena et al., 2017, 2020).
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However, despite behavioral findings supporting the idea of an effort-reward trade off, the
functional role of dACC in coding reward, effort cost, and/or the integration thereof, is less clear.

In line with the predictions of cost-benefit accounts of dACC function (Shenhav et al.,
2013; Silvetti et al., 2018), some studies suggest that the dACC encodes both reward prospects
and task demands. The anticipation of rewards has been consistently associated with greater
activity in the dACC, anterior insula, thalamus, and ventral striatum (e.g., the nucleus accumbens
and putamen; Bartra et al., 2013; Diekhof et al., 2012; Knutson & Greer, 2008). However, these
observed patterns of neural activity were not specific to performance-contingent rewards,
suggesting a general role for the dACC in encoding reward information. More recently, a meta-
analysis by Parro and colleagues (2018) investigated activation patterns underlying performance-
contingent reward incentives, finding reliable BOLD activity in the dACC, anterior insula,
inferior frontal sulcus, and inferior parietal lobule in response to rewards. While both the dACC
and anterior insula have been linked to subjective feelings of motivation on cognitive tasks, only
the dACC has been found to encode integrated incentive values when performing effortful tasks
(Yee et al., 2021). A parallel line of work has identified regions that encode costs associated with
increasing task demands either during preparation for tasks or during task performance. When
exerting control, increasing task demands engage the dACC, posterior parietal cortex, anterior
insula, and prefrontal cortex (Laird et al., 2005; Niendam et al., 2012). When anticipating
effortful tasks, activity in the dACC increases as a function of the subjective valuation of effort
costs (Chong et al., 2017). Thus, activity in the dACC could either encode the effort level to be
invested i.e., the integrated costs and benefits of effort exertion (Chong et al., 2017; Shenhav et
al., 2016; Silvetti et al., 2018) or simply encode a representation of task demands (Lopez-

Gamundi et al., 2021).
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Beyond simply tracking rewards and demand, the dACC has also been found to play a
role in learning and monitoring task progress. For example, studies have observed that dACC
activity tracks negative consequences of errors like negative feedback (i.e., response errors;
Carter et al., 1998; Cole et al., 2009; Ito et al., 2003; Ridderinkhof et al., 2004), and pain (Jahn et
al., 2016; Shackman et al., 2011). At the same time, the dACC has been found to play a role in
monitoring the need for cognitive control (Botvinick, 2007; Venkatraman & Huettel, 2012),
tracking prediction errors (Alexander & Brown, 2015; Brown & Alexander, 2017; Silvetti et al.,
2011), and even coordinating effortful control over extended action sequences (Botvinick et al.,
2001; Holroyd & McClure, 2015). Together, these findings suggest a role for the dACC in the
learning of control signal specifications to obtain rewards or avoid punishment (Shenhav et al.,
2016). Converging neurocomputational work on adaptive decision-making proposes that the
dACC integrates costs and benefits through a meta-learning mechanism via interactions with
catecholaminergic input from subcortical systems (the Reinforcement Meta Learner model;
Silvetti et al. 2018). In this computational account, the dACC also contributes to the learning of
optimal effort allocation over time (Verguts et al., 2015) and to other adaptive learning dynamics
(i.e., control of learning rate, higher-order reinforcement learning, Silvetti et al. 2018).
Importantly, most of these perspectives rely on the assumption that, to some extent, the dACC
receives input signals indexing reward and cost to compute an integrated quantity (net value) that
guides effort decisions. This reward signal is supplied via midbrain dopaminergic input, as
extensive work in animals has shown (Haber et al., 2006; Haber & Knutson, 2010). On the
contrary, the source and neural representation of the cost signal remain highly debated (Holroyd,
2015; Kurzban et al., 2013; Musslick & Cohen, 2021; Wiehler et al., 2022). Whether the cost of

cognitive effort is encoded by dACC, and to what extent a reliable signal representing the control
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signal intensity based on the integration of the costs and benefits is traceable in dACC activity,
remains unclear.

However, individual studies are limited in their ability to draw conclusions on the neural
representation of rewards and effort, particularly due to heterogeneity in both the putative
cognitive processes required by tasks, and the reward prospects used to study motivated
behaviour. This variability across studies is especially relevant in the case of inconsistent
findings, often leading to robust debates in the literature—for example, in the case of the JACC
(Ebitz & Hayden, 2016; Vassena et al., 2017). Meta-analytic synthesis offers the opportunity to
isolate reliable effects of interest, allowing for joint investigation of parametric manipulations of
demand and reward levels across multiple studies (Yarkoni et al., 2010). Here, we used the
activation-likelihood estimation meta-analytic technique (Eickhoff et al., 2012), synthesizing
brain activity across 45 studies, to examine whether the predictions of the cost-benefit account of
dACC function are supported across diverse manipulations of cognitive effort and reward. By
looking across studies that manipulated both demand level (i.e., effort cost) and performance-
contingent rewards, the present meta-analysis allows us to examine whether aggregate dACC
activity is associated with effort investment reflecting an integrated representation of costs and

benefits, versus a representation of only costs (or only benefits).

Importantly, these different possibilities lead to contrasting hypotheses about the patterns
of possible association between dACC activity, task demand and reward level (see Figure 1). If
dACC activity only reflects performance-contingent rewards, BOLD responses should increase

monotonically with larger rewards but not higher task demands (see Figure 1, left panel). And if


https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.513278; this version posted May 6, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

COST-BENEFIT META-ANALYSIS 7
dACC activity reflects only raw effort costs, BOLD responses should increase monotonically
with higher task demands but not larger rewards (see Figure 1, middle panel). However, if dACC
activity reflects the control signal intensity, i.e., effort to be invested, then BOLD responses
should depend collectively on costs, and demands. For example, in the Expected Value of
Control (EVC) model (Shenhav et al., 2013), dACC activity is posited to increase with larger
rewards and higher task demands (i.e., scales positively with net value; see Figure 1, right panel;
Silvestrini et al., 2022). Little work has jointly assessed the neural representations underlying
processing both prospective rewards and cognitive demand overlap. Yet, studies that have jointly
investigated rewards and task demands have only observed increases in dACC BOLD activity
for both larger rewards and task demands (Vassena et al. 2014). However, this study may be
limited in its ability to capture the net-value discounting computation, as they contrasted 2
demand levels with high overall accuracy (>90%), in so far that exerting effort was mostly
rewarding (see Figure 1). In sum, whether dACC simply tracks effort costs, or integrates reward
and demand information into a net value has yet to be corroborated.

While two previous meta-analyses have found inconsistent results in overlapping regions
of the JACC—finding that BOLD signal in the dACC decreases with increasing net value
(Lopez-Gamundi et al., 2021), and increases as a function of available rewards (Parro et al.,
2018)—we sought to jointly and systematically examine task demands and rewards. Motivated
by the inconsistency in the posited functional role of the dACC, the current meta-analysis aims to
disentangle the common and unique patterns of activation observed across several, diverse fMRI
studies which independently manipulate reward prospects tied to effort exertion, and task
demands across a variety of operationalizations of cognitive demand and reward. Using this

approach, we can assess 1) the regions uniquely involved in processing rewards, 2) the regions
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uniquely involved in processing task demands and 3) the regions involved in both processes. We
further assess the regions which track the interaction between reward and demand signals,
encoding the integrated value of effort investment. Based on cost-benefit models of effort
decision-making (Shenhav et al., 2013; Silvetti et al., 2018), we predict the dACC will not only
serve to independently track the costs and benefits of effort but also serve to integrate these

signals reflecting the effort level deemed worthy of investing.

Materials and Methods

Literature Search

We conducted a systematic review of functional magnetic resonance imaging (fMRI)
cognitive control studies which experimentally manipulated either available rewards, task
demand, or both. Our literature search and exclusion process are depicted in the flow chart in
Figure 2. We searched for articles published prior to February 3™, 2025, on the online databases
PubMed/MEDLINE, Web of Science, and PsychINFO, with an “all fields” search matching the
following search string: ("REWARD*" OR "MONETARY INCENTIVE*" OR "MOTIVAT*"
OR "INCENTIV*") AND ("COGNITIVE EFFORT" OR "MENTAL EFFORT" OR
"COGNITIVE CONTROL" OR "EXECUTIVE FUNCT*" OR "WORKING MEMORY" OR
"INHIBIT*" OR "SET SHIFTING" OR "SET-SHIFTING" OR "TASK SWITCHING" OR
"TASK-SWITCHING" OR "LOAD" OR "COGNITIVE LOAD" OR "DIFFICULT*" OR
"EFFORT* " OR " DEMAND* ") AND ("FMRI" OR "FUNCTIONAL MAGNETIC
RESONANCE IMAGING" OR "BRAIN IMAGING" OR “MRI”) AND ("HUMAN*" OR

"PARTICIPANT*" OR "ADULT*” OR “SUBJECT*”). This search yielded 3849 articles. We
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further included 82 articles which were obtained from manually searching the reference list of
previous coordinate-based meta-analyses on either reward processing or effortful control (see
Figure 2) (Diekhof et al., 2012; Laird et al., 2005; Lopez-Gamundi et al., 2021; Parro et al.,
2018).

We screened the identified articles for the following inclusion criteria: the studies must
be 1) empirical investigations (i.e., not review articles); 2) employ fMRI; 3) be performed in
healthy young adult humans; 4) estimate effects using GLMs over the whole brain with reported
Montreal Neurologic Institute (MNI) or Talairach coordinates; 5) and report main effects of
reward and/or demand level upon fMRI BOLD activity. To be included in the meta-analysis,
studies had to elicit a trade-off between rewards and effort by independently manipulating both
reward incentives and demand levels within subjects. For the reward manipulations, the reward
had to be 1) instrumental (i.e., based on responses) 2) performance-contingent (i.e., not random)
3) mediated by the successful engagement of cognitive processes (e.g., attention, working
memory, response inhibition, etc.) as opposed to physical exertion and 4) not serve as a distractor
(e.g., Failing & Theeuwes, 2017). For the demand manipulations, demand level had to be
manipulated experimentally—note, here we assume increasing task demands require greater
effort to resolve (Shenhav et al., 2013). Finally, we excluded any studies which did not provide
coordinates estimated in a healthy young adult population (i.e., clinical, or older adults) or used
ROI analyses.

Using these criteria, a total of 45 articles were accepted, with 46 independent samples as
one paper reported 2 experiments (Ursu et al., 2008). It should be noted that we obtained two

independent sets of contrasts from one article (Kouneiher et al., 2009) as it reported the effects of
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both response preparation. Finally, one study collapsed analyses across young adults and

adolescents which we chose to include (Magis-Weinberg et al., 2019).

Coordinate based meta-analysis

We ran a coordinate-based meta-analysis using the foci (i.e., coordinates in significant
clusters) reported in the identified studies. To ensure all coordinates were in the same stereotaxic
space, we transformed the coordinates reported in Talairach space to MNI space using the FSL
transformation applied in GingerALE (Eickhoff et al., 2012). The x (left vs right) and y (anterior
vs posterior) coordinates of one paper was identified as inverted based on the anatomical labels
reported (Chikara et al., 2018), and accordingly, we multiplied these coordinates by -1 to convert
them back into standard space. We excluded any coordinates identified to be outside the brain,
this resulted in the removal of 3 foci (2 from Reward contrasts and 1 from Demand contrasts),
and a final sample of 429 foci for rewards and 460 foci for task demands (see Table 1). In
addition, our literature search revealed 32 foci associated with deactivations for increasing
reward prospects, 16 each from 2 studies (Krebs et al., 2012; Pochon et al., 2002) and 8 foci
increasing task demands (Krebs et al., 2012). We opted to exclude these coordinates from the
analysis given our specific interest in identifying regions encoding raw effort costs and reward
value.

We preformed meta-analyses using GingerALE (3.0.2; Eickhoff et al., 2009, 2012;
availalble at www.brainmap.org/ale). The Activation Likelihood Estimation (ALE) algorithm
computes convergence of activation across coordinates reported from whole-brain analysis. To
do so, ALE models the spatial uncertainty of coordinates using 3-dimensional full width at half

maximum (FWHM) gaussian kernels centered at the foci, with a width inversely proportional to
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the sample size. Thus, coordinates from studies with larger sample sizes are modeled with
smaller Gaussian kernels, reflecting a more reliable approximation of the true spatial location of
BOLD activity. Conversely, coordinates from studies with smaller sample sizes are modeled
with larger Gaussian kernels, reflecting the uncertainty in the precise spatial location of activity.
Using these activation likelihood estimates, GingerALE computes the overlap of activation
probabilities and determines voxels where there is a convergence significantly higher than
expected if results were independently distributed. The resulting images can then be corrected for
multiple comparisons, using cluster correction. For the purposes of our analysis, we chose a
relatively conservative threshold (p < 0.05 FWE; 5000 permutations, p < 0.001 cluster forming
threshold).

To test whether both rewards and effort reliably engage the dACC, we estimated three
separate meta-analyses on studies manipulating 1) rewards (36 studies, 920 participants); 2) task
demands (38 studies, 1095 participants) and 3) reported interactions between rewards and task
demands (15 studies, 418 participants). Additionally, we ran a conjunction/contrast analyses
comparing reward to effort. Conjunction between two sets of coordinates can be assessed using
the voxel-wise minimum value of the activation likelihood estimates (Eickhoff et al., 2012).
Contrasting the two sets of coordinates is done by subtracting the activation likelihood estimates
between images and calculating voxel-wise Z-scores of the differences against a permuted
distribution (Eickhoff et al., 2012). These resulting Z-scored differences are then subject to
cluster analysis. For our contrast analysis, we conducted 100,000 permutations, and set a
threshold p < 0.01 FWE and minimum cluster size of 300mm?.

Given the diversity of the studies included, both in terms of cognitive task and reward

manipulation, it is critical that statistical power be considered. Currently, the inclusion of a
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minimum of 17-20 studies in a meta-analysis is recommended to ensure sufficient power to
detect valid results, and prevent results from being driven by a single experiment (Eickhoff et al.,
2016; Miiller et al., 2018). Our literature search revealed 45 studies (46 experiments), reporting a
total of 36 reward contrasts and 38 demand contrasts of interest, resulting in 457 reward-related
foci and 491 demand-related foci (see Table 1). Of the 46 experiments included, 34 reported both
reward and effort contrasts. A total of three reward contrasts, and one demand contrasts found no
significant foci for their contrast of interest. In terms of reward contrasts, most reward contrasts
(21 studies) compared reward to no reward, while fewer reported a contrast between high and
low reward (14 studies) only three studies reported a parametric effect of reward, and one used a
repetition suppression paradigm (see Table 1). Regarding effort contrasts, the most common
method for manipulating task demands involved response inhibition (20 studies), followed by
working-memory (12 studies), attention (7 studies) and task switching (6 studies; see Table 1).
Two additional papers used arithmetic of different difficulty levels to manipulate task demands
(Lallement et al., 2014; Vassena et al., 2014). Critically, of the experiments which tested for
reward effects on response times (RTs) or accuracy (45 experiments), 9 tested accuracy effects,
16 tested RT effects, 15 tested both, and 3 used effort discounting choice paradigms. Of these
studies, 22 studies reported significant RT speeding, and 16 studies reported significant accuracy
effects with increasing rewards (see “Reward-RT Effect” and “Reward-Accuracy Effect”
columns in Table 1).
Results

BOLD response to rewards

First, we sought to test which brain regions reliably encoded information about

performance-contingent rewards. To this end, we assessed the converging patterns of brain
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activity in response reward contrasts and observed six clusters sensitive to performance-
contingent reward incentives whereby activity was found to increase in response to larger reward
prospects. Our analysis revealed six clusters of activity across regions typically associated with
reward-related processing (Bartra et al., 2013; Diekhof et al., 2012; Knutson & Greer, 2008)—
including the ventral striatum, the medial prefrontal, and insular cortex. Bilaterally, we observed
two clusters encompassing the putamen and caudate, as well as a second cluster in the rostral
portion of the dACC. We also found reliable patterns of activation in the right anterior insula and
left inferior occipital cortex.
BOLD response to task demand

Next, we sought to test which brain areas encode raw effort costs by identifying regions
where the activity shares a positive, monotonic relationship with increasing task demands. Our
analysis revealed a reliable pattern of brain activity for increasing task demands which consisted
of nine clusters across regions typically associated with cognitive control (Laird et al., 2005;
Niendam et al., 2012)—the prefrontal, dorsal anterior cingulate, and parietal cortices. On the
lateral aspect, we found two clusters in the left lateral PFC, one extending from the left middle
frontal gyrus to the left precentral gyrus, and another located more dorsally in the left middle
frontal gyrus, and one cluster in the right inferior frontal gyrus extending posteriorly to the
precentral gyrus. Bilaterally, we observed robust activation of both the superior parietal lobule
extending into the precuneus and the anterior insula. On the medial aspect of the brain, we
observed reliable activation of the medial frontal gyrus, extending from the dACC into the
Supplementary Motor Area. In the right hemisphere, our analysis revealed a reliable cluster in

the thalamus.
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We ran an additional follow-up analysis directly contrasting BOLD responses in studies
where task demand level was cued against studies where demand level was not cued, to examine
significant differences in convergence across these study types (see Figure S1 of the
Supplemental Materials). However, owing to the composition of experimental designs included
in our meta-analysis, this follow-up contrast analysis— which took as input only 16 cued studies
and 14 uncued studies—was likely unpowered, and accordingly, the resultant contrasts between
cued and uncued demand levels should be interpreted with caution.
Differences in BOLD response between reward versus demand

Next, we evaluated the strength of evidence for the effort cost (Lopez-Gamundi et al.,
2021) and integrated cost-benefit (Chong et al., 2017; Shenhav et al., 2013; Silvetti et al., 2018)
accounts of dACC activity by assessing the patterns of unique and overlapping activity between
reward- and demand-elicited activity. To assess the unique patterns of activity, we contrasted
BOLD responses which were more responsive to increasing reward prospects than increasing
task demand. Our analysis revealed a cluster of 728mm? in the rostral aspect of the JACC which
was reliably engaged by increasing reward prospects more than increasing task demands (see
Table 2, and yellow cluster depicted in Figure 3). Contrasting demands level with reward level,
our analysis revealed a total of six clusters in which activity was more reliably engaged in
processing increasing task demands than increasing rewards (see Table 2; and blue clusters
depicted in Figure 3), including a cluster of 2056mm? in the caudal portion of the JACC
extending into the Supplementary Motor Area (see Table 2, and blue clusters depicted in Figure
3). On the lateral aspect of the frontal lobe, our analysis revealed two clusters in the left middle
frontal gyrus which extended anteriorly from the precentral gyrus, a second cluster on the more

superior portion of the middle frontal gyrus and left inferior parietal lobule. Caudally, we
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observed three clusters more active in response to task demands than rewards in the left
Precuneus, and bilaterally in the Inferior Parietal Lobule. In terms of overlapping patterns of
BOLD responses, our conjunction analysis revealed one cluster where foci associated with both
reward and task demand manipulations were found to converge (see Table 2, and green clusters
depicted in Figure 3). We observed reliable overlap between reward- and demand-elicited BOLD
activity in the right anterior insular cortex. Together, our analyses suggest a distinction between
the dACC responses to rewards and task demands: across the task demand contrasts, foci
converged in the caudal portion of the dACC, extending into the SMA, whereas reward foci
converged in the rostral portion of the dACC. This distinction between reward and demand in the
dACC provides preliminary evidence in favor of an effort cost representation as it is consistent
with a positive relationship with task demands and no relationship with reward. Yet, these results
alone cannot differentiate between the posited functional roles of activity in the dACC without
considering integrated value of rewards and task demands.
BOLD response to integrated cost-benefits

Next, we explored whether there were any reliable patterns of activation associated with
the integrated cost-benefits of effort across 15 experiments (152 foci from 418 participants)—as
indexed by BOLD response correlated with either computed subjective value in effort
discounting tasks (Chong et al., 2017; Massar et al., 2015; Westbrook et al., 2019) or by
interactions between reward and task demands in reward-motivated control studies. Of interest,
we sought to assess the strength of evidence that the dACC, beyond encoding the costs
associated with increased cognitive effort, also encodes the effort level to be invested based on
the integrated costs-benefits of exertion. Our analysis revealed two clusters in the frontal lobe,

one on the lateral aspect encompassing the middle frontal gyrus, and one on the medial aspect
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extending form the SMA to the dACC (see Table 3, see the clusters depicted in warm colours in
Figure 4). These two clusters representing the interaction between reward and demand were also
found to partially overlap (568 mm? for the medial cluster and 152mm? for the lateral cluster)
with the clusters previously identified as responsive increasing demands (Demand > Reward; see
Figure 4). The first cluster, located in the medial frontal lobe, contained coordinates from four
studies (Bahlmann et al., 2015; Padmala & Pessoa, 2011; Westbrook et al., 2019), three of which
reported BOLD responses consistent with cost-benefit integration (see Figure 1 right panel). The
second cluster, located in the lateral frontal lobe, contained coordinates from four studies (Chong
et al., 2017; Leong et al., 2018; Padmala & Pessoa, 2010, 2011), two of which reported BOLD
responses consistent with cost-benefit integration (see Figure 1 right panel). Thus, our analyses
suggest that there is moderate evidence in support of dACC activity reflecting the integration of
costs and benefits.
Discussion

A key tenet of recent neurocomputational accounts of effort-based decision-making
proposing that activity in brain regions like the dACC reflect a trade-off between the costs and
benefits of effortful cognitive processing (Silvetti et al., 2018; Verguts et al., 2015). Yet, the
precise functional role of the dACC in effortful behaviour remains unresolved as activity could
simply reflect effort costs which covary with effort outlay (Vassena et al., 2017). Here, we
carried out a meta-analysis of neuroimaging studies jointly manipulating cognitive demand and
reward incentives, and assessed whether dACC activity reflects rewards, effort costs, or an
integration of the two decision variables. Our analyses revealed that increasing task demands
were associated with increasing activity the dACC, as well as both the lateral and parietal

cortices—replicating extant work (Laird et al., 2005; Niendam et al., 2012). The prospect of
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larger reward was also observed to engage the dACC. Yet, we did not observe reliable overlap
between the subregions of the dACC which coded for reward and effort. Instead, our analyses
revealed two dissociable regions within dACC — the caudal portion tracking demand, and the
rostral portion tracking reward, supporting the view that effort costs and rewards are represented
separately in the brain. In support of an integrative cost-benefit signal, we found evidence for
reliable engagement of the caudal dACC (Chong et al., 2017; Shenhav et al., 2013; Silvetti et al.,
2018; Soutschek & Tobler, 2020). Together, these results suggest anatomical specificity for the
activity of the dACC: activity in the rostral region reflects increasing reward prospects, whereas
activity in the caudal region reflects increases in task demand and also an integrated signal
reflecting both task demands and reward prospects, but rewards alone are not sufficient to elicit
increased caudal dACC activity.

Broadly, our results provide a clearer understanding of the dACC’s role in motivating
effortful action. Prominent theories of cognitive effort support cost-benefit models where the
control signal intensity is determined by the dACC which integrates both information about
available rewards and the cost associated to exerting control (Shenhav et al., 2013, 2016). In line
with extant work, we provide indication for a role of the dACC in tracking both effort costs
(Lopez-Gamundi et al., 2021) and the control signal intensity afforded by the integrated value of
effort and reward (Chong et al., 2017; Shenhav et al., 2013, 2016; Silvetti et al., 2018). Despite
the observed integration in the dACC, we did not find a reliable overlap between for large
reward and high demand in the dACC, unlike Vassena et al. (2014). Perhaps this previous
overlap was observed due to the overall high accuracy of the two contrasted demand levels,
thereby making effort exertion mostly rewarding. This raises the possibility that the probability

of reward given effort exertion may also modulate dACC activity (Fromer et al., 2021; Grahek et
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al., 2022; Otto et al., 2022). At the same time, previous work identifies a critical role for the
dACC in monitoring the need for cognitive control (Botvinick, 2007; Venkatraman & Huettel,
2012), but also linked to individuals’ avoidance of effort (McGuire & Botvinick, 2010), and
effort-discounted rewards (Chong et al., 2017). Indeed, the results of our meta-analysis suggest
that region of the dACC tracking the integrated cost-benefit signal also overlapped with the
region tracking increasing task demands. Perhaps this overlap reflects the monotonic relationship
between task demands and effort investment we assumed—that is; to achieve equivalent
performance on tasks of differing demands, greater effort should be expended on the more
demanding task. Given that the region tracking integrated cost-benefits and task demands
overlapped, this suggests that a great deal of the high demand tasks used in this meta-analysis
were difficult but achievable i.e., high effort was invested for harder tasks. However, this
operationalization, which underlies a deal of research on cognitive effort, may not always be
satisfied when greater effort does not yield better performance or when participants are given
impossible tasks (Otto et al., 2021; Silvestrini et al., 2022).

At the same time, converging neurocomputational work suggests that the dACC
contributes to learning the optimal control signal specification (Silvetti et al., 2018; Verguts et
al., 2015) by also tracking negative feedback (i.e., response errors) (Carter et al., 1998; Cole et
al., 2009; Ito et al., 2003; Ridderinkhof et al., 2004). Recent work has outlined the importance of
response efficacy—the relationship between effort and performance—in the decision to expend
effort (Fromer et al., 2021). Under certain conditions, increasing effort allocation need not yield
improved task performance implying a non-monotonic relationship between effort and
performance. For example, for an impossible task where greater exertion would not improve

performance, participants may choose to withhold effort. Indeed, some previous work has
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implicitly taken advantage of the marginal value of effort by contrasting performance-contingent
to random rewards (Fromer et al., 2021; Shenhav et al., 2013; Spiti et al., 2014). On this view,
effort should only be invested when increasing effort investment confers larger performance
benefits—i.e., the marginal value of effort (Otto et al., 2021). This distinction between effort and
demand is reified in established accounts of motivated behavior such as Motivation intensity
theory (Brehm & Self, 1989) which posit that the prospect of larger rewards does not
unwaveringly improve performance but may depend on the efficacy of effort exertion in
improving task performance. As such, previous work has noted performance decrements in
response to larger reward prospects (Lee & Grafton, 2015). Cost-benefit models, which suggest
increasing dACC reflects a license for effort, predict that activity in the dACC should vary
depending on the response efficacy (Fromer et al., 2021; Shenhav et al., 2013). When the task is
feasible at high demand levels, dACC activity should grow monotonically with task demands.
When the task is impossible (i.e., high demand), dACC activity should elicit an inverted-U
pattern, with a drop in engagement when demand is too high. Together, these predictions could
explain how increases in task demand—which purportedly decrease the net value of effort—
were associated with both increases and decreases in dACC activity in the literature. Beyond
dACC activity, other physiological measures like cardiovascular reactivity (see Wright, 2008 for
discussion), pupil dilation (da Silva Castanheira et al., 2021), and facial muscle activity
(Cacioppo et al., 1985; de Morree & Marcora, 2010; Van Boxtel & Jessurun, 1993) have been
proposed as a method for indirectly measuring effort exertion. To reconcile these conflicting
findings regarding the functional role of the dACC in effortful behaviour, future work should
approach triangulation by jointly considering rewards, task demands and efficacy alongside

neural activity, and psychophysiological measures of effort exertion.
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It is also worth noting that the studies examined in this meta-analysis were constrained to
those which used monetary incentives to motivate cognitive effort. Beyond cognitive control,
previous work has found evidence for the dACC’s involvement in processing and integrating
both primary and secondary rewards (Yee et al., 2021). Similarly, the dACC has been found to
integrate information about physical effort (Chong et al., 2017), pain and negative affect
(Shackman et al., 2011). While cost-benefit models posit that the dACC integrates signals
reflecting general costs and benefits, more work is needed to understand whether this pattern
generalizes to other stimuli—particularly as there is some evidence for an anterior-posterior
gradient of functional specialization from strategic to response-related conflict (Alexander &
Brown, 2015; Venkatraman et al., 2009). The results of our reward-demand contrast analysis—in
which the rostral portion of the dACC was found to respond more reliably to rewards while the
caudal portion responds to demand—coincides with previous work which also suggests
functional specialization of the dACC: a cognitive-affective gradient moving from caudal to
rostral dACC (Bush et al., 2000). However, these distinctions have been inconsistent as others
have found cognitive demand, affect and pain to overlap in the same region (Shackman et al.,
2011). Thus, more work is needed to better understand the functional organization of the dACC.

The decision to invest effort is thought to rely on the coordinated activity between several
brain regions (Ullsperger et al., 2014). While the literature as well as theoretical developments
have strongly focused on ACC, empirical evidence indicates that other regions may be sensitive
to both manipulations of reward and effort and can play a role in resolving cost-benefit trade-
offs. For example, the LPFC is thought to be involved in maintaining task relevant information
in working-memory (Braver, 2012; Burgess & Braver, 2010) and executing cognitive control

more generally (Miller & Cohen, 2001). While we found the LPFC was reliably engaged by
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increasing task demands suggesting a role in cognitive control implementation, we also found
that the LPFC was sensitive to integrated effort-reward signals. Aligned with these results, recent
work suggests the lateral prefrontal cortex (LPFC) may encode the capacity to successfully meet
task demands, thereby representing the probability of successfully receiving rewards (Soutschek
& Tobler, 2020). The anterior insula, often coactive with the dACC (Bartra et al., 2013; Diekhof
et al., 2012; Parro et al., 2018), is also thought to be engaged in monitoring the need for control
(Shenhav et al., 2016). Supporting this view, we found that the anterior insula was reliably
engaged by both increasing task demands and reward prospects—suggesting a broader role of
the region in processing salient events (i.e., arousal; Uddin, 2015) and subjective awareness
(Craig, 2002), both of which are foundational to effort allocation. Together, these results suggest
a role for the anterior insula in monitoring one’s current state and detecting changes in the need
for control (Nelson et al., 2010) and a role in cognitive processes more generally (Uddin et al.,
2014). The ventral striatum, although typically thought of as a reward-processing region
(Diekhof et al., 2012), has been shown to be sensitive to effort costs in the absence of rewards
(Schouppe et al., 2014; Vassena et al., 2014). In terms of the Basal Ganglia, the Ventral Striatum
was reliably engaged in processing rewards and effort whereas an overlap was not found in the
dACC. Previous work has shown a negative coupling between reward-related processing in the
ventral striatum and dACC activation (Botvinick et al., 2009). Together with the literature, our
results support the notion that the dACC along with a coordinated set of regions are involved in
the integration of effort costs and the benefits conferred by rewards. Yet, given ALE-coordinate
based analyses preclude network interpretations, our results are limited in their ability to draw
conclusions on the coordination of regions. Thus, future work should aim to disentangle the

underlying network dynamics contributing to the decision to expend effort.


https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.513278; this version posted May 6, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

COST-BENEFIT META-ANALYSIS 22
Open Practices Statement
The studies used as input in this meta-analysis (listed in Table 1) are all published articles

which are publicly available. No new data were collected for this meta-analysis.
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Table 1 List of reward and effort studies meeting inclusion criteria.

First Author Year N  Study Reward Cognitive NFoci N N foci Reward Reward- Reward Demand
Type Contrast Task Reward Foci  Interac- -RT Accuracy  cued cued
Domain Effort tion Effect  Effect
Aarts 2010 20 Execution Highvs. Low Task 11 14 n.a. n.a. Y N
Switching
Alexander 2010 24  Execution High vs Low Response 0 1 1 n.a. n.a. Y Y
Inhibition
Asci 2019 22  Execution Reward vs Response 0 6 3 - + T n.a
None Inhibition
Bahlmann 2015 20 Execution High vs. Low Task 9 13 2 + + Y Y
Switching
Belayachi 2015 18 Execution Reward vs Working- 4 9 n.s. n.s. Y Y
None Memory
Boehler 2014 16 Execution Reward vs Response 12 29 - n.s. N N
None Inhibition
Brown 2007 21 Execution High vs. Low Response 1 0 n.s. n.s. Y Y
Inhibition
Bruening 2018 22  Execution Reward vs Working- 9 20 n.s. + N n.a
None Memory
Charron 2010 32 Execution High vs. Low Working- 7 2 - + Y N
Memory
Chikara 2018 20 Execution Response 12 16 n.s. n.s. Y N
Inhibition
Cho 2022 33 Execution Reward vs. Working- 28 31 n.a. + Y N
None Memory
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First Author Year N  Study Reward Cognitive NFoci N N foci Reward Reward- Reward Demand
Type Contrast Task Reward Foci Interac- -RT Accuracy  cued cued
Domain Effort tion Effect  Effect
Chong 2017 34  Decision- Attention 7 n.a. n.a. Y Y
making
Dixon 2012 15 Execution Repetition Attention 10 10 - n.s. Y Y
Suppression
Reward
(novel >
repeated)
Gaillard 2019 23  Execution Reward vs Working- 16 1 12 n.s. + Y Y
None Memory
Lallement 2014 30  Execution Arithmetic 14 n.a. n.a. n.a N
Ivanov 2012 16 Execution High vs. Low Response 7 9 6 - n.s. N
Inhibition
Jimura 2010 31 Execution Reward vs Working- 2 - n.a. Y n.a
None Memory
Kostandyan 2020 25 Execution High vs. Low Response 10 6 - + Y&N N
Inhibition
Kouneiher 2009 16 Execution High vs Low  Task 3 1 n.a. n.a. N N
Switching
Krebs 2012 14 Execution Reward vs Attention 23 21 7 - + Y Y
None
Krebs 2011 18 Execution Reward vs Response 23 B + N n.a
None Inhibition
Lee 2017 18 Execution Reward vs Response 14 n.s. + Y N
None Inhibition
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First Author Year N  Study Reward Cognitive NFoci N N foci Reward Reward- Reward Demand
Type Contrast Task Reward Foci  Interac- -RT Accuracy  cued cued
Domain Effort tion Effect  Effect
Leong 2018 40 Execution Reward vs Response 14 37 12 - + (g0); Y N
None Inhibition - (no go)
Locke 2008 16 Execution Reward vs Response 19 - + Y n.a
None Inhibition
Longe 2009 10 Execution High vs. Low Working- 6 4 - n.s. Y Y
Memory
Luethi 2016 88 Execution Reward vs Response 54 15 n.s. n.s. Y N
None Inhibition
Magis- 2019 50 Execution Reward vs Working- 25 14 - + Y n.a
Weinberg None Memory
Massar 2015 23  Decision- Response 33 n.a. n.a. n.a n.a
making Inhibition
Mizuno 2008 14  Execution Working- 31 n.s. n.s. Y Y
Memory
Nigam 2021 21  Execution Reward vs Response 0 3 - + Y Y
None Inhibition
Orr 2019 19  Execution Reward vs Task 26 10 + n.a. N N
None Switching
Padmala 2010 34  Execution Response 12 7 + n.a. Y N
Inhibition (SSRT)
; - (Go-
RT)
Padmala 2017 57 Execution Reward vs Attention 6 21 12 - + Y n.a

None
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First Author Year N  Study Reward Cognitive NFoci N N foci Reward Reward- Reward Demand
Type Contrast Task Reward Foci  Interac- -RT Accuracy  cued cued
Domain Effort tion Effect  Effect
Padmala 2011 50 Execution Reward vs Response 29 11 19 n.a. n.a. Y N
None Inhibition
Paschke 2015 11  Execution Response 12 - n.s. Y N
5 Inhibition
Pochon 2002 6 Execution Parametric Working- 11 n.s. n.s. Y Y
effect of Memory
Reward
Rosell- 2017 37 Execution Parametic Response 1 11 n.a. n.a. Y N
Negre effect of Inhibition
reward
Soutschek 2015 20 Execution High vs. Low Response 3 4 5 - n.s. Y Y
Inhibition
Stoppel 2011 18 Execution High vs. Low Attention 4 10 + n.s. Y Y
Taylor 2004 12  Execution High vs. Low Working- 16 - n.s. Y Y
Memory
Ursu 2008 17 Execution Reward vs Attention 19 5 - n.s. Y Y
(Exp None
2)
Ursu 2008 19 Execution Reward vs Attention 16 4 - + Y Y
(Exp None
1)
Vassena 2014 22  Execution Highvs. Low Arithmetic 8 11 n.s. n.a. Y Y
Wang 2019 24  Execution High vs. Low Task 4 - n.s. N N

Switching
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First Author Year N  Study Reward Cognitive NFoci N N foci Reward Reward- Reward Demand
Type Contrast Task Reward Foci  Interac- -RT Accuracy  cued cued
Domain Effort tion Effect  Effect
Westbrooke 2019 21  Decision-  Parametric Working- 9 15 10 n.a. n.a. Y Y
making effect of Memory
reward
Wilbertz 2014 49 Execution Reward vs Response 8 45 n.s. n.a. Y N

None Inhibition
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Table 2 Conjunction and difference of the ALE meta-analysis for demands and effort. For each coordinate, region label, hemisphere
(right, left or bilateral), Brodmann area, MNI coordinates, ALE maxima, p values, Z values, cluster size (mm?), and number of studies

are provided.

. . . Cluster N Studies (n  Volume ..

Brain Region Hemi No. y z Foci) (mm?) Studies in Cluster

Reward & Control
Cho et al., 2022; Ivanov et al.,
2012; Krebs et al., 2011;

Insula R 1 34 22 -4 6 (6) 416 Boehler et al., 2014; Magis-
Weinberg et al., 2019;
Westbrook et al., 2019;

Reward > Control
Boehler et al., 2014;
Kostandyan et al., 2020;

ACC R/L 2 8 36 24 5(5) 748 Bahlman et al., 2015; Luethi et
al. 2016; Magis-Weinberg et al.,
2019

Control > Reward
Bahlman et al., 2015; Mizuno et
al., 2008; Vassena et al., 2014;

. Kostandyan et al. 2020;

Middle frontal = 2 q 198 282 91D 2368 Kouneiher et al., 2009; Luethi et

gYrus ' al., 2016; Leong et al., 2018;
Paschke et al., 2015; Wilbertz et
al., 2014

Supplementary Westbrook et al., 2019; Krebs et

Motor, dACC L/R 4 2 12 50 7 (10) 2056

al., 2012; Ursu et al., 2008;
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Middle frontal L 5
gyurs

Inferior Parietal

Lobule L 6
Inferior Parietal

Lobule R 7
Precuneus R 8

38

14

51

40

40

52

3 (3)

44

44

1(1)

864

848

568

304

Lallement et al., 2014; Taylor et
al., 2004; Wilbertz et al., 2014;
Padmala et al., 2011

Belayachi, et al. 2015;Wilbertz
et al., 2014; Padmala et al. 2010

Cho et al., 2022; Luethi et al.,
2016; Boehler et al. 2014;
Lallement et al., 2014;

Cho et al., 2022; Orr et al.,
2019; Ivanov et al., 2012;
Padmala et al., 2010

Aarts et al., 2010

46
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Table 3 The ALE meta-analysis for coordinates representing the interaction between rewards and demands. For each coordinate,
region label, hemisphere (right, left or bilateral), Brodmann area, MNI coordinates, ALE maxima, cluster size (mm?), and number of
studies are provided.

Brain Region Hemi  Cluster x y z N Studies  Volume  Contributing studies

No. (n Foci) (mm?)
Supplementary motor L 1 -4 22 44 45 992 Westbrook et al, 2019; Bahlmann et
area, dorsal Anterior al., 2015; Chong et al., 2017;
Cingulate Padmala et al., 2011;
Middle frontal gyrus L 2 46 24 26 4(4) 839 Chong et al., 2017; Leong et al.,

2018; Padmala et al., 2010; Padmala
et al. 2011
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Reward only Cost only Effort investment

Reward
High
o—o0 / e Low

\,0\“ ‘5\@\(\ \,()“’A \e;\g\\ \,O\“ Y\'\(}\(\
Task Demands

Figure 1 Hypothesized patterns of dACC BOLD signal based on what this signal is thought to reflect: costs only, benefits only, or the
effort investment based on the expected value of control. For the reward model, where dACC activity is posited to only reflect reward
prospects, BOLD signal is predicted to increase simply as a function of performance-contingent rewards. For the cost model, where
dACC activity is posited to only reflect costs, BOLD signal is predicted to increase only as a function of task demands. And for the
integration models, where dACC activity reflects the intensity of the control signal or effort to be invested, BOLD signal is predicted
to increase in response to higher rewards and higher levels of task demands.

OO0 O0O
NWAUO

Change in BOLD signal in dACC a.u.
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Identification of studies via databases and registers

Identification

PubMed (n

Records identified from:
Web of Science (n =2991)
PSYCINFO (n = 1449)

= 2150)

49

Identification of studies via other methods

A

4

Records removed before
screening:
Duplicate records removed
(n=2770)

Records identified from:
Citation searching (n = 82)

Records scree
(n =3820)

ned

N

4

Records excluded
(n = 3455)

Reports sough
(n =394)

t for retrieval

v

Screening

A\

Reports not retrieved
(n=0)

Reports sought for retrieval
(n=82)

(n = 394)

Reports assessed for eligibility

Reports excluded:
Tested different population,
no full brain coverage, did not
manipulate both rewards and
effort (n = 353)

\4

Reports assessed for eligibility
(n=82)

(n=45)

Included

Studies included in review

\4

Reports not retrieved
(n=0)

Reports excluded:
Duplicate (n = 5)
Did not fit eligibility criteria (n
=73)

Figure 2 Flowchart of article screening and selection, following PRISMA guidelines. Adapted from (Page et al., 2021) Page MJ,
McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for
reporting systematic reviews.
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Demand > Reward (Z) Reward > Demand (Z)

[} 101
Demand & Reward (ALE)

Figure 3 Results of reward and effort ALE meta-analysis. Brain areas showing converging activation for both increasing reward
prospects and task demands, plotted in the volume (MNI152) with shades of green. Brain areas more actived by increasing task
demands than reward prospects plotted in the volume (MNI152) with shades of blue . Brain areas more actived by increasing reward
prospects than task demands plotted in the volume (MNI152) with shades of yellow
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Interaction (ALE)

4.46

Demand > Reward (Z)

Figure 4 Results of interaction (reward X effort) ALE meta-analysis. Brain areas showing converging activation for the interaction
between rewards and effort plotted in the volume (MNI152) with shades of red. Brain areas activated by task demands plotted in the
volume (MNI152) with shades of blue. Blue clusters were rendered transparent to depict the overlap between clusters.
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