

1 **Drosophila epidermal cells are intrinsically mechanosensitive and modulate**
2 **nociceptive behavioral outputs**

3

4 Jiro Yoshino^{1,2,3*}, Sonali S. Mali^{3,4,5*}, Claire R. Williams^{1,3*}, Takeshi Morita^{3,6}, Chloe E.
5 Emerson³, Christopher J. Arp³, Sophie E. Miller³, Chang Yin¹, Lydia Thé⁴, Chikayo
6 Hemmi², Mana Motoyoshi², Kenichi Ishii², Kazuo Emoto^{2,7#}, Diana M. Bautista^{3,4,5#}, and
7 Jay Z. Parrish^{1,3#}

8

9 ¹Department of Biology, University of Washington, Campus Box 351800, Seattle,
10 WA 98195, USA

11 ²Department of Biological Sciences, Graduate School of Science, The University of
12 Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan

13 ³Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA
14 02543, USA

15 ⁴Department of Molecular and Cell Biology, University of California, Berkeley, CA
16 94720, USA

17 ⁵Helen Wills Neuroscience Institute, University of California, Berkeley, CA
18 94720, USA

19 ⁶Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York
20 Avenue, New York, NY 10065

21 ⁷International Research Center for Neurointelligence (WPI-IRCN), The University of
22 Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan

23

24 *These authors contributed equally to this work

25

26 [#]Correspondence: jzp2@uw.edu (lead contact), dbautista@berkeley.edu, or
27 emoto@bs.s.u-tokyo.ac.jp

28 **Abstract**

29 Somatosensory neurons (SSNs) that detect and transduce mechanical, thermal, and
30 chemical stimuli densely innervate an animal's skin. However, although epidermal cells
31 provide the first point of contact for sensory stimuli. our understanding of roles that
32 epidermal cells play in SSN function, particularly nociception, remains limited. Here, we
33 show that stimulating *Drosophila* epidermal cells elicits activation of SSNs including
34 nociceptors and triggers a variety of behavior outputs, including avoidance and escape.
35 Further, we find that epidermal cells are intrinsically mechanosensitive and that
36 epidermal mechanically evoked calcium responses require the store-operated calcium
37 channel Orai. Epidermal cell stimulation augments larval responses to acute nociceptive
38 stimuli and promotes prolonged hypersensitivity to subsequent mechanical stimuli.
39 Hence, epidermal cells are key determinants of nociceptive sensitivity and sensitization,
40 acting as primary sensors of noxious stimuli that tune nociceptor output and drive
41 protective behaviors.

42 **Introduction**

43 The ability to detect tissue-damaging noxious stimuli and mount an escape
44 response is essential for survival. Likewise, prolonged hypersensitivity following injury is
45 an important form of plasticity that protects an animal from further damage. In
46 *Drosophila*, a single class of identified somatosensory neurons (SSNs), class IV
47 dendrite arborization (C4da) neurons, are necessary and sufficient for nociception;
48 inactivating C4da neurons renders larvae insensitive to noxious stimuli whereas
49 activating these neurons drives nocifensive behavior responses (Hwang *et al.*, 2007; Hu
50 *et al.*, 2017; Burgos *et al.*, 2018). A variety of agents that cause tissue damage including
51 UV irradiation and chemical toxins induce long-lasting allodynia and hyperalgesia
52 (Babcock *et al.*, 2009; Boiko *et al.*, 2017), but this damage-induced hypersensitivity
53 develops on a timescale of hours. *Drosophila* also display acute hypersensitivity
54 to noxious mechanical stimuli (Hu *et al.*, 2017). However, the cellular and molecular
55 mechanisms underlying mechanical pain hypersensitivity remain enigmatic.

56 Recent studies demonstrate that epidermal cells work in concert with SSNs to
57 transduce noxious and innocuous physical stimuli. For example, epidermal Merkel cells
58 are mechanosensory cells that signal to sensory neurons to mediate touch transduction
59 (Maksimovic *et al.*, 2014; Hoffman *et al.*, 2018). Similarly, keratinocytes are directly
60 activated by noxious thermal and mechanical stimuli and release molecules that
61 modulate nociceptor functions (Chung *et al.*, 2004; Koizumi *et al.*, 2004; Moqrich *et al.*,
62 2005; Mandadi *et al.*, 2009; Liu *et al.*, 2019; Sadler *et al.*, 2020). Furthermore, epidermal
63 cells in invertebrates and vertebrates ensheathe nociceptors in mesaxon-like structures
64 (Cauna, 1973; Chalfie and Sulston, 1981; Han *et al.*, 2012; Kim *et al.*, 2012a; O'Brien *et*
65 *al.*, 2012; Jiang *et al.*, 2019), and these sheaths may serve as sites of epidermis-
66 nociceptor signaling (Yin *et al.*, 2021). Indeed, epidermal ensheathment is required for
67 normal responses to noxious mechanical stimuli in *Drosophila* (Jiang *et al.*, 2019).
68 However, whether epidermal cells are directly activated by noxious stimuli and modulate
69 C4da neuronal activity has not been studied.

70 Here, we examined the capacity of *Drosophila* epidermal cells to drive nociceptor
71 activation and modulate mechanical nociceptive responses. We found that stimulation
72 of epidermal cells, but no other non-neuronal cell types in the larval body wall evokes

73 activity in a variety of SSNs neurons and triggers nocifensive behavioral responses. Our
74 *in vitro* and *ex vivo* calcium imaging experiments demonstrate that epidermal cells are
75 intrinsically mechanosensitive. Using an unbiased genetic screen, we discovered a role
76 for the store-operated calcium channel Orai, and its activator Stim in epidermal
77 mechanotransduction and mechanical sensitization. Downstream of Stim/Orai
78 activation, epidermal cells evoke nociceptor activation and mechanical hypersensitivity
79 via epidermal vesicular release. Overall, we demonstrate that *Drosophila* epidermis-
80 neuron signaling mediates both the acute detection of noxious mechanical stimuli and a
81 form of prolonged mechanical hypersensitivity.

82

83 **Results**

84 ***Stimulation of epidermal cells evokes nocifensive behavior***

85 To identify peripheral non-neuronal cell types that contribute to nociception, we
86 conducted an optogenetic screen for light-evoked nocifensive behavior. First, as a
87 benchmark for comparison we used the light-activated cation channel CsChrimson
88 (Klapoetke *et al.*, 2014) to optogenetically activate nociceptive C4da neurons.
89 Consistent with prior reports (Hwang *et al.*, 2007; Hu *et al.*, 2017), C4da activation
90 triggered nocifensive behaviors including c-bending and rolling in 100% of larvae (Fig.
91 1A, Fig. 1S1A, Movie S1). Next, we selectively expressed CsChrimson using GAL4
92 drivers in combination with *elav-GAL80*, which effectively silences GAL4 expression in
93 larval sensory neurons (Fig. 1S2), to target the six principle non-neuronal cell types
94 within the larval body wall: epidermis, trachea, muscle, hemocytes, oenocytes, and glia
95 (Fig. 1S3, Key Resources Table). We then monitored light-evoked behavioral outputs
96 associated with stimulation of each cell type. We found that optogenetic stimulation of
97 epidermal cells, like C4da neurons, elicited nocifensive c-bending and/or rolling
98 behaviors in 73% of larvae (Fig. 1A, 1S1B), without significantly altering nociceptor
99 morphogenesis (Fig. 1S4). In contrast, stimulation of other body wall cell types elicited a
100 variety of non-nociceptive behavior outputs: for example, muscle stimulation triggered
101 hunching behavior followed by prolonged freezing, whereas glia stimulation reproducibly
102 induced only hunching behavior (Fig. 1S1C-I) (Zimmermann *et al.*, 2009). Thus,

103 epidermal cells are the only non-neuronal body wall cell type that triggers robust
104 nocifensive behavioral responses.

105 To further validate the selective ability of body wall epidermal cells to drive
106 nocifensive behaviors, we examined eight other epidermal drivers in addition to
107 *R38F11-GAL4*, which displays no expression in sensory neurons and limited non-
108 epidermal cell expression overall (Fig. 1S5). We found that optogenetic stimulation
109 evoked nocifensive behaviors with each of the eight epidermal driver lines we tested:
110 seven of the lines displayed rolling behavior while all eight displayed c-bending (Fig. 1B,
111 Fig. 1S6). Although the previously described pan-epidermal *A58-GAL4* driver (Galko
112 and Krasnow, 2004) drove robust nocifensive rolling responses (Fig. 1B, 1S6), *A58-*
113 *GAL4* is expressed broadly in the larval CNS (Fig. 1S7) and stochastically expressed in
114 sensory neurons (Jiang et al 2014). In contrast, the remaining seven drivers including
115 *R38F11-GAL4* exhibited limited expression aside from epidermal cells, with no
116 detectable expression in nociceptors, other larval SSNs, or peripheral glia, and highly
117 restricted or undetectable expression in the CNS (Fig. 1S7). Further underscoring the
118 connection between epidermal stimulation and nocifensive responses, the nocifensive
119 behavioral response with these epidermal drivers correlated with the proportion of
120 epidermal expression (Fig 1B).

121 We next used thermogenetic stimulation with the warmth-activated TRP channel
122 dTRPA1 (Hamada et al., 2008) as an independent method of probing nociceptive
123 responses triggered by epidermal cell activation. On its own, the thermal stimulus (35°
124 C) rarely induced rolling behavior in control larvae bearing *UAS-TRPA1* alone. In
125 contrast, we found that >75% of larvae expressing TRPA1 in all nociceptors exhibited
126 rolling behavior in response to a thermal stimulus (Fig. 1C). Likewise, thermogenetic
127 activation of epidermal cells induced robust rolling responses in >75% of larvae, and
128 addition of GAL80 transgenes (*tsh-GAL80 elav-GAL80*) that silenced the sparse
129 *R38F11-GAL4* VNC expression (Fig. 1S5) had no effect on the rolling frequency (Fig.
130 1C, Fig. 1S3). Altogether, these results demonstrate that epidermal stimulation evokes
131 nocifensive responses in *Drosophila*. Of note, prior studies demonstrated that sparse
132 thermogenetic activation of nociceptors (<5 cells) yielded no significant increase in
133 nocifensive rolling whereas activation of >10 cells was required to elicit rolling

134 responses in a majority of larvae (Robertson *et al.*, 2013). Hence, epidermal stimulation
135 likely engages numerous C4da neurons to elicit these behavioral responses.

136 In addition to C4da nociceptors, the epidermis is innervated by a variety of other
137 SSNs including mechanosensory C3da and chordotonal (Cho) neurons and
138 proprioceptive C1da neurons. Whereas direct stimulation of C4da nociceptors
139 principally elicited nocifensive behavioral outputs, epidermal stimulation elicited an array
140 of behaviors in addition to nocifensive responses, including freezing and hunching (Fig.
141 2A, 2B, Fig. 2 video 1 and 2), behaviors associated with stimulation of C3da and Cho
142 neurons (Zhang *et al.*, 2013; Turner *et al.*, 2016). These data suggest that epidermal
143 cells may broadly modulate SSN activity in *Drosophila*.

144 To examine whether different epidermis-evoked behaviors were associated with
145 activation of distinct classes of SSNs, we compared epidermis-evoked and SSN-evoked
146 behaviors. Stimulation of C4da, C3da and Cho neurons elicited distinct behavioral
147 motifs: only C4da neurons elicited rolling behavior; stimulation of C3da and Cho
148 neurons together elicited hunching, C-bending, and backing; stimulation of Cho neurons
149 alone principally elicited hunching and freezing responses (Fig. 2A-2C, 2F). In contrast,
150 optogenetic epidermal stimulation elicited all of these behaviors, with nocifensive
151 behaviors (c-bending, rolling) predominating initially, followed by non-nociceptive
152 behaviors (backing, freezing) (Fig. 2D, 2F, 2S1). We note that neither the behavioral
153 motifs induced by epidermal or SSN stimulation nor the behavioral sequence induced
154 by epidermal stimulation was recapitulated in effector-only controls (*UAS-CsChrimson*
155 ATR+; Fig. 2S1E), demonstrating that the observed responses were driven by activation
156 of the respective cell types.

157 We observed three striking differences in behavior evoked by stimulation of
158 epidermal cells versus individual SSNs. First, although rapid, latency to rolling was
159 significantly longer following epidermal stimulation compared to stimulation of C4da
160 (Fig. 2F). Second, the duration of rolling, bending, and backing responses was
161 significantly longer for epidermis versus SSN stimulation (Fig. 2G). Third, backing and
162 freezing behaviors persisted beyond the duration of the light stimulus for epidermis but
163 not SSN stimulation (Fig. 2H). In summary, we find that epidermal stimulation triggers

164 more robust, varied and prolonged behaviors compared to responses from direct
165 stimulation of discrete SSN subtypes.

166

167 ***Somatosensory neurons are activated by epidermal stimulation***

168 We next asked whether epidermal stimulation activates larval SSNs including C4da,
169 C3da, C1da, and Cho neurons. To test this possibility, we developed a semi-intact larval
170 preparation in which we optogenetically stimulated epidermal cells while simultaneously
171 monitoring calcium responses in axon terminals of SSNs (Fig. 3A). We found that
172 epidermal stimulation triggered rapid and robust calcium transients in nociceptive C4da
173 neurons, responses that were not observed in the absence of ATR or in effector-only
174 controls (Fig. 3B). Epidermal stimulation likewise evoked calcium transients in
175 mechanosensory C3da and Cho neurons, and in proprioceptive C1da neurons (Fig. 3C-
176 3E, 3S1). Hence, epidermal stimulation can broadly modulate activity of larval SSNs.

177 We next tested the requirement for SSN synaptic transmission in epidermis-
178 evoked behaviors. We stimulated epidermal cells with CsChrimson while blocking SSN
179 neurotransmitter release using tetanus toxin light chain (TnT) (Sweeney *et al.*, 1995).
180 We found that inhibiting C4da or C3da + Cho neurotransmission significantly reduced
181 the frequency and duration of epidermal-evoked rolling and backing behaviors,
182 respectively (Fig. 3F, 3G, 3S2). These data suggest that C4da and C3da/Cho neurons
183 act downstream of epidermal cells to drive behaviors. We note that TnT expression in
184 C4da neurons did not completely block epidermis-evoked nocifensive behaviors, and
185 this likely reflects both incomplete C4da neuron silencing and epidermal activation of
186 other SSNs that promote nociceptive outputs including C3da neurons, C2da neurons,
187 and Cho neurons (Ohyama *et al.*, 2015; Hu *et al.*, 2017; Burgos *et al.*, 2018). Further,
188 silencing C4da or C3da/Cho neurons while stimulating epidermal cells led to an
189 increase in the non-nocifensive behaviors hunching and freezing (Fig. 3F, 3G). These
190 results, along with the observation that rolling behaviors predominate the early
191 behavioral responses to epidermal stimulation (Fig. 2B), suggest that the nervous
192 system prioritizes nocifensive behavioral outputs following epidermal stimulation. These
193 data support a model in which epidermal cells and SSNs are functionally coupled.

194

195 ***Epidermal stimulation potentiates nociceptive neurons and behaviors***

196 What is the physiological relevance of this functional coupling of epidermal cells and
197 SSNs? To address this question, we compared calcium responses in C4da neurons to
198 either simultaneous epidermal and C4da stimulation or C4da stimulation alone.
199 Simultaneous stimulation significantly enhanced the magnitude and duration of calcium
200 responses in C4da axons (Fig. 4A-4D, 4S1). Based on this prolonged calcium
201 response, we hypothesized that simultaneous epidermis and C4da neuron stimulation
202 would yield enhanced nocifensive behavior output. To test this, we optogenetically
203 stimulated C4da neurons and epidermal cells individually or in combination using low
204 intensity CsChrimson activation and monitored larval behavior responses. In this
205 stimulation paradigm, simultaneous epidermal cell and C4da neuron stimulation
206 resulted in rolling in 100% of larvae whereas selective stimulation of C4da neurons or
207 epidermal cells induced rolling in only 63% or 18% of larvae, respectively (Fig. 4E, 4F).
208 Furthermore, simultaneous stimulation elicited a significantly higher number of rolls
209 among responders than stimulation of nociceptors or epidermal cells alone (26.9 rolls
210 for C4da + Epi, 4.9 for C4da, and 5.3 for Epi stimulation; Fig 4G, 4H). Likewise,
211 simultaneous stimulation significantly reduced the latency to the first roll (Fig. 4I) and
212 increased the duration of rolling behaviors (Fig. 4J). We next tested whether this
213 functional coupling extends to mechanical stimuli. We simultaneously presented larvae
214 with a noxious mechanical stimulus and a low intensity optogenetic epidermal stimulus
215 that was insufficient to trigger rolling on its own (0% response rate, n = 200). This
216 concurrent epidermal stimulation significantly increased touch-evoked nocifensive
217 responses, yielding a 91% or 49% increase in rolling responses to 20 mN or 50 mN Von
218 Frey stimulus, respectively (Fig. 4K). We next probed the kinetics of this epidermis-
219 induced mechanical sensitization.

220 When *Drosophila* larvae are presented with two nociceptive mechanical stimuli in
221 succession, they exhibit enhanced behavioral responses to the second stimulus (Hu *et*
222 *al.*, 2017). We hypothesized that selective epidermal stimulation would sensitize larvae
223 to subsequent nociceptive mechanical stimuli. To test this hypothesis, larvae expressing
224 the warmth-activated calcium-permeable channel dTRPA1 in epidermal cells were
225 presented with a thermal stimulus, 32° C to activate dTRPA1, followed by a 40 mN

226 mechanical stimulus 10 s later (Fig. 4L). Indeed, we found that dTRPA1-mediated
227 epidermal stimulation significantly sensitized larvae to a subsequent mechanical
228 stimulus, increasing the roll probability more than two-fold. In contrast, dTRPA1-
229 mediated stimulation of C4da neurons did not induce mechanical sensitization, and we
230 confirmed this result with two independent C4da neuron drivers (Fig. 4L). Thus,
231 activation of epidermal cells but not C4da nociceptors alone induces prolonged
232 sensitization to noxious mechanical stimuli. We next assessed the duration of
233 sensitization following transient epidermal activation. Thermogenetic epidermal
234 stimulation yielded persistent sensitization that recovered over a timescale of minutes (τ
235 = 337 sec, Fig. 4M, 4N). The magnitude and duration of mechanical sensitization by
236 thermogenetic epidermal stimulation was remarkably similar to sensitization evoked by
237 a prior mechanical stimulus (63% roll probability in response to a second stimulus, τ =
238 334 sec, Fig. 4N, 4S1B). Altogether our data support a model whereby epidermal cells
239 are mechanosensitive cells that signal to SSNs to drive acute nocifensive behaviors and
240 prolong mechanical sensitization.

241

242 ***Epidermal cells are intrinsically mechanosensitive***

243 Prior studies have shown that vertebrate epidermal cells directly respond to mechanical
244 stimuli (Koizumi *et al.*, 2004; Haeberle *et al.*, 2008; Tsutsumi *et al.*, 2009; Ranade *et al.*,
245 2014; Woo *et al.*, 2014; Moehring *et al.*, 2018). Therefore, we next assessed whether
246 *Drosophila* epidermal cells are intrinsically mechanosensitive. We developed a protocol
247 to acutely dissociate epidermal cells and measure the responses of individual
248 GCaMP6s-expressing epidermal cells to mechanical stimuli (Fig. 5A). We found that
249 radial stretch elicits calcium responses in epidermal cells in a dose-dependent manner.
250 For example, a low 0.5% stretch activated 18% of cells and a subsequent 1% stretch
251 recruited an additional 10% of stretch-responding cells (Fig. 5B-5D). Overall, 51% of
252 epidermal cells displayed stretch sensitivity (Fig. 5C, 5D). We also found that 43% of
253 epidermal cells responded to hypoosmotic challenge and 35% responded to laminar
254 flow; 19% of epidermal cells responded to both hypoosmotic challenge and laminar flow
255 (Fig. 5S1). Given that dissociated epidermal cells were intrinsically mechanosensitive,
256 we next assessed mechanically evoked responses in a semi-intact body wall

257 preparation (Fig. 5E). We found that 50% of epidermal cells exhibited a robust calcium
258 transient in response to a 25 μm membrane displacement using a glass probe (Fig. 5E-
259 5G, 5S1G). Altogether, these results indicate that *Drosophila* larval epidermal cells are
260 intrinsically mechanosensitive.

261

262 ***Mechanically evoked epidermal responses rely on store-operated calcium entry***

263 Our studies demonstrate that, like vertebrate keratinocytes, *Drosophila* epidermal cells
264 exhibit mechanically evoked calcium transients. What is the mechanism of
265 mechanotransduction in these cells? RNA-seq analysis of acutely dissociated epidermal
266 cells revealed expression of more than 20 cation channels, including the
267 mechanosensitive ion channels Piezo, TMEM63, and TMCO (Fig. 6S1). We assessed
268 the epidermal requirements of these channels in mechanical nociception using available
269 RNAi transgenes (Fig. 6A). Our behavioral screen identified one channel, *Orai*, the sole
270 *Drosophila* pore-forming subunit of the Ca^{2+} release-activated Ca^{2+} (CRAC) channel
271 (Feske *et al.*, 2006), that blocked mechanically-evoked nociceptive sensitization without
272 impacting behavioral responses to the first stimulus (Fig. 6A, 6B, 6S2A) or altering
273 nociceptor morphogenesis (Fig. 1S4). Interestingly, our screen uncovered an epidermal
274 role for *Task6*, an orthologue of stretch-sensitive 2-pore potassium channels (Fink *et al.*,
275 1996), in mechanonociception, as *Task6* RNAi increased nocifensive rolling responses
276 to the initial mechanical stimulus (Fig. 6S2B). Finally, although our RNAi studies did not
277 reveal an epidermal requirement for other known mechanosensitive cation channels in
278 mechanonociceptive behaviors, it is possible that multiple channels function
279 redundantly, or that RNAi knockdown was incomplete.

280 To gain insight into mechanically evoked nociceptive sensitization, we focused
281 on probing the role of *Orai* in epidermal mechanosensory responses. We first asked
282 whether *Orai* is functional in *Drosophila* epidermal cells. *Orai* is a store-operated
283 calcium (SOC) channel that is activated by the calcium-sensitive, endoplasmic reticulum
284 (ER) molecule Stim, upon calcium release from ER calcium stores. Thapsigargin (TG)
285 induces calcium release from intracellular stores and thus triggers Stim-dependent
286 activation of *Orai* channels. Indeed, *Drosophila* epidermal cells displayed TG-induced
287 calcium release from stores in the absence of extracellular calcium, followed by calcium

288 influx upon re-addition of extracellular calcium (Fig. 6C). Calcium influx was significantly
289 inhibited by the addition of low nanomolar lanthanum, consistent with the high sensitivity
290 of Orai channels to lanthanides (Fig. 6S2C). This characteristic store operated calcium
291 entry (SOCE) response was significantly reduced by epidermis-specific *Stim* or *Orai*
292 RNAi knockdown (Fig. 6S2D-6S2F). Consistent with a key role for SOCE in
293 mechanotransduction, we found that radial stretch in the absence of extracellular
294 calcium induced calcium release from intracellular stores, as well as calcium influx upon
295 re-addition of extracellular calcium. These data show that mechanically evoked
296 responses in epidermal cells involve both ER calcium release and store-operated
297 calcium entry. While both store release and calcium influx constitute the calcium
298 response to stretch, in 69% of cells, calcium due to store release exceeded that of
299 calcium re-entry (Fig. 6E). Consistent with this observation, depletion of intracellular
300 stores and inhibition of calcium influx reduced the number of stretch sensitive cells by
301 61% (stretch non-responsive cells in WT = 49% vs. store depleted = 80%) and 30%
302 (stretch non-responsive cells in WT = 49% vs. La³⁺ = 64%; Fig. 6F-G), respectively.
303 Given that Stim and Orai mediate SOCE, we investigated requirements for epidermal
304 Stim and Orai in mechanically evoked calcium responses. RNAi knockdown of either
305 *Stim* or *Orai* significantly reduced the fraction of stretch-responsive epidermal cells
306 (RNAi control = 48%, *Stim* RNAi = 22%, *Orai* RNAi = 24%; Fig. 6H-I), with *Stim* or *Orai*
307 RNAi preferentially attenuating stretch evoked responses to larger magnitude stretch
308 stimuli. We also found that human keratinocytes display dose-dependent stretch evoked
309 calcium responses, though they respond to higher magnitudes of stretch than
310 *Drosophila* epidermal cells (Fig. 6J). Like *Drosophila* epidermal cells, both ER calcium
311 release and store-operated calcium entry constitute the mechanically-evoked calcium
312 responses in human keratinocytes (Fig. 6K).

313 Two hallmarks of Orai channels are steep inward rectification, with larger
314 currents at hyperpolarizing potentials, and highly cooperative Orai activation by Stim
315 (Hoover and Lewis, 2011). Since Stim and Orai mediate mechanical responses of
316 epidermal cells *in vitro*, we predicted that increasing the calcium driving force through
317 Orai activity by either hyperpolarizing *Drosophila* epidermal cells or by activating
318 additional Orai channels via *Stim* overexpression would enhance behavioral responses

319 to mechanical stimuli. Indeed, we found that hyperpolarizing epidermal cells with the
320 light-activated anion channelrhodopsin GtACR1 (Mohammad *et al.*, 2017) increased
321 behavioral responses to mechanical stimuli (Fig. 6L). In addition, overexpressing *Stim* in
322 epidermal cells significantly enhanced nocifensive behavioral responses to mechanical
323 stimuli (Fig. 6M). Altogether, these results demonstrate that mechanically evoked
324 responses of epidermal cells and the resulting nocifensive behavior outputs require
325 store-operated calcium entry.

326 How might mechanically evoked calcium entry in epidermal cells drive nociceptor
327 activation and behavior? *Stim*/Orai-mediated calcium entry contributes to exocytosis in
328 a variety of cell types, including neurons and immune cells (Pores-Fernando and
329 Zweifach, 2009; Ashmole *et al.*, 2012; Maneshi *et al.*, 2020; Chanaday *et al.*, 2021;
330 Ramesh *et al.*, 2021). Therefore, we investigated the contribution of epidermal
331 exocytosis in nociceptive sensitization with the temperature-sensitive dynamin mutant
332 *shibire^{ts}* (*shi^{ts}*) to inducibly block vesicle recycling, as this treatment rapidly and potently
333 blocks neurotransmitter release (Koenig *et al.*, 1983) and we found that acute epidermal
334 dynamin inactivation using *UAS-shi^{ts}* had no discernable effect on nociceptor
335 morphogenesis (Fig. 1S4). In this paradigm, larvae expressing *shi^{ts}* in epidermal cells,
336 but not control larvae, exhibited significant attenuation of mechanically evoked
337 nociceptive sensitization following pre-incubation at the non-permissive temperature
338 (Fig. 6N). In contrast, both genotypes exhibited comparable responses to a mechanical
339 stimulus at the permissive temperature (25° C) and to the first mechanical stimulus
340 following pre-incubation at the non-permissive temperature (30° C). Taken together,
341 these results are consistent with a model in which mechanical stimuli induce calcium
342 influx and vesicular release from epidermal cells, which in turn activates nociceptors to
343 induce acute nocifensive behaviors and prolonged sensitization (Fig. 6O). Although our
344 RNA-seq analysis of epidermal cells did not reveal expression of neurotransmitter
345 biosynthesis genes, epidermal cells express a large repertoire of genes involved in
346 vesicular release as well as several neuropeptide genes, providing an entry point to
347 defining the molecules involved in epidermis-SSN communication (Fig. 6S3).

348

349 **Discussion**

350 In this study, we have shown an essential role for *Drosophila* epidermal cells in escape
351 responses to noxious mechanical stimuli. Activation of epidermal cells acutely activates
352 SSNs to induce an array of behavioral outputs and mechanical sensitization. This
353 epidermal potentiation persists for minutes to promote a prolonged, but reversible,
354 mechanical hypersensitivity that may protect from further insult. This is distinct from
355 previously described forms of neuropathic thermal and mechanical hypersensitivity in
356 *Drosophila* which are induced by tissue damage and chemotherapeutic agents,
357 respectively, emerge on a timescale of hours, and are long-lasting (Babcock *et al.*,
358 2009; Boiko *et al.*, 2017; Khuong *et al.*, 2019). In the mammalian somatosensory
359 system, a variety of inflammatory mediators have been shown to activate TRPA1 in
360 neurons to promote mechanical hypersensitivity (Bautista *et al.*, 2006); however, the
361 molecular force transducers that mediate mechanical pain are unknown. In contrast, in
362 the *Drosophila* somatosensory system, *Ppk1/Ppk26*, *Piezo*, and *Trpa1* are key
363 transducers of mechanonociception (Zhong *et al.*, 2010; Kim *et al.*, 2012b; Gorczyca *et*
364 *al.*, 2014; Guo *et al.*, 2014; Mauthner *et al.*, 2014). Prolonged sensitization to noxious
365 mechanical stimuli plays an important protective role in an organism's survival; yet the
366 mechanisms of mechanical sensitization of *Drosophila* nociceptors were unknown.

367 We demonstrate a new role for SOC signaling in both *Drosophila* and human
368 epidermal cell mechanotransduction. While short-term sensitization is beneficial to
369 survival, a key hallmark of pathological pain is prolonged and persistent mechanical
370 hypersensitivity; whether deregulation of this mechanism of epidermis-evoked short-
371 term sensitization contributes to pathological pain remains to be determined. Overall,
372 we identified a mechanism that does not impact acute nociception but selectively
373 regulates mechanical sensitization. These findings highlight Stim/Orai signaling as a
374 new avenue for understanding mechanical pain.

375 This work has opened several new directions for future studies. First, how does
376 radial and osmotic stretch lead to the activation of store-operated calcium signaling?
377 Although Orai has not previously been shown to be mechanosensitive, our studies
378 revealed a requirement for Orai and its activator Stim in mechanically-evoked calcium
379 flux in *Drosophila* epidermal cells. We also showed that radial stretch of human
380 keratinocytes triggered both calcium release from stores and SOCE; our previous

381 studies showed that Stim and Orai are required for SOCE in human keratinocytes
382 (Wilson *et al.*, 2013). These data, in combination with other studies showing that
383 mechanical stimulation of human mesenchymal stem cells and mouse enteroendocrine
384 cells (Knutsen *et al.*, 2023; (Kim *et al.*, 2015; Knutson *et al.*, 2023) also triggers SOCE
385 suggests that Stim/Orai signaling may represent a conserved pathway for
386 mechanotransduction in non-neuronal cells.

387 Second, how is Stim/Orai function linked to mechanotransduction? Stim/Orai
388 signaling is activated downstream of G-protein coupled receptors (GPCRs) and receptor
389 tyrosine kinases (RTKs) through phospholipase C. Studies have shown that a number
390 GPCRs are mechanosensitive (Chachisvilis *et al.*, 2006; Grosmaire *et al.*, 2007;
391 Mederos y Schnitzler *et al.*, 2008; Connelly *et al.*, 2015; Xu *et al.*, 2018). Indeed, this
392 mechanism has been proposed for mechanically evoked enteroendocrine activation in
393 the gut epithelium (Knutson *et al.*, 2023), though this has not been studied in epidermal
394 cells. Alternatively, plasma membrane deformation has been shown to induce formation
395 of ER-plasma membrane junctions (Venturini *et al.*, 2020; Aoki *et al.*, 2021), where Stim
396 and Orai clusters accumulate and interact to drive calcium influx (Luik *et al.*, 2008).
397 Finally, a recent paper demonstrated that mechanical stimulation of the ER membrane
398 itself promotes calcium release from ER stores via the opening of calcium-permeable
399 ion channels in the ER membrane (Song *et al.*, 2024).

400 Third, how does mechanically induced signaling in epidermal cells lead to
401 modulation of SSNs? Our data support a model whereby epidermal cells and multiple
402 classes of SSNs are functionally coupled. Epidermal stimulation modulates activity of
403 nociceptive C4da neurons, mechanosensory C3da and Cho neurons, and
404 proprioceptive C1da neurons, and the output of neuronal activity is required for
405 epidermis-evoked behaviors. We demonstrated a requirement for dynamin-dependent
406 vesicle release from epidermal cells in mechanical sensitization, providing a potential
407 link between Stim/Orai signaling in epidermal cells and downstream neuronal activity.
408 However, the mediators that are released by epidermal cells and the signaling
409 molecules in the nociceptors remain unknown. Furthermore, whether different types of
410 SSNs are coupled to epidermal cells by distinct mechanisms remains to be determined.
411 At least in the case of Cho neurons which are wrapped by ensheathing glial cells and

412 scolopale cells, signaling from epidermal cells likely involves at least one additional cell
413 type. Finally, we find that epidermal cells exhibit a dose-dependent response to radial
414 stretch; we therefore anticipate that the output of epidermal cells is likewise dependent
415 on the stimulus intensity. Hence, rather than a fixed threshold beyond which epidermal
416 cells are selectively activated, we hypothesize that increasing stimulus intensities drive
417 increasing signal outputs to neurons.

418 Epidermal cells ensheathe peripheral arbors of some SSNs, including *Drosophila*
419 nociceptive C4da neurons and, to a lesser extent, mechanosensory C3da neurons
420 (Jiang *et al.*, 2019). Hence, epidermal sheaths could facilitate transduction of epidermal
421 signals that modulate nociceptor function. Consistent with this possibility, blocking
422 ensheathment attenuates *Drosophila* larval responses to noxious mechanical stimuli
423 (Jiang *et al.*, 2019) and likewise impairs function of some *C. elegans* mechanosensory
424 neurons (Chen and Chalfie, 2014). However, our finding that epidermal stimulation
425 evokes calcium responses from SSNs that are not ensheathed by epidermal cells
426 (C1da, Cho neurons) argues that epidermal sheaths are unlikely to play an essential
427 function in epidermis-SSN functional coupling. Instead, ensheathment may facilitate
428 nociceptor activation by increasing the efficiency of vesicular exchange or, alternatively,
429 may modulate nociceptor activity through enhanced ionic coupling to epidermal cells.

430 Which epidermal-derived molecules might modulate neuronal activity? There are
431 several mechanisms by which mammalian epidermal cells activate SSNs. Vesicular
432 release of norepinephrine from mouse epidermal Merkel cells is required for sustained
433 touch-evoked firing of mechanosensory neurons (Hoffman *et al.*, 2018). Additionally,
434 mechanical stimuli trigger ATP release from mouse keratinocytes that activates
435 nociceptors via purinergic (P2X4) receptors (Koizumi *et al.*, 2004; Tsutsumi *et al.*, 2009;
436 Moehring *et al.*, 2018). Finally, Stim/Orai-dependent SOCE mediates the release of the
437 cytokine thymic stromal lymphopoitin (TSLP) from epidermal keratinocytes that directly
438 activates a subset of TRPA1-expressing SSNs to induce itch (Wilson *et al.*, 2013).
439 Similar to these mammalian models, UV-damage has been shown to induce the release
440 of the cytokine Eiger to promote *Drosophila* nociceptor sensitization (Babcock *et al.*,
441 2009); though this occurred on a slower timescale than the epidermal-evoked
442 mechanical sensitization we describe here (8 h vs. ~ 10 sec, Fig. 4L). Likewise,

443 epidermal platelet-derived growth factor (PDGF) ligands regulate mechanonociceptive
444 responses in *Drosophila* (Lopez-Bellido *et al.*, 2019) and intrathecal delivery of PDGF or
445 the closely related growth factor EGFR yields mechanical hypersensitivity in rats
446 (Masuda *et al.*, 2009; Puig *et al.*, 2020), but it remains to be determined whether growth
447 factor signaling can yield rapid sensitization. Hence, future studies will address which
448 neurotransmitters, neuropeptides, or inflammatory mediators underlie epidermal cell-
449 mediated mechanical sensitization.

450 Our data support a model whereby epidermal cells and multiple classes of SSNs
451 are functionally coupled. Future studies will address which neurotransmitters,
452 neuropeptides, or inflammatory mediators underlie epidermal cell-mediated mechanical
453 sensitization. An additional key next step is understanding whether the neuronal
454 plasticity underlying mechanical sensitization results from the direct modulation of
455 mechanosensitive channels or rapid insertion of new mechanosensitive channels into
456 the plasma membrane, or from changes in the signaling pathways or channels that
457 regulate neuronal excitability. Overall, we performed an unbiased genetic screen that for
458 the first time establishes a key role for mechanically evoked Stim/Orai calcium signaling
459 in epidermal cells that drive nociceptor modulation and mechanical hypersensitivity.

460

461 **Material and Methods**

462 **Materials availability and community standards**

463 Raw sequencing reads and gene expression estimates are available in the NCBI
464 Sequence Read Archive (SRA) and in the Gene Expression Omnibus (GEO) under
465 accession number GSE284380. Raw data used for analyses in this study is presented
466 in the supplementary materials as Source Data and details of statistical analyses are
467 presented in Supplementary File 1. ICMJE guidelines were used to define authorship
468 roles and the ARRIVE essential 10 guidelines were used for the reporting of our *in vivo*
469 studies.

470

471 ***Drosophila* strains**

472 Flies were maintained on standard cornmeal-molasses-agar media and reared at 25° C
473 under 12 h alternating light-dark cycles. For all experiments involving optogenetic

474 manipulations, larvae were raised in the constant dark at 25 °C on Nutri-Fly Instant
475 Food (Genesee Scientific #66-117), supplemented with 1 mM all-trans retinal (ATR;
476 Sigma #R2500). A complete list of alleles used in this study is provided in the Key
477 Resources Table. Experimental genotypes are listed in figure legends.

478

479 **Cell lines**

480 A human keratinocyte cell line (HaCaT) was used in this study. HaCaT cells were
481 obtained from Cytion (Sioux Falls, SD), who performed STR authentication and
482 mycoplasma-free certification.

483

484 **Behavior analysis**

485 Optogenetic behavior screen

486 Individual larvae were rinsed in ddH₂O, transferred to an agarose substrate (1%
487 agarose, 100 mm dish) in a darkened arena, and habituated for 30 s. Larvae were
488 stimulated with a top-mounted 488 nM LED illuminator (PE-300, CoolLED) and images
489 were captured with a sCMOS camera (Orca Flash 3.0, Hamamatsu) at frame
490 acquisition rate of 20 fps and behaviors were scored before, during and after
491 optogenetic stimulation.

492

493 High resolution video tracking of optogenetic-gated larval behavior

494 Following 5 min of light deprivation including 15 s of habituation in the behavioral arena,
495 larvae were tracked before, during and after optical stimulus (10 s each, 30 s total) (Fig.
496 2A). For these studies we modified our stimulation paradigm in two key ways: to avoid
497 potential contributions of nociceptor light evoked responses (Xiang *et al.*, 2010), we
498 stimulated larvae using yellow-shifted light; and to facilitate kinetic analysis of behavior
499 outputs, we used an automated shutter. Larvae were stimulated with a top-mounted 585
500 nm LED illuminator (SPECTRA X, Lumencor) equipped with a filter (FF01 585/40-25,
501 Semrock), and images were captured with a sCMOS camera (Zyla4.2, Andor) at a
502 frame rate of 20Hz. Larvae were constantly illuminated with an infrared (940 nm) light
503 source (LDR2-132IR2-940-LA, CSS) for visualization. Larvae were fed (ATR+) or
504 vehicle alone (ATR-) as indicated. Illumination intensities for optogenetic behavior

505 studies were: 300 $\mu\text{W}/\text{mm}^2$ for Fig. 1S6, Fig. 2B-2E, Fig. 2S1, Fig. 3E-3F, Fig. 3S2A-
506 3S2C; 25 $\mu\text{W}/\text{mm}^2$ for Fig. 4E-4J; 1.16 $\mu\text{W}/\text{mm}^2$ for Fig. 4K. Annotated videos showing
507 responses of representative larvae to optogenetic epidermal and nociceptor stimulation
508 are provided in Figure 2 – movie 1 and 2.

509

510 *Thermogenetic behavior assays*

511 Larvae for thermogenetic assays were reared at room temperature (20° C) to limit
512 TRPA1 activation during development. Third instar larvae were isolated from their food,
513 washed in distilled water, and recovered to damp agar plates for several min, and
514 transferred individually to a Peltier plate held at 25° C or 35° C. Behavior responses
515 were recorded under infrared light with a computer-controlled GigE camera (FLIR) at an
516 acquisition rate of 20 fps for 20 s. Responses were analyzed post-hoc blind to genotype
517 and were plotted as the proportion of larvae that exhibited at least one complete
518 nocifensive roll during stimulus application.

519

520 *Mechanonociception assays*

521 Third instar larvae were isolated from their food, washed in distilled water, and placed
522 on a scored 35 mm petri dish with a thin film of water such that larvae stayed moist but
523 did not float. Larvae were stimulated dorsally between segments A4 and A7 with
524 calibrated Von Frey filaments that delivered the indicated force upon buckling, and
525 nocifensive rolling responses were scored during the 10 s following stimulus removal.
526 For assays involving multiple stimuli, larvae were stimulated individually, allowed to
527 freely locomote in the arena for up to 1 min (for longer recoveries larvae were recovered
528 onto 2% agar to prevent desiccation), and subsequently presented with the second
529 stimulus. For assays involving thermal and mechanical stimuli, larvae were individually
530 transferred to a pre-warmed Peltier plate containing a thin layer of water, incubated for
531 the indicated time, and transferred to the behavior arena (or a 2% agar plate for
532 recoveries > 1 min) with a paint brush for subsequent mechanical stimulation. For
533 assays involving optical and mechanical stimuli, larvae were raised in constant dark at
534 25 °C on food supplemented with 1 mM all-trans retinal (detailed above), transferred to
535 the behavior arena with 25 $\mu\text{W}/\text{mm}^2$ broad spectrum illumination, and assayed for

536 responses to mechanical stimuli. All assays were conducted in ambient light except for
537 experiments with GtACR (Fig. S72), which were conducted under 500-700 nm LED
538 illumination (CoolLED PE-300, green). Our illumination setup for these experiments
539 provided limited working distance, therefore larvae were restrained with forceps and
540 given only a single stimulus.

541

542 Video annotations

543 Videos of individual larvae responding to light stimuli were scored on a frame-by-frame
544 basis using the annotation software BORIS (Friard and Gamba, 2016). Behaviors
545 scored, along with descriptions of the criteria for each behavior, are detailed in Table
546 S1. Video analysts were blind to the genotype and treatment during scoring. Scoring on
547 a training set was compared across all analysts to calibrate, and any behaviors for
548 which the primary analyst was uncertain were reviewed by an additional analyst.
549 Additionally, 10% of videos were scored independently by two analysts and there was at
550 least 80% concordance in behaviors annotated in these comparisons.

551

552 **Microscopy**

553 Calcium imaging: ventral nerve cords

554 Third-instar larvae were dissected along the dorsal midline and pinned on a sylgard-
555 coated dish (Sylgard 184, Dow Corning). The internal organs except for neural tissues
556 were removed. Larvae were bathed in HL3.1 (Feng et al, 2004) modified to remove
557 calcium (Table S2) to minimize larval movement. The ventral nerve cord was imaged
558 using an Olympus BX51WI microscope, equipped with a spinning-disk confocal unit
559 Yokogawa CSU10 (Yokogawa) and an EM-CCD digital camera (Evolve, Photometrics).
560 For activation of epidermal cells with the light gated CsChrimson, red light was delivered
561 by a pE-300 (CoolLED) equipped with a filter (ET645/30x, Chroma) at a light intensity of
562 30 μ W/mm². Obtained images were analyzed using Metamorph
563 (<https://www.moleculardevices.com/systems/metamorph-research-imaging>) and ImageJ
564 (Schneider et al., 2012). Baseline fluorescence was calculated as the mean
565 fluorescence intensity of an ROI over the ten frames prior to light stimulus delivery. The
566 trapezoidal method was used to calculate area under the curve, utilizing the trapz

567 function of MATLAB. Data points from the onset of stimulation to the end of stimulation
568 were used for the calculation.

569

570 *Calcium imaging: fillet preparations*

571 Third-instar larvae were dissected along the ventral midline and pinned on sylgard (Dow
572 Corning) dishes with the internal surface facing towards the microscope. All internal
573 organs, including the central nervous system, were removed. Larvae were bathed in
574 calcium-containing HL3.1 (Feng *et al.*, 2004) (Table S2) except where indicated and
575 images of the dorsal midline between abdominal segments A2 and A4 were captured
576 with a Zeiss Axio Zoom V16 microscope. Captured images were analyzed using ç
577 (Schneider *et al.*, 2012). Mechanical stimulus: fillets were poked with a tapered
578 borosilicate capillary with a rounded tip, using a micromanipulator to induce a deflection
579 of 25 µm. The decay time constant was calculated by fitting the data points from the
580 peak response to the end of the experiment into an exponential curve $f(x) = a * \exp(b * x)$
581 using MATLAB with $R^2 > 0.9$ used as a threshold for reliable fitting.

582

583 *Calcium imaging: dissociated epidermal cells*

584 Six to eight larval fillets were dissociated in 400 µL of 50% Saline (modified Ringer's
585 recipe) / 50% Schneider's media with 200 U/mL collagenase type I (Fisher 17-100-017),
586 with mixing at 1000 RPM at 33°C for 16 min, with trituration every 8 min. Undigested
587 fillets were removed and the remaining suspension was spun at 500 g for 3 min,
588 followed by aspiration of the supernatant down to a 10 µL cell suspension. Cells were
589 resuspended in 30 µL fresh PBS / Schneider's solution and plated onto poly-D-lysine (1
590 mg/ml, Sigma P7886) coated No. 1 coverslips, with 10 µL cell solution per coverslip.
591 Cells were cultured at least 30 min and up to 2 h at 25° C prior to imaging. Cells were
592 imaged using a 10x objective at a frame rate of 0.33 Hz. Solutions are indicated in
593 figure legends (see Table S2 for recipes). Obtained images were analyzed using
594 MetaFluor and Python and baseline fluorescence was calculated as the mean
595 fluorescence intensity of an ROI over 5 frames prior to stimulus delivery. For stretch
596 stimulation, circular membranes were cut with an arch punch from sheets of glossy
597 silicone of 0.01–0.02 inch thickness (Specialty Manufacturing, Inc.) and coated with 1

598 mg/ml poly-D-lysine for 1 h before plating cells. Membranes were mounted onto the
599 StageFlexer system and vacuum pressure was applied through the FX-3000 system
600 (Flexcell). Calibrations were performed using fluorescent beads attached to the
601 membranes, and images were taken before and during a static stretch. To stimulate
602 cells, a 2 s square wave of vacuum pressure was applied. Cells were imaged with an
603 Olympus BX61WI upright microscope. For store-operated calcium entry measurements
604 and osmotic stimulation, cells were imaged using a Zeiss Observer inverted microscope
605 and solutions were perfused using the Automate Scientific ValveLink 8.2 perfusion
606 system. At the end of each imaging session, 1uM ionomycin was perfused and only
607 cells that showed a calcium response, as defined by a 10% increase from baseline
608 fluorescence, were used in analysis. Flow, osmotic and radial stretch responders were
609 defined by a 5% increase from baseline fluorescence.

610

611 Calcium imaging: human keratinocytes

612 Immortalized human keratinocytes (HaCaT) cells (Cytion) were plated on silicone
613 membranes one day prior to stretch experiments. Prior to the radial stretch experiments,
614 cells were loaded with 1 μ m Fura-2AM supplemented with 0.01% Pluronic F-127 (w/v,
615 Life Technologies) in a physiological Ringer's solution containing the following (in mm):
616 140 NaCl, 5 KCl, 10 HEPES, 2 CaCl₂, 2 MgCl₂, and 10 d-(+)-glucose, pH 7.4. Acquired
617 images were displayed as the ratio of 340 nm/380 nm. Cells that had a response 10
618 standard deviations above baseline to ionomycin were included in the analysis and
619 stretch responses were defined by a 15% increase in Fura-2 340/380 ratio.

620

621 Confocal Microscopy

622 For peripheral imaging of cellular morphology, live single larvae were mounted in 90%
623 glycerol under a coverslip and imaged on a Leica SP5 confocal microscope using a 40x
624 1.25 NA lens. To image the larval CNS, larvae were dissected on sylgard plates, briefly
625 fixed in 4% paraformaldehyde (PFA) in PBS for 15 min at room temperature, washed 3
626 x 5 min in PBS, and mounted for imaging.

627

628 **RNA-Seq analysis of epidermal cells**

629 RNA isolation for RNA-Seq

630 Larvae with cytoplasmic GFP expressed in different epidermal subsets were
631 microdissected and dissociated in collagenase type I (Fisher 17-100-017) into single cell
632 suspensions, largely as previously described (Williams *et al.*, 2016), with the addition of
633 1% BSA to the dissociation mix. After dissociation, cells were transferred to a new 35
634 mm petri dish with 1 mL 50% Schneider's media, 50% PBS supplemented with 1%
635 BSA. Under a fluorescent stereoscope, individual fluorescent cells were manually
636 aspirated with a glass pipette into PBS with 0.5% BSA, and then serially transferred
637 until isolated without any additional cellular debris present. Ten cells per sample were
638 aspirated together, transferred to a mini-well containing 3ul lysis solution (0.2 % Triton
639 X-100 in water with 2 U / μ L RNase Inhibitor), lysed by pipetting up and down several
640 times, transferred to a microtube, and stored at -80 $^{\circ}$ C. For the picked cells, 2.3 μ L of
641 lysis solution was used as input for library preparation.

642

643 RNA-Seq library preparation

644 RNA-Seq libraries were prepared from the picked cells following the Smart-Seq2
645 protocol for full length transcriptomes (Picelli *et al.*, 2014). To minimize batch effects,
646 primers, enzymes, and buffers were all used from the same lots for all libraries.
647 Libraries were multiplexed, pooled, and purified using AMPure XP beads, quality was
648 checked on an Agilent TapeStation, and libraries were sequenced as 51-bp single end
649 reads on a HiSeq4000 at the UCSF Center for Advanced Technology.

650

651 RNA-Seq data analysis

652 Reads were demultiplexed with CASAVA (Illumina) and read quality was assessed
653 using FastQC (<https://www.bioinformatics.babraham.ac.uk/>) and MultiQC (Ewels *et al.*,
654 2016). Reads containing adapters were removed using Cutadapt version 2.4 (Martin,
655 2011) and reads were mapped to the *D. melanogaster* transcriptome, FlyBase genome
656 release 6.29, using Kallisto version 0.46.0 (Bray *et al.*, 2016) with default parameters.
657 AA samples were removed from further analysis for poor quality, including low read
658 depth (< 500,000 reads), and low mapping rates (< 80%). Raw sequencing reads and

659 gene expression estimates are available in the NCBI Sequence Read Archive (SRA)
660 and in the Gene Expression Omnibus (GEO) under accession number GSE284380.

661

662 **Statistical analysis**

663 For each experimental assay control populations were sampled to estimate appropriate
664 sample numbers to allow detection of ~33% differences in means with 80% power over
665 a 95% confidence interval. Details of statistical tests including treatment groups, sample
666 numbers (which correspond to independent biological replicates), statistical tests, p-
667 values and q-values are provided in Supplementary File 1.

668

669 **Acknowledgements**

670 This work was supported by grants from the National Institutes of Health to JZP (NINDS
671 R01 NS076614; NINDS R21NS125795), DMB (NICHD K99 HD086271), CRW
672 (5F31NS106775), and the MBL (R25NS063307); a grant from the National Science
673 Foundation to SSM (NSF GRFP DGE1752814); funding from the Leading Initiative for
674 Excellent Young Researchers (LEADER) from MEXT, JSPS (KAKENHI 22K06309), and
675 AMED-PRIME (JP22gm6510011) to KI; a grant from the Weill Neurohub to JZP and
676 DMB; a grant from the Scan Design Foundation, a JSPS long-term fellowship and
677 startup funds from UW (J.Z.P); MEXT Grants-in-Aid for Scientific Research (KAKENHI
678 16H06456), JSPS (KAKENHI 16H02504), WPI-IRCN, AMED-CREST (JP22gm310010),
679 and JST-CREST to KE; and a fellowship from the Grass Foundation (CEE). DMB. is an
680 HHMI investigator. Fly Stocks obtained from the Bloomington *Drosophila* Stock Center
681 (NIH P40OD018537) were used in this study. We thank Jessica Huang, Jordan Martel,
682 and David Shen for assistance with video tracking; Peter Soba for helpful discussions.

683

684 **Author Contributions**

685 *Conception and design:* Optogenetic behavior analysis, K.E., J.Z.P, C.R.W, J.Y.; larval
686 behavior assays, J.Z.P, C.R.W, and J.Y.; in vivo calcium imaging, K.E., J.Z.P, C.R.W,
687 J.Y.; ex vivo calcium imaging, D.M.B., S.S.M., and J.Z.P

688 *Acquisition of data:* Optogenetic behavior screen, C.J.A, C.E.E., S.M., and J.Y.;
689 Optogenetic behavior assays, J.Y., C.H., M.M., K.I., and C.R.W.; mechanonociception

690 assays, C.R.W, and J.Z.P; thermogenetic behavior assays, J.Z.P.; RNA-sequencing,
691 J.Z.P. and C.R.W.
692 *Analysis and Interpretation of data*: larval behavior assays, J.Z.P, C.R.W, J.Y.; *in vivo*
693 calcium imaging, K.E., J.Z.P, C.R.W, J.Y.; *ex vivo* calcium imaging, D.M.B. and S.S.M.;
694 transcriptomic data, C.H., C.R.W., and J.Z.P.
695 *Drafting the article*: D.M.B., J.Z.P, C.R.W, S.S.M., and J.Y.
696

697 **Competing Interests**

698 DMB is on the scientific advisory board of Escient Pharmaceuticals. The remaining
699 authors declare no conflicts of interest.
700

701 **References**

702 Aoki, K, Harada, S, Kawaji, K, Matsuzawa, K, Uchida, S, and Ikenouchi, J (2021). STIM-Orai1
703 signaling regulates fluidity of cytoplasm during membrane blebbing. *Nat Commun* 12, 480.

704 Ashmole, I, Duffy, SM, Leyland, ML, Morrison, VS, Begg, M, and Bradding, P (2012). CRACM/Orai
705 ion channel expression and function in human lung mast cells. *J Allergy Clin Immunol* 129, 1628-
706 1635.e2.

707 Babcock, DT, Landry, C, and Galko, MJ (2009). Cytokine signaling mediates UV-induced
708 nociceptive sensitization in *Drosophila* larvae. *Curr Biol* 19, 799–806.

709 Bautista, DM, Jordt, S-E, Nikai, T, Tsuruda, PR, Read, AJ, Poblete, J, Yamoah, EN, Basbaum, AI,
710 and Julius, D (2006). TRPA1 mediates the inflammatory actions of environmental irritants and
711 proalgesic agents. *Cell* 124, 1269–1282.

712 Boiko, N, Medrano, G, Montano, E, Jiang, N, Williams, CR, Madungwe, NB, Bopassa, JC, Kim, CC,
713 Parrish, JZ, Hargreaves, KM, *et al.* (2017). TrpA1 activation in peripheral sensory neurons
714 underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids. *PLoS ONE* 12,
715 e0186888.

716 Bray, NL, Pimentel, H, Melsted, P, and Pachter, L (2016). Near-optimal probabilistic RNA-seq
717 quantification. *Nat Biotechnol* 34, 525–527.

718 Burgos, A, Honjo, K, Ohyama, T, Qian, CS, Shin, GJ-E, Gohl, DM, Silies, M, Tracey, WD, Zlatic, M,
719 Cardona, A, *et al.* (2018). Nociceptive interneurons control modular motor pathways to
720 promote escape behavior in *Drosophila*. *Elife* 7.

721 Cauna, N (1973). The free penicillate nerve endings of the human hairy skin. *J Anat* 115, 277–
722 288.

723 Chachisvilis, M, Zhang, Y-L, and Frangos, JA (2006). G protein-coupled receptors sense fluid
724 shear stress in endothelial cells. *Proc Natl Acad Sci U S A* 103, 15463–15468.

725 Chalfie, M, and Sulston, J (1981). Developmental genetics of the mechanosensory neurons of
726 *Caenorhabditis elegans*. *Dev Biol* 82, 358–370.

727 Chanaday, NL, Nosyreva, E, Shin, O-H, Zhang, H, Aklan, I, Atasoy, D, Bezprozvanny, I, and
728 Kavalali, ET (2021). Presynaptic store-operated Ca²⁺ entry drives excitatory spontaneous
729 neurotransmission and augments endoplasmic reticulum stress. *Neuron* 109, 1314–1332.e5.

730 Chen, X, and Chalfie, M (2014). Modulation of *C. elegans* touch sensitivity is integrated at
731 multiple levels. *J Neurosci* 34, 6522–6536.

732 Chung, M-K, Lee, H, Mizuno, A, Suzuki, M, and Caterina, MJ (2004). TRPV3 and TRPV4 mediate
733 warmth-evoked currents in primary mouse keratinocytes. *J Biol Chem* 279, 21569–21575.

734 Connelly, T, Yu, Y, Grosmaire, X, Wang, J, Santarelli, LC, Savigner, A, Qiao, X, Wang, Z, Storm,
735 DR, and Ma, M (2015). G protein-coupled odorant receptors underlie mechanosensitivity in
736 mammalian olfactory sensory neurons. *Proc Natl Acad Sci U S A* 112, 590–595.

737 Ewels, P, Magnusson, M, Lundin, S, and Käller, M (2016). MultiQC: summarize analysis results
738 for multiple tools and samples in a single report. *Bioinformatics* 32, 3047–3048.

739 Feng, Y, Ueda, A, and Wu, C-F (2004). A modified minimal hemolymph-like solution, HL3.1, for
740 physiological recordings at the neuromuscular junctions of normal and mutant *Drosophila*
741 larvae. *J Neurogenet* 18, 377–402.

742 Feske, S, Gwack, Y, Prakriya, M, Srikanth, S, Poppel, S-H, Tanasa, B, Hogan, PG, Lewis, RS, Daly,
743 M, and Rao, A (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC
744 channel function. *Nature* 441, 179–185.

745 Fink, M, Duprat, F, Lesage, F, Reyes, R, Romey, G, Heurteaux, C, and Lazdunski, M (1996).
746 Cloning, functional expression and brain localization of a novel unconventional outward
747 rectifier K⁺ channel. *EMBO J* 15, 6854–6862.

748 Friard, O, and Gamba, M (2016). BORIS: a free, versatile open-source event-logging software for
749 video/audio coding and live observations. *Methods in Ecology and Evolution* 7, 1325–1330.

750 Galko, MJ, and Krasnow, MA (2004). Cellular and genetic analysis of wound healing in
751 *Drosophila* larvae. *PLoS Biol* 2, E239.

752 Gorczyca, DA, Younger, S, Meltzer, S, Kim, SE, Cheng, L, Song, W, Lee, HY, Jan, LY, and Jan, YN
753 (2014). Identification of Ppk26, a DEG/ENaC Channel Functioning with Ppk1 in a Mutually
754 Dependent Manner to Guide Locomotion Behavior in *Drosophila*. *Cell Rep* 9, 1446–1458.

755 Grosmaire, X, Santarelli, LC, Tan, J, Luo, M, and Ma, M (2007). Dual functions of mammalian
756 olfactory sensory neurons as odor detectors and mechanical sensors. *Nat Neurosci* 10, 348–
757 354.

758 Guo, Y, Wang, Y, Wang, Q, and Wang, Z (2014). The role of PPK26 in *Drosophila* larval
759 mechanical nociception. *Cell Rep* 9, 1183–1190.

760 Haeberle, H, Bryan, LA, Vadakkan, TJ, Dickinson, ME, and Lumpkin, EA (2008). Swelling-
761 activated Ca²⁺ channels trigger Ca²⁺ signals in Merkel cells. *PLoS One* 3, e1750.

762 Hamada, FN, Rosenzweig, M, Kang, K, Pulver, SR, Ghezzi, A, Jegla, TJ, and Garrity, PA (2008). An
763 internal thermal sensor controlling temperature preference in *Drosophila*. *Nature* 454, 217–
764 220.

765 Han, C, Wang, D, Soba, P, Zhu, S, Lin, X, Jan, LY, and Jan, Y-N (2012). Integrins regulate
766 repulsion-mediated dendritic patterning of *drosophila* sensory neurons by restricting dendrites
767 in a 2D space. *Neuron* 73, 64–78.

768 Hoffman, BU, Baba, Y, Griffith, TN, Mosharov, EV, Woo, S-H, Roybal, DD, Karsenty, G,
769 Patapoutian, A, Sulzer, D, and Lumpkin, EA (2018). Merkel Cells Activate Sensory Neural
770 Pathways through Adrenergic Synapses. *Neuron* 100, 1401-1413.e6.

771 Hoover, PJ, and Lewis, RS (2011). Stoichiometric requirements for trapping and gating of Ca²⁺
772 release-activated Ca²⁺ (CRAC) channels by stromal interaction molecule 1 (STIM1). *Proc Natl
773 Acad Sci U S A* 108, 13299–13304.

774 Hu, C, Petersen, M, Hoyer, N, Spitzweck, B, Tenedini, F, Wang, D, Gruschka, A, Burchardt, LS,
775 Szpotowicz, E, Schweizer, M, *et al.* (2017). Sensory integration and neuromodulatory feedback
776 facilitate *Drosophila* mechanonociceptive behavior. *Nat Neurosci* 20, 1085–1095.

777 Hwang, RY, Zhong, L, Xu, Y, Johnson, T, Zhang, F, Deisseroth, K, and Tracey, WD (2007).
778 Nociceptive neurons protect *Drosophila* larvae from parasitoid wasps. *Curr Biol* 17, 2105–2116.

779 Jiang, N, Rasmussen, JP, Clanton, JA, Rosenberg, MF, Luedke, KP, Cronan, MR, Parker, ED, Kim,
780 H-J, Vaughan, JC, Sagasti, A, *et al.* (2019). A conserved morphogenetic mechanism for epidermal
781 ensheathment of nociceptive sensory neurites. *Elife* 8.

782 Jiang, N, Soba, P, Parker, E, Kim, CC, and Parrish, JZ (2014). The microRNA bantam regulates a
783 developmental transition in epithelial cells that restricts sensory dendrite growth. *Development*
784 141, 2657–2668.

785 Khuong, TM, Wang, Q-P, Manion, J, Oyston, LJ, Lau, M-T, Towler, H, Lin, YQ, and Neely, GG
786 (2019). Nerve injury drives a heightened state of vigilance and neuropathic sensitization in
787 *Drosophila*. *Sci Adv* 5, eaaw4099.

788 Kim, ME, Shrestha, BR, Blazeski, R, Mason, CA, and Grueber, WB (2012a). Integrins establish
789 dendrite-substrate relationships that promote dendritic self-avoidance and patterning in
790 drosophila sensory neurons. *Neuron* 73, 79–91.

791 Kim, SE, Coste, B, Chadha, A, Cook, B, and Patapoutian, A (2012b). The role of Drosophila Piezo
792 in mechanical nociception. *Nature* 483, 209–212.

793 Kim, T-J, Joo, C, Seong, J, Vafabakhsh, R, Botvinick, EL, Berns, MW, Palmer, AE, Wang, N, Ha, T,
794 Jakobsson, E, *et al.* (2015). Distinct mechanisms regulating mechanical force-induced Ca^{2+}
795 signals at the plasma membrane and the ER in human MSCs. *Elife* 4, e04876.

796 Klapoetke, NC, Murata, Y, Kim, SS, Pulver, SR, Birdsey-Benson, A, Cho, YK, Morimoto, TK,
797 Chuong, AS, Carpenter, EJ, Tian, Z, *et al.* (2014). Independent optical excitation of distinct
798 neural populations. *Nature Methods* 11, 338–346.

799 Knutson, KR, Whiteman, ST, Alcaino, C, Mercado-Perez, A, Finholm, I, Serlin, HK, Bellampalli, SS,
800 Linden, DR, Farrugia, G, and Beyder, A (2023). Intestinal enteroendocrine cells rely on ryanodine
801 and IP3 calcium store receptors for mechanotransduction. *J Physiol* 601, 287–305.

802 Koenig, JH, Saito, K, and Ikeda, K (1983). Reversible control of synaptic transmission in a single
803 gene mutant of *Drosophila melanogaster*. *J Cell Biol* 96, 1517–1522.

804 Koizumi, S, Fujishita, K, Inoue, K, Shigemoto-Mogami, Y, Tsuda, M, and Inoue, K (2004). Ca^{2+}
805 waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular
806 ATP and P2Y2 receptor activation. *Biochem J* 380, 329–338.

807 Liu, X, Wang, H, Jiang, Y, Zheng, Q, Petrus, M, Zhang, M, Zheng, S, Schmedt, C, Dong, X, and
808 Xiao, B (2019). STIM1 thermosensitivity defines the optimal preference temperature for warm
809 sensation in mice. *Cell Res* 29, 95–109.

810 Lopez-Bellido, R, Puig, S, Huang, PJ, Tsai, C-R, Turner, HN, Galko, MJ, and Gutstein, HB (2019).
811 Growth Factor Signaling Regulates Mechanical Nociception in Flies and Vertebrates. *J Neurosci*
812 39, 6012–6030.

813 Luij, RM, Wang, B, Prakriya, M, Wu, MM, and Lewis, RS (2008). Oligomerization of STIM1
814 couples ER calcium depletion to CRAC channel activation. *Nature* 454, 538–542.

815 Maksimovic, S, Nakatani, M, Baba, Y, Nelson, AM, Marshall, KL, Wellnitz, SA, Firozi, P, Woo, S-H,
816 Ranade, S, Patapoutian, A, *et al.* (2014). Epidermal Merkel cells are mechanosensory cells that
817 tune mammalian touch receptors. *Nature* 509, 617–621.

818 Mandadi, S, Sokabe, T, Shibusaki, K, Katanosaka, K, Mizuno, A, Moqrich, A, Patapoutian, A,
819 Fukumi-Tominaga, T, Mizumura, K, and Tominaga, M (2009). TRPV3 in keratinocytes transmits
820 temperature information to sensory neurons via ATP. *Pflugers Arch* 458, 1093–1102.

821 Maneshi, MM, Toth, AB, Ishii, T, Hori, K, Tsujikawa, S, Shum, AK, Shrestha, N, Yamashita, M,
822 Miller, RJ, Radulovic, J, *et al.* (2020). Orai1 Channels Are Essential for Amplification of
823 Glutamate-Evoked Ca²⁺ Signals in Dendritic Spines to Regulate Working and Associative
824 Memory. *Cell Rep* 33, 108464.

825 Masuda, J, Tsuda, M, Tozaki-Saitoh, H, and Inoue, K (2009). Intrathecal delivery of PDGF
826 produces tactile allodynia through its receptors in spinal microglia. *Mol Pain* 5, 23.

827 Mauthner, SE, Hwang, RY, Lewis, AH, Xiao, Q, Tsubouchi, A, Wang, Y, Honjo, K, Skene, JHP,
828 Grandl, J, and Tracey, WD (2014). Balboa binds to pickpocket in vivo and is required for
829 mechanical nociception in *Drosophila* larvae. *Curr Biol* 24, 2920–2925.

830 Mederos y Schnitzler, M, Storch, U, Meibers, S, Nurwakagari, P, Breit, A, Essin, K, Gollasch, M,
831 and Gudermann, T (2008). Gq-coupled receptors as mechanosensors mediating myogenic
832 vasoconstriction. *EMBO J* 27, 3092–3103.

833 Moehring, F, Cowie, AM, Menzel, AD, Weyer, AD, Grzybowski, M, Arzua, T, Geurts, AM, Palygin,
834 O, and Stucky, CL (2018). Keratinocytes mediate innocuous and noxious touch via ATP-P2X4
835 signaling. *Elife* 7.

836 Mohammad, F, Stewart, JC, Ott, S, Chlebikova, K, Chua, JY, Koh, T-W, Ho, J, and Claridge-Chang,
837 A (2017). Optogenetic inhibition of behavior with anion channelrhodopsins. *Nat Methods* 14,
838 271–274.

839 Moqrich, A, Hwang, SW, Earley, TJ, Petrus, MJ, Murray, AN, Spencer, KSR, Andahazy, M, Story,
840 GM, and Patapoutian, A (2005). Impaired thermosensation in mice lacking TRPV3, a heat and
841 camphor sensor in the skin. *Science* 307, 1468–1472.

842 Morin, X, Daneman, R, Zavortink, M, and Chia, W (2001). A protein trap strategy to detect GFP-
843 tagged proteins expressed from their endogenous loci in *Drosophila*. *Proc Natl Acad Sci USA* 98,
844 15050–15055.

845 O'Brien, GS, Rieger, S, Wang, F, Smolen, GA, Gonzalez, RE, Buchanan, J, and Sagasti, A (2012).
846 Coordinate development of skin cells and cutaneous sensory axons in zebrafish. *J Comp Neurol*
847 520, 816–831.

848 Ohyama, T, Schneider-Mizell, CM, Fetter, RD, Aleman, JV, Franconville, R, Rivera-Alba, M,
849 Mensh, BD, Branson, KM, Simpson, JH, Truman, JW, *et al.* (2015). A multilevel multimodal
850 circuit enhances action selection in *Drosophila*. *Nature* 520, 633–639.

851 Picelli, S, Faridani, OR, Björklund, AK, Winberg, G, Sagasser, S, and Sandberg, R (2014). Full-
852 length RNA-seq from single cells using Smart-seq2. *Nat Protoc* 9, 171–181.

853 Pores-Fernando, AT, and Zweifach, A (2009). Calcium influx and signaling in cytotoxic T-
854 lymphocyte lytic granule exocytosis. *Immunol Rev* 231, 160–173.

855 Puig, S, Donica, CL, and Gutstein, HB (2020). EGFR Signaling Causes Morphine Tolerance and
856 Mechanical Sensitization in Rats. *eNeuro* 7, ENEURO.0460-18.2020.

857 Ramesh, G, Jarzembski, L, Schwarz, Y, Poth, V, Konrad, M, Knapp, ML, Schwär, G, Lauer, AA,
858 Grimm, MOW, Alansary, D, *et al.* (2021). A short isoform of STIM1 confers frequency-
859 dependent synaptic enhancement. *Cell Rep* 34, 108844.

860 Ranade, SS, Woo, S-H, Dubin, AE, Moshourab, RA, Wetzel, C, Petrus, M, Mathur, J, Bégay, V,
861 Coste, B, Mainquist, J, *et al.* (2014). Piezo2 is the major transducer of mechanical forces for
862 touch sensation in mice. *Nature* 516, 121–125.

863 Robertson, JL, Tsubouchi, A, and Tracey, WD (2013). Larval defense against attack from
864 parasitoid wasps requires nociceptive neurons. *PLoS One* 8, e78704.

865 Sadler, KE, Moehring, F, and Stucky, CL (2020). Keratinocytes contribute to normal cold and
866 heat sensation. *Elife* 9, e58625.

867 Schneider, CA, Rasband, WS, and Eliceiri, KW (2012). NIH Image to ImageJ: 25 years of image
868 analysis. *Nat Methods* 9, 671–675.

869 Song, Y, Zhao, Z, Xu, L, Huang, P, Gao, J, Li, J, Wang, X, Zhou, Y, Wang, J, Zhao, W, *et al.* (2024).
870 Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of
871 the endoplasmic reticulum. *Dev Cell* 59, 1396-1409.e5.

872 Sweeney, ST, Broadie, K, Keane, J, Niemann, H, and O’Kane, CJ (1995). Targeted expression of
873 tetanus toxin light chain in *Drosophila* specifically eliminates synaptic transmission and causes
874 behavioral defects. *Neuron* 14, 341–351.

875 Tsutsumi, M, Inoue, K, Denda, S, Ikeyama, K, Goto, M, and Denda, M (2009). Mechanical-
876 stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. *Cell*
877 *Tissue Res* 338, 99–106.

878 Turner, HN, Armengol, K, Patel, AA, Himmel, NJ, Sullivan, L, Iyer, SC, Bhattacharya, S, Iyer, EPR,
879 Landry, C, Galko, MJ, *et al.* (2016). The TRP Channels Pkd2, NompC, and Trpm Act in Cold-
880 Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in *Drosophila*. *Curr Biol*
881 26, 3116–3128.

882 Venturini, V, Pezzano, F, Català Castro, F, Häkkinen, H-M, Jiménez-Delgado, S, Colomer-Rosell,
883 M, Marro, M, Tolosa-Ramon, Q, Paz-López, S, Valverde, MA, *et al.* (2020). The nucleus measures
884 shape changes for cellular proprioception to control dynamic cell behavior. *Science* 370,
885 eaba2644.

886 Williams, CR, Baccarella, A, Parrish, JZ, and Kim, CC (2016). Trimming of sequence reads alters
887 RNA-Seq gene expression estimates. *BMC Bioinformatics* 17, 103.

888 Wilson, SR, Thé, L, Batia, LM, Beattie, K, Katibah, GE, McClain, SP, Pellegrino, M, Estandian, DM,
889 and Bautista, DM (2013). The epithelial cell-derived atopic dermatitis cytokine TSLP activates
890 neurons to induce itch. *Cell* 155, 285–295.

891 Woo, S-H, Ranade, S, Weyer, AD, Dubin, AE, Baba, Y, Qiu, Z, Petrus, M, Miyamoto, T, Reddy, K,
892 Lumpkin, EA, *et al.* (2014). Piezo2 is required for Merkel-cell mechanotransduction. *Nature* 509,
893 622–626.

894 Xiang, Y, Yuan, Q, Vogt, N, Looger, LL, Jan, LY, and Jan, YN (2010). Light-avoidance-mediating
895 photoreceptors tile the *Drosophila* larval body wall. *Nature* 468, 921–926.

896 Xu, J, Mathur, J, Vessières, E, Hammack, S, Nonomura, K, Favre, J, Grimaud, L, Petrus, M,
897 Francisco, A, Li, J, *et al.* (2018). GPR68 Senses Flow and Is Essential for Vascular Physiology. *Cell*
898 173, 762–775.e16.

899 Yamamoto, M, Ueda, R, Takahashi, K, Saigo, K, and Uemura, T (2006). Control of axonal
900 sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface. *Curr Biol*
901 16, 1678–1683.

902 Yin, C, Peterman, E, Rasmussen, JP, and Parrish, JZ (2021). Transparent Touch: Insights From
903 Model Systems on Epidermal Control of Somatosensory Innervation. *Front Cell Neurosci* 15,
904 680345.

905 Zhang, W, Yan, Z, Jan, LY, and Jan, YN (2013). Sound response mediated by the TRP channels
906 NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of *Drosophila* larvae. *Proc Natl Acad
907 Sci USA* 110, 13612–13617.

908 Zhong, L, Hwang, RY, and Tracey, WD (2010). Pickpocket is a DEG/ENaC protein required for
909 mechanical nociception in *Drosophila* larvae. *Curr Biol* 20, 429–434.

910 Zimmermann, G, Wang, L-P, Vaughan, AG, Manoli, DS, Zhang, F, Deisseroth, K, Baker, BS, and
911 Scott, MP (2009). Manipulation of an innate escape response in *Drosophila*: photoexcitation of
912 acj6 neurons induces the escape response. *PLoS One* 4, e5100.

913

914

915 **Figure Legends**

916

917 **Figure 1. Stimulation of epidermal cells elicits nociceptive behaviors.** (A) Fraction
918 of larvae that exhibited optogenetic-induced rolling (roll probability) using the indicated
919 GAL4 lines to drive *UAS-CsChrimson* expression. All experimental genotypes, except
920 for larvae expressing *UAS-CsChrimson* in C4da neurons, included *elav-GAL80* to
921 suppress neuronal GAL4 activity. Genotypes: *GAL4*, *UAS-CsChrimson*, *elav-GAL80*/.
922 (B) Roll probability of larvae following optogenetic stimulation using the indicated GAL4
923 lines in combination with *elav-GAL80* (or *tsh-GAL80* + *cha-GAL80* in the case of *A58-*
924 *GAL4*) to drive *UAS-CsChrimson* expression in epidermal cells. All epidermal drivers
925 except for *sr-GAL4*, which is expressed in apodemes but no other epidermal cells,
926 elicited rolling responses. Genotypes: *GAL4*, *UAS-CsChrimson*, *elav-GAL80*/. (C) Roll
927 probability of larvae following thermogenetic stimulation using the indicated GAL4 line to
928 express the warmth (35°C) -activated *UAS-TrpA1*. The number of rolling larvae (out of
929 50) is indicated for each group. Genotypes: *GAL4*, *UAS-TrpA1*, *GAL80* (as indicated)/+.
930 Control, *UAS-TrpA1*/. Sample sizes are indicated in each panel. Asterisk (*) indicates
931 p<0.05 in this and subsequent figures. Raw data for all figures is provided in Source
932 Data File 1 and details of statistical analyses, including tests performed, p-values, and
933 q-values are provided in Supplementary File 1.

934

935 **Figure 1 – figure supplement 1.** Related to Figure 1A. Detailed behavior analyses of
936 larvae following optogenetic stimulation using the indicated GAL4 lines to express *UAS-*
937 *CsChrimson*. (A-G) Behavior ethograms show behaviors of individual larvae (rows) prior
938 to, during, and after application of the light stimulus (indicated by the blue bar above the
939 ethogram). (H) Fraction of larvae exhibiting indicated behaviors and (I) duration of
940 indicated behaviors during light stimulus.

941

942 **Figure 1 – figure supplement 2.** Related to Figure 1A. Efficacy of *GAL80* transgenes.
943 Maximum intensity projections show body wall expression patterns of (A) the pan-da
944 neuron driver *GAL4*²¹⁻⁷ and (B) the nociceptor-specific driver *ppk-GAL4* with or without
945 *elav-GAL80* to silence neuronal GAL4 expression. Note that *elav-GAL80* completely

946 suppresses GFP reporter expression from each of the drivers. Genotypes: (A) $GAL4^{21-7}$
947 $UAS-CD4-tdGFP/+$ and $GAL4^{21-7} UAS-CD4-tdGFP/+$, $elav-GAL80/+$, (B) $ppk-GAL4$,
948 $UAS-CD4-tdGFP/+$ and $ppk-GAL4$, $UAS-CD4-tdGFP/+$, $elav-GAL80/+$.

949

950 **Figure 1 – figure supplement 3.** Related to Figures 1A and 1C. Expression analysis of
951 the pan-epidermal *R38F11-GAL4* driver. (A-B) Maximum intensity projections of
952 confocal stacks show larval expression of a red fluorescent protein (*UAS-tdTomato*)
953 under control of *R38F11-GAL4* in larvae additionally expressing *Nrg167-GFP*, an exon
954 trap line that labels epidermal and glial membranes (Morin *et al.*, 2001; Yamamoto *et*
955 *al.*, 2006). (A) Low-magnification view showing stereotyped expression in dorsal
956 epidermis across multiple larval segments. Larvae are oriented dorsal-up. *R38F11-*
957 *GAL4* is likewise expressed throughout the ventral and lateral epidermis. Compared to
958 other epidermal drivers (see Fig. 1S5), *R38F11-GAL4* exhibited more uniform
959 expression from segment to segment and among epidermal subpopulations within a
960 given segment. (B) *R38F11-GAL4* expression in the dorsal epidermis of a single
961 abdominal segment, A2. (C) High-resolution images of *R38F11-GAL4* expression
962 visualized using a nuclear localized red fluorescent protein (*UAS-NLS-RFP*). Images
963 depict expression in larval skin territory containing dorsal cluster of SSNs (visualized by
964 HRP immunoreactivity), which includes the nociceptive neuron ddaC (outlined by
965 dashed lines). Note that although *R38F11-GAL4* is expressed in epidermal cells,
966 expression is undetectable in da neurons. The *R38F11-GAL4* expression domain
967 likewise excludes SSNs throughout the body wall. (D) *R38F11-GAL4* expression of
968 *UAS-NLS-RFP* in the larval CNS. *R38F11-GAL4* is expressed in a single motor neuron
969 in each segment of the ventral ganglion, ~10 VNC interneurons, and <50 additional
970 neurons in each brain hemisphere. (E-H) GAL80-mediated refinement of *R38F11-GAL4*
971 expression. (E) *Tsh-GAL80* induced variegation in epidermal *R38F11-GAL4* expression
972 and (F) suppressed VNC expression while expanding brain expression domains of
973 *R38F11-GAL4*. (G) *Elav-GAL80* likewise induced epidermal variegation in *R38F11-*
974 *GAL4* expression but (H) completely attenuated CNS expression. Dashed lines in (D, G,
975 and H) outline the larval brain and ventral ganglion. Genotypes: (A-B) *Nrg^{G00305}/+*; *UAS-*
976 *tdTomato/+*; *GAL4^{GMR38F11}/+*, (C) *GAL4^{GMR38F11}/+*, *UAS-NLS-RedStinger/+*, (E-F)

977 $Nrg^{G00305}/+; UAS-tdTomato/tsh-GAL80; GAL4^{GMR38F11}/+$, (G-H) $Nrg^{G00305}/+; UAS-NLS-$
978 $RedStinger/+/; GAL4^{GMR38F11}/elav-GAL80$.

979

980 **Figure 1 – figure supplement 4.** Related to Figure 1A. Epidermal manipulations have
981 no effect on C4da neuron dendrite morphogenesis. (A) Maximum intensity projections
982 show dendrites of representative C4da neurons labeled with *ppk-CD4-tdGFP* in the
983 indicated treatment groups. (B) Morphometric analysis of C4da dendrites. Box plots
984 depict the total dendrite length (left) and the number of dendrite branchpoints (right)
985 normalized to larval segmental area in larvae containing the pan-epidermal driver
986 *R38F11-GAL4* and the indicated *UAS*-transgenes at 120 h AEL. Prior to imaging, *ppk-*
987 *CD4-tdGFP/+*, *R38F11-GAL4/UAS-shi^{TS}* larvae were incubated for 10 min at 30° C, as
988 in Fig. 6N. $N \geq 6$ neurons for each genotype, points represent measurements from
989 individual neurons, boxes display the first and third quartiles, hatches mark medians,
990 and whiskers mark maximum and minimum values. ANOVA with post-hoc Tukey's test
991 revealed no significant difference between control and treatment groups for both
992 metrics. Genotypes: *ppk-CD4-tdGFP/+*; *R38F11-GAL4/+* without (-) or with a single
993 copy of the indicated *UAS*-transgenes.

994

995 **Figure 1 – figure supplement 5.** Related to Figures 1A and 1C. Expression patterns of
996 body wall *GAL4* drivers. Maximum intensity projections of tiled confocal stacks show
997 larval expression of membrane-targeted RFP (*UAS-mCD2-Cherry*) by the indicated
998 drivers in larvae additionally expressing the C4da neuron-specific marker *ppk-CD8-*
999 *GFP*. Scale bars, 500 μ m. Genotypes: *ppk-mCD8-GFP/+*; *UAS-mCD2-Cherry/+*;
1000 *GAL4/+*

1001

1002 **Figure 1 – figure supplement 6.** Related to Figure 1B.

1003 (A-B) Behavior ethograms of larvae following pan-epidermal stimulation (denoted with a
1004 red bar) mediated by *A58-GAL4*. (C) Fraction of larvae exhibiting indicated behaviors
1005 and (I) duration of indicated behaviors during optogenetic stimulation. (Genotype: *A58-*
1006 *GAL4*, *UAS-CsChrimson*, *tsh-GAL80*, *cha-GAL80/+*). (E-K) Behavioral ethograms of
1007 larvae following optogenetic stimulation (denoted with a blue bar) with a panel of

1008 epidermal GAL4 drivers. (L) Fraction of larvae exhibiting indicated behaviors and (M)
1009 duration of indicated behaviors during light stimulus. Genotype: *GAL4, UAS-*
1010 *CsChrimson, elav-GAL80/+*.

1011

1012 **Figure 1 – figure supplement 7.** Related to Figure 1B. Expression patterns of
1013 epidermal GAL4 drivers in the larval body wall and CNS. (A) Maximum intensity
1014 projections of confocal stacks show larval expression of a red fluorescent protein (*UAS-*
1015 *tdTomato*) under control of the indicated epidermal drivers in larvae additionally
1016 expressing *Nrg167-GFP*, an exon trap line that labels epidermal and glial membranes
1017 (Morin *et al.*, 2001; Yamamoto *et al.*, 2006). White brackets mark the location of the
1018 dorsal cluster of SSNs, which are visualized at high resolution in (B). (B) Maximum
1019 intensity projections of confocal stacks show larval expression of a nuclear-localized
1020 form of RFP (*UAS-RedStinger*) under control of the indicated *GAL4* drivers in larval
1021 fillets stained with fluorescently conjugated anti-HRP antibody to label sensory neurons.
1022 The nociceptive C4da neuron soma is outlined with a white hatched line in composite
1023 images and the outline is superimposed on images depicting *UAS-RedStinger* signal.
1024 Sensory neuron expression is undetectable for all epidermal drivers except for *A58-*
1025 *GAL4*, for which stochastic sensory neuron expression has been previously described
1026 (Jiang *et al.*, 2014). (C) Maximum intensity projections show CNS expression epidermal
1027 drivers used in this study. Aside from *A58-GAL4*, each driver exhibits sparse nervous
1028 system expression. Genotypes: (A) *Nrg*^{G00305}/+; *UAS-tdTomato*/+; *GAL4*/+, (B-C) *UAS-*
1029 *NLS-RFP*/+; *GAL4*/+.

1030

1031 **Figure 2.** Stimulation of epidermal cells evokes multimodal behavioral responses.

1032 (A) Larval behaviors were scored for 10 s before, during, and after optogenetic
1033 stimulation. (B-E) Fraction of larvae exhibiting indicated behaviors over time in one
1034 second bins expressing CsChrimson in (B) epidermal cells, (C) C4da neurons, (D) C3da
1035 neurons, and (E) Cho neurons in the presence and absence of all-trans retinal (ATR).
1036 Red line indicates the presence of light stimulation. (F) The latency to the first roll of the
1037 larvae that rolled from *Epi>Chrimson ATR+* and *C4da>Chrimson ATR+* treatment
1038 groups (n = 14, 17, respectively). (G) The duration of indicated behaviors of the larvae

1039 that displayed those behaviors during optogenetic stimulation. (H) The fraction of larvae
1040 that exhibited indicated behaviors following removal of the light stimulus of all larvae
1041 from panels (B-E). Genotypes: *GAL4*, *UAS-CsChrimson*+/-.
1042

1043 **Figure 2 – video 1.** Behavioral response of representative larva to optogenetic
1044 epidermal stimulation. Movies were captured under infrared light and annotated with
1045 behaviors that were scored post-hoc. Nociceptive behaviors (indicated in red) precede
1046 non-nociceptive behaviors (blue). Genotype: *R38F11-GAL4*, *UAS-CsChrimson*+/-.
1047

1048 **Figure 2 – video 2.** Behavioral response of representative larva to optogenetic
1049 nociceptor stimulation. Genotype: *ppk-GAL4*, *UAS-CsChrimson*+/-.
1050

1051 **Figure 2 – figure supplement 1.** (A-E) Behavior ethograms depict behaviors of
1052 individual larvae displayed in one second bins, scored for 10 s before, during, and after
1053 optical stimulus. Plots depict responses of larvae which contain a single copy of *UAS-*
1054 *CsChrimson* together with the indicated *GAL4* driver in the absence and presence of
1055 ATR (A-D), or responses of effector-only (*UAS-CsChrimson*+/-, ATR+) controls (E). (F)
1056 Plot depicts the fraction of larvae exhibiting indicated behaviors during light stimulus.
1057 (G) Latency to the first bend, hunch, back and freeze behaviors following optogenetic
1058 stimulation. Genotypes: *GAL4*, *UAS-CsChrimson*+/-.
1059

1060 **Figure 3.** (A) Optogenetic activation of CsChrimson-expressing epidermal cells in the
1061 body wall triggers calcium transients in the axon terminal of GCaMP6s-expressing
1062 nociceptive SSNs. Images show responses from one representative animal. Plots depict
1063 mean GCaMP6s fluorescence intensity of the axon terminals of (B) C4da, (C) C3da, (D)
1064 Cho, and (E) C1da neurons following optogenetic activation (light stimulus, yellow box)
1065 of epidermal cells over time. Solid lines depict mean GCaMP6s fluorescence across
1066 replicates (n=15 larval fillet preparations), shading indicates SEM, red traces are *GAL4*+

1067 ATR+, blue traces are *GAL4*+ ATR-, black trace is *GAL4*- ATR+. (F) The fraction of
1068 larvae exhibiting indicated behaviors during optogenetic epidermal stimulation in
1069 combination with SSN silencing via Tetanus Toxin (TnT) expression. We note that

1070 although baseline rolling probability is elevated in all genetic backgrounds containing
1071 the *AOP-LexA-TnT* insertion, silencing C4da and C3da neurons significantly attenuates
1072 responses to epidermal stimulation. (G) The duration of the behavioral responses during
1073 optogenetic epidermal stimulation with neuronal TnT expression. Genotypes: (A-B)
1074 *R27H06-LexA* (C4da neurons), *AOP-GCaMP6s*, *UAS-CsChrimson/+*; *R38F11-GAL4/+*
1075 or *R27H06-LexA* (C4da neurons), *AOP-GCaMP6s*, *UAS-CsChrimson/+* (*GAL4-ATR-*
1076 *effector-only control*); (C) *AOP-GCaMP6s*, *UAS-CsChrimson/+*; *R38F11-GAL4/NompC-*
1077 *LexA* (C3da neurons); (D) *UAS-GCaMP6s*, *AOP-CsChrimson*, *R61D08-GAL4* (Cho
1078 neurons)/*R38F11-LexA*; (E) *UAS-GCaMP6s*, *AOP-CsChrimson*, *R11F05-GAL4* (C1da
1079 neurons)/*R38F11-LexA*; (F-G) *R38F11-GAL4*, *UAS-CsChrimson*, *AOP-LexA-TnT/+*
1080 (*Epi>CsChrimson*); *R38F11-GAL4*, *UAS-CsChrimson*, *AOP-LexA-TnT/ppk-LexA*
1081 (*Epi>CsChrimson + C4da>TnT*); *R38F11-GAL4*, *UAS-CsChrimson*, *AOP-LexA-*
1082 *TnT/NompC-LexA* (*Epi>CsChrimson + C3da>TnT*).
1083

1084 **Figure 3 – figure supplement 1.** Related to Figure 3A-3D. GCaMP6s responses in
1085 axon terminals of (B) C4da, (C) C3da, (D) Cho and (E) C1da neurons following
1086 optogenetic activation (light stimulus, yellow box) of epidermal cells over time. Each
1087 trace represents the GCaMP6s fluorescence of an individual larval fillet. Red traces are
1088 *GAL4+ ATR+*, blue traces are *GAL4+ ATR-*, black trace is *GAL4- ATR+*. Genotypes: (A)
1089 *R27H06-LexA*, *AOP-GCaMP6s*, *UAS-CsChrimson/+*; *R38F11-GAL4/+* or *R27H06-*
1090 *LexA*, *AOP-GCaMP6s*, *UAS-CsChrimson/+* (*GAL4-ATR- effector-only control*); (B)
1091 *AOP-GCaMP6s*, *UAS-CsChrimson/+*; *R38F11-GAL4/NompC-LexA*; (C) *UAS-*
1092 *GCaMP6s*, *AOP-CsChrimson*, *R61D08-GAL4*/*R38F11-LexA*; (D) *UAS-GCaMP6s*,
1093 *AOP-CsChrimson*, *R11F05-GAL4/R38F11-LexA*.
1094

1095 **Figure 3 – figure supplement 2.** Related to Figure 3E-3F. (A-C) Behavior ethograms
1096 (left) and fraction of larvae (right) exhibiting indicated behaviors to optogenetic
1097 epidermal stimulation in combination with (A) an *AOP-TNT* transgene (control lacking
1098 LexA driver), (B) C4da neuron silencing via Tetanus Toxin (TnT), and (C) C3da neuron
1099 silencing via TnT. (D) Fraction of larvae exhibiting each behavior and (E) the duration of

1100 behavior responses after removal of the light stimulus. Genotypes are indicated in (A-
1101 C).

1102

1103 **Figure 4.** Epidermal stimulation augments nociceptive responses. (A) Mean GCaMP6s
1104 responses (F/F_0) in C4da axons during optogenetic stimulation (yellow box) of C4da
1105 neurons alone (green) or of C4da neurons and epidermal cells (magenta), shading
1106 indicates SEM. (B) Simultaneous epidermal stimulation increased the peak calcium
1107 response (F_{max}/F_0), (C) total calcium influx (area under the curve), and (D) duration of
1108 C4da neuron calcium responses compared to stimulation of C4da neurons alone.

1109 Genotypes: *ppk-LexA*, *AOP-GCaMP6s*+/+, *R27H06-GAL4/UAS-CsChrimson* (C4da) and
1110 *ppk-LexA*, *AOP-GCaMP6s*+/+, *R27H06-GAL4/R38F11-GAL4*, *UAS-CsChrimson*

1111 (C4da+epi). (E-J) Characterization of the behavioral responses to low-intensity
1112 optogenetic stimulation of C4da neurons, epidermal cells, or simultaneous C4da

1113 neurons and epidermal cells. (E) Cumulative and (F) total roll probability during
1114 optogenetic stimulation (indicated by the red bar). $n = 33$ (*C4da*>*CsChrimson*), 30

1115 (*Epi*>*CsChrimson*), and 31 (*C4da* + *Epi*>*CsChrimson*) larvae. (G, H) Number and
1116 frequency distribution of rolls, (I) latency to the first roll observed for larvae of the

1117 indicated genotypes, and (J) the duration of the indicated behaviors during light
1118 stimulus. Genotypes: *UAS-CsChrimson*+/+, *R27H06-GAL4*/+ (C4da), *UAS-*

1119 *CsChrimson*+/+, *R38F11-GAL4*/+ (Epidermis), *UAS-CsChrimson*+/+, *R27H06-*

1120 *GAL4/R38F11-GAL4* (C4da+Epidermis). (K) Roll probability of larvae to a 20 mN or 50
1121 mN von Frey mechanical stimulus and epidermal optogenetic activation (a light

1122 stimulus, $1.16 \mu\text{W}/\text{mm}^2$ that was insufficient on its own to induce nocifensive rolling).

1123 Larvae were reared in the presence or absence of ATR, as indicated. Genotypes: *UAS-*

1124 *CsChrimson*+/+, *R38F11-GAL4*/+. (L-N) Prior epidermal but not nociceptor stimulus

1125 potentiates mechanical nociceptive responses. (L) Roll probability of control larvae

1126 (*UAS-TrpA1*/+) or larvae expressing TrpA1 in the epidermis (*Epi-GAL4*: *R38F11-GAL4*)

1127 or C4da neurons (*UAS-TrpA1*/+; *C4da-GAL4* #1: *R27H06-GAL4*, *UAS-TrpA1*/+; *C4da-*

1128 *GAL4* #2: *ppk-GAL4*, *UAS-TrpA1*/+), or control larvae (*no GAL4*: *UAS-TrpA1*/+;) in

1129 response to 40 mN mechanical stimulus 10 s following 10 s of a thermal stimulus (25° or

1130 32° C). To control for effects of genetic background, we confirmed that each of the

1131 experimental genotypes exhibited mechanically induced nociceptive sensitization (Fig.
1132 4S1C). (M) Roll probability of control larvae (*UAS-TrpA1/+*) or larvae expressing *TrpA1*
1133 in the epidermis (*Epi>TrpA1: R38F11-GAL4, UAS-TrpA1/+*) in response to a 40 mN
1134 mechanical stimulus delivered at the indicated time interval following a 32° C thermal
1135 stimulus. (N) Nociceptive enhancement (difference in the roll probability to the first and
1136 second stimulus) is plotted against the recovery duration and results were fit to an
1137 exponential curve to derive the decay time constant. The red line indicates nociceptive
1138 enhancement of a mechanical stimulus by a prior epidermal thermogenetic stimulus; the
1139 black line indicates nociceptive enhancement by a prior mechanical stimulus.

1140

1141 **Figure 4 – figure supplement 1.** (A) GCaMP6s responses (F/F_0) of individual
1142 replicates during optogenetic stimulation (yellow box) of C4da neurons alone (green) or
1143 C4da neurons and epidermal cells (magenta), yellow box indicates presence of light
1144 stimulus. Genotypes: *ppk-LexA, AOP-GCaMP6s/+; R27H06-GAL4/UAS-CsChrimson*
1145 (C4da) and *ppk-LexA, AOP-GCaMP6s/+; R27H06-GAL4/R38F11-GAL4, UAS-*
1146 *CsChrimson* (C4da+epi). (B) Roll probability of larvae in response to two successive 40
1147 mN mechanical stimuli spaced by the indicated amount of time (recovery duration).
1148 Genotype: *R38F11-GAL4/+*. (C) Roll probability of larvae expressing *UAS-TrpA1* in
1149 nociceptors exhibited levels of mechanically induced nociceptive potentiation
1150 comparable to other experimental genotypes used in the study (control: *UAS-TrpA1/+*;
1151 epidermis: *R38F11-GAL4, UAS-TrpA1/+*; nociceptors: *R27H06-GAL4, UAS-TrpA1/+*).
1152

1153 **Figure 5.** Epidermal cells are intrinsically mechanosensitive. (A) Schematic of
1154 preparation to measure radial stretch evoked calcium responses of dissociated
1155 epidermal cells. (B) Representative calcium responses of a dissociated epidermal cell to
1156 0.5% and 1% radial stretch (successive stimuli), 2.5% radial stretch, and 5% radial
1157 stretch. (C) Dose response curve displaying the fraction of epidermal cells activated by
1158 increasing magnitudes of stretch. Red trace displays the mean \pm SEM across six
1159 independent dissociated cell preparations, obtained from a minimum of 6 larvae. Gray
1160 traces display fraction responding in each dissociated cell preparation replicate. (D)
1161 Subsets of epidermal cells display varying stretch thresholds, $n = 6$ dissociated cell

1162 preparations, for a total of 654 epidermal cells. (E) Representative mechanically
1163 induced epidermal calcium responses in the larval body wall. Images show GCaMP6s
1164 fluorescence intensity 100 ms prior to (i) and 20 s following (ii) a 25 μm membrane
1165 displacement (poke). (F) Distribution of the peak calcium response (F_{max}/F_0) to a 25 μm
1166 membrane displacement (poke) of 24 cells from 24 independent larval fillets. Cells were
1167 classified as responders (>10% increase in normalized GCaMP6s fluorescence). (G)
1168 Mean calcium responses (F/F_0) of poke responders and non-responders ($n = 12$ cells
1169 each). Solid lines depict mean normalized GCaMP6s fluorescence and shading
1170 indicates SEM. Genotype: *R38F11-GAL4, UAS-GCaMP6s*.

1171

1172 **Figure 5 – figure supplement 1.** Subsets of epidermal cells display calcium responses
1173 to diverse mechanical stimuli. Representative calcium traces of epidermal cells that
1174 respond to: (A) laminar flow via perfusion, (B) laminar flow and osmotic stretch, (C) 15%
1175 hypo-osmotic stretch, and (D) 30% hypo-osmotic stretch, or (E) do not respond to either
1176 flow or stretch. (F) Proportion of epidermal cells that are sensitive to mechanical stimuli.
1177 $n =$ three distinct cell preparations, 6 larvae per preparation, for a total of 177 cells. (G)
1178 Related to Figure 5G. GCaMP6s responses (F/F_0) of individual epidermal cells to a 25
1179 μm membrane displacement. Genotype: *R38F11-GAL4, UAS-GCaMP6s*.

1180 **Figure 6.** CRAC channels are required for epidermal mechanosensory responses and
1181 epidermal nociceptive potentiation. (A) RNAi screen for epidermal ion channels required
1182 for mechanically induced nociceptive potentiation. Bars depict nociceptive potentiation
1183 index (difference in the larval roll probability to the first and second mechanical stimuli
1184 divided by roll probability to the first mechanical stimulus). Candidate channels were
1185 chosen for further analysis if they had a z-score greater than 2 (absolute value). (B) The
1186 CRAC channels Orai and Stim are required in epidermal cells for mechanically evoked
1187 nociceptive potentiation. Roll probability of larvae of the indicated genotypes (Control
1188 RNAi, *R38F11-GAL4, UAS-RFP-RNAi/+*; *Stim* RNAi, *R38F11-GAL4, UAS-Stim-RNAi/+*;
1189 *Orai* RNAi, *R38F11-GAL4, UAS-Orai-RNAi/+*) to a 40 mN mechanical stimulus followed
1190 by a second 40mN mechanical stimulus 10 s later. (C) *Drosophila* epidermal cells
1191 display classical store-operated calcium entry (SOCE). Treatment with the drug

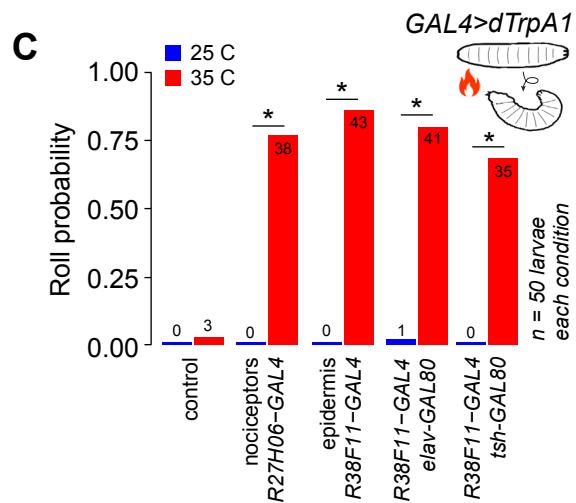
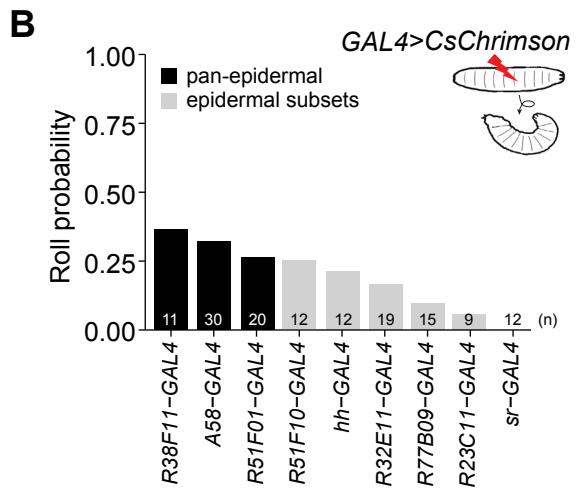
1192 thapsigargin (TG) in the absence of extracellular calcium promoted depletion of
1193 intracellular calcium stores and calcium influx, following extracellular calcium re-
1194 addition. (D) Like TG, 1% stretch in the absence of extracellular calcium induced
1195 depletion of intracellular calcium stores and calcium influx, following extracellular
1196 calcium re-entry. (E) 69% of stretch responsive cells displayed greater calcium influx
1197 during intracellular calcium stores release than during the calcium re-entry phase. (F-G)
1198 The Orai blocker, lanthanum chloride (500 nM) or the depletion of intracellular stores by
1199 thapsigargin (1 μ M) reduces the fraction of stretch-sensitive epidermal cells. (H-I) The
1200 fraction of stretch-sensitive epidermal cells is significantly decreased in cells isolated
1201 from larvae expressing *Stim* RNAi, or *Orai* RNAi, as compared to control RNAi. (J)
1202 Stretch stimuli evoke dose-dependent calcium signals in the human keratinocyte HaCaT
1203 cell line. (K) Representative stretch evoked SOCE calcium response in HaCaT cells.
1204 Stretch induces calcium release from stores in the absence of extracellular calcium and
1205 a greater calcium influx in the presence of extracellular calcium. (L) Epidermal
1206 hyperpolarization enhances mechanical nocifensive responses. Roll probability of larvae
1207 expressing GtACR in epidermal cells (*R38F11-GAL4, UAS-GtACR/+*) or control larvae
1208 (*R38F11-GAL4/+*) to a single 70 mN mechanical stimulus. (M) Epidermal *Stim*
1209 overexpression enhances mechanical nocifensive responses. Roll probability of *Stim*-
1210 overexpressing larvae (*R38F11-GAL4, UAS-Stim/+*) and control larvae (*R38F11-*
1211 *GAL4/+*) to two successive 40 mN mechanical stimuli delivered 10 s apart. (N)
1212 Epidermal potentiation of mechanical nociceptive responses requires exocytosis. Roll
1213 probability of control larvae (*UAS-shi^{ts}/+*) or larvae expressing temperature-sensitive
1214 dominant-negative *shi* in epidermal cells (*R38F11-GAL4, UAS-shi^{ts}/+*) in response to
1215 two successive mechanical stimuli that followed 10 min of conditioning at the permissive
1216 (25 $^{\circ}$ C) or non-permissive (30 $^{\circ}$ C) temperature. (O) Model of epidermal-neuronal
1217 signaling. Mechanically evoked *Stim*/Orai calcium signaling in epidermal cells drives
1218 calcium influx and vesicle release that drives nociceptor activation and mechanical
1219 sensitization via activation of C4da nociceptors.

1220

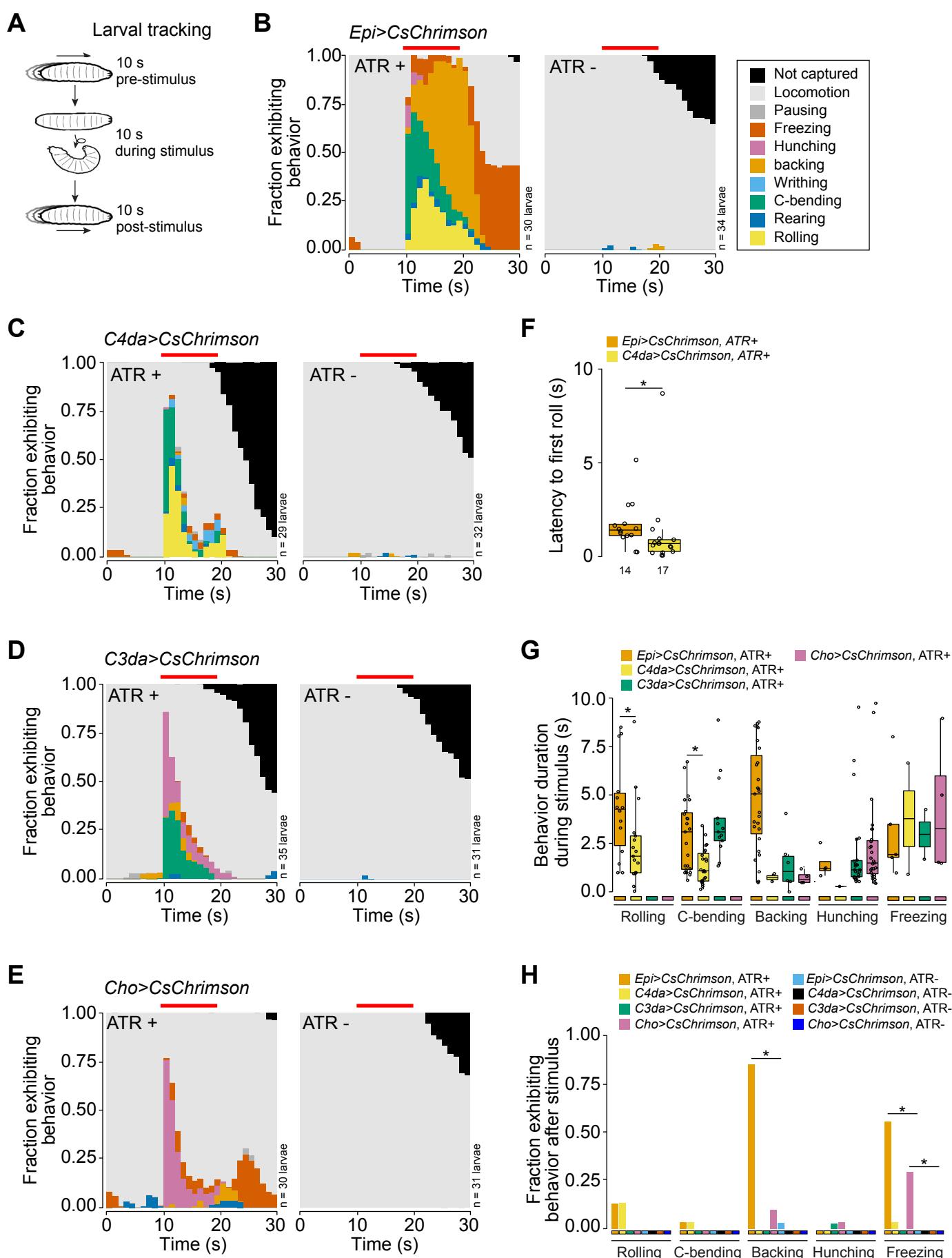
1221 **Figure 6 – figure supplement 1.** Related to Figure 6A. Ion channel expression in
1222 epidermal cells. Five populations of *UAS-GFP*-expressing epidermal cells were selected

1223 for RNA-seq analysis. GFP-positive epidermal cells were dissociated into single cell
1224 suspensions, manually picked, and subjected to RNA-Seq analysis. Plots depict
1225 expression levels (mean +/- standard deviation) of the indicated ion channels
1226 ($\log_2(\text{TPM}+1)$) from $n > 6$ independent libraries for each sample type.

1227 (A) Expression in epidermal cells collected from *R38F11-GAL4* which labels all
1228 epidermal cells. (B) Anatomically defined subsets of epidermal cells were profiled by
1229 removing posterior segments from *R38F11-GAL4*, *UAS-GFP* larvae (*R38F11-GAL4*
1230 head and thorax) or (C) dissecting the ventral epidermis (*R38F11-GAL4* ventral
1231 epidermis). (D) Expression in the dorsal epidermis (*ush-GAL4*) and or (E) bands of
1232 epidermal cells (*R51F10-GAL4*).



1233

1234 **Figure 6 – figure supplement 2.** (A-B) Epidermal knockdown of ion channels affects
1235 larval mechanical nociceptive responses. Roll probability in response to the first and
1236 second mechanical stimulus for larvae expressing RNAi transgenes to (A) *Orai* or
1237 *attP40* RNAi control transgene and (B) *Task6* or *attP2* RNAi control transgene. (C)
1238 Epidermal cell SOCE is attenuated by pre-treatment with the *Orai* blocker, lanthanum
1239 chloride (100 nM). (D) Representative SOCE after treatment with TG (1 μM) in
1240 epidermal cells isolated from larvae treated with control RNAi, *Stim* RNAi (red), or *Orai*
1241 RNAi, (blue). (E) Peak calcium response following SOCE in epidermal cells isolated
1242 from larvae treated with control RNAi, *Stim* RNAi (red), or *Orai* RNAi, (blue). (F) *Stim*
1243 RNAi decreases calcium store content of epidermal cells. Calcium store content was
1244 measured as the area under the curve of the cytosolic calcium response to TG (1 μM) in
1245 the absence of extracellular calcium.


1246

1247 **Supplementary File 1.** Details of statistical analyses performed for this study, including
1248 comparison groups, statistical tests, and results.

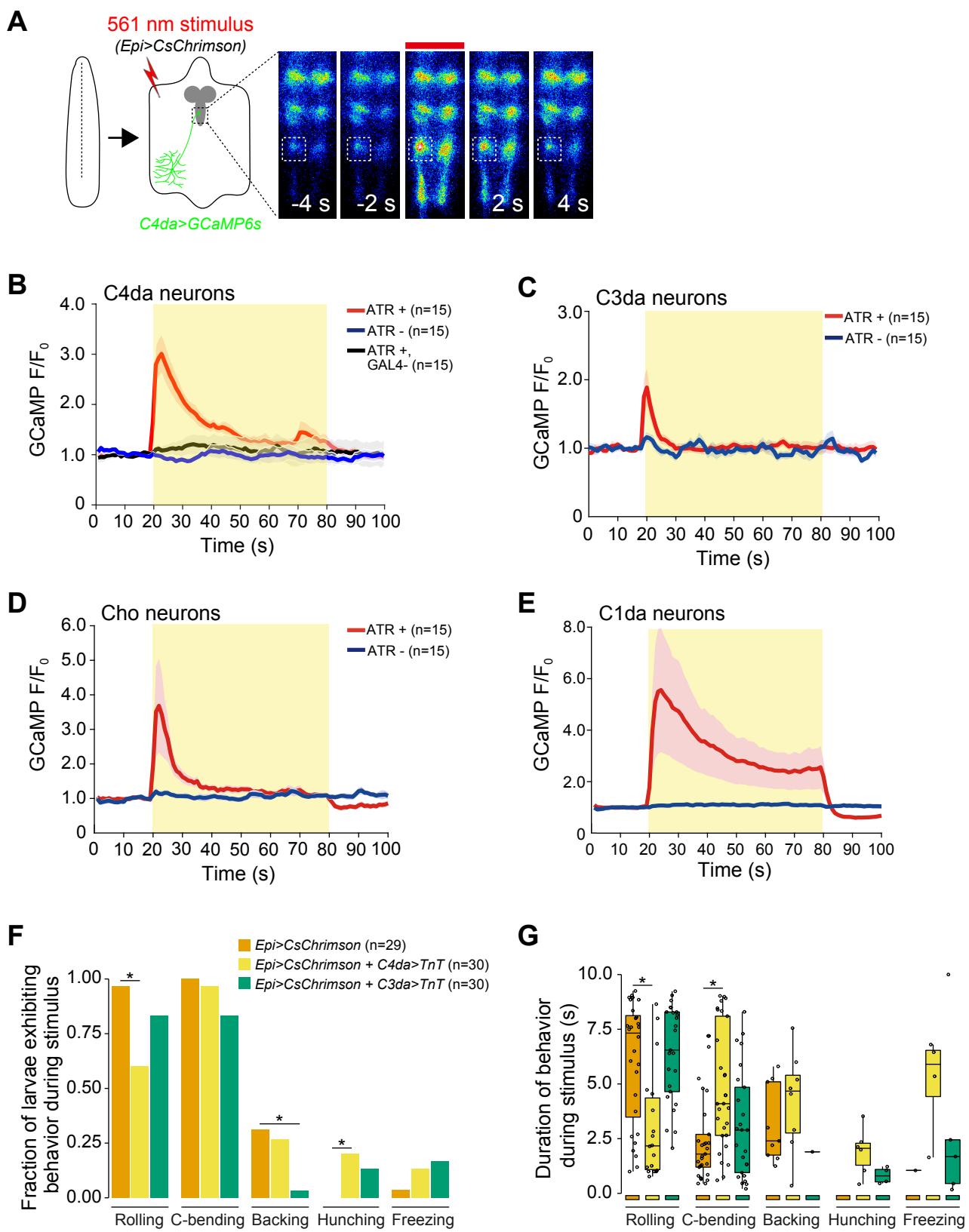
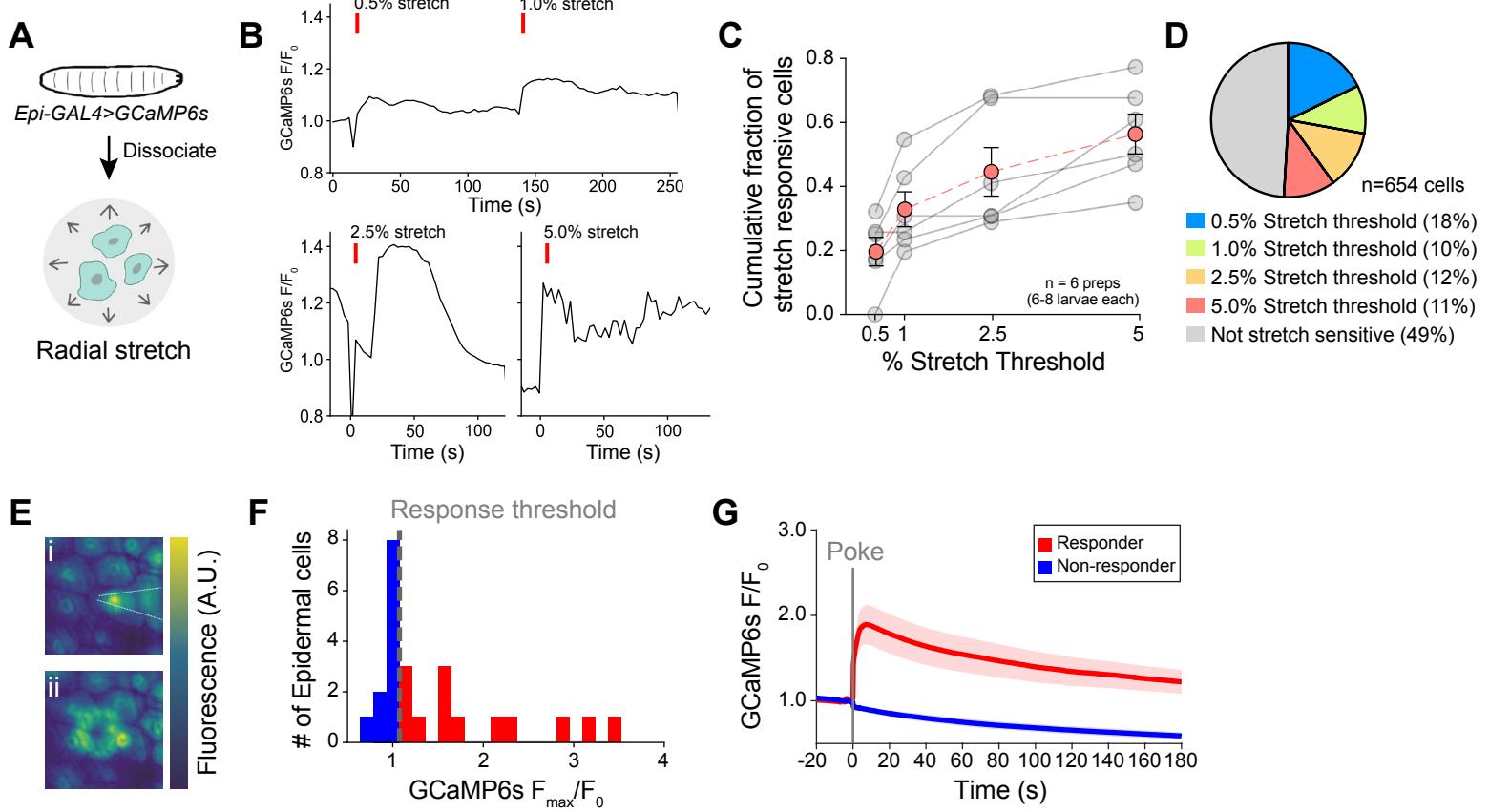

Figure 1

Figure 2


Figure 3

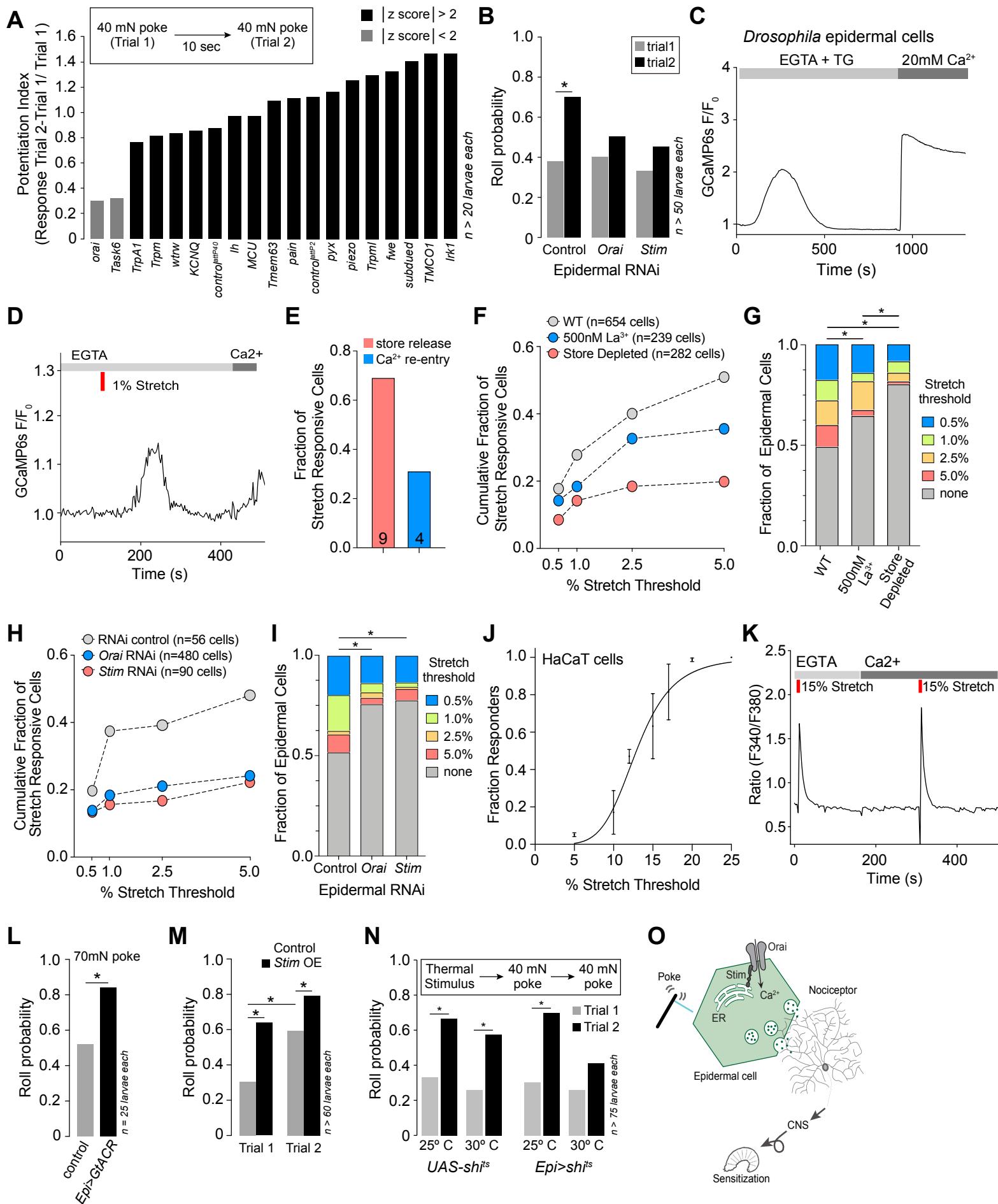

Figure 4

Figure 5

Figure 6

