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Abstract

While advances in single cell genomics have helped to chart the cellular components of tumor
ecosystems, it has been more challenging to characterize their specific spatial organization and
functional interactions. Here, we combine single cell RNA-seq, spatial transcriptomics by Slide-
seq, and in sifu multiplex RNA analysis, to create a detailed spatial map of healthy and dysplastic
colon cellular ecosystems and their association with disease progression. We profiled inducible
genetic CRC mouse models that recapitulate key features of human CRC, assigned cell types and
epithelial expression programs to spatial tissue locations in tumors, and computationally used them
to identify the regional features spanning different cells in the same spatial niche. We find that
tumors were organized in cellular neighborhoods, each with a distinct composition of cell
subtypes, expression programs, and local cellular interactions. Comparing to scRNA-seq and
Slide-seq data from human CRC, we find that both cell composition and layout features were
conserved between the species, with mouse neighborhoods correlating with malignancy and
clinical outcome in human patient tumors, highlighting the relevance of our findings to human
disease. Our work offers a comprehensive framework that is applicable across various tissues,
tumors, and disease conditions, with tools for the extrapolation of findings from experimental

mouse models to human diseases.
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INTRODUCTION

The spatial organization of diverse cells in the tumor ecosystem impacts and drives interactions
between malignant cells and neighboring immune and stromal cells, either promoting or
suppressing tumor growth!. Recent studies have shown that systematic understanding of the spatial

organization of tumors can shed light on disease progression and response to therapy, with specific

7 8,9

features correlated with tumor subtypes®*, cancer prognosis>~’, or response to treatment
However, genome-scale, high-resolution dissection of the spatial organization of tumors and its
functional implications remains challenging, largely due to technical limitations. Methods such as
fluorescent in situ hybridization (FISH) and immunohistochemistry can only measure a handful of
pre-selected transcripts or proteins, whereas single cell RNA-seq (scRNA-seq) does not directly
capture spatial relations. Recent advances in spatial genomics and proteomics allow multiplexed
or genome-scale measurements in situ'®!7, but with a trade-off between genomic scale and spatial
resolution'®. As a result, data from different experimental methods need to be integrated for a
comprehensive view of the tissue biology. Many analytical tools have been developed to integrate
some crucial aspects of the data'®2*, but it can be challenging to deploy them and distill answers
to specific disease biology questions. This leaves open many fundamental questions about tissue
organization and collective function, including whether there are canonical functional units in
tumors, what may be their organization in the tumor landscape, and what role does each play in

tumor progression.
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78 A case in point is colorectal cancer (CRC), where initial lesions (adenomatous polyps) progress
79  over time to carcinoma and eventually to metastatic disease. While the mutations that drive this

80  process were extensively studied**?’

, and the cellular ecosystem of CRC has now been deeply
81  charted®?®%, the spatial landscape is less well-characterized. In a recent study of human CRC?, we
82  statistically associated cell profiles across tumors and showed that they map to different cellular
83  communities, reside in different locations in the tumor and reflect different tumor subtypes.
84  However, absent genome wide in situ measurements, these statistical inferences do not yet reflect
85  the full spatial organization of the tumor. Moreover, it is important to relate such patterns to those
86  in animal models used in mechanistic studies and as pre-clinical models, to understand the relation
87  between lab models and human tumors.

88

89  Here, we deciphered the spatial and cellular organization of colorectal cancer (CRC) by combining
90  scRNA-seq, spatial transcriptomics by Slide-seq, and in situ RNA multiplex analysis, using a novel
91  computational framework. We first profiled two inducible genetic mouse models of colorectal
92  cancer that recapitulate key features of human CRC, before and after tumor initiation. We
93 integrated the spatial and cell profiles to create a spatial cell map of the tumor landscape, revealing
94  dysplasia-specific cellular layout and potential physical interactions. We found that the tumor
95  landscape is organized in cell neighborhoods, each with distinct epithelial, immune, and stromal
96  cell compositions, and governed by different gene programs. Three of the cell neighborhoods are
97  associated with tumor progression, each activating different biological pathways but all active
98  simultaneously albeit in different parts of the tumor. We devised a computational framework,

99  based on the TACCO?!' method, extending it to compare single cell and spatial features of tumors

100  between species and applied it to scRNA-seq data from human CRC. Multiple features were
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101  conserved between tumors in the mouse model and the human patients, and the mouse cellular
102 neighborhoods correlated with malignancy and clinical outcome (progression-free intervals (PFI)
103 and overall survival (OS)) in human patient tumors. Our work provides a general approach that

104  can be applied to other tissues, tumors and disease conditions.

105

106 RESULTS

107 A cell atlas of genetic models of colorectal cancer

108  To chart the cell ecosystem of CRC and how it changes during tumor progression, we studied two
109  genetic mouse models of CRC, one with inactivation of 4pc and another in which Apc inactivation

G12D/+ muytation and inactivation of Trp53°°3? (Figure 1A).

110  is accompanied by an oncogenic Kras
111 Inthe AV model, Apc™"Villin"*ERT? mice are injected with 4-hydroxytamoxifen to the submucosal
112 layer of the colon, inducing the deletion of Apc specifically in epithelial cells within the injection
113 site’®. In the AKPV model (Apc™"; LSL-Kras©'?P; Trp53": Rosa?0LSt-tdTomato/s . I/jj[jnCreERT2 mjce,

GI2D/* mutation and then

114  Methods), 4-hydroxytamoxifen injection also induces an oncogenic Kras
115  inactivation of 7rp53. In both cases, 4-hydroxytamoxifen injection leads to the formation of local
116  lesions that resemble human dysplastic lesions™.

117

118  We first generated a single-cell atlas of the models consisting of 48,115 high quality scRNA-seq
119  profiles from normal colon, AV (3 weeks after 4-hydroxytamoxifen induction) and AKPV (3 and
120 9 weeks after induction) tissues. We captured a diverse cell census (Figure 1B,C, Methods), with

121 35 clusters annotated post hoc by the expression of known marker genes (Figure 1B, Figure

122 S1A,B, Methods), across epithelial, immune and stromal cell compartments (Figure S1C). For
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123 validation purposes, we also generated multiplex in situ RNA profiles (with the Cartana*® method)
124  in 6 sections each from normal and AV conditions, using a panel of 66-180 marker genes chosen
125  to best represent the cell types and programs found in the tissues (Figure S1D, Methods).

126

127  Tumorigenic genotypes cause shifts in the composition of epithelial cell populations and their
128  microenvironment in AV and AKPYV lesions

129  Dysplastic lesions exhibited shifts in proportions of immune and stromal cells, including changes
130  in subsets pre-existing in normal tissue, as well as infiltration of new cell subsets (Figure 1C,D
131  and Figure S1D,E,F). This resulted in both increase in cells of existing populations (e.g., some T
132 cell subsets (TNKO5 (GdT/I117+), TNKO6 (Treg)) and emergence of new dysplasia-associated
133 cells (e.g., granulocytes (GranOl, Gran02) and monocytes (Mono02, Mono03)) mitrroring
134 observations in human CRC?, breast cancer**, and non-small cell lung cancer® (Figure 1C,D and
135  Figure S1D,E and Figure S2 A-C). We validated these patterns using multiplex in situ RNA
136  analysis (Figure 1E, Figure S1F-H and Supplementary item 1 and 2). Infiltration is likely to
137  underlie many of these changes as many of the increasing cell subsets (granulocytes, monocytes,
138  mast cells) expressed genes, such as Sell and Ccr2, indicating tissue recruitment, and as the cells
139  dramatically increase in proportion despite negligible signals of proliferation programs.

140  Two of four monocyte subsets, Mono02 and Mono03, were unique dysplasia-associated cells
141  (Figure S2D-F) and were respectively enriched for general inflammatory response genes
142 (FDR=5.7 107°, two-sided Fisher’s exact test in GO term enrichment) and interferon beta and
143 gamma response genes (FDR=3.5 10!, 1.0 107!%). T cell subsets showed the expected diversity
144 across nine subsets (Figure S2G-I)*°, with a significant decrease (out of all T cells) in TNKO1

145  (GdT/Cd8) in the dysplastic microenvironment and an increase in TNKO05 (GdT/I117+) (Figure


https://doi.org/10.1101/2022.10.02.508492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.508492; this version posted June 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

146  S2J). This is consistent with the T cell composition in tumors from mismatch repair proficient
147  (MMRp) CRC patients (Figure S2K). RNA velocity analysis®’ of T cells from normal and AV
148  tissue (Figure S3A) showed a change in inferred cellular relationships with TNKO03 (naive T) and
149  TNKO2 (Th1/Th17) preceding TNKO6 (Treg), consistent with the promotion of an
150  immunosuppressive microenvironment, and TNKOS8 (proliferating T) also preceding TNKO02
151  (Th1/Th17), TNKO04 (GdT/Cd8) and TNKO5 (GdT/Il117+) populations.

152

153  Within the five subsets of stromal cells (including vascular endothelial and lymphatic endothelial
154  cells and three fibroblast subsets, Figure S2L-N and Methods), Endo01 (vascular) were enriched
155  in dysplastic lesions compared to normal colon (FDR=1.8 1073, two-sided Welch’s t test on CLR
156  transformed compositions; Figure S20). Angiogenesis-related pathways, such as angiogenesis
157  (FDR=1.0 10"'") and positive regulation of angiogenesis (FDR=3.4 10") as well glycolytic process
158  (FDR=1.4 10*) were enriched in Endo01 (vascular) from lesions compared to normal colon (Table
159  S1). This is in line with vascular adaptation to the tumor’s growing needs for nutrients and
160  oxygen’® and with the increased expression of the vascular growth factor Vegf-4 in both monocytes

161  and macrophages (Figure S2P).

162 Cell-intrinsic expression shifts in different sub-lineages in the dysplastic epithelium

163  Epithelial cells showed dramatic cell-intrinsic changes between normal tissues and either AV or
164  AKPV lesions, such that the cell profiles of dysplastic epithelial cells in both models were highly
165  distinct from normal epithelial cells (and similar to each other) (Figure 1C, Figure S4A and
166  Methods). Epithelial cell profiles from normal mice (41% of cells) separated from most of those
167  from AV and AKPV models (59% of cells) (Figure 2A and Figure S4A,B), suggesting a common

168  shift in all dysplastic cells from the normal state. Notably, 11% of epithelial cells from AV/AKPV
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169  mice were classified as non-dysplastic healthy cells, indicating that normal, non-dysplastic, cells
170  may be present in or adjacent to the lesion microenvironment (Figure 2B and Figure S4A),
171  although we cannot firmly rule out adjacent tissue contamination. We annotated two cell clusters
172 — EpiO1 (dysplastic stem-like) and EpiO5 (dysplastic secretory-like) — as dysplastic, due to their
173 virtually exclusive presence in AV and AKPV models and because they expressed high levels of
174 Apc target genes (e.g., Axin2, Ascl2, Myc, Cendl, Lgr5) and were enriched in tdTomato” cells from
175  AKPVT mice (Figure 2C and Figure S4C,D) while also spanning the enterocyte to secretory
176  continuum with healthy cells (Figure S4B, PC2).

177

178  Interestingly, EpiO5 (dysplastic secretory-like) had distinguishing markers (e.g., Ccl9, Mmp?7,
179  Ifitm3) from their counterparts in normal tissue, EpiO4 (secretory) (Figure 2A-C and Figure
180  S4A,C,E). Mmp7 and Ifitm3 are known to promote metastasis in human CRC***, and Cc/9
181  expression by epithelial cells promotes tumor invasion through recruitment of Cerl® myeloid cells
182  to the tumor’s invasive front in a mouse model of CRC*'. Notably, Ccrl is expressed by newly
183  recruited monocytes, macrophages and granulocytes in our model, suggesting a potential
184  mechanism for tumor infiltration and invasion (Figure S4E). Thus, dysplastic secretory epithelial
185  cells may perform additional functions that differ from those of their healthy counterparts.

186

187 RNA velocity’” analysis of the epithelial cell compartment predicted that in the dysplastic
188  epithelium (Figure S3B, right) a proliferating stem-cell like dysplastic subset is a direct source to
189  both a massively expanded and heterogeneous non-proliferating population of dysplastic stem-like
190  cells (expressing WNT signaling and angiogenesis programs) and to dysplastic cells of different

191  “differentiation states’ (MHCII expressing stem/progenitors leading to enterocytes and secretory-
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192 like cells) (Figure S3B,C). Conversely, in the normal epithelium (Figure S3B, left), the ‘root’ is
193  placed in a much smaller population of proliferating intestinal stem cells, and the stem cell
194  compartment is overall much more modest. The proliferation and differentiation path of previously
195  identified normal epithelial cells remains intact (i.e., reminiscent of the one in normal samples)
196  even in the dysplastic lesions (Figure S3B). While our RNA velocity analysis provides insights
197  into potential cellular trajectories, further experimental validation is required to confirm these
198  findings.

199

200  Expression programs for stem-like functions, Wnt signaling, angiogenesis and inflammation
201  are activated in dysplastic epithelial cells

202  Both normal and dysplastic epithelial cells varied along a continuum, as expected and previously
203  observed in the ongoing differentiation in the colon epithelium***# and our RNA Velocity
204  analysis (Figure S3). Using non-negative matrix factorization (iNMF from LIGER*, Methods),
205  we recovered 20 expression programs spanning the different epithelial functions, and annotated
206  them by Gene Ontology terms enriched in their top 100 weighted genes (Figure 2D,E, Figure
207  S3C, S4F-L, Methods).

208

209  The programs enriched in different dysplastic cells highlighted key processes that play a role in
210  tumor promotion, including stem cell programs, Wnt signaling, angiogenesis, and inflammation
211  and innate immunity, including interferon alpha, beta and gamma pathways (Figure 2D,E, Figure
212 S3C). In particular, the stem cell program (#16) detected in some cells across all conditions, was
213 enriched in dysplastic samples (FDR=5.6 10'°, two-sided Welch’s t-test on CLR transformed

214  compositions), reminiscent of a recently described population in human®®?°. Comparing cells from

10
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215  dysplastic and normal samples that express the stem cell program, the dysplastic cells had distinct
216  expression profiles with induction of negative regulators of Wnt signaling (FDR=4.5 10, two-
217  sided Fisher’s exact test in GO term enrichment, e.g., Notum, Wnt inhibitory factor 1 (WifI) and
218  Nkdl) and genes that are related to cellular response to interferon-gamma (FDR=1.7 10, e.g.,
219  Ccl9, Ccl6) and immune system process (FDR=6.4 10, e.g., Ifitm1 and Ifitm3) (Figure 2E,F).
220  This is consistent with recent studies showing that Apc-mutant stem cells secrete negative
221  regulators of Wnt signaling to induce the differentiation of the WT stem cells in their proximity,
222 thereby outcompeting them and promoting tumor formation*®*’. Thus, stem cells from dysplastic
223  lesions may have non-canonical function and regulation. In addition, the programs for Wnt
224  signaling (expressing both positive and negative regulators; #4, FDR=2.8 10°), angiogenesis (#14,
225 FDR=1.2 10?), inflammatory response (#6, FDR=1.4 10°), and innate immune response and
226 interferon response (#7, FDR=1.2 102) were all predominantly expressed or enriched in
227  AV/AKPV epithelium (all with two-sided Welch’s t-test on CLR transformed compositions,
228  Figure 2E and Figure S41-M). These results are consistent with the known role of the Wnt
229  signaling pathway in CRC, and of angiogenesis, response to hypoxia and inflammation in tumor
230  progression*®?,

231

232 Malignant-like tissue programs and composition are conserved between mouse and human
233 tumors

234 To evaluate the relevance of our findings to human colorectal cancer, we compared them to a
235  scRNA-seq atlas we recently generated from tumor and adjacent normal tissue from 62 patients
236  with either MMRp or MMRd CRC?. We compared mouse and human tumors in terms of their

237  epithelial expression programs, cellular composition, and cell associations in multicellular hubs?.

11
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238  While our mouse model should more closely resemble MMRp tumors, we compared to both

239  classes separately and together to identify any shared features.

240  To assess the similarity between mouse and human programs we controlled for overall cross-
241  species and batch differences by normalizing program-specific expression profiles with species-
242 specific background profiles (Methods). The Pearson correlation coefficients of these normalized
243  scores between the human and mouse programs indicate some overlap in the programs defined on
244  mouse and human data (Figure S5A). Epithelial cells from human and mouse tumors expressed
245  many programs highly correlated between the species (Figure S5B, Methods), including for cell
246  cycle, inflammation, epithelial secretory, angiogenesis, Wnt signaling, and normal colon

247  functions.

248  Co-variation in cell proportions across samples (by scRNA-seq) was also conserved between
249  human and mouse tumors, suggesting broad conservation of tumor composition. For example, in
250  both species the proportion of endothelial cells and fibroblasts correlated across samples, as did T
251  and B cell proportions in human tumors and mouse dysplastic lesions (Figure S5C). Moreover,
252  when we transferred epithelial program annotations from mouse to human scRNA-seq and
253  calculated their co-variation across samples in each species, programs 11 (proliferation), 14
254  (angiogenesis) and 16 (stem cells), co-varied both across dysplastic mouse tumors and across
255  human MMRp and MMRd tumors (Figure SSD and Methods), suggesting a conserved dysplastic
256  tissue architecture.

257

258 Integrated spatial and single-cell atlas of mouse CRC tumors

12
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259  To comprehensively decipher the distribution of cells and programs in the tumor spatial niche, we
260  nextused Slide-seqV2'"> for genome-wide spatial RNA-seq at 10 um resolution. We sectioned and
261  profiled frozen tissues from four normal colon and four AV lesions using 10 Slide-seqV2 pucks
262  (Methods), recovering 221,936 high quality beads (Figure S6A-C, Methods). We then integrated
263  the single cell census and spatial profiles using TACCO, which allowed us to annotate each bead
264  with compositions of discrete cell types (from epithelial, immune and stromal compartments) and
265  to further annotate the epithelial fraction of each bead with a composition of epithelial program
266  activity (Figure 1A “annotation”).

267

268  We first used TACCO to annotate every bead in the Slide-seq data with a composition of discrete
269  cell subtypes for every puck separately, using its matching single-cell reference (normal or disease;
270  Figure 1A, Methods). To this end, TACCO iteratively solved optimal transport problems to assign
271  cell subtypes to fractions of reads of the beads. TACCO relies on unbalanced optimal transport to
272 allow for shifts in the frequency of cell subtypes in the pucks vs. the single-cell dataset, while using
273  the reference cellular frequencies as prior knowledge (Figure S6E,G). TACCO’s cell type
274  mapping recapitulated the muscularis layer in its expected tissue location based on the inferred
275  cellular composition pattern (Figure 3A, 4A and S6D). This illustrates that TACCO's
276  compositional annotations align well with biological patterns.

277

278  Next, we used TACCO to map the epithelial gene programs (defined above), focusing on transcript
279  counts that are inferred as derived from epithelial cells. TACCO partitioned the read count matrices
280  for each puck, assigning counts to epithelial cells based on the mapped per-bead cell subtype

281  annotations (from the first step) and the expression profiles associated with each subtype

13
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282  (Methods). It then summed all epithelial contributions into an epithelial-only spatial count matrix,
283  followed by optimal transport to assign epithelial program contributions to individual beads, based
284  on epithelial cell-only read signals. As for cell type mapping, the proportional contribution of the
285  programs largely recapitulated their contributions in sScRNA-seq (Figure S6F,H).

286

287  Altered and less ordered local cellular organization of dysplastic lesions

288  We assessed the local cellular architecture in terms of the preferential proximity of cells of certain
289  type or expressing particular epithelial programs, within a fixed-sized neighborhood, by adapting
290 an earlier method. We defined a z-score as significance of the observed neighborship relations
291  compared to the null for neighborhoods of 20, 40 or 60 um diameter (Figure 3B,C and Figure
292  S7A,B). This z-score is defined with respect to a population of random cell type annotations
293  generated by random permutations of the cell type annotations between the beads, where in our
294  case we permute fractional cell type contributions.

295  Cell proximity preferences in the normal colon tissue are consistent with the expected morphology,
296  validating our approach (Figure 3A,B). Epithelial cells were organized such that the differentiated
297  Epi02 (Enterocytes) are excluded from the stem cell niche (Figure 3B and Figure S7C), and
298  endothelial cells and fibroblasts were also spatially co-located in a focused region (Figure 3B),
299  with T cells in their vicinity (Figure 3B). Our multiplex in situ RNA analysis validated the
300 exclusion of enterocytes from the stem cell niche, as also seen in Slide-seq data (Figure S7C,D).

301

302  While some normal tissue features are preserved in dysplastic samples, including co-location of
303  cells of the same lineage™'? (Figure 3A-C), there were notable changes, and more disorder. Cell

304  types were more randomly distributed in AV lesion vs. normal tissue, reflected in lower z-scores
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305  (p=1.6 1077, one-sided Mann-Whitney U test; Figure STE). At short distances, all epithelial cells
306 (normal and dysplastic) were preferentially located close to cells from the same subtype (Figure
307  3C) and even to cells with similar functions: epithelial cells expressing programs associated with
308  malignant-like function (e.g., program 4 (Wnt signaling), 14 (angiogenesis) and 16 (stem cells))
309  resided close to each other and were spatially distant from cells expressing programs that are
310  related to normal epithelial functions (e.g., program 5 (basolateral plasma membrane), 8 (apical
311 plasma membrane) and 10 (oxidation-reduction process)), supporting a model where tumor
312 progression is structured and compartmentalized (Figure S7F). Immune and stromal cells were
313  generally excluded from epithelial cell neighborhoods. Granulocytes aggregated together (self-
314  proximal) (Figure 3C) and were relatively close to endothelial cells and dysplasia-associated
315  monocytes (Mono02, Mono03), consistent with their recruitment from the blood through the
316  vessels (Figure 3C and Figure S7G). Our multiplex in sifu RNA analysis validated the spatial
317  enrichment of monocytes and granulocytes near vessels (Figure S7TH).

318

319  Epithelial regional analysis recovers canonical structures in normal colon

320  To detect distinctive tissue regions in tumors, which lack traditional tissue references, we identified
321  cellular neighborhoods with both similar epithelial program activity and a particular composition
322 of immune and stromal cells. Specifically, we first identified “epithelial program regions” as areas
323  of distinct epithelial program activity, and then found immune or stromal cells associated with
324  each region (Figure 1A “annotation”). Intuitively, we defined “regions” based on both the
325 similarity in epithelial expression program activity and proximity in space. To do this, after
326  assigning epithelial programs to epithelial beads, we clustered the beads based on a weighted sum

327  of spatial proximity and expression program similarity. This results in spatially contiguous

15


https://doi.org/10.1101/2022.10.02.508492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.508492; this version posted June 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

328  annotation of beads with distinct epithelial program activity, which, together with the immune and
329  stromal cells in their proximity, compose the “region”. Specifically, using TACCO, we defined
330  epithelial program regions by Leiden clustering of the weighted sum of neighborship graphs for
331  spatial bead proximity and epithelial expression program similarity, such that transcriptionally
332  similar epithelial beads on different pucks can be connected (despite “infinite” spatial distance,
333 Methods). We then used this single framework for region annotation across all pucks (Figure 4A),
334  to determine the distinctive composition of additional cell types in the same set of spatial regions
335  (Figure 4B-D and Figure S8A).

336

337  In the normal colon, the regional analysis (Figure 4A, bottom) robustly recovered the expected
338  spatial organization of the healthy colon across five regions and their cellular composition and
339  sublayers (Figure 1A), from luminal/apical to basal. Four regions recovered by TACCO
340  corresponded to different layers of the mucosa (Figure 4A and 4E,F): a luminal layer with reads
341  found beyond the cellular layer and likely representing cellular debris trapped in the mucus; three
342 apical layers expressing programs related to normal epithelial function (transmembrane transport,
343  oxidation-reduction process) with gradual transition from apical to basal features; and a basal-most
344  layer, enriched for the deep crypt, proliferation (G1/S,G2/M), MHCII and basolateral plasma
345  membrane programs, all common features of the deep crypt area. Finally, region 2, enriched with
346  fibroblasts, myofibroblasts and endothelial cells, and located in the most basal side of the tissue,
347  captured the submucosal and muscularis propria layers, which are predominantly comprised of
348  fibroblasts and muscle, respectively, alongside blood and lymphatic vessels, nerves and immune

349  cells. Overall, TACCO recovered the known organization of the colon, showing the power of our
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350  unsupervised mapping approach and shedding light on expression programs that are required for
351  the maintenance of normal colon homeostasis.

352

353  Dysplastic lesions maintain some of the programs of the corresponding regions in healthy
354  tissue

355 AV lesions did not maintain the robust organization of normal tissues, and reflected the expected
356  histopathology of high grade dysplasia, when dysplastic cells are confined to the mucosal layer
357  and do not invade the submucosa®' (Figure 1A and 4A, top). Specifically, the submucosal and
358  muscularis propria layers from both normal and AV lesions were assigned to region 2 (Figure
359  4A).

360 Despite the altered morphology, some of the disrupted regions also expressed programs
361  characteristic of their normal healthy function, suggesting that tumor progression is spatially
362  structured and compartmentalized. For example, the region above the submucosa, captured as
363  region 1 in AV lesions and region 5 in normal colon (Figure 4A), had similar features in both AV
364  lesions and normal samples. Thus, although the overall spatial organization was disrupted in the
365 lesion, region 1 in AV lesions expressed programs that are reminiscent of the normal deep crypt
366  region 5, and was enriched for deep crypt cells and programs that are related to proliferation and
367 MHC II*} (Figure 4A,C). These included proliferation programs 3 and 11 and both normal stem
368  cells (Epi03) and dysplastic secretory-like cells (Epi05), as well as dysplastic stem cells (EpiOl,
369  though to a lesser extent than some other regions), so it may reflect one of the proliferative stem
370  cell (and dysplastic secretory-like) niches in AV models (Figure 4B,C). Other regions in the AV
371  lesions also contained some epithelial cells with normal profiles, expressing programs that should

372  allow them to maintain their capacity to perform normal tasks. For example, region 3 expressed
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373  apical plasma membrane functions and region 10 was enriched with oxidation-reduction functions
374  (Figure 4C).

375  To learn about the spatial distribution of the dysplastic regions, we measured their distance from
376  region 2 (muscularis), which is a stable landmark in the lesions. Remnants of the layered structure
377  of the healthy tissue were still observed in the AV tissue, especially at relatively low distances
378  from the muscularis. For example, healthy region 5 — characteristically located at distances of
379  about 150-200um from the muscularis — is replaced by dysplastic region 1, peaking at 200pum. All
380  malignant-like regions (6/8/11) were spatially associated at ~300-700um from the muscularis
381  (Figure S8C), located ~100-400um apart from each other (Figure S8D). We further validated this
382  result at the protein level, by staining for b-catenin, showing an (inactive) cytoplasmic localization
383  in the region adjacent to the muscularis, and mostly nuclear (active) localization in distal regions,
384  near the lumen (Figure S8B).

385

386  Three spatially and functionally distinct tumor regions enriched in AV lesions

387  Three regions — 6, 8, and 11 — had epithelial composition and programs that suggested advanced

388  malignant-like characteristics, each highlighting a potentially different mechanism for tumor

389  progression (Figure 4G,H). These three ‘malignant-like regions’, were enriched (vs. all other

390  regions) in stem cell, Wnt signaling and angiogenesis programs (16, #4 and #14; FDR=9.6 107!,

391 8.1107° 3.7 10" two-sided Welch’s t-test on CLR transformed compositions) and depleted of
392 normal epithelial programs (#5, #8, and #10; FDR=5.5 1072, 1.6 10'2, 4.2 10"'°, Figure 4I).

393  Furthermore, the malignant-like regions were enriched in immune cells, including monocytes-

394  macrophages (FDR<=1.5 107; excluding Mac02 (Lyvel+)), T cell subsets TNK02 (Th1/Th17),

395 TNKO5 (GdT/II17+), TNKO6 (Treg), TNKOS (proliferating T) (FDR=2.4 102, 2.2 10*, 1.7 107,
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396 9.6 10™; two-sided Welch’s t-test on CLR transformed compositions), infiltrating granulocytes
397  (FDR<=9.7 103), and mast cells (FDR=1.4 10?), suggesting an ongoing immune response
398 (Figure 4J). However, each one of the three regions had a different epithelial program
399  composition, suggesting that in each type of region there is a different dominant pathway/feature
400  that may drive tumor progression (Figure 4C, Table S2).

401

402  Region 6 was characterized by an inflammatory and angiogenic multicellular community, with
403  epithelial and immune cells expressing inflammatory programs, endothelial cells and monocytes
404  connected in a pro-angiogenic circuit, and pro-invasive genes expressed by both endothelial and
405  immune cells (Figure 4B,C). Specifically, region 6 was distinctly enriched for proliferation
406  (programs 3 and 11; FDR=2.2 10% 1.2 10'° two-sided Welch’s t-test on CLR transformed
407  compositions) and inflammatory epithelial programs (programs 6 and 7; FDR=9.0 107, 2.0 10-
408 '), and its non-epithelial compartment was correspondingly enriched for genes from
409  inflammatory pathways, including the response to TNF, IL-1 and IFN y (FDR=3.1 10*, 2.8 107,
410 4.9 10°, two-sided Fisher’s exact test in GO term enrichment), and chemotaxis of monocytes,
411  neutrophils, and lymphocytes (FDR=1.5 103, 3.2 10'° 1.0 102, Table S2), suggesting
412 recruitment of inflammatory cells from the circulation or other parts of the tissue. Region 6 was
413  also enriched for collagen binding genes and collagen-containing extracellular matrix (ECM)
414  genes (FDR=1.4 102, 7.6 107, two-sided Fisher’s exact test in GO term enrichment, Table S2),
415  which are important for migration and invasiveness>. These include Sparc, expressed mainly by
416  endothelial cells and fibroblasts in our data, known to promote colorectal cancer invasion®?; and
417  Ctss, a peptidase expressed by T cells and monocytes-macrophages that promotes CRC

418  neovascularization and tumor growth>. Finally, gene expression patterns in endothelial cells and
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419  monocytes in region 6 suggested active angiogenesis through a multi-cellular feedback loop, with
420  enriched numbers of vascular and lymphatic endothelial cells expressing immune-attracting
421  chemokines (Cxc/9) and adhesion molecules (e.g. Chd5, Mcam), monocytes expressing
422  proangiogenic factors that induce proliferation of endothelial cells (e.g., Mmp12), and monocytes
423  and macrophages expressing Ctsd, which increases tumorigenesis in CRC models™ (Figure SSE).
424

425  Region 8 was enriched for deep crypt cells (program 13; FDR=1.7 10", two-sided Welch’s t-test
426  on CLR transformed compositions), reminiscent of the normal stem cell niche in normal colon, an
427  epithelial innate immune program (program 1; FDR=3.4 107'%) expressed by secretory cells in AV
428  and AKPV lesions, and plasma and B cell activity. Unlike the canonical (normal) deep crypt region
429  (region 5), which is enriched for MHCII expression (program 18; FDR=8.6 102%), this region was
430  depleted for the program’s expression (FDR=2.1 107?%), which may indicate an earlier stem cell-
431 like state®, or a decoupling of the cell cycle and MHCII programs (which are coupled in normal
432 ISC differentiation, and allow a cross talk with T cells to modulate T cell differentiation) (Figure
433  4B,C). The region’s non-epithelial compartment was enriched for B cell activation and BCR
434  signaling genes (FDR=4.0 10, 1.9 10, two-sided Fisher’s exact test in GO term enrichment,
435  Table S2). This may be related to B cell function in protection from lumen antigens>® or to tertiary
436  lymphoid structures (TLS), which is correlated with clinical benefits in cancer patients®’. Notably,
437  EpiO5 (dysplastic secretory-like) enriched in Region 8 (Figure 4B) expressed higher levels of
438  inflammatory genes and immune chemokines (e.g., Ccl9, Ifitm3) compared to normal counterparts,
439  Epi04 (secretory) (Figure 2C and Figure S4C,E), and may thus promote the formation of this
440  region. We validated the presence of TLS-like structures in association with deep crypt secretory

441  cells in AV lesions using multiplex RNA analysis (Cartana) (Supplementary item 3), showing
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442  that the dominant population of B cells is accompanied by monocyte-macrophages and T cells
443  characteristic of TLSs, as well as the expression of Reg4 and Muc?2, deep crypt goblet/secretory
444  cell markers.

445
446  Region 11 was populated by cells expressing the Wnt signaling pathway program (4, FDR=9.3 10

447 B, two-sided Welch’s t-test on CLR transformed compositions), with several lines of evidence
448  supporting an active epithelial to mesenchymal transition (EMT) in this region. Epithelial cells in
449  region 11 were enriched for the expression of mesenchymal genes, including Vimentin®® (Vim,
450 FDR=7.4 10%, one-sided Fisher’s exact test), Prox1>° (FDR=3.7 10!, and Sox11%° (FDR=7.7
451  10°%**) (Figure S8F), as well as for EMT signatures from a mouse model of lung adenocarcinoma
452  °' (FDR=1.5 10*?, two-sided Mann-Whitney U test) and from human head and neck squamous
453  cell carcinoma tumors®® (FDR=6.9 10, two-sided Mann-Whitney U test). This is consistent with
454  therole of Wnt signaling in promoting EMT and a mesenchymal phenotype in CRC, breast cancer
455  and other epithelial tumors®®*, Region 11 non-epithelial cells also expressed genes encoding
456  MHC-I binding proteins (FDR=4.6 102, two-sided Fisher’s exact test in GO term enrichment,
457  Table S2) and actin cytoskeleton, filament and binding proteins (FDR=3.1 10, 7.7 103, 2.7 10°
458  19). Organization of the cytoskeleton affects migration, adherence, and interaction of lymphocytes
459  with antigen presenting cells®. Notably, region 11 also concentrated at a more distal part of the
460  tissue at ~900um from the muscularis suggesting an outgrowth of the tissue towards the lumen
461  (Figure S8C).

462  Non-epithelial cells formed two cellular hubs in the malignant-like regions (6,8,11) (Figure S8G):
463  An endothelial-fibroblast hub, detected in all three regions, and an immune hub with B cells, TNK
464  cells, monocytes, and macrophages, which was prominent in inflammatory region 6, weaker (less

465  spatially correlated) in region 8 (but validated in situ), and not correlated in region 11. Thus,
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466  activation of an immune response is reflected by close proximity between immune cells. We
467  further characterized the organization of the vascular niche using our multiplex in situ RNA data,
468  finding that while neighbors of the Pdgfrb-expressing pericytes are mainly other Pdgfrb-
469  expressing pericytes and endothelial cells, Pecaml1-expressing endothelial cells appear self-
470  enriched next to themselves at cellular scale distances and close to Pdgfrb-expressing pericytes
471  for larger distances (Figure S8H).

472

473 Overall, three multicellular community regions were enriched in AV lesions: (1) inflammatory
474  epithelial regions with endothelial cells and monocytes expressing angiogenesis, inflammation and
475  invasion programs; (2) epithelial stem-like regions, associated with plasma and B cell activity; and
476  (3) regions with epithelial to mesenchymal transition (EMT) and Wnt signaling dysplastic cells.
477  Each region highlights different processes that modulate tumorigenesis or invasion, and the three
478  regions co-exist in the same tumor at different spatial locations.

479

480  Cell-cell interactions are rewired in AV lesions

481  To identify cell-cell signaling mechanisms that may underly these regional associations, we used
482 COMMOT®, a computational framework that uses Optimal Transport to infer cell-cell
483  communication from receptor-ligand expression patterns in spatially resolved data. We used
484 COMMOT’s bead-wise communication ‘output’ and devised a method to address p-value inflation
485 in statistical enrichment testing, using spatially-informed data aggregation (Methods).

486

487  We observed stronger and distinct ligand-receptor interactions in AV vs. normal samples,

488  reflecting the activated state in the dysplastic tissue (Figure 4K, Supplementary item 4A). In
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489  particular, while interactions enriched in AV lesions involved immune, epithelial and stromal
490  signaling, those enriched in normal tissue involved neuropeptides, such as NPY and GCG
491  (glucagon). Moreover, malignant-like regions 6 and 11 as well as region 2 (muscularis) were
492  particularly enriched for active communication pathways (Figure S8I and Supplementary item
493  4B). This included the WNT signaling pathway, angiogenesis (VEGF, PDGF, FGF) and the OSM
494  pathway.

495

496  Similar spatial patterns in human and mouse tumors

497  The overall spatial distribution of cell types and epithelial profiles was conserved between mouse
498  and human tumors, when comparing to scRNA-seq>?*2°¢770 We examined mouse-defined
499  regions in human tumors, using TACCO to map the expression profiles associated with the
500 epithelial, immune and stroma compartments in each of the TACCO-identified mouse regions to
501  scRNA-seq profiles from human CRC, and probabilistically annotated region-specific expression
502  profiles for each scRNA-seq profile from the human samples. This identified two main “meta
503  compartments”, with epithelial, stromal and immune profiles from human MMRp and MMRd
504  tumors associated with regions 6, 8 and 11 that were enriched in AV lesions (as well as 0 and 2),
505  while those from normal human tissue were associated with normal regions (e.g., 5, 10, 12)
506  (Figure SA and Figure S9A, Methods).

507

508  Malignant-like regions are associated with tumor progression in human colorectal tumors
509  We next assessed if the regional epithelial programs that we spatially identified in mouse are
510  conserved in human. To this end, we constructed pseudo-bulk profiles from epithelial cells for our

511  mouse samples and for recently published human samples profiled along different stages of
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512 malignant transformation, from normal tissue to polyp to CRC>282%67-70 'We scored each epithelial
513  pseudo-bulk profile with the differentially expressed genes between the epithelial parts of the
514  regions and computed the principal components of these scores across all human and mouse
515 samples (Methods). The first principal component (PC1) captured features that are related to
516  malignancy, with higher values for human tumors vs. polyps (Figure 5B and Figure S9B). In
517  addition, malignant-like region (6/8/11) scores were higher in dysplastic vs. normal samples
518  (Figure SC). Thus, the spatial region profiles defined in mouse capture features that correlate with
519  malignant transformation in human.

520

521  We further classified each full pseudo-bulk profile from the dysplastic human samples into one of
522 the four groups in the CMS expression-based classification’! (Methods) and compared the mouse
523  region scores for each class of samples (Figure S9C, Methods). CMS2 classified samples were
524 most closely related to our dysplastic mouse models: all of the dysplasia -associated regions were
525  enriched in CMS2 tumors while most normal regions were depleted, relative to the other CMS
526  classes.

527

528  Finally, we found that expression of the malignant like regions (6/8/11) in tumors was associated
529  with clinical outcome. We scored each tumor based on genes that were differentially expressed
530 between the full expression profile of malignant-like regions (6/8/11) and compared the
531  progression-free interval (PFI) and overall survival (OS) for patients in TCGA whose RNA-seq
532 profiles were in the top and bottom quartile of malignant-like region scores (Methods). High
533  scores for malignant-like region 11 (EMT) were correlated with shorter PFI, while those for

534  malignant-like region 6 (inflammation) correlate with longer PFI and longer OS, (Figure SD,E).
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535  These associations were driven primarily by MMRp tumors (Figure S9D,E). This suggests that
536  region 11 is associated with pro-tumorigenic properties in human patients, while region 6 might
537  be associated with tumor controlling properties. This highlights the importance of multicellular

538  functional tissue modules in the CRC tumor ecosystem.

539

540 DISCUSSION

541

542  Here, we systematically charted the spatial organization of cellular expression in dysplastic tissue
543 ofthe colon, to help identify putative functional units in the tumor. We used TACCO?! to integrate
544  scRNA-seq and Slide-seq data, not only by mapping cell types to their positions, but also
545  distinguishing different cell programs, the regions that they dominate, and their characteristic
546  microenvironments. This allowed us to overcome technical limitations, such as lack of spatial
547  context in scCRNA-seq and sparse readout in Slide-seq, and to generate a high-resolution spatial
548  map of the dysplastic landscape transcending beyond the mapping of individual cells to spatial
549  positions. We used this map to show correlation with clinical outcome in human patient tumors.
550

551  Our scRNA-seq analysis revealed profound enrichment of a stem cell program in dysplastic
552 tissues. The profiles of dysplastic cells expressing this program are distinct from normal stem cells
553 and enriched with expression of negative regulators of the WNT signaling pathway and
554  inflammation, suggesting a non-canonical function. The abundance of these cells with stemness
555  potential across all our malignant-like regions, points to a dynamic population that can affect the
556  cells in its proximity, by secretion of negative regulators of the WNT signaling and inflammatory

557  function but may also adopt various functions depending on the environmental cues and dysplasia-
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558  associated cells in its proximity. A similar population, designated “high-plasticity cell state”, was
559  previously described in a mouse model of lung adenocarcinoma and in human patients, where it
560  was correlated with resistance to chemotherapy®'. Whether these cells can be manipulated to take
561  on specific phenotypes or even to differentiate into normal-like enterocytes given the appropriate
562  signal from the microenvironment, remain as open questions.

563

564  Within the dysplastic lesions, alongside malignant-like regions, we found regions with normal
565  features (Regions 3.4,9,10), comparable to regions found in the normal colon, most likely
566  representing compartments driven by clones that were not affected by the genetic perturbation.
567  One of these regions, region 4, contained mainly goblet cells with normal expression profiles.
568  Whether this neighborhood represents normal cells that reside alongside malignant cells or a
569  cancer transition state, it may modify tumor progression, by recruiting immune cells or by
570  secreting factors that affect epithelial proliferation in adjacent regions. For example, region 4 in
571  dysplastic lesions is enriched with chemokine activity genes relative to region 4 in normal colon
572  suggesting a possible role in recruitment of immune cells to the dysplastic landscape. Further work
573 is required to understand the role of these regions (expressing normal features) in tumor
574  progression.

575

576  While the malignant-like regions were identified as discrete spatial entities, each with coordinated
577  features across epithelial, immune, and stromal cells, these regions are adjacent to each other.
578  Thus, they may still influence one another through signaling or by utilizing branches of the same
579  main vessels. For example, Osm is expressed by cells in region 6, whereas its receptor is expressed

580 on fibroblasts and endothelial cells enriched in region 11. OSMR was previously shown to be
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44,72

581  expressed by inflammatory fibroblasts and its activation in malignant cells promotes EMT in

7374 and a mesenchymal state in glioblastoma’®. Future studies

582  breast cancer and pancreatic cancer
583  can help determine if these regions are functionally inter-dependent and if they evolved from the
584  same clones and can inter-convert, or whether they developed independently.

585

586  Because animal models complement cell and tissue atlases of human colorectal cancer®?, by

7677 it is important to relate between

587  allowing experimental manipulation for mechanistic studies
588 models and patients. By studying genetically engineered mouse models using high resolution
589  single cell spatial genomics we can help determine to what extent they recapitulate the cellular and
590  spatial organization of human disease, in the context of two distinct genetic states that represent
591  human CMS-2 lesions. To this end, we developed several approaches to allow cross species
592  comparison of tumors at the single cell and spatial level, despite the high level of both intra- and
593  inter-individual variation within each species. Comparing to human CRC, our analysis suggests
594  that the CRC landscape is organized in similar multicellular functional tissue modules between
595  human and mouse, and disease subtypes (e.g., MMRp and MMRA). Future studies applying our
596  approaches to patient cohorts could help understand whether the expression of different tissue
597  modules may contribute to the partial response to immunotherapy reported for MMRd patients’®,
598 and to define specific tissue modules predictive of response to therapy. Notably, while our study
599  focused on the tumor landscape, its findings may be relevant for tissue response to other challenges

600 (e.g., inflammation, fibrosis, wound healing), which involve activation of similar functional tissue

601  modules, a result of collective function of parenchymal, immune and stromal cells.

602  Taken together, our integrative approach facilitates spatial analysis with high resolution,

603  constructing regional neighborhoods and their spatial layout at both high cellular resolution and
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604  genomic scale. Our work is an important step toward a systematic understanding of the
605  organization of dysplastic tissue with the potential to contribute to improved patient stratification

606 by the multicellular functional units in the tumor landscape.

607
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608  Methods

609  Human subjects

610  The MGH Institutional Review Board approved protocols for tissue collection used for sequencing
611  (Protocol 02-240). Informed consent was obtained from all subjects prior to collection. Only
612  patients with primary treatment- naive colorectal cancer were included in this study.

613

614  Mice

615  Mice were housed in the animal facility at the Koch Institute for Integrative Cancer Research at
616  MIT. All animal studies described in this study were approved by the MIT Institutional Animal
617  Care and Use Committee (Protocol 1213-106-16). Apc™" mice’ were obtained from NCI mouse
618  repository, Kras'S-012P/* Ref.30 Rosa26-St-dTomaio Ref 81 and Trp53//" Ref.®? mice obtained from
619  Jackson, Villin®FRT? Ref.® mice were a gift from Dr. Sylvie Robine. All mice were maintained
620  on C57BL/6J genetic background. Approximately equal numbers of male and female mice of 6—
621 10 weeks of age were used for all experiments. Where indicated, mice were injected to the
622  submucosal layer of the colon with 4-hydroxytamoxifen (EMD Millipore # 579002) dissolved in
623  ethanol at a concentration of 100 uM (for the mice that were kept for 3 weeks after injection) or
624 30 uM (for the mice that were kept for 9 weeks after injection). Tumors were resected at either 3
625 or 9 weeks after 4-hydroxytamoxifen injection. Colonoscopy and colonoscopy-guided injection
626  methods were previously described in detail**3!.

627

628  Tissue processing for scRNA-seq

629  Single-cell suspensions from healthy colon or dysplastic lesions were processed using a modified

144

630  version of a previously published protocol™. Tissue samples were rinsed in 30ml of ice-cold PBS
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631  (ThermoFisher 10010-049), chopped to small pieces and washed twice in 25 ml PBS, 5SmM EDTA
632  (ThermoFisher AM9261), 1%FBS (ThermoFisher 10082-147). To prime tissue for enzymatic
633  digestion, samples were incubated for 10 minutes at 37°C, placed on ice for 10 minutes before
634  shaking vigorously 15 times followed by supernatant removal. Tissues were placed into a large
635  volume of ice-cold PBS to rinse prior to transferring to Sml of enzymatic digestion mix (Base:
636 RPMI1640, 10 mM HEPES (ThermoFisher 15630-080), 2% FBS), freshly supplemented
637  immediately before use with 100 mg/mL of Liberase TM (Roche 5401127001) and 50 mg/mL of
638 DNase I (Roche 10104159001), and incubated at 37°C with 120 rpm rotation for 30 minutes. After
639 30 minutes, enzymatic dissociation was quenched by addition of 1ml of 100% FBS and 10mM
640 EDTA. Samples were then filtered through a 40 mM cell strainer into a new 50 mL conical tube
641  andrinsed with PBS to 30 mL total volume. Tubes were spun down at 400 g for 7 minutes, at 4°C.
642  Resulting cell pellets were resuspended in 1ml PBS, placed on ice and counted.

643

644  Cell hashing

134 as summarized below. Dissociated

645  Cell hashing was performed based on the published protoco
646  cells were resuspended in 1ml of Cell Hashing Staining Buffer (1x PBS with 2% BSA (New
647  England Biolabs, B9000S) and 0.02% Tween (Tween®-20 Solution, 10%, Teknova, VWR-
648  100216-360) and counted. 500,000 cells were resuspended in 100 pLL of Cell Hashing Staining
649  Buffer and incubated for 30 minutes on ice, with 2 uLL of the appropriate BioLegend TotalSeq™
650 Hashing antibody (a 1:50 dilution, using a total of 1 ug of antibody per cell suspension).
651  TotalSeq™-A anti-mouse Hashtag antibodies #1-8 (catalog numbers:155801, 155803, 155805,
652 155807, 155809, 155811, 155813, 155815) were used. Cells were washed three times with 0.5 mL

653  of Cell Hashing Staining Buffer and filtered through low-volume 40-um cell strainers. All cell
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654  suspensions were recounted to achieve a uniform concentration of 7,000 cells per microliter before
655  pooling for capture by 10x Chromium controller following the manufacturer protocol for the v2 or
656  v3 3’ kit (10X Genomics, Pleasanton, CA).

657

658  Hashtag oligo (HTO) library preparation

659  Separation of hashtag oligo (HTO)-derived ¢cDNAs (<180bp) and mRNA-derived cDNAs
660 (>300bp) was done after whole-transcriptome amplification by performing 0.6x SPRI bead
661  purification (Agencourt) on cDNA reactions as described in 10x Genomics protocol. Briefly,
662  supernatant from 0.6x SPRI purification contains the HTO fraction, which was subsequently
663  purified using 1.4 and 2x SPRI purifications per the manufacturer’s protocol (Agencourt). HTOs
664  were eluted by resuspending SPRI beads in 15 uLL TE. Purified HTO sequencing libraries were
665  then amplified by PCR (1uL clean HTO cDNA, 25uL 2X NEBNext Master Mix (NEB #M0541)),
666 10 uM SI-PCR and D7010r D704 primers performed dial out PCR (98°C (10 sec), (98°C for 2 sec,
667  72°C for 15 sec) x 12/18 then 72°C for 1 min) for 12 and 18 cycles, and used the 18 cycles product
668  for sequencing. PCR reactions were purified using another 2x SPRI clean up and eluted in 15 uLL
669  of 1x TE. HTO libraries were quantified by Qubit High sensitivity DNA assay (ThermoFisher)

670 and loaded onto a BioAnalyzer high sensitivity DNA chip (Agilent).

671  SI-PCR: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC*T*C
672  D701:
673 CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGTGC
674 D704 :
675 CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGTGC

676
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677  Sequencing

678  Samples were sequenced using HiSeq X (Illumina). Hashing libraries were sequenced with spike-
679  ins of 2.5%.

680

681  Tissue processing for Slide-seq

682  Colons were flashed with cold PBS and a segment that includes the lesion and surrounding tissue
683  (or arespective healthy segment from normal mice) was dissected. Samples were then mounted in
684  cold OCT, flash frozen on dry ice covered with ETOH and long-term stored in -80°C.

685

686  Slide-seq

687  For mouse and human experiments, 10 um sections were cut and the Slide-seq V2 protocol was
688  used as previously described'>. For mouse experiments, four and six arrays were collected from
689  normal colons and AV lesions respectively. The muscularis was fit onto the array of both healthy
690  and dysplastic lesions to allow appropriate orientation.

691

692  Multiplex in situ RNA Analysis

693  Multiplex in situ RNA analysis was performed with Cartana® technology (a newer version is now
694  available as Xenium (10x Genomics)). In total we measured 3 samples with one section per sample
695  in each state (normal/AV) and probe set (V1/V2), with an additional replicate section for one of
696  the samples in normal V2.

697

698  Fresh Frozen OCT-embedded tissues from normal colon and AV lesions were cryosectioned as 10

699  um sections and placed onto SuperFrost Plus glass slides (ThermoFisher) and further stored at -
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700  80°C before experiments. Samples were fixed (with 4% formaldehyde) for 5 minutes and
701  permeabilized for 5 minutes (with 0,1 mg/mL pepsin in 0.1M HCI (P7012 Sigma-Aldrich)) prior
702 to library preparation.

703

704 For library preparation, chimeric padlock probes (directly targeting RNA and containing an anchor
705  sequence as well as a gene-specific barcode) for a custom panel of 66 (V1) or 180 (V2) genes
706  (Table S3, see below) were hybridized overnight at 37°C, then ligated before the rolling circle
707  amplification was performed overnight at 30°C using the HS Library Preparation kit for
708  CARTANA technology and following manufacturer’s instructions. All incubations were

709  performed in SecureSeal™

chambers (Grace Biolabs). Note that prior to final library preparation,
710  optimal RNA integrity and assay conditions were assessed using Malat] and Rplp0 housekeeping
711  genes only using the same protocol.

712

713 To prevent tissue sections detachment, an additional baking step of 30 minutes at 37°C was
714  performed before mounting. To quench autofluorescence background, TrueView (SP-8400
715  VectorLabs) was used for 1 minute at room temperature. For tissue sections mounting, Slow Fade
716  Antifade Mountant (Thermo Fisher) was used for optimal handling and imaging.

717

718  Quality control of library preparation was performed by applying anchor probes to detect
719  simultaneously all rolling circle amplification products from all genes in all panels. Anchor probes
720  are labeled probes with CyS5 fluorophore (excitation at 650 nm and emission at 670 nm).

721  All samples passed quality control and went through in situ barcode sequencing, imaging and data

722 processing. Briefly, adapter probes and sequencing pools (containing 4 different fluorescent labels:
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723 Alexa Fluor® 488, Cy3, Cy5 and Alexa Fluor® 750) were hybridized to the padlock probes to
724 detect the gene-specific barcodes, through a sequence specific signal for each gene specific rolling
725  circle amplification product. This was followed by imaging and performed 6 times in a row to
726  allow for the decoding of all genes in the panel. To reduce lipofuscin autofluorescence, 1X
727  Lipofuscin Autofluorescence Quencher (Promocell) was applied for 30 seconds before
728  fluorescence labeling.

729

730  Raw data consisting of 20x or 40x images from 5 fluorescent channels (DAPI, Alexa Fluor® 488,
731  Cy3, Cy5 and Alexa Fluor® 750) were each taken as z-stack and flattened to 2D using maximum
732 intensity projection. After image processing and decoding, the results were summarized in a csv
733 file and gene plots were generated using MATLAB %,

734
735  scRNA-seq pre-processing and quality control filtering

736  Count matrices for scRNA-seq were generated using the Cumulus feature barcoding workflow
737 v0.2.0% with CellRanger v3.1.0 and the mm10_v3.0.0 mouse genome reference. Cell profiles were
738  quality filtered by requiring between 1,000 and 50,000 counts, and between 500 and 7,000 genes,
739  less than 20% mitochondrial counts, and less than 10% hemoglobin counts. Cell profiles that did
740  not meet all these criteria were discarded. The top 5,000 highly variable genes were annotated on
741  the remaining cells after normalization to 10,000 counts and loglp transform using Scanpy's
742 “highly variable genes” function®” and providing the chemistry (v2/v3) by hashing (True/False)
743  combination as batch-annotation. Putative doublets were removed using Scrublet®® with default

744  parameters.

745
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746  Selection of variable genes, dimensionality reduction and clustering

747 A preliminary clustering using the Leiden algorithm with resolution 1.0 was performed after
748  normalization to 10,000 counts, loglp transform, correction for number of counts and percentage
749  of mitochondrial genes, scaling with a max_value of 10, and generating a k-nearest neighbors (k-
750  NN) graph with 15 neighbors on a PCA of the previously annotated 5000 highly variable genes
751  with 50 components using Scanpy®’. The single cell profiles were provisionally annotated with
752 SingleR¥ cell-wise (i.e. without using clustering information) using the SingleR built-in
753  MouseRNAseqData and an intestine specific dataset from Tabula  Muris”

754  (https:/figshare.com/ndownloader/files/13092143). For further processing, the dataset was then

755  split into the three compartments, epithelial, immune and stromal, using the provisional SingleR

756  annotations.

757  For each compartment, the top 5,000 highly variable genes were annotated using Scanpy's
758  “highly variable genes” function on cells normalized to 10,000 counts after log1p-transformation

759  and providing the chemistry (v2/v3) by hashing (True/False) combination as batch-annotation.
760
761  Expression programs and batch correction

762  For the dataset of each compartment separately (generated as described above), an integrative
763  NMF was performed (using a part of the LIGER* implementation) with k=20 and lambda=>5 to
764  identify 20 programs and their respective weights per cell. This INMF factorization represents the
765  single cell expression matrix as a weighted sum of profiles such that both the weights and programs
766  contain only non-negative numbers, while allowing for and separating out batch-only
767  contributions. The same approach was also used with a higher & (epithelial and immune: 200,

768  stromal: 50) to yield a detailed and batch corrected decomposition of expression which was then

35


https://doi.org/10.1101/2022.10.02.508492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.508492; this version posted June 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

769  combined to obtain a count-like corrected expression matrix for the top 5,000 highly variable
770  genes. For each compartment separately, these batch-corrected data were normalized to 10,000
771  counts, loglp transformed, corrected for number of counts and percentage of mitochondrial genes
772 by linear regression, scaled with a max_value of 10, followed by a PCA of the previously annotated
773 5,000 highly variable genes. A k-nearest neighbors (k-NN) graph was constructed from the top 50
774  PCs, with k=15 neighbors using Scanpy, and clustered using a compartment-specific Leiden
775  resolution parameter (epithelial: 0.2, immune: 0.4, stromal: 0.1). This clustering was used as the
776  cluster level annotation of the mouse scRNA-seq data for the epithelial and stromal compartment.
777  Separately per compartment the data were annotated with SingleR using the cluster information.
778  The same per-compartment batch-corrected and preprocessed data from the Leiden clustering was

779  used to create UMAP embeddings with PAGA initialization using Scanpy.
780

781  To improve the clustering and annotation in the immune compartment and to filter out additional
782  doublets not detected by Scrublet, the immune data were separately filtered and clustered using
783  information from the compartment level clustering and annotation. To that end, myeloid and T/NK
784  cells were partitioned separately and further processed, and additional likely doublet cells were

785  labeled and removed by the following procedure:

786 1. Cells were labeled as doublets based on higher number of UMIs of marker genes for other

787 compartments than the 95" percentile observed in this immune partition (i.e., Epcam and Cdh1
788 to remove immune-epithelial doublets and Cav1 and Kdr to remove immune-stromal doublets)
789 and other immune partitions (i.e., Cd3d, Cd3e, and Cd3g to remove myeloid-lymphoid
790 doublets from the myeloid cells). This type of filter criterion for lowly expressed genes ("larger
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than some percentile”" on integer counts) also allows to keep more than 95% of the cells if, for
example, all cells of this partition happened to have 0 UMIs of a particular marker gene.

2. Cells were labeled as doublets if they had inconsistent cell-wise and cluster-wise SingleR
annotations.

3. Cells were labeled as doublets if they had significantly (Benjamini-Hochberg FDR=0.05, one-
sided Fisher’s exact test) more neighbors in the k-NN graph from the immune compartment
that were already marked as doublets.

4. All cells labeled as doublets were removed.

After filtering, the count matrices were batch corrected as above using the integrative NMF from
LIGER with k=20 and lambda=5, and clustered like above with group specific Leiden resolution
(myeloid: 0.2, TNK: 0.4). For myeloid and TNK cells, this clustering superseded the original
clustering. The integrative NMF result here was only used for updating the clustering and not for

generating an extra set of expression programs.

Note that cluster Epi06 shows a broad expression spectrum; while such pattern can best be
explained by remaining doublets, they were not called by Scrublet and could also not be
consistently removed by extra QC as was applied to the immune compartment. The interpretation
of Epi06 as containing doublets is supported by its overrepresentation in the annotation of the
Slide-seq data (Figure S6E), as both doublets and slide-seq beads represent compositions of
different cells. Still, non-doublet explanations (e.g. undifferentiated cells) cannot be ruled out.

Therefore, Epi0O6 cells are retained in the data but not interpreted biologically.

Marker selection for in situ RNA analysis (CARTANA)
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813  CARTANA V1 markers were selected from genes differentially expressed between compartments,
814  cell types and clusters (for the immune and stromal compartments), and highly ranked genes for
815  programs (for the epithelial compartment) were first filtered by biological relevance and the
816 literature, obtaining 87 genes. To further reduce the set to the available panel size (66 genes), genes
817  were annotated into categories of potential redundancy. To choose between redundant genes, a
818  global objective function was optimized over the gene selection, looping over all potentially
819  redundant gene sets until convergence, exhaustively testing all choices within a gene set, and
820  accepting the best choice for this gene set in terms of the global objective function. The global
821  objective function was constructed as the mean 4-fold cross-validation scores (using
822  “GroupKFold” and “cross val score from sklearn’’) of multi-class logistic regression
823  classification (using “LogisticRegression” from sklearn) for discriminating cell classes and of
824  ridge regression of epithelial program weights (using “RidgeRegression” from sklearn) on the
825  scRNA-seq data subsampled to the expected sparsity of CARTANA data. The cell classifications
826 used were between the stromal, immune, and epithelial compartment, within the stromal
827  compartment between Endo01, Endo02, and fibroblasts, within the immune compartment between
828  myeloid and lymphoid lineage, within the lymphoid lineage between T cells and B cells, within
829  the myeloid linecage between granulocytes, mast cells, and all monocytes and macrophages
830  together, between monocytes and macrophages, and within monocytes between Mono0O1, Mono02,
831  Mono03, and Mono04. The programs used in ridge regression were programs 3, 4, 6, 7, 13, 14,
832 15, and 16. As the probes for Ly6c1 and Ly6¢2 could not discriminate sufficiently between Ly6c1

833  and Ly6c2, we chose combined probes that measure both.
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834 The CARTANA V2 panel, included 59 of the 66 genes in the V1 panel (the others had to be
835 removed for technical reasons), another 113 genes from the standard fixed gene panel for
836 CARTANA, and 8 selected genes from literature.

837

838  Analysis of CARTANA data

839  Each measured molecule was annotated with an originating cell type cluster label (using TACCO’s
840  “tc.tl.annotate single molecules”, with RCTD! as the core annotation method and parameters
841  bin size=20, n_shifts=3, assume valid counts=True) separately for each sample. For this, genes
842  in the reference that would likely cross hybridize in the probe panel design were summed over
843  (Lyé6cl and Ly6c2). TLS-like regions were annotated by visual inspection of the cell type cluster

844  composition and morphology.

845  To assess cell type compositions of the full dataset, molecules with cell type cluster annotations
846  were binned into 10pum bins (using TACCO’s “tc.utils.bin” and “tc.utils.hash” functions) and

847  cluster-level annotations were merged to cell-type level.

848  To assess the compositions of TLS-like regions, CARTANA v2 data were aggregated, conserving
849  the categorical TLS annotation (using TACCO’s “tc.utils.bin” and “tc.tl.dataframe2anndata”

850  functions).

851  Comparison between experimental methods

852  To compare cell type composition between methods, CLR-transformed compositions of samples
853  (or of spatially split samples for the spatial methods, see subsection “Ligand-Receptor Analysis

854  and Spatially Informed Enrichment”) were computed. Then, using a 100 bootstrapped means of
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855  the compositions, mean and standard error of the mean were calculated once for the AV and once
856  for the normal samples. To compare gene expression, the mean difference of gene counts between
857 normal and AV samples and its standard error were calculated using all pairwise differences
858  between the bootstrapped normal and AV samples. For gene comparisons, the CLR-transformed
859  composition over all genes that were measured in all of scRNA-seq, Slide-seq, CARTANA V1,
860 and CARTANA V2 was used. Pearson correlation between mean compositions was calculated for

861  each pair of methods.

862
863  RNA-velocity analysis

864  Splicing aware count matrices for scRNA-seq were generated using CellRanger v6.1.2 and
865  velocyto v0.17.17°7 with the ensembl v108 mouse genome reference. Scvelo v0.2.5 was used to
866 infer velocity separately for the epithelial and TNK subsets (using the functions

99 ¢¢ 99 ¢

867  “scv.pp.filter and normalize”, “scv.pp.moments”, “scv.tl.velocity” (with mode='stochastic"), and

192

868  “scv.tl.velocity graph”). Scanpy and bbknn v1.5.1°* were used to generate batch-corrected UMAP

869  embeddings for the two subsets for visualization with scvelo’s

870  “scv.pl.velocity embedding_stream” function.
871

872  Selection of human single cell data for the comparison of cell type and epithelial program

873  composition

874  ScRNA-seq data from Ref? was used as reference for human CRC. To avoid biases in cell type

875  compositions, only the subset of the data where "PROCESSING TYPE = unsorted" were used.
876

877  Comparison of human and mouse samples by cell type composition
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878  To compare human and mouse samples by composition of T/NK cell subsets, T/NK annotations
879  from mouse and human data® were matched by TACCO, using optimal transport (OT). First,
880  human expression data were mapped to mouse genes using MGI homology information
881  [subsection “Mapping of mouse and human orthologs™]. Then, human cell cluster annotations
882  ('cl295v11SubFull') were mapped from the subset of human cells annotated as T/NK/ILC to the
883  subset of mouse cells annotated as T/NK using TACCOs "annotate" function with OT as core
884  method, basic platform normalization, entropy regularization parameter epsilon 0.005, marginal
885  relaxation parameter lambda of 0.1, and 4 iterations of bisectioning with a divisor of 3. Annotation
886  with maximum probability per cell was used as the unique cluster level annotation for mouse T/NK
887 cells. Annotations were aggregated per sample to yield a compositional annotation over the
888 identical cluster annotation categories (from the human dataset) for the T/NK subsets of human
889 and mouse samples. Annotation vectors were then processed using the sc.pp.neighbors and
890  sc.tl.umap functions from Scanpy®’ to yield a 2D sample embedding with respect to T/NK cell
891  composition. Using the coordinates in the UMAP in place of spatial coordinates, neighborship
892  enrichment z-scores were computed with TACCO’s co occurrence matrix function with

893  max distance=2 and n_permutation=100.
894
895  Slide-seq compositional annotation

896  Slide-seq data were annotated with scRNA-seq reference annotations. First, Slide-seq and scRNA-
897  seq data were filtered to retain only 15759 genes that were detected in both datasets and only beads

898  and cells that had at least 10 counts across all these common genes.

899
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900  Next, TACCO?! was used to perform compositional annotation of each bead, allowing the bead
901  counts to be explained by fractional contributions. In its basic application, TACCO finds an
902  “optimal” mapping between scRNA-seq annotation categories (e.g., cell types) and beads by
903  solving a variant of an entropically regularized Optimal Transport (OT) problem in expression
904  space. In its iterative application, TACCO uses a bi-sectioning functionality iteratively, annotating
905  only fractions of the counts in each round, and reserving the remainder for the next round to
906  improve the sensitivity to sub-leading annotation contributions (that is, first capture a portion of

907 the counts for the “top” cell types, but preserving others for other, more minor, cell types).
908

909  For the compositional annotation of Slide-seq beads with the categorical cell clusters from the
910  single cell data, the “annotate” function of TACCO with OT was used as core annotation method
911  per Slide-seq puck with the subset of the single cell data with matching disease state, with basic
912  platform normalization, entropy regularization parameter epsilon 0.005, marginal relaxation

913  parameter lambda of 0.001, and 4 iterations of bisectioning with a divisor of 3.
914

915  For the compositional annotation of Slide-seq beads with the compositional epithelial programs,
916 the annotated beads were split using the “split_observations” function of TACCO on the cluster-
917 level annotation and then aggregated to compartment level using the “merge observations”
918 function keeping only beads for a compartment with at least 50 counts assigned to that
919  compartment. The genes from the epithelial part were filtered to retain only those that were used
920 to define the epithelial programs in scRNA-seq, and then annotated using again the “annotate”
921  function with OT as core annotation method, basic platform normalization, entropy regularization

922  parameter epsilon 0.01, and a marginal relaxation parameter lambda of 0.001.
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923
924  Slide-seq region annotation

925  Region annotation was done for all pucks (normal and AV pucks) in one step to get comparable
926  region annotations across pucks, such that beads that have similar epithelial program activity and
927  are spatially close are called as one region. Because cell type composition can change drastically
928  from one bead to its neighbor at the length scales of Slide-seq data, there is a need to compromise
929  between optimizing the two similarities. This is done with the “find_regions” function of TACCO,
930  which performs a Leiden clustering on the weighted sum of connectivity matrices derived from
931  epithelial program similarity and spatial proximity, using a position weight of 0.7, a Leiden
932 resolution of 1.3, and 15 nearest neighbors per bead in position space and epithelial program space.
933  To determine the neighbors in epithelial program space, the square-roots of the program weights
934  were used for neighbor finding which effectively uses Bhattacharyya coefficients as overlap in
935  epithelial program space instead of the Euclidean scalar products used for position space. These
936  regions are defined by construction only on beads with a large enough epithelial contribution (see
937 above) and are then extended to all beads by assigning unannotated beads the region from the

938  nearest bead with region annotation.

939  Submucosal and muscularis propria layers are predominantly comprised of fibroblasts and muscle
940 cells, respectively, alongside blood and lymphatic vessels, nerves and immune cells. Our algorithm
941  depends on the epithelial expression component in beads. Since these layers do not contain
942  epithelial cells®®, mapping likely relied either on “noisy” signal from non-epithelial cells or from

943  the basal-most epithelial layer.

944  To determine region composition at a certain distance of a reference region, TACCO’s

945  “annotation coordinate” function is used with max_distance=1000 and delta_distance=10.
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946
947  Slide-seq quality filtering

948  For all downstream analyses, all beads with less than 100 reads were discarded.

949  Region- and cell type- characterizing genes in Slide-seq data

950  Genes to characterize regions on Slide-seq pucks irrespective of compartment composition were
951  found using Scanpy’s rank genes groups function on the full bead expression profiles. To find
952 them separately for each compartment, the compartment-level split beads [sub-section “Slide-seq
953  annotation”] were used instead of the full beads. To compare gene expression between cell types
954  on Slide-seq pucks, cluster-level split beads [sub-section “Slide-seq annotation”] were aggregated

955  to cell type level.

956 EMT scoring

957  Malignant regions were scored for EMT signatures, using only counts attributed to the epithelial
958  compartments within these regions and only genes expressed on at least 3 beads. Bead profiles
959  were normalized to 10,000 counts, log1p transformed and scaled, and Scanpy’s “sc.tl.score genes”

960  function was used to score the top 50 genes in two EMT gene signatures®!%4,

961  Cell-type neighborships in Slide-seq data

962  To evaluate the local cell-type neighborship relations in the different disease states on the cluster
963 level, the clusters were filtered per disease state to contain only clusters which account for at least
964 1% of the UMIs in that state. Then neigbourhood-enrichment z-scores were calculated using

965 TACCO’s “co_occurrence matrix” function with max_distance=20 and n_permutation=10. To
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966 evaluate the stability of the result, this 1is also repeated for (max distance,
967 n_permutation)=(40,10),(60,10),(20,5), and (20,50). To get the significance of the overall change
968  in z-scores between the states, a one-sided Mann-Whitney-U test was performed on the values of
969  the upper triangular half of the matrix between the two disease states for (max_distance,
970  n_permutation)=(20,10).

971 A similar neighborship analysis was performed on the coarser cell-type level separately for the
972  three malignant regions 6, 8, and 11, using TACCQO’s “co_occurrence matrix” function with

973  max_distance=20 and n_permutation=10.

974  Cell-type co-occurrence in Slide-seq data

975  Cell-type compositions relative to a spatial landmark, Region 2=muscularis, were evaluated using
976  TACCO’s “annotation_coordinate” function with max_distance=1000 and delta_distance=10. To
977  reduce tissue structure bias from the muscularis, the distance dependency of cell-type frequency
978  relations was evaluated only for beads deep in the “epithelial domain”, defined as follows. The
979  effective distance from stromal annotation was computed using TACCO’s
980  ““annotation_coordinate” function (with max_distance=100, delta distance=10,
981  critical neighbourhood size=4.0) and only beads with a distance of at least 75pm were used. On
982  these remaining beads, TACCO’s “co_occurrence” function was used (with delta_distance=20,

983  max_distance=1000) to compute cell types co-occurrence as a function of their distance.

984  Epithelial program neighborships in Slide-seq data

985  As for cell types above, neighborship relations were evaluated for epithelial programs in the AV

986  Slide-seq samples using TACCO’s “co_occurrence matrix” function with max_distance=20 and
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987 n_permutation=10, after selecting only the programs which make up at least 1% of the UMIs in

988  the AV Slide-seq samples.
989

990 Ligand-Receptor analysis and spatially informed enrichment

991

992  For the ligand-receptor analysis on slide-seq data we used COMMOT v0.03%. COMMOT employs
993  optimal transport to construct sender and receiver side receptor-ligand interactions for every bead
994  in one run of COMMOT. After filtering to beads with at least 100 counts, we applied basic
995  preprocessing (normalization, log1p-transformation) and load the CellChat database as done in the

996 COMMOT tutorial (https://commot.readthedocs.io/en/latest/notebooks/Basic_usage.html). We

997  then follow the Slide-Seq v2 analysis from the COMMOT paper (“slideseqv2-mouse-
998  hippocampus/1-Ir_signaling.ipynb” from https://doi.org/10.5281/zenodo.7272562) to filter the
999  database and to reconstruct the spatial communication network on ligand-receptor pair and
1000  pathway level separately for every puck. In particular, we use the distance cutoff of 200um for
1001  inference of ligand-receptor interactions. The resulting bead-wise sender- and receiver
1002  communication values were then used for enrichment analysis between disease states and between
1003  spatial regions.

1004

1005  Unlike the downstream Slide-Seq v2 analysis from the COMMOT paper (“slideseqv2-mouse-

1006  hippocampus/2-downstream analysis.ipynb” from https://doi.org/10.5281/zenodo.7272562), we

1007  do not treat each bead on the puck as statistically independent observation in statistical tests, which
1008  leads to unreliably small p-values. Instead, we split all pucks along their axis of greatest extent

1009  (defined by the first principal component axis of the distribution of the spatial measurements) into
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1010  spatial patches discarding 400pm of boundary layer (twice the COMMOT distance cutoff, also co-
1011  occurrences have decayed strongly at this distance) in between the patches to reduce the correlation
1012 between the patches. This is done iteratively with the patches to get a set of weakly correlated
1013 patches. On these patches we calculate the mean of the communication values and treat them as
1014  statistically independent observations for statistical tests. We argue that multiple sufficiently
1015  separated spatial patches of single spatial samples can be seen as multiple spatial samples using a
1016  spatial method with a smaller measurement area, and therefore can be treated as replicates. Unlike
1017  splitting into patches without removing a boundary layer, this procedure does not converge to the
1018  case of treating each bead as an independent observation as the number of iterations rises as it
1019  accounts for the spatial correlations between adjacent measurements. This gives a natural lower
1020  limit of p-values reachable with p-values rising again if too many splits are performed as too much
1021  data is lost to remove the correlations (Supplementary item 4C,D). We chose a number of
1022  iterations of 2 as a compromise between having more patches and not discarding much data. For
1023 the enrichment of the pathway communication values we used a two-sided Mann-Whitney U test
1024 across the patches and cite Benjamini-Hochberg FDR values. For the enrichment testing in a given
1025  group (e.g. an annotated spatial region) only those patches are used which have at least 100 beads
1026  on the patch.

1027

1028  Unless otherwise noted, for consistency, an analogous enrichment procedure was also used for
1029  COMMOT-unrelated quantities, like cell types, even though their spatial footprint is not as large
1030 as COMMOT’s (distance cutoff of 200um). For cluster-level cell type enrichment analyses on
1031  Slide-seq data, only the top 3 contributing subtypes were considered, to better reflect the expected

1032 properties of Slide-seq data and better compare with categorically annotated scRNA-seq data.
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1033 Mapping of mouse and human orthologs

1034  We applied TACCO’s functions “setup orthology converter” and “run_orthology converter”
1035  with option “use_synonyms=True” to map human to mouse genes using the ortholog mapping
1036  from Mouse Genome Informatics (http://www.informatics.jax.org/homology.shtml). Specifically
1037 we wused http://www.informatics.jax.org/downloads/reports/HOM_ MouseHumanSequence.rpt
1038  (downloaded April 26th, 2021) for the analyses comparing T/NK compositions of human and
1039  mouse scRNAseq data, analyses comparing epithelial program similarity in human and mouse
1040  scRNAseq data, analyses involving the annotation of human scRNA-seq data with mouse regions,
1041  and analyses comparing the cell type and epithelial program correlations cross samples between
1042 human and mouse scRNA-seq data, and
1043 http://www.informatics.jax.org/downloads/reports/HOM_AllOrganism.rpt ~ (downloaded  on
1044 August 8th, 2022) for the analyses involving the scoring of mouse regions in mouse and human

1045  scRNA-seq data and leading to the CMS classification.
1046
1047 GO term enrichment analysis

1048  Weused TACCOQO'’s functions “setup goa analysis” and “run_goa analysis” to perform GO terms
1049  enrichment. As “gene_info_file” we used

1050  https:/ftp.ncbi.nih.gov/gene/DATA/GENE INFO/Mammalia/Mus musculus.gene info.gz, as

1051  “GO obo file” http://purl.obolibrary.org/obo/go/go-basic.obo, and as “gene2GO file”

1052  https://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz (all downloaded on August 10%, 2022).

1053
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1054  Comparison between mouse and human programs

1055 To compare mouse and human epithelial expression programs?, genes were mapped to mouse
1056  homologs using MGI homology information [subsection “Mapping of mouse and human
1057  orthologs™]. Mouse and human programs were then characterized by a single vector of mean
1058  expression per program in mouse gene space. Specifically, both mouse and human programs were
1059  defined such that their weighted sum approximates the expression profiles of the cells without any
1060  transformations. Programs and weights were normalized to sum to 1. To reduce batch-effects
1061  (including species-specific ones), a background expression profile was defined for each species
1062  dataset as the pseudo-bulk epithelial expression profile in the respective scRNAs-seq data.
1063  Program and background profiles were normalized to 10,000 counts and the log ratio of the
1064  normalized program and background expression vectors was used to define a vector for each
1065  species. Pearson correlation coefficients were calculated for each pair of program vectors (mouse

1066  vs. human).

1067 Human expression program associations across mouse sSCRNA-seq

1068  All sets of programs that were previously used to define human CRC tissue hubs? (epithelial, T/NK
1069  cells and myeloid cells) were mapped to mouse genes with MGI homology information [subsection
1070  “Mapping of mouse and human orthologs™] and then to mouse single cell data with TACCO, using
1071  TACCOs platform normalization to account for batch effects. The “annotate” function in TACCO
1072 was used with OT as the core annotation method, on the comparable subsets of cells from mouse
1073  and human single-cell datasets (e.g., myeloid cells from mouse and human), with basic platform
1074  normalization, entropy regularization parameter epsilon 0.005, marginal relaxation parameter
1075 lambda of 0.1, and 4 iterations of bisectioning with a divisor of 3, and flat annotation prior

1076  distribution. The resulting probabilistic per-cell program annotations were aggregated to get
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1077  probabilistic per-sample program annotations for all dysplastic mouse samples and CLR-
1078  transformed. For each pair of programs, the Pearson correlation coefficient was calculated on these

1079  transformed values.
1080
1081  Annotating human scRNA-seq data with mouse-derived region information

1082  Human scRNA-seq profiles? were mapped to mouse gene space using MGI homology information
1083  [subsection “Mapping of mouse and human orthologs”]. Working in the same expression space,
1084  the “annotate” function in TACCO with OT as core annotation method was used on the full human
1085  scRNA-seq and mouse Slide-seq dataset with basic platform normalization, entropy regularization
1086  parameter epsilon 0.005, marginal relaxation parameter lambda of 0.1, and 7 iterations of
1087  bisectioning with a divisor of 3, and 10-fold sub-clustering of the region annotations. The region
1088  transfer is done separately per compartment, with the Slide-seq compartment split as described
1089 above and the human scRNA-seq data split using the cell type annotation of the data. For
1090  validation, mapping was also performed with mouse scRNA-seq data, as well as mapping the

1091  region information from the mouse pucks back to themselves.
1092

1093  To test for enrichments of region annotations across disease state, region composition was
1094  aggregated to sample-level (for Slide-seq to 4-way split pucks), CLR-transformed, and enrichment
1095  was calculated using a two-sided Welch’s t-test. This was done for region annotation on human
1096  and mouse scRNA-seq data, and on the original and mapped region annotation on the mouse Slide-

1097  seq data.
1098

1099  Cell-type associations across samples
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1100  To compare associations of cell types across samples in human and mouse scRNA-seq the
1101  "cIMidwayPr” cell type annotation in the human data® was aggregated to the same level as mouse
1102 cell type annotation, and then aggregated per sample and CLR-transformed. Pearson correlation
1103 coefficients were calculated for every cell type pair for different subsets of samples: all samples,

1104  normal samples, dysplastic, and for human MMRd/MMRp samples.
1105
1106  Epithelial program associations across human samples

1107  To determine epithelial program associations across human samples, TACCO’s “annotate”
1108  function was used to annotate human epithelial scRNA-seq (after mapping to mouse orthologs
1109  using MGI homology information [subsection “Mapping of mouse and human orthologs™]) with
1110  mouse epithelial programs from mouse scRNA-seq data using OT as core method, basic platform
1111  normalization, entropy regularization parameter epsilon 0.005, marginal relaxation parameter
1112 lambda of 0.1, and 4 iterations of bisectioning with a divisor of 3. The remaining steps were

1113 performed as for cell-type association (subsection “Cell-type associations across samples™).
1114
1115  Scoring epithelial mouse regions in mouse and human epithelial pseudo-bulk data

1116  The published processed and filtered count matrices were used (where available) or instead raw
1117  count matrices for single cell/nucleus RNA seq data from Pelka’? (GEO accession number
1118 GSE178341; downloaded on August 8th, 2022), Chen®® (Synapse IDs syn27056096,
1119 syn27056097, syn27056098, syn27056099; downloaded on August 5th, 2022), Khaliq®® (GEO
1120  accession number GSE200997; downloaded on August 5th, 2022), Becker?® (GEO accession
1121 number GSE201348; downloaded on August 5th, 2022), Zheng® (GEO accession number

1122 GSE161277; downloaded on August 5th, 2022; excluding 'blood' samples), Che®’” (GEO accession
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1123 number GSE178318; downloaded on August 5th, 2022; only 'CRC' and 'LM' samples) and
1124 Joanito” (Synapse IDs syn26844072, syn26844073, syn26844078, syn26844087, syn26844111;

1125  downloaded on August 22nd, 2022; excluding the ‘LymphNode’ sample).
1126

1127  To subset the human single cell data to epithelial cells, the epithelial annotation was used where
1128  readily available*?®. For the remaining datasets*®”~"°, TACCOs tc.tl.annotate function was used
1129  with default parameters to transfer the 'c1295v11SubShort' annotation from Pelka?, from which a
1130  compositional compartment annotation was constructed, and then a cell was assigned to the

1131  epithelial compartment if it had more than 95% epithelial fraction.

1132 To correct for batch effects between the different data sources, first batches were defined by

12,67.68,70 1
, 'human-

1133 species times protokoll: 'mouse-10x3p', 'mouse-SlideSeq', 'human-10x3p
1134 10x5p'®", 'human-inDrop'*®, and 'human-snRNA"?°. Then TACCO's "tc.pp.normalize_platform"
1135  function was used to determine per gene batch normalization factors using only the normal samples
1136  of one data source per batch (choosing the normal samples from Zheng for '"human-10x3p' and the
1137  normal 5° samples from Joanito for 'human-10x5p'). The resulting factors are then used to rescale
1138  the sample-by-gene count matrices for the full dataset per batch, i.e. including non-normal
1139  samples. The normalization factors are calculated with respect to an (arbitrarily chosen) normal

1140  reference dataset®.

1141  The epithelial mouse region score was defined as the mean of the CLR-transformed expression
1142 values in the pseudo-bulk expression profile of the epithelial part of a dataset using the top 200

1143  differentially expressed genes between all regions by a one-sided Fisher’s exact test.

1144 To account for species-specific biases (in-set vs. out-of-set prediction: the DEGs are calculated in

1145  mouse), the scores per region across samples were zero-centered and scaled to unit variance across
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all samples (including normal and non-normal samples and all batches) per species. A Principal
Components Analysis (PCA) of the region scores across all species, batches and samples was
conducted and the values for the first PC were compared between different conditions using a two-

sided Mann-Whitney U test with Benjamini-Hochberg FDR.

Assessing the relationship between mouse regions and CMS tumor classification

We used the package 'CMSclassifier' (https://github.com/Sage-Bionetworks/CMSclassifier)
referred to in Ref.”! to classify human pseudo-bulk CRC profiles from all samples which were
not normal or unaffected from the human studies above into CMS classes. We determine the
enrichment (Benjamini-Hochberg FDR, two-sided Welch's t test) of the same mouse region

scores in the CMS classes.

Assessing the relation between mouse regions and clinical endpoints in human bulk RNA-
seq

Published RNA-seq data from the COAD and READ cohorts of TCGA PanCancerAtlas®® were
used. Mouse region scores were defined as the mean of the loglp-transformed, zero-centered and
scaled expression values in the bulk expression profile using the top 200 differentially expressed
genes between the malignant mouse regions (6, 8, 11) by a one-sided Fisher’s Exact test
(comparing each of the three regions to the other two). Scores were stratified into quartiles. PFI
and OS was compared between patients with tumors whose scores were in the lowest and highest
quartiles using the Logrank test as implemented in the lifelines package®®, followed by Benjamini-

Hochberg FDR.
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1169  Compositional enrichment analyses

1170  Enrichments on compositional data (cell type compositions, etc.) were evaluated with a two-sided
1171  Welch’s t test on sample level using CLR-transformed compositions followed by Benjamini-
1172 Hochberg FDR. For the enrichment of tdTomato, counts and ALR-transformation were used
1173  instead with all non-tdTomato counts used as reference compartment. Enrichment analyses were
1174  performed using TACCQ’s “enrichments” function.

1175

1176  Code availability

1177  The analysis code is available on GitHub (https://github.com/simonwm/mouseCRC).

1178  Data availability

1179  All data generated in this project is deposited on the Single Cell Portal and is available under the

1180 accession SCP1891 (https://singlecell.broadinstitute.org/single cell/study/SCP1891). The raw

1181 scRNA-seq and Slide-seq data is also deposited on GEO under the GSE260801

1182 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE260801). The public human scRNA-

1183  seq datasets can be found on GEO under accession numbers GSE178341, GSE200997,
1184  GSE201348, GSE161277, GSE178318 and on Synapse under the IDs syn27056096,
1185  syn27056097, syn27056098, syn27056099, syn26844072, syn26844073, syn26844078,

1186  syn26844087, syn26844111.
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Figure 1. A single cell atlas of healthy colon and dysplastic lesions in mouse.

A. Study overview. B. Major cell subsets of healthy colon and dysplastic lesions. 2D embedding
of 48,115 single cell profiles colored by cluster (top, legend) or annotated cell type (bottom,
legend). C,D. Changes in cell composition in dysplastic tissues. C. 2D embedding of single cell
profiles, showing only the cells in each condition state, subsampled to equal numbers of cells per
condition state, colored by cluster (same legend as in B (top)). D. Proportion of cells (y axis) of
each cell type in each sample (x axis). E. multiplex RNA in situ analysis. Representative images
of Cartana analysis of normal colon (left) and AV lesions (right) colored by cell type assignment

(same as Supplementary item 2A).
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1542 Figure 2. Composition and cell intrinsic expression program changes in dysplastic epithelial

1543 cells.

1544  A-C. Compositional changes in epithelial cells in dysplastic tissue. A. 2D embedding of epithelial
1545  cell profiles colored by clusters (legend). Cluster Epi06: potential doublets (Methods). B.
1546  Proportion of cells out of all epithelial cells (y axis) of each epithelial cell subset in each sample
1547  (x axis). C. Fraction of expressing cells (dot size) and mean expression in expressing cells (dot
1548  color) of marker genes (columns) for each cluster (rows). D-E. Use of epithelial cell programs
1549  changes in dysplastic tissue. D. Weights (x axis) of each of the 20 top ranked genes (y axis) for
1550  each program. E. Proportion of program weights summed over all epithelial cells (y axis) in each
1551  sample (x axis). F. Stem cell program 16 is induced in epithelial cells in dysplastic tissue. Scaled
1552 log-normalized expression (color bar) of the top 100 genes differentially expressed between cells
1553  from normal colon and from dysplastic (AV and AKPV) across the 10,812 cells that accounted for
1554 90% of program 16’s expression across all epithelial cells (columns). Selected program genes are

1555  marked.
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Figure 3. Altered cell type neighborship in CRC.
A. Cell type distributions in situ. Slide-seq pucks of dysplastic (top) and normal (bottom) tissue
colored by TACCO assignment of cell labels (legend, light grey: low quality beads) (x and y axis:
spatial coordinates in um). B,C. Cell type neighborships in normal and dysplastic colon tissue.
Short-range (up to 20um) neighborship enrichment (Z score, color bar) vs. a background of
spatially random annotation assignments for each pair of cell annotations (rows, columns) in

normal (A) and dysplastic (B) tissue.
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1566  Figure 4. Three cellular neighborhoods associated with tumor progression.

1567  A. Spatial regions. Slide-seq pucks of AV (top) and normal (bottom) mouse colon colored by
1568  TACCO regions (legend, light gray: low quality beads) (x and y axis are spatial coordinates in
1569  um). B,C. Enrichment and depletion of cell subsets and epithelial programs across different
1570  regions. Significance (FDR, color bar, two-sided Welch’s t-test on CLR-transformed
1571  compositions) of enrichment (red) or depletion (blue) of specific cell subsets (rows, B) or epithelial
1572 cell programs (rows, C) in the different regions defined by TACCO (columns) as well as all normal
1573 (“N (ref.)”, leftmost column) and AV (“AV (ref.)”, leftmost column) samples. D. TACCO defined
1574  regions preferentially relate to normal or AV tissue. Significance (FDR, color bar, two-sided
1575  Welch’s t-test on CLR-transformed compositions) of enrichment (red) or depletion (blue) of each
1576  TACCO defined region (rows) in normal (“N vs. rest”’) and AV (“AV vs. N”) samples (columns).
1577  E. TACCO reveals normal colon architecture. Left: Slide-seq puck of normal mouse colon colored
1578 by TACCO region annotations (legend) (x and y axis: spatial coordinates (um)). Right: Main
1579  epithelial expression programs enriched in each region (FDR<6.3 10, two-sided Welch’s t test
1580  on CLR-transformed compositions) except region 2 (muscularis), which is characterized by non-
1581  epithelial (stromal) cell types. F. Expression signatures of cells in normal regions 3,5,10 and 12.
1582  Scaled log-normalized expression of the top 20 differentially expressed genes (rows) for each bead
1583  (columns) in the region. G,H. Malignant-like regions. G. Slide-seq pucks of two AV lesions
1584  colored by TACCO annotations of malignant-like regions 6, 8 and 11. H. Scaled log-normalized
1585  expression of the top 20 differentially expressed genes (rows) of each bead (left, columns) in the
1586  region; or epithelial (middle left), immune (middle right) or stromal (right) fractions of beads
1587  (columns) in regions 6, 8 and 11 in dysplastic lesions. I,J. Epithelial cell subsets and programs

29 ¢¢

1588  associated with “malignant-like”, “normal-like” and normal tissues. Significance (FDR, color bar,
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two-sided Welch’s t-test on CLR-transformed compositions) of enrichment (red) or depletion
(blue) of epithelial cell programs (I, rows) or epithelial, immune and stromal cell subsets (J, rows)
in different tissue types (columns) based on Slide-seq or scRNA-seq (“sc”’) samples. K. Inferred
interaction pathways. Enrichment (FDR) in AV vs. normal tissue of corresponding “sender” (x
axis) and “receiver” (y axis) (aggregated over ligand-receptor pairs) pathways (dots). Red/blue:
pathways significantly enriched in AV/normal samples and (light red: only for either sender or

receiver). The top 5 enriched pathways (in each direction) are labeled.
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Figure 5. Mouse tumor regions associated with tumor progression in human colorectal
tumors.

A. Expression profiles characterizing mouse regions are recapitulated in human tumors.
Significance (FDR, color bar, two-sided Welch’s t-test on CLR-transformed compositions) of
enrichment (red) or depletion (blue) of region-associated epithelial, immune or stromal profiles
(rows) compared between normal, MMRp, or MMRd samples (columns). B,C. Mouse regions
capture malignant features in human tumors. B. Top left: First (PC1, x axis) and second (PC2, y

axis) principal components of mouse region scores of mouse and human epithelial pseudo-bulk
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samples. Top right: PC1 loadings (x axis) of each mouse region score (y axis). Bottom: PC1 values
(box plots show mean, quartiles, and whiskers for the full data distribution except for outliers
outside 1.5 times the interquartile range (IQR)) for each type of mouse or human sample (x axis).
C. Significance (FDR, color bar, two-sided Welch’s t-test) of enrichment (red) or depletion (blue)
of region-associated profile scores (rows) in normal and dysplastic samples (columns) in human
or mouse. D,E. Expression of malignant like regions 6 and 11 in tumors are associated with PFI
(D) and OS (E) in human patients. Kaplan-Meier PFI (e, n = 662°) or OS (f, n = 662°°) analysis

of human bulk RNA-seq cohort stratified by malignant-like region profile scores.
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1616  Figure S1. Marker genes, cell states and cell types in the healthy and dysplastic mouse

1617  colon atlas.

1618  A. Cell-type expression signatures. Scaled log-normalized expression (color bar) of the top 20
1619  differentially expressed genes (rows) in cells (columns) from each cell type. B,C. Distinct
1620  condition states and compartments. 2D embedding of all single cell profiles (dots) colored by either
1621  condition state (B) or compartment (C). D. Changes in cell composition in dysplastic lesions.
1622 Significance (FDR, color bar, two-sided Welch’s t-test on CLR-transformed compositions) of
1623  enrichment (red) or depletion (blue) of each cell subset (rows) between samples from different
1624  conditions (columns). E. Changes in cell composition between healthy and dysplastic tissue.
1625  Proportion of cells (y axis) from each cell subset (x axis) out of all cells in each sample (x axis).
1626  F-H. Multiplex in situ RNA profiles (Cartana) reproduce scRNA-seq and Slide-Seq findings. F.
1627  Proportion of RNA molecules (y axis) attributed to each cell type in each sample (x axis) in two
1628  Cartana experiments, with different gene panels. G. Change in cell proportions in AV vs. normal
1629  samples (difference of CLR-transformed cell type fractions, x and y axes) for each cell type (dots,
1630  color) based on scRNA-seq, Slide-Seq or Cartana (axis labels). Error bars: bootstrapped standard
1631  error of the mean (normal n=8, 16, 12, 16 and AV n=11, 24, 12, 12 for scRNA-seq, Slide-seq,
1632  Cartana V1, Cartana V2). H. Change in marker gene expression (dots) in AV vs. normal samples
1633 (difference of CLR-transformed gene fractions, x and y axes) based on scRNA-seq, Slide-Seq or
1634  Cartana (axis labels), for genes measured by all 3 methods. Genes with the 8 maximal and minimal
1635  expression ranks across methods are labeled. Error bars: bootstrapped standard error of the mean
1636  (normal n=8, 16, 12, 16 and AV n=11, 24, 12, 12 for scRNA-seq, Slide-seq, Cartana V1, Cartana

1637  V2).
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1639  Figure S2. Compositional and cell intrinsic changes in stromal and immune cells.

1640  A-C. Immune cell subsets and composition. A. 2D embedding of immune cell profiles colored by
1641  clusters (as in B). B. Proportion of cells out of all immune cells (y axis) of each immune cell subset
1642 ineach sample (x axis). C. Scaled log-normalized expression (color bar) of the top 20 differentially
1643  expressed genes (rows) in cells (columns) from each immune cell subset (color bar on top). D-F.
1644  Monocyte and macrophage cell subsets and composition. D. 2D embedding of monocyte and
1645  macrophage cell profiles colored by clusters (as in E). E. Proportion of cells out of all monocytes
1646  and macrophages (y axis) of each monocyte and macrophage cell subset in each sample (x axis).
1647  F. Scaled log-normalized expression (color bar) of the top 20 differentially expressed genes (rows)
1648  in cells (columns) from each monocyte and macrophage cell subset (color bar on top). G-1. T/NK
1649  cell subsets and composition. G. 2D embedding of T/NK cell profiles colored by clusters (as in
1650  H). H. Proportion of cells out of all T/NK cells (y axis) of each T/NK cell subset in each sample
1651  (x axis). I. Scaled log-normalized expression (color bar) of the top 20 differentially expressed
1652  genes (rows) in cells (columns) from each T/NK cell subset (color bar on top). J. Enrichment of
1653  IL17+ yoT cells (TNKO5) and depletion of CD8+ y3T cells (TNKO1) in dysplastic lesions.
1654  Significance (FDR, color bar, two-sided Welch’s t-test on CLR-transformed compositions) of
1655  enrichment (red) or depletion (blue) of each T/NK cell subset (rows) between samples from
1656  different conditions (columns). K. T/NK cell compositions is similar in human and mouse. Left:
1657 2D embedding of T/NK cell composition profiles of human and mouse samples colored by sample
1658  type (legend) (STAR Methods). Right: Similarity of T/NK cell composition (enrichment z-scores)
1659  in the 2D embedding between each set of samples (rows, columns). L-N. Stromal cell subsets and
1660  composition. L. 2D embedding of stromal cell profiles colored by clusters (legend). M. Proportion

1661  of cells out of all stromal cells (y axis) of each stromal cell subset in each sample (x axis). N.
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Scaled log-normalized expression (color bar) of the top 20 differentially expressed genes (rows)
in cells (columns) from each stromal cell subset (color bar on top). O. Enrichment of vascular
endothelial cells (Endo0O1) and depletion of myofibroblasts (Fibro02) in dysplastic lesions.
Significance (FDR, color bar, two-sided Welch’s t test on CLR-transformed compositions) of
enrichment (red) or depletion (blue) of each stromal cell subset (rows) between samples from
different conditions (columns). P. Increased VEGFA expression in monocyte-macrophage
populations with dysplasia. Distribution of expression (y axis, loglp(counts)) of Vegf4 in

monocytes and macrophages from different conditions (x axis).

81


https://doi.org/10.1101/2022.10.02.508492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.508492; this version posted June 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Normal T/NK cells Dysplastic T/NK cells

® TNK01 (GdT/Cd8) © TNKO1 (GdT/Cd8)
TNK02 (Th1/Th17) TNK02 (Th1/Th17)

© TNKO3 (naive T) © TNKO3 (naive T)

© TNK04 (GdT/Cd8) ©® TNK04 (GdT/Cd8)

© TNKO05 (GdT I117+) ©® TNKO5 (GdT II17+)

® TNKO6 (Treg) NKO0B (Treg)

© TNKO7 (NK) (NK)

® TNKO8 (proliferating T) ® TNKO8 (proliferating T)

@ TNK09 (CD4 Tgib1+) ® TNKO9 (CD4 Tgfb1+)

Normal epithelial
® Epi01 (dysplastic stem-like)
® Epi02 (enterocytes)
® Epi03 (stem/progenitors)
Epi04 (secretory)
Epi05 (dysplastic secretory-like)
® Epi06
® Epi07 (enteroendocrine)
Epi08

Dysplastic epithelial
® Epi01 (dysplastic stem-like)
® Epi02 (enterocytes)
® Epi03 (stem/progenitors)
Epi04 (secretory)
Epi05 (dysplastic secretory-like)

Epi09 Epi09
Epi10 Epi10
Normal epithelial
Program 1 Program 2 Program 3 Program 4 Program 5 Program 6
(innate immune response) roendocrine) (proliferation [G2/M]) (Wnt signaling) (transmembrane transport/ (inflamm. response)
=

basolateral plasma memb.)
A

008 " hi . 002

0o : : § 001

000 N W 0000 N 000
Program 7 Program 8 Program 9 Program 10 Program 11 Program 12 Program 13

(innate immune response) (apical plasma memb.) (oxidation reduction process) (proliferation [G1/S]) (deep crypt)

: > 0016 L. s § - 002 sz = >0
i 0008 " : 001 . N . 0015
W 0000 W 000 e 000 W 0000

Program 14 Program 15 Program 16 Program 17 Program 18
(angiogenesis) (goblet) (stem cells) (MHC 1)

0008 PR < . = aots 3
0.004 0008
0000 W 000 W 0000
Dysplastic epithelial
Program 0 Program 1 Program 2 Program 3 Program 4 Program 5 Program 6

(transmembrane transport/
basolateral plasma memb.)

(innate immune response) (enterogndocrine) (proliferation [G2/M]) (Wnt signaling) (inflamm_ response)
s 5.

004 002
002 E 001
000 & 000

Program 10 Program 11 Program 12 Program 13
(oxidation reduction process) (proliferation [G1/S]) (deep crypt)

Program 7 Program 8
(innate immune response) (apical plasma memb.)
. Y

(

0030 - . 3 012 b

0.015 ¥ 006

0.000 000 & -0.000
Program 14 Program 15 Program 16 Program 17 Program 18

(angio (goblet] (stem cells) (MHC I

SO

1670

82


https://doi.org/10.1101/2022.10.02.508492
http://creativecommons.org/licenses/by-nc-nd/4.0/

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.508492; this version posted June 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S3. Changes in T/NK and epithelial cell differentiation in dysplastic lesions.

A. T/NK cell differentiation. 2D embedding of T/NK cell profiles from normal tissues (left) and
dysplastic lesions (right), colored by cell subset. Streamlines: averaged and projected RNA
velocities. B,C. Proliferating stem-like cells give rise to an expanded stem-like compartment and
differentiated-like tumor cells in dysplastic lesions. 2D embedding of epithelial cell profiles from
normal tissues (B, left and C, top) and dysplastic lesions (B, right, and C, bottom), colored by cell
subset (B), or by expression of epithelial programs (C). Streamlines: averaged and projected RNA
velocities. Outlined dots (B): Proliferative cells (cells with more than 50% program weight in the

proliferation programs #3 and #11).
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1682  Figure S4. Changes in cell composition and expression programs usage in dysplastic
1683  epithelium.

1684  A-D. Changes in epithelial cell composition in dysplastic tissues. A. 2D embedding of all single
1685  cell epithelial profiles showing only the profiles (dots) of cells from each condition state,
1686  subsampled to equal numbers of cells per condition state, colored by cluster. B. PCA captures
1687  differentiation status and lineage of epithelial clusters. First (PC1, x axis) and second (PC2, y axis)
1688  principal components of the expression of epithelial clusters. C. Mean expression (dot color) and
1689 fraction of expressing cells (dot size) of epithelial cell marker genes®’’ (columns) in each cluster
1690  (rows). D. Significance (FDR, color bar, two-sided Welch’s t test on ALR-transformed
1691  compositions with all non-tdTomato counts used as reference compartment) of enrichment (red)
1692 or depletion (blue) of tdTomato expression in cells from AKPVT samples between every pair of
1693  epithelial clusters. E. Dysplastic secretory like (Epi05) and immune cells express tumor-related
1694  genes. Distribution of expression (y axis, loglp(counts)) of different marker genes in cells from
1695  each epithelial/immune cell cluster (x axis). F-L. Epithelial gene programs. 2D embedding of all
1696  epithelial cells colored by the weight of each program (color bar) and the expression of selected
1697  program genes (color bar). M. Epithelial program characteristics of normal and dysplastic colon.
1698  Heatmap significance (FDR, color bar, two-sided Welch’s t test on CLR-transformed
1699  compositions) of enrichment (red) or depletion (blue) of each epithelial program (rows) between
1700  normal vs. dysplastic tissues (columns).
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1708  Figure SS5. Conservation of cellular composition and expression programs between mouse
1709  and human scRNA-seq data.

1710  A,B. Conservation of general and subtype-specific human and mouse epithelial expression
1711  programs. A. Pearson correlation coefficients (color) between program-specific expression
1712 profiles (Methods) of human (all samples, left, MMRd, middle and MMRp, right)) (rows) and
1713  mouse programs (columns). B. Mouse epithelial program enrichments in mouse and human tumor
1714  and normal samples. Significance (FDR, color bar, two-sided Welch t-test on CLR-transformed
1715  compositions) of enrichment (red) or depletion (blue) of mouse epithelial program expression
1716  (rows) in sample classes from human or mouse (columns). C,D. Human-mouse conservation of
1717  cell type and program associations. Pearson correlation coefficients (color) of the CLR-
1718  transformed cell type (C) or epithelial program (D) compositions across samples in mouse (left)
1719  or human (right) single cell data. In (D), data are hierarchically clustered for the “not normal”

1720  mouse case (AV and AKPV) and this ordering is applied to all other panels.
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1723 Figure S6. Spatial distributions of cells and programs across regions.

1724  A-C. Slide-seq quality controls. Slide-seq pucks of AV (top) and normal (bottom) mouse colon
1725  colored by number of UMIs (A) or of genes (B) per bead. (x and y axis: spatial coordinates (um)).
1726  C. H&E staining of sections adjacent to those used for Slide-seq. D. Selected marker gene
1727  expression. Slide-seq pucks from a normal (top) and AV (bottom) sample, colored by marker gene
1728  detected per bead. E,F. Spatial mapping of cell types and programs yields comparable composition
1729  to scRNA-seq. Distribution of the proportion (y axis) of contributions to each cell type (D) or
1730  program (E; based on fractional annotations) in cells (for scRNA-seq; “sc”) or beads (for Slide-
1731  seq; “spatial”; based on fractional annotations) in samples from normal (N) or AV (AV) tissue.
1732 G,H. Distinct cell types and programs associated with AV and normal colon. Significance (FDR,
1733 color bar, two-sided Welch’s t test on CLR-transformed compositions) of enrichment (red) or
1734 depletion (blue) of cell types (F, rows) or epithelial programs (G, rows) in normal (N) or AV (AV)

1735  tissues based on Slide-seq (“spatial”) data or scRNA-seq ("sc”).
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1741  Figure S7. Distinct cellular layout in normal and AV tissues.

1742 A,B. Neighborship analysis is robust to the distance and number of randomizations. Neighborship
1743  enrichment (z-scores, color) vs. a background of spatially random annotation assignments for each
1744  pair of cell annotations (rows, columns) in normal (top) and AV (bottom) samples at varying
1745  distance (a, left: <40um; right: <60 pm) or number of permutations (B, left: 5, right: 50). C,D.
1746  Reproducible spatial arrangement of epithelial cells in normal colon in Slide-seq and Cartana V2.
1747  Co-occurrence (y axis) of normal epithelial cell types (color) at different distances (x axis) from
1748  different central normal epithelial cell type (annotated on top) in Slide-Seq (C) and Cartana (D)
1749  data. E. Decreased spatial order of cell types in AV vs. normal tissue. Distribution of enrichment
1750  z-values (x axis) of cluster-cluster interactions (as shown in Figure 3B,C) in AV lesions (orange)
1751  and normal colon (blue). F. Epithelial program neighborships in AV tissue. Short-range (<20pum)
1752 neighborship enrichment z-scores (color) vs. a background of spatially random annotation
1753 assignments for each pair of epithelial program annotations (rows, columns) in AV lesions. G,H.
1754  Reproducible spatial arrangement of dysplasia-associated immune cells relative to endothelial
1755  cells in Slide-seq and Cartana V2. Co-occurrence (y axis) of dysplasia-associated monocyte or
1756  granulocyte cells (color) with endothelial cells at different distances (x axis) in Slide-Seq (G) and

1757  Cartana (H) data.
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1761  Figure S8. Cellular neighborhoods.

1762  A. Distinct characteristic region distributions in healthy and AV tissue. Proportion of UMIs
1763  assigned to each region (y axis) in each Slide-seq puck (x axis). B. B-catenin expression in AV
1764  lesions. Representative images (i) of B-catenin IHC on sections of AV lesions showing either
1765  nuclear (*) or cytoplasmic (**) staining pattern (x10 magnification), along with high magnification
1766  (x20, i1) of the region highlighted in (i), and H&E staining (iii) of a serial section showing a region
1767  proximal to the region in (1). (M-muscularis, L-lumen, dashed line: border between areas of nuclear
1768  and cytoplasmic staining of B-catenin). C,D. Spatial relations between the regions. Proportion of
1769  beads (y axis) of each region category (color code) at different distances (x axis) from region 2 (C,
1770  muscularis), 6 (D, left), 8 (D, middle) or 11 (D, right). E,F. Fraction of expressing cells (dot size)
1771  and mean expression per celltype (E, dot color) or per region (F, dot color) of marker genes
1772 (columns) across cell types in region 6 (E, rows) or regions 6, 8 and 11 (F, rows). G. Cell type
1773 neighborships in different malignant regions. Short-range (<20pm) neighborship enrichment z-
1774  scores (color) vs. a background of spatially random annotation assignment for each pair of cell
1775  type annotations (rows, columns) in malignant-like regions 6, 8 and 11 within AV lesions. H.
1776  Spatial organization of endothelial cells and pericytes based on Cartana multiplex in situ RNA
1777  analysis. Co-occurrence (y axis) of Cdh5 (top) or Pecam1 (middle) -expressing (endothelial) cells
1778  or Pdgfrb (bottom) -expressing cells (pericytes) at different distances (x axis) from each central
1779  cell type (color code), based on expression of a specific gene (color bar). I. Cell-cell interaction
1780  pathways enriched in different regions. Enrichment (FDR) in regions 2 (muscularis, left), 6
1781  (malignant-like, inflammation, middle) or 11 (malignant-like, EMT, right) of corresponding
1782  “sender” (x axis) and “receiver” (y axis) (aggregated over ligand-receptor pairs) pathways (dots).

1783  Red/blue: pathways significantly enriched/depleted in region (light red/blue: only
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1784  enriched/depleted for either sender or receiver). The top 5 enriched pathways (in each direction)

1785 are labeled.
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1793  Figure S9. Transfer of mouse spatial region expression profiles to human patient data.

1794  A. Expression profiles characterizing mouse regions in human and mouse samples. Significance
1795  (FDR, color bar, two-sided Welch’s t test on CLR-transformed compositions) of enrichment (red)
1796  or depletion (blue) of mouse region-associated epithelial (left), immune (middle) or stromal
1797  profiles (right) in pucks from normal colon and dysplastic lesions, in the same pucks but after
1798  mapping the region annotation to itself (consistency check), in mouse single cell data after
1799  mapping region annotation from mouse pucks, and in human single cell data after mapping region
1800  annotation from mouse pucks. B. PC1 values (y axis; box plots show mean, quartiles, and whiskers
1801  for the full data distribution except for outliers outside 1.5 times the interquartile range (IQR)) in
1802 a PCA of region scores of mouse and human samples (x axis) sorted by malignant status and
1803  colored by status (top, legend) or study (bottom, legend). C. Spatial regions profiles associated
1804  with different CMS classes. Significance (Benjamini-Hochberg FDR, color bar, two-sided
1805  Welch’s t test) of enrichment (red) or depletion (blue) of each region profile (rows) in pseudo bulk
1806  profiles of human tumor samples classified in each CMS class (columns). D,E. Expression of
1807  malignant-like regions 6 and 11 in tumors is associated with PFI and OS in MMRd and MMRp
1808  patients. Kaplan-Meier PFI (f MMRd n = 189%, MMRp n = 447% ) or OS (g, MMRd n = 189,
1809 MMRp n = 447%) analysis of human bulk RNA-seq cohort stratified by malignant-like region
1810  profile scores.
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Supplementary item 1. Correspondence between scRNA-seq, Slide-seq, and Cartana data

A,B. Agreement in cell type proportions. Inferred cell type proportions (y and x axis; CLR-
transformed cell type fractions) for each cell type (dot color) in normal (A) and AV (B) samples
in scRNA-seq, Slide-Seq and Cartana data (axis labels). Pearson’s r: top left corners. Error bars:
bootstrapped standard error of the mean ((A) n=8, 16, 12, 16 and (B) n=11, 24, 12, 12 for scRNA-
seq, Slide-seq, Cartana V1, Cartana V2). C,D. Agreement in gene expression levels. Measured
expression (y and x axis; CLR-transformed gene fractions) for each gene (dot) measured by all
three methods in normal (A) and AV (B) samples in scRNA-seq, Slide-Seq and Cartana data (axis
labels). Pearson’s r: top left corners. Error bars: bootstrapped standard error of the mean ((C) n=8,
16, 12, 16 and (D) n=11, 24, 12, 12 for scRNA-seq, Slide-seq, Cartana V1, Cartana V2). Genes

with the 8 maximal and minimal expression ranks across methods are labeled.
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Supplementary item 2. Dysplasia-associated cells in the tumor microenvironment.

A,B. Representative images of multiplex RNA analysis in normal colon (left) and AV lesions
(right) colored by cell type assignment (A, the same is Figure 1E) and expression of marker genes
(B) for Mono02 (Argl, Hilpda, Nos2, Cd274, Vegfa, Treml; cyan), Mono03 (Osm, Ifi204 and
Thbsl; red), granulocytes (S100a8; yellow), as well as Sell (green), Cer2 (magenta), Ptprc (blue)

and Cd14 (gray).
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Supplementary item 3. TLS-like structures in AV lesions by Cartana multiplex in situ RNA
profiles.

A. Proportion of RNA molecules (y axis) attributed to each cell type (top) or gene (bottom) in
TLS-like regions (x axis) in Cartana V2 multiplex in sifu RNA experiment. Genes which constitute
at least 3% of all measured transcripts in any of the identified follicular structures are noted
(bottom). B. Representative images from TLS-like regions showing the distribution of cell type
(top row) and of cell type markers (bottom four rows; Cd14, Cd68 (monocytes, magenta), Cd3d,

Cd3e, Cd3g (T cells, yellow), and Cd79, Jchain, Igkc (B cells, dark cyan)).
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Supplementary item 4. Ligand-receptor analysis.

A,B. Cell-cell interaction pathways enriched in normal and AV tissue and regions. Significance
(FDR, color bar, two-sided Mann-Whitney U test) of enrichment (red) or depletion (blue) of
expression of “sender” (left) and “receiver” (right) cell-cell communication pathways (rows)
(aggregted from ligand-receptor pairs) in normal vs. AV samples (A, columns), or regions (B,
columns). C,D. Split power analysis for cell-cell communication pathway analysis. Significance
of enrichment (logio(FDR), y-axis) for receiver (solid lines) and sender (dashed line) for each of
the top 5 enriched communication pathways (color) in each iteration for the spatial split of the
Slide-Seq pucks into spatially disconnected and separated patches (x axis), for either normal vs.

AV tissue enrichment (C) or for specific regions (D).
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