

1 **Effects of ancient anthropogenic clam gardens on the growth, survival, and**
2 **transcriptome of Pacific littleneck clams (*Leukoma staminea*)**

3
4 Monique R. Raap^{1,2,a}, Helen J. Gurney-Smith^{1,2,3,b}, Sarah E. Dudas^{1,2,3,a}, Christopher M. Pearce^{4,5},
5 Jong S. Leong¹, Ben J. G. Sutherland^{1,6}, Ben F. Koop¹

6
7 ¹ Department of Biology, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2

8 ² Hakai Institute, Quadra Island, British Columbia, Canada, V0P 1H0

9 ³ Department of Biology and Department of Fisheries and Aquaculture, Vancouver Island
10 University, Nanaimo, British Columbia, Canada, V9R 5S5

11 ⁴ Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada,
12 V9T 6N7

13 ⁵ Department of Geography, University of Victoria, Victoria, British Columbia, Canada, V8W
14 2Y2

15 ⁶ Sutherland Bioinformatics, Lantzville, British Columbia, Canada, V0R 2H0

16
17 ^a Present address: Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British
18 Columbia, Canada, V9T 6N7

19 ^b Present address: St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews,
20 New Brunswick, Canada, E5B 0E4

21
22 Author for correspondence: HJG-S

23 St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, New Brunswick,
24 Canada, E5B 0E4

25 Email: Helen.Gurney-Smith@dfo-mpo.gc.ca

26

27 Data Deposition: Raw RNA-sequencing data have been uploaded to SRA under BioProject
28 PRJNA818991, BioSamples SAMN26893882–SAMN26893909.

29 **Abstract**

30 Clam gardens traditionally established and maintained by coastal Indigenous Peoples of northwest North
31 America are habitat modifications to enhance intertidal clam productivity for reliable local food
32 production. In this study, phenotypic and transcriptomic responses of Pacific littleneck clams (*Leukoma*
33 *staminea*) were evaluated 16 weeks after transplantation to either unmaintained clam gardens or reference
34 (unmodified) clam beaches. Beach sediment characteristics including grain size and organic content were
35 examined across all beaches. Large differences in abiotic characteristics and phenotypic responses were
36 observed among beaches; however, differences were not related to the clam garden/reference beach effect.
37 Clam survival and growth were negatively associated with small rocks, very fine sand, and silt, along with
38 carbonate and organic content, and positively associated with coarse sand, sand, and fine sand. To
39 investigate molecular responses to unmaintained clam gardens, a *de novo* transcriptome containing 52,000
40 putative transcripts was assembled for *L. staminea* and was used to test for differential expression between
41 transplanted clams in unmaintained clam gardens or on reference beaches. As expected, given the lack of
42 significant phenotypic differences between treatments, transcriptomic responses to unmaintained clam
43 gardens were minor, although several weakly-associated transcripts were identified. By contrast, the
44 strong survival gradient across beaches was used to identify genes associated with survival and, combined
45 with characterization of tissue-specific expression in the gill and digestive gland, contributes to our
46 understanding of molecular processes in this non-model species.

47

48 **Keywords:** clam garden; *Leukoma staminea*; Pacific littleneck clam; sediment carbonate content;
49 transcriptomics

50 **Introduction**

51 Coastal shorelines have been altered to increase productivity and facilitate the harvesting of natural
52 resources for centuries (Erlandson et al., 2008). Shoreline constructions such as clam gardens and fishing
53 weirs have long been used to provide productive and predictable local food resources for coastal
54 Indigenous Peoples (Neudorf et al., 2017) and provide important insights into cultural food practices,
55 traditional technologies, economies, values, and ancestral practices of coastal communities (Deur et al.,
56 2015; Jackley et al., 2016; Lepofsky et al., 2020; Smith et al., 2019). Construction of clam gardens in
57 North America is estimated to have begun approximately 3,500 years ago (Smith et al., 2019) and clam
58 gardens are found from Alaska (USA), through British Columbia (BC, Canada), to Washington State
59 (USA) (Groesbeck et al., 2014).

60 Construction of clam gardens involves rolling rocks and boulders to the low-tide line and building a
61 wall parallel to the shoreline (Deur et al., 2015), allowing sediment deposition between the wall and the
62 high-tide mark. This creates a wider intertidal shellfish habitat area with a reduced slope (Neudorf et al.,
63 2017) where shellfish such as Pacific littleneck clams (*Leukoma staminea*) typically occur (Deur et al.,
64 2015; Groesbeck et al., 2014). The reduced slope allows for a thin layer of seawater to be retained on the
65 accumulated sediment, reducing desiccation risk, keeping clams in shallow accessible portions of the
66 intertidal zone, and maximizing submersion time for feeding and therefore growth (Deur et al., 2015).
67 Furthermore, the exterior, ocean-facing side of the wall creates rocky reef habitat for a wide variety of
68 other marine invertebrates, many of which can also be harvested for consumption (Caldwell et al., 2012;
69 Deur et al., 2015; Lepofsky et al., 2017). Traditionally, clam gardens were maintained and tended with
70 practices that included predator exclusion, selective harvesting, and the addition of gravel and crushed
71 shell or shell hash (Deur et al., 2015). The latter may provide settlement cues to larval shellfish as well as
72 protect young recruits from seawater acidity and predators (Green et al., 2012; Sponaugle & Lawton,
73 1990).

74 Research on the effects of clam gardens is an area of active interest. Many clam garden walls,
75 although maintained into the 20th century (Williams, 2006), now remain as unmaintained structures, which
76 could be expected to provide only partial effects relative to a fully tended clam garden. Nonetheless,
77 untended clam gardens have been found to harbour higher densities of Pacific littleneck clams and butter
78 clams (*Saxidomus giganteus*), to have increased recruit survival, and higher growth rates relative to
79 unmodified beaches (Groesbeck et al., 2014; Jackley et al., 2016). Clam gardens also support distinct

80 biological communities with increased abundances of other infaunal taxa including Nematoda,
81 Harpacticoida, and Chironomidae (Cox et al., 2019), and epifaunal taxa such as *Chthamalus dalli*, *Lottia*
82 *persona*, *Balanus crenatus*, and *Littorina scutulata*, (Cox et al., 2024a). These increases in diversity and
83 density were positively correlated with the quantity of gravel and shell hash present (Cox et al., 2024a;
84 Cox et al., 2019). Sediment composition can be altered in clam gardens, for example through increased
85 carbonate and reduced silt (Salter, 2018), as well as more gravel and shell hash (Groesbeck et al., 2014)
86 relative to unmodified beaches, which are often primarily composed of silt, sand, and mud (Jackley et al.,
87 2016). Such differences in sediment composition are attributed to the tending practices of Indigenous
88 Peoples, which included the addition of gravel and crushed whole clam shells to clam gardens (Groesbeck
89 et al., 2014; Williams, 2006).

90 The effect of sediment shell hash on clam productivity is not definitive. Sediment carbonate
91 saturation state can affect settlement and recruitment of larval and juvenile bivalves, respectively (Green et
92 al., 2012). Seawater calcium carbonate (CaCO_3) saturation state is important to the formation and
93 maintenance of shell thickness and integrity of marine molluscs and other calcifiers (Chadwick et al.,
94 2019; Evans et al., 2014; Green et al., 2012; Waldbusser & Salisbury, 2014). Increased sediment shell
95 hash has been observed to increase clam settlement and productivity (Green et al., 2012; Groesbeck et al.,
96 2014; Salter, 2018), but observations have also been made showing negative (Munroe, 2016) or neutral
97 (Greiner et al., 2018) effects on early post-settlement bivalve growth and recruitment.

98 Genomic tools such as transcriptomics can capture early signals of environmental stressors and are
99 increasingly used to evaluate abiotic impacts on aquatic species (Milan et al., 2011; Sutherland et al.,
100 2012). Transcriptomic data can be associated with phenotypic (e.g., survival, growth) and environmental
101 data and used to predict potential physiological outcomes (Evans et al., 2011; Miller et al., 2017). An
102 additional benefit is that in some studies, metatranscriptomics can provide additional taxonomic
103 identification of microbiota in samples (Bourlat et al., 2013; Sutherland et al., 2022). The present study
104 aims to determine whether Pacific littleneck clam health and productivity—as assessed by growth,
105 survival, and transcriptomic response—are affected when clams are transplanted to unmaintained clam
106 gardens relative to unmodified clam beaches, and whether these unmaintained clam gardens contain
107 significantly different abiotic conditions. To this end, we generated and assembled a *de novo* reference
108 transcriptome and characterized Pacific littleneck clam transcriptome responses in several unmaintained
109 clam gardens and unmodified beaches in the same area. Beaches used in the study were in northern

110 Quadra Island in coastal BC, an area with a very high density of historic clam gardens, covering
111 approximately 35% of the shoreline (Groesbeck et al., 2014; Lepofsky et al., 2020; Neudorf et al., 2017).
112 To evaluate the effects of the unmaintained clam gardens on transplanted clams after a 16-week growth
113 period, measured environmental parameters, clam phenotypic responses (growth and survival), and clam
114 transcriptomic responses were considered. The combination of abiotic measurements and organismal and
115 molecular phenotypes with the characterized transcriptome provides valuable context for both the effects
116 of different environmental variables on Pacific littleneck clams and on the functions of response genes in
117 this non-model, ecologically and culturally important species.

118

119 **Methods**

120 **Positionality Statement**

121 The authors of this paper are academic, government, and independent scientific researchers who conduct
122 research on climate change, ecology, invertebrate physiology, bioinformatics, and genomics. The authors
123 were educated and trained in North American and European institutions prior to the positions in Canada
124 that they hold at time of submission, with five reaching doctorate status and two with master's degrees.
125 This research was conducted in British Columbia, Canada. None of the authors who have provided
126 heritage information for this statement indicated First Nation or other Indigenous background, and
127 therefore we respectfully acknowledge the potential for unconscious bias on the presented subject matter.

128

129 **2.1 | Study sites**

130 The intertidal coastlines of Kanish Bay and adjoining Small Inlet on northwest Quadra Island, BC (Figure
131 1), were chosen for this study due to an abundance of historic clam gardens where sea level has remained
132 relatively consistent through time, ensuring walls were still at an ecologically optimal height, and due to
133 the proximity to the Hakai Institute research station that supported field logistics. Also, complimentary
134 research has been conducted on clam gardens in the same region and on many of the same sites (Cox et
135 al., 2024a; Cox et al., 2024b; Groesbeck et al., 2014; Lepofsky et al., 2020).

136 Quadra Island is located off the northeast coast of Vancouver Island and is in the traditional
137 territories of the Kwakwaka'wakw (Laich-kwil-tach) and northern Coast Salish Peoples (Smith et al.,
138 2019). Three unmaintained clam garden beaches (CG, designated as A, C, and E) were selected for the
139 study along with three unmodified reference clam beaches (Ref, designated as B, D, and F) (Figure 1).

140 Beaches with similar exposure, slope, and sediment (all determined in the field visually) were sought to
141 reduce the influence of other variables as much as possible. Once three reference sites were identified,
142 nearby clam gardens with intact walls were selected. Additionally, all sites were pre-surveyed for the
143 presence of live bivalve populations using test digs. After the study began, beach B was identified as a
144 damaged clam garden with over 90% of its wall destroyed most likely due to logging activities in the early
145 1900s that involved dragging log bundles down the beach into the ocean (Twindle, 1918). Now only a
146 small remnant of the wall is visible at the very edges at tidal heights below Mean Lower Low Water
147 (MLLW). The clam gardens are not believed to have been tended as per Indigenous practices since the
148 early-to-mid 1900s (Deur et al., 2015).

149

150 **2.2 | Clam transplantation experiment**

151 Juvenile Pacific littleneck clams ($N = 400$) of 1–2 cm in shell height (hinge to shell margin) were hand
152 dug from a site in Kanish Bay (Figure 1) between 1 and 2 m MLLW level on May 7, 2016. Each clam was
153 individually wet weighed, measured for shell height and length (*i.e.*, the widest part of the shell at 90° to
154 the shell height), and then haphazardly placed into 18 groups of 20 clams each. Clams were held in a pearl
155 net below the low intertidal zone in Heriot Bay (Quadra Island) until deployment. Clams on beach A were
156 deployed on May 10, those on beaches B, C, and D on May 11, and those on beaches E and F on May 12,
157 2016, different deployment days being required due to tidal heights and weather conditions. At low tide at
158 each of the six beaches, the 1.5–1.8 m intertidal zone was demarcated and three plastic mesh cubes (length
159 \times diameter \times height: 20 \times 20 \times 4 cm; made from black high-density polyethylene, VexarTM), each
160 containing 20 clams, were buried in the top 20 cm of the sediment, 5 m apart and parallel to the shore in
161 the middle of the demarcated zone. Each mesh cube was defined as one replicate plot (P) and uniquely
162 numbered: Beach A with P1–P3, Beach B with P10–P12, Beach C with P4–P6, Beach D with P7–P9,
163 Beach E with P13–P15; and Beach F with P16–P18.

164 Transplanted clams were left *in situ* for 16 weeks and collected on August 30–31, 2016. Each mesh
165 cube, still containing both sediment and clams, was carefully removed from the beach with minimal
166 disturbance. The cubes were then individually placed in bags and transported in coolers to the Hakai
167 Institute laboratory on Quadra Island. Upon arrival at the laboratory, each individual was processed as
168 quickly and carefully as possible. Immediately after wet weight, shell height, and shell length were

169 measured, and the status (alive or dead) recorded, tissue samples were collected for gene expression
170 analysis.

171 Growth and survival per plot were calculated as:

172
$$\text{Percent growth} = (\text{mean final height} - \text{mean initial height}) / \text{mean initial height} \times 100$$

173
$$\text{Percent survival} = \text{number of survivors} / \text{initial number of clams} \times 100$$

174
175 In addition, some visual observations were made on animal condition, following the protocols developed
176 for the Canadian National Animal Aquatic Health Program (NAAHP), including observations of animal
177 state (*i.e.*, health/vitality, condition) and digestive gland colouration.

178
179 **2.3 | Sediment collection and analysis**
180 Sediment-core samples (length x diameter: 15 x 5 cm) were collected adjacent to each deployed cube ($n =$
181 3 cores per beach) to assess grain size. Additional sediment-core samples (10 x 3.5 cm) were collected
182 adjacent to each cube to assess percent carbonate and percent organic matter content ($n = 3$). Each core
183 was placed individually in labeled sample bags and frozen at -20°C until analysis.

184 To determine grain-size distribution, the sediment samples were dried to constant weight at 100°C for
185 24 hr, weighed, transferred to a series of nested sieves (mesh size: 4.75 mm, 2 mm, 1 mm, 500 µm, 250
186 µm, 125 µm, and 63 µm), and shaken in a sediment shaker for 15 min. Each size fraction was then
187 weighed and expressed as a percentage of the total sediment weight. A scale very similar to the
188 Wentworth scale of sediment size classes was used to classify the grain sizes: pebble and larger gravel
189 called “rocks” in the present study (> 4.75 mm), granule gravel called “small rocks” in the present study
190 (2.00 – 4.75 mm), very coarse sand (1.00 – 2.00 mm), coarse sand (0.50 – 1.00 mm), sand (250 – 500
191 µm), fine sand (125 – 250 µm), very fine sand (63 – 125 µm), and silt (< 63 µm) (Wentworth, 1922).

192 The loss on ignition method (Heiri et al., 2001) was used to determine sediment percent organic
193 matter and carbonate content. Briefly, the sediment samples were dried to constant weight at 100°C for 48
194 hr in previously-ashed (450°C for 8 hr) crucibles, and the dry weights measured. Dried sediment samples
195 were then ashed in a muffle furnace at 435°C for 8 hr. After cooling the samples in a desiccator for 1 hr,
196 the weights of the ashed samples were recorded. The percent organic matter was then calculated using the
197 following equation:

198
$$\text{Percent organic matter} = (\text{dry weight} - \text{ash weight}) / \text{dry weight} \times 100$$

199
200 Sediment percent carbonate content was determined following 2 hr at 950°C and 2 hr of cooling in a
201 desiccator, and calculated using the equation:

202
$$\text{Percent carbonate content} = (\text{ash weight}_{435} - \text{ash weight}_{950}) / \text{ash weight}_{435} \times 100$$

203
204 **2.4 | Data analysis: clam size, growth and survival, and sediment characteristics**
205 Data were analyzed in R v.4.4.2. (R.Core.Team, 2025). Model assumptions of normality were assessed
206 using histograms, quantile-quantile plots of the data, and the Shapiro-Wilk test. Homogeneity of the
207 residuals was assessed using plots of model residuals versus fitted values and Bartlett's test for
208 homogeneity of variance. Nested ANOVAs (plots nested within beach location), using the linear mixed-
209 effects function in the *nlme* package, were used to test for differences between clam garden and
210 unmodified reference beaches (*i.e.*, beach type, two levels) in initial and final clam shell heights, wet
211 weights, percent growth, and percent survival as well as individual sediment characteristics (*i.e.*, rocks,
212 small rocks, very coarse sand, coarse sand, sand, fine sand, very fine sand, silt, percent organic matter, and
213 percent carbonate concentration), with beach location (six levels) included as a random factor.
214 Significance was considered when $p \leq 0.05$. ANOVAs, linear mixed-effects models, and post-hoc least
215 squares means omitting beach type were then used to test for significant differences among beaches in
216 percent growth, percent survival, sediment carbonates, organics, and individual grain sizes. Principal
217 component analysis (PCA) and biplot figures were generated in R using the *prcomp* function in the *stats*
218 package and the *ggbiplot* function/package. Pearson correlation between the variables was evaluated with
219 the *cor* function of the *stats* package of R and inspected with *corrplot* v.0.92 (Wei & Simko, 2021). All
220 code for the analysis is available (see *Data Availability*).
221

222 **2.5 | RNA sampling and extraction**

223 For gene-expression analysis, small sections (~2 x 2 mm) of gill and digestive gland tissues were excised
224 from each surviving clam using sterile techniques and stored in RNAlater as per manufacturer's (Ambion)
225 protocols. These two tissues were selected because the bivalve gill is often used to study rapid
226 environmental responses and the digestive gland is an accumulatory organ often used in toxicological and
227 immunology studies for longer-term effects of environmental change and exposure (Gosling, 2008; Milan
228 et al., 2011). Total RNA from tissue sections of 25–30 mg was individually extracted from each tissue by

229 homogenization in 2-mL tubes containing Lysing Matrix D (MP Biomedicals) in a Tissuelyser II (Qiagen)
230 at 25 Hz for 2 min followed by purification through RNeasy columns (Qiagen). To eliminate DNA
231 contamination, a DNase protocol was applied (Turbo DNA-free Kits, Ambion). After DNase treatment,
232 total RNA was quantified by spectrophotometry (NanoDrop 1000, Thermo Fisher Scientific).

233

234 **2.6 | Library preparation for RNA sequencing**

235 Up to three pooled samples per beach were created for each of the six beaches by combining five
236 haphazardly selected individuals from each plot within the beach. Plots were only used if they contained at
237 least five surviving clams. This resulted in three plots being used per beach for all locations except
238 beaches E and F, which only had five or more survivors in a single plot per beach. This resulted in 14
239 RNA pools per tissue (N = 28 pools total) to be used for library synthesis and sequencing. Five total RNA
240 samples were normalized to generate equimolar pools of RNA for each tissue for the 14 plots across the
241 six beaches. Pooled RNA quality and quantity were evaluated using the RNA 6000 Nano chip on a 2100
242 Bioanalyzer (Agilent).

243 Libraries were generated using 250 ng of pooled total RNA using an mRNA enrichment with the
244 NEBNext Poly(A) Magnetic Isolation Module (New England Biolabs) and cDNA synthesis was
245 conducted using NEBNext RNA First Strand Synthesis and NEBNext Ultra Directional RNA Second
246 Strand Synthesis Modules. Remaining library preparation used an NEBNext Ultra II DNA Library Prep
247 Kit for Illumina, with adapters and PCR primers (NEB). The remaining steps of library preparation were
248 taken using the Quant-iTTM PicoGreen[®] dsDNA Assay Kit (Life Technologies) and the Kapa Illumina GA
249 with Revised Primers-SYBR Fast Universal Kit (Kapa Biosystems (Pty) Ltd.). Average fragment size was
250 determined using a LabChip GX instrument (PerkinElmer). Libraries were sequenced across four lanes of
251 an Illumina HiSeq4000 PE 100 platform (Illumina) and the mean (\pm SD) read pairs per library was $54.4 \pm$
252 9.5 million. All library preparation and sequencing steps were undertaken at the Genome Québec
253 Innovation Centre (Montreal, Canada).

254

255 **2.7 | Transcriptome assembly and annotation**

256 The 28 sequenced libraries were used to generate a *de novo* transcriptome assembly using Trinity 2.5.1 (–
257 min_kmer_cov 2) (Grabherr et al., 2011). Before assembly, reads were trimmed to remove adapters, low
258 quality bases, and too-short reads using Trimmomatic 0.36 (ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10

259 LEADING:3 TRAILING:3 SLIDINGWINDOW: 4:15 MINLEN:36) (Bolger et al., 2014). The
260 TransDecoder 5.0.1 pipeline (Haas et al., 2013) was used to predict likely coding sequences in the
261 resultant assembly using homology (pfam-a, Sept. 2017 release, UniProt) and open reading frame (ORF)
262 information. A minimum cutoff for ORFs was 30 amino acids instead of the default 100 amino acids. The
263 best representative transcript was selected for each gene based on TransDecoder predicted ‘complete’
264 ORF type, which required protein homology. In cases where there were multiple transcripts with complete
265 ORFs for a gene, the transcript with the largest ORF was chosen. Further filtering was carried out to
266 choose only transcripts \geq 100 base pairs to remove small transcripts that could cause analysis errors, and
267 scanning pfam-a and Uniprot annotations were used to remove repetitive element-related keywords to
268 produce the final assembly, where each transcript putatively represents a single gene.
269

270 **2.8 | Data analysis: RNA sequencing data**

271 Raw reads were imported to the repository *Simple_reads_to_counts* (see *Data Availability*) for
272 quantitation. Raw reads were gently trimmed for quality and to remove adapters using Trimmomatic
273 (Bolger et al., 2014), with the following flags: ILLUMINACLIP:\$VECTORS:2:30:10;
274 SLIDINGWINDOW:20:2; LEADING:2; TRAILING:2; MINLEN:80. Both the raw and the trimmed data
275 were inspected using FastQC (Andrews, 2010) and multiQC (Ewels et al., 2016). The *de novo* reference
276 transcriptome (see above) was indexed using bowtie2 (Langmead & Salzberg, 2012) and reads were
277 aligned against it in local mode, allowing 40 alignments to be retained per read (-k 40). To compare with
278 these results, the Manila clam (*Ruditapes philippinarum*) genome (GCA_009026015.1_ASM902601v1)
279 (Yan et al., 2019) was also tested as a potential reference by indexing the genome using hisat2 (Kim et al.,
280 2015) and aligning the Pacific littleneck clam reads against the Manila clam genome (also retaining a
281 maximum of 40 alignments per read; -k 40). The alignments against the Pacific littleneck clam *de novo*
282 reference transcriptome were quantified using eXpress using default parameters (Roberts & Pachter,
283 2013). The alignments against the Manila clam genome were also quantified using eXpress default
284 parameters but with the flag *--rf-stranded*. Resultant effective read counts quantified against the *de novo*
285 reference transcriptome were used in downstream analyses.

286 Transcriptome analyses were all conducted as described in the repository *ms_clam_garden* (see *Data*
287 *Availability*). Transcript annotation, effective counts, and phenotypic data were all imported into R to be
288 analyzed with *edgeR* v.3.36.0 (Robinson et al., 2010). Separate datasets were constructed including all

289 samples, or including only gill or only digestive gland (DG) samples ($n = 3$ datasets). Each dataset was
290 input into a DGEList, then filtered for low expression by requiring at least 10 reads to be aligned to the
291 transcript in at least five individuals (*i.e.*, counts per million (cpm) $> 0.82\text{--}1.03$, depending on the dataset).
292 Samples were normalized by TMM normalization as applied by *calcNormFactors()* and multidimensional
293 scaling (MDS) plots were produced for each of the three datasets.

294 Tissue-specific expression was determined by identifying transcripts expressed in one tissue and not
295 in the other. The normalized counts for these transcripts were then obtained from the all-sample dataset
296 and 200 of the highest expressed tissue-specific transcripts from both tissues were plotted using *heatmap()*
297 of the *stats* package in R. Gene Ontology (GO) enrichment was conducted using the tissue-specific
298 transcripts from both tissues compared to all expressed transcripts for that tissue. Enrichment analysis was
299 conducted in DAVID Bioinformatics (Huang et al., 2007).

300 Differential expression analysis was conducted using *limma* v.3.50.1 (Ritchie et al., 2015). Both
301 tissues were analyzed separately and differentially expressed genes were identified using beach type (*i.e.*,
302 CG vs. Ref) as an explanatory variable using a gene-wise negative binomial generalized linear model with
303 quasi-likelihood tests (*glmQLFit*) and retaining all transcripts with $p \leq 0.001$. Differential expression,
304 based on beach-type with a Benjamini-hochberg multiple test correction, was also investigated.
305 Differentially expressed genes with $p \leq 0.001$ were also identified based on survivorship, where the
306 percent survival of each plot was used to bin the plot into one of high, medium, or low survival based on
307 the fourth quartile, second and third quartiles, and the first quartile of percent survival, respectively.
308 Statistical significance was conducted as above, but using contrasts between each survival group. All other
309 analyses and plots were conducted in R and are available in the repository listed above.

310

311 **Results**

312 **3.1 | Clam growth and survival**

313 There were no significant differences between unmaintained clam garden (CG) and reference (Ref)
314 beaches in any measured growth or survival variable (ANOVAs, $p \geq 0.168$, Table 1). The mean (\pm SD)
315 initial clam wet weight and shell height for CG and Ref beaches was 1.5 ± 0.2 g and 1.8 ± 0.3 g and $1.5 \pm$
316 0.1 cm and 1.6 ± 0.1 cm ($N = 180$), respectively (Table 1). After 16 weeks *in situ*, these increased to $3.9 \pm$
317 1.3 g and 3.8 ± 2.9 g and 1.8 ± 0.3 cm and 1.9 ± 0.4 cm, which in terms of height, was an increase in
318 growth of $20.5 \pm 15.3\%$ and $18.0 \pm 22.6\%$, respectively. Calculating percent growth using shell height

319 includes both the alive and dead clams and is therefore considered to be a more accurate measurement of
320 growth compared to using wet weights. Wet weight only includes surviving clams, and therefore does not
321 capture the reduced growth that may have occurred in clams that eventually died. Clam survival was 63.3
322 $\pm 28.3\%$ and $58.3 \pm 37.0\%$ in CG and Ref beaches, respectively.

323 Beach location regardless of beach type significantly affected all growth and survival variables
324 (ANOVAs, $p \leq 0.03$, Table 2, *SI* Figure S1). An unplanned significant difference occurred in the initial
325 size of clams among the six beaches (initial wet weight and shell height ANOVAs $p = 0.031$ and $p =$
326 0.044, respectively, Table 2, *SI* Figure S2). This difference was likely due to significantly larger clams
327 inadvertently being planted on beach D (Table 2, *SI* Figure S2). Percent growth was highest on beaches A
328 ($31.2 \pm 7.2\%$), C ($29.7 \pm 2.8\%$), and D ($47.0 \pm 8.2\%$) and lowest on beaches B ($6.6 \pm 6.8\%$), E ($0.8 \pm$
329 0.9%), and F ($0.3 \pm 0.6\%$) (Table 2). Percent survival was highest on beaches A ($88.3 \pm 12.6\%$), B ($71.7 \pm$
330 27.5%), C ($68.3 \pm 12.6\%$), and D ($86.7 \pm 5.8\%$) and lowest on beaches E ($33.3 \pm 23.6\%$) and F ($16.7 \pm$
331 24.7%) (Table 2).

332 Gross observations of the clam showed that most of the survivors on beaches A (CG), B (Ref), C
333 (CG), and D (Ref) were considered healthy (Table 3). These beaches had 68–88% survival, with generally
334 low percentages of clams considered weak (0–5%), emaciated (0–5%), or having pale or very pale
335 digestive glands (0–22%) (beach D was a slight exception, where although survival was high, 22% of
336 clams had pale digestive glands) (Table 3). In contrast, survivors from low-survival (17–33%) beaches E
337 (CG) and F (Ref) had more clams considered weak (13–15%), emaciated (15–22%), and with digestive
338 glands being very pale (13–22%). Beaches E and F are therefore considered poorer performing sites.

339

340 **3.2 | Beach sediment characteristics**

341 There were no significant differences between unmaintained CG and Ref beaches for any of the sediment
342 characteristics (ANOVAs, $p \geq 0.392$, Table 1). However, beach location regardless of beach type
343 significantly affected all sediment characteristics except percentage of small rocks (Table 2). A PCA of
344 sediment characteristics explained 66.0% (dimension 1: 40.8%, dimension 2: 25.6%) of the variation in
345 the data and separated beach locations into three groups (Figure 2), where pairs of beaches were observed
346 to be clustered based on similar geographic locations within Kanish Bay (Figure 1). Beach A (CG), on a
347 west-facing bay, was exposed to wave action from within and outside Kanish Bay. Beach A grouped with
348 beach B (Ref), an east-facing bay that was also exposed to wave action within Kanish Bay (Figure 1).

349 These beaches are the two sites that are closest to, but on opposite sides of, the entrance of Kanish Bay
350 and show correlation with very course sand, coarse sand, and sand (Figure 2). Beach C (CG) is a south-
351 facing sheltered beach within Small Inlet and groups with beach D (Ref), a north-facing beach on the
352 opposite side of Small Inlet. Beaches C and D correlated with rocks, fine sand, and final weight/shell
353 height (Figure 2). Beaches E (CG) and F (Ref), two proximate beaches on the south side of Kanish Bay,
354 face north and are exposed to moderate wave action. These sites were associated with carbonates,
355 organics, and small rocks, and showed an inverse correlation with percent survival (Figure 2). Notably,
356 these beach groupings in the PCA remain constant when only abiotic characteristics are included in the
357 PCA, or when only survival and growth variables are included (*data not shown*). The PCA was also run
358 with all data, but excluding beach D due to the aforementioned initial size difference of this beach, and
359 this showed similar associations and groupings to the above, but beach C was on its own (SI Figure S3).

360 Most sand types, silt, and rocks were either positively or negatively correlated with growth and
361 survival variables (SI Figure S4). To investigate correlations between sediment characteristics and clam
362 growth and survival further, beach D was again excluded as described above (SI Figure S5). Abiotic
363 variables with significant positive correlations with growth included sand ($p = 0.018$, $R^2 = 0.31$) and fine
364 sand ($p = 0.022$, $R^2 = 0.29$), with those having negative associations being silt ($p = 0.002$, $R^2 = 0.49$) and
365 small rocks ($p = 0.014$, $R^2 = 0.34$). Variables with significant positive correlations with survival were
366 coarse sand ($p = 0.014$, $R^2 = 0.34$) and sand ($p = 0.002$, $R^2 = 0.48$), with those having negative associations
367 being carbonates ($p = 0.008$, $R^2 = 0.39$) and organic content ($p = 0.035$, $R^2 = 0.24$), as well as small rocks
368 ($p = 0.021$, $R^2 = 0.30$), very fine sand ($p = 0.002$, $R^2 = 0.49$), and silt ($p = 0.002$, $R^2 = 0.51$) (SD Additional
369 File S1, without Beach D).

370
371 **3.3 | Transcriptomic overview and *de novo* reference transcriptome**
372 The gill and digestive gland (DG) libraries produced on average (\pm SD) 53.8 ± 10.7 and 55.0 ± 8.3 M read
373 pairs per library, respectively. All 28 libraries, comprising 305 GB of high-quality sequence data, were
374 used to create a *de novo* transcriptome assembly (Table 4; see *Data Availability*). The initial Trinity
375 assembly resulted in 1,695,678 transcripts, of which 1,277,478 were likely coding sequences as predicted
376 by TransDecoder. Following filtering of the *de novo* assembly (see *Methods*), there were 52,000
377 representative transcripts in the assembly, each putatively representing a single gene, and 42,708 had
378 associated Uniprot identifiers.

379 Alignments of trimmed reads resulted in a mean (\pm SD) alignment rate of $27.87 \pm 2.48\%$ against the
380 Pacific littleneck clam *de novo* transcriptome. For comparison, the alignment rate against the Manila clam
381 genome (*i.e.*, the closest relative with a reference genome at the date of the present analysis) resulted in
382 very low alignments of $1.10 \pm 0.17\%$ and $2.59 \pm 1.00\%$ for gill and DG, respectively. All downstream
383 analyses used the *de novo* transcriptome quantified transcripts. After filtering the all-sample dataset (N =
384 28 pooled samples), 33,825 transcripts (67.7%) were expressed in at least five samples above the applied
385 threshold (see *Methods*).

386 An MDS plot of samples from both tissue types showed that gill samples were distinctly separate
387 from DG samples across the first dimension, explaining 65% of the variation in the dataset (Figure 3A).
388 The second dimension, which explained only 3% of the variation, separated the DG samples, but not the
389 gill ones. One outlier sample, P12, was observed in the gill data.

390

391 **3.4 | Tissue-specific expression**

392 Samples from each tissue were then analyzed separately by conducting tissue-specific filtration and
393 normalization. The gill and DG samples had on average (\pm SD) 12.9 ± 3.0 M and 15.5 ± 2.9 M reads
394 aligning per library and the datasets were found to have 28,391 and 24,699 transcripts expressed,
395 respectively, after filtering for low expression. Inspecting transcripts that were present in only one of the
396 tissue types identified 8,795 (31.0%) gill-specific transcripts and 5,103 (20.7%) DG-specific transcripts
397 (Table 5; *SD* Additional File S2). The highest expressed tissue-specific transcripts are shown in *SI* Figure
398 S6 (N = 200 for each tissue).

399 Tissue-specific transcripts were compared to all expressed genes in that tissue to identify enriched
400 GO categories in the tissue-specific list. Gill-specific transcripts were enriched for response to stimulus (N
401 = 1,839), signal transduction (N = 1,184), biological adhesion (N = 496), ion transport (N = 494), defense
402 response (N = 402), and G-protein coupled receptor signalling pathways (N = 210) (all $p < 0.0001$),
403 among others (*SD* Additional File S3). DG-specific transcripts were enriched for biological adhesion (N =
404 308), defense response (N = 263), immune response (N = 223), ion transport (N = 201), innate immune
405 response (N = 149), organonitrogen compound catabolic process (N = 130), defense response to bacteria
406 (N = 82), and humoral immune response (N = 58) (all $p < 0.0001$), among others (*SD* Additional File S3).

407

408 **3.5 | Effect of unmaintained clam gardens on clam gene expression**

409 The gill dataset showed only 13% and 11% of the total variation in an MDS analysis explained by
410 dimensions 1 and 2, respectively (Figure 3B). No clear clustering was observed in the gill samples by
411 beach type (*i.e.*, CG vs. Ref) nor by any other evaluated variables (*e.g.*, survival, sand, silt, or carbonates).
412 There were two outlier samples (P12 from beach B and P7 from beach D) in the MDS plot, both of which
413 were Ref beaches and had 45% and 80% survival, respectively.

414 The DG dataset showed only 14% and 9% of the total variation in an MDS analysis explained by
415 dimensions 1 and 2, respectively (Figure 3C). Some grouping was observed along dimension 2 with CG
416 samples clustering together, except for P15 from beach E. Ref samples were more spread out along both
417 axes. A gradient in survival was observed across dimension 1, with high survival being positioned in
418 negative dimension 1, medium survival near 0–1, and low survival in positive dimension 1, although the
419 trend was not universal for all samples (*e.g.*, P5). Percent carbonate, which was correlated with survival
420 (see above), also trended along dimension 1 in the opposite direction to survival (*i.e.*, high survival being
421 associated with low percent carbonate, *SI* Figure S7).

422 Differential expression between CG and Ref was evaluated for each tissue separately (Table 5). The
423 gill had 54 transcripts differentially expressed ($FC > 1.5$, $p \leq 0.001$, no multiple test correction (MTC))
424 (see Discussion; *SD* Additional File S2). Of these transcripts, 35 had identifiers recognized by DAVID
425 Bioinformatics, but no Gene Ontology (GO) enrichment was identified ($p > 0.01$). Most of these
426 transcripts were overexpressed in the CG samples ($N = 40$), including several transcripts associated with
427 immune/apoptotic or stress-related functions, such as two transcripts annotated as *tumour necrosis factor*
428 (*TNF*)-related ($FC > 1.5$), one as *death effector domain (DED)*-related (*i.e.*, top overexpressed transcript,
429 $FC > 71.5$), and *universal stress protein A-like protein* ($FC > 4.7$). In total, 14 transcripts were
430 underexpressed in the CG samples, including a *heat shock 70 kDa protein 12a* ($FC = 17.9$). A full list of
431 differentially expressed genes is available in *SD* Additional File S2.

432 The DG had 37 transcripts differentially expressed between CG and Ref samples. This included 11
433 overexpressed and 26 underexpressed transcripts in the CG samples (*SD* Additional File S2). Using the
434 full, bidirectional list of differentially expressed transcripts, several enriched GO categories were observed
435 (*SD* Additional File S3), including biological process categories iron ion homeostasis ($N = 3$, $p = 0.008$)
436 and negative regulation of hydrolase activity ($N = 5$, $p < 0.001$). The highest overexpressed transcript in
437 the CG samples was *replicase polyprotein* annotated from the *cricket paralysis virus* ($FC > 500$), which
438 suggests that viral proteins were also captured in the study and that they were differentially abundant

439 between beach types. Multiple complement-, iron-, and protein-folding-related transcripts were observed
440 as differentially expressed in the DG samples, including overexpression of a transcript annotated as *c1q*
441 *domain* (2.3-fold), *thrombospondin-1* (2-fold), *soma ferritin*, and *cytochrome P450* (FC > 1.5). Transcripts
442 under-expressed in the DG samples in the CG plots included *interferon-induced very large GTPase 1* (FC
443 > 8.5), *apoptosis inhibitor IAP* (4.3-fold), *low affinity immunoglobulin epsilon Fc receptor* (FC > 2), *c-*
444 *type mannose receptor 2*, and *platelet endothelial aggregation receptor 1* (FC > 1.5), among others (SD
445 Additional File S2).

446 Consistent responses to the CG plots were investigated between the tissues, and two of the 91 unique
447 differentially expressed transcripts were found to be differentially expressed in both tissues. This is
448 notable given that the datasets were normalized, filtered, and analyzed separately. This included the
449 underexpression in the CG plots of a transcript annotated as *von Willebrand factor type D domain (vwd)*
450 and of a transcript annotated as *platelet endothelial aggregation receptor 1 (pearl)* (Figure 4) in both
451 tissues.

452
453 **3.6 | Gene expression responses and differential survival**
454 Given the differential survival observed among the beaches and plots, genes correlating with survival were
455 investigated to determine what might be driving these differences and to potentially identify genes that are
456 related to survival or mortality in this non-model species. Genes were of particular interest if they were
457 differentially expressed between low and medium survival, between medium and high survival, or
458 incrementally differentially expressed at each step between high, medium, and low survival (see *Methods*
459 for beach survivorship classification).

460 The majority of genes significantly associated with survival in the gill were differentially expressed
461 between the low and medium survival groups, rather than between medium and high survival (Table 5).
462 Transcripts overexpressed in the low survival group relative to the medium survival group (N = 26) were
463 involved in functions such as heat-shock, interferon response, and ligase activity (SD Additional Files S2,
464 S3). For example, *heat-shock protein (hsp) 90* (FC > 60) and three different transcripts annotated as
465 subunits of *hsp70* (FC > 2) were overexpressed specifically in the low survival group. Transcripts
466 overexpressed in the medium survival group relative to the high survival group included six transcripts of
467 various functions (SD Additional File S2). Fewer transcripts were overexpressed in the higher survival
468 group (*i.e.*, high vs. medium, N = 11; medium vs. low, N = 14) and these generally were involved in

469 immune functions, but also various other functions. Overexpression of *toll-like receptor 1* (FC > 2) and
470 *complement C1q-like protein 4* (FC > 3.5) was observed in medium survivors relative to low survivors
471 (Figure 5).

472 In the DG, the majority of significant survival-associated transcripts were overexpressed in low
473 relative to medium surviving clams (N = 34) and were generally involved in immune system, heat-shock,
474 or transport functions. Transcripts annotated as *hsp70 12a* and *12b*, as well as several aminopeptidases,
475 were overexpressed in low relative to medium and in medium relative to high survival (shown correlated
476 with survival in Figure 5). All the overexpressed genes in medium relative to high surviving clams (N =
477 18) were also overexpressed in the low relative to medium survival group comparison. Very few genes
478 were overexpressed in the high survival clams relative to medium (N = 4) or the medium relative to low
479 survival (N = 7, and these transcripts had various functions, including a transcript annotated as *mucin-2*
480 *protein* (Figure 5).

481

482 **Discussion**

483 **4.1 | Effects of unmaintained clam gardens on clam and beach characteristics**

484 Results from the present study showed that there was no significant enhancement of growth or survival on
485 unmaintained clam garden (CG) beaches relative to reference (Ref) clam beaches. Using clams of similar
486 sizes that were collected on the same days and location as the present work, Salter (Salter, 2018) also
487 reported no significantly enhanced growth or survival on unmaintained CG compared to reference clam
488 beaches in Kanish and Waiatt Bays. It is important to note that in the present study the clam gardens were
489 unmaintained and therefore were not being tended according to traditional tending practices, which may
490 influence the impact of the garden on clam survival, growth, and transcriptomic profile, as well as various
491 abiotic characteristics (*i.e.*, sediment grain size, carbonate content, organic content). Salter (2018),
492 however, did include some CG traditional tending practices (*i.e.*, adding a 1 cm-thick layer of crushed
493 shell mixture three times throughout the summer) on replicate treatment plots on both beach types and
494 reported a positive effect of the shell hash treatment on growth and survival in both CG and reference
495 clam beaches. Cox et al., reported that even without traditional tending clam gardens contained greater
496 estimated bivalve biomass, distinct infaunal and epifaunal communities and increased topographic
497 complexity compared to reference sites (Cox et al., 2024a; Cox et al., 2024b; Cox et al., 2019).
498 Interestingly, Cox et al., also found that a combination of 45-60% gravel and less than 31% bivalve shells

499 promotes the biologically diverse epifaunal communities observed within clam gardens (Cox et al.,
500 2024a). These results confirm the importance of historical Indigenous practices in maintaining clam
501 gardens and promoting an optimal environment for clam growth and survival, and demonstrate that it is
502 not simply the physical structure of the clam garden wall that creates the ideal clam habitat.

503
504 Some trends were observed in the transcriptomic data that suggest that the unmaintained CGs had a
505 transcriptomic effect on the clams, albeit not a strong one. First, the CG and Ref samples showed a slight
506 separation in the PCA of DG tissue, but not gill tissue. Second, although very few genes were
507 differentially expressed, the same differentially expressed genes were consistently identified in both
508 tissues, including transcripts annotated as *von Willebrand factor type D domain (vwd)* and *platelet*
509 *endothelial aggregation receptor 1 (pear1)* both of which were downregulated in CG. The *vwd* domain is
510 present in many proteins, including mucins and other extracellular glycoproteins, and one *vwd* transcript in
511 particular was up-regulated in response to heat shock in the Pacific oyster (*Crassostrea gigas*) (Zhang et
512 al., 2015). The function of *pear1* in shellfish remains unknown; in vertebrates it is a cell membrane protein
513 involved in platelet aggregation. Homologous genes for platelet activation are present in the Hong Kong
514 oyster (*Crassostrea hongkongensis*) and are regulated in response to hyposalinity (Xiao et al., 2018). In
515 terms of the other genes differentially expressed by clams in CGs, the general functions were not clear.
516 Immune genes and stress-response genes were found both over- and under-expressed in CGs versus Ref
517 beaches (e.g., a heat-shock protein transcript was found to be underexpressed in the CG and a universal
518 stress protein-annotated transcript was overexpressed in the CG). In general, the functions of these
519 transcripts in the Pacific littleneck clam responding to the CG factor will be useful to continue to
520 characterize as the genomic information develops for this species and additional transcriptomic studies are
521 conducted in relation to environmental stress in maintained or unmaintained clam gardens. These
522 molecular phenotypes may indicate a response to the unmaintained CG from the 16-week *in situ* study
523 period that is below the level of phenotypic growth and survival responses, as these were not found to
524 differ based on beach type. Further work with longer study periods would be required to determine
525 whether these transcriptome signatures precede macro-phenotypic responses.

526 Sediment grain sizes, percent carbonate content, and percent organic matter did not differ
527 significantly between unmaintained CG and Ref beaches in the present study, although there was
528 significant variation within both beach types among locations. For example, carbonate content varied from

529 4 to 10% in CGs and from 2 to 15% in Ref beaches, while silt varied from 0 to 4% and from 1 to 5%,
530 respectively. This is somewhat contrary to Salter's (2018) observations that untreated CGs contained 2.8 –
531 12.9 times more carbonate and a smaller percentage of silt than non-walled (Ref) beaches (Salter, 2018).
532 The reason for this discrepancy is not known and would be valuable to address with future studies. The
533 lack of differences observed in the present study in growth and survival, and minor effects in
534 transcriptome responses due to unmaintained CGs may be due to the lack of tending of the clam gardens,
535 as is traditionally conducted. Future studies would benefit from fully examining the impacts of tending
536 practices on sediment characteristics alongside clam growth and survival, which would involve clam
537 garden beach restoration and active maintenance for long periods, with further analysis of impacts on
538 shellfish molecular phenotypes and productivity.

539

540 **4.2 | Abiotic variation among beach location and effects on clam growth and survival**

541 Across the six sampling locations, beaches differed in most of the variables examined (*i.e.*, biotic response
542 variables: growth, survival; abiotic characteristics: organic level, carbonate concentration, grain sizes).
543 Beaches clustered based on sediment characteristics, which correlated to beaches in similar geographic or
544 wave-influenced locations, and differential growth and survival were noted among the beach locations.
545 Given these trends, abiotic factors potentially involved in survival as well as molecular responses to
546 survival were characterized.

547 The sedimentary environment is very important for clam growth and survival (Joo et al., 2021).
548 Littleneck clams typically live as infaunal burrowers between 5 and 15 cm depth, in soft sand or sandy
549 mud in the intertidal zone (Lazo, 2004). In the present study, growth was positively affected by sand, and
550 fine sand, and negatively affected by small rocks, and silt, while survival was positively affected by coarse
551 sand, and sand, and negatively affected by carbonates, organics, small rocks, very fine sand, and silt Joo et
552 al. (2021) found that grain size and sorting of the sediment determined the amount of pore-water dissolved
553 oxygen and organic matter, both affecting growth and survival of juvenile Manila clams, with optimal
554 survival and growth linked to poorly-sorted sediment with an average grain size of medium sand (180 –
555 335 μm). Similarly, the grain size of the sand in the present study was 250 – 500 μm , and this grainsize
556 had a significant positive effect on survival. A clam tending revitalization project in Burrard Inlet
557 observed that water flow had a positive effect on native clam density and biomass while sediment grain
558 size had little effect (Guttmann, 2022). Salter (2018) found increased water residency time positively

559 affected clam biomass and growth and reported a weak negative effect of silt on clam density and
560 biomass. Contrary to the present study, Salter (2018) also found a positive effect of increased sediment silt
561 content on clam biomass in clam transplant experiments. A multi-year study looking at environmental
562 factors affecting growth in the hard clam *Venus mercenaria* (now *Mercenaria mercenaria*) found a
563 consistent decrease in growth with increasing sediment silt-clay content, with all results showing a
564 negative relationship between growth and fineness of the sediment (Pratt & Campbell, 1956). Permeability
565 of the sediment is an important factor for pumping activity of burrowing filter feeders, which is essential
566 for respiration, excretion, and nutrition and Pratt et al. (1956) found permeability to be an inverse function
567 of the sediment silt-clay content. In addition, commercial Manila clam beds studied in Spain had higher
568 survival of clams planted in sand-gravel than in those placed in mud (Cigarria & Fernandez, 2000).
569 Concurring, the clam *Gomphina veneriformis*, which was buried in sand and silt sediment mixtures, had
570 increased mortality with increasing silt (Li et al., 2021). Likewise, the juvenile bamboo clam (*Solen*
571 *grandis*) reared in different sediments had, as also seen in the present study, decreased growth and survival
572 rates with increasing fine silt (Chen et al., 2008).

573 Sediment carbonate content had a significant negative effect on clam survival in the present study,
574 where sediment with more than 8% carbonates had markedly decreased growth and survival. Similarly,
575 Munroe (2016) found that the average daily growth of early post-settled Manila clams over two years was
576 negatively correlated with sediment carbonate content (Munroe, 2016). This is not a universally observed
577 trend in the literature (Groesbeck et al., 2014; Salter, 2018) and counters expectations given the expected
578 importance of carbonate for clam shell growth and early recruitment. The addition of crushed shell hash
579 alters sediment calcium-carbonate saturation states, as it increases surface sediment porewater aragonite
580 content and pH (Green et al., 2009). For instance, there was a three-fold increase in hard clam burrowing
581 and recruitment by adding crushed shell hash to a final concentration of 8% of wet sediment weight
582 (Green et al., 2012). Salter (2018) increased carbonate content significantly (1.9–7.2 times) by addition of
583 shell hash, which increased clam growth and tissue biomass in both clam garden and control beaches after
584 six months (Salter, 2018). Guttman (2022) when examining clam tending practices in Burrard Inlet found
585 that sediment carbonate had a positive effect on native clam density and biomass although when compared
586 to water flow it was imprecise and relatively less important (Guttmann, 2022).

587 Crushed shell hash also changes the physical structure of the sediment as, like gravel, it can create
588 interstitial spaces in the sediment, thereby increasing pore-water dissolved oxygen, organic-matter content,

589 and substrate stability, as well as providing protection from predators for juvenile clams (Joo et al., 2021;
590 Sponaugle & Lawton, 1990; Thompson, 1995). Thus, there may be multiple benefits of adding shell
591 material for bivalve growth/survival that are not linked to carbonate concentration *per se*. The effect of
592 shell hash or crushed shell on bivalve growth and survival is likely dependent on a wide variety of factors
593 including amount of shell, size and compactness of shell particles, species generating the shell hash,
594 species/size of bivalve grown, stocking densities, tidal height, temperature, and types/densities of
595 predators. For example, the application of very finely crushed shell hash could have a negative effect by
596 decreasing interstitial spaces in the sediment and thus, as seen with silt, decreasing sediment permeability.
597 Recent studies investigating the efficacy of shell hash to mitigate acidification of intertidal sediments
598 found it unsuccessful at raising pore-water pH of acidic sediments (Beal et al., 2020; Doyle & Bendell,
599 2022). Doyle et al. (2022) found the addition of shell hash to be site dependent as it reduced variation in
600 pH at an intertidal site with pH 8.03, but did not mitigate the pH of mud flats with pH 7.59. More research
601 is required to comprehensively understand the effects of shell hash on bivalve growth and survival.
602

603 **4.3 | Pacific littleneck clam transcriptomics**

604 In non-model organisms, such as the Pacific littleneck clam, advances in molecular ecological and
605 physiological understanding of the species can be advanced through transcriptomic tools and the results
606 these tools generate. Here it was clear that the reference transcriptome generated *de novo* was necessary
607 for the study, given that the closest relative genome (*i.e.*, Manila clam) resulted in a very low alignment
608 rate with the Pacific littleneck clam reads. Further, the use of different tissues in the present study revealed
609 high levels of tissue-specific expression (*i.e.*, 21–31% of the transcripts expressed in the tissue). As
610 multiple individuals were included in each sample (*i.e.*, pools), the true number of individuals sampled for
611 the tissue-specific expression analysis is greater than the number of libraries, increasing the reliability of
612 the tissue-specific transcripts. The expression analysis indicated that for both tissues, tissue-specific
613 transcripts were involved in signal transduction, defense and immune response, and ion transport, among
614 other processes. Therefore, although the specific transcripts were different for each tissue, similar
615 functions were enriched in the tissue-specific gene lists for both the gill and the DG, although exceptions
616 were observed.

617 The presence of differential survival among the locations provided a valuable opportunity for
618 analyzing transcripts that are associated with mortality/survival. These characterizations, over time

619 through multiple transcriptome studies generating more evidence, can begin to characterize specific
620 transcripts that are involved with specific stress types (Evans et al., 2011; Miller et al., 2017; Sutherland et
621 al., 2012). This can enable the development of Ecological Association Ontology data collection for non-
622 model species (Pavey et al., 2012) and in the future may be used to characterize underlying factors
623 associated with observed mortality or morbidity (e.g., abiotic stress compared to bacterial or viral
624 infection). Although the Pacific littleneck clam remains largely uncharacterized at the molecular level,
625 some of the genes identified in the present study correlated with survival, including differential expression
626 in the gill and DG of heat-shock proteins, immune response genes, and other functional categories.
627 Additional transcriptomic studies on the species in different environmental conditions over various
628 temporal and spatial scales should help to improve these categorizations and identify stressor-specific or
629 generalized response genes.

630 Differential expression was observed in transcripts involved in immune defense. For example,
631 transcripts annotated as complement C1q protein complex or involved in cell adhesion and oxidation-
632 reduction processes had high expression in high surviving beaches and may indicate increased activity of
633 immune defense responses. Complement C1q proteins are an important component of the innate immune
634 system (Zhang et al., 2014) and are upregulated in response to bacterial challenges (McDowell et al.,
635 2014) and salinity stress (Zhao et al., 2012). Cell adhesions are critical for the development, maintenance,
636 and function of multicellular organisms and are essential for invertebrate immunity (Johansson, 1999).

637 In the present study—potentially due to the relatively low sample size from pooling individuals
638 and/or due to having fewer plots with a sufficient number of survivors at some beaches, and/or due to the
639 high number of expressed transcripts—the impacts of multiple test corrections were severe on the dataset
640 and, therefore, a stringent *p*-value (*p* < 0.001) was applied without a multiple test correction. Associations
641 of genes to CGs or to differential survival should be considered as preliminary observations and further
642 studies evaluating the functions of these transcripts will be beneficial to understand their role in Pacific
643 littleneck clam transcriptomics.

644

645 **4.4 | Viral presence and clam health**

646 The use of RNA-sequencing for the present analysis identified a differentially expressed virus transcript in
647 the CG versus Ref samples, which could have unexpected effects on either gene expression activity or
648 phenotypic responses, as could any other uncharacterized factor influencing clam growth/physiology (e.g.,

649 temperature, beach exposure). The top overexpressed transcript in the DG from CGs was a *replicase*
650 *polyprotein* from the *cricket paralysis virus* (CPV), which is a positive-sense, single-stranded RNA virus
651 from the family Dicistroviridae in the order Picornavirales. Members of the Dicistroviridae family are
652 widely distributed in nature with the broadest host range of all small RNA viruses in invertebrates
653 (Bonning, 2009). As the Dicistroviridae viral sequences isolated in the present study ranged in size from
654 1479 to 7371 nucleotides, one can deduce that they represent viral mRNA, instead of viral genomes. Some
655 dicistroviruses can be non-pathogenic or cause subtle impacts (reduced longevity and fecundity), while
656 others result in rapid paralysis (Bonning, 2009).

657 Even though there was transcriptomic evidence of viral presence in all the beaches, most of the
658 Pacific littleneck clams from the medium- and high-survival groups did not exhibit any signs of
659 pathophysiology. Other clams (mostly from the low-survival group), however, were emaciated or watery
660 and had slightly to extremely pale-coloured digestive glands, an indicator of reduced feeding and
661 potentially compromised function and health. Pale digestive glands could also be the result of paramyxean
662 parasites responsible for disease in marine mollusks, with infection being linked to digestive tropism
663 interfering with food adsorption and causing pale-yellowish digestive glands with thin, watery flesh in
664 both mussels and oysters (Alfjorden, 2017; Carella et al., 2011). In the present study, however, there was
665 no significant parasite-derived gene expression observed and histopathology would be needed to confirm
666 any paramyxean parasite infections. It is also worth noting that the single time point of sample collection
667 in the present study and the analysis of only surviving clams may have reduced the likelihood of viewing
668 viral or parasitic gene expression in these samples.

669 Although very pale digestive glands and emaciation were observed in clams from beaches with lower
670 growth and survival, histopathology or genetic identification would again be required to confirm any viral
671 gene expression linkages to observed impacts on organismal health. Health status is most likely linked to
672 multiple stressors comprised of abiotic (e.g., temperature, sediment composition, water residency) and
673 biotic factors (e.g., bacteria, viruses, harmful algae). RNA sequencing combined with *de novo*
674 transcriptome assembly revolutionizes virus detection and allows for the screening of a broad range of
675 symptomatic and asymptomatic virus species in a non-discriminatory manner, thereby displaying a
676 broader picture of the environmental factors present (Nagano et al., 2015). The current dataset has yet to
677 be fully characterized for viral sequences and could be mined further at a later date, particularly as more
678 resources are developed for this species.

679

680 **Conclusions**

681 The *de novo* transcriptome assembly of the Pacific littleneck clam enabled the investigation of genes
682 differentially expressed based on clam presence in unmaintained clam gardens relative to reference
683 beaches. No abiotic characteristic differences were observed between the two beach types, no phenotypic
684 responses were observed, and all observed transcriptome responses were minor. It is possible that impacts
685 would be greater if the clam gardens were actively tended. However, significant survival differences
686 among beaches independent of clam garden presence/absence, as well as abiotic characteristic differences,
687 indicated several sediment characteristics significantly correlated with growth and survival, including the
688 unexpected result of carbonate content negatively correlated with survival. The survival differences also
689 enabled the detection of gene expression transcripts putatively related to stress response, and along with
690 tissue-specific characterization of the gill and digestive gland, this study advances our molecular
691 understanding of the Pacific littleneck clam, a non-model bivalve species.

692

693

694 **Acknowledgements**

695 We acknowledge the K'ómoks (Comox) Nation, the Xwémalhkwu (Homalco) Nation, the We Wai Kai
696 (Cape Mudge) Nation, the We Wai Kum (Campbell River) Nation, the Snuneymuxw Nation,
697 the lək̓əməθən (Songhees) Nation, the WSÁNEĆ (Saanich) Nation, and the Wyomilth (Esquimalt)
698 Nation, who have stewarded and protected the territory we worked within since time immemorial. We
699 thank the Hakai Institute, the Tula Foundation, and the Clam Garden Network for facilitating the research
700 and for their continued support. We also thank Caitlin Smith, Morgan Black, Kayla Suhan, Kayla Long,
701 and Kieran Cox for their invaluable help in the field, Dr. Eric Rondeau for his assistance in the laboratory,
702 and Allie Byrne for creating the map of the experimental sites.

703

704 **Funding**

705 Funding for this study was provided by the Hakai Institute. This research was also supported by the
706 Canada Research Chair Program, Canada Foundation for Innovation and British Columbia Knowledge
707 Development Fund (Sarah Dudas).

708

709 **Competing Interests**

710 BJGS is affiliated with Sutherland Bioinformatics. The author has no competing financial interests to
711 declare. The other authors have no relevant financial or non-financial interests to disclose.

712

713 **Data Availability**

714 Raw RNA-sequencing data have been uploaded to SRA under BioProject PRJNA818991, BioSamples
715 SAMN26893882–SAMN26893909.

716 Supplemental materials, including all abiotic and phenotypic site metadata needed for data analysis,
717 transcript annotation, quantified gene expression counts, sample phenotypes:

718 Reference transcriptome: <https://doi.org/10.6084/m9.figshare.19735753>

719 RNA-seq bioinformatics pipeline: https://github.com/bensutherland/Simple_reads_to_counts

720 RNA-seq analysis and physiological/abiotic analysis pipeline: https://github.com/raapm/ms_clam_garden

721

722 **Additional Files**

723 Additional File S1. Abiotic variables with survival and growth linear model p and R^2 values, including and
724 excluding beach D.

725 Additional File S2. Differentially expressed genes and background gene lists for both tissues in Pacific
726 littleneck clams. Gene lists include clam garden vs. reference, survival groups, and tissue-specific
727 expression.

728 Additional File S3. Gene Ontology enrichment results for the clam garden analysis, the survival analysis,
729 and the tissue-specific expression.

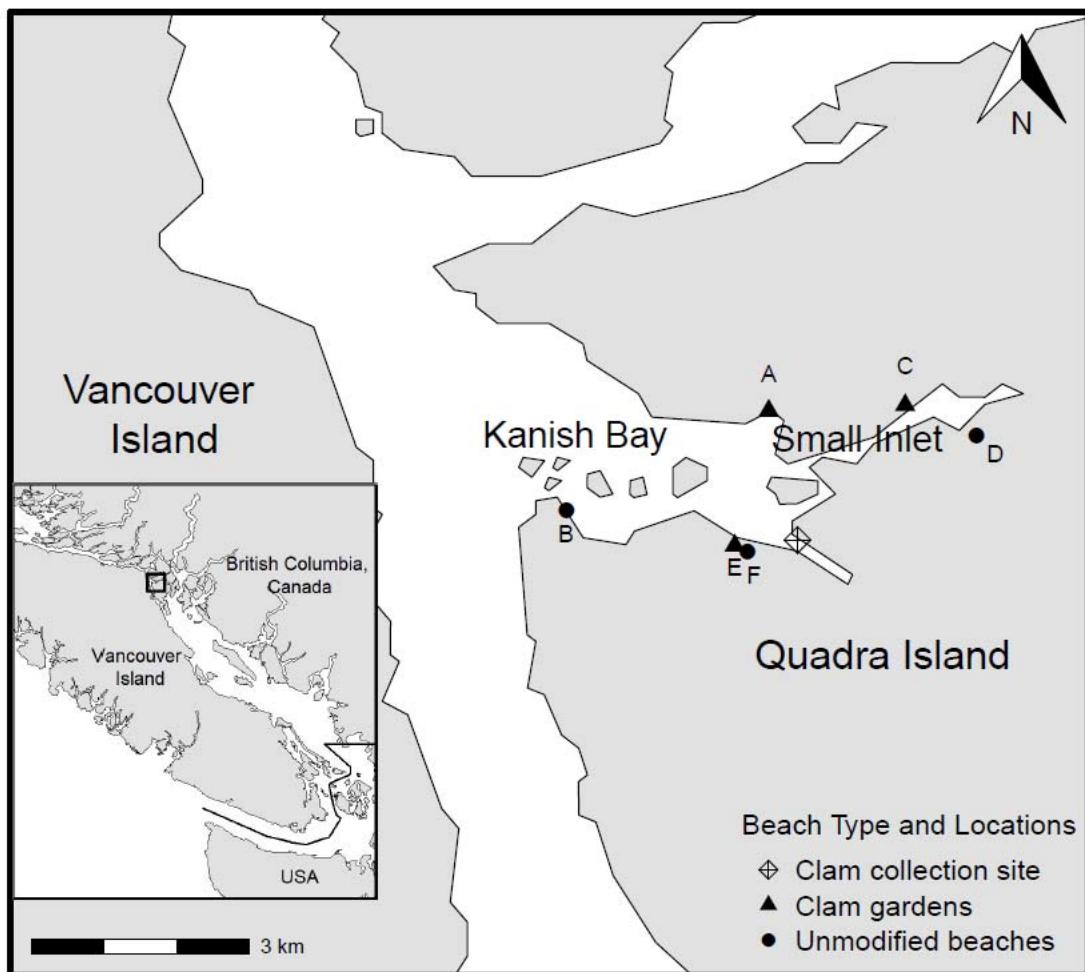
730 Supplemental Results provided, including Figures S1–S7.

731

732

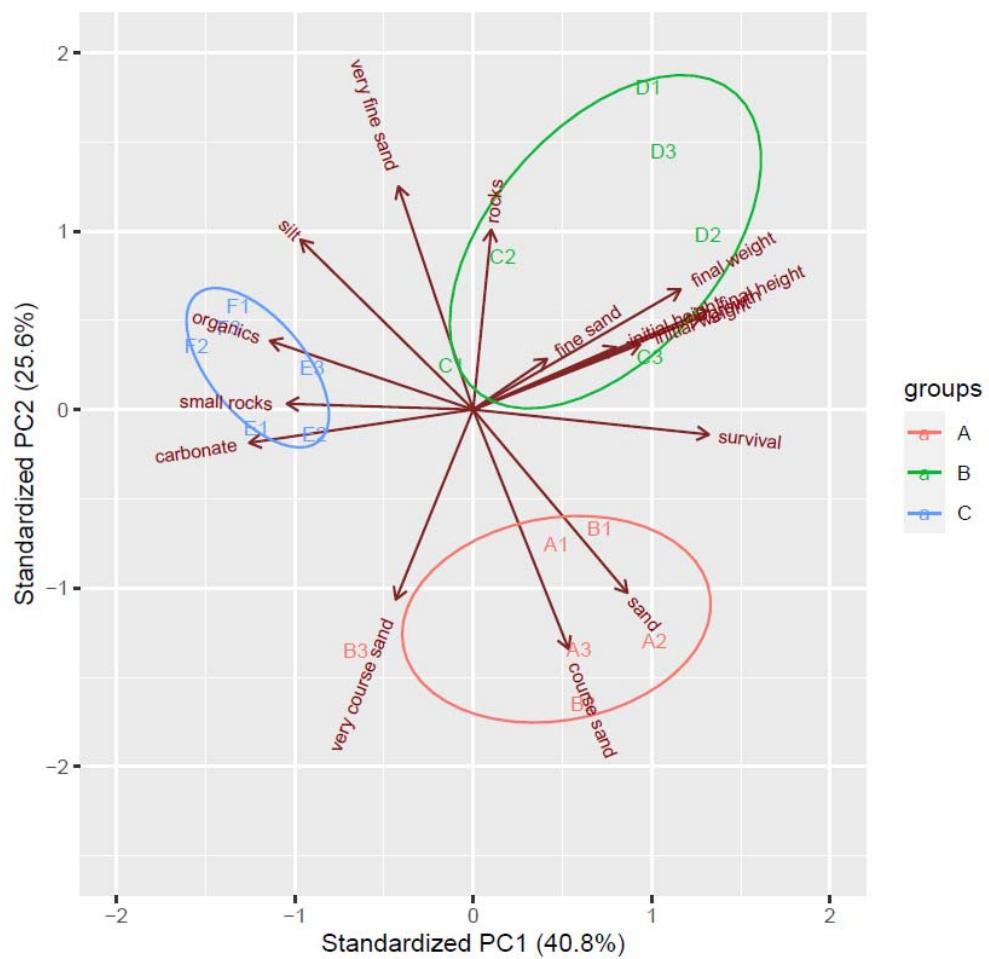
References

- 733 Alfjorden, A., M. Areskog, D. Bruno, R. Carnegie, D. Cheslett, S. Feist, S. Ford, S. Jones, A. Lillehaug, L.
734 Madsen, T. Renault, N. Ruane and P. Vennerström. (2017). *New Trends in Important Diseases*
735 *Affecting the Culture of Fish and Molluscs in the ICES Area 2002 – 2015* (In: Anderson, E.D., N.
736 Ruane, R. Carnegie (eds.) ICES Cooperative Research Report No. 337, Issue.
737 Andrews, S. (2010). *FastQC: A quality control tool for high throughput sequence data*. Available online
738 at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>. In
739 Beal, B. F., Coffin, C. R., Randall, S. F., Goodenow, C. A., Pepperman, K. E., & Ellis, B. W. (2020).
740 Interactive effects of shell hash and predator exclusion on 0-year class recruits of two infaunal
741 intertidal bivalve species in Maine, USA. *Journal of Experimental Marine Biology and Ecology*,
742 530-531. <https://doi.org/10.1016/j.jembe.2020.151441>
743 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence
744 data. *Bioinformatics*, 30(15), 2114-2120. <https://doi.org/10.1093/bioinformatics/btu170>
745 Bonning, B. C. (2009). The Dicistroviridae: An emerging family of invertebrate viruses. *Virologica
746 Sinica*, 24(5), 415-427. <https://doi.org/10.1007/s12250-009-3044-1>
747 Bourlat, S. J., Borja, A., Gilbert, J., Taylor, M. I., Davies, N., Weisberg, S. B., Griffith, J. F., Lettieri, T.,
748 Field, D., Benzie, J., Glockner, F. O., Rodriguez-Ezpeleta, N., Faith, D. P., Bean, T. P., & Obst,
749 M. (2013). Genomics in marine monitoring: new opportunities for assessing marine health status.
750 *Mar Pollut Bull*, 74(1), 19-31. <https://doi.org/10.1016/j.marpolbul.2013.05.042>
751 Caldwell, M. E., Lepofsky, D., Combes, G., Washington, M., Welch, J. R., & Harper, J. R. (2012). A
752 Bird's Eye View of Northern Coast Salish Intertidal Resource Management Features, Southern
753 British Columbia, Canada. *The Journal of Island and Coastal Archaeology*, 7(2), 219-233.
754 <https://doi.org/10.1080/15564894.2011.586089>
755 Carella, F., Aceto, S., Maiolino, P., & De Vico, G. (2011). What is your diagnosis? Pale yellowish
756 digestive gland and watery tissues in Mediterranean mussels. *Vet Clin Pathol*, 40(2), 273-274.
757 <https://doi.org/10.1111/j.1939-165X.2011.00316.x>
758 Chadwick, M., Harper, E. M., Lemasson, A., Spicer, J. I., & Peck, L. S. (2019). Quantifying susceptibility
759 of marine invertebrate biocomposites to dissolution in reduced pH. *R Soc Open Sci*, 6(6), 190252.
760 <https://doi.org/10.1098/rsos.190252>
761 Chen, A., Zhang, Z., Yao, G.-i., Zhang, C., Liu, G., Wu, X., & Shen, H. (2008). The influence of different
762 environmental factors on the growth and survival rate of juvenile of bamboo clam *Solen grandis*.
763 *Journal of Shanghai Fisheries University/Shanghai Shuichan Daxue Xuebao*, 17(5), 559-563.
764 [https://www.proquest.com/scholarly-journals/influence-different-environmental-factors-
765 on/docview/21139392/se-2?accountid=27308](https://www.proquest.com/scholarly-journals/influence-different-environmental-factors-on/docview/21139392/se-2?accountid=27308)
766 Cigarria, J., & Fernandez, J. M. (2000). Mangement of manila clam beds I. Influence of seed size, type of
767 substratum and protection on initial mortality. *Aquaculture*, 182, 173-182.
768 Cox, K. D., Davies, H. L., Millard-Martin, B., Black, M., Hessing-Lewis, M., Smith, N. F., Juanes, F., &
769 Dudas, S. E. (2024a). Ancestral and contemporary intertidal mariculture practices support marine
770 biodiversity in the northeast Pacific. *Communications Earth & Environment*, 5(1).
771 <https://doi.org/10.1038/s43247-024-01515-3>
772 Cox, K. D., Davies, H. L., Millard□Martin, B., Black, M., Hessing□Lewis, M., Smith, N. F., Juanes, F.,
773 & Dudas, S. E. (2024b). Ancient and contemporary shellfish cultivation practices bolster bivalve
774 communities and diversity□biomass relationships. *People and Nature*, 7(1), 81-98.
775 <https://doi.org/10.1002/pan3.10724>

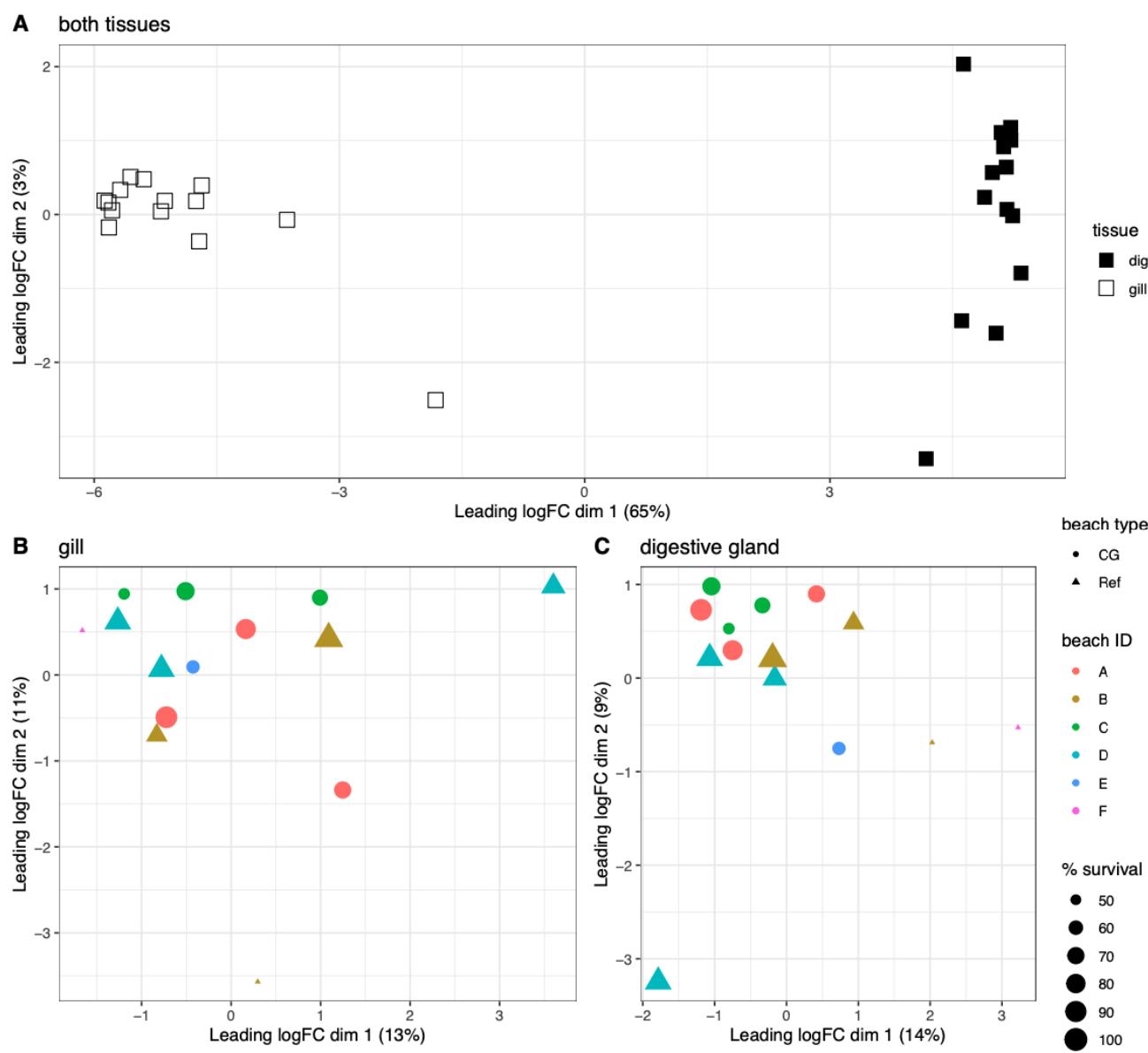

- 776 Cox, K. D., Gerwing, T. G., Macdonald, T., Hessing-Lewis, M., Millard-Martin, B., Command, R. J.,
777 Juanes, F., Dudas, S. E., & Birchenough, S. (2019). Infaunal community responses to ancient clam
778 gardens. *ICES Journal of Marine Science*, 76(7), 2362-2373.
779 <https://doi.org/10.1093/icesjms/fsz153>
- 780 Deur, D., Dick, A., Recalma-Clutesi, K., & Turner, N. J. (2015). Kwakwaka'wakw "Clam Gardens".
781 *Human Ecology*, 43(2), 201-212. <https://doi.org/10.1007/s10745-015-9743-3>
- 782 Doyle, B., & Bendell, L. I. (2022). An evaluation of the efficacy of shell hash for the mitigation of
783 intertidal sediment acidification. *Ecosphere*, 13(3). <https://doi.org/10.1002/ecs2.4003>
- 784 Erlandson, J. M., Rick, T. C., Braje, T. J., Steinberg, A., & Vellanoweth, R. L. (2008). Human impacts on
785 ancient shellfish: a 10,000 year record from San Miguel Island, California. *Journal of
786 Archaeological Science*, 35(8), 2144-2152. <https://doi.org/10.1016/j.jas.2008.01.014>
- 787 Evans, T. G., Hammill, E., Kaukinen, K., Schulze, A. D., Patterson, D. A., English, K. K., Curtis, J. M., &
788 Miller, K. M. (2011). Transcriptomics of environmental acclimatization and survival in wild adult
789 Pacific sockeye salmon (*Oncorhynchus nerka*) during spawning migration. *Mol Ecol*, 20(21),
790 4472-4489. <https://doi.org/10.1111/j.1365-294X.2011.05276.x>
- 791 Evans, W., Mathis, J. T., & Cross, J. N. (2014). Calcium carbonate corrosivity in an Alaskan inland sea.
792 *Biogeosciences*, 11(2), 365-379. <https://doi.org/10.5194/bg-11-365-2014>
- 793 Ewels, P., Magnusson, M., Lundin, S., & Kaller, M. (2016). MultiQC: summarize analysis results for
794 multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047-3048.
795 <https://doi.org/10.1093/bioinformatics/btw354>
- 796 Gosling, E. (2008). *Bivalve Molluscs: Biology, Ecology and Culture*. Wiley.
797 <https://books.google.ca/books?id=mnQtr7GAjy0C>
- 798 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L.,
799 Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnrke, A., Rhind, N., di
800 Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K.,...Regev, A. (2011). Full-length
801 transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol*, 29(7),
802 644-652. <https://doi.org/10.1038/nbt.1883>
- 803 Green, M. A., Waldbusser, G. G., .L., R. S., Emerson, K., & O'Donnell, S. (2009). Death by dissolution
804 Sediment saturation state as a mortality factor for juvenile bivalves. *American Society of
805 Limnology and Oceanography*, 54(4), 1037-1047.
- 806 Green, M. A., Waldbusser, G. G., Hubacz, L., Cathcart, E., & Hall, J. (2012). Carbonate Mineral
807 Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds. *Estuaries and
808 Coasts*, 36(1), 18-27. <https://doi.org/10.1007/s12237-012-9549-0>
- 809 Greiner, C. M., Klinger, T., Ruesink, J. L., Barber, J. S., & Horwith, M. (2018). Habitat effects of
810 macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and
811 growth. *Journal of Experimental Marine Biology and Ecology*, 509, 8-15.
812 <https://doi.org/10.1016/j.jembe.2018.08.006>
- 813 Groesbeck, A. S., Rowell, K., Lepofsky, D., & Salomon, A. K. (2014). Ancient clam gardens increased
814 shellfish production: adaptive strategies from the past can inform food security today. *PLoS One*,
815 9(3), e91235. <https://doi.org/10.1371/journal.pone.0091235>
- 816 Guttmann, M. (2022). "I'd like to see it come back": The revitalization of Tsleil-Waututh Nation clam
817 tending in Burrard Inlet, Simon Fraser University. Burnaby, B.C.
- 818 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B.,
819 Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks,
820 N., Westerman, R., William, T., Dewey, C. N.,...Regev, A. (2013). De novo transcript sequence

- 821 reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nat*
822 *Protoc*, 8(8), 1494-1512. <https://doi.org/10.1038/nprot.2013.084>
- 823 Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and
824 carbonate content in sediments: reproducibility and comparability of results. *Journal of*
825 *Paleolimnology*, 25, 101-110.
- 826 Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W.,
827 Lane, H. C., & Lempicki, R. A. (2007). DAVID Bioinformatics Resources: expanded annotation
828 database and novel algorithms to better extract biology from large gene lists. *Nucleic Acids Res*,
829 35(Web Server issue), W169-175. <https://doi.org/10.1093/nar/gkm415>
- 830 Jackley, J., Gardner, L., Djunaedi, A. F., & Salomon, A. K. (2016). Ancient clam gardens, traditional
831 management portfolios, and the resilience of coupled human-ocean systems. *Ecology and Society*,
832 21(4). <https://doi.org/10.5751/es-08747-210420>
- 833 Johansson, M. W. (1999). Cell adhesion molecules in invertebrate immunity. *Dev Comp Immunol*, 23(4-
834 5), 303-315. <https://www.ncbi.nlm.nih.gov/pubmed/10426424>
- 835 Joo, S., Jo, K., Bae, H., Seo, H., & Kim, T. (2021). Optimal sediment grain size and sorting for survival
836 and growth of juvenile Manila clams, *Venerupis philippinarum*. *Aquaculture*, 543.
837 <https://doi.org/10.1016/j.aquaculture.2021.737010>
- 838 Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory
839 requirements. *Nat Methods*, 12(4), 357-360. <https://doi.org/10.1038/nmeth.3317>
- 840 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat Methods*, 9(4),
841 357-359. <https://doi.org/10.1038/nmeth.1923>
- 842 Lazo, D. G. (2004). Bivalve Taphonomy: Testing the effect of life habits on the shell condition of the
843 Little-neck clam *Protothaca (Protothaca) staminea* (Mollusca: Bivalvia). *PALAIOS* 19 (5)(Friday
844 Harbor Laboratory Special Issue), 451-459.
- 845 Lepofsky, D., Smith, N. F., Cardinal, N., Harper, J., Morris, M., Gitla, Bouchard, R., Kennedy, D. I. D.,
846 Salomon, A. K., Puckett, M., & Rowell, K. (2017). Ancient Shellfish Mariculture on the
847 Northwest Coast of North America. *American Antiquity*, 80(02), 236-259.
848 <https://doi.org/10.7183/0002-7316.80.2.236>
- 849 Lepofsky, D., Toniello, G., Earnshaw, J., Roberts, C., Wilson, L., Rowell, K., & Holmes, K. (2020).
850 Ancient Anthropogenic Clam Gardens of the Northwest Coast Expand Clam Habitat. *Ecosystems*.
851 <https://doi.org/10.1007/s10021-020-00515-6>
- 852 Li, X., Chen, L., Zhou, Z., Li, B., & Liu, X. (2021). The behavioral and antioxidant response of the
853 bivalve *Gomphina veneriformis* to sediment burial effect. *Acta Oceanologica Sinica*, 40(6), 75-82.
854 <https://doi.org/10.1007/s13131-020-1690-1>
- 855 McDowell, I. C., Nikapitiya, C., Aguiar, D., Lane, C. E., Istrail, S., & Gomez-Chiarri, M. (2014).
856 Transcriptome of American oysters, *Crassostrea virginica*, in response to bacterial challenge:
857 insights into potential mechanisms of disease resistance. *PLoS One*, 9(8), e105097.
858 <https://doi.org/10.1371/journal.pone.0105097>
- 859 Milan, M., Coppe, A., Reinhardt, R., Cancela, L., Leite, R. B., Saavedra, C. C., Chelazzi, G., Bortoluzzi,
860 S., & Bargelloni, L. (2011). Transcriptome sequencing and microarray development for the
861 Manila clam, *Ruditapes philippinarum*: genomic tools for environmental monitoring. *BMC*
862 *Genomics*, 12, 234.
- 863 Miller, K. M., Gunther, O. P., Li, S., Kaukinen, K. H., & Ming, T. J. (2017). Molecular indices of viral
864 disease development in wild migrating salmon (dagger). *Conserv Physiol*, 5(1), cox036.
865 <https://doi.org/10.1093/conphys/cox036>

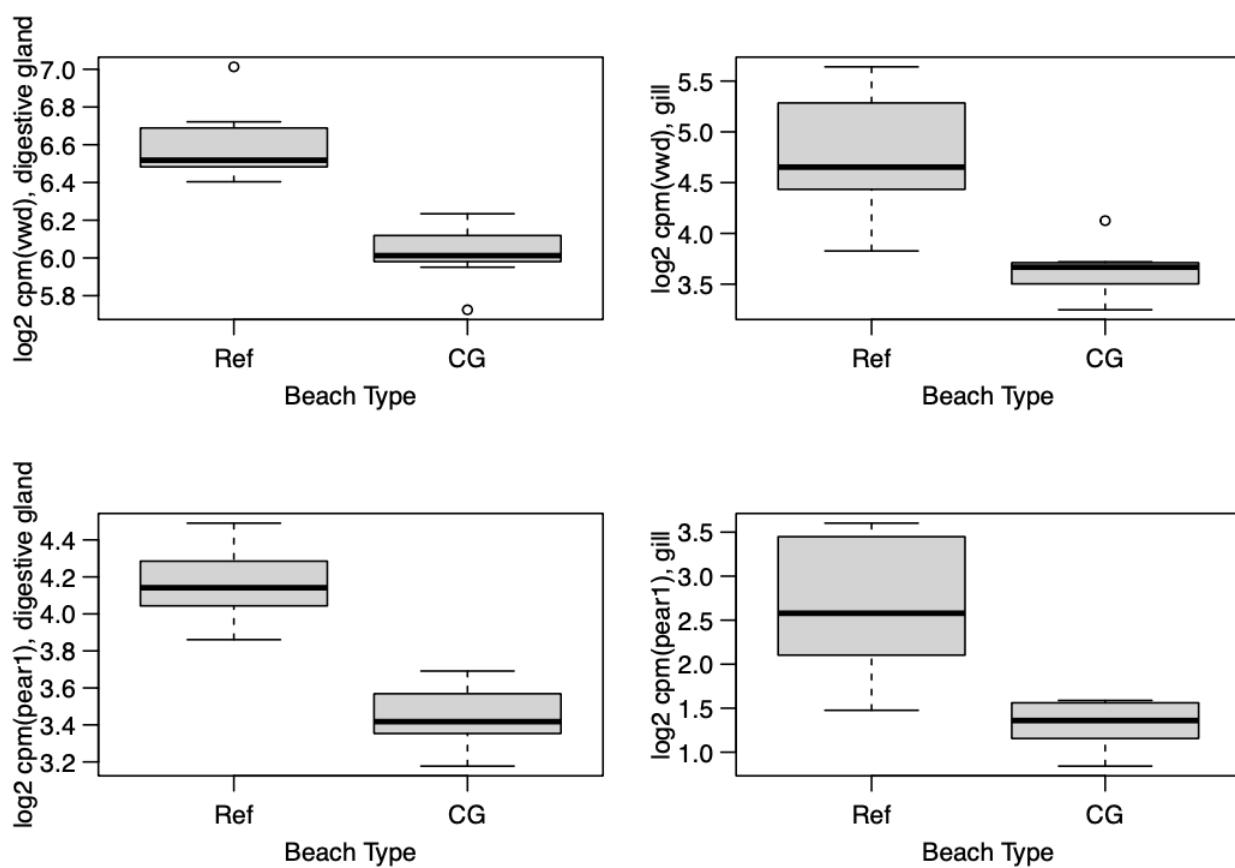
- 866 Munroe, D. (2016). Habitat effects on early post-settlement growth of intertidal clams, *Venerupis*
867 *philippinarum* (A. Adams & Reeve, 1850). *Journal of Molluscan Studies*, 82(4), 507-514.
868 <https://doi.org/10.1093/mollus/eyw014>
- 869 Nagano, A. J., Honjo, M. N., Mihara, M., Sato, M., & Kudoh, H. (2015). Detection of plant viruses in
870 natural environments by using RNA-Seq. *Methods Mol Biol*, 1236, 89-98.
871 https://doi.org/10.1007/978-1-4939-1743-3_8
- 872 Neudorf, C. M., Smith, N., Lepofsky, D., Toniello, G., & Lian, O. B. (2017). Between a rock and a soft
873 place: Using optical ages to date ancient clam gardens on the Pacific Northwest. *PLoS One*, 12(2),
874 e0171775. <https://doi.org/10.1371/journal.pone.0171775>
- 875 Pavey, S. A., Bernatchez, L., Aubin-Horth, N., & Landry, C. R. (2012). What is needed for next-
876 generation ecological and evolutionary genomics? *Trends Ecol Evol*, 27(12), 673-678.
877 <https://doi.org/10.1016/j.tree.2012.07.014>
- 878 Pratt, D. M., & Campbell, D. A. (1956). Environmental Factors Affecting Growth in *Venus mercenaria*.
879 *Limnology Oceanography* (January).
- 880 R.Core.Team. (2025). *R: A language and environment for statistical computing*. In <https://www.r-project.org/>
- 881 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers
882 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res*,
883 43(7), e47. <https://doi.org/10.1093/nar/gkv007>
- 884 Roberts, A., & Pachter, L. (2013). Streaming fragment assignment for real-time analysis of sequencing
885 experiments. *Nat Methods*, 10(1), 71-73. <https://doi.org/10.1038/nmeth.2251>
- 886 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential
887 expression analysis of digital gene expression data. *Bioinformatics*, 26, 139-140.
- 888 Salter, N. (2018). *Ancient clam gardens magnify bivalve production by moderating ambient temperature*
889 *and enhancing sediment carbonate* (Publication Number 709) Simon Fraser University].
890 Vancouver, B.C.
- 891 Smith, N. F., Lepofsky, D., Toniello, G., Holmes, K., Wilson, L., Neudorf, C. M., & Roberts, C. (2019).
892 3500 years of shellfish mariculture on the Northwest Coast of North America. *PLoS One*, 14(2),
893 e0211194. <https://doi.org/10.1371/journal.pone.0211194>
- 894 Sponaugle, S., & Lawton, P. (1990). Portunid crab predation on juvenile hard clams: effects of substrate
895 type and prey density. *Marine Ecology progress series*, 67, 43-53.
- 896 Sutherland, B. J., Jantzen, S. G., Yasuike, M., Sanderson, D. S., Koop, B. F., & Jones, S. R. (2012).
897 Transcriptomics of coping strategies in free-swimming *Lepeophtheirus salmonis* (Copepoda)
898 larvae responding to abiotic stress. *Mol Ecol*, 21(24), 6000-6014.
899 <https://doi.org/10.1111/mec.12072>
- 900 Sutherland, B. J. G., Finke, J. F., Saunders, R., Warne, S., Schulze, A. D., Strohm, J. H. T., Chan, A. M.,
901 Suttle, C. A., & Miller, K. M. (2022). Metatranscriptomics reveals a shift in microbial community
902 composition and function during summer months in a coastal marine environment. *bioRxiv*
903 preprint doi: <https://doi.org/10.1101/2022.01.21.477286>; this version posted August 15, 2022.
904 <https://doi.org/10.1101/2022.01.21.477286>
- 905 Thompson, D. S. (1995). Substrate additive studies for the development of hardshell clam habitat in waters
906 of Puget Sound in Washington State: An analysis of effects on recruitment, growth, and survival
907 of the Manila clam, *Tapes philippinarum*, and on the species diversity and abundance of existing
908 benthic organisms. *Estuarine Research Federation*, 18(No. 1A), 91-107.
- 909


- 910 Twindle, H. (1918). *Loading logs at Kanish Bay on Quadra Island.*
911 <https://gallery.crmuseum.ca/photograph/loading-logs-kanish-bay-quadra-island>
- 912 Waldbusser, G. G., & Salisbury, J. E. (2014). Ocean acidification in the coastal zone from an organism's
913 perspective: multiple system parameters, frequency domains, and habitats. *Ann Rev Mar Sci*, 6,
914 221-247. <https://doi.org/10.1146/annurev-marine-121211-172238>
- 915 Wei, T., & Simko, V. (2021). *R package 'corrplot': Visualization Matrix (Version 0.92).* Available from
916 <http://github/taiyun/corrplot>
- 917 Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. *Journal of Geology*, 377 -
918 393.
- 919 Williams, J. (2006). *Clam Gardens: Aboriginal Mariculture on Canada's West Coast* (Vol. 15). New Star
920 Books Ltd.
- 921 Xiao, S., Wong, N. K., Li, J., Lin, Y., Zhang, Y., Ma, H., Mo, R., Zhang, Y., & Yu, Z. (2018). Analysis of
922 in situ Transcriptomes Reveals Divergent Adaptive Response to Hyper- and Hypo-Salinity in the
923 Hong Kong Oyster, *Crassostrea hongkongensis*. *Front Physiol*, 9, 1491.
924 <https://doi.org/10.3389/fphys.2018.01491>
- 925 Yan, X., Nie, H., Huo, Z., Ding, J., Li, Z., Yan, L., Jiang, L., Mu, Z., Wang, H., Meng, X., Chen, P., Zhou,
926 M., Rbbani, M. G., Liu, G., & Li, D. (2019). Clam Genome Sequence Clarifies the Molecular
927 Basis of Its Benthic Adaptation and Extraordinary Shell Color Diversity. *iScience*, 19, 1225-1237.
928 <https://doi.org/10.1016/j.isci.2019.08.049>
- 929 Zhang, L., Li, L., Zhu, Y., Zhang, G., & Guo, X. (2014). Transcriptome analysis reveals a rich gene set
930 related to innate immunity in the Eastern oyster (*Crassostrea virginica*). *Mar Biotechnol (NY)*,
931 16(1), 17-33. <https://doi.org/10.1007/s10126-013-9526-z>
- 932 Zhang, Y., Sun, J., Mu, H., Li, J., Zhang, Y., Xu, F., Xiang, Z., Qian, P. Y., Qiu, J. W., & Yu, Z. (2015).
933 Proteomic basis of stress responses in the gills of the Pacific oyster *Crassostrea gigas*. *J Proteome
934 Res*, 14(1), 304-317. <https://doi.org/10.1021/pr500940s>
- 935 Zhao, X., Yu, H., Kong, L., & Li, Q. (2012). Transcriptomic responses to salinity stress in the Pacific
936 oyster *Crassostrea gigas*. *PLoS One*, 7(9), e46244. <https://doi.org/10.1371/journal.pone.0046244>
- 937
- 938
- 939

940 **FIGURES**
941


942
943 **FIGURE 1.** Locations of unmaintained clam gardens (A, C, and E; triangles) and unmodified reference
944 clam beaches (B, D, and F; circles) used in the study. The collection site used as source for the clams used
945 in the study is designated by a diamond. Inset map shows the location of the study site in western Canada.

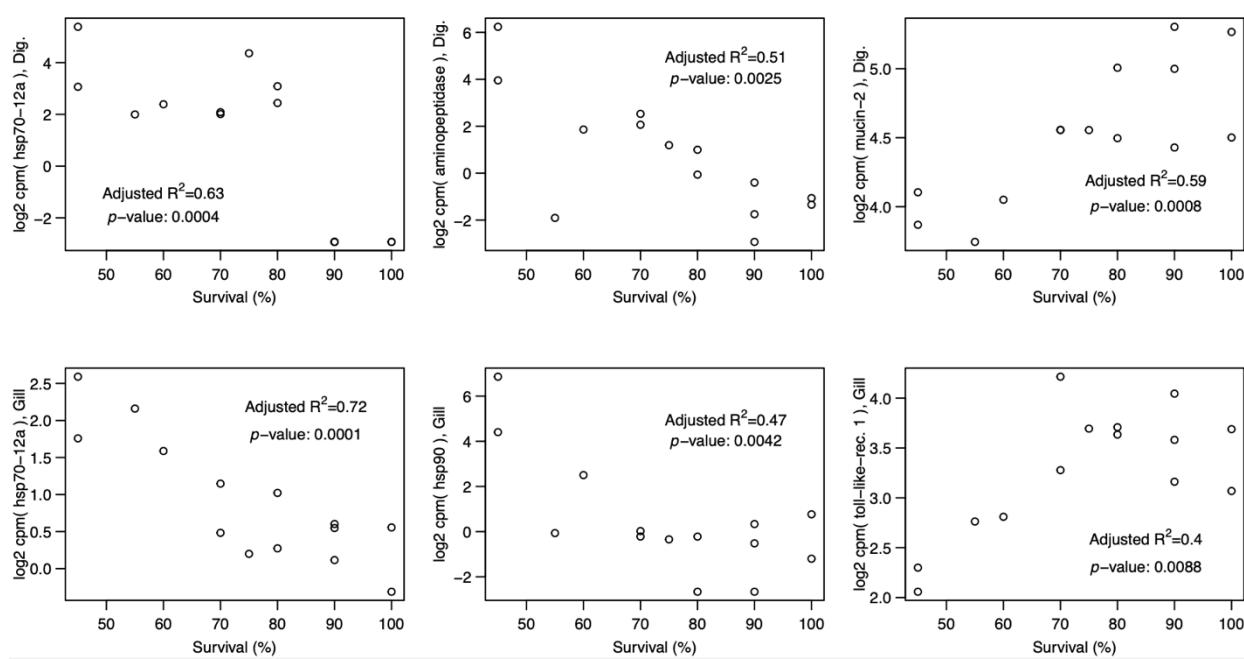
946 A



947
948
949
950
951

FIGURE 2. Principal component analysis biplot based on abiotic and biotic phenotypes showing beach groupings and correlations. Each beach is denoted as A through F as per Figure 1 locations, and each replicate plot within the beach as 1–3. Colours of plots and ellipses are for visualization purposes only.

960



961

962

963 **FIGURE 4.** Box plots showing expression of genes of interest identified in both digestive glands and gills
964 of Pacific littleneck clams, which were underexpressed in clam gardens (CG) relative to reference beaches
965 (Ref). *vwd* = *von Willebrand factor type D domain*; *pear1* = *platelet endothelial aggregation receptor 1*.

966

967

968

969 **FIGURE 5.** Linear regression of differential expression of selected genes of interest versus percent
970 survival in Pacific littleneck clams. Transcript expression and their correlation to survival include (top left
971 to bottom right) *heat shock protein family A member 12A* (*hsp70-12a*), *aminopeptidase*, and *mucin-2* in
972 the digestive gland (DG) and *hsp70-12a*, *hsp90*, and *toll-like receptor 1* in the gill. Note: adjusted R^2 and
973 p -values presented here are from linear models of log2 counts per million for each transcript against
974 percent survival as a numeric variable.

975 **TABLES**

976

977 **TABLE 1.** Mean (\pm SD) clam size or survival and sediment characteristic variables for clam garden (CG)
978 and reference (Ref) beaches and associated linear model *p*-values (with beach location as a nested effect).
979 No variables were significantly affected by the CG/Ref factor. All variables were found to have a normal
980 distribution.

981

982

	Variable	CG Mean \pm SD	Ref Mean \pm SD	<i>p</i> -value
Clam size or survival	Initial weight (g)	1.5 \pm 0.2	1.8 \pm 0.3	0.200
	Initial shell height (cm)	1.5 \pm 0.1	1.6 \pm 0.1	0.168
	Final weight (g)	3.9 \pm 1.3	3.8 \pm 2.9	0.943
	Final shell height (cm)	1.8 \pm 0.3	1.9 \pm 0.4	0.864
	Growth in height (%)	20.5 \pm 15.3	18.0 \pm 22.6	0.892 ^a
Sediment characteristics	Survival (%)	63.3 \pm 28.3	58.3 \pm 37.0	0.860
	Carbonates (%)	7.6 \pm 1.8	7.2 \pm 5.2	0.927
	Organics (%)	1.3 \pm 0.6	1.1 \pm 0.5	0.723
	Rocks (%)	15.6 \pm 7.5	15.0 \pm 5.4	0.912
	Small rocks (%)	12.1 \pm 5.0	13.0 \pm 3.3	0.765
	Very coarse sand (%)	12.2 \pm 3.4	13.0 \pm 3.6	0.794
	Coarse sand (%)	14.2 \pm 3.4	13.2 \pm 4.5	0.788 ^a
	Sand (%)	20.0 \pm 5.7	17.6 \pm 4.2	0.575
	Fine sand (%)	18.6 \pm 6.4	17.0 \pm 2.9	0.715
	Very fine sand (%)	5.6 \pm 2.1	8.3 \pm 4.4	0.393 ^a
	Silt (%)	2.0 \pm 1.2	3.1 \pm 1.5	0.392 ^a

983

^a Significant Bartlett's test indicates heteroscedasticity.

984

985

TABLE 2. Mean (\pm SD) clam size/survival and sediment characteristic variables for each beach and associated linear model *p*-values.

	Variable	Beach A Mean \pm SD	Beach B Mean \pm SD	Beach C Mean \pm SD	Beach D Mean \pm SD	Beach E Mean \pm SD	Beach F Mean \pm SD	p-value
Clam size/survival	Initial weight (g)	1.6 \pm 0.1	1.8 \pm 0.2	1.5 \pm 0.3	2.0 \pm 0.1	1.5 \pm 0.2	1.5 \pm 0.2	0.03
	Initial height (cm)	1.5 \pm 0.0	1.6 \pm 0.1	1.5 \pm 0.1	1.7 \pm 0.1	1.5 \pm 0.1	1.5 \pm 0.1	0.044
	Final weight (g)	4.2 \pm 0.5	2.5 \pm 0.7	5.1 \pm 0.6	7.5 \pm 0.8	2.5 \pm 1.1	1.4 \pm 1.3	< 0.0001
	Final height (cm)	2.0 \pm 0.1	1.7 \pm 0.2	2.0 \pm 0.2	2.4 \pm 0.2	1.5 \pm 0.1	1.5 \pm 0.1	< 0.00001
	Growth in height (%)	31.2 \pm 7.2	6.6 \pm 6.8	29.7 \pm 2.8	47.0 \pm 8.2	0.8 \pm 0.9	0.3 \pm 0.6	< 0.000001 ^a
	Survival (%)	88.3 \pm 12.6	71.7 \pm 27.5	68.3 \pm 12.6	86.7 \pm 5.8	33.3 \pm 23.6	16.7 \pm 24.7	0.001
Sediment characteristics	Carbonates	8.0 \pm 1.0	5.3 \pm 2.5	6.0 \pm 2.0	2.7 \pm 0.6	8.7 \pm 1.5	13.7 \pm 1.2	< 0.0001
	Organics	0.7 \pm 0.1	0.9 \pm 0.3	1.4 \pm 0.3	0.8 \pm 0.2	1.8 \pm 0.6	1.7 \pm 0.3	0.0001
	Rocks	8.0 \pm 5.6	11.7 \pm 6.1	19.0 \pm 4.6	20.7 \pm 1.5	19.7 \pm 6.8	12.7 \pm 2.1	0.03
	Small rocks	11.3 \pm 5.1	11.7 \pm 4.6	8.3 \pm 2.3	11.7 \pm 1.2	16.7 \pm 3.8	15.7 \pm 2.1	0.1
	Very coarse sand	13.7 \pm 2.1	17.0 \pm 2.0	6.7 \pm 2.5	9.7 \pm 2.5	14.3 \pm 2.5	12.3 \pm 1.2	0.0001
	Coarse sand	18.0 \pm 2.0	19.0 \pm 1.7	11.7 \pm 3.1	10.7 \pm 1.5	13.0 \pm 0.0	10.0 \pm 0.0	< 0.005
	Sand	25.7 \pm 5.8	22.3 \pm 3.5	19.7 \pm 2.1	16.0 \pm 1.0	14.7 \pm 1.5	14.3 \pm 1.5	0.003
	Fine sand	19.3 \pm 4.7	14.7 \pm 3.1	24.7 \pm 3.2	17.7 \pm 3.1	11.7 \pm 0.6	18.7 \pm 1.5	0.0001
	Very fine sand	3.3 \pm 0.6	3.0 \pm 0.0	7.0 \pm 1.7	10.7 \pm 3.5	6.3 \pm 1.5	11.3 \pm 1.5	< 0.0001
	Silt	0.7 \pm 0.6	1.7 \pm 0.6	2.0 \pm 0.0	3.0 \pm 1.0	3.3 \pm 0.6	4.7 \pm 0.6	< 0.0001

986

^a Significant

Bartlett's

test

indicates

heteroscedasticity.

987 **TABLE 3.** Gross observations (health, condition, and digestive gland coloration) of surviving clams in
988 each beach (A–F).

TMetric	Beach A	Beach B	Beach C	Beach D	Beach E	Beach F
Health (% weak)	0	5	0	2	13	15
Condition (% emaciated)	0	5	0	2	22	15
Digestive gland (% pale)	8	7	5	22	0	0
Digestive gland (% very pale)	0	0	0	2	22	13

989
990
991
992
993

TABLE 4. Overview of RNA-seq reads and quality scores. Totals that include both reads in the pair are indicated by (R1 + R2). Values are shown in billion (B) or million (M).

<i>Leukoma staminea</i> assembly	Value
Total input reads (R1 + R2)	3.0 B
Total input nucleotides (R1 + R2)	305 B
Average (\pm SD) input reads per:	
single HiSeq4000 lane (R1 + R2)	762 \pm 13.0 M
library (read pairs)	54.4 \pm 9.5 M
gill library (read pairs)	53.8 \pm 10.7 M
digestive-gland library (read pairs)	55.0 \pm 8.3 M
Assembly contig length range	102 – 29,916
Mean (\pm SD) Phred quality score	38.9 \pm 0.3
Base-calling accuracy	> 99.9%

994
995
996
997
998
999
1000

TABLE 5. Differentially expressed gene overview comparing beach type (clam garden (CG) vs. reference beach (Ref)), beach survival (high vs. medium vs. low), tissue type (gill vs. digestive gland), or expressed in background. Note that here differential expression is considered when $p \leq 0.001$ and \log_2 fold-change > 0.58 (1.5-fold overexpressed) or < -0.58 (1.5-fold underexpressed).

Comparison	Result	# Transcripts in gills	# Transcripts in digestive gland
Tissue type (gill vs. digestive gland)	Gill vs. digestive gland	8,795	5,103
Beach type (CG vs. Ref)	Overexpressed CG	40	11
	Underexpressed CG	14	26
Beach survival (high vs. medium vs. low)	Overexpressed high vs. medium	11	4
	Overexpressed medium vs. low	14	7
	Overexpressed low vs. medium	26	34
	Overexpressed medium vs. high	6	18
Background	N/A	28,391	24,699

1001