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Abstract  

Growth mindset—the belief that abilities are malleable through effort—drives motivation, 25 

action and achievement. Yet, the underlying mechanisms remain elusive, necessitating a 

unified framework that integrates cognitive, neural, and developmental processes. Leveraging 

longitudinal neuroimaging and computational modeling to reveal moment-to-moment 

decision responses and brain state dynamics during working memory (WM), we show that 

growth mindset enhances WM development from middle childhood to adolescence via 30 

nuanced cortico-striatal network dynamics that balance between brain state flexibility and 

stability. Behaviorally, children with higher growth mindset exhibited better WM 

performance both cross-sectionally and longitudinally, attributed to faster evidence 

accumulation during moment-to-moment information updating, especially under high task 

demands. Neurally, a higher growth mindset was associated with greater activation of the 35 

dorsal striatum, cingulo-opercular (action-mode), and fronto-parietal networks during WM, 

which further accounted for longitudinal WM improvement and latent evidence accumulation. 

Such cortico-striatal activation covaried with neurochemical mediators critical for motivation 

and executive functioning. Analyzing non-stationary network dynamics revealed that growth 

mindset optimized dynamical organization of cortico-striatal networks, with an activated state 40 

highly flexible to support moment-to-moment information updating and a deactivated state 

remaining stable across blocks to suppress irrelevant information. This suggests a balanced 

allocation of resources for accumulating evidence while suppressing noise during WM. 

Together, our findings support a neurocognitive framework in which growth mindset 

enhances WM development via nuanced orchestration of cortico-striatal networks to enable 45 

efficient dynamic computations and foster far-reaching cognitive development. 

Keywords: growth mindset, development, working memory, brain networks, striatum 
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Introduction 

Growth mindset refers to the underlying beliefs that people have about their abilities and 50 

skills being malleable and improvable through continuous efforts. Individuals who endorse a 

growth mindset often demonstrate higher performance in a spectrum of cognitive tasks, skills, 

academic and professional achievements(1–4). Notably, growth mindset interventions are 

recognized to enlighten latent potentials in school-aged children(2, 5–8), whose rapidly 

maturing brains and evolving cognitive abilities are plastic and receptive to educational 55 

influences. Targeting this critical developmental window, growth mindset has been shown to 

yield robust benefits in children’s math learning and executive functions(1, 6, 9, 10). Such 

benefits are theorized to foster motivation and executive functions, which optimize regulation 

of neurocognitive resources in achieving goal-directed behaviors(11–13). Despite decades of 

research and application in educational practice, the underlying neurocognitive mechanisms 60 

remain fragmented. Even less is known about how such benefits evolve over development in 

younths. A unified model integrating cognitive, neural, and developmental processes is 

crucial to advance our understanding of the underlying mechanisms of growth mindset’s 

merits. 

 65 

Several theoretical models have attempted to account for the merits of growth mindset. 

Dweck’s mindset theory contrasts growth mindset with fixed mindset - the belief that abilities 

are static and unmalleable through effort. Challenges are appraised as opportunities, engaging 

reward systems rather than threats. Students with growth mindset persevere through academic 

challenges, and professionals embrace feedback and adapt accordingly(14, 15). 70 

Neuroscientific evidence also supports the brain’s capacity for change, reinforcing the 

theory’s core premise(6, 16, 17). The self-determination theory posits that the perception of 

self-control and mastery can initiate and maintain motivation, driving individuals to pursue 
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goal-directed behaviors and achieve higher performance(18, 19). Likewise, adopting a 

growth mindset fosters intrinsic motivation, such as the desire to learn or improve for 75 

personal satisfaction, thereby enhancing engagement in cognitive tasks requiring sustained 

effort toward long-term goals(20–22). Recent neurocognitive models link growth mindset to 

adaptability in cognitive strategies and executive functions anchored onto large-scale brain 

networks(23, 24). Individuals with growth mindset embrace more flexible attention allocation 

for goal-directed information, while suppressing irrelevant distractions(3, 11, 13, 25), and 80 

they tend to accumulate and integrate environmental feedback more effectively, utilizing this 

information for decision-making and task execution(3, 11). Although widely studied, 

longitudinal evidence remains scarce regarding how growth mindset fosters developmental 

improvement in executive functioning among elementary school-aged children. Crucially, the 

neurobiological mechanisms through which growth mindset modulates the developing brain's 85 

cognitive and motivational systems—thereby supporting cognitive development—are poorly 

understood. Resolving these gaps necessitates a dual approach: integrating cross-sectional 

neural correlates with longitudinal behavioral trajectories across critical phases of elementary 

school.  

 90 

Recent advances in computational modeling of moment-to-moment decision responses 

enable us to identify latent dynamic computations in various cognitive domains(26, 27). The 

N-back task, analogous to speeded decision-making, can be modeled as an evidence 

accumulation process during which effective information extracted from a stream of noisy 

inputs is rapidly accumulated until sufficient evidence reaches the threshold to make a 95 

decision, at which point a response is executed(28–30).  The Hierarchical Drift Diffusion 

Model (HDDM) has been widely used to decompose decision responses in a given task into 

latent decision-making dynamics modulated by free parameters. Of these parameters, the 
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speed of evidence accumulation refers to “drift rate”, reflecting the ability to extract effective 

information from perceived inputs(26). As such, the HDDM allows us to decipher which 100 

latent processes involving deliberate dynamic decision-making would be most augmented by 

growth mindset. Thus, it is conceivable that growth mindset would enhance cognitive 

performance in school-aged children, most likely via acting on latent evidence accumulation 

during decision-making dynamics. 

 105 

The mastery of growth mindset involves multiple brain systems and networks. Growth 

mindset-enhanced cognitive performance has been linked to greater activation in core regions 

of the frontoparietal network (FPN), cingulo-opercular network (CON) (core part of the 

action-mode network, AMN), and striatal systems critical for executive functions and 

motivation(3, 6, 11, 13). Recent studies also emphasize that cortico-striatal connectivity, 110 

particularly between the anterior cingulate cortex (ACC) and striatum, plays a critical role in 

improving math skills among individuals who endorse growth mindset(6, 31). Notably, the 

dorsal rather than ventral striatum engages more in selecting, filtering, and updating of input 

information during working memory(32, 33), which can be actively shaped by dopaminergic 

projections(34–36). These findings provide insights into the neural bases of growth mindset, 115 

but the neurocognitive pathways of how these systems are coordinated to enable growth 

mindset-fostered longitudinal improvement in school-aged children remain elusive. Based on 

neuroimaging observations, we hypothesize that growth mindset would enhance children's 

cognitive performance by increasing engagement of core nodes in cortico-striatal networks 

that may covary with dopaminergic modulators. Such effects at earlier ages would transform 120 

into longitudinal improvement over development according to the self-determination theory. 
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The neurobiology of motivation-cognition interactions has recognized an intricate interplay 

of the prefrontal cortex and striatal circuitry in support of goal-directed behaviors(37, 38). 

The dynamic assembly of cortico-striatal regions, with activated and deactivated states, is 125 

critical both cognitive and motivational processes to support optimal performance in effortful 

tasks(39, 40). Motivation-driven dopamine releases, by acting on prefrontal and dorsal striatal 

circuits(34–36), can energize and facilitate flexible allocation of neural resources in response 

to changing task demands, as well as evaluation and filtering of external information to 

enable efficient processing(33, 41, 42). Core nodes of the FPN, such as the dorsolateral 130 

prefrontal cortex, are crucial for evidence accumulation during information updating and 

cognitive control pertinent to goal-directed behavior(43, 44). Functional coupling and 

decoupling among the FPN, AMN and striatal regions are crucial for initiating and 

maintaining a high-arousal “action-mode” in response to external task demands(45). The 

ACC is crucial for monitoring and integrating information, thereby enhancing cognitive 135 

flexibility and adaptability(42, 46, 47). Dynamic network modeling such as Hidden Markov 

modeling (HMM) offers a useful approach to identify time-resolved functional brain network 

(re)configurations reflecting latent brain states at each time point involved in a given task(48, 

49). Based on Viterbi decoded sequence, brain state dynamics can be quantified by fractional 

occupancy and system-level state transitions(50), providing an ideal approach to probe how 140 

growth mindset modulates cortico-striatal network dynamics to support cognitive 

performance. According to above mindset theories and network dynamics, we hypothesize 

that growth mindset would optimize cortico-striatal network dynamics with flexibility and 

stability of distinct brain states to enable a balanced allocation of neural resources for 

accumulating evidence during moment-to-moment information updating, while maintaining a 145 

stable goal for each task demand.   
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To test above hypotheses, we here leverage functional magnetic resonance imaging (fMRI), 

in conjunction with computational modeling of trial-by-trial decision responses during N-

back WM task, to investigate how growth mindset fosters longitudinal WM development in 150 

454 school-aged children (8-12 years old at baseline) over three years (Figure 1A). Three 

WM loads were set to obtain growth mindset effects on task demands and task-invoked brain 

responses. To probe the longitudinal effects of growth mindset on WM development, children 

were invited back for follow-up measurements each year for WM assessments. The HDDM 

was implemented to estimate key parameters reflecting latent computational dynamics during 155 

WM processing, including drift rate and decision threshold. Brain-wide activation and 

multiple regression were employed to identify brain systems linked to growth mindset and 

WM performance. Moreover, meta-analytic decoding and neurochemical approaches were 

used to further identify mental processes corresponding to our identified brain systems. 

Finally, the HMM was used to probe the dynamic organization of large-scale cortico-striatal 160 

networks reflecting brain state dynamics and flexible resource allocation. Structural equation 

modeling was then used to address how cortico-striatal coactivation and network dynamics 

contribute to cross-sectional and longitudinal effects of growth mindset on developmental 

improvement in cognitive performance.  

 165 

Results 

Growth mindset enhances both cross-sectional and longitudinal WM development 

We first examined whether growth mindset promotes children’s WM performance throughout 

development from 8 to 16 years. As presented in Figure 1E, children responded more slowly 

and with less accuracy under high-load conditions, whereas the performance improved with 170 

age (Figure 1F). More detailed WM-loading manipulations and developmental trajectories of 
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all measures are provided in the Supplementary Materials. In the first visit (Year-1), growth 

mindset was positively correlated with WM performance measured by d’ and reaction times 

(RTs), with the most prominent effect observed in the 2-back condition (0-back: r = 0.194, p 

< 0.001; 1-back: r = 0.134, p = 0.010; 2-back: r = 0.213, p < 0.001; all corrected; Figure S2). 175 

Mixed-effect model analysis of longitudinal data, with age and gender as covariates, revealed 

that growth mindset predicted children’s longitudinal WM performance (d‘) over three years, 

especially in the 2-back condition (β = 0.122, t = 3.580, p < 0.001, corrected), as well as in 

the 0- and 1-back conditions (both β > 0.119, t > 3.027, p < 0.003, corrected) (Figure 1G, 

Table S9). However, we did not observe age-related interaction effects between growth 180 

mindset and WM performance (β = -0.011, t = -0.332, p = 0.740), indicating that children’s 

growth mindset remains stable throughout development.  

 

We then implemented the HDDM to unravel the benefits of growth mindset and to examine 

how latent cognitive dynamics are involved in WM task. Model comparisons revealed that 185 

the three parameters of drift rate (v), decision threshold, and non-decision time constituted 

the best-fitting model (Figure 1C & S3, Table S2). Among these parameters, drift rate 

emerged to show a positive correlation with growth mindset in the first visit (0-back: r = 

0.132, p =0.010; 1-back: r = 0.157, p = 0.002; 2-back: r = 0.193, p < 0.001) and over three 

years later (0-back: β = 0.059, t = 2.359, p = 0.019; 1-back: β = 0.091, t = 3.987, p < 0.001; 2-190 

back: β = 0.087, t = 3.853, p < 0.001; Figure 1H, Table S10), with the most prominent effect 

in the 2-back condition. These results indicate the benefits of growth mindset on children's 

WM development spanning over three years, with the most prominent effect observed under 

high task demand (2-back) condition and attributed to improvements in latent evidence 

accumulation during information updating in WM task.  195 
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Figure 1. Growth mindset fosters WM development over three years in children. (A) 

Longitudinal design to investigate the effects of growth mindset on WM development over 

three years and its underlying neurocognitive substrates. Both behavioral and fMRI data 

were obtained in Year-1. A subsample of children was invited back for growth mindset and N-200 

back tasks in Year-2 and/or Year-3. (B) A schematic view of the numerical N-back task with 
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three WM loads. (C) An illustration of the HDDM with three free parameters: drift rate (v) 

indicates the speed of evidence accumulation, decision threshold (a) is the boundary for 

decision choice, and non-decision time (t) reflects other processes like early stimulus 

encoding. The red and black lines represent the correct and incorrect decision paths, 205 

respectively. (D) Age distribution of children at each visit. Each dot represents one child at 

the time of tests. Dots of the same child are connected with lines. (E) Boxplots of 

discrimination indices (d’), reaction time (RTs), and drift rate (v) during WM in Year-1. The 

thick black line in each box represents the median, with the 25th and 75th percentiles. (F) 

Developmental trajectories of WM performance measured by d’. Each dot represents one 210 

observation. (G) Growth mindset positively associated with WM d’ across three years (total 

observation = 748). Different shades of orange or red represent WM workloads. (H) Growth 

mindset positively correlated with drift rate across three years. Age and gender were 

controlled for regressions. Shading represents a 95% confidence interval (CI). Notes: ***p < 

0.001, **p < 0.01, Bonferroni-corrected.  215 

 

Growth mindset is associated with greater activity in cortico-striatal systems during 

WM 

Next, we aimed to identify the neural correlates underlying the benefits of growth mindset on 

children’s WM performance over development. A whole-brain multiple regression analysis 220 

was conducted for WM-related neural activity maps derived from the contrast of 2- versus 0-

back condition, with children’s growth mindset as a covariate of interest at the first visit 

(Year-1) while controlling for age and gender. This analysis revealed significant clusters in 

the dorsal striatum, cingulo-opercular, and fronto-parietal regions (Figure 2A&B, Table S11) 

critical for executive functions based on meta-analytic mapping (Figure 2C). More 225 

importantly, we observed that children’s growth mindset was positively associated with 
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greater activation in the dorsal striatum during WM, especially located at the dorsolateral 

caudate (Figure 2B). We also observed positive correlations between children’s growth 

mindset and WM-related activation in core nodes of the cingulo-opercular network (CON) 

and frontal-parietal network (FPN). The CON here includes the supplemental motor area 230 

(SMA) extending into dorsal anterior cingulate cortex (dACC) and right anterior insula (aIns); 

the FPN includes the dorsolateral prefrontal cortex (dlPFC), inferior parietal sulcus (IPS), and 

frontal eye field (FEF). In addition, an opposite correlation was observed in the posterior 

cingulate cortex (PCC) and parahippocampus (PHC). A similar pattern of results was 

observed for the contrast map of the 2- versus 1-back condition, but null effects were 235 

observed for the contrast map between the 1- and 0-back conditions. 

 

We then applied a meta-analytic decoding approach to characterize which psychological 

processes are most likely associated with growth mindset-related brain activity in the cortico-

striatal systems from the large-scale Neurosynth platform with over ten thousand 240 

neuroimaging studies. Using our identified dorsal striatum as a seed, we first obtained a 

coactivation map associated with this seed from the Neurosynth platform (Figure 2C & 2D) 

and then compared it with the children’s growth mindset-related activity map from our 

present study (Methods). These two maps were highly overlapped, indicating that our 

observed cortical activation in SMA/dACC, aIns, IPS, dlPFC, and FEF is indeed often 245 

covaried with the dorsal striatum (Figure 2D; Table S14). A meta-analytic decoding 

approach revealed that children’s growth mindset-related neural activity and dorsal striatal 

coactivation are associated with terms of executive functions, including WM, calculation, etc., 

as well as motivation-related processes, including “gain”, “reward”, “monetary” (Figure 2C).  

 250 
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To explore whether children’s growth mindset-related brain activity under high WM demand 

covaries with engagement of motivation-related brain circuitry, we further annotated the 

neurochemical characteristics linked to the neurotransmitter receptor/transporter maps 

derived from an open-source PET dataset. A set of spatial similarity metrics was computed 

for children’s growth mindset-related brain activity covarying with nine different 255 

neurotransmitter maps (Figure 2E). As shown in Figure 2F, though all spatial similarity 

metrics were significant based on 95% CI of bootstraps, we observed the highest similarity of 

growth mindset-related activity map with cannabinoids (CB1), glutamate (metabotropic 

receptor mGluR5), and serotonin (5HT1b2) critical for motivation and reward processing. 

Together, these results indicate that children’s growth mindset is associated with greater WM-260 

related activation in core regions of the cortico-striatal networks and motivation-related 

neurotransmitter activity patterns critical for motivational and executive functioning. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2025. ; https://doi.org/10.1101/2022.07.11.499525doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499525
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

 

Figure 2. Brain systems associated with children’s growth mindset under high WM 

demand. (A, B) Significant clusters from multiple regression analysis for the contrast map of 265 

2- with 0-back condition show positive correlations with children’s growth mindset at Year-1. 

(C) Meta-analytic decoded terms showing highest correlation with neural response of growth 

mindset (red) and coactivation (blue) map with the dorsolateral caudate. Correlation (r) in 

the polar chart depicts the similarity between term-related neural response and decoded map. 

(D) Overlap of children's growth mindset-related brain regions (red) and meta-analytic 270 

coactivation of the dorsolateral caudate (blue). (E) An illustration of neurotransmitter 

analysis. The neurochemical characteristics of growth mindset-related brain map were 
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annotated according to its spatial similarity with 36 independent neurotransmitter 

receptor/transporter maps. Bootstraps of multiple regression analysis for the contrast map of 

2- with 0-back condition were complemented for error estimation. (F) Pearson correlations 275 

between our identified growth mindset-related brain activity map and neurochemical binding 

maps. Higher correlation coefficients indicate greater similarity between the two maps. The 

red shadow illustrates the standard errors of correlation coefficients. The neurotransmitter 

system can be considered as significant correlations with growth mindset-related brain 

activity map if the CI is beyond zero. Notes: dlPFC: dorsal lateral prefrontal cortex, FEF: 280 

frontal eye field, aIns: anterior insula, IPS: inferior parietal sulcus, dACC: dorsal anterior 

cingulate cortex. Neurotransmitter systems include cannabinoids (CB1 receptor), dopamine 

(receptors D1, D2, and transporter), norepinephrine (NET), acetylcholine (VAChT), nicotinic 

(a4b2, and muscarinic M1), serotonin (5HTT transporter, and 5HT receptors 1a, 1b, 2a, 4, 

and 6), GABA (GABA-A, GABA-aBZ receptor), histamine (H3), glutamate (metabotropic 285 

receptor mGluR5), and opioids (mu-opioid receptor, MOR)).  

 

Growth mindset fosters WM development via greater activity in cortico-striatal systems 

To investigate the relationships among children’s growth mindset, WM-related brain activity, 

WM performance, and latent decision-making dynamics, we then restrained our analysis on 290 

core regions of interest (ROIs) in the striatum, CON, FPN, and DMN defined by an 

independent Neurosynth meta-analysis (Figure 3A & S4). As we expected, this analysis 

revealed that task-invoked activity in these ROIs was positively correlated with children’s 

growth mindset with cross-sectional and longitudinal WM performance and three latent 

HDDM parameters, while including age and gender as covariates of no interest (Table S15-295 

16). Specifically, WM-related activity in the dorsal striatum (r = 0.150, p = 0.014, corrected) 

and CON regions (aIns r = 0.167, SMA/dACC: r = 0.201; all p ≤ 0.007, corrected) was 
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positively correlated with children’s growth mindset and faster drift rate, especially under the 

2-back condition (all r ≥ 0.172, all p ≤ 0.004, corrected). Task-invoked activity in FPN 

regions, including dlPFC, FEF, and IPS, was also positively associated with children’s growth 300 

mindset (all r ≥ 0.181, all p ≤ 0.004, corrected) and faster drift rate (all r ≥ 0.124, all p ≤ 

0.034, corrected). Among DMN regions, WM-related activity in these regions was negatively 

correlated with drift rate (vmPFC r = -0.224, PCC r = -0.151; HPC/PHC: r = -0.157, all p ≤ 

0.011, corrected) except the AG (r = -0.096, p = 0.096).   

 305 

To test our hypothesis about how children’s growth mindset improves WM development 

through cortico-striatal functional organization, we implemented structural equation 

modeling (SEM) to investigate potential mediation pathways among children’s growth 

mindset, cross-sectional and longitudinal WM performance, and drift rate via WM-related 

activity in cortico-striatal regions. We examined both cross-sectional and longitudinal 310 

mediatory effects of the striatum-CON while also testing the mediatory role of FPN as 

indicated by the above findings. It showed that the coactivation of both the striatum-CON 

system and FPN mediated the relationship between growth mindset and WM performance (d’) 

at first visit (indirect Est. = 0.039, 95% CI = [0.014, 0.077]; Figure 3C, D & E; Table S17). 

A similar mediatory effect was also observed in the FPN regions (indirect Est. = 0.043, 95% 315 

CI = [0.015, 0.085]). The coactivation of striatum-CON and FPN regions can also account for 

the beneficial effects of growth mindset on drift rate at first visit (striatum-CON: indirect Est. 

= 0.035, 95% CI = [0.011, 0.075]; FPN: indirect Est. = 0.047, 95% CI = [0.019, 0.089]) 

(Figure 3D; Table S18).  

 320 
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More importantly, for the question at issue, we further investigated whether and how task-

invoked activation in striatum-CON and FPN regions accounts for the benefits of children’s 

growth mindset on longitudinal WM performance and drift rate (reflecting latent evidence 

accumulation during information updating) across three years. Although we observed null 

direct effects of children’s growth mindset on longitudinal WM performance (d’: r = 0.015, 325 

RTs: r = 0.033, both p > 0.69), task-invoked activity in SMA/dACC at first visit (r = 0.191, p 

= 0.019) was positively associated with growth mindset, which could further account for 

longitudinal improvement in WM performance with faster RTs (r = -0.193, p = 0.018) and 

higher drift rate (r = 0.199, p = 0.014) across three years, even after controlling for 

performance at baseline. Such associations only emerged in the SMA/dACC response (Table 330 

S19 & S20). Though task-invoked responses in FPN regions at first visit were associated 

with faster RTs in longitudinal WM assessment (FEF: r = -0.284, p < 0.001; IPS: r = -0.257, 

p = 0.002), they were not significantly correlated with children’s growth mindset (FEF: r = 

0.101, p = 0.219; IPS: r =0.148, p = 0.070). Further mediation analysis of longitudinal data 

revealed that task-invoked response in the striatum-CON system at the first visit could 335 

account for the indirect association between children’s growth mindset and longitudinal 

improvement in WM performance across three years (indirect Est. = 0.034, 95% CI = [0.005, 

0.090]; Table S21). Parallel analysis revealed that task-invoked activation in the striatum-

CON systems could also account for the indirect association between children’s growth 

mindset and longitudinal improvement in drift rate (indirect Est. = 0.043, 95% CI = [0.008, 340 

0.104]; Figure 3E; Table S22). These results indicate that striatum-CON systems play a 

mediatory role in supporting longitudinal improvement in WM performance in youths, 

especially for the speed of latent evidence accumulation. 
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Figure 3. Growth mindset improves both cross-sectional and longitudinal WM drift rates 345 

via striatal and CON network coactivation. (A) ROIs are defined for the striatum-CON 

(yellow), FPN (red), and DMN (blue). Task-invoked response under 2- vs. 0-back conditions 

were exacted from each ROI for further analysis. (B) Flow diagram of correlations between 

activity in each ROI and growth mindset (and drift rate) at first visit. Only the drift rate in the 

2-back condition was illustrated here regarding its high correlation with growth mindset 350 

compared to the 1-back condition. (C) An illustration of cross-sectional and longitudinal data 

analysis. The mediatory role of growth mindset-related ROIs was examined in both current 

(Year-1) and future (Year-2/3) performance. (D, E) Mediation models of task-invoked activity 

in striatum-CON regions accounting separately for cross-sectional and longitudinal benefits 

of growth mindset on WM drift rate. Task-invoked activation in cortico-striatal regions 355 

during 2- versus 0-back condition could account for the beneficial effects of children’s growth 
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mindset on higher drift rate at first visit as well as longitudinal outcomes. Notes: Age and 

gender were set as covariances, and all p values were corrected for multiple comparisons 

using FDR correction. ***p < 0.001, **p < 0.01, *p < 0.05, n.s.: no significance 

 360 

Growth mindset fosters WM development via nuanced cortico-striatal network 

dynamics with distinct tempospatial state flexibility and stability 

Beyond task-invoked regional activity in cortico-striatal networks, we further investigated 

how these large-scale brain networks are dynamically organized to support WM processing 

and account for the benefits of children’s growth mindset on cross-sectional and longitudinal 365 

WM outcomes. BOLD-fMRI time series of 11 ROIs in cortico-striatal networks linked to 

children’s growth mindset were first extracted, and we then implemented the HMM to 

identify latent brain state dynamics during WM processing (Figure 4A & B). This analysis 

revealed a set of eight brain states, each with a unique spatial-temporal configuration of 

cortico-striatal regions. By evaluating the likelihood of each state occurring at a given time, 370 

we were able to identify the most dominant state at each time point (Figure 4C). The 

distribution of eight brain states aligned well with three WM loads manipulated in our study, 

demonstrating the effectiveness of our model in decoding three task demands (Figure 4D&E, 

S5-7).  

 375 

It is worth noting that State 2 exhibited the highest frequency in high (2-back) than low WM 

demand (F(2,912) = 167.15, P < 0.001), characterized by greater activation across all cortico-

striatal regions. At the same time, State 3 was much more prevalent in low (0-/1-back) than 

high WM task demand (F(2,912) = 46.57, P < 0.001), with generally lower activation even 

deactivated across cortico-striatal regions. Thus, States 2 and 3 (as relative to other states) 380 
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most likely reflect the dynamic organization of cortico-striatal networks, respectively, 

involved in high and low task demand conditions. Critically, we observed significantly 

positive correlations of State 2’s and State 3’s frequency with both children’s growth mindset 

(both r ≥ 0.165, p = 0.016, corrected), as well as WM 2-back performance (both r ≥ 0.157, p 

≤ 0.024, corrected) (Figure 4F; Table S23). These observations indicate that children’s 385 

growth mindset is associated with better WM performance and a higher occupancy rate of 

latent brain states 2 and 3, characterized by generally highly activated and low or even 

deactivated patterns across regions in the cortico-striatal networks during WM processing.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2025. ; https://doi.org/10.1101/2022.07.11.499525doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499525
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 

Figure 4. Cortico-striatal network dynamics with the top four latent states under WM tasks. 390 

(A) The schematic plot of the time series extraction process. Time series from key nodes of the 

striatum-CON and FPN were extracted to estimate the hidden network dynamics under 
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varied workloads. (B) The schematic diagram for HMM estimation. (C) The probability of 

each decoded state as a function of each time point during the entire task. The Viterbi path 

depicts the most likely sequence of hidden states. (D) The frequency of each hidden state 395 

under each workload. (E) The spatial pattern of the top four states with the highest frequency 

throughout the task. The value of each area represents the relative activity magnitude, 

referring to the mean value. (F) Regression plots between state frequency and behavioral 

indexes. Shading represents 95% CI. Each dot represents one subject’s score on the first test. 

 400 

To understand the temporal dynamics of the above two dominant states, we computed two 

metrics to quantify temporal flexibility and stability during WM processing (Figure 5A; 

Methods). Temporal stability assesses the similarity of a given state’s occurrence between 

different blocks in each WM 2-back condition. This metric reflects how stable the same state 

is engaged in different blocks, as it may fluctuate among blocks during the task. Temporal 405 

flexibility summarizes the variances of a given state’s probability over time within each block 

of WM condition, depicting how this state flexibly responds to target and non-target stimuli 

during WM processing. Correlation analyses further revealed that temporal flexibility of State 

2 during WM 2-back was positively correlated with children’s growth mindset (r = 0.191, p = 

0.006), as well as WM performance characterized by d’ (r = 0.253, p < 0.001) and latent drift 410 

rate (r = 0.218, p = 0.001). Likewise, the temporal stability of State 3 across blocks during 

the WM 2-back condition was positively correlated with children’s growth mindset (r = 0.161, 

p = 0.040), as well as WM d-prime (r = 0.306, p < 0.001) and drift rate (r = 0.283, p < 0.001). 

Notably, these positive correlations are exclusive to States 2 and 3. Further mediation 

analyses revealed that the beneficial effects of children’s growth mindset on drift rate at the 415 

first visit could be separately accounted for by temporal flexibility of State 2 (indirect Est. = 
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0.037, 95% CI = [0.012, 0.076]; Figure 5C) and stability of State3 (indirect Est. = 0.042, 95% 

CI = [0.016, 0.086]; Figure 5D). 

 

Given the above observations on prominent correlations among children’s growth mindset, 420 

task-invoked activity, latent dynamic states in cortico-striatal networks, and WM performance, 

we further tested the potential mediatory pathways among these variables using the SEM 

approach. This analysis revealed the significance of a chain mediation model showing that 

children’s growth mindset could account for a higher drift rate under the WM 2-back 

condition, through task-invoked regional activity of striatum-CON systems and the temporal 425 

flexibility of cortico-striatal network dynamics reflecting a high-task demand state (i.e., State 

2) (indirect Est. = 0.018, 95% CI = [0.006, 0.040]). This model could readily explain the 

benefit of a growth mindset on longitudinal improvement in drift rate at Year 2 and Year 3 

(indirect Est. = 0.013, 95% CI = [0.001, 0.041]). Together, multiple results from our analyses 

indicate that task-invoked regional activity and nuanced cortico-striatal network dynamics, 430 

with flexibility and stability, work in concert to account for the benefits of children’s growth 

mindset on latent evidence accumulation during information updating in WM. 
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Figure 5. State flexibility and stability of cortico-striatal network dynamics account for the 

benefits of growth mindset on both cross-sectional and longitudinal WM improvement. (A) 435 

An overview of the framework for computing temporal flexibility and stability at trial-, block- 

and task-levels, respectively. Corresponding formulas are provided to compute temporal 

flexibility and stability metrics. Blue and green lines represent the probability of States 2 and 

3 throughout the entire WM task; Green lines: State 3 probability throughout the WM task. (B) 
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Regression plots between behavioral performances and state temporal dynamics. Shading 440 

represents 95% CI. Each dot represents one subject’s score on the Year-1 test. (C, D) 

Mediation models of State 2 flexibility and State 3 stability under the promotive effect of 

growth mindset on 2-back WM drift rate at the Year-1 test. (E) Chain mediation models with 

striatum-CON coactivation and State 2 flexibility as sequential mediators.  

 445 

Discussion (1655) 

By integrating pediatric neuroimaging, computational modeling, and brain network dynamics 

with longitudinal behavioral trajectories, we investigated the neurocognitive mechanisms 

underlying growth mindset-fostered WM development in youths. Behaviorally, children with 

higher growth mindset exhibited both cross-sectional and longitudinal improvements in WM 450 

performance over three years, along with faster evidence accumulation during moment-to-

moment information updating, with the most prominent effect in high task-demand condition. 

Neurally, growth mindset was associated with greater activation of the dorsal striatum, 

cingulo-opercular (core part of action-mode network), and fronto-parietal networks during 

WM, which accounted for developmental improvement in WM performance and latent 455 

evidence accumulation. Such activation effects are linked to motivation and cognitive control, 

and covary with dopaminergic mediators. Further network dynamic modeling revealed that 

growth mindset optimizes cortico-striatal network dynamics during high task demands, with 

higher flexibility of an activated state to support trial-by-trial information updating and more 

stability of a deactivated state across blocks to maintain task goals. Such spatiotemporal 460 

features may reflect a balanced and efficient allocation of neurocognitive resources to support 

changing demands. Our findings underline a neurocognitive framework in which growth 

mindset enhances latent dynamic computations and effective processing via nuanced 

orchestration of cortico-striatal networks and fosters far-reaching cognitive development.  
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 465 

Behavioral and computational processes of growth mindset-fostered WM development 

Behaviorally, we observed the benefits of a growth mindset on cross-sectional and 

longitudinal improvement in WM performance – that is, better accuracy and faster RTs – 

from middle-to-late childhood into adolescence, with the most prominent effect in the 2-back 

condition. Our cross-sectional results are in line with previous findings regarding growth 470 

mindset benefits on math learning and cognitive control abilities, due to the optimization of 

cognitive processes(1, 14). Critically, our observed longitudinal effect was consistent across 

different age groups at baseline (Year-1) and remained robustly evident spanning over three 

years in Years-2 and 3. Such longitudinal results extend findings from previous cross-

sectional studies focusing on growth mindset-fostered effects on behavioral performance in a 475 

variety of cognitive tasks, (3, 13, 20, 25). Our cross-sectional and longitudinal findings 

concur with key predictions from influential theories of growth mindset pertaining to 

motivation-cognition interactions.  

Importantly, our observed growth mindset-fostered improvements are attributed to 

faster speed of evidence accumulation (i.e., drift rate) rather than other latent processes such 480 

as decision threshold during information updating, especially under the 2-back condition. 

Based on the HDDM’s theoretical framework(26–28), this finding suggests an enhancement 

in the efficient processing of latent dynamic computations involved in WM. When 

performing the 2-back task, one must constantly update and maintain the most recent 2 items 

in mind and accumulate sufficient evidence extracted from rapidly presented stimuli to ensure 485 

a correct decision whether the current item is a target or not(28, 51). In principle, children 

with growth mindset exhibit core cognitive features centered on malleability beliefs and 

adaptive processing driven by internal-controllable attributions(10, 20, 52, 53). Such traits 

reflect a dynamic cognitive schema prioritizing task goals and optimizing cognitive-
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motivational outcomes(11, 52, 54). This can enhance efficient extraction and accumulation of 490 

target-relevant information (evidence) while suppressing irrelevant ones to reach a decision, 

thereby improving the speed of evidence accumulation. While modulations on lower-level 

perceptual processes may also occur, our observed benefits are primarily linked to higher-

order evidence accumulation of dynamic computations that facilitate efficient processing. 

Thus, our findings provide novel insights into the computational mechanism of growth 495 

mindset-fostered developmental improvements in WM performance. 

 

Growth mindset fosters WM development through the motivation-cognition dual 

systems 

On the neural level, growth mindset was associated with higher WM-related activation in 500 

cortico-striatal networks, including the dorsal striatum, cingulo-opercular, and fronto-parietal 

systems that covary with dopaminergic modulators. These results are compatible with 

previous findings on growth mindset-related brain systems localized in the ACC, anterior 

insula(11, 13) , and striatum(6, 31). This further supports our hypothesis that growth mindset 

optimizes WM processing by greater engagement of prefrontal-parietal and motivation-505 

related striatal systems(36, 55). Indeed, results from our meta-analytic decoding affirm that 

the coactivation map (including CON regions) of our observed dorsal striatum is associated 

with both cognitive and motivational processes, supporting the dual system model of 

motivation-cognition interplay(41, 56, 57). Growth mindset-related brain map showed a 

stronger correlation with attention, WM, and mental computations (i.e., arithmetic, 510 

calculation, subtraction), which echoes motivational modulations of growth mindset on 

attentional control and goal-directed processes(3, 11, 13). Thus, it is well possible that our 

observed greater engagement in cortico-striatal systems reflects growth mindset-fostered 

motivation-cognition interplay. The involvement of motivation-cognition dual systems is also 
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supported by results from our meta-neurotransmitter association analysis. That is, gowth 515 

mindset-induced greater activation in cortico-striatal systems covariates with a set of 

dopaminergic projections and related mediators. The dopaminergic modulations are crucial 

for goal-directed behaviors via enhancing engagement of cortico-striatal systems, along with 

motivated efforts and intrinsic evaluation of input information(58, 59). Other 

neurotransmitters and receptors are also linked to growth mindset-related activation map in 520 

our study, including GABA, glutamate, serotonin, and norepinephrine. The balance between 

glutamate and GABA plays a critical role in excitatory and inhibitory dopaminergic signaling 

in cortical regions, and modulators like serotonin and norepinephrine facilitate regulating 

cognitive flexibility(44, 60, 61).   

 According to the Self-Determination Theory and neurocognitive models(18, 19, 23, 525 

24), our observed greater activation in the dorsal striatum and core nodes of the CON (ACC 

and anterior insular) may reflect an increase in children’s motivated efforts and internal-

controllable values to perform the ongoing WM task, resulting in greater engagement of 

WM-related prefrontal-parietal systems(35, 36, 41). Moreover, growth mindset-related 

cortico-striatal coactivation, especially the striatum-CON, positively correlated with both 530 

WM d-prime and drift rate even after two years, connecting these neural correlates with 

longitudinal outcomes in WM performance. Compared to FPN, enhanced engagement of 

CON and dorsal striatum may serve to initiate and maintain a high-arousal “action mode” of 

the brain that enables fast updating and flexible reaction to external demands, leading to more 

efficient information processing(45). In line with our findings, greater coactivation of the 535 

striatum and CON may lead to more rapid updating of information in the face of challenges 

and facilitate adaptive behavior(62, 63). Similar neural patterns have also been seen in the 

process of intrinsic motivation facilitating high performance in WM tasks(64, 65), supporting 

our hypothesis that growth mindset enhances motivation and leads to higher cognitive efforts 
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in demanding tasks. Such motivation-cognition dual systems can even predict longitudinal 540 

WM outcomes over development from middle childhood to adolescence.  

 

Growth mindset fosters WM development via optimizing the dynamic orchestration of 

cortico-striatal networks  

In conjunction with cortico-striatal coactivation, growth mindset optimizes the occupancy 545 

and transient transitions among eight latent brain states involved in three WM-load conditions. 

Critically, we identified two brain states with opposite spatiotemporal (re)configuration 

patterns, characterized by an overall activation (S2) and a deactivation (S3) among core 

regions of cortico-striatal networks during WM. The S2 occurs more frequently during high 

task demand (i.e., 2-back), with higher engagement of the dorsal striatum, CON, and FPN 550 

regions. As discussed above, higher engagement of these regions assists with motivation-

cognition interaction and allows for monitoring and updating of goal-related stimuli(35, 36, 

41). These regions are also linked to cognitive control over information updating, supporting 

stimulus-triggered transient responses while maintaining relevant information(59, 66). This 

interpretion is further supported by its positive correlation with faster evidence accumulation. 555 

In contrast, the S3 showed higher frequency in low task demands, during which cortico-

striatal regions were deactivated in order to reserve cognitive resources(39, 67). Moreover, 

the frequency of S2 and S3 was positively linked to both growth mindset and WM 

performance, indicating their crucial roles in growth mindset-fostered WM processing. 

Beyond state frequency, our observed associations and mediation pathways among 560 

growth mindset and spatiotemporal features of S2 and S3 further underline an intricate 

interplay of motivational, executive, and action-mode systems anchored onto large-scale 

cortico-striatal networks. Specifically, the promotive effect of growth mindset on drift rate 
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was mediated by the temporal stability of S3 across blocks under the same goal at baseline, as 

well as the flexibility of S2 in response to moment-to-moment information updating specific 565 

to the 2-back condition, both cross-sectionally and longitudinally. According to brain network 

dynamics equited for flexible adaptability to changing demands(50, 68–71), our observed 

high flexibility on a trial-by-trial level most likely reflects more efficient updating and 

monitoring of perceptual inputs during S2, while the stable S3 is responsible to maintain 

given task goals and guarantee a stable supply of cognitive resources across blocks of the 570 

same task. By integrating temporal flexibility and stability of these states, such features 

enable a balanced organization of cortico-striatal networks to facilitate flexible allocation of 

mental resources in response to moment-by-moment information updating, while maintaining 

the task goal constantly for optimal outcomes. Indeed, our chain mediation results further 

support the intricate interplay of multiple networks pertaining to the above interpretation: 575 

greater task-invoked activity in striatum-CON systems that work in concert with transient 

state (S2) flexibility rather than deactivated state (S3) stability during WM accounted for 

growth mindset-fostered developmental improvements in drift rate over three years. Taken 

together, results from (co)activation, meta-analytic decoding, and network dynamic modeling 

converge that growth mindset fosters WM development through the intricate interplay of 580 

motivational, executive, and action-mode networks that allow for optimizing flexible 

allocation of neurocognitive resources in response to changing task demands. 

 

Several limitations should be noted when interpreting our findings. First, though we 

recruited children from typical schools, many other variables such as motivation, intelligence, 585 

and general cognitive capabilities, should be taken into account in future studies. Second, we 

have identified brain systems and networks involved in WM linking to growth mindset, but 

more sophisticated designs with continuous neuroimaging measures and multiple task 
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domains are required to address how growth mindset affects children’s brain, cognitive 

affective development more broadly. Third, future studies with innovative imaging 590 

techniques measuring neural and metabolic activities are required to address the 

neuromodulatory mechanisms underlying growth mindset-fostered cognitive development. 

 

In conclusion, our study demonstrates the pivotal role of nuanced cortico-striatal network 

dynamics with distinct state flexibility and stability in mediating growth mindset-fostered 595 

improvements in WM over development in youths. Endorsing a growth mindset appears to 

optimize the intricate interplay of motivational, executive, and action-mode networks that 

promote latent dynamic computations and cognitive outcomes. Our findings suggest a 

neurocognitive account for how growth mindset fosters cognitive development via cortical-

striatal networks, which informs interventions for promoting learning programs in education. 600 
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Methods and materials 

Participants 885 

A total of 748 measurements in 454 school-aged children (ranging from 8 to 15 years old) 

were included in this study, which was derived from the Children School functions and Brain 

Development Project (CBD, Beijing Cohort). At their first visit, 375 children (mean age ± SD 

= 9.833±1.039) underwent fMRI scanning while they were performing the N-back task and 

completed the growth mindset assessment. The average interval between MRI scan and 890 

growth mindset assessment was around two months (63 ± 59 days). Children with excessive 

head motions (more than 1/3 frames with standardized DVARS >1.5 or frame displacement > 

0.5) or incomplete scanning were excluded from further analyses (Figure S1). A final sample 

of 306 children was included in the brain imaging analysis.  

In the follow-up test, a subsample of 229 and 144 children were invited back to perform the 895 

WM n-back task in the second and third year, respectively (Figure 1A and 1D). To 

investigate the neural substrates underlying the longitudinal effect of growth mindset on WM 

development, only children who had high-quality fMRI data at their first visit, along with 

completed follow-up WM tests, were considered. If children were retested in both the second 

and third years, the latter observation was selected to represent the longitudinal WM 900 

performance with a longer time lag, which resulted in 153 children for the longitudinal subset. 

Demographic information is summarized in Table S1. The written informed consent form 

was obtained from each child participant and their caregivers or legal guardians. The study 

procedures were approved by local ethics following the standards of the Declaration of 

Helsinki. Participants had no obstacle in vision and reported no history of neurological or 905 

psychiatric disorders and no current use of any medication or recreational drugs. 
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Growth mindset assessment 

The Growth Mindset Scale (GMS) (adapted from 15) consists of 20 items (e.g., No matter 

who you are, you always can change your intelligence a lot), with 14 items about the 910 

individuals’ theory of ability and 6 items about the individuals’ theory of personality (Chinese 

version used in 5, 72). Participants were asked to rate their agreement with each statement 

using a 4-point Likert-type scale (0 = Strongly Disagree, 1 = Disagree, 2 = Agree, 3 = 

Strongly Agree). Children aged 9 years old and above completed the questionnaire 

independently, and children under 9 completed the questionnaire with their parental or 915 

assessor’s assistance. The final scores range from 0 to 60, with higher scores representing a 

higher growth mindset level. 

 

N-back WM task 

A classic numerical N-back task was used to assess participants’ WM performance (Figure 920 

1B). This task consisted of three conditions with three different workloads (i.e., 0-back, 1-

back, and 2-back), and each condition consisted of 4 blocks. In each block, participants first 

viewed a 2-second cue that indicated the workload of this block (i.e., 0-back, 1-back, and 2-

back), followed by a sequence of 15 pseudorandom digits in which each digit was presented 

for 400 milliseconds. In the 0-back condition, participants were instructed to judge whether 925 

the current item on the screen was “1” or not by a button press. In the 1-back condition, 

participants were asked to judge whether the current item was just the same as the previous 

one. In the 2-back condition, participants needed to judge whether the current item was the 

same as the one at two positions back. Stimuli were presented via E-Prime 2.0 

(http://www.pstnet.com; Psychology Software Tools, Inc., Pittsburgh, PA). Both participants’ 930 
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response and reaction times (RTs) were recorded. We computed participants’ behavioral 

performance based on their responses. 

 

Behavioral performance 

The behavioral performance was assessed by the discrimination ability of d-prime (d’) based 935 

on the signal detection theory (73). All trials for each participant were assigned into the 

following categories: (1) hits, responses to targets; (2) misses, no response to targets; (3) false 

alarms, responses to non-targets; (4) correct rejections, no response to non-targets. The hit 

rate and false alarm rate were defined as follows: 

ℎ���� �������� �  
ℎ������

ℎ������ � ������������
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The aforementioned hit rate and false alarm rate were Z transformed with inversed 940 

cumulative Gaussian distribution to calculate d’ (Finc et al., 2020): 

��
′

� ���ℎ���� ��������� � ������������� ���������� ��������� 

To get finite d’ values in case either the hit rate or false alarm rate was equal to 0 or 1, 

modified values 0.01 or 0.99 were used instead. This d’ measurement was used to assess 

participants’ WM performance together with RT in all analyses. 

 945 

Behavioral statistical analysis 

Behavioral measurements were analyzed with R (version 4.0.2, https://www.r-project.org, 

Platform: x86_64-apple-darwin17.0 (64-bit)). We used the mixed-effect model to evaluate the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2025. ; https://doi.org/10.1101/2022.07.11.499525doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499525
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47

effect of growth mindset across three years using the lme4 package in R (74). The mixed-

effect model allows us to test the fixed effects (group-level effect across longitudinal repeats 950 

or years in the current study) while controlling for random effects that vary across 

participants. We first compared models with age and gender as predictors to validate the 

developmental trajectory of each behavioral measurement. We then constructed a null model 

with only a fixed intercept and a random intercept to account for the repeated measurements. 

We further compared the null model with a gender model, a linear age effect model, and a 955 

quadratic age effect model. After determining the developmental trajectory for each 

behavioral measurement, we tested the effects of growth mindset on behavioral performance 

over age and gender. Models were fitted with the maximum likelihood (ML) estimation 

method. Model comparison was based on both Akaike Information Criterion (AIC) and 

Bayesian information criterion (BIC). 960 

 

Mediation analysis 

Before mediation analysis, we calculated the correlation coefficients of each ROI activation 

with mindset levels, WM performances, and HDDM parameters. After correcting for multiple 

comparisons using FDR, networks with at least one region related to mindset and behavioral 965 

outcomes were sent for further mediation analysis. We conducted and statistically tested all 

mediation effects using Mplus 8.3 (75). Firstly, the structural equation models were 

constructed to examine whether the overall FPN and striatum-CON coactivation mediated the 

influence of growth mindset on current and future working memory performance separately. 

Based on the results from connectivity analysis, we constructed specific models to investigate 970 

how growth mindset influences current and future latent decision-making processes (drift rate) 

through cortico-striatal interaction and regional response in the insula. Because the effect of 

age and gender had already been controlled in each analysis of activation and connectivity, 
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these two covariates were included in the equation of behavioral outcomes. The fitness of 

each model was assessed using a χ2 test, which showed no significance. In addition, the Root 975 

Mean Square Error of Approximation (RMSEA) was found to be below 0.08, the 

Standardized Root Mean Square Residual (SRMR) had an outcome value of less than 0.08, 

and the Comparative Fit Index (CFI) was above 0.90. For all models, a number of 5000 

draws were done for bootstrap, and 95% confidence intervals were estimated. If the 

confidence interval did not include zero, the effect was considered significant.  980 

 

HDDM for N-back task 

The DDM describes decision-making as an evidence-accumulation process in which 

individuals continually accumulate effective evidence from the environment until they reach 

an internal threshold to make a final decision. Based on trail-by-trail RTs and accuracies, the 985 

DDM decomposes participants’ decision-making performances into latent processes, which 

were indicated by three free parameters: drift rate (v), decision threshold (a), and non-

decision time (t) (76). It is widely utilized in two-choice decision tasks but is also extendedly 

implemented for one-choice tasks such as Go/no-Go tasks (27, 77) and N-back tasks (30). In 

such paradigms, only trail-by-trail RTs for hits and false alarms were fitted for the DDM, 990 

while RTs of misses and correct rejections cannot be measured. For the current N-back task, 

the latent process is represented by participants accumulating evidence during a series of digit 

stimulus presentations to decide whether the current digit is the same as the digits that appear 

one or two points before in the sequence and then make the corresponding response. We 

estimated the DDM parameters by HDDM because it is more applicable to the case of 995 

relatively few trials and is able to estimate both group-level and individual-level parameters 

by drawing individual parameters from the group distribution. In this way, we can obtain 

group- and individual-level parameters for three workloads at three time points under the 
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current paradigm. Note that models were estimated using all data with test timepoint and 

workloads were set as factors. 1000 

To exclude the effect of different incorporated parameters on the results, we fitted seven 

models with the same data, including models of a, v, t, av, at, vt, avt. For each model, Markov 

chain Monte Carlo (MCMC) sampling method was applied to generate 20,000 samples and 

discard the initial 2,000 samples as burn-in for performing Bayesian inference. We then 

compared the models based on the deviance information criterion (DIC) (78). The model with 1005 

the lowest DIC value was considered to have the best fit. Gelman-Rubin statistics were 

further employed to assess the convergence of the model. The r-hat values for each parameter 

were close to 1.0 and less than 1.1, indicating good convergence (76). Finally, the three 

individual-level parameters of the best-fit model (avt) were submitted to subsequent analyses 

(Figure S5 & Table S2). 1010 

 

Image data acquisition 

Data were acquired using the same type of 3.0T scanner (Magnetom Prisma syngo MR D13D, 

Erlangen, Germany) with a 64-channel head coil from two sites. High-resolution anatomical 

images were acquired by a three-dimensional sagittal T1-weighted magnetization-prepared 1015 

rapid gradient echo (MPRAGE) sequence (TR = 2530 ms, TE = 2.98 ms, TI = 1100ms, flip 

angle = 7°, voxel size 0.5 x 0.5 x 1.0 mm3, matrix size = 256 × 224, FOV = 256 x 224 mm2, 

brand width = 240 Hz/Px, 192 slices with 1 mm thickness). Functional images with 33 axial 

slices (3.5 mm thick, 0.7 mm skip) parallel to the anterior and posterior commissural line 

(AC-PC) were acquired using a T2*-sensitive echo-planar imaging (EPI) sequence (TR = 1020 

2000ms, TE = 30ms, flip angle = 90°, voxel size = 3.5 x 3.5 x 3.5 mm3, FOV = 224 x 224 
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mm2). The whole n-back WM task consisted of 232 volumes and lasted for 464s. Two 

different sites were included as a nuisance for fMRI data analyses. 

 

Image data preprocessing  1025 

Brain images were preprocessed with the fMRIPrep 1.4.1 (79) pipeline implemented in 

Nipype 1.2.0 (80). The first 4 volumes of n-back task were discarded for signal stability and 

adaptation of participants. For each participant, the following preprocessing procedures were 

conducted. First, each T1w volume was skull-stripped and a BOLD reference was estimated. 

Slice time correction was then performed and all slices were realigned in time to the middle 1030 

of each TR using 3dTshift from AFNI. Motion correction was done using mcflirt (FSL) and 6 

head-motion parameters (three rotations, three translations) were estimated. The EPI data was 

corrected for susceptibility distortions based on a field map and co-registered to the 

anatomical reference using boundary-based registration with nine degrees of freedom. Finally, 

these preprocessed BOLD functional images in the original space were resampled into the 1035 

well-known ‘MNI152NLin6Asym’ space. Head-motion transformation, susceptibility 

distortion correction, BOLD-to-T1w transformation and T1w-to-template (MNI) warp were 

concatenated and applied in a single step using antsApplyTransforms (ANTs) using Lanczos 

interpolation. 

ICA-based Automatic Removal of Motion Artifacts (ICA-AROMA) was used to 1040 

automatically remove motion artifacts non-aggressively after removal of non-steady volumes 

and spatial smoothing with an isotropic, Gaussian kernel of 6 mm full-width half-maximum 

(FWHM). Physiological noise regressors were extracted applying CompCor and two 

CompCor variants were estimated: temporal (tCompCor) and anatomical (aCompCor). 

Framewise displacement (FD) and DVARS were calculated using Nipype. In addition to 6 1045 
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head-motion parameters and global signals, their temporal derivatives and quadratic terms 

were also estimated. Outliers were defined as frames that exceeded a threshold of 0.5 mm FD 

and 1.5 standardized DVARS and were annotated. All these parameters were taken as 

aggressive noise regressors and were placed in the corresponding confounds file. For credible 

results, individuals with more than 1/3 frames as outliers were excluded for further analyses 1050 

(n = 22). 

 

General linear model (GLM) analysis 

To identify WM-related brain systems and their relations to growth mindset, we constructed 

GLMs on both individual and group levels using SPM12 1055 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). To assess task-invoked neural response 

to different workloads including 0-, 1-, and 2-back conditions were modeled as separate 

boxcar regressors and convolved with the canonical hemodynamic response function (HRF) 

built in SPM12. To regress out effects related to noise, signals within cerebrospinal fluid and 

white matter from each participant were included as a nuisance in the model (Parkes et al., 1060 

2018). A high-pass filter of 1/128Hz was applied and temporal autocorrelations in fMRI were 

corrected using a first-order autoregressive model (AR(1)). 

Relevant contrast parameter estimate images were initially generated at the individual-subject 

level, and then submitted to group-level analyses by treating participants as a random variable. 

Contrast images of 2-back > 0-back, 2-back > 1-back, and 1-back > 0-back were submitted to 1065 

separate multiple regression analyses with children’s growth mindset as a covariate of interest, 

gender and age as nuisances. Coefficients of the multiple regression maps were tested using 

one-sample t-test. Significant clusters were determined at a voxel-level false discovery rate 

(FDR) correction (pFDR < 0.05) on the whole brain. For visualization of results, significant 
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clusters were displayed using Surf Ice (https://www.nitrc.org/projects/surfice/) and 1070 

MRIcroGL (https://www.nitrc.org/projects/mricrogl/). 

 

Meta-analytic coactivation and decoding 

The meta-analytic coactivation map is a kind of meta-analog of functional connectivity map 

and is generated by the Neurosynth platform (http://neurosynth.org) based on the coordinates 1075 

of seed regions. Our analysis is seeded in a 6-mm sphere centered on the coordinates of peak 

activity in the bilateral caudate nucleus identified by the multiple regression analysis for 

WM-related brain activity (2- versus 0-back contrast) with the growth mindset as a covariate 

of interest. The map reflects coactivation of brain regions across studies in the Neurosynth 

database and voxels with high Z values in the map are likely to be activated in similar studies 1080 

as the seed voxels. The final coactivation mask only included clusters with more than 10 

voxels satisfied Z > 3 (p < 0.001) in coactivation maps of both the left and right caudate 

nuclei. Subsequently, we overlapped the coactivation mask with the multiple regression 

results of growth mindset for comparison and visualization purposes. Mask of multiple 

comparisons only included continuous clusters with more than 10 voxels passed the threshold 1085 

of p < 0.05 corrected for multiple comparisons using FDR in the 2-back > 0-back contrast. 

We then uploaded these two masks to the Image Decoder based on the Neurosynth database 

to identify the most related terms of brain response. The top 10 functional terms whose neural 

response showed the highest correlation with the current mask were presented. Because five 

terms were decoded in both masks, the final result presented 15 terms in total. Note that the 1090 

redundant or anatomical terms were not included (e.g., “working memory” was presented, 

and “working” or “caudate” were removed). 
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Neurotransmitter Analysis 

To investigate the neurochemical characteristics of the identified growth mindset, we 1095 

calculated its spatial similarity with a series of PET tracer neurotransmitter 

receptor/transporter maps (81). This PET tracer dataset is independent of this study and 

includes mean neurochemical binding maps from 36 studies with over 1200 healthy 

individuals. These studies provide independent maps for 19 receptors and transporters across 

nine neurotransmitter systems, including cannabinoids, dopamine, norepinephrine, 1100 

acetylcholine, serotonin, GABA, histamine, glutamate, and opioids, which were then 

resampled to standard space for assessing spatial similarity.  

We first ran 100 times bootstrapping of the multiple regression described above. In each 

bootstrapping iteration, participants’ 2-back > 0-back contrast map was resampled and then 

used to create a growth mindset map through multiple regression. After resampling the 1105 

neurotransmitter system into imaging space, we calculated the voxel-by-voxel Pearson 

correlation between the bootstrapped growth mindset map and each neurotransmitter 

receptor/transporter map to estimate their spatial similarity. For all bootstrap samples, we 

computed the mean spatial correlations and the corresponding estimated standard error (the 

standard deviation), which were both presented in the Figure 2c radar plot. We only 1110 

interpreted neurochemical similarities found in neurotransmitters validated across studies, 

meaning those with 95% confidence intervals above zero in individual PET studies. The 

bootstrapping method and replications across studies ensured the validation of our findings.  

 

Regions of interest (ROIs) analysis 1115 

ROIs of three functional brain networks were generated from meta-analysis images using the 

Neurosynth database. We searched for the meta-analysis maps related to terms “working 
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memory” and “default mode”, and converted the maps to masks only including clusters with 

more than 10 voxels satisfied Z > 3 (p < 0.001). The whole-brain result and meta-analysis 

results were also overlapped for comparison and visualization. 1120 

Based on this criterion, we then picked the caudate nucleus for the striatum, anterior Insula 

(aIns), and dorsal anterior cingulate cortex (dACC) for the CON from the meta-analysis map 

of the term “working memory”. These regions in the striatum-CON system were responsible 

for motivational response during cognitive tasks as aforementioned. For the FPN, dorsal 

lateral prefrontal cortex (dlPFC), frontal eye field (FEF), and inferior parietal sulcus (IPS) 1125 

were selected from the same map. Likewise, clusters of angular gyrus (AG), posterior 

cingulate cortex (PCC), and ventral medial prefrontal cortex (vmPFC) were selected from the 

meta-analysis map of the term “default mode”. Besides, the bilateral 

hippocampus/parahippocampus (HCP/PHC) was also included based on the result of whole-

brain multiple regression. Finally, ROIs generated from the original meta-analysis maps 1130 

include: caudate for striatum; aIns and dACC for CON; dlPFC, FEF, and IPS for FPN; 

vmPFC, AG, PCC, and HCP/PHC for DMN (Figure 3A & S6). Parameter estimates from 

each ROI, and each participant was extracted from the individual-level contrast of 2-back 

with the 0-back condition using the MarsBaR (http://marsbar.sourceforge.net/) to characterize 

activation during the task in each ROI. 1135 

 

Hidden Markov Model (HMM) 

We implemented the HMM to model the spatiotemporal brain dynamics within the 

mesolimbic and frontoparietal systems with which children meet the changing requirements 

and demands during the WM task. The HMM captured a set of distinct brain states from the 1140 

multidimensional input signals extracted from 11 ROIs within striatum-CON and FPN. These 
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brain states were determined using Gaussian distribution, taking into account the mean of 

each dimension and covariance among dimensions. The HMM-MAR toolbox 

(https://github.com/OHBA-analysis/HMM-MAR) was utilized to estimate the changing brain 

configurations underlying the data. To decide on the final number of states, we compared the 1145 

models of 6, 8, 10, and 12 states and selected the model whose output best aligned with our 

predefined workload changes. Through model comparison, we confirmed that the temporal 

features of 8-state outputs are sufficient to cover the neural dynamics of three workloads, 

while the others with higher than 8 states have inefficient states that were rarely active 

throughout the whole task. After deciding the final number of states, the Viterbi algorithm 1150 

was used to obtain the maximum a posteriori probability path. As shown in Figure 4, the 

final temporospatial outputs included the decoded mostly likely sequence of hidden states, 

the frequency of occurrence for each state under each condition, the transition metrics among 

the 8 states, and the spatial features of each state within the predefined brain system. The 

temporospatial features were then correlated with behavioral indices to select our interested 1155 

states for further analysis, and the occurrence probability was used to calculate the temporal 

stability and flexibility of each state sequence. 
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