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Abstract

25 Growth mindset—the belief that abilities are malleable through effort—drives motivation,
action and achievement. Yet, the underlying mechanisms remain elusive, necessitating a
unified framework that integrates cognitive, neural, and developmental processes. Leveraging
longitudina neuroimaging and computational modeling to reveal moment-to-moment
decision responses and brain state dynamics during working memory (WM), we show that

30  growth mindset enhances WM development from middle childhood to adolescence via
nuanced cortico-striatal network dynamics that balance between brain state flexibility and
stability. Behaviorally, children with higher growth mindset exhibited better WM
performance both cross-sectionally and longitudinally, attributed to faster evidence
accumulation during moment-to-moment information updating, especially under high task

35 demands. Neurally, a higher growth mindset was associated with greater activation of the
dorsal striatum, cingulo-opercular (action-mode), and fronto-parietal networks during WM,
which further accounted for longitudinal WM improvement and latent evidence accumulation.
Such cortico-striatal activation covaried with neurochemical mediators critical for motivation
and executive functioning. Analyzing non-stationary network dynamics revealed that growth

40  mindset optimized dynamical organization of cortico-striatal networks, with an activated state
highly flexible to support moment-to-moment information updating and a deactivated state
remaining stable across blocks to suppress irrelevant information. This suggests a balanced
allocation of resources for accumulating evidence while suppressing noise during WM.
Together, our findings support a neurocognitive framework in which growth mindset

45  enhances WM development via nuanced orchestration of cortico-striatal networks to enable

efficient dynamic computations and foster far-reaching cognitive development.
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Introduction

50  Growth mindset refers to the underlying beliefs that people have about their abilities and
skills being malleable and improvable through continuous efforts. Individuals who endorse a
growth mindset often demonstrate higher performance in a spectrum of cognitive tasks, skills,
academic and professional achievements(1-4). Notably, growth mindset interventions are
recognized to enlighten latent potentials in school-aged children(2, 5-8), whose rapidly

55  maturing brains and evolving cognitive abilities are plastic and receptive to educational
influences. Targeting this critical developmental window, growth mindset has been shown to
yield robust benefits in children’s math learning and executive functions(1, 6, 9, 10). Such
benefits are theorized to foster motivation and executive functions, which optimize regulation
of neurocognitive resources in achieving goal-directed behaviors(11-13). Despite decades of

60  research and application in educational practice, the underlying neurocognitive mechanisms
remain fragmented. Even less is known about how such benefits evolve over development in
younths. A unified model integrating cognitive, neural, and developmental processes is
crucia to advance our understanding of the underlying mechanisms of growth mindset’s

merits.
65

Severa theoretical models have attempted to account for the merits of growth mindset.
Dweck’s mindset theory contrasts growth mindset with fixed mindset - the belief that abilities
are static and unmalleable through effort. Challenges are appraised as opportunities, engaging
reward systems rather than threats. Students with growth mindset persevere through academic
70  challenges, and professionas embrace feedback and adapt accordingly(14, 15).
Neuroscientific evidence also supports the brain’s capacity for change, reinforcing the
theory’s core premise(6, 16, 17). The self-determination theory posits that the perception of

self-control and mastery can initiate and maintain motivation, driving individuals to pursue
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goal-directed behaviors and achieve higher performance(18, 19). Likewise, adopting a
75  growth mindset fosters intrinsic motivation, such as the desire to learn or improve for
personal satisfaction, thereby enhancing engagement in cognitive tasks requiring sustained
effort toward long-term goals(20-22). Recent neurocognitive models link growth mindset to
adaptability in cognitive strategies and executive functions anchored onto large-scale brain
networks(23, 24). Individuals with growth mindset embrace more flexible attention allocation
80  for goal-directed information, while suppressing irrelevant distractions(3, 11, 13, 25), and
they tend to accumulate and integrate environmental feedback more effectively, utilizing this
information for decision-making and task execution(3, 11). Although widely studied,
longitudinal evidence remains scarce regarding how growth mindset fosters developmental
improvement in executive functioning among elementary school-aged children. Crucially, the
85  neurobiological mechanisms through which growth mindset modulates the developing brain's
cognitive and motivational systems—thereby supporting cognitive development—are poorly
understood. Resolving these gaps necessitates a dual approach: integrating cross-sectional
neural correlates with longitudinal behavioral trajectories across critical phases of elementary

school.
90

Recent advances in computational modeling of moment-to-moment decision responses
enable us to identify latent dynamic computations in various cognitive domains(26, 27). The
N-back task, analogous to speeded decision-making, can be modeled as an evidence
accumulation process during which effective information extracted from a stream of noisy
95  inputs is rapidly accumulated until sufficient evidence reaches the threshold to make a
decision, at which point a response is executed(28-30). The Hierarchical Drift Diffusion
Model (HDDM) has been widely used to decompose decision responses in a given task into

latent decision-making dynamics modulated by free parameters. Of these parameters, the
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speed of evidence accumulation refers to “drift rate’, reflecting the ability to extract effective
100 information from perceived inputs(26). As such, the HDDM allows us to decipher which
latent processes involving deliberate dynamic decision-making would be most augmented by
growth mindset. Thus, it is conceivable that growth mindset would enhance cognitive
performance in school-aged children, most likely via acting on latent evidence accumulation

during decision-making dynamics.
105

The mastery of growth mindset involves multiple brain systems and networks. Growth
mindset-enhanced cognitive performance has been linked to greater activation in core regions
of the frontoparietal network (FPN), cingulo-opercular network (CON) (core part of the
action-mode network, AMN), and dtriatal systems critical for executive functions and
110  motivation(3, 6, 11, 13). Recent studies also emphasize that cortico-striatal connectivity,
particularly between the anterior cingulate cortex (ACC) and striatum, plays a critical role in
improving math skills among individuals who endorse growth mindset(6, 31). Notably, the
dorsal rather than ventral striatum engages more in selecting, filtering, and updating of input
information during working memory(32, 33), which can be actively shaped by dopaminergic
115 projections(34-36). These findings provide insights into the neural bases of growth mindset,
but the neurocognitive pathways of how these systems are coordinated to enable growth
mindset-fostered longitudinal improvement in school-aged children remain elusive. Based on
neuroimaging observations, we hypothesize that growth mindset would enhance children's
cognitive performance by increasing engagement of core nodes in cortico-striatal networks
120  that may covary with dopaminergic modulators. Such effects at earlier ages would transform

into longitudinal improvement over development according to the self-determination theory.
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The neurobiology of motivation-cognition interactions has recognized an intricate interplay
of the prefrontal cortex and striatal circuitry in support of goal-directed behaviors(37, 38).
125 The dynamic assembly of cortico-striatal regions, with activated and deactivated states, is
critical both cognitive and motivational processes to support optimal performance in effortful
tasks(39, 40). Motivation-driven dopamine releases, by acting on prefrontal and dorsal striatal
circuits(34-36), can energize and facilitate flexible allocation of neural resources in response
to changing task demands, as well as evaluation and filtering of externa information to
130  enable efficient processing(33, 41, 42). Core nodes of the FPN, such as the dorsolateral
prefrontal cortex, are crucial for evidence accumulation during information updating and
cognitive control pertinent to goal-directed behavior(43, 44). Functiona coupling and
decoupling among the FPN, AMN and dtriatal regions are crucia for initiating and
maintaining a high-arousal “action-mode” in response to external task demands(45). The
135 ACC is crucial for monitoring and integrating information, thereby enhancing cognitive
flexibility and adaptability(42, 46, 47). Dynamic network modeling such as Hidden Markov
modeling (HMM) offers a useful approach to identify time-resolved functional brain network
(re)configurations reflecting latent brain states at each time point involved in a given task(48,
49). Based on Viterbi decoded sequence, brain state dynamics can be quantified by fractional
140 occupancy and system-level state transitions(50), providing an ideal approach to probe how
growth mindset modulates cortico-striatal network dynamics to support cognitive
performance. According to above mindset theories and network dynamics, we hypothesize
that growth mindset would optimize cortico-striatal network dynamics with flexibility and
stability of distinct brain states to enable a balanced allocation of neural resources for
145  accumulating evidence during moment-to-moment information updating, while maintaining a

stable goal for each task demand.
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To test above hypotheses, we here leverage functional magnetic resonance imaging (fMRI),
in conjunction with computational modeling of trial-by-trial decision responses during N-
150  back WM task, to investigate how growth mindset fosters longitudina WM development in
454 school-aged children (8-12 years old at baseline) over three years (Figure 1A). Three
WM loads were set to obtain growth mindset effects on task demands and task-invoked brain
responses. To probe the longitudinal effects of growth mindset on WM development, children
were invited back for follow-up measurements each year for WM assessments. The HDDM
155  wasimplemented to estimate key parameters reflecting latent computational dynamics during
WM processing, including drift rate and decision threshold. Brain-wide activation and
multiple regression were employed to identify brain systems linked to growth mindset and
WM performance. Moreover, meta-analytic decoding and neurochemical approaches were
used to further identify mental processes corresponding to our identified brain systems.
160  Finaly, the HMM was used to probe the dynamic organization of large-scale cortico-striatal
networks reflecting brain state dynamics and flexible resource allocation. Structural equation
modeling was then used to address how cortico-striatal coactivation and network dynamics
contribute to cross-sectional and longitudinal effects of growth mindset on developmental

improvement in cognitive performance.
165
Results
Growth mindset enhances both cross-sectional and longitudinal WM devel opment

We first examined whether growth mindset promotes children’s WM performance throughout
development from 8 to 16 years. As presented in Figure 1E, children responded more slowly
170 and with less accuracy under high-load conditions, whereas the performance improved with

age (Figure 1F). More detailed WM -loading manipulations and developmental trajectories of
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all measures are provided in the Supplementary Materials. In the first visit (Year-1), growth
mindset was positively correlated with WM performance measured by d’ and reaction times
(RTs), with the most prominent effect observed in the 2-back condition (0-back: r = 0.194, p
175  <0.001; 1-back: r = 0.134, p = 0.010; 2-back: r = 0.213, p < 0.001; al corrected; Figure S2).

Mixed-effect model analysis of longitudinal data, with age and gender as covariates, revealed

that growth mindset predicted children’s longitudinal WM performance (d°) over three years,

especialy in the 2-back condition (8 = 0.122, t = 3.580, p < 0.001, corrected), as well asin
the 0- and 1-back conditions (both g > 0.119, t > 3.027, p < 0.003, corrected) (Figure 1G,
180 Table ). However, we did not observe age-related interaction effects between growth
mindset and WM performance (8 = -0.011, t = -0.332, p = 0.740), indicating that children’s

growth mindset remains stable throughout devel opment.

We then implemented the HDDM to unravel the benefits of growth mindset and to examine
185  how latent cognitive dynamics are involved in WM task. Model comparisons revealed that
the three parameters of drift rate (v), decision threshold, and non-decision time constituted
the best-fitting model (Figure 1C & S3, Table S2). Among these parameters, drift rate
emerged to show a positive correlation with growth mindset in the first visit (O-back: r =
0.132, p =0.010; 1-back: r = 0.157, p = 0.002; 2-back: r = 0.193, p < 0.001) and over three
190  years later (O-back: g =0.059, t = 2.359, p = 0.019; 1-back: g = 0.091, t = 3.987, p < 0.001; 2-
back: g =0.087,t = 3.853, p < 0.001; Figure 1H, Table S10), with the most prominent effect
in the 2-back condition. These results indicate the benefits of growth mindset on children's
WM development spanning over three years, with the most prominent effect observed under
high task demand (2-back) condition and attributed to improvements in latent evidence

195  accumulation during information updating in WM task.


https://doi.org/10.1101/2022.07.11.499525
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.11.499525; this version posted June 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

200

available under aCC-BY-NC-ND 4.0 International license.

Longitudinal Task Design and Modeling
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Figure 1. Growth mindset fosters WM development over three years in children. (A)

Longitudinal design to investigate the effects of growth mindset on WM development over

three years and its underlying neurocognitive substrates. Both behavioral and fMRI data

were obtained in Year-1. A subsample of children was invited back for growth mindset and N-

back tasks in Year-2 and/or Year-3. (B) A schematic view of the numerical N-back task with

10
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three WM loads. (C) An illustration of the HDDM with three free parameters: drift rate (v)
indicates the speed of evidence accumulation, decision threshold (a) is the boundary for
decision choice, and non-decision time (t) reflects other processes like early stimulus
205 encoding. The red and black lines represent the correct and incorrect decision paths,
respectively. (D) Age distribution of children at each visit. Each dot represents one child at
the time of tests. Dots of the same child are connected with lines. (E) Boxplots of
discrimination indices (d'), reaction time (RTs), and drift rate (v) during WM in Year-1. The
thick black line in each box represents the median, with the 25th and 75th percentiles. (F)
210  Developmental trajectories of WM performance measured by d’. Each dot represents one
observation. (G) Growth mindset positively associated with WM d’ across three years (total
observation = 748). Different shades of orange or red represent WM workloads. (H) Growth
mindset positively correlated with drift rate across three years. Age and gender were
controlled for regressions. Shading represents a 95% confidence interval (Cl). Notes: ***p <

215 0.001, **p < 0.01, Bonferroni-corrected.

Growth mindset is associated with greater activity in cortico-striatal systems during

WM

Next, we aimed to identify the neural correlates underlying the benefits of growth mindset on
220  children’'s WM performance over development. A whole-brain multiple regression analysis
was conducted for WM-related neural activity maps derived from the contrast of 2- versus O-
back condition, with children’s growth mindset as a covariate of interest at the first visit
(Year-1) while controlling for age and gender. This analysis revealed significant clusters in
the dorsal striatum, cingulo-opercular, and fronto-parietal regions (Figure 2A& B, Table S11)
225  critical for executive functions based on meta-analytic mapping (Figure 2C). More

importantly, we observed that children’s growth mindset was positively associated with

11
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greater activation in the dorsal striatum during WM, especially located at the dorsolateral
caudate (Figure 2B). We also observed positive correlations between children’s growth
mindset and WM-related activation in core nodes of the cingulo-opercular network (CON)
230 and frontal-parietal network (FPN). The CON here includes the supplemental motor area
(SMA) extending into dorsal anterior cingulate cortex (dACC) and right anterior insula (alns);
the FPN includes the dorsolateral prefrontal cortex (dIPFC), inferior parietal sulcus (IPS), and
frontal eye field (FEF). In addition, an opposite correlation was observed in the posterior
cingulate cortex (PCC) and parahippocampus (PHC). A similar pattern of results was
235 observed for the contrast map of the 2- versus 1-back condition, but null effects were

observed for the contrast map between the 1- and 0-back conditions.

We then applied a meta-analytic decoding approach to characterize which psychological
processes are most likely associated with growth mindset-related brain activity in the cortico-
240  doriatal systems from the large-scale Neurosynth platform with over ten thousand
neuroimaging studies. Using our identified dorsal striatum as a seed, we first obtained a
coactivation map associated with this seed from the Neurosynth platform (Figure 2C & 2D)
and then compared it with the children’s growth mindset-related activity map from our
present study (Methods). These two maps were highly overlapped, indicating that our
245  observed cortical activation in SMA/JACC, alns, IPS, dIPFC, and FEF is indeed often
covaried with the dorsal striatum (Figure 2D; Table Sl14). A meta-analytic decoding
approach reveaed that children’s growth mindset-related neural activity and dorsal striatal
coactivation are associated with terms of executive functions, including WM, calculation, etc.,

as well as motivation-related processes, including “gain”, “reward”, “monetary” (Figure 2C).

250

12
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To explore whether children’s growth mindset-related brain activity under high WM demand
covaries with engagement of motivation-related brain circuitry, we further annotated the
neurochemical characteristics linked to the neurotransmitter receptor/transporter maps
derived from an open-source PET dataset. A set of spatial similarity metrics was computed
255  for children’'s growth mindset-related brain activity covarying with nine different
neurotransmitter maps (Figure 2E). As shown in Figure 2F, though all spatial similarity
metrics were significant based on 95% CI of bootstraps, we observed the highest similarity of
growth mindset-related activity map with cannabinoids (CB1), glutamate (metabotropic
receptor mGIuR5), and serotonin (5HT1b2) critical for motivation and reward processing.
260  Together, these results indicate that children’s growth mindset is associated with greater WM-
related activation in core regions of the cortico-striatal networks and motivation-related

neurotransmitter activity patterns critical for motivational and executive functioning.

13
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Figure 2. Brain systems associated with children’s growth mindset under high WM
265  demand. (A, B) Sgnificant clusters from multiple regression analysis for the contrast map of
2- with 0-back condition show positive correlations with children’s growth mindset at Year-1.
(C) Meta-analytic decoded terms showing highest correlation with neural response of growth
mindset (red) and coactivation (blue) map with the dorsolateral caudate. Correlation (r) in
the polar chart depicts the similarity between term-related neural response and decoded map.
270 (D) Overlap of children's growth mindset-related brain regions (red) and meta-analytic
coactivation of the dorsolateral caudate (blue). (E) An illustration of neurotransmitter

analysis. The neurochemical characteristics of growth mindset-related brain map were

14
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annotated according to its spatial similarity with 36 independent neurotransmitter
receptor/transporter maps. Bootstraps of multiple regression analysis for the contrast map of
275  2- with O-back condition were complemented for error estimation. (F) Pearson correlations
between our identified growth mindset-related brain activity map and neurochemical binding
maps. Higher correlation coefficients indicate greater similarity between the two maps. The
red shadow illustrates the standard errors of correlation coefficients. The neurotransmitter
system can be considered as significant correlations with growth mindset-related brain
280  activity map if the Cl is beyond zero. Notes: dIPFC: dorsal lateral prefrontal cortex, FEF:
frontal eye field, alns: anterior insula, IPS: inferior parietal sulcus, dACC: dorsal anterior
cingulate cortex. Neurotransmitter systems include cannabinoids (CB1 receptor), dopamine
(receptors D1, D2, and transporter), norepinephrine (NET), acetylcholine (VAChT), nicotinic
(adb2, and muscarinic M1), serotonin (SHTT transporter, and 5HT receptors 1a, 1b, 2a, 4,
285 and 6), GABA (GABA-A, GABA-aBZ receptor), histamine (H3), glutamate (metabotropic

receptor mGluR5), and opioids (mu-opioid receptor, MOR)).

Growth mindset fosters WM development via greater activity in cortico-striatal systems

To investigate the relationships among children’s growth mindset, WM-related brain activity,
290 WM performance, and latent decision-making dynamics, we then restrained our analysis on
core regions of interest (ROIs) in the stristum, CON, FPN, and DMN defined by an
independent Neurosynth meta-analysis (Figure 3A & $4). As we expected, this analysis
revealed that task-invoked activity in these ROIs was positively correlated with children’s
growth mindset with cross-sectional and longitudinal WM performance and three latent
295 HDDM parameters, while including age and gender as covariates of no interest (Table S15-
16). Specifically, WM-related activity in the dorsal striatum (r = 0.150, p = 0.014, corrected)

and CON regions (alns r = 0.167, SMA/JACC: r = 0.201; al p < 0.007, corrected) was
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positively correlated with children’s growth mindset and faster drift rate, especially under the
2-back condition (al r > 0.172, all p < 0.004, corrected). Task-invoked activity in FPN
300  regions, including dIPFC, FEF, and IPS, was also positively associated with children’s growth
mindset (all r > 0.181, all p < 0.004, corrected) and faster drift rate (all r > 0.124, al p <
0.034, corrected). Among DMN regions, WM-related activity in these regions was negatively
correlated with drift rate (vmPFC r = -0.224, PCC r = -0.151; HPC/PHC: r =-0.157, dl p <

0.011, corrected) except the AG (r = -0.096, p = 0.096).
305

To test our hypothesis about how children’s growth mindset improves WM development
through cortico-striatal functional organization, we implemented structural equation
modeling (SEM) to investigate potential mediation pathways among children’s growth
mindset, cross-sectional and longitudinal WM performance, and drift rate via WM-related
310  activity in cortico-striatal regions. We examined both cross-sectional and longitudinal
mediatory effects of the stristum-CON while aso testing the mediatory role of FPN as
indicated by the above findings. It showed that the coactivation of both the striatum-CON
system and FPN mediated the relationship between growth mindset and WM performance (d')
at first visit (indirect Est. = 0.039, 95% CI = [0.014, 0.077]; Figure 3C, D & E; Table S17).
315 A similar mediatory effect was aso observed in the FPN regions (indirect Est. = 0.043, 95%
Cl =[0.015, 0.085]). The coactivation of striatum-CON and FPN regions can also account for
the beneficial effects of growth mindset on drift rate at first visit (striatum-CON: indirect Est.
= 0.035, 95% CI = [0.011, 0.075]; FPN: indirect Est. = 0.047, 95% CI = [0.019, 0.089])

(Figure 3D; Table S18).

320
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More importantly, for the question at issue, we further investigated whether and how task-
invoked activation in striatum-CON and FPN regions accounts for the benefits of children’s
growth mindset on longitudinal WM performance and drift rate (reflecting latent evidence
accumulation during information updating) across three years. Although we observed null
325  direct effects of children’s growth mindset on longitudinal WM performance (d': r = 0.015,
RTs: r = 0.033, both p > 0.69), task-invoked activity in SMA/JACC at first visit (r = 0.191, p
= 0.019) was positively associated with growth mindset, which could further account for
longitudinal improvement in WM performance with faster RTs (r = -0.193, p = 0.018) and
higher drift rate (r = 0.199, p = 0.014) across three years, even after controlling for
330  performance at baseline. Such associations only emerged in the SMA/JACC response (Table
S19 & S20). Though task-invoked responses in FPN regions at first visit were associated
with faster RTs in longitudinal WM assessment (FEF: r = -0.284, p < 0.001; IPS: r = -0.257,
p = 0.002), they were not significantly correlated with children’s growth mindset (FEF: r =
0.101, p = 0.219; IPS: r =0.148, p = 0.070). Further mediation analysis of longitudinal data
335  reveded that task-invoked response in the striatum-CON system at the first visit could
account for the indirect association between children’s growth mindset and longitudinal
improvement in WM performance across three years (indirect Est. = 0.034, 95% CI = [0.005,
0.090]; Table S21). Parallel analysis revealed that task-invoked activation in the striatum-
CON systems could also account for the indirect association between children’s growth
340  mindset and longitudinal improvement in drift rate (indirect Est. = 0.043, 95% CI = [0.008,
0.104]; Figure 3E; Table S22). These results indicate that striatum-CON systems play a
mediatory role in supporting longitudinal improvement in WM performance in youths,

especialy for the speed of latent evidence accumulation.
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345  Figure 3. Growth mindset improves both cross-sectional and longitudinal WM drift rates
via striatal and CON network coactivation. (A) ROIs are defined for the striatum+CON
(yellow), FPN (red), and DMN (blue). Task-invoked response under 2- vs. O-back conditions
were exacted from each ROI for further analysis. (B) Flow diagram of correlations between
activity in each ROl and growth mindset (and drift rate) at first visit. Only the drift rate in the

350  2-back condition was illustrated here regarding its high correlation with growth mindset
compared to the 1-back condition. (C) An illustration of cross-sectional and longitudinal data
analysis. The mediatory role of growth mindset-related ROIs was examined in both current
(Year-1) and future (Year-2/3) performance. (D, E) Mediation models of task-invoked activity
in striatum-CON regions accounting separately for cross-sectional and longitudinal benefits

355  of growth mindset on WM drift rate. Task-invoked activation in cortico-striatal regions

during 2- versus 0-back condition could account for the beneficial effects of children’s growth
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mindset on higher drift rate at first visit as well as longitudinal outcomes. Notes: Age and
gender were set as covariances, and all p values were corrected for multiple comparisons

using FDR correction. ***p < 0.001, **p < 0.01, *p < 0.05, n.s.: no significance
360

Growth mindset fosters WM development via nuanced cortico-striatal network

dynamics with distinct tempospatial state flexibility and stability

Beyond task-invoked regional activity in cortico-striatal networks, we further investigated
how these large-scale brain networks are dynamically organized to support WM processing

365  and account for the benefits of children’s growth mindset on cross-sectiona and longitudinal
WM outcomes. BOLD-fMRI time series of 11 ROIs in cortico-striatal networks linked to
children’s growth mindset were first extracted, and we then implemented the HMM to
identify latent brain state dynamics during WM processing (Figure 4A & B). This analysis
revealed a set of eight brain states, each with a unique spatial-tempora configuration of

370  cortico-striatal regions. By evaluating the likelihood of each state occurring at a given time,
we were able to identify the most dominant state at each time point (Figure 4C). The
distribution of eight brain states aligned well with three WM loads manipulated in our study,
demonstrating the effectiveness of our model in decoding three task demands (Figure 4D& E,
S5-7).

375
It is worth noting that State 2 exhibited the highest frequency in high (2-back) than low WM
demand (F(2,912) = 167.15, P< 0.001), characterized by greater activation across all cortico-
striatal regions. At the same time, State 3 was much more prevalent in low (0-/1-back) than

high WM task demand (F(2,912) = 46.57, P < 0.001), with generally lower activation even

380  deactivated across cortico-striatal regions. Thus, States 2 and 3 (as relative to other states)
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most likely reflect the dynamic organization of cortico-striatal networks, respectively,
involved in high and low task demand conditions. Critically, we observed significantly
positive correlations of State 2's and State 3's frequency with both children’s growth mindset
(both r > 0.165, p = 0.016, corrected), as well as WM 2-back performance (both r > 0.157, p
385 < 0.024, corrected) (Figure 4F; Table S23). These observations indicate that children’s
growth mindset is associated with better WM performance and a higher occupancy rate of
latent brain states 2 and 3, characterized by generally highly activated and low or even

deactivated patterns across regionsin the cortico-striatal networks during WM processing.
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390  Figure4. Cortico-striatal network dynamics with the top four latent states under WM tasks.
(A) The schematic plot of the time series extraction process. Time series from key nodes of the

striatum-CON and FPN were extracted to estimate the hidden network dynamics under
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varied workloads. (B) The schematic diagram for HMM estimation. (C) The probability of
each decoded state as a function of each time point during the entire task. The Viterbi path
395  depicts the most likely sequence of hidden states. (D) The frequency of each hidden state
under each workload. (E) The spatial pattern of the top four states with the highest frequency
throughout the task. The value of each area represents the relative activity magnitude,
referring to the mean value. (F) Regression plots between state frequency and behavioral

indexes. Shading represents 95% Cl. Each dot represents one subject’s score on the first test.
400

To understand the temporal dynamics of the above two dominant states, we computed two
metrics to quantify temporal flexibility and stability during WM processing (Figure 5A;
Methods). Temporal stability assesses the similarity of a given state’s occurrence between
different blocks in each WM 2-back condition. This metric reflects how stable the same state
405  is engaged in different blocks, as it may fluctuate among blocks during the task. Temporal
flexibility summarizes the variances of a given state’s probability over time within each block
of WM condition, depicting how this state flexibly responds to target and non-target stimuli
during WM processing. Correlation analyses further revealed that temporal flexibility of State
2 during WM 2-back was positively correlated with children’s growth mindset (r = 0.191, p =
410  0.006), as well as WM performance characterized by d' (r = 0.253, p < 0.001) and latent drift
rate (r = 0.218, p = 0.001). Likewise, the temporal stability of State 3 across blocks during
the WM 2-back condition was positively correlated with children’s growth mindset (r = 0.161,
p = 0.040), aswell as WM d-prime (r = 0.306, p < 0.001) and drift rate (r = 0.283, p < 0.001).
Notably, these positive correlations are exclusive to States 2 and 3. Further mediation
415 analyses revealed that the beneficial effects of children’s growth mindset on drift rate at the

first visit could be separately accounted for by temporal flexibility of State 2 (indirect Est. =
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0.037, 95% CI =[0.012, 0.076]; Figure 5C) and stahility of State3 (indirect Est. = 0.042, 95%

Cl =[0.016, 0.086]; Figure 5D).

420  Given the above observations on prominent correlations among children’s growth mindset,
task-invoked activity, latent dynamic states in cortico-striatal networks, and WM performance,
we further tested the potential mediatory pathways among these variables using the SEM
approach. This analysis revealed the significance of a chain mediation model showing that
children’s growth mindset could account for a higher drift rate under the WM 2-back

425 condition, through task-invoked regional activity of striatum-CON systems and the temporal
flexibility of cortico-striatal network dynamics reflecting a high-task demand state (i.e., State
2) (indirect Est. = 0.018, 95% CI = [0.006, 0.040]). This model could readily explain the
benefit of a growth mindset on longitudinal improvement in drift rate at Year 2 and Year 3
(indirect Est. = 0.013, 95% CI = [0.001, 0.041]). Together, multiple results from our analyses

430  indicate that task-invoked regional activity and nuanced cortico-striatal network dynamics,
with flexibility and stability, work in concert to account for the benefits of children’s growth

mindset on latent evidence accumulation during information updating in WM.
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Figure 5. State flexibility and stability of cortico-striatal network dynamics account for the
435  benefits of growth mindset on both cross-sectional and longitudinal WM improvement. (A)
An overview of the framework for computing temporal flexibility and stability at trial-, block-
and task-levels, respectively. Corresponding formulas are provided to compute temporal
flexibility and stability metrics. Blue and green lines represent the probability of States 2 and

3 throughout the entire WM task; Green lines: State 3 probability throughout the WM task. (B)
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440  Regression plots between behavioral performances and state temporal dynamics. Shading
represents 95% CI. Each dot represents one subject’s score on the Year-1 test. (C, D)
Mediation models of Sate 2 flexibility and State 3 stability under the promotive effect of
growth mindset on 2-back WM drift rate at the Year-1 test. (E) Chain mediation models with

striatum-CON coactivation and State 2 flexibility as sequential mediators.
445
Discussion (1655)

By integrating pediatric neuroimaging, computational modeling, and brain network dynamics
with longitudinal behavioral tragjectories, we investigated the neurocognitive mechanisms
underlying growth mindset-fostered WM development in youths. Behaviorally, children with
450  higher growth mindset exhibited both cross-sectional and longitudinal improvements in WM
performance over three years, along with faster evidence accumulation during moment-to-
moment information updating, with the most prominent effect in high task-demand condition.
Neurally, growth mindset was associated with greater activation of the dorsal striatum,
cingulo-opercular (core part of action-mode network), and fronto-parietal networks during
455 WM, which accounted for developmental improvement in WM performance and latent
evidence accumulation. Such activation effects are linked to motivation and cognitive control,
and covary with dopaminergic mediators. Further network dynamic modeling reveaed that
growth mindset optimizes cortico-striatal network dynamics during high task demands, with
higher flexibility of an activated state to support trial-by-trial information updating and more
460  oability of a deactivated state across blocks to maintain task goals. Such spatiotemporal
features may reflect a balanced and efficient allocation of neurocognitive resources to support
changing demands. Our findings underline a neurocognitive framework in which growth
mindset enhances latent dynamic computations and effective processing via nuanced

orchestration of cortico-striatal networks and fosters far-reaching cognitive development.
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465
Behavioral and computational processes of growth mindset-fostered WM development

Behaviorally, we observed the benefits of a growth mindset on cross-sectional and
longitudinal improvement in WM performance — that is, better accuracy and faster RTs —
from middle-to-late childhood into adolescence, with the most prominent effect in the 2-back
470  condition. Our cross-sectional results are in line with previous findings regarding growth
mindset benefits on math learning and cognitive control abilities, due to the optimization of
cognitive processes(1, 14). Critically, our observed longitudinal effect was consistent across
different age groups at baseline (Year-1) and remained robustly evident spanning over three
years in Years-2 and 3. Such longitudinal results extend findings from previous cross-
475  sectional studies focusing on growth mindset-fostered effects on behaviord performancein a
variety of cognitive tasks, (3, 13, 20, 25). Our cross-sectional and longitudinal findings
concur with key predictions from influential theories of growth mindset pertaining to

motivation-cognition interactions.

Importantly, our observed growth mindset-fostered improvements are attributed to

480  faster speed of evidence accumulation (i.e., drift rate) rather than other latent processes such
as decision threshold during information updating, especialy under the 2-back condition.

Based on the HDDM's theoretical framework(26-28), this finding suggests an enhancement

in the efficient processing of latent dynamic computations involved in WM. When
performing the 2-back task, one must constantly update and maintain the most recent 2 items

485  inmind and accumulate sufficient evidence extracted from rapidly presented stimuli to ensure
a correct decision whether the current item is a target or not(28, 51). In principle, children

with growth mindset exhibit core cognitive features centered on malleability beliefs and
adaptive processing driven by internal-controllable attributions(10, 20, 52, 53). Such traits

reflect a dynamic cognitive schema prioritizing task goals and optimizing cognitive-
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490  motivational outcomes(11, 52, 54). This can enhance efficient extraction and accumulation of
target-relevant information (evidence) while suppressing irrelevant ones to reach a decision,
thereby improving the speed of evidence accumulation. While modulations on lower-level
perceptual processes may also occur, our observed benefits are primarily linked to higher-
order evidence accumulation of dynamic computations that facilitate efficient processing.

495  Thus, our findings provide novel insights into the computational mechanism of growth

mindset-fostered developmental improvementsin WM performance.

Growth mindset fosters WM development through the motivation-cognition dual

systems

500  On the neura level, growth mindset was associated with higher WM-related activation in
cortico-striatal networks, including the dorsal striatum, cingulo-opercular, and fronto-parietal
systems that covary with dopaminergic modulators. These results are compatible with
previous findings on growth mindset-related brain systems localized in the ACC, anterior
insula(11, 13) , and striatum(6, 31). This further supports our hypothesis that growth mindset

505  optimizes WM processing by greater engagement of prefrontal-parietal and motivation-
related striatal systems(36, 55). Indeed, results from our meta-analytic decoding affirm that
the coactivation map (including CON regions) of our observed dorsal striatum is associated
with both cognitive and motivational processes, supporting the dual system model of
motivation-cognition interplay(41, 56, 57). Growth mindset-related brain map showed a

510  stronger correlation with attention, WM, and mental computations (i.e., arithmetic,
calculation, subtraction), which echoes motivational modulations of growth mindset on
attentional control and goal-directed processes(3, 11, 13). Thus, it is well possible that our
observed greater engagement in cortico-striatal systems reflects growth mindset-fostered

motivation-cognition interplay. The involvement of motivation-cognition dual systems is aso
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515  supported by results from our meta-neurotransmitter association analysis. That is, gowth
mindset-induced greater activation in cortico-striatal systems covariates with a set of
dopaminergic projections and related mediators. The dopaminergic modulations are crucial
for goal-directed behaviors via enhancing engagement of cortico-striatal systems, along with
motivated efforts and intrinsic evaluation of input information(58, 59). Other

520  neurotransmitters and receptors are aso linked to growth mindset-related activation map in
our study, including GABA, glutamate, serotonin, and norepinephrine. The balance between
glutamate and GABA plays acritical role in excitatory and inhibitory dopaminergic signaling
in cortical regions, and modulators like serotonin and norepinephrine facilitate regulating

cognitive flexibility(44, 60, 61).

525 According to the Self-Determination Theory and neurocognitive models(18, 19, 23,
24), our observed greater activation in the dorsal striatum and core nodes of the CON (ACC
and anterior insular) may reflect an increase in children's motivated efforts and internal-
controllable values to perform the ongoing WM task, resulting in greater engagement of
WM-related prefrontal-parietal systems(35, 36, 41). Moreover, growth mindset-related

530  cortico-striatal coactivation, especialy the striatum-CON, positively correlated with both
WM d-prime and drift rate even after two years, connecting these neural correlates with
longitudinal outcomes in WM performance. Compared to FPN, enhanced engagement of
CON and dorsal striatum may serve to initiate and maintain a high-arousal “action mode” of
the brain that enables fast updating and flexible reaction to external demands, leading to more

535  efficient information processing(45). In line with our findings, greater coactivation of the
striatum and CON may lead to more rapid updating of information in the face of challenges
and facilitate adaptive behavior(62, 63). Similar neural patterns have also been seen in the
process of intrinsic motivation facilitating high performance in WM tasks(64, 65), supporting

our hypothesis that growth mindset enhances motivation and leads to higher cognitive efforts

28


https://doi.org/10.1101/2022.07.11.499525
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.11.499525; this version posted June 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

540  in demanding tasks. Such motivation-cognition dual systems can even predict longitudinal

WM outcomes over development from middle childhood to adolescence.

Growth mindset fosters WM development via optimizing the dynamic orchestration of

cortico-striatal networ ks

545  In conjunction with cortico-striatal coactivation, growth mindset optimizes the occupancy
and transient transitions among eight latent brain states involved in three WM-load conditions.
Critically, we identified two brain states with opposite spatiotemporal (re)configuration
patterns, characterized by an overall activation (S2) and a deactivation (S3) among core
regions of cortico-striatal networks during WM. The S2 occurs more frequently during high

550  task demand (i.e., 2-back), with higher engagement of the dorsal striatum, CON, and FPN
regions. As discussed above, higher engagement of these regions assists with motivation-
cognition interaction and allows for monitoring and updating of goal-related stimuli(35, 36,
41). These regions are also linked to cognitive control over information updating, supporting
stimulus-triggered transient responses while maintaining relevant information(59, 66). This

555  interpretion is further supported by its positive correlation with faster evidence accumulation.
In contrast, the S3 showed higher frequency in low task demands, during which cortico-
striatal regions were deactivated in order to reserve cognitive resources(39, 67). Moreover,
the frequency of S2 and S3 was positively linked to both growth mindset and WM

performance, indicating their crucial roles in growth mindset-fostered WM processing.

560 Beyond state frequency, our observed associations and mediation pathways among
growth mindset and spatiotemporal features of S2 and S3 further underline an intricate
interplay of motivational, executive, and action-mode systems anchored onto large-scale

cortico-striatal networks. Specifically, the promotive effect of growth mindset on drift rate
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was mediated by the temporal stability of S3 across blocks under the same goal at baseline, as
565  well as the flexibility of S2 in response to moment-to-moment information updating specific
to the 2-back condition, both cross-sectionally and longitudinally. According to brain network
dynamics equited for flexible adaptability to changing demands(50, 68-71), our observed
high flexibility on a trial-by-trial level most likely reflects more efficient updating and
monitoring of perceptua inputs during S2, while the stable S3 is responsible to maintain
570  given task goals and guarantee a stable supply of cognitive resources across blocks of the
same task. By integrating temporal flexibility and stability of these states, such features
enable a balanced organization of cortico-striatal networks to facilitate flexible alocation of
mental resources in response to moment-by-moment information updating, while maintaining
the task goal constantly for optimal outcomes. Indeed, our chain mediation results further
575  support the intricate interplay of multiple networks pertaining to the above interpretation:
greater task-invoked activity in striatum-CON systems that work in concert with transient
state (S2) flexibility rather than deactivated state (S3) stability during WM accounted for
growth mindset-fostered developmental improvements in drift rate over three years. Taken
together, results from (co)activation, meta-analytic decoding, and network dynamic modeling
580  converge that growth mindset fosters WM development through the intricate interplay of
motivational, executive, and action-mode networks that alow for optimizing flexible

allocation of neurocognitive resources in response to changing task demands.

Several limitations should be noted when interpreting our findings. First, though we
585  recruited children from typical schools, many other variables such as motivation, intelligence,
and general cognitive capabilities, should be taken into account in future studies. Second, we
have identified brain systems and networks involved in WM linking to growth mindset, but

more sophisticated designs with continuous neuroimaging measures and multiple task
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domains are required to address how growth mindset affects children’s brain, cognitive
affective development more broadly. Third, future studies with innovative imaging
techniqgues measuring neural and metabolic activities are required to address the

neuromodulatory mechanisms underlying growth mindset-fostered cognitive development.

In conclusion, our study demonstrates the pivotal role of nuanced cortico-striatal network
dynamics with distinct state flexibility and stability in mediating growth mindset-fostered
improvements in WM over development in youths. Endorsing a growth mindset appears to
optimize the intricate interplay of motivational, executive, and action-mode networks that
promote latent dynamic computations and cognitive outcomes. Our findings suggest a
neurocognitive account for how growth mindset fosters cognitive development via cortical-

striatal networks, which informs interventions for promoting learning programs in education.
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M ethods and materials
885  Participants

A total of 748 measurements in 454 school-aged children (ranging from 8 to 15 years old)
were included in this study, which was derived from the Children School functions and Brain
Development Project (CBD, Beijing Cohort). At their first visit, 375 children (mean age £ SD
= 9.833+1.039) underwent fMRI scanning while they were performing the N-back task and
890  completed the growth mindset assessment. The average interval between MRI scan and
growth mindset assessment was around two months (63 + 59 days). Children with excessive
head motions (more than 1/3 frames with standardized DVARS >1.5 or frame displacement >
0.5) or incomplete scanning were excluded from further analyses (Figure S1). A final sample

of 306 children was included in the brain imaging analysis.

895  In the follow-up test, a subsample of 229 and 144 children were invited back to perform the
WM n-back task in the second and third year, respectively (Figure 1A and 1D). To
investigate the neural substrates underlying the longitudinal effect of growth mindset on WM
development, only children who had high-quality fMRI data at their first visit, along with
completed follow-up WM tests, were considered. If children were retested in both the second

900 and third years, the latter observation was selected to represent the longitudina WM
performance with alonger time lag, which resulted in 153 children for the longitudinal subset.
Demographic information is summarized in Table S1. The written informed consent form
was obtained from each child participant and their caregivers or legal guardians. The study
procedures were approved by local ethics following the standards of the Declaration of

905  Helsinki. Participants had no obstacle in vision and reported no history of neurological or

psychiatric disorders and no current use of any medication or recreational drugs.
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Growth mindset assessment

The Growth Mindset Scale (GMS) (adapted from 15) consists of 20 items (e.g., No matter
910 who you are, you aways can change your intelligence a lot), with 14 items about the
individuals' theory of ability and 6 items about the individuals' theory of personality (Chinese
version used in 5, 72). Participants were asked to rate their agreement with each statement
using a 4-point Likert-type scale (0 = Strongly Disagree, 1 = Disagree, 2 = Agree, 3 =
Strongly Agree). Children aged 9 years old and above completed the questionnaire
915  independently, and children under 9 completed the questionnaire with their parental or
assessor’s assistance. The final scores range from O to 60, with higher scores representing a

higher growth mindset level.

N-back WM task

920 A classic numerical N-back task was used to assess participants WM performance (Figure
1B). This task consisted of three conditions with three different workloads (i.e., 0-back, 1-
back, and 2-back), and each condition consisted of 4 blocks. In each block, participants first
viewed a 2-second cue that indicated the workload of this block (i.e., O-back, 1-back, and 2-
back), followed by a sequence of 15 pseudorandom digits in which each digit was presented

925  for 400 milliseconds. In the O-back condition, participants were instructed to judge whether
the current item on the screen was “1” or not by a button press. In the 1-back condition,
participants were asked to judge whether the current item was just the same as the previous
one. In the 2-back condition, participants needed to judge whether the current item was the
same as the one a two positions back. Stimuli were presented via E-Prime 2.0

930  (http://www.pstnet.com; Psychology Software Tools, Inc., Pittsburgh, PA). Both participants’
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response and reaction times (RTs) were recorded. We computed participants’ behavioral

performance based on their responses.

Behavioral performance

The behavioral performance was assessed by the discrimination ability of d-prime (d') based
on the signal detection theory (73). All trials for each participant were assigned into the
following categories: (1) hits, responses to targets; (2) misses, no response to targets; (3) false
alarms, responses to non-targets; (4) correct rejections, no response to non-targets. The hit
rate and false alarm rate were defined as follows:

hREEERA
hRRREER +

h2EEA =

+

The aforementioned hit rate and false alarm rate were Z transformed with inversed

cumulative Gaussian distribution to calculate d” (Finc et al., 2020):

= (h ) — PE(PREERAERARE ARRAERRARME)
To get finite d’ values in case either the hit rate or false alarm rate was equal to O or 1,
modified values 0.01 or 0.99 were used instead. This d’ measurement was used to assess

participants WM performance together with RT in all analyses.

Behavioral statistical analysis

Behavioral measurements were analyzed with R (version 4.0.2, https.//www.r-project.org,

Platform: x86_64-apple-darwinl7.0 (64-bit)). We used the mixed-effect model to evaluate the
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effect of growth mindset across three years using the Ime4 package in R (74). The mixed-
950  effect model alows us to test the fixed effects (group-level effect across longitudinal repeats
or years in the current study) while controlling for random effects that vary across
participants. We first compared models with age and gender as predictors to validate the
developmental trgjectory of each behaviora measurement. We then constructed a null model
with only a fixed intercept and a random intercept to account for the repeated measurements.
955  We further compared the null model with a gender model, a linear age effect model, and a
quadratic age effect model. After determining the developmental trajectory for each
behavioral measurement, we tested the effects of growth mindset on behavioral performance
over age and gender. Models were fitted with the maximum likelihood (ML) estimation
method. Model comparison was based on both Akaike Information Criterion (AIC) and

960  Bayesian information criterion (BIC).

Mediation analysis

Before mediation analysis, we calculated the correlation coefficients of each ROI activation
with mindset levels, WM performances, and HDDM parameters. After correcting for multiple
965  comparisons using FDR, networks with at least one region related to mindset and behavioral
outcomes were sent for further mediation analysis. We conducted and statistically tested all
mediation effects using Mplus 8.3 (75). Firstly, the structural equation models were
constructed to examine whether the overall FPN and striatum-CON coactivation mediated the
influence of growth mindset on current and future working memory performance separately.
970  Based on the results from connectivity analysis, we constructed specific models to investigate
how growth mindset influences current and future latent decision-making processes (drift rate)
through cortico-striatal interaction and regional response in the insula. Because the effect of

age and gender had already been controlled in each analysis of activation and connectivity,
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these two covariates were included in the equation of behavioral outcomes. The fitness of
975  each model was assessed using a2 test, which showed no significance. In addition, the Root
Mean Square Error of Approximation (RMSEA) was found to be below 0.08, the
Standardized Root Mean Square Residual (SRMR) had an outcome value of less than 0.08,
and the Comparative Fit Index (CH) was above 0.90. For all models, a number of 5000
draws were done for bootstrap, and 95% confidence intervals were estimated. If the

980  confidence interval did not include zero, the effect was considered significant.

HDDM for N-back task

The DDM describes decison-making as an evidence-accumulation process in which
individuals continually accumulate effective evidence from the environment until they reach
985  aninternal threshold to make a final decision. Based on trail-by-trail RTs and accuracies, the
DDM decomposes participants’ decision-making performances into latent processes, which
were indicated by three free parameters. drift rate (v), decision threshold (a), and non-
decision time (t) (76). It is widely utilized in two-choice decision tasks but is also extendedly
implemented for one-choice tasks such as Go/no-Go tasks (27, 77) and N-back tasks (30). In
990  such paradigms, only trail-by-trail RTs for hits and false alarms were fitted for the DDM,
while RTs of misses and correct regjections cannot be measured. For the current N-back task,
the latent process is represented by participants accumul ating evidence during a series of digit
stimulus presentations to decide whether the current digit is the same as the digits that appear
one or two points before in the sequence and then make the corresponding response. We
995  estimated the DDM parameters by HDDM because it is more applicable to the case of
relatively few trials and is able to estimate both group-level and individual-level parameters
by drawing individual parameters from the group distribution. In this way, we can obtain

group- and individual-level parameters for three workloads at three time points under the
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current paradigm. Note that models were estimated using all data with test timepoint and

1000  workloads were set as factors.

To exclude the effect of different incorporated parameters on the results, we fitted seven
models with the same data, including models of a, v, t, av, at, vt, avt. For each model, Markov
chain Monte Carlo (MCMC) sampling method was applied to generate 20,000 samples and
discard the initial 2,000 samples as burn-in for performing Bayesian inference. We then
1005  compared the models based on the deviance information criterion (DIC) (78). The model with
the lowest DIC value was considered to have the best fit. Gelman-Rubin statistics were
further employed to assess the convergence of the model. The r-hat values for each parameter
were close to 1.0 and less than 1.1, indicating good convergence (76). Finally, the three
individual-level parameters of the best-fit model (avt) were submitted to subsequent analyses

1010  (Figure S5 & Table S2).

Image data acquisition

Data were acquired using the same type of 3.0T scanner (Magnetom Prisma syngo MR D13D,
Erlangen, Germany) with a 64-channel head coil from two sites. High-resolution anatomical
1015  images were acquired by a three-dimensional sagittal T1-weighted magnetization-prepared
rapid gradient echo (MPRAGE) sequence (TR = 2530 ms, TE = 2.98 ms, Tl = 1100ms, flip
angle = 7°, voxel size 0.5 x 0.5 x 1.0 mm3, matrix size = 256 x 224, FOV = 256 x 224 mm2,
brand width = 240 Hz/Px, 192 slices with 1 mm thickness). Functional images with 33 axial
glices (3.5 mm thick, 0.7 mm skip) paralel to the anterior and posterior commissural line
1020  (AC-PC) were acquired using a T2*-sensitive echo-planar imaging (EPI) sequence (TR =

2000ms, TE = 30ms, flip angle = 90°, voxel size = 3.5 x 3.5 x 3.5 mm3, FOV = 224 x 224
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mm2). The whole n-back WM task consisted of 232 volumes and lasted for 464s. Two

different sites were included as a nuisance for fMRI data analyses.

1025  Image data preprocessing

Brain images were preprocessed with the fMRIPrep 1.4.1 (79) pipeline implemented in
Nipype 1.2.0 (80). The first 4 volumes of n-back task were discarded for signal stability and
adaptation of participants. For each participant, the following preprocessing procedures were
conducted. First, each T1w volume was skull-stripped and a BOLD reference was estimated.
1030  Slice time correction was then performed and all slices were realigned in time to the middle
of each TR using 3dTshift from AFNI. Motion correction was done using mcflirt (FSL) and 6
head-motion parameters (three rotations, three translations) were estimated. The EPI data was
corrected for susceptibility distortions based on a field map and co-registered to the
anatomical reference using boundary-based registration with nine degrees of freedom. Finally,
1035  these preprocessed BOLD functional images in the origina space were resampled into the
well-known ‘MNI152NLin6Asym’ space. Head-motion transformation, susceptibility
distortion correction, BOLD-to-T1w transformation and T1w-to-template (MNI) warp were
concatenated and applied in a single step using antsApplyTransforms (ANTS) using Lanczos

interpolation.

1040  ICA-based Automatic Removal of Motion Artifacts (ICA-AROMA) was used to
automatically remove motion artifacts non-aggressively after removal of non-steady volumes
and spatial smoothing with an isotropic, Gaussian kernel of 6 mm full-width half-maximum
(FWHM). Physiological noise regressors were extracted applying CompCor and two
CompCor variants were estimated: temporal (tCompCor) and anatomical (aCompCor).

1045  Framewise displacement (FD) and DVARS were calculated using Nipype. In addition to 6
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head-motion parameters and global signals, their temporal derivatives and quadratic terms
were also estimated. Outliers were defined as frames that exceeded athreshold of 0.5 mm FD
and 1.5 standardized DVARS and were annotated. All these parameters were taken as
aggressive noise regressors and were placed in the corresponding confounds file. For credible
1050  results, individuals with more than 1/3 frames as outliers were excluded for further analyses

(n=22).

General linear mode (GLM) analysis

To identify WM-related brain systems and their relations to growth mindset, we constructed
1055 GLMs on both individual and group levels using SPM12

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). To assess task-invoked neural response

to different workloads including 0-, 1-, and 2-back conditions were modeled as separate
boxcar regressors and convolved with the canonical hemodynamic response function (HRF)
built in SPM12. To regress out effects related to noise, signals within cerebrospinal fluid and
1060  white matter from each participant were included as a nuisance in the model (Parkes et al.,
2018). A high-pass filter of 1/128Hz was applied and temporal autocorrelations in fMRI were

corrected using a first-order autoregressive model (AR(1)).

Relevant contrast parameter estimate images were initially generated at the individual-subject
level, and then submitted to group-level analyses by treating participants as a random variable.
1065  Contrast images of 2-back > 0-back, 2-back > 1-back, and 1-back > 0-back were submitted to
separate multiple regression analyses with children’s growth mindset as a covariate of interest,
gender and age as nuisances. Coefficients of the multiple regression maps were tested using
one-sample t-test. Significant clusters were determined at a voxel-level false discovery rate

(FDR) correction (pFDR < 0.05) on the whole brain. For visualization of results, significant

51


https://doi.org/10.1101/2022.07.11.499525
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.11.499525; this version posted June 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1070  clusters were displayed using Surf Ice (https:.//www.nitrc.org/projects/surfice/) and

MRIcroGL (https://www.nitrc.org/projects/mricrogl/).

M eta-analytic coactivation and decoding

The meta-analytic coactivation map is a kind of meta-analog of functional connectivity map
1075  and is generated by the Neurosynth platform (http://neurosynth.org) based on the coordinates
of seed regions. Our analysis is seeded in a 6-mm sphere centered on the coordinates of peak
activity in the bilateral caudate nucleus identified by the multiple regression analysis for
WM -related brain activity (2- versus 0-back contrast) with the growth mindset as a covariate
of interest. The map reflects coactivation of brain regions across studies in the Neurosynth
1080  database and voxels with high Z values in the map are likely to be activated in similar studies
as the seed voxels. The final coactivation mask only included clusters with more than 10
voxels satisfied Z > 3 (p < 0.001) in coactivation maps of both the left and right caudate
nuclei. Subsequently, we overlapped the coactivation mask with the multiple regression
results of growth mindset for comparison and visualization purposes. Mask of multiple
1085  comparisons only included continuous clusters with more than 10 voxels passed the threshold

of p < 0.05 corrected for multiple comparisons using FDR in the 2-back > 0-back contrast.

We then uploaded these two masks to the Image Decoder based on the Neurosynth database
to identify the most related terms of brain response. The top 10 functional terms whose neural
response showed the highest correlation with the current mask were presented. Because five
1090  terms were decoded in both masks, the final result presented 15 terms in total. Note that the
redundant or anatomical terms were not included (e.g., “working memory” was presented,

and “working” or “caudate”’ were removed).
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Neurotransmitter Analysis

1095 To investigate the neurochemical characteristics of the identified growth mindset, we
calculated its spatial similarity with a series of PET tracer neurotransmitter
receptor/transporter maps (81). This PET tracer dataset is independent of this study and
includes mean neurochemical binding maps from 36 studies with over 1200 healthy
individuals. These studies provide independent maps for 19 receptors and transporters across

1100  nine neurotransmitter systems, including cannabinoids, dopamine, norepinephrine,
acetylcholine, serotonin, GABA, histamine, glutamate, and opioids, which were then

resampled to standard space for assessing spatial similarity.

We first ran 100 times bootstrapping of the multiple regression described above. In each
bootstrapping iteration, participants’ 2-back > 0-back contrast map was resampled and then
1105 used to create a growth mindset map through multiple regression. After resampling the
neurotransmitter system into imaging space, we calculated the voxel-by-voxel Pearson
correlation between the bootstrapped growth mindset map and each neurotransmitter
receptor/transporter map to estimate their spatial similarity. For al bootstrap samples, we
computed the mean spatial correlations and the corresponding estimated standard error (the
1110  standard deviation), which were both presented in the Figure 2c radar plot. We only
interpreted neurochemical similarities found in neurotransmitters validated across studies,
meaning those with 95% confidence intervals above zero in individual PET studies. The

bootstrapping method and replications across studies ensured the validation of our findings.

1115  Regionsof interest (ROIs) analysis

ROIs of three functional brain networks were generated from meta-analysis images using the

Neurosynth database. We searched for the meta-analysis maps related to terms “working
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memory” and “default mode”, and converted the maps to masks only including clusters with
more than 10 voxels satisfied Z > 3 (p < 0.001). The whole-brain result and meta-analysis

1120 results were also overlapped for comparison and visualization.

Based on this criterion, we then picked the caudate nucleus for the striatum, anterior Insula
(alns), and dorsal anterior cingulate cortex (dACC) for the CON from the meta-analysis map
of the term “working memory”. These regions in the striatum-CON system were responsible
for motivational response during cognitive tasks as aforementioned. For the FPN, dorsal
1125 lateral prefrontal cortex (dIPFC), frontal eye field (FEF), and inferior parietal sulcus (IPS)
were selected from the same map. Likewise, clusters of angular gyrus (AG), posterior
cingulate cortex (PCC), and ventral medial prefrontal cortex (vmPFC) were selected from the
meta-analysis map of the term “default mode’. Besides, the bilateral
hippocampus/parahippocampus (HCP/PHC) was aso included based on the result of whole-
1130  brain multiple regression. Finally, ROIs generated from the original meta-analysis maps
include: caudate for striatum; alns and dACC for CON; dIPFC, FEF, and IPS for FPN;
vmPFC, AG, PCC, and HCP/PHC for DMN (Figure 3A & S6). Parameter estimates from
each ROI, and each participant was extracted from the individual-level contrast of 2-back
with the 0-back condition using the MarsBaR (http://marsbar.sourceforge.net/) to characterize

1135  activation during the task in each ROI.

Hidden Markov Model (HMM)

We implemented the HMM to model the spatiotemporal brain dynamics within the
mesolimbic and frontoparietal systems with which children meet the changing requirements
1140  and demands during the WM task. The HMM captured a set of distinct brain states from the

multidimensional input signals extracted from 11 ROIs within striatum-CON and FPN. These

54


https://doi.org/10.1101/2022.07.11.499525
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.11.499525; this version posted June 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

brain states were determined using Gaussian distribution, taking into account the mean of
each dimension and covariance among dimensions. The HMM-MAR toolbox
(https://github.com/OHBA-analysissHMM-MAR) was utilized to estimate the changing brain
1145  configurations underlying the data. To decide on the final number of states, we compared the
models of 6, 8, 10, and 12 states and selected the model whose output best aligned with our
predefined workload changes. Through model comparison, we confirmed that the temporal
features of 8-state outputs are sufficient to cover the neural dynamics of three workloads,
while the others with higher than 8 states have inefficient states that were rarely active
1150  throughout the whole task. After deciding the final number of states, the Viterbi algorithm
was used to obtain the maximum a posteriori probability path. As shown in Figure 4, the
final temporospatial outputs included the decoded mostly likely sequence of hidden states,
the frequency of occurrence for each state under each condition, the transition metrics among
the 8 states, and the spatial features of each state within the predefined brain system. The
1155  temporospatial features were then correlated with behavioral indices to select our interested
states for further analysis, and the occurrence probability was used to calculate the temporal

stability and flexibility of each state sequence.
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