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Abstract9

Humans successfully explore their environment to find ‘extrinsic’ rewards, even when ex-10

ploration requires several intermediate reward-free decisions. It has been hypothesized that11

‘intrinsic’ rewards such as novelty guide this reward-free exploration. However, different in-12

trinsic rewards lead to different exploration strategies, some prone to suboptimal attraction to13

irrelevant stochastic stimuli, sometimes called the ‘noisy TV problem.’ Here, we ask whether14

humans show a similar attraction to reward-free stochasticity and, if so, which type of intrin-15

sic reward guides their exploration. We design a multi-step decision-making paradigm where16

human participants search for rewarding states in an environment with a highly stochastic17

but reward-free sub-region. We show that (i) participants persistently explore the stochastic18

sub-region and (ii) their decisions are best explained by algorithms driven by novelty but not19

by ‘optimal’ algorithms driven by information gain. Our results suggest that humans use20

suboptimal but computationally cheap strategies for exploration in complex environments.21
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Introduction22

Humans frequently search for more valuable rewards (e.g., more nutritious foods or better-paid23

jobs) than those currently available1–3. However, the computational and algorithmic nature of24

this exploratory behavior has remained highly debated4–6. State-of-the-art models of human ex-25

ploration use Intrinsically Motivated Reinforcement Learning (RL) algorithms7–10 that, initially26

inspired by research in psychology11,12, have been designed to solve complex machine learning tasks27

with sparse ‘extrinsic’ rewards13–19. These algorithms use internally generated signals like ‘nov-28

elty,’ ‘surprise,’ or ‘information gain’ as ‘intrinsic’ rewards to guide exploratory action choices11.29

However, different intrinsic rewards result in different exploration strategies20,21. An unresolved30

yet crucial puzzle in neuroscience and psychology is identifying the type of intrinsic reward that31

drives exploration in humans9,10.32

Resolving this puzzle primarily requires advances in experimental design. Specifically, experimental33

studies of human exploration have been mainly limited to simplistic experimental paradigms where34

a single action (or at most a pair of actions) is sufficient for reaching an extrinsic reward22–28 or35

information29–33. These tasks are principally different from exploration in the real world where36

reaching a ‘goal’ requires several intermediate actions with no explicit progress feedback9. This has37

recently led to major concerns about the reliability and relevance of these tasks for characterizing38

human exploratory behavior34–36. Studying exploration in multi-step tasks37,38 is hence pivotal for39

understanding and modeling human exploration9,39,40.40

Compared to traditional experimental paradigms with homogeneously distributed stochasticity41,42,41

multi-step environments with a localized stochastic component have an important advantage since42

they enable the dissociation of exploration strategies based on different intrinsic rewards. Machine43

learning research has shown that intrinsically motivated RL agents are prone to distraction by44

stochasticity, i.e., they are attracted to novel, surprising, or just noisy states independently of45

whether or not these states are rewarding43 (the so-called ‘noisy TV’ problem20,21). However, the46

extent of this distraction varies between algorithms and depends on the type of intrinsic reward44–48.47

Artificial RL agents seeking information gain eventually lose their interest in stochasticity when48

exploration yields no further information20,21; in contrast, RL agents seeking surprise or novelty49

exhibit a persistent attraction by stochasticity20,21.50

Here, we ask (i) whether humans are distracted in the same situations as intrinsically motivated51

RL agents and, if so, (ii) whether this distraction vanishes (similar to seeking information gain) or52

persists (similar to seeking surprise or novelty) over time.53

Results54

We designed an experimental paradigm that dissociates different exploration strategies in an en-55

vironment with 58 states plus three goal states (Fig. 1A-B). Three actions were available in each56

non-goal state, and agents could move from one state to another by choosing these actions (arrows57

in Fig. 1A-B). We use the term ‘agents’ to refer to either human participants or agents simulated58

by RL algorithms. In the human experiments, states were represented by images on a computer59

screen and actions by three disks below each image (Fig. 1C); for RL agents, both states and60

actions were abstract entities (i.e., we considered RL in a tabular setting49). The assignment of61

images to states and disks to actions was random but fixed throughout the experiment (Fig. 1C2).62

Agents were informed that there were three different goal states in the environment (G∗, G1, or63
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Figure 1: Experimental paradigm. A. Structure of the environment; only 5 out of the 50 stochastic states are
shown (dashed oval; see B). Each circle represents a state and each solid arrow an action. All actions except those to
the stochastic part or to the goal states are deterministic. Dashed arrows indicate random transitions; values (e.g.,
1− ε) show the probabilities of each transition. We chose ε ≪ 1 (see Methods). B. Zoom on stochastic transitions
between states S-1 to S-50 inside the dashed oval. B1. In state 4, one action takes agents randomly (with uniform
distribution) to one of the stochastic states. B2. In each stochastic state (e.g., state S-1 in the figure), one action
(always the same) takes agents back to state 4 and two actions to another randomly chosen stochastic state. C.
Timeline of one episode in human experiments (C1). The states were represented by images on a computer screen
and actions by disks below each image. The assignment of images to states and disks to actions was random but
fixed throughout the experiment (C2). An episode ended when a goal image (i.e., ‘3 CHF’ image in this example)
was found. D. Human participants were informed that there were three goal states in the environment and that
these goal states had different monetary values of 2 Swiss Franc (CHF), 3 CHF, and 4 CHF. For each participant,
these monetary reward values were randomly assigned to different goal locations (i.e., G∗, G1, and G2 in A) at
the beginning of the experiment (without informing them); the assignment was fixed throughout the experiment.
Hence, G∗ had a different value for different participants, resulting in three groups of participants with different
levels of reward optimism during episodes 2-5 (i.e., after finding G∗ for the first time). See Methods.

G2 in Fig. 1A) and that their task was to find a goal state 5 times; see Methods for how this64

information was incorporated in the RL algorithms. Neither human participants nor RL agents65

were aware of the total number of states or the structure of the environment (i.e., how states were66

connected).67

The 58 states of the environment were classified into three groups: Progressing states (1 to 6 in68

Fig. 1A), trap states (7 and 8 in Fig. 1A), and stochastic states (S-1 to S-50 in Fig. 1B, shown69

as a dashed oval in Fig. 1A). In each progressing state, one action (‘progressing’ action) brought70

agents one step closer to the goals, while another (‘bad’ action) brought them to one of the trap71

states. The third action in states 1-3 and 5-6 was a ‘self-looping’ action that made agents stay in72

the same state. Except for the progressing action in state 6, all these actions were deterministic,73

meaning that they always led to the same next state. The progressing action in state 6 was almost74

deterministic: It took participants to the ‘likely’ goal state G∗ with a probability of 1 − ε and75

to the ‘unlikely’ goal states G1 and G2 with equal probabilities of ε
2
≪ 1. In state 4, instead76

of a self-looping action, there was a ‘stochastic’ action that took agents to a randomly chosen77
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(with equal probability) stochastic state (Fig. 1B1). In each stochastic state, one fixed action78

(e.g., the left disk) reliably took agents back to state 4, and two stochastic actions took them to79

another randomly chosen stochastic state (Fig. 1B2). In each trap state, all three actions were80

deterministic: Two actions brought agents to either the same or the other trap state and one81

action to state 1.82

The stochastic part of the environment – which mimics the main features of a ‘noisy TV’43 – is the83

crucial difference to existing paradigms37,38,50,51. Without the stochastic part, all types of intrinsic84

reward would help agents avoid the trap states and find the goal37. Hence, intrinsic rewards would85

help exploration before and not harm exploitation after finding a goal. However, the stochastic86

part dissociates exploratory behaviors driven by different intrinsic rewards; we elaborate on these87

differences in later sections (see ref.20 and Supplementary Materials).88

Reward optimism as an incentive to explore89

We recruited 63 human participants and instructed them to perform our task for 5 episodes: Each90

episode started by initializing participants at state 1 or 2 and ended when they found any one of91

the 3 goal states (i.e., G∗, G1, and G2). However, we chose a small enough ε (Fig. 1A) to safely92

assume that all participants would visit only G∗ while being aware that G1 and G2 existed.93

To further motivate exploration, we informed human participants that there were three different94

possible reward states corresponding to values of 2 Swiss Franc (CHF), 3 CHF, and 4 CHF,95

represented by three different images (see Methods for details and incorporating this information96

in the RL algorithms). At the beginning of the experiment, we randomly assigned the three97

different reward values to the goal states G∗, G1, and G2, separately for each participant (without98

informing them), and kept the assignment fixed throughout the experiment (Fig. 1D). Following99

this random assignment, and after excluding 6 participants from further analyses (see Methods for100

criteria), G∗ held different reward values across participants: 21 of 57 participants were assigned101

to environments with 2 CHF reward value for G∗, 19 participants to environments with 3 CHF102

reward value for G∗, and 17 participants to environments with 4 CHF reward value for G∗. In the103

following, we refer to each group by their reward value of G∗, e.g., the 3 CHF group is the group104

of human participants who had a reward value of 3 CHF for G∗ (Fig. 1D).105

The resulting three groups of human participants were characterized by three different levels of106

‘reward optimism’ in episodes 2-5, where we define reward optimism as the expectancy of finding107

a goal of higher value than the one already discovered (Fig. 1D); we note that reward optimism in108

our experiment is closely linked to but independent of general optimism in psychology52. Hence,109

even though all participants had received the same instructions, the 4 CHF group did not have110

any monetary incentive to explore further in episodes 2-5, whereas the 2 CHF group had a high111

monetary incentive to explore and find a higher reward in episodes 2-5. Therefore, we expected112

participants in the 2 CHF group to continue searching for more valuable goals in episodes 2-5. In113

the next sections, we aim to identify the dominant drive of this search behavior.114

Human participants persistently explore the stochastic part115

We first studied the behavior of human participants without explicit computational modeling.116

During the 1st episode, all three groups of participants (i.e., 2 CHF, 3 CHF, and 4 CHF) had to117

explore the environment until they found the goal state G∗ for the first time. Hence, their ac-118
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Figure 2: Human participants persistently explore the stochastic part. A. Participants spent less
time in the trap states (one-sample t-test; t = −6.35; 95%CI = (−0.186,−0.097); DF = 56) and more time in the
stochastic part (t = 4.25; 95%CI = (0.073, 0.203); DF = 56) during the 2nd half of episode 1 than during the 1st
half. Error bars show the standard error of the mean (SEMean). B. Search duration in episodes 2-5. B1. Median
number of actions over episodes 2-5 for the three different groups: 2 CHF (dark), 3 CHF (medium), and 4 CHF
(light). Error bars show the standard error of the median (SEMed; evaluated by bootstrapping). The Pearson
correlation between the search duration and the goal value is negative (correlation test; t = −4.2; 95%Confidence
Interval (CI) = (−0.67,−0.27); Degree of Freedom (DF) = 55; Methods). B2. Average fraction of trials spent in
the stochastic part of the environment during episodes 2-5. The Pearson correlation between the fraction of trials
spent in the stochastic part and the goal value is negative (correlation test; t = −4.7; 95%CI = (−0.70,−0.32); DF
= 55; Methods). Error bars show the SEMean. C. Median number of actions in episodes 2-5 for the 2 CHF group.
A Bayes Factor (BF) of 1/3.7 in favor of the null hypothesis53 suggests a zero Pearson correlation between the search
duration and the episode number (one-sample t-test on individual correlations; t = 0.63; 95%CI = (−0.20, 0.37);
DF = 20). Error bars show the SEMed. D-F. Posterior Predictive Check (PPC): Simulating novelty-seeking RL
in our experimental paradigm successfully replicates the main qualitative patterns of the summary statistics of
the action choices of human participants (see Fig. 4C for the quantification over 44 summary statistics). Panels
D-F correspond to panels A-C, respectively, and illustrate the same summary statistics but for 1500 simulated
novelty-seeking agents. Single dots in all panels show the data of individual human participants (A-C) or a subset
(20 per group) of simulated participants (D-F). Red p-values in A-C: Significant effects with False Discovery Rate
controlled at 0.0554 (see Methods). Red BFs in A-C: Significant evidence in favor of the alternative hypothesis
(BF≥ 3). Blue BFs in A-C: Significant evidence in favor of the null hypothesis (BF≤ 1/3).
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tions were solely exploratory. Importantly, they received no intermediate reward or progress feed-119

back throughout this exploration. Nevertheless, the participants learned to avoid the trap states120

(Fig. 2A, left) and were attracted to exploring the stochastic part of the environment (Fig. 2A,121

right). This suggests that participants used a guided exploration strategy (as opposed to a random122

exploration strategy).123

After finding the goal G∗ for the 1st time (i.e., at the beginning of episode 2), each participant124

had effectively two options: (i) attempt to return to the discovered goal state G∗ (exploitation)125

or (ii) search for the other goal states G1 and G2 (exploration). We quantified the extent of126

the exploratory behavior during episodes 2-5 by the search duration (i.e., the number of actions127

taken before returning to the discovered goal state; Fig. 2B1) and the fraction of trials spent128

in the stochastic part (Fig. 2B2). Both of these quantities were negatively correlated with the129

reward value of G∗, e.g., the 2 CHF group had a longer search duration and spent more time in the130

stochastic part than the other two groups. Nevertheless, we still found a non-negligible exploration131

of the stochastic part by some participants in the 4 CHF group (Fig. 2B2, light blue), even though132

they had already found the goal state with the highest reward value. These observations (i) support133

the hypothesis that a higher degree of reward optimism leads to higher exploration in human134

participants and (ii) imply that human exploratory behavior is guided towards the stochastic part135

of the environment, even when there is no monetary incentive for exploration (see next section).136

The behavior of the 2 CHF group is particularly interesting since, by design, they were the most137

optimistic group about finding higher rewards. The 2 CHF group exhibited a constant search138

duration over episodes 2-5 (zero correlation between the search duration and episode index con-139

firmed by Bayesian hypothesis testing53; Fig. 2C). This implies that they persistently explored the140

stochastic part, even though it would have been theoretically possible to infer the structure of the141

environment and decrease exploration over time – as shown by ‘optimal’ agents seeking informa-142

tion gain (see ref.20 for a review and Supplementary Materials for simulations). Collectively, these143

results show that human exploration is not random but is also not theoretically optimal.144

Human participants successfully learned the environment’s structure145

Thus far, we have shown that human participants exhibited a persistent attraction to the stochastic146

part in episodes 2-5, which is theoretically suboptimal. However, an implicit premise of our147

conclusion is that participants had learned the environment’s structure well enough to know how148

to return to G∗ in episodes 2-5. To test this premise, we next analyzed whether participants could149

reconstruct the environment’s structure at the end of the experiment (Fig. 3). After finishing the150

experiment, participants were asked to reconstruct a map of the environment by connecting the151

images of different states (Fig. 3A; Methods). All three groups of participants achieved an above-152

chance reconstruction score (Fig. 3B; Methods), and a large majority of participants reconstructed153

the complete path from the trap states to state 6 (Fig. 3A). This implies that, by the end of the154

experiment, participants had built an explicit mental path for reaching the goal state G∗.155

The images presented to participants also included one of the stochastic states (S-44) and a new156

image (X) that did not belong to the 58 states of the environment. Almost one-third of the157

participants successfully reconstructed the link between state 4 and the stochastic state, while no158

participants reconstructed a link between state 4 and the new image X (Fig. 3A). Importantly,159

while reconstructing the link between states 4 and S-44 indicates that the participant had learned160

the transition from state 4 to some stochastic states, not reconstructing this link can be due161
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Figure 3: Human participants successfully reconstructed the environment’s underlying structure.
At the end of the experiment, participants were presented with images of progressing states (1-6), trap states (7-8),
one stochastic state (S-44), and a new image (X) that did not belong to the environment. The images were presented
at once and in a pseudo-random spatial arrangement. Participants were asked to draw the experienced transitions
between images (Methods). A. Average reconstruction of the environment’s structure. The reconstruction rate
beside each link denotes the fraction of participants who drew that link. We only visualized links with a reconstruc-
tion rate higher than 10%. Inset: Ground truth. B. Reconstruction scores quantify the accuracy of participants’
reconstruction and take values between -1 (reconstructing only non-existing links) and +1 (perfect reconstruction;
Methods). Random drawing yields on average a 0 reconstruction score (Chance). We observed a significantly
above-chance reconstruction rate for participants in 2 CHF (one-sample t-test; t = 18.5; 95%CI = (0.47, 0.59); DF
= 20), 3 CHF (t = 16.1; 95%CI = (0.42, 0.54); DF = 18), and 4 CHF groups (t = 10.5; 95%CI = (0.33, 0.50); DF
= 17). C-D. Participants who reconstructed the link between state 4 and the stochastic state S-44 had visited
S-44 significantly more often than those who did not (C; unequal variances t-test; t = 3.20; 95%CI = (2.4, 11.4);
DF = 20.9); they had also experienced the transitions between states 4 and S-44 almost significantly more than
those who did not (D; unequal variances t-test; t = 2.14; 95%CI = (0.01, 0.97); DF = 18.3). Red p-values in
B-D: Significant effects with False Discovery Rate controlled at 0.0554 (see Methods). Red BFs in B-D: Significant
evidence in favor of the alternative hypothesis (BF≥ 3). Error bars in B-C: SEMean. Single dots in B-D: Data of
individual participants (color-coded based on their reward group in C-D); for random drawing in B (Chance), we
showed only 40 out of 1000 samples.

to reasons other than lack of understanding of the environment’s structure. For example, some162

participants might have ignored this link because they thought it was unimportant as it was not163

on the path to rewards, because they could not remember this very specific stochastic state, or164

because they never experienced a transition between state 4 and S-44. In fact, we observed that165

participants who reconstructed the link between states 4 and S-44 had visited state S-44 more166

frequently than those who did not (Fig. 3C). Strikingly, half of the participants who reconstructed167

the link had never directly experienced this specific transition (Fig. 3D). This indicates that these168

participants had learned the structure so thoroughly that they could generalize and reconstruct a169

link they had never directly encountered.170

Overall, these results provide direct evidence that human participants were able to reconstruct a171

step-by-step map of the environment – despite the unprecedented complexity of the environment172

compared to other behavioral RL paradigms42,50. Hence, these results complement recent find-173

ings on human graph learning55–57 and, most importantly, imply that participants’ theoretically174

suboptimal exploration strategy is not an obvious consequence of poor graph learning.175
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Computational modeling of human exploration176

To uncover the algorithmic form of human exploration, we modeled human participants by intrin-177

sically motivated RL agents who move in an environment with an unknown number of states by178

seeking extrinsic and intrinsic rewards (Fig. 4A). In this framework, intrinsic rewards are given179

to agents internally, whenever they encounter a ‘novel,’ ‘surprising,’ or ‘informative’ state. In180

contrast, extrinsic rewards are received only at the three goal states (see Methods for details).181

Specifically, at each time t, an agent observes state st, evaluates an intrinsic reward value rint,t182

(e.g., the novelty of state st), and evaluates an extrinsic reward value rext,t (which is zero except183

at the goal states). Intrinsic and extrinsic reward values are then passed to two parallel, but sepa-184

rate, RL systems, each working with a single reward signal. Independently of each other, the two185

RL systems use a hybrid algorithm37,50,58,59 combining model-based planning60,61 and model-free186

habit-formation62 to learn a policy πext,t that maximizes future extrinsic rewards and a policy πint,t187

that maximizes future intrinsic rewards20,37, respectively. The two policies are combined into a188

final policy πt for taking the next action at. The degree of exploration is high if πint,t dominates189

πext,t during action selection. We assumed that ‘reward optimism’ influences the relative influence190

of πint,t and πext,t on the final policy πt and, as a result, the extent of exploration (Methods).191

We formulated three different hypotheses for human exploration in the form of three types of in-192

trinsic rewards rint,t; all three are representative examples of classes of intrinsic rewards in machine193

learning20,21: (i) novelty13,14,37, (ii) information gain17,19,63,64, and (iii) surprise15,43,65. Novelty194

quantifies how infrequent the state st has been until time t; thus, exploration in novelty-seeking195

agents is guided toward the least visited states. Information gain quantifies how much the agent196

updates its belief about the structure of the environment upon observing the transition from the197

state-action pair (st−1, at−1) to state st; thus, exploration in information-gain-seeking agents is198

guided toward states where the agents’ estimates of the transition probabilities are least certain.199

Surprise quantifies how unexpected it is to observe state st after taking action at−1 at state st−1;200

thus, exploration in surprise-seeking agents is guided toward states with the most stochastic ac-201

tions. As a control, we also considered the hypothesis that no explicit intrinsic reward signal202

is needed to explain human exploratory actions. We formalized this hypothesis in the form of203

an algorithm that uses no intrinsic rewards but incorporates some exploration incentive into the204

reward-seeking policy πext,t (via optimistic initialization49; see Methods).205

Novelty is the dominant drive of human exploration206

To test which algorithm best explains human behavior, we used three-fold cross-validation69:207

We fitted the parameters of our four algorithms (i.e., novelty-seeking, information-gain-seeking,208

surprise-seeking, and exploration via optimistic initialization) to the action choices of two-thirds209

of human participants by maximizing the likelihood of data given model parameters (Methods).210

We then quantified the predictive power of the fitted algorithms by computing the likelihood of211

data for the rest of the participants using the fitted parameters (Methods).212

Given the cross-validated likelihood of different algorithms, we used Bayesian model compari-213

son41,67 to rank the models (Methods). We find that seeking novelty is by far the most probable214

model for the majority of human participants, followed by seeking information gain as the 2nd most215

probable model (Fig. 4B; model-recovery68 in inset). Repeating the model comparison separately216

for each group of participants yielded the same conclusion (Fig. 4E; despite the ∼ 70% decrease217

in the sample size). This result shows (i) that seeking novelty describes the behavior of human218
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Figure 4: Novelty-seeking is the most accurate model of human behavior. A. Block diagram of the
intrinsically motivated RL algorithm for modeling human behavior. Given the state st at time t, the intrinsic
reward rint,t (e.g., novelty) and the extrinsic reward rext,t (i.e., the monetary reward value of st) are evaluated
by a reward function and passed to two identical (except for the reward signals) parallel RL algorithms. The
two algorithms compute two policies, one for seeking intrinsic reward πint,t and one for seeking extrinsic reward
πext,t. The two policies are then weighted according to the relative importance of the intrinsic reward and are
combined to make a final policy πt. The next action at is selected by sampling from πt. See Methods for details.
B. Bayesian model comparison: Human participants’ action choices are best explained by novelty-seeking (N)
compared to seeking information gain (IG), seeking surprise (S), or exploration based on optimistic initialization
without intrinsic rewards (OI). B1. The expected posterior probability quantifies the proportion of participants
whose behavior is best explained by each algorithm66 (regarding cross-validated log-likelihoods; Methods). B2.
Protected Exceedance Probability67 quantifies the probability of each model being more frequent than the others
among participants. Insets show confusion matrices from the model recovery68 (see Methods); we could always
recover the model that had generated the data, using almost the same number of simulated participants (60) as
human participants (57). C. Model-comparison based on Posterior Predictive Checks (PPC): Median relative error
(i.e., absolute difference divided by the SE) of each algorithm in replicating 44 group-level summary statistics of the
action choices of human participants (e.g., fractions of trials spent in the stochastic part in Fig. 2A; see Methods for
the full list). Novelty-seeking most accurately replicates human data. D. Cross-validated accuracy rate of novelty-
seeking in predicting individual actions of human participants. The chance level is 33%. Error bars show the
SEMean. Novelty-seeking allows above-chance prediction of each participant’s actions. E. Protected Exceedance
Probability (as in B2) for participants in the 2 CHF (E1), 3 CHF (E3), and 4 CHF (E4) groups. Novelty-seeking
is the most frequent model of behavior across and within groups.

participants better than seeking information gain, seeking surprise, or exploration via optimistic219

initialization and (ii) that reward optimism mainly influences the extent of the exploration but220

does not have a strong influence on the exploration strategy.221

To confirm the results of our model comparison, we simulated each of the four algorithms with their222

fitted parameters in our experimental paradigm, i.e., we performed Posterior Predictive Checks223

(PPC)68,70. We then compared 44 summary statistics of human action choices (e.g., the fractions224

of trials spent in the stochastic part as in Fig. 2A) with those of the simulated agents (see Methods225

for the complete list of summary statistics). Results of the PPC show that novelty-seeking is quan-226

titatively the most accurate algorithm in reproducing data statistics (Fig. 4C and Supplementary227
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Materials). Novelty-seeking also successfully reproduced all key qualitative behavioral patterns of228

human participants discussed above (compare Fig. 2A-C with Fig. 2D-F).229

Finally, to further test the predictive power of novelty-seeking, we quantified its accuracy in pre-230

dicting individual actions of human participants (i.e., given a participant’s actions until time t,231

we asked whether novelty-seeking could predict the participant’s action at t + 1; Methods). We232

found a more than 40% cross-validated accuracy rate in episode 1 (Fig. 4D; chance level: 33%).233

As the participants moved through the environment, their behavior became more predictable (i.e.,234

it was determined more strongly by their experience throughout the experiment than by their life235

experience before the experiment): Hence, we observed an increase in the cross-validated accuracy236

rate for episodes 2-5, with a more than 60% accuracy rate in episode 5. Therefore, novelty-seeking237

enabled an above-chance prediction of each participant’s actions, even though it had no prior238

information about the participant.239

Taken together, our results provide strong quantitative and qualitative evidence for novelty as the240

dominant drive of human exploration in our experiment.241

Discussion242

We designed a novel experimental paradigm to study human goal-directed exploration in multi-243

step stochastic environments with sparse rewards. We made three main observations: (i) Human244

participants who were optimistic about finding higher rewards than those already discovered were245

persistently attracted to the stochastic part; (ii) the extent of attraction to the stochastic part246

decreased by decreasing the participants’ level of optimism, but it did not vanish even when there247

was no prospect of finding better rewards than the one already discovered; and (iii) this exploratory248

behavior was explained better by seeking novelty than seeking information gain or surprise, even249

though seeking information gain is theoretically more robust in dealing with stochasticity.250

These three observations are instrumental in addressing the long-standing question of how humans251

explore their environments4–6. Specifically, past experimental studies have shown that humans use252

a combination of random and directed exploration in 1-step or 2-step decision-making tasks (e.g.,253

multi-armed bandits)22–24,71–73, while theoretical studies have proposed distinct motivational sig-254

nals as potential drives of human directed exploratory actions5,8,9,74,75. However, despite significant255

advances in the past years25–27,29–31,76–83, it has remained highly debated which motivational signal256

explains human exploration best9,10. Importantly, the focus of existing studies on 1-step or 2-step257

decision-making tasks has raised questions about whether our current understanding of human258

exploration can be generalized to more complex and realistic situations9,34–36,39.259

To bridge between exploration in 1-step and multi-step tasks, we showed in an earlier study37 that260

novelty dominantly drives human exploration in complex but deterministic environments with261

sparse rewards, i.e., situations where novelty-seeking has empirically been shown to be an effective262

exploration strategy13,14. Observations (i)-(iii) above provide further evidence for novelty as the263

dominant drive of human goal-directed exploration even in situations when seeking novelty is not264

optimal. Specifically, after episode 1, participants can reasonably assume that the task is solvable,265

i.e., if they have succeeded in finding the 2 CHF reward, then they should also be able to find266

the higher rewards. Hence, the fact that the participants in the 2 CHF group continue the search267

during episodes 2-5 is expected and economically rational, but our results show that they use a268

suboptimal novelty-based search strategy. Further experimental studies are needed to investigate269
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the implications of our results for other types of human exploratory behavior. In particular, it is270

a priori unclear whether goal-directed exploration, as studied here, shares some drives and mech-271

anisms with reward-free exploration strategies in, e.g., reactive orienting and passive viewing80,84,272

navigation85,86, and non-instrumental decision-making tasks29,32,33.273

Our results appear to contradict the long-lasting belief that humans are not prone to the ‘noisy274

TV’ problem1,46,48. It is important, however, to note that the stochasticity in our environment275

is different from passively watching a noisy, grey-flickering TV screen. Rather, the environment276

allows participants to take actions that are in spirit similar to exploring different TV channels,277

where each channel contains videos – similar to the recent realizations of ‘noisy TV’ in machine278

learning43. In this context, our experimental paradigm is a model experiment of recent social279

media where users spend hours on the ‘endless scrolling option’ to watch new videos87,88 – despite280

the availability of alternative activities with ‘extrinsic’ rewards. This is analogous to the behavior281

of the 4 CHF participants who kept exploring the stochastic part despite knowing the path to the282

most rewarding goal state.283

Accordingly, our results challenge the optimality of human exploration11,83. However, we note284

that, for computing novelty, an agent only needs to track the state frequencies over time and285

does not need any knowledge of the environment’s structure (Methods); hence computing novelty286

is computationally cheaper than computing information gain. This suggests that a potentially287

higher level of distraction by novelty in humans may be the price of spending less computational288

power. In other words, novelty-seeking in the presence of stochasticity may not be a globally289

optimal strategy for exploration but can be an optimal strategy given a set of prior assumptions290

and computational constraints, i.e., a ‘resource rational’ policy89–91.291

Finally, we note that notions of ‘novelty’, ‘surprise’, and ‘information gain’ as scientific terms292

often refer to different precise mathematical definitions65,92 – across a broad set of applications293

in neuroscience37,93,94, psychology95–97, and machine learning20,21,48. Our results in this paper are294

based on the specific mathematical formulations that we have chosen (Methods), but we expect295

our conclusions to be invariant to the precise choice of definitions as long as (i) novelty quantifies296

infrequency of states 37 as, for example, defined with density models in machine learning13,14,98;297

(ii) surprise quantifies mismatches between observations and agents’ expectations, where the ex-298

pectations are made based on the previous state-action pair, including all measures of prediction299

surprise65 and typical measures of prediction error in machine learning15,43; and (iii) information300

gain quantifies improvements in the agents’ world-model and vanishes with the accumulation of301

experience, which includes Bayesian93 and Postdictive surprise94, measures of disagreement and302

progress-rate in machine learning17–19,44,99, and optimal exploration bonuses in RL theory100,101.303

In conclusion, our results show (i) that human decision-making is influenced by an interplay of304

intrinsic and extrinsic rewards, controlled by reward optimism, and (ii) that novelty-seeking RL305

algorithms can successfully model this interplay in tasks where humans search for rewarding states.306
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Methods307

Ethics statement308

The data for human experiment were collected under CE 164/2014, and the protocol was approved by309

the ‘Commission cantonale d’éthique de la recherche sur l’être humain’. All participants were informed310

that they could quit the experiment at any time and signed a written informed consent. All procedures311

complied with the Declaration of Helsinki (except for pre-registration).312

Experimental procedure313

63 participants joined the experiment. Data from 6 participants were removed (see below); thus, data314

from 57 participants (27 female, mean age 24.1±4.1 years) were included in the analyses. All participants315

were naive to the purpose of the experiment and had normal or corrected-to-normal visual acuity. The316

experiment was scripted in MATLAB using the Psychophysics Toolbox102.317

Before starting the experiment, the participants were informed that they needed to find any of the 3 goal318

states 5 times. They were shown the 3 goal images and informed that each image had a different reward319

value of 2 CHF, 3 CHF, or 4 CHF. Specifically, they were given an example that ‘if you find the 2 CHF320

goal twice, 3 CHF goal once, and 4 CHF goal twice, then you will be paid 2×2+1×3+2×4 = 15 CHF’;321

see Informing RL agents of different goal states for how this information was incorporated into the RL322

algorithms. At each trial, participants were presented with an image (state) and three grey disks below323

the image (Fig. 1C). Clicking on a disk (action) led participants to a subsequent image, which was chosen324

based on the underlying graph of the environment in Fig. 1A-B (which was unknown to the participants).325

Participants clicked through the environment until they found one of the goal states, which finished an326

episode (Fig. 1C).327

The assignment of images to states and disks to actions was random but kept fixed throughout the328

experiment and identical for all participants (Fig. 1C2). Exceptionally, we did not make the assignment329

for the actions in state 4 before the start of the experiment. Rather, for each participant, we assigned330

the disk that was chosen in the 1st encounter of state 4 to the stochastic action and the other two disks331

randomly to the bad and progressing actions, respectively (Fig. 1A). With this assignment, we ensured332

that all human participants would visit the stochastic part at least once during episode 1. The same333

protocol was used for simulated RL agents. Additionally, to ensure that participants would not get lost334

in the stochastic part, we used the same assignment for the ‘escape action’ in all stochastic states (i.e.,335

the action that took participants from stochastic states to state 4 in Fig. 1B).336

Before the start of the experiment, we randomly assigned the different goal images (corresponding to the337

three reward values) to different goal states G∗, G1, and G2, separately for each participant (Fig. 1D). The338

image and, hence, the reward value were then kept fixed throughout the experiment. In other words, we339

randomly assigned different participants to different environments with the same structure but different340

assignments of reward values. We, therefore, ended up with 3 groups of participants: 23 in the 2 CHF341

group, 20 in the 3 CHF group, and 20 in the 4 CHF group (Fig. 1D). The probability of encountering342

a goal state other than G∗ was controlled by the parameters ε. We considered ε to be around machine343

precision 10−8, so we have (1 − ε)5×63 ≈ 1 − 10−5 ≈ 1, meaning that all 63 participants would be taken344

almost surely to the goal state G∗ in all 5 episodes. We note, however, that a participant could, in345

principle, observe any of the 3 goals if they could choose the progressing action at state 6 sufficiently346

many times.347

Two participants (in the 2 CHF group) did not finish the experiment, and four participants (1 in the348

3 CHF group and 3 in the 4 CHF group) took more than 3 times group-average number of actions in349

episodes 2-5 to finish the experiment. We considered this as a sign of being non-attentive and removed350
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these 6 participants from further analyses.351

At the end of the experiment, participants were given a paper with the pseudo-randomly placed images of352

progressing states (1-6), trap states (7-8), one stochastic state (S-44), as well as a new image (X) that did353

not belong to the 58 states of the environment. Participants were asked to ‘draw the transitions between354

images’ and were told they ‘can add anything [they] want.’ Some participants had not reported the355

directionality of transitions. Hence, we only analyzed how many participants had drawn a link between356

every pair of states, independently of the link’s direction (Fig. 3). To further simplify analyses, we did357

not dissociate between different trap states when counting the connections from non-trap states to the358

trap states. As a result, there were 1 + 9 × 8/2 = 37 possible links to draw (the extra 1 belongs to the359

connection between the two trap states), but there were only 13 links in the ground truth (Fig. 3A, inset).360

Accordingly, we defined the reconstruction score in Fig. 3 as the ratio of correctly reconstructed links (out361

of 13) minus the ratio of incorrectly reconstructed links (out of 24).362

The correction for multiple hypotheses testing was done by controlling the False Discovery Rate at 0.0554
363

over all 10 null hypotheses that are presented in Fig. 2 and Fig. 3 (p-value threshold: 0.045). Using364

Bonferroni correction (with a family-wise error rate of 0.05, i.e., p-value threshold: 0.005) does not365

change our results. All Bayes Factors (abbreviated BF in the figures) were evaluated using the Schwartz366

approximation53 to avoid any assumptions on the prior distribution.367

Computational modeling368

We used ideas from non-parametric Bayesian inference103 to design an intrinsically motivated RL algo-369

rithm for environments where the total number of states is unknown. We present the final results here370

and present the derivations and pseudo-code in Supplementary Materials.371

We indicate the sequence of actions and states until time t by s1:t and a1:t, respectively, and define the372

set of all known states at time t as373

S(t) =
{
s : ∃ t′ ∈ {1, ..., t} s.t. s = st′

}
∪ {G̃0, G̃1, G̃2}, (1)374

where G̃is represent our three different goal states – G̃0 corresponds to the 2 CHF goal, G̃1 to the 3375

CHF goal, and G̃2 to the 4 CHF goal. Note that {G̃0, G̃1, G̃2} represents the images of the goal states376

and not their locations G∗, G1, and G2 and that the assignment of images to locations is unknown to377

the model. Hence, starting with t = 0, the algorithm incorporates information about the existence of378

multiple goal states in the environment. In a more general setting, {G̃0, G̃1, G̃2} should be replaced by379

the set of all states whose images were shown to participants before the experiment. After a transition to380

state st+1 = s′ resulting from taking action at = a ∈ {left, middle, right} (i.e., representing disk positions381

in Fig. 1C) at state st = s, the reward functions Rext and Rint,t evaluate the reward values rext,t+1 and382

rint,t+1. We define the extrinsic reward function Rext as383

Rext(s, a → s′) = δs′,G̃0
+ r∗1δs′,G̃1

+ r∗2δs′,G̃2
, (2)384

where δ is the Kronecker delta function, and we assume (without loss of generality) a subjective extrinsic385

reward value of 1 for G̃0 (2 CHF goal) and subjective extrinsic reward values of r∗1 ≥ 1 and r∗2 ≥ 1386

for G̃1 and G̃2, respectively. The prior information of human participants about the difference in the387

monetary reward values of different goal states can be modeled in simulated RL agents by varying r∗1 and388

r∗2 (resulting in the exploratory component of reward-seeking in optimistic initialization; see ‘Informing389

RL agents of different goal states’). We discuss Rint,t in Alternative algorithms.390

As a general choice for the RL algorithm in Fig. 4A, we consider a hybrid of model-based and model-free391

policy37,50,59,62. The model-free (MF) component uses the sequence of states s1:t, actions a1:t, extrin-392
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sic rewards rext,1:t, and intrinsic rewards rint,1:t (in the two parallel branches in Fig. 4A) and estimates393

the extrinsic and intrinsic Q-values Q
(t)
MF,ext and Q

(t)
MF,int, respectively. Traditionally, MF algorithms do394

not need knowledge of the total number of states49; thus, the MF component of our algorithm remains395

similar to that of previous studies37,104: At the beginning of episode 1, Q-values are initialized at Q
(0)
MF,ext396

and Q
(0)
MF,int. Then, the estimates are updated recursively after each new observation. After the transi-397

tion (st, at) → st+1, the agent computes extrinsic and intrinsic reward prediction errors RPEext,t+1 and398

RPEint,t+1, respectively:399

RPEext,t+1 = rext,t+1 + λextV
(t)
MF,ext(st+1)−Q

(t)
MF,ext(st, at)

RPEint,t+1 = rint,t+1 + λintV
(t)
MF,int(st+1)−Q

(t)
MF,int(st, at),

(3)400

where λext and λint ∈ [0, 1) are the discount factors for extrinsic and intrinsic reward seeking, respectively,401

and V
(t)
MF,ext(st+1) = maxa′ Q

(t)
MF,ext(st+1, a

′) and V
(t)
MF,int(st+1) = maxa′ Q

(t)
MF,int(st+1, a

′) are the extrinsic402

and intrinsic V -values49 of the state st+1, respectively. We use two separate eligibility traces49,104 for the403

update of Q-values, one for extrinsic reward eext,t and one for intrinsic reward eint,t, both initialized at404

zero at the beginning of each episode. The update rules for the eligibility traces after taking action at at405

state st is406

eext,t+1(s, a) =

 1 if s = st, a = at

λextµexteext,t(s, a) otherwise

eint,t+1(s, a) =

 1 if s = st, a = at

λintµinteint,t(s, a) otherwise ,

(4)407

where λext and λint are the discount factors defined above, and µext and µint ∈ [0, 1] are the decay408

factors of the eligibility traces for the extrinsic and intrinsic rewards, respectively. The update rule is409

then ∆Q
(t+1)
MF (s, a) = ρet+1(s, a)RPEt+1, where et+1 is the eligibility trace (i.e., either eext,t+1 or eint,t+1),410

RPEt+1 is the reward prediction error (i.e., either RPEext,t+1 or RPEint,t+1), and ρ ∈ [0, 1) is the learning411

rate.412

The model-based (MB) component builds a world-model that summarizes the structure of the envi-413

ronment by estimating the probability p(t)(s′|s, a) of the transition (s, a) → s′. To do so, an agent counts414

the transition (s, a) → s′ recursively and using a leaky integration105,106:415

C̃
(t+1)
s,a,s′ =

{
κC̃

(t)
s,a,s′ + δs′,st+1 if s = st , a = at

C̃
(t)
s,a,s′ otherwise,

(5)416

where δ is the Kronecker delta function, C̃
(0)
s,a,s′ = 0, and κ ∈ [0, 1] is the leak parameter and accounts for417

imperfect memory during model-building in humans. If κ = 1, then C̃
(t+1)
s,a,s′ is the exact count of transition418

(s, a) → s′. For κ < 1, we refer to C̃
(t+1)
s,a,s′ as a leaky count or pseudo-count. These leaky counts are used419

to estimate the transition probabilities420

p(t)(s′|s, a) =


ϵobs+C̃

(t)

s,a,s′

ϵnew+ϵobs|S(t)|+C̃
(t)
s,a

if s′ ∈ S(t) ,

ϵnew

ϵnew+ϵobs|S(t)|+C̃
(t)
s,a

if s′ = snew ,
(6)421

where C̃
(t)
s,a =

∑
s′ C̃

(t)
s,a,s′ is the leaky count of taking action a at state s, ϵobs ∈ R+ is a free parameter422

for the prior probability of transition to a known state (i.e., states in S(t)), and ϵnew ∈ R+ is a free423
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parameter for the prior probability of transition to a new state (i.e., states not in S(t)) – see Supplementary424

Materials for derivations. Choosing ϵnew = 0 is equivalent to assuming there is no unknown state in the425

environment, for which the estimate in Eq. 6 is reduced to the classic Bayesian estimate of transition426

probabilities in bounded discrete environments37,59. The transition probabilities are then used in a novel427

variant of prioritized sweeping49,60 adapted to deal with an unknown number of states. The prioritized428

sweeping algorithm computes a pair of Q-values, i.e., Q
(t)
MB,ext for extrinsic and Q

(t)
MB,int for intrinsic429

rewards, by solving the corresponding Bellman equations49 with TPS,ext and TPS,int iterations, respectively.430

See Supplementary Material for details.431

Finally, actions are chosen by a softmax policy49: The probability of taking action a in state s at time432

t is433

πt(a|s) ∝ exp
[
βMB,extQ

(t)
MB,ext(s, a) + βMF,extQ

(t)
MF,ext(s, a)+

βMB,intQ
(t)
MB,int(s, a) + βMF,intQ

(t)
MF,int(s, a)+

b(a)
]
,

(7)434

where βMB,ext ∈ R+, βMF,ext ∈ R+, βMB,int ∈ R+, and βMF,int ∈ R+ are free parameters (i.e., inverse435

temperature parameters of the softmax policy49) expressing the contribution of each Q-value to action-436

selection, and b(a) captures the general bias of the agent for taking the particular action a (e.g., left437

grey disk in Fig. 1C) independently of the state s. Without loss of generality, we assume b(left) = 0 and438

considered b(middle) ∈ R and b(right) ∈ R as free parameters. For Fig. 4A, we defined hybrid policies for439

each of the two branches as440

πext,t(a|s) ∝ exp
[ βMB,ext

βMB,ext + βMF,ext
Q

(t)
MB,ext(s, a) +

βMF,ext

βMB,ext + βMF,ext
Q

(t)
MF,ext(s, a)

]
πint,t(a|s) ∝ exp

[ βMB,int

βMB,int + βMF,int
Q

(t)
MB,int(s, a) +

βMF,int

βMB,int + βMF,int
Q

(t)
MF,int(s, a)

]
.

(8)441

Hence the final policy is πt ∝ π
βMB,ext+βMF,ext

ext,t · πβMB,int+βMF,int

int,t · eb.442

In general, the contribution of seeking extrinsic reward and seeking intrinsic reward as well as the MB and443

MF branches to action selection depends on different factors, including time passed since the beginning444

of the experiment51,62, cognitive load107, and whether the location of reward is known37. Here, we make445

a simplistic assumption that these contributions (expressed as the 4 inverse temperature parameters)446

depend only on reward optimism:447

• Episode 1: Before finding the goal state, we consider βMB,ext = β
(1)
MB,ext, βMF,ext = β

(1)
MF,ext, βMB,int =448

β
(1)
MB,int, and βMF,int = β

(1)
MF,int as four independent free parameters.449

• Episodes 2-5: After finding the goal G∗, we consider βMB,ext = β
(2,r)
MB,ext, βMF,ext = β

(2,r)
MF,ext, βMB,int =450

β
(2,r)
MB,int, and βMF,int = β

(2,r)
MF,int, where r is either 2 CHF, 3 CHF, or 4CHF, resulting in 3 × 4 = 12451

free parameters.452

Summary of free parameters: The full algorithm has 14 main parameters (capturing initialization453

and learning dynamics)454

Φ(main) = {r∗1, r∗2, Q
(0)
MF,ext, Q

(0)
MF,int, λext, λint, µext, µint, ρ, κ, ϵnew, ϵobs, TPS,ext, TPS,int}, (9)455

16 inverse temperature parameters (capturing the randomness in decision-making and the balance of456
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seeking intrinsic versus extrinsic rewards)457

Φ(β) = {β(1)
MB,ext, β

(1)
MB,int, β

(1)
MF,ext, β

(1)
MF,int} ∪ {β(2,r)

MB,ext, β
(2,r)
MB,int, β

(2,r)
MF,ext, β

(2,r)
MF,int}r∈{2,3,4CHF}, (10)458

and 2 bias parameters459

Φ(b) = {b(middle), b(right)}. (11)460

We denote the set of all parameters by461

Φ = {Φ(main),Φ(β),Φ(b)} (12)462

We note that not all these parameters were fitted for all algorithms (see Alternative algorithms).463

Informing RL agents of different goal states464

Human participants were informed that the environment had different goal states with different monetary465

reward values. This information was intended to incentivize exploration after finding the likely goal state466

G∗ at the end of episode 1. We used three mechanisms to incorporate this information into the RL467

algorithm described above (Computational modeling). Our main focus throughout the paper has been468

on the first mechanism: Reward optimism balances intrinsic rewards against extrinsic rewards (Fig. 4A).469

We formalized this idea by assigning different values to βMB,ext, βMF,ext, βMB,int, and βMF,int (see Eq. 7)470

depending on the reward value of G∗; this makes the relative importance of intrinsic rewards471

explicitly depend on the difference between the reward value of the discovered goal rG∗ and the known472

reward values r∗1 and r∗2 of the other goal states (Eq. 2).473

The two other alternative mechanisms are the model-based optimistic initialization and model-474

free optimistic initialization. Exploration in the optimistic initialization algorithm in Fig. 4 is solely475

directed via these mechanisms (see Alternative algorithms). In this section, we discuss how these mecha-476

nisms balance exploration versus exploitation.477

Model-based optimistic initialization. MB optimistic initialization is an explicit approach to478

model reward-optimism through designing the world-model. The MB branch finds the extrinsic Q-values479

Q
(t)
MB,ext by solving the Bellman equations480

Q
(t)
MB,ext(s, a) = R̄

(t)
ext(s, a) + λext

∑
s′

p(t)(s′|s, a)max
a′

Q
(t)
MB,ext(s

′, a′), (13)481

where p(t)(s′|s, a) is estimated transition probability in Eq. 6, and482

R̄
(t)
ext(s, a) =

∑
s′

p(t)(s′|s, a)Rext(s, a → s′)

= p(t)(G̃0|s, a) + r∗1p
(t)(G̃1|s, a) + r∗2p

(t)(G̃2|s, a)
(14)483

is the average immediate extrinsic reward expected to be collected by taking action a in state s (see484

Eq. 2). Hence, the knowledge of the existence of three different goal states with three different rewards485

has an explicit influence on the MB branch. For example, because no transitions to any of the goal states486

have been experienced during episode 1, we have487

R̄
(t)
ext(s, a) =

ϵobs(1 + r∗1 + r∗2)

ϵnew + ϵobs|S(t)|+ C̃
(t)
s,a

. (15)488
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R̄
(t)
ext(s, a) is closely linked to (approximately) Bayes-optimal exploration bonuses in the RL theory100 and489

has two important properties. First, R̄
(t)
ext(s, a) is an increasing function of ϵobs. This implies that the490

expected reward of a transition during episode 1 increases by increasing the prior probability of transition491

to states in S(t). This is a direct consequence of our Bayesian approach to estimating the world-model.492

Second, R̄
(t)
ext(s, a) is a decreasing function of C̃

(t)
s,a. This implies that the expected reward of a state-action493

pair decreases by experience. Importantly, R̄
(t)
ext(s, a) converges to 0 as C̃

(t)
s,a → ∞, which makes a link494

between exploration driven by the MB optimistic initialization and exploration driven by information495

gain (see below).496

During episodes 2-5, the exact theoretical analysis of the MB optimistic initialization is rather complex.497

However, using a few approximation steps for episode 2, we can find a condition for whether the MB ex-498

trinsic Q-values show a preference for exploring or leaving the stochastic part (Supplementary Materials).499

The condition involves a comparison between the discounted reward value of the discovered goal state500

λ2
extrG∗ and an optimistic estimate of a reward-to-be-found R

(t)
Stoch. in the stochastic part that depends501

on r∗1, r
∗
2, λext, ϵobs, |S(t)|, and the average pseudo-count C̄(t) of state-action pairs in the stochastic part502

(Supplementary Materials). We can show that if rG∗ < r∗2, then increasing r∗2 would eventually result in a503

preference for staying in the stochastic part: If the reward value of a goal state is much greater than the504

value of the discovered goal state, then the agent prefers to keep exploring the stochastic part. However,505

for any value of r∗2 and rG∗ , increasing C̄(t) would eventually result in a preference for leaving the stochas-506

tic part and going towards the already discovered goal: Agents will eventually give up exploration after a507

sufficiently long and unsuccessful exploration phase. This is another qualitative link between exploration508

based on the MB optimistic initialization and exploration driven by information gain (see below).509

Model-free optimistic initialization. Unlike the MB branch, the MF branch does not explicitly510

know about the existence of different goal states and their values. However, the initial value Q
(0)
MF,ext511

of the MF extrinsic Q-values quantifies an expectation of the reward values in the environment before512

any interaction with the environment. During episode 1, no extrinsic reward is received by the agent;513

hence, for a small enough learning rate ρ and an optimistic initialization Q
(0)
MF,ext > 0, the extrinsic reward514

prediction errors are always negative (Eq. 3). As a result, Q
(t)
MF,ext(s, a) decreases as an agent keeps taking515

action a in state s, which motivates the agent to try new actions. This is a well-known mechanism for516

directed exploration in the machine learning community49. Similar to the MB optimistic initialization,517

the effect of the MF optimistic initialization fades out over time – which makes them both similar to518

exploration driven by information gain (see below).519

During episodes 2-5, the exact theoretical analysis of the MF optimistic initialization is complex and520

dependent on an agent’s exact trajectory (because of the eligibility traces). However, whether the MF521

extrinsic Q-values show a preference for exploring or leaving the stochastic part essentially depends on522

the reward value of the discovered goal state rG∗ and the initialization value Q
(0)
MF,ext. For example, if an523

agent, starting at s1, takes the perfect trajectory of s1 → s2 → s3 → s4 → s5 → s6 → G∗ in episode524

1, then, given a unit decay factor of the eligibility traces (i.e., µext = 1), it is easy to see that, in the525

1st visit of state 4 in episode 2, the agent prefers the stochastic/bad action over the progressing action526

if rG∗ < 1
λ2
ext

(1 − λext)(1 + λext + λ2
ext)Q

(0)
MF,ext. This implies that, even though the MF branch is not527

explicitly aware of different goal states and their reward values, it can still describe a type of reward528

optimism through the initialization of Q-values.529

Alternative algorithms530

We considered four hypotheses for how humans explore the environment to search for the goal state (in-531

cluding most representative explorations strategies in RL9,20,21): (i) seeking novelty, (ii) seeking informa-532
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tion gain, (iii) seeking surprise, and (iv) exploration via optimistic initialization (i.e., no intrinsic rewards).533

We formalized the four hypotheses in our framework by using different types of the intrinsic reward func-534

tion Rint,t that maps a transition (s, a) → s′ to an intrinsic reward value rint,t+1 = Rint,t(st, at → st+1).535

In this section, we describe these algorithms.536

1. Novelty-seeking: For an agent seeking novelty (red in Fig. 4), we defined the intrinsic reward537

function as538

Rint,t(s, a → s′) = − log p
(t)
f (s′), (16)539

where p
(t)
f (s′) =

1+C̃
(t)

s′

1+|S(t)|+
∑

s′′ C̃
(t)

s′′
is the state frequency with C̃

(t)
s′ the pseudo-count of encounters of state540

s′ up to time t (similar to Eq. 5): C̃
(t+1)
s′ = κC̃

(t)
s′ + δs′,st+1 with C̃

(0)
s′ = 0. With this definition, that541

generalizes earlier works37 to the case where the number of states is unknown, the least novel states are542

those that have been encountered most often (i.e., with the highest C̃
(t)
s′ ). Moreover, novelty is at its543

highest value for the unobserved states as we have C̃
(t)
s′ = 0 for any unobserved state s′ /∈ S(t). Similar544

intrinsic rewards have been used in machine learning13,14.545

To dissociate the effect of exploration by novelty-seeking from optimistic initialization in episode 1, we546

considered β
(1)
MF,ext = β

(1)
MB,ext = 0 and Q

(0)
MF,ext = 0. Moreover, we put TPS,ext = TPS,int = 100 (i.e., almost547

twice the total number of states) to decrease the number of parameters, based on the results of ref.37548

showing the negligible importance fitting this parameter. Hence, the novelty-seeking algorithm had a549

total of 27 parameters (11 main parameters + 14 inverse temperature parameters + 2 biases).550

2. Information-gain-seeking: For an agent seeking information gain (green in Fig. 4), we defined the551

intrinsic reward function as552

Rint,t(s, a → s′) = DKL

[
p(t)(.|s, a)||p(t+1)(.|s, a)

]
, (17)553

where DKL is the Kullback-Leibler divergence108, and p(t+1) is the updated world-model upon observing554

(s, a) → s′. The dots in Eq. 17 denote the dummy variable over which we integrate to evaluate the555

Kullback-Leibler divergence. Note that if s′ /∈ S(t), then there are some technical problems in the naive556

computation of DKL – since p(t) and p(t+1) have different supports. We dealt with these problems using a557

more fundamental definition of DKL using the Radon–Nikodym derivative; see Supplementary Materials558

for derivations and see ref.63 for an alternative heuristic solution. Note that the information gain in Eq. 17559

has also been interpreted as a measure of surprise (called ‘Postdictive surprise’94), but it has a behavior560

radically different from that of the Shannon surprise introduced below for our surprise-seeking agents561

(Eq. 18) – see ref.65 for an elaborate treatment of the topic. Importantly, the expected (integrated over s′)562

information gain corresponding to a state-action pair (s, a) converges to 0 as C̃
(t)
s,a → ∞ (see Supplementary563

Materials for the proof). Similar intrinsic rewards have been used in machine learning17,44,48,63.564

Similarly to the case of novelty-seeking, we considered β
(1)
MF,ext = β

(1)
MB,ext = 0, Q

(0)
MF,ext = 0, and TPS,ext =565

TPS,int = 100; hence, the algorithm seeking information gain also had a total of 27 parameters (11 main566

parameters + 14 inverse temperature parameters + 2 biases).567

3. Surprise-seeking: For an agent seeking surprise (orange in Fig. 4), we defined the intrinsic reward568

function as the Shannon surprise (a.k.a. surprisal)65569

Rint,t(s, a → s′) = − log p(t)(s′|s, a), (18)570

where p(t)(s′|s, a) is defined in Eq. 6. With this definition, the expected (integrated over s′) intrinsic reward571

of taking action a at state s is equal to the entropy of the distribution p(t)(s′|s, a)108. If ϵnew < ϵobs, then572

the most surprising transitions are the ones to unobserved states. Similar intrinsic rewards have been573
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used in machine learning15,43.574

Similarly to the case of novelty-seeking, we considered β
(1)
MF,ext = β

(1)
MB,ext = 0, Q

(0)
MF,ext = 0, and575

TPS,ext = TPS,int = 100; hence, the surprise-seeking algorithm had also a total of 27 parameters (11576

main parameters + 14 inverse temperature parameters + 2 biases).577

4. Exploration by optimistic initialization (no intrinsic rewards): As our last alternative algo-578

rithm (black in Fig. 4), we considered agents with no intrinsic reward:579

Rint,t(s, a → s′) = 0. (19)580

Exploratory actions of these agents are purely driven by MB and MF optimistic initialization described581

in Informing RL agents of different goal states. As a result, exploration based on optimistic initialization582

does not depend on any of the parameters that influence the intrinsically motivated part of the RL583

algorithm described above, ending up with a total of 21 parameters (11 main parameters + 8 inverse584

temperature parameters + 2 biases) for the optimistic initialization (considering TPS,ext = 100).585

Model-fitting and model-comparison586

To compare different algorithms based on their explanatory power, we did a stratified 3-fold cross-587

validation69: We grouped our 57 human participants into 3 disjoint sets, where all sets had almost588

the same number of participants from different reward groups (i.e., 2 CHF, 3 CHF, 4 CHF). For each fold589

k ∈ {1, 2, 3} of cross-validation, one set of participants was considered as testing set D
(test)
k and the union590

of the other two as the training set D
(train)
k .591

Then, for each model M ∈ {novelty , inf-gain , surprise , opt. init.} and cross-validation fold k ∈ {1, 2, 3},592

we fitted the model parameters ΦM by maximizing likelihood of the training data given parameters:593

Φ̂k,M = argmax
ΦM

P (D
(train)
k |ΦM ,M) (20)594

where P (D
(train)
k |ΦM ,M) is the probability that D

(train)
k is generated by simulating model M with ΦM (see595

Eq. 12), and Φ̂k,M is the set of estimated parameters that maximizes that probability. For optimization,596

we used a combination of gradient-free (Subplex109; for a broad search of the parameter space) and597

gradient-based optimization algorithms (L-BFGS110; for fine-tuning), starting from 5 differently chosen598

initial conditions (see Code and data availability).599

We then evaluated all models on the testing set: For each participant n in the testing set D
(test)
k of fold600

k, we evaluated the cross-validated log-likelihood as601

ℓ̂n,M = logP (D
(test)
k(n) |Φ̂k,M ,M), (21)602

where D
(test)
k(n) is the data of participant n (which we assumed to be in the testing set of fold k). We then603

used the cross-validated log-likelihoods in the Bayesian model selection method of ref.67 with the random604

effects assumption: We assumed that, with an unknown probability PM , the data of each participant n605

was generated by simulating model Mn = M . The goal of the model comparison is to infer probability PM606

for all models; the one with the highest PM is the most probable model of most participants. To do so, we607

performed Markov Chain Monte Carlo sampling (using Metropolis Hasting algorithm54 with 100 chains of608

length 10′000) and estimated the joint posterior distribution over Pnovelty, Pinf-gain, Psurprise, and Popt. init..609

Fig. 4B shows the expected value of PM (the expected posterior probability; Fig. 4B1) and the probability610

of PM being higher than PM ′ for all M ′ ̸= M (the protected exceedance probabilities; Fig. 4B2). Fig. 4E611

shows the protected exceedance probabilities when the posterior distribution is evaluated conditioned on612
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participants’ data in only one of the reward groups. See ref.37,79 for a similar approach and ref.41,67,68 for613

tutorials on the topic.614

Finally, for each participant n in the testing set D
(test)
k of fold k, we evaluated the accuracy rate of novelty-615

seeking (Fig. 4) in predicting the participant’s actions (conditioned on the past actions) in each episode,616

i.e., we evaluated the ratio of actions where novelty-seeking with parameter Φ̂k,novelty assigned the highest617

probability to the participant’s chosen action; whenever the maximum probability was shared between 2618

or 3 actions, we considered the prediction 1/2 or 1/3 correct, respectively (i.e., a random model would619

have a 33% accuracy rate).620

Posterior predictive checks and model-recovery621

For each model M ∈ {novelty , inf-gain , surprise , opt. init.}, we repeated the following steps 1500 times:622

1. We picked, with one-third probability, the fitted parameter Φ̂k,M of fold k ∈ {1, 2, 3}. 2. We picked,623

with one-third probability, one of the reward conditions (i.e., 2 CHF, 3 CHF, and 4 CHF). 3. We simulated624

model M with parameters Φ̂k,M for 5 episodes in our environment, i.e., we sampled a trajectory D from625

P (D|Φ̂k,M ,M) (with the G∗ of the environment corresponding to the reward group picked in step 2). As a626

result, we ended up with 1500 simulated agents (with randomly sampled parameters) for each algorithm.627

Depending on their exploration strategy and parameters, some simulated agents kept exploring the628

stochastic part of the environment and did not escape it. Hence, we stopped simulations of each episode629

after 3000 actions; note that the median number of actions taken by human participants is less than 100630

(Fig. 2B-C). Accordingly, we considered the simulated agents who took more than 3000 actions in any631

of the 5 episodes to be similar to the human participants who quit the experiment and excluded them632

from further analyses. Moreover, we applied the same criterion that we used for the human participants633

and excluded, separately for each algorithm, the simulated agents who took more than 3 times the group-634

average number of actions in episodes 2-5 to finish the experiment. We then analyzed the remaining635

simulated agents. Fig. 2D-F shows the data statistics of simulated novelty-seeking agents compared to636

human participants.637

Fig. 4C shows the median relative error (absolute difference divided by SE) of different algorithms in638

reproducing 44 group-level statistics: (1) Ratio of excluded agents, (2) number of actions in episode 1,639

(3-6) fractions of trials spent in trap states and stochastic parts during the 1st and 2nd halves of episode640

1 (Fig. 2A), (7-10) median number actions in episodes 2-5 for each reward group and its correlation with641

reward value (Fig. 2B1), (11-14) fraction of trials spent in the stochastic part in episodes 2-5 for each642

reward group and its correlation with reward value (Fig. 2B2), (15-17) correlation of episode length with643

episode number for each reward group (e.g., Fig. 2C for the 2 CHF group), (18-20) correlation of the644

fraction of trials spent in the stochastic part with the episode number for each reward group, and (21-44)645

the ratio of taking different actions (2 possibilities, i.e., progressing action and self-looping/stochastic646

action) in different progressing states (3 possibilities, i.e., states 1-3, state 4, and states 5-6) and in647

different periods of the experiment (4 possibilities, i.e., episode 1 for all participants and episodes 2-5648

separately for each reward group). See Supplementary Materials for details.649

Finally, for the simulated data of each algorithm, we repeated our model selection procedure (i.e., 3-fold650

cross-validation plus Bayesian model selection) on the action choices of 5 groups of 60 simulated agents651

(20 from each participant group, i.e., 2 CHF, 3 CHF, and 4 CHF). We always successfully recovered the652

model that had generated the data, using almost the same number of simulated agents (60) as human653

participants (57). See insets in Fig. 4B for confusion matrices.654
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95. Reisenzein, R., Horstmann, G. & Schützwohl, A. The cognitive-evolutionary model of surprise: A878

review of the evidence. Topics in Cognitive Science 11, 50–74 (2019).879

96. Nelson, J. D. Finding useful questions: on Bayesian diagnosticity, probability, impact, and informa-880

tion gain. Psychological Review 112, 979–999 (2005).881

97. Maguire, R., Maguire, P. & Keane, M. T. Making sense of surprise: an investigation of the fac-882

tors influencing surprise judgments. Journal of Experimental Psychology: Learning, Memory, and883

Cognition 37, 176–186 (2011).884

98. Becker, S., Modirshanechi, A. & Gerstner, W. Representational similarity modulates neural and885

behavioral signatures of novelty. bioRxiv (2024).886

99. Oudeyer, P.-Y. Computational theories of curiosity-driven learning. arXiv preprint arXiv:1802.10546887

(2018).888

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2025. ; https://doi.org/10.1101/2022.07.05.498835doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498835
http://creativecommons.org/licenses/by/4.0/


100. Kolter, J. Z. & Ng, A. Y. Near-Bayesian exploration in polynomial time. In Proceedings of the889

26th Annual International Conference on Machine Learning, ICML ’09, 513–520 (Association for890

Computing Machinery, New York, NY, USA, 2009).891

101. Strehl, A. L. & Littman, M. L. An analysis of model-based interval estimation for markov decision892

processes. Journal of Computer and System Sciences 74, 1309–1331 (2008).893

102. Brainard, D. H. & Vision, S. The psychophysics toolbox. Spatial Vision 10, 433–436 (1997).894

103. Ghahramani, Z. Bayesian non-parametrics and the probabilistic approach to modelling. Philosoph-895

ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371,896

20110553 (2013).897

104. Lehmann, M. P. et al. One-shot learning and behavioral eligibility traces in sequential decision898

making. eLife 8, e47463 (2019).899

105. Yu, A. J. & Cohen, J. D. Sequential effects: Superstition or rational behavior? In Koller, D.,900

Schuurmans, D., Bengio, Y. & Bottou, L. (eds.) Advances in Neural Information Processing Systems,901

vol. 21 (Curran Associates, Inc., 2009).902

106. Liakoni, V., Modirshanechi, A., Gerstner, W. & Brea, J. Learning in volatile environments with the903

Bayes factor surprise. Neural Computation 33, 1–72 (2021).904

107. Piray, P. & Daw, N. D. Linear reinforcement learning in planning, grid fields, and cognitive control.905

Nature Communications 12, 4942 (2021).906

108. Cover, T. M. Elements of information theory (John Wiley & Sons, 1999).907

109. Rowan, T. H. Functional stability analysis of numerical algorithms. Ph.D. thesis, The University of908

Texas at Austin (1990).909

110. Nocedal, J. & Wright, S. J. Numerical optimization (Springer New York, NY, 2006).910

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2025. ; https://doi.org/10.1101/2022.07.05.498835doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498835
http://creativecommons.org/licenses/by/4.0/

