

Even if suboptimal, novelty drives human exploration

Alireza Modirshanechi^{1,2,3,4,*}, Wei-Hsiang Lin¹, He A. Xu¹,
Michael H. Herzog¹, and Wulfram Gerstner^{1,2}

¹ Brain-Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland

² School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

³ Helmholtz Munich, Munich, Germany

⁴ Max Planck Institute for Biological Cybernetics, Tübingen, Germany

* Corresponding author: alireza.modirshanechi@helmholtz-munich.de

Abstract

Humans successfully explore their environment to find ‘extrinsic’ rewards, even when exploration requires several intermediate *reward-free* decisions. It has been hypothesized that ‘intrinsic’ rewards such as novelty guide this reward-free exploration. However, different intrinsic rewards lead to different exploration strategies, some prone to suboptimal attraction to irrelevant stochastic stimuli, sometimes called the ‘noisy TV problem.’ Here, we ask whether humans show a similar attraction to reward-free stochasticity and, if so, which type of intrinsic reward guides their exploration. We design a multi-step decision-making paradigm where human participants search for rewarding states in an environment with a highly stochastic but reward-free sub-region. We show that (i) participants persistently explore the stochastic sub-region and (ii) their decisions are best explained by algorithms driven by novelty but not by ‘optimal’ algorithms driven by information gain. Our results suggest that humans use suboptimal but computationally cheap strategies for exploration in complex environments.

22 Introduction

23 Humans frequently search for more valuable rewards (e.g., more nutritious foods or better-paid
24 jobs) than those currently available¹⁻³. However, the computational and algorithmic nature of
25 this exploratory behavior has remained highly debated⁴⁻⁶. State-of-the-art models of human ex-
26 ploration use Intrinsically Motivated Reinforcement Learning (RL) algorithms⁷⁻¹⁰ that, initially
27 inspired by research in psychology^{11,12}, have been designed to solve complex machine learning tasks
28 with sparse ‘extrinsic’ rewards¹³⁻¹⁹. These algorithms use internally generated signals like ‘nov-
29 elty,’ ‘surprise,’ or ‘information gain’ as ‘intrinsic’ rewards to guide exploratory action choices¹¹.
30 However, different intrinsic rewards result in different exploration strategies^{20,21}. An unresolved
31 yet crucial puzzle in neuroscience and psychology is identifying the type of intrinsic reward that
32 drives exploration in humans^{9,10}.

33 Resolving this puzzle primarily requires advances in experimental design. Specifically, experimental
34 studies of human exploration have been mainly limited to simplistic experimental paradigms where
35 a single action (or at most a pair of actions) is sufficient for reaching an extrinsic reward²²⁻²⁸ or
36 information²⁹⁻³³. These tasks are principally different from exploration in the real world where
37 reaching a ‘goal’ requires several intermediate actions with no explicit progress feedback⁹. This has
38 recently led to major concerns about the reliability and relevance of these tasks for characterizing
39 human exploratory behavior³⁴⁻³⁶. Studying exploration in multi-step tasks^{37,38} is hence pivotal for
40 understanding and modeling human exploration^{9,39,40}.

41 Compared to traditional experimental paradigms with homogeneously distributed stochasticity^{41,42},
42 multi-step environments with a localized stochastic component have an important advantage since
43 they enable the dissociation of exploration strategies based on different intrinsic rewards. Machine
44 learning research has shown that intrinsically motivated RL agents are prone to distraction by
45 stochasticity, i.e., they are attracted to novel, surprising, or just noisy states independently of
46 whether or not these states are rewarding⁴³ (the so-called ‘noisy TV’ problem^{20,21}). However, the
47 extent of this distraction varies between algorithms and depends on the type of intrinsic reward⁴⁴⁻⁴⁸.
48 Artificial RL agents seeking *information gain* eventually lose their interest in stochasticity when
49 exploration yields no further information^{20,21}; in contrast, RL agents seeking *surprise* or *novelty*
50 exhibit a persistent attraction by stochasticity^{20,21}.

51 Here, we ask (i) whether humans are distracted in the same situations as intrinsically motivated
52 RL agents and, if so, (ii) whether this distraction vanishes (similar to seeking information gain) or
53 persists (similar to seeking surprise or novelty) over time.

54 Results

55 We designed an experimental paradigm that dissociates different exploration strategies in an en-
56 vironment with 58 states plus three goal states (Fig. 1A-B). Three actions were available in each
57 non-goal state, and agents could move from one state to another by choosing these actions (arrows
58 in Fig. 1A-B). We use the term ‘agents’ to refer to either human participants or agents simulated
59 by RL algorithms. In the human experiments, states were represented by images on a computer
60 screen and actions by three disks below each image (Fig. 1C); for RL agents, both states and
61 actions were abstract entities (i.e., we considered RL in a tabular setting⁴⁹). The assignment of
62 images to states and disks to actions was random but fixed throughout the experiment (Fig. 1C2).
63 Agents were informed that there were three different goal states in the environment (G^* , G_1 , or

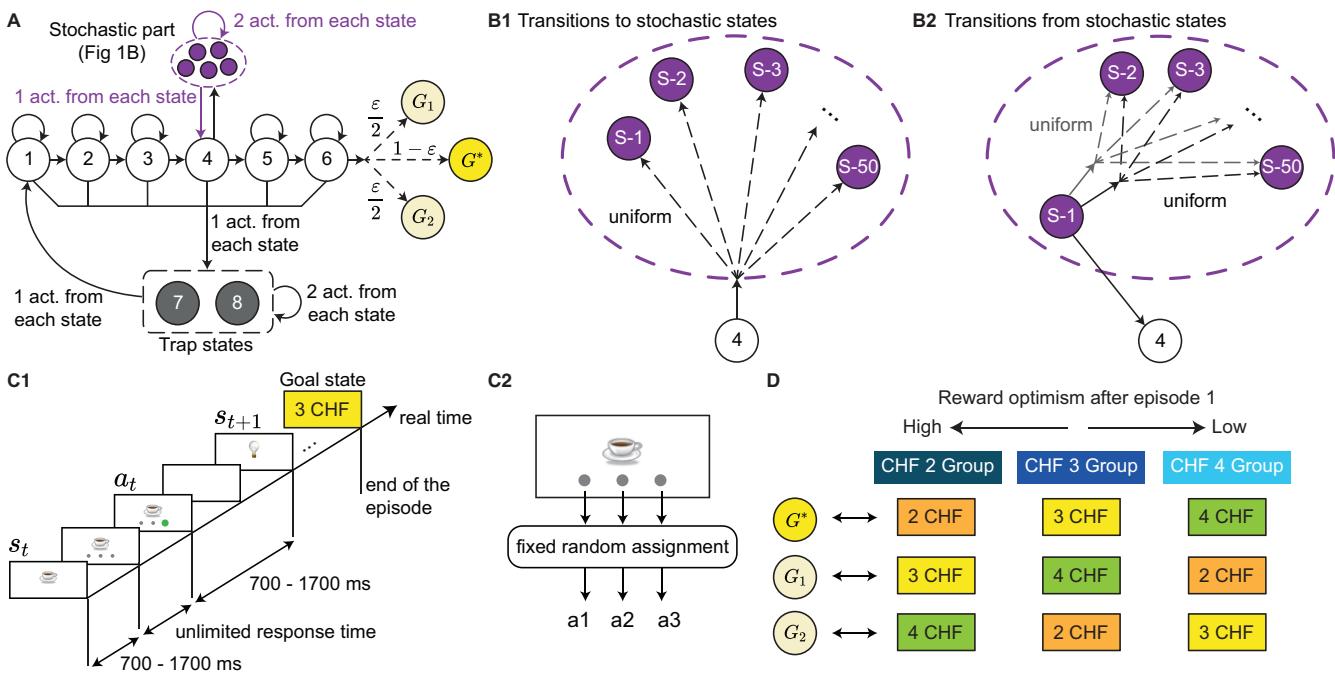


Figure 1: Experimental paradigm. **A.** Structure of the environment; only 5 out of the 50 stochastic states are shown (dashed oval; see B). Each circle represents a state and each solid arrow an action. All actions except those to the stochastic part or to the goal states are deterministic. Dashed arrows indicate random transitions; values (e.g., $1 - \varepsilon$) show the probabilities of each transition. We chose $\varepsilon \ll 1$ (see Methods). **B.** Zoom on stochastic transitions between states S-1 to S-50 inside the dashed oval. **B1.** In state 4, one action takes agents randomly (with uniform distribution) to one of the stochastic states. **B2.** In each stochastic state (e.g., state S-1 in the figure), one action (always the same) takes agents back to state 4 and two actions to another randomly chosen stochastic state. **C.** Timeline of one episode in human experiments (C1). The states were represented by images on a computer screen and actions by disks below each image. The assignment of images to states and disks to actions was random but fixed throughout the experiment (C2). An episode ended when a goal image (i.e., '3 CHF' image in this example) was found. **D.** Human participants were informed that there were three goal states in the environment and that these goal states had different monetary values of 2 Swiss Franc (CHF), 3 CHF, and 4 CHF. For each participant, these monetary reward values were randomly assigned to different goal locations (i.e., G^* , G_1 , and G_2 in A) at the beginning of the experiment (without informing them); the assignment was fixed throughout the experiment. Hence, G^* had a different value for different participants, resulting in three groups of participants with different levels of reward optimism during episodes 2-5 (i.e., after finding G^* for the first time). See Methods.

64 G_2 in Fig. 1A) and that their task was to find a goal state 5 times; see Methods for how this
 65 information was incorporated in the RL algorithms. Neither human participants nor RL agents
 66 were aware of the total *number* of states or the *structure* of the environment (i.e., how states were
 67 connected).

68 The 58 states of the environment were classified into three groups: Progressing states (1 to 6 in
 69 Fig. 1A), trap states (7 and 8 in Fig. 1A), and stochastic states (S-1 to S-50 in Fig. 1B, shown
 70 as a dashed oval in Fig. 1A). In each progressing state, one action ('progressing' action) brought
 71 agents one step closer to the goals, while another ('bad' action) brought them to one of the trap
 72 states. The third action in states 1-3 and 5-6 was a 'self-looping' action that made agents stay in
 73 the same state. Except for the progressing action in state 6, all these actions were deterministic,
 74 meaning that they always led to the same next state. The progressing action in state 6 was *almost*
 75 deterministic: It took participants to the 'likely' goal state G^* with a probability of $1 - \varepsilon$ and
 76 to the 'unlikely' goal states G_1 and G_2 with equal probabilities of $\frac{\varepsilon}{2} \ll 1$. In state 4, instead
 77 of a self-looping action, there was a 'stochastic' action that took agents to a randomly chosen

78 (with equal probability) stochastic state (Fig. 1B1). In each stochastic state, one fixed action
79 (e.g., the left disk) reliably took agents back to state 4, and two stochastic actions took them to
80 *another* randomly chosen stochastic state (Fig. 1B2). In each trap state, all three actions were
81 deterministic: Two actions brought agents to either the same or the other trap state and one
82 action to state 1.

83 The stochastic part of the environment – which mimics the main features of a ‘noisy TV’⁴³ – is the
84 crucial difference to existing paradigms^{37,38,50,51}. Without the stochastic part, *all* types of intrinsic
85 reward would help agents avoid the trap states and find the goal³⁷. Hence, intrinsic rewards would
86 help exploration before and not harm exploitation after finding a goal. However, the stochastic
87 part dissociates exploratory behaviors driven by different intrinsic rewards; we elaborate on these
88 differences in later sections (see ref. ²⁰ and Supplementary Materials).

89 Reward optimism as an incentive to explore

90 We recruited 63 human participants and instructed them to perform our task for 5 episodes: Each
91 episode started by initializing participants at state 1 or 2 and ended when they found any one of
92 the 3 goal states (i.e., G^* , G_1 , and G_2). However, we chose a small enough ε (Fig. 1A) to safely
93 assume that all participants would visit only G^* while being aware that G_1 and G_2 existed.

94 To further motivate exploration, we informed human participants that there were three different
95 possible reward states corresponding to values of 2 Swiss Franc (CHF), 3 CHF, and 4 CHF,
96 represented by three different images (see **Methods** for details and incorporating this information
97 in the RL algorithms). At the beginning of the experiment, we randomly assigned the three
98 different reward values to the goal states G^* , G_1 , and G_2 , separately for each participant (without
99 informing them), and kept the assignment fixed throughout the experiment (Fig. 1D). Following
100 this random assignment, and after excluding 6 participants from further analyses (see **Methods** for
101 criteria), G^* held different reward values across participants: 21 of 57 participants were assigned
102 to environments with 2 CHF reward value for G^* , 19 participants to environments with 3 CHF
103 reward value for G^* , and 17 participants to environments with 4 CHF reward value for G^* . In the
104 following, we refer to each group by their reward value of G^* , e.g., the 3 CHF group is the group
105 of human participants who had a reward value of 3 CHF for G^* (Fig. 1D).

106 The resulting three groups of human participants were characterized by three different levels of
107 ‘reward optimism’ in episodes 2-5, where we define reward optimism as the expectancy of finding
108 a goal of higher value than the one already discovered (Fig. 1D); we note that reward optimism in
109 our experiment is closely linked to but independent of general optimism in psychology⁵². Hence,
110 even though all participants had received the same instructions, the 4 CHF group did not have
111 any monetary incentive to explore further in episodes 2-5, whereas the 2 CHF group had a high
112 monetary incentive to explore and find a higher reward in episodes 2-5. Therefore, we expected
113 participants in the 2 CHF group to continue searching for more valuable goals in episodes 2-5. In
114 the next sections, we aim to identify the dominant drive of this search behavior.

115 Human participants persistently explore the stochastic part

116 We first studied the behavior of human participants without explicit computational modeling.
117 During the 1st episode, all three groups of participants (i.e., 2 CHF, 3 CHF, and 4 CHF) had to
118 explore the environment until they found the goal state G^* for the first time. Hence, their ac-

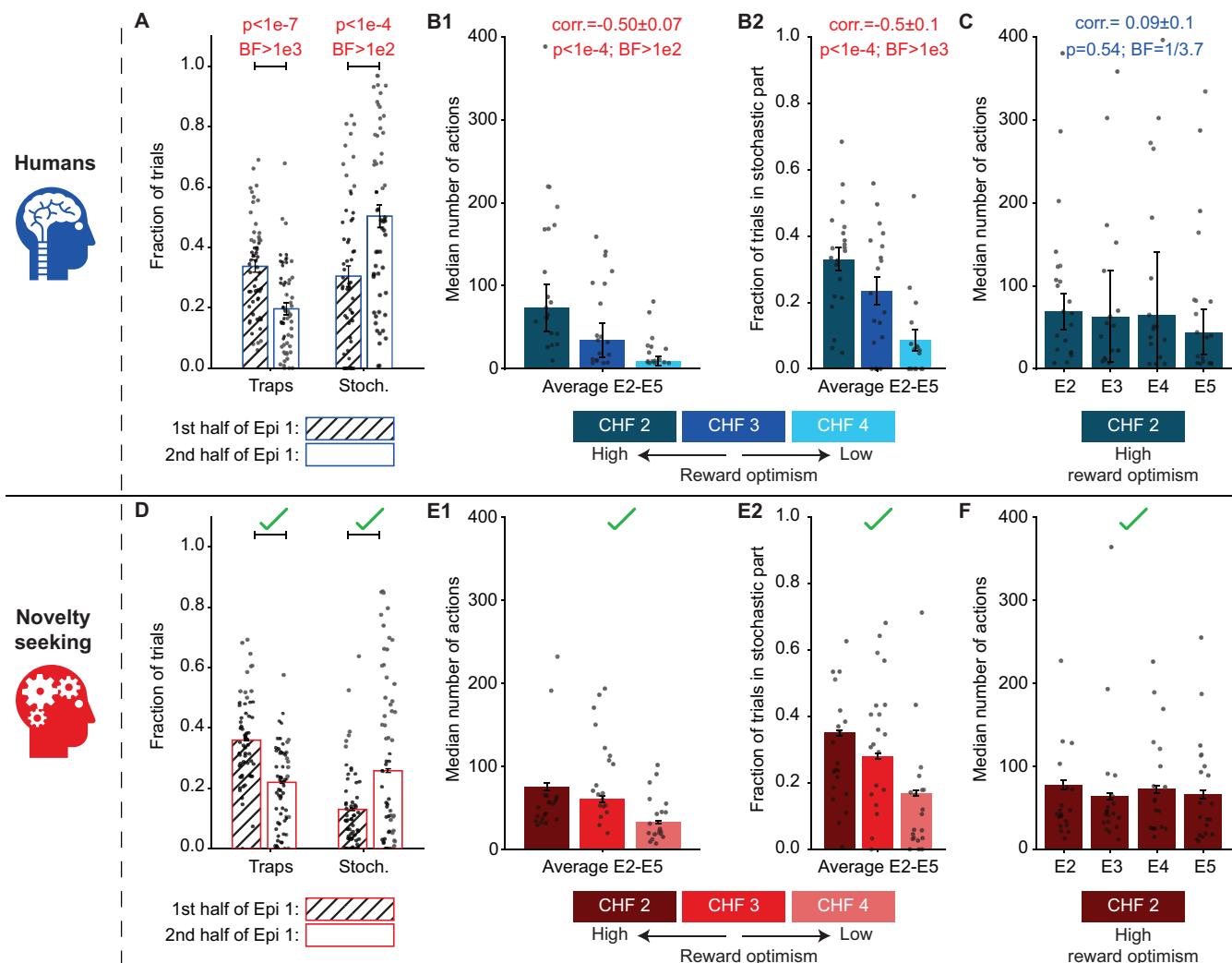


Figure 2: Human participants persistently explore the stochastic part. **A.** Participants spent less time in the trap states (one-sample t-test; $t = -6.35$; 95%CI = $(-0.186, -0.097)$; DF = 56) and more time in the stochastic part ($t = 4.25$; 95%CI = $(0.073, 0.203)$; DF = 56) during the 2nd half of episode 1 than during the 1st half. Error bars show the standard error of the mean (SEMean). **B.** Search duration in episodes 2-5. **B1.** Median number of actions over episodes 2-5 for the three different groups: 2 CHF (dark), 3 CHF (medium), and 4 CHF (light). Error bars show the standard error of the median (SEMed; evaluated by bootstrapping). The Pearson correlation between the search duration and the goal value is negative (correlation test; $t = -4.2$; 95% Confidence Interval (CI) = $(-0.67, -0.27)$; Degree of Freedom (DF) = 55; [Methods](#)). **B2.** Average fraction of trials spent in the stochastic part of the environment during episodes 2-5. The Pearson correlation between the fraction of trials spent in the stochastic part and the goal value is negative (correlation test; $t = -4.7$; 95%CI = $(-0.70, -0.32)$; DF = 55; [Methods](#)). Error bars show the SEMean. **C.** Median number of actions in episodes 2-5 for the 2 CHF group. A Bayes Factor (BF) of 1/3.7 in favor of the null hypothesis⁵³ suggests a zero Pearson correlation between the search duration and the episode number (one-sample t-test on individual correlations; $t = 0.63$; 95%CI = $(-0.20, 0.37)$; DF = 20). Error bars show the SEMed. **D-F.** Posterior Predictive Check (PPC): Simulating novelty-seeking RL in our experimental paradigm successfully replicates the main qualitative patterns of the summary statistics of the action choices of human participants (see Fig. 4C for the quantification over 44 summary statistics). Panels D-F correspond to panels A-C, respectively, and illustrate the same summary statistics but for 1500 simulated novelty-seeking agents. Single dots in all panels show the data of individual human participants (A-C) or a subset (20 per group) of simulated participants (D-F). Red p-values in A-C: Significant effects with False Discovery Rate controlled at 0.05⁵⁴ (see [Methods](#)). Red BFs in A-C: Significant evidence in favor of the alternative hypothesis ($BF \geq 3$). Blue BFs in A-C: Significant evidence in favor of the null hypothesis ($BF \leq 1/3$).

119 tions were solely exploratory. Importantly, they received no intermediate reward or progress feed-
120 back throughout this exploration. Nevertheless, the participants learned to avoid the trap states
121 (Fig. 2A, left) and were attracted to exploring the stochastic part of the environment (Fig. 2A,
122 right). This suggests that participants used a guided exploration strategy (as opposed to a random
123 exploration strategy).

124 After finding the goal G^* for the 1st time (i.e., at the beginning of episode 2), each participant
125 had effectively two options: (i) attempt to return to the discovered goal state G^* (exploitation)
126 or (ii) search for the other goal states G_1 and G_2 (exploration). We quantified the extent of
127 the exploratory behavior during episodes 2-5 by the search duration (i.e., the number of actions
128 taken before returning to the discovered goal state; Fig. 2B1) and the fraction of trials spent
129 in the stochastic part (Fig. 2B2). Both of these quantities were negatively correlated with the
130 reward value of G^* , e.g., the 2 CHF group had a longer search duration and spent more time in the
131 stochastic part than the other two groups. Nevertheless, we still found a non-negligible exploration
132 of the stochastic part by some participants in the 4 CHF group (Fig. 2B2, light blue), even though
133 they had already found the goal state with the highest reward value. These observations (i) support
134 the hypothesis that a higher degree of reward optimism leads to higher exploration in human
135 participants and (ii) imply that human exploratory behavior is guided towards the stochastic part
136 of the environment, even when there is no monetary incentive for exploration (see next section).

137 The behavior of the 2 CHF group is particularly interesting since, by design, they were the most
138 optimistic group about finding higher rewards. The 2 CHF group exhibited a constant search
139 duration over episodes 2-5 (zero correlation between the search duration and episode index con-
140 firmed by Bayesian hypothesis testing⁵³; Fig. 2C). This implies that they persistently explored the
141 stochastic part, even though it would have been theoretically possible to infer the structure of the
142 environment and decrease exploration over time – as shown by ‘optimal’ agents seeking informa-
143 tion gain (see ref. ²⁰ for a review and Supplementary Materials for simulations). Collectively, these
144 results show that human exploration is not random but is also not theoretically optimal.

145 Human participants successfully learned the environment’s structure

146 Thus far, we have shown that human participants exhibited a persistent attraction to the stochastic
147 part in episodes 2-5, which is theoretically suboptimal. However, an implicit premise of our
148 conclusion is that participants had learned the environment’s structure well enough to know how
149 to return to G^* in episodes 2-5. To test this premise, we next analyzed whether participants could
150 reconstruct the environment’s structure at the end of the experiment (Fig. 3). After finishing the
151 experiment, participants were asked to reconstruct a map of the environment by connecting the
152 images of different states (Fig. 3A; Methods). All three groups of participants achieved an above-
153 chance reconstruction score (Fig. 3B; Methods), and a large majority of participants reconstructed
154 the complete path from the trap states to state 6 (Fig. 3A). This implies that, by the end of the
155 experiment, participants had built an explicit mental path for reaching the goal state G^* .

156 The images presented to participants also included one of the stochastic states (S-44) and a new
157 image (X) that did not belong to the 58 states of the environment. Almost one-third of the
158 participants successfully reconstructed the link between state 4 and the stochastic state, while *no*
159 participants reconstructed a link between state 4 and the new image X (Fig. 3A). Importantly,
160 while reconstructing the link between states 4 and S-44 indicates that the participant had learned
161 the transition from state 4 to some stochastic states, not reconstructing this link can be due

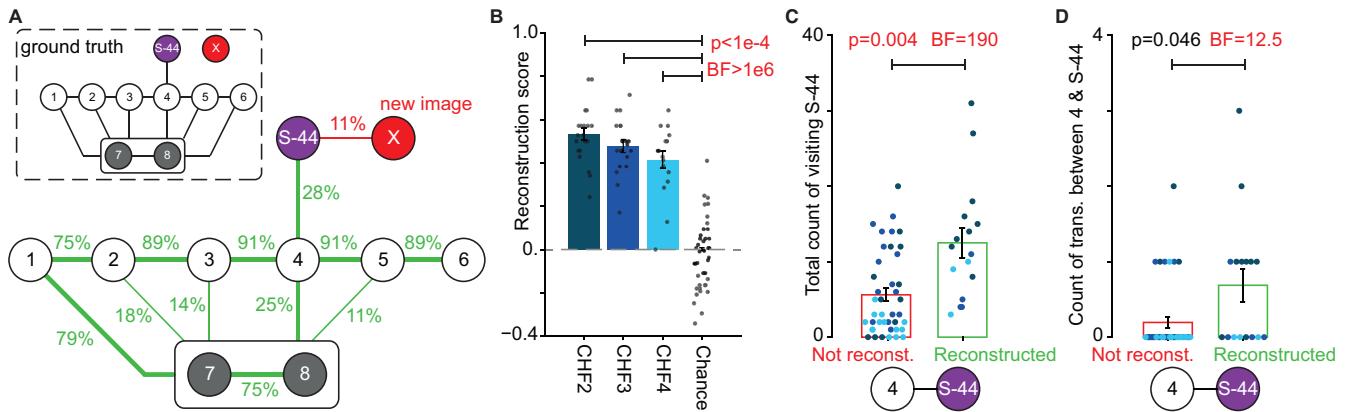


Figure 3: Human participants successfully reconstructed the environment's underlying structure. At the end of the experiment, participants were presented with images of progressing states (1-6), trap states (7-8), one stochastic state (S-44), and a new image (X) that did not belong to the environment. The images were presented at once and in a pseudo-random spatial arrangement. Participants were asked to draw the experienced transitions between images (Methods). **A.** Average reconstruction of the environment's structure. The reconstruction rate beside each link denotes the fraction of participants who drew that link. We only visualized links with a reconstruction rate higher than 10%. Inset: Ground truth. **B.** Reconstruction scores quantify the accuracy of participants' reconstruction and take values between -1 (reconstructing only non-existing links) and +1 (perfect reconstruction; Methods). Random drawing yields on average a 0 reconstruction score (Chance). We observed a significantly above-chance reconstruction rate for participants in 2 CHF (one-sample t-test; $t = 18.5$; 95%CI = (0.47, 0.59); DF = 20), 3 CHF ($t = 16.1$; 95%CI = (0.42, 0.54); DF = 18), and 4 CHF groups ($t = 10.5$; 95%CI = (0.33, 0.50); DF = 17). **C-D.** Participants who reconstructed the link between state 4 and the stochastic state S-44 had visited S-44 significantly more often than those who did not (C; unequal variances t-test; $t = 3.20$; 95%CI = (2.4, 11.4); DF = 20.9); they had also experienced the transitions between states 4 and S-44 almost significantly more than those who did not (D; unequal variances t-test; $t = 2.14$; 95%CI = (0.01, 0.97); DF = 18.3). Red p-values in B-D: Significant effects with False Discovery Rate controlled at 0.05⁵⁴ (see Methods). Red BFs in B-D: Significant evidence in favor of the alternative hypothesis ($BF \geq 3$). Error bars in B-C: SEMean. Single dots in B-D: Data of individual participants (color-coded based on their reward group in C-D); for random drawing in B (Chance), we showed only 40 out of 1000 samples.

to reasons other than lack of understanding of the environment's structure. For example, some participants might have ignored this link because they thought it was unimportant as it was not on the path to rewards, because they could not remember this very specific stochastic state, or because they never experienced a transition between state 4 and S-44. In fact, we observed that participants who reconstructed the link between states 4 and S-44 had visited state S-44 more frequently than those who did not (Fig. 3C). Strikingly, half of the participants who reconstructed the link had never directly experienced this specific transition (Fig. 3D). This indicates that these participants had learned the structure so thoroughly that they could generalize and reconstruct a link they had never directly encountered.

Overall, these results provide direct evidence that human participants were able to reconstruct a step-by-step map of the environment – despite the unprecedented complexity of the environment compared to other behavioral RL paradigms^{42,50}. Hence, these results complement recent findings on human graph learning^{55–57} and, most importantly, imply that participants' theoretically suboptimal exploration strategy is not an obvious consequence of poor graph learning.

176 Computational modeling of human exploration

177 To uncover the algorithmic form of human exploration, we modeled human participants by intrin-
178 sically motivated RL agents who move in an environment with an unknown number of states by
179 seeking extrinsic and intrinsic rewards (Fig. 4A). In this framework, intrinsic rewards are given
180 to agents internally, whenever they encounter a ‘novel,’ ‘surprising,’ or ‘informative’ state. In
181 contrast, extrinsic rewards are received only at the three goal states (see **Methods** for details).
182 Specifically, at each time t , an agent observes state s_t , evaluates an intrinsic reward value $r_{\text{int},t}$
183 (e.g., the novelty of state s_t), and evaluates an extrinsic reward value $r_{\text{ext},t}$ (which is zero except
184 at the goal states). Intrinsic and extrinsic reward values are then passed to two parallel, but sepa-
185 rate, RL systems, each working with a single reward signal. Independently of each other, the two
186 RL systems use a hybrid algorithm^{37,50,58,59} combining model-based planning^{60,61} and model-free
187 habit-formation⁶² to learn a policy $\pi_{\text{ext},t}$ that maximizes future extrinsic rewards and a policy $\pi_{\text{int},t}$
188 that maximizes future intrinsic rewards^{20,37}, respectively. The two policies are combined into a
189 final policy π_t for taking the next action a_t . The degree of exploration is high if $\pi_{\text{int},t}$ dominates
190 $\pi_{\text{ext},t}$ during action selection. We assumed that ‘reward optimism’ influences the relative influence
191 of $\pi_{\text{int},t}$ and $\pi_{\text{ext},t}$ on the final policy π_t and, as a result, the extent of exploration (**Methods**).

192 We formulated three different hypotheses for human exploration in the form of three types of in-
193 trinsic rewards $r_{\text{int},t}$; all three are representative examples of classes of intrinsic rewards in machine
194 learning^{20,21}: (i) novelty^{13,14,37}, (ii) information gain^{17,19,63,64}, and (iii) surprise^{15,43,65}. Novelty
195 quantifies how infrequent the state s_t has been until time t ; thus, exploration in novelty-seeking
196 agents is guided toward the least visited states. Information gain quantifies how much the agent
197 updates its belief about the structure of the environment upon observing the transition from the
198 state-action pair (s_{t-1}, a_{t-1}) to state s_t ; thus, exploration in information-gain-seeking agents is
199 guided toward states where the agents’ estimates of the transition probabilities are least certain.
200 Surprise quantifies how unexpected it is to observe state s_t after taking action a_{t-1} at state s_{t-1} ;
201 thus, exploration in surprise-seeking agents is guided toward states with the most stochastic ac-
202 tions. As a control, we also considered the hypothesis that no explicit intrinsic reward signal
203 is needed to explain human exploratory actions. We formalized this hypothesis in the form of
204 an algorithm that uses no intrinsic rewards but incorporates some exploration incentive into the
205 reward-seeking policy $\pi_{\text{ext},t}$ (via optimistic initialization⁴⁹; see **Methods**).

206 Novelty is the dominant drive of human exploration

207 To test which algorithm best explains human behavior, we used three-fold cross-validation⁶⁹.
208 We fitted the parameters of our four algorithms (i.e., novelty-seeking, information-gain-seeking,
209 surprise-seeking, and exploration via optimistic initialization) to the action choices of two-thirds
210 of human participants by maximizing the likelihood of data given model parameters (**Methods**).
211 We then quantified the predictive power of the fitted algorithms by computing the likelihood of
212 data for the rest of the participants using the fitted parameters (**Methods**).

213 Given the cross-validated likelihood of different algorithms, we used Bayesian model compari-
214 son^{41,67} to rank the models (**Methods**). We find that seeking novelty is by far the most probable
215 model for the majority of human participants, followed by seeking information gain as the 2nd most
216 probable model (Fig. 4B; model-recovery⁶⁸ in inset). Repeating the model comparison separately
217 for each group of participants yielded the same conclusion (Fig. 4E; despite the ~ 70% decrease
218 in the sample size). This result shows (i) that seeking novelty describes the behavior of human

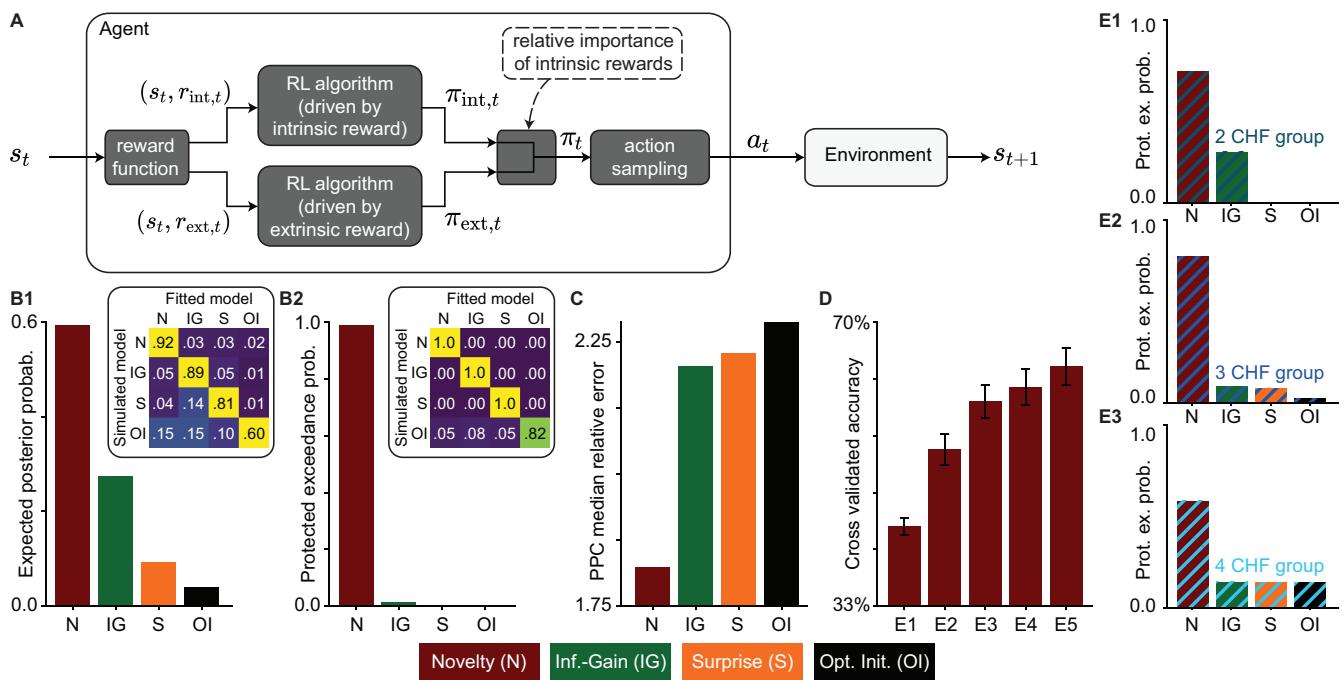


Figure 4: Novelty-seeking is the most accurate model of human behavior. **A.** Block diagram of the intrinsically motivated RL algorithm for modeling human behavior. Given the state s_t at time t , the intrinsic reward $r_{int,t}$ (e.g., novelty) and the extrinsic reward $r_{ext,t}$ (i.e., the monetary reward value of s_t) are evaluated by a reward function and passed to two identical (except for the reward signals) parallel RL algorithms. The two algorithms compute two policies, one for seeking intrinsic reward $\pi_{int,t}$ and one for seeking extrinsic reward $\pi_{ext,t}$. The two policies are then weighted according to the relative importance of the intrinsic reward and are combined to make a final policy π_t . The next action a_t is selected by sampling from π_t . See [Methods](#) for details. **B.** Bayesian model comparison: Human participants' action choices are best explained by novelty-seeking (N) compared to seeking information gain (IG), seeking surprise (S), or exploration based on optimistic initialization without intrinsic rewards (OI). **B1.** The expected posterior probability quantifies the proportion of participants whose behavior is best explained by each algorithm⁶⁶ (regarding cross-validated log-likelihoods; [Methods](#)). **B2.** Protected Exceedance Probability⁶⁷ quantifies the probability of each model being more frequent than the others among participants. Insets show confusion matrices from the model recovery⁶⁸ (see [Methods](#)); we could always recover the model that had generated the data, using almost the same number of simulated participants (60) as human participants (57). **C.** Model-comparison based on Posterior Predictive Checks (PPC): Median relative error (i.e., absolute difference divided by the SE) of each algorithm in replicating 44 group-level summary statistics of the action choices of human participants (e.g., fractions of trials spent in the stochastic part in [Fig. 2A](#); see [Methods](#) for the full list). Novelty-seeking most accurately replicates human data. **D.** Cross-validated accuracy rate of novelty-seeking in predicting individual actions of human participants. The chance level is 33%. Error bars show the SEMean. Novelty-seeking allows above-chance prediction of each participant's actions. **E.** Protected Exceedance Probability (as in B2) for participants in the 2 CHF (E1), 3 CHF (E3), and 4 CHF (E4) groups. Novelty-seeking is the most frequent model of behavior across and within groups.

219 participants better than seeking information gain, seeking surprise, or exploration via optimistic
 220 initialization and (ii) that reward optimism mainly influences the *extent* of the exploration but
 221 does not have a strong influence on the exploration *strategy*.

222 To confirm the results of our model comparison, we simulated each of the four algorithms with their
 223 fitted parameters in our experimental paradigm, i.e., we performed Posterior Predictive Checks
 224 (PPC)^{68,70}. We then compared 44 summary statistics of human action choices (e.g., the fractions
 225 of trials spent in the stochastic part as in [Fig. 2A](#)) with those of the simulated agents (see [Methods](#)
 226 for the complete list of summary statistics). Results of the PPC show that novelty-seeking is *quantitatively*
 227 the most accurate algorithm in reproducing data statistics ([Fig. 4C](#) and [Supplementary](#)

228 Materials). Novelty-seeking also successfully reproduced all key *qualitative* behavioral patterns of
229 human participants discussed above (compare Fig. 2A-C with Fig. 2D-F).

230 Finally, to further test the predictive power of novelty-seeking, we quantified its accuracy in pre-
231 dicting individual actions of human participants (i.e., given a participant's actions until time t ,
232 we asked whether novelty-seeking could predict the participant's action at $t + 1$; **Methods**). We
233 found a more than 40% cross-validated accuracy rate in episode 1 (Fig. 4D; chance level: 33%).
234 As the participants moved through the environment, their behavior became more predictable (i.e.,
235 it was determined more strongly by their experience throughout the experiment than by their life
236 experience before the experiment): Hence, we observed an increase in the cross-validated accuracy
237 rate for episodes 2-5, with a more than 60% accuracy rate in episode 5. Therefore, novelty-seeking
238 enabled an above-chance prediction of each participant's actions, even though it had no prior
239 information about the participant.

240 Taken together, our results provide strong quantitative and qualitative evidence for novelty as the
241 dominant drive of human exploration in our experiment.

242 Discussion

243 We designed a novel experimental paradigm to study human goal-directed exploration in multi-
244 step stochastic environments with sparse rewards. We made three main observations: (i) Human
245 participants who were optimistic about finding higher rewards than those already discovered were
246 persistently attracted to the stochastic part; (ii) the extent of attraction to the stochastic part
247 decreased by decreasing the participants' level of optimism, but it did not vanish even when there
248 was no prospect of finding better rewards than the one already discovered; and (iii) this exploratory
249 behavior was explained better by seeking novelty than seeking information gain or surprise, even
250 though seeking information gain is theoretically more robust in dealing with stochasticity.

251 These three observations are instrumental in addressing the long-standing question of how humans
252 explore their environments⁴⁻⁶. Specifically, past experimental studies have shown that humans use
253 a combination of random and directed exploration in 1-step or 2-step decision-making tasks (e.g.,
254 multi-armed bandits)^{22-24,71-73}, while theoretical studies have proposed distinct motivational sig-
255 nals as potential drives of human directed exploratory actions^{5,8,9,74,75}. However, despite significant
256 advances in the past years^{25-27,29-31,76-83}, it has remained highly debated which motivational signal
257 explains human exploration best^{9,10}. Importantly, the focus of existing studies on 1-step or 2-step
258 decision-making tasks has raised questions about whether our current understanding of human
259 exploration can be generalized to more complex and realistic situations^{9,34-36,39}.

260 To bridge between exploration in 1-step and multi-step tasks, we showed in an earlier study³⁷ that
261 novelty dominantly drives human exploration in complex but *deterministic* environments with
262 sparse rewards, i.e., situations where novelty-seeking has empirically been shown to be an effective
263 exploration strategy^{13,14}. Observations (i)-(iii) above provide further evidence for novelty as the
264 dominant drive of human goal-directed exploration even in situations *when seeking novelty is not*
265 *optimal*. Specifically, after episode 1, participants can reasonably assume that the task is solvable,
266 i.e., if they have succeeded in finding the 2 CHF reward, then they should also be able to find
267 the higher rewards. Hence, the fact that the participants in the 2 CHF group continue the search
268 during episodes 2-5 is expected and economically rational, but our results show that they use a
269 *suboptimal* novelty-based search strategy. Further experimental studies are needed to investigate

270 the implications of our results for other types of human exploratory behavior. In particular, it is
271 a priori unclear whether goal-directed exploration, as studied here, shares some drives and mech-
272 anisms with reward-free exploration strategies in, e.g., reactive orienting and passive viewing^{80,84},
273 navigation^{85,86}, and non-instrumental decision-making tasks^{29,32,33}.

274 Our results appear to contradict the long-lasting belief that humans are not prone to the ‘noisy
275 TV’ problem^{1,46,48}. It is important, however, to note that the stochasticity in our environment
276 is different from passively watching a noisy, grey-flickering TV screen. Rather, the environment
277 allows participants to take actions that are in spirit similar to exploring different TV channels,
278 where each channel contains videos – similar to the recent realizations of ‘noisy TV’ in machine
279 learning⁴³. In this context, our experimental paradigm is a model experiment of recent social
280 media where users spend hours on the ‘endless scrolling option’ to watch new videos^{87,88} – despite
281 the availability of alternative activities with ‘extrinsic’ rewards. This is analogous to the behavior
282 of the 4 CHF participants who kept exploring the stochastic part despite knowing the path to the
283 most rewarding goal state.

284 Accordingly, our results challenge the optimality of human exploration^{11,83}. However, we note
285 that, for computing novelty, an agent only needs to track the state frequencies over time and
286 does not need any knowledge of the environment’s structure (**Methods**); hence computing novelty
287 is computationally cheaper than computing information gain. This suggests that a potentially
288 higher level of distraction by novelty in humans may be the price of spending less computational
289 power. In other words, novelty-seeking in the presence of stochasticity may not be a globally
290 optimal strategy for exploration but can be an optimal strategy given a set of prior assumptions
291 and computational constraints, i.e., a ‘resource rational’ policy^{89–91}.

292 Finally, we note that notions of ‘novelty’, ‘surprise’, and ‘information gain’ as scientific terms
293 often refer to different precise mathematical definitions^{65,92} – across a broad set of applications
294 in neuroscience^{37,93,94}, psychology^{95–97}, and machine learning^{20,21,48}. Our results in this paper are
295 based on the specific mathematical formulations that we have chosen (**Methods**), but we expect
296 our conclusions to be invariant to the precise choice of definitions as long as (i) novelty quantifies
297 infrequency of *states*³⁷ as, for example, defined with density models in machine learning^{13,14,98};
298 (ii) surprise quantifies mismatches between observations and agents’ expectations, where the ex-
299 pectations are made based on the previous *state-action* pair, including all measures of prediction
300 surprise⁶⁵ and typical measures of prediction error in machine learning^{15,43}; and (iii) information
301 gain quantifies improvements in the agents’ *world-model* and vanishes with the accumulation of
302 experience, which includes Bayesian⁹³ and Postdictive surprise⁹⁴, measures of disagreement and
303 progress-rate in machine learning^{17–19,44,99}, and optimal exploration bonuses in RL theory^{100,101}.

304 In conclusion, our results show (i) that human decision-making is influenced by an interplay of
305 intrinsic and extrinsic rewards, controlled by reward optimism, and (ii) that novelty-seeking RL
306 algorithms can successfully model this interplay in tasks where humans search for rewarding states.

307 Methods

308 Ethics statement

309 The data for human experiment were collected under CE 164/2014, and the protocol was approved by
310 the ‘Commission cantonale d’éthique de la recherche sur l’être humain’. All participants were informed
311 that they could quit the experiment at any time and signed a written informed consent. All procedures
312 complied with the Declaration of Helsinki (except for pre-registration).

313 Experimental procedure

314 63 participants joined the experiment. Data from 6 participants were removed (see below); thus, data
315 from 57 participants (27 female, mean age 24.1 ± 4.1 years) were included in the analyses. All participants
316 were naive to the purpose of the experiment and had normal or corrected-to-normal visual acuity. The
317 experiment was scripted in MATLAB using the Psychophysics Toolbox¹⁰².

318 Before starting the experiment, the participants were informed that they needed to find any of the 3 goal
319 states 5 times. They were shown the 3 goal images and informed that each image had a different reward
320 value of 2 CHF, 3 CHF, or 4 CHF. Specifically, they were given an example that ‘if you find the 2 CHF
321 goal twice, 3 CHF goal once, and 4 CHF goal twice, then you will be paid $2 \times 2 + 1 \times 3 + 2 \times 4 = 15$ CHF’;
322 see [Informing RL agents of different goal states](#) for how this information was incorporated into the RL
323 algorithms. At each trial, participants were presented with an image (state) and three grey disks below
324 the image ([Fig. 1C](#)). Clicking on a disk (action) led participants to a subsequent image, which was chosen
325 based on the underlying graph of the environment in [Fig. 1A-B](#) (which was unknown to the participants).
326 Participants clicked through the environment until they found one of the goal states, which finished an
327 episode ([Fig. 1C](#)).

328 The assignment of images to states and disks to actions was random but kept fixed throughout the
329 experiment and identical for all participants ([Fig. 1C2](#)). Exceptionally, we did not make the assignment
330 for the actions in state 4 before the start of the experiment. Rather, for each participant, we assigned
331 the disk that was chosen in the 1st encounter of state 4 to the stochastic action and the other two disks
332 randomly to the bad and progressing actions, respectively ([Fig. 1A](#)). With this assignment, we ensured
333 that all human participants would visit the stochastic part at least once during episode 1. The same
334 protocol was used for simulated RL agents. Additionally, to ensure that participants would not get lost
335 in the stochastic part, we used the same assignment for the ‘escape action’ in all stochastic states (i.e.,
336 the action that took participants from stochastic states to state 4 in [Fig. 1B](#)).

337 Before the start of the experiment, we randomly assigned the different goal images (corresponding to the
338 three reward values) to different goal states G^* , G_1 , and G_2 , separately for each participant ([Fig. 1D](#)). The
339 image and, hence, the reward value were then kept fixed throughout the experiment. In other words, we
340 randomly assigned different participants to different environments with the same structure but different
341 assignments of reward values. We, therefore, ended up with 3 groups of participants: 23 in the 2 CHF
342 group, 20 in the 3 CHF group, and 20 in the 4 CHF group ([Fig. 1D](#)). The probability of encountering
343 a goal state other than G^* was controlled by the parameters ε . We considered ε to be around machine
344 precision 10^{-8} , so we have $(1 - \varepsilon)^{5 \times 63} \approx 1 - 10^{-5} \approx 1$, meaning that all 63 participants would be taken
345 almost surely to the goal state G^* in all 5 episodes. We note, however, that a participant could, in
346 principle, observe any of the 3 goals if they could choose the progressing action at state 6 sufficiently
347 many times.

348 Two participants (in the 2 CHF group) did not finish the experiment, and four participants (1 in the
349 3 CHF group and 3 in the 4 CHF group) took more than 3 times group-average number of actions in
350 episodes 2-5 to finish the experiment. We considered this as a sign of being non-attentive and removed

351 these 6 participants from further analyses.

352 At the end of the experiment, participants were given a paper with the pseudo-randomly placed images of
 353 progressing states (1-6), trap states (7-8), one stochastic state (S-44), as well as a new image (X) that did
 354 not belong to the 58 states of the environment. Participants were asked to ‘draw the transitions between
 355 images’ and were told they ‘can add anything [they] want.’ Some participants had not reported the
 356 directionality of transitions. Hence, we only analyzed how many participants had drawn a link between
 357 every pair of states, independently of the link’s direction (Fig. 3). To further simplify analyses, we did
 358 not dissociate between different trap states when counting the connections from non-trap states to the
 359 trap states. As a result, there were $1 + 9 \times 8/2 = 37$ possible links to draw (the extra 1 belongs to the
 360 connection between the two trap states), but there were only 13 links in the ground truth (Fig. 3A, inset).
 361 Accordingly, we defined the reconstruction score in Fig. 3 as the ratio of correctly reconstructed links (out
 362 of 13) minus the ratio of incorrectly reconstructed links (out of 24).

363 The correction for multiple hypotheses testing was done by controlling the False Discovery Rate at 0.05⁵⁴
 364 over all 10 null hypotheses that are presented in Fig. 2 and Fig. 3 (p-value threshold: 0.045). Using
 365 Bonferroni correction (with a family-wise error rate of 0.05, i.e., p-value threshold: 0.005) does not
 366 change our results. All Bayes Factors (abbreviated BF in the figures) were evaluated using the Schwartz
 367 approximation⁵³ to avoid any assumptions on the prior distribution.

368 Computational modeling

369 We used ideas from non-parametric Bayesian inference¹⁰³ to design an intrinsically motivated RL algo-
 370 rithm for environments where the total number of states is unknown. We present the final results here
 371 and present the derivations and pseudo-code in Supplementary Materials.

372 We indicate the sequence of actions and states until time t by $s_{1:t}$ and $a_{1:t}$, respectively, and define the
 373 **set of all known states** at time t as

$$374 \quad \mathcal{S}^{(t)} = \left\{ s : \exists t' \in \{1, \dots, t\} \text{ s.t. } s = s_{t'} \right\} \cup \{\tilde{G}_0, \tilde{G}_1, \tilde{G}_2\}, \quad (1)$$

375 where \tilde{G}_i s represent our three different goal states – \tilde{G}_0 corresponds to the 2 CHF goal, \tilde{G}_1 to the 3
 376 CHF goal, and \tilde{G}_2 to the 4 CHF goal. Note that $\{\tilde{G}_0, \tilde{G}_1, \tilde{G}_2\}$ represents the images of the goal states
 377 and not their locations G^* , G_1 , and G_2 and that the assignment of images to locations is unknown to
 378 the model. Hence, starting with $t = 0$, the algorithm incorporates information about the existence of
 379 multiple goal states in the environment. In a more general setting, $\{\tilde{G}_0, \tilde{G}_1, \tilde{G}_2\}$ should be replaced by
 380 the set of all states whose images were shown to participants before the experiment. After a transition to
 381 state $s_{t+1} = s'$ resulting from taking action $a_t = a \in \{\text{left, middle, right}\}$ (i.e., representing disk positions
 382 in Fig. 1C) at state $s_t = s$, the reward functions R_{ext} and $R_{\text{int},t}$ evaluate the reward values $r_{\text{ext},t+1}$ and
 383 $r_{\text{int},t+1}$. We define the **extrinsic reward function** R_{ext} as

$$384 \quad R_{\text{ext}}(s, a \rightarrow s') = \delta_{s', \tilde{G}_0} + r_1^* \delta_{s', \tilde{G}_1} + r_2^* \delta_{s', \tilde{G}_2}, \quad (2)$$

385 where δ is the Kronecker delta function, and we assume (without loss of generality) a subjective extrinsic
 386 reward value of 1 for \tilde{G}_0 (2 CHF goal) and subjective extrinsic reward values of $r_1^* \geq 1$ and $r_2^* \geq 1$
 387 for \tilde{G}_1 and \tilde{G}_2 , respectively. The prior information of human participants about the difference in the
 388 monetary reward values of different goal states can be modeled in simulated RL agents by varying r_1^* and
 389 r_2^* (resulting in the exploratory component of reward-seeking in optimistic initialization; see ‘**Informing**
 390 **RL agents of different goal states**’). We discuss $R_{\text{int},t}$ in **Alternative algorithms**.

391 As a general choice for the RL algorithm in Fig. 4A, we consider a hybrid of model-based and model-free
 392 policy^{37,50,59,62}. The **model-free (MF) component** uses the sequence of states $s_{1:t}$, actions $a_{1:t}$, extrin-

393 sic rewards $r_{\text{ext},1:t}$, and intrinsic rewards $r_{\text{int},1:t}$ (in the two parallel branches in Fig. 4A) and estimates
 394 the extrinsic and intrinsic Q -values $Q_{\text{MF,ext}}^{(t)}$ and $Q_{\text{MF,int}}^{(t)}$, respectively. Traditionally, MF algorithms do
 395 not need knowledge of the total number of states⁴⁹; thus, the MF component of our algorithm remains
 396 similar to that of previous studies^{37,104}: At the beginning of episode 1, Q -values are initialized at $Q_{\text{MF,ext}}^{(0)}$
 397 and $Q_{\text{MF,int}}^{(0)}$. Then, the estimates are updated recursively after each new observation. After the transition
 398 $(s_t, a_t) \rightarrow s_{t+1}$, the agent computes extrinsic and intrinsic reward prediction errors $RPE_{\text{ext},t+1}$ and
 399 $RPE_{\text{int},t+1}$, respectively:

$$400 \quad \begin{aligned} RPE_{\text{ext},t+1} &= r_{\text{ext},t+1} + \lambda_{\text{ext}} V_{\text{MF,ext}}^{(t)}(s_{t+1}) - Q_{\text{MF,ext}}^{(t)}(s_t, a_t) \\ RPE_{\text{int},t+1} &= r_{\text{int},t+1} + \lambda_{\text{int}} V_{\text{MF,int}}^{(t)}(s_{t+1}) - Q_{\text{MF,int}}^{(t)}(s_t, a_t), \end{aligned} \quad (3)$$

401 where λ_{ext} and $\lambda_{\text{int}} \in [0, 1]$ are the discount factors for extrinsic and intrinsic reward seeking, respectively,
 402 and $V_{\text{MF,ext}}^{(t)}(s_{t+1}) = \max_{a'} Q_{\text{MF,ext}}^{(t)}(s_{t+1}, a')$ and $V_{\text{MF,int}}^{(t)}(s_{t+1}) = \max_{a'} Q_{\text{MF,int}}^{(t)}(s_{t+1}, a')$ are the extrinsic
 403 and intrinsic V -values⁴⁹ of the state s_{t+1} , respectively. We use two separate eligibility traces^{49,104} for the
 404 update of Q -values, one for extrinsic reward $e_{\text{ext},t}$ and one for intrinsic reward $e_{\text{int},t}$, both initialized at
 405 zero at the beginning of each episode. The update rules for the eligibility traces after taking action a_t at
 406 state s_t is

$$407 \quad \begin{aligned} e_{\text{ext},t+1}(s, a) &= \begin{cases} 1 & \text{if } s = s_t, a = a_t \\ \lambda_{\text{ext}} \mu_{\text{ext}} e_{\text{ext},t}(s, a) & \text{otherwise} \end{cases} \\ e_{\text{int},t+1}(s, a) &= \begin{cases} 1 & \text{if } s = s_t, a = a_t \\ \lambda_{\text{int}} \mu_{\text{int}} e_{\text{int},t}(s, a) & \text{otherwise}, \end{cases} \end{aligned} \quad (4)$$

408 where λ_{ext} and λ_{int} are the discount factors defined above, and μ_{ext} and $\mu_{\text{int}} \in [0, 1]$ are the decay
 409 factors of the eligibility traces for the extrinsic and intrinsic rewards, respectively. The update rule is
 410 then $\Delta Q_{\text{MF}}^{(t+1)}(s, a) = \rho e_{t+1}(s, a) RPE_{t+1}$, where e_{t+1} is the eligibility trace (i.e., either $e_{\text{ext},t+1}$ or $e_{\text{int},t+1}$),
 411 RPE_{t+1} is the reward prediction error (i.e., either $RPE_{\text{ext},t+1}$ or $RPE_{\text{int},t+1}$), and $\rho \in [0, 1]$ is the learning
 412 rate.

413 The **model-based (MB) component** builds a world-model that summarizes the structure of the envi-
 414 ronment by estimating the probability $p^{(t)}(s'|s, a)$ of the transition $(s, a) \rightarrow s'$. To do so, an agent counts
 415 the transition $(s, a) \rightarrow s'$ recursively and using a leaky integration^{105,106}:

$$416 \quad \tilde{C}_{s,a,s'}^{(t+1)} = \begin{cases} \kappa \tilde{C}_{s,a,s'}^{(t)} + \delta_{s',s_{t+1}} & \text{if } s = s_t, a = a_t \\ \tilde{C}_{s,a,s'}^{(t)} & \text{otherwise,} \end{cases} \quad (5)$$

417 where δ is the Kronecker delta function, $\tilde{C}_{s,a,s'}^{(0)} = 0$, and $\kappa \in [0, 1]$ is the leak parameter and accounts for
 418 imperfect memory during model-building in humans. If $\kappa = 1$, then $\tilde{C}_{s,a,s'}^{(t+1)}$ is the exact count of transition
 419 $(s, a) \rightarrow s'$. For $\kappa < 1$, we refer to $\tilde{C}_{s,a,s'}^{(t+1)}$ as a leaky count or pseudo-count. These leaky counts are used
 420 to estimate the transition probabilities

$$421 \quad p^{(t)}(s'|s, a) = \begin{cases} \frac{\epsilon_{\text{obs}} + \tilde{C}_{s,a,s'}^{(t)}}{\epsilon_{\text{new}} + \epsilon_{\text{obs}} |\mathcal{S}^{(t)}| + \tilde{C}_{s,a}^{(t)}} & \text{if } s' \in \mathcal{S}^{(t)}, \\ \frac{\epsilon_{\text{new}}}{\epsilon_{\text{new}} + \epsilon_{\text{obs}} |\mathcal{S}^{(t)}| + \tilde{C}_{s,a}^{(t)}} & \text{if } s' = s_{\text{new}}, \end{cases} \quad (6)$$

422 where $\tilde{C}_{s,a}^{(t)} = \sum_{s'} \tilde{C}_{s,a,s'}^{(t)}$ is the leaky count of taking action a at state s , $\epsilon_{\text{obs}} \in \mathbb{R}^+$ is a free parameter
 423 for the prior probability of transition to a known state (i.e., states in $\mathcal{S}^{(t)}$), and $\epsilon_{\text{new}} \in \mathbb{R}^+$ is a free

424 parameter for the prior probability of transition to a new state (i.e., states not in $\mathcal{S}^{(t)}$) – see Supplementary
 425 Materials for derivations. Choosing $\epsilon_{\text{new}} = 0$ is equivalent to assuming there is no unknown state in the
 426 environment, for which the estimate in [Eq. 6](#) is reduced to the classic Bayesian estimate of transition
 427 probabilities in bounded discrete environments^{37,59}. The transition probabilities are then used in a novel
 428 variant of prioritized sweeping^{49,60} adapted to deal with an unknown number of states. The prioritized
 429 sweeping algorithm computes a pair of Q -values, i.e., $Q_{\text{MB,ext}}^{(t)}$ for extrinsic and $Q_{\text{MB,int}}^{(t)}$ for intrinsic
 430 rewards, by solving the corresponding Bellman equations⁴⁹ with $T_{PS,\text{ext}}$ and $T_{PS,\text{int}}$ iterations, respectively.
 431 See Supplementary Material for details.

432 Finally, actions are chosen by a **softmax policy**⁴⁹: The probability of taking action a in state s at time
 433 t is

$$\pi_t(a|s) \propto \exp \left[\beta_{\text{MB,ext}} Q_{\text{MB,ext}}^{(t)}(s, a) + \beta_{\text{MF,ext}} Q_{\text{MF,ext}}^{(t)}(s, a) + \right. \\ \left. \beta_{\text{MB,int}} Q_{\text{MB,int}}^{(t)}(s, a) + \beta_{\text{MF,int}} Q_{\text{MF,int}}^{(t)}(s, a) + b(a) \right], \quad (7)$$

434 where $\beta_{\text{MB,ext}} \in \mathbb{R}^+$, $\beta_{\text{MF,ext}} \in \mathbb{R}^+$, $\beta_{\text{MB,int}} \in \mathbb{R}^+$, and $\beta_{\text{MF,int}} \in \mathbb{R}^+$ are free parameters (i.e., inverse
 435 temperature parameters of the softmax policy⁴⁹) expressing the contribution of each Q -value to action-
 436 selection, and $b(a)$ captures the general bias of the agent for taking the particular action a (e.g., left
 437 grey disk in [Fig. 1C](#)) independently of the state s . Without loss of generality, we assume $b(\text{left}) = 0$ and
 438 considered $b(\text{middle}) \in \mathbb{R}$ and $b(\text{right}) \in \mathbb{R}$ as free parameters. For [Fig. 4A](#), we defined hybrid policies for
 439 each of the two branches as
 440

$$\pi_{\text{ext},t}(a|s) \propto \exp \left[\frac{\beta_{\text{MB,ext}}}{\beta_{\text{MB,ext}} + \beta_{\text{MF,ext}}} Q_{\text{MB,ext}}^{(t)}(s, a) + \frac{\beta_{\text{MF,ext}}}{\beta_{\text{MB,ext}} + \beta_{\text{MF,ext}}} Q_{\text{MF,ext}}^{(t)}(s, a) \right] \\ \pi_{\text{int},t}(a|s) \propto \exp \left[\frac{\beta_{\text{MB,int}}}{\beta_{\text{MB,int}} + \beta_{\text{MF,int}}} Q_{\text{MB,int}}^{(t)}(s, a) + \frac{\beta_{\text{MF,int}}}{\beta_{\text{MB,int}} + \beta_{\text{MF,int}}} Q_{\text{MF,int}}^{(t)}(s, a) \right]. \quad (8)$$

441 Hence the final policy is $\pi_t \propto \pi_{\text{ext},t}^{\beta_{\text{MB,ext}} + \beta_{\text{MF,ext}}} \cdot \pi_{\text{int},t}^{\beta_{\text{MB,int}} + \beta_{\text{MF,int}}} \cdot e^b$.

442 In general, the contribution of seeking extrinsic reward and seeking intrinsic reward as well as the MB and
 443 MF branches to action selection depends on different factors, including time passed since the beginning
 444 of the experiment^{51,62}, cognitive load¹⁰⁷, and whether the location of reward is known³⁷. Here, we make
 445 a simplistic assumption that these contributions (expressed as the 4 inverse temperature parameters)
 446 depend only on reward optimism:

- 447 • Episode 1: Before finding the goal state, we consider $\beta_{\text{MB,ext}} = \beta_{\text{MB,ext}}^{(1)}$, $\beta_{\text{MF,ext}} = \beta_{\text{MF,ext}}^{(1)}$, $\beta_{\text{MB,int}} =$
 448 $\beta_{\text{MB,int}}^{(1)}$, and $\beta_{\text{MF,int}} = \beta_{\text{MF,int}}^{(1)}$ as four independent free parameters.
- 449 • Episodes 2-5: After finding the goal G^* , we consider $\beta_{\text{MB,ext}} = \beta_{\text{MB,ext}}^{(2,r)}$, $\beta_{\text{MF,ext}} = \beta_{\text{MF,ext}}^{(2,r)}$, $\beta_{\text{MB,int}} =$
 450 $\beta_{\text{MB,int}}^{(2,r)}$, and $\beta_{\text{MF,int}} = \beta_{\text{MF,int}}^{(2,r)}$, where r is either 2 CHF, 3 CHF, or 4CHF, resulting in $3 \times 4 = 12$
 451 free parameters.

452 **Summary of free parameters:** The full algorithm has 14 main parameters (capturing initialization
 453 and learning dynamics)

$$\Phi^{(\text{main})} = \{r_1^*, r_2^*, Q_{\text{MF,ext}}^{(0)}, Q_{\text{MF,int}}^{(0)}, \lambda_{\text{ext}}, \lambda_{\text{int}}, \mu_{\text{ext}}, \mu_{\text{int}}, \rho, \kappa, \epsilon_{\text{new}}, \epsilon_{\text{obs}}, T_{PS,\text{ext}}, T_{PS,\text{int}}\}, \quad (9)$$

454 16 inverse temperature parameters (capturing the randomness in decision-making and the balance of

457 seeking intrinsic versus extrinsic rewards)

458 $\Phi^{(\beta)} = \{\beta_{\text{MB,ext}}^{(1)}, \beta_{\text{MB,int}}^{(1)}, \beta_{\text{MF,ext}}^{(1)}, \beta_{\text{MF,int}}^{(1)}\} \cup \{\beta_{\text{MB,ext}}^{(2,r)}, \beta_{\text{MB,int}}^{(2,r)}, \beta_{\text{MF,ext}}^{(2,r)}, \beta_{\text{MF,int}}^{(2,r)}\}_{r \in \{2,3,4\}} \text{CHF}\}, \quad (10)$

459 and 2 bias parameters

460 $\Phi^{(b)} = \{b(\text{middle}), b(\text{right})\}. \quad (11)$

461 We denote the set of all parameters by

462 $\Phi = \{\Phi^{(\text{main})}, \Phi^{(\beta)}, \Phi^{(b)}\} \quad (12)$

463 We note that *not* all these parameters were fitted for all algorithms (see [Alternative algorithms](#)).

464 Informing RL agents of different goal states

465 Human participants were informed that the environment had different goal states with different monetary
466 reward values. This information was intended to incentivize exploration after finding the likely goal state
467 G^* at the end of episode 1. We used three mechanisms to incorporate this information into the RL
468 algorithm described above ([Computational modeling](#)). Our main focus throughout the paper has been
469 on the first mechanism: Reward optimism balances intrinsic rewards against extrinsic rewards ([Fig. 4A](#)).
470 We formalized this idea by assigning different values to $\beta_{\text{MB,ext}}$, $\beta_{\text{MF,ext}}$, $\beta_{\text{MB,int}}$, and $\beta_{\text{MF,int}}$ (see [Eq. 7](#))
471 depending on the reward value of G^* ; this makes **the relative importance of intrinsic rewards**
472 explicitly depend on the difference between the reward value of the discovered goal r_{G^*} and the known
473 reward values r_1^* and r_2^* of the other goal states ([Eq. 2](#)).

474 The two other alternative mechanisms are the **model-based optimistic initialization** and **model-
475 free optimistic initialization**. Exploration in the optimistic initialization algorithm in [Fig. 4](#) is solely
476 directed via these mechanisms (see [Alternative algorithms](#)). In this section, we discuss how these mecha-
477 nisms balance exploration versus exploitation.

478 **Model-based optimistic initialization.** MB optimistic initialization is an explicit approach to
479 model reward-optimism through designing the world-model. The MB branch finds the extrinsic Q -values
480 $Q_{\text{MB,ext}}^{(t)}$ by solving the Bellman equations

481 $Q_{\text{MB,ext}}^{(t)}(s, a) = \bar{R}_{\text{ext}}^{(t)}(s, a) + \lambda_{\text{ext}} \sum_{s'} p^{(t)}(s'|s, a) \max_{a'} Q_{\text{MB,ext}}^{(t)}(s', a'), \quad (13)$

482 where $p^{(t)}(s'|s, a)$ is estimated transition probability in [Eq. 6](#), and

483
$$\begin{aligned} \bar{R}_{\text{ext}}^{(t)}(s, a) &= \sum_{s'} p^{(t)}(s'|s, a) R_{\text{ext}}(s, a \rightarrow s') \\ &= p^{(t)}(\tilde{G}_0|s, a) + r_1^* p^{(t)}(\tilde{G}_1|s, a) + r_2^* p^{(t)}(\tilde{G}_2|s, a) \end{aligned} \quad (14)$$

484 is the average immediate extrinsic reward expected to be collected by taking action a in state s (see
485 [Eq. 2](#)). Hence, the knowledge of the existence of three different goal states with three different rewards
486 has an explicit influence on the MB branch. For example, because no transitions to any of the goal states
487 have been experienced during episode 1, we have

488
$$\bar{R}_{\text{ext}}^{(t)}(s, a) = \frac{\epsilon_{\text{obs}}(1 + r_1^* + r_2^*)}{\epsilon_{\text{new}} + \epsilon_{\text{obs}}|\mathcal{S}^{(t)}| + \tilde{C}_{s,a}^{(t)}}. \quad (15)$$

489 $\bar{R}_{\text{ext}}^{(t)}(s, a)$ is closely linked to (approximately) Bayes-optimal exploration bonuses in the RL theory ¹⁰⁰ and
490 has two important properties. First, $\bar{R}_{\text{ext}}^{(t)}(s, a)$ is an increasing function of ϵ_{obs} . This implies that the
491 expected reward of a transition during episode 1 increases by increasing the prior probability of transition
492 to states in $\mathcal{S}^{(t)}$. This is a direct consequence of our Bayesian approach to estimating the world-model.
493 Second, $\bar{R}_{\text{ext}}^{(t)}(s, a)$ is a decreasing function of $\tilde{C}_{s,a}^{(t)}$. This implies that the expected reward of a state-action
494 pair decreases by experience. Importantly, $\bar{R}_{\text{ext}}^{(t)}(s, a)$ converges to 0 as $\tilde{C}_{s,a}^{(t)} \rightarrow \infty$, which makes a link
495 between exploration driven by the MB optimistic initialization and exploration driven by information
496 gain (see below).

497 During episodes 2-5, the exact theoretical analysis of the MB optimistic initialization is rather complex.
498 However, using a few approximation steps for episode 2, we can find a condition for whether the MB ex-
499 trinsic Q -values show a preference for exploring or leaving the stochastic part (Supplementary Materials).
500 The condition involves a comparison between the discounted reward value of the discovered goal state
501 $\lambda_{\text{ext}}^2 r_{G^*}$ and an optimistic estimate of a reward-to-be-found $R_{\text{Stoch}}^{(t)}$ in the stochastic part that depends
502 on $r_1^*, r_2^*, \lambda_{\text{ext}}, \epsilon_{\text{obs}}, |\mathcal{S}^{(t)}|$, and the average pseudo-count $\bar{C}^{(t)}$ of state-action pairs in the stochastic part
503 (Supplementary Materials). We can show that if $r_{G^*} < r_2^*$, then increasing r_2^* would eventually result in a
504 preference for staying in the stochastic part: If the reward value of a goal state is much greater than the
505 value of the discovered goal state, then the agent prefers to keep exploring the stochastic part. However,
506 for any value of r_2^* and r_{G^*} , increasing $\bar{C}^{(t)}$ would eventually result in a preference for leaving the stochas-
507 tic part and going towards the already discovered goal: Agents will eventually give up exploration after a
508 sufficiently long and unsuccessful exploration phase. This is another qualitative link between exploration
509 based on the MB optimistic initialization and exploration driven by information gain (see below).

510 **Model-free optimistic initialization.** Unlike the MB branch, the MF branch does not explicitly
511 know about the existence of different goal states and their values. However, the initial value $Q_{\text{MF,ext}}^{(0)}$
512 of the MF extrinsic Q -values quantifies an expectation of the reward values in the environment before
513 any interaction with the environment. During episode 1, no extrinsic reward is received by the agent;
514 hence, for a small enough learning rate ρ and an optimistic initialization $Q_{\text{MF,ext}}^{(0)} > 0$, the extrinsic reward
515 prediction errors are always negative (Eq. 3). As a result, $Q_{\text{MF,ext}}^{(t)}(s, a)$ decreases as an agent keeps taking
516 action a in state s , which motivates the agent to try new actions. This is a well-known mechanism for
517 directed exploration in the machine learning community ⁴⁹. Similar to the MB optimistic initialization,
518 the effect of the MF optimistic initialization fades out over time – which makes them both similar to
519 exploration driven by information gain (see below).

520 During episodes 2-5, the exact theoretical analysis of the MF optimistic initialization is complex and
521 dependent on an agent’s exact trajectory (because of the eligibility traces). However, whether the MF
522 extrinsic Q -values show a preference for exploring or leaving the stochastic part essentially depends on
523 the reward value of the discovered goal state r_{G^*} and the initialization value $Q_{\text{MF,ext}}^{(0)}$. For example, if an
524 agent, starting at s_1 , takes the perfect trajectory of $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_6 \rightarrow G^*$ in episode
525 1, then, given a unit decay factor of the eligibility traces (i.e., $\mu_{\text{ext}} = 1$), it is easy to see that, in the
526 1st visit of state 4 in episode 2, the agent prefers the stochastic/bad action over the progressing action
527 if $r_{G^*} < \frac{1}{\lambda_{\text{ext}}^2} (1 - \lambda_{\text{ext}})(1 + \lambda_{\text{ext}} + \lambda_{\text{ext}}^2) Q_{\text{MF,ext}}^{(0)}$. This implies that, even though the MF branch is not
528 explicitly aware of different goal states and their reward values, it can still describe a type of reward
529 optimism through the initialization of Q -values.

530 Alternative algorithms

531 We considered four hypotheses for how humans explore the environment to search for the goal state (in-
532 cluding most representative explorations strategies in RL ^{9,20,21}): (i) seeking novelty, (ii) seeking informa-

533 tion gain, (iii) seeking surprise, and (iv) exploration via optimistic initialization (i.e., no intrinsic rewards).
 534 We formalized the four hypotheses in our framework by using different types of the intrinsic reward func-
 535 tion $R_{\text{int},t}$ that maps a transition $(s, a) \rightarrow s'$ to an intrinsic reward value $r_{\text{int},t+1} = R_{\text{int},t}(s_t, a_t \rightarrow s_{t+1})$.
 536 In this section, we describe these algorithms.

537 **1. Novelty-seeking:** For an agent seeking novelty (red in Fig. 4), we defined the intrinsic reward
 538 function as

$$539 \quad R_{\text{int},t}(s, a \rightarrow s') = -\log p_f^{(t)}(s'), \quad (16)$$

540 where $p_f^{(t)}(s') = \frac{1+\tilde{C}_{s'}^{(t)}}{1+|\mathcal{S}^{(t)}|+\sum_{s''} \tilde{C}_{s''}^{(t)}}$ is the state frequency with $\tilde{C}_{s'}^{(t)}$ the pseudo-count of encounters of state
 541 s' up to time t (similar to Eq. 5): $\tilde{C}_{s'}^{(t+1)} = \kappa \tilde{C}_{s'}^{(t)} + \delta_{s', s_{t+1}}$ with $\tilde{C}_{s'}^{(0)} = 0$. With this definition, that
 542 generalizes earlier works³⁷ to the case where the number of states is unknown, the least novel states are
 543 those that have been encountered most often (i.e., with the highest $\tilde{C}_{s'}^{(t)}$). Moreover, novelty is at its
 544 highest value for the unobserved states as we have $\tilde{C}_{s'}^{(t)} = 0$ for any unobserved state $s' \notin \mathcal{S}^{(t)}$. Similar
 545 intrinsic rewards have been used in machine learning^{13,14}.

546 To dissociate the effect of exploration by novelty-seeking from optimistic initialization in episode 1, we
 547 considered $\beta_{\text{MF,ext}}^{(1)} = \beta_{\text{MB,ext}}^{(1)} = 0$ and $Q_{\text{MF,ext}}^{(0)} = 0$. Moreover, we put $T_{PS,\text{ext}} = T_{PS,\text{int}} = 100$ (i.e., almost
 548 twice the total number of states) to decrease the number of parameters, based on the results of ref.³⁷
 549 showing the negligible importance fitting this parameter. Hence, the novelty-seeking algorithm had a
 550 total of **27 parameters** (11 main parameters + 14 inverse temperature parameters + 2 biases).

551 **2. Information-gain-seeking:** For an agent seeking information gain (green in Fig. 4), we defined the
 552 intrinsic reward function as

$$553 \quad R_{\text{int},t}(s, a \rightarrow s') = D_{\text{KL}} \left[p^{(t)}(\cdot|s, a) \parallel p^{(t+1)}(\cdot|s, a) \right], \quad (17)$$

554 where D_{KL} is the Kullback-Leibler divergence¹⁰⁸, and $p^{(t+1)}$ is the updated world-model upon observing
 555 $(s, a) \rightarrow s'$. The dots in Eq. 17 denote the dummy variable over which we integrate to evaluate the
 556 Kullback-Leibler divergence. Note that if $s' \notin \mathcal{S}^{(t)}$, then there are some technical problems in the naive
 557 computation of D_{KL} – since $p^{(t)}$ and $p^{(t+1)}$ have different supports. We dealt with these problems using a
 558 more fundamental definition of D_{KL} using the Radon–Nikodym derivative; see Supplementary Materials
 559 for derivations and see ref.⁶³ for an alternative heuristic solution. Note that the information gain in Eq. 17
 560 has also been interpreted as a measure of surprise (called ‘Postdictive surprise’⁹⁴), but it has a behavior
 561 radically different from that of the Shannon surprise introduced below for our surprise-seeking agents
 562 (Eq. 18) – see ref.⁶⁵ for an elaborate treatment of the topic. Importantly, the expected (integrated over s')
 563 information gain corresponding to a state-action pair (s, a) converges to 0 as $\tilde{C}_{s,a}^{(t)} \rightarrow \infty$ (see Supplementary
 564 Materials for the proof). Similar intrinsic rewards have been used in machine learning^{17,44,48,63}.

565 Similarly to the case of novelty-seeking, we considered $\beta_{\text{MF,ext}}^{(1)} = \beta_{\text{MB,ext}}^{(1)} = 0$, $Q_{\text{MF,ext}}^{(0)} = 0$, and $T_{PS,\text{ext}} =$
 566 $T_{PS,\text{int}} = 100$; hence, the algorithm seeking information gain also had a total of **27 parameters** (11 main
 567 parameters + 14 inverse temperature parameters + 2 biases).

568 **3. Surprise-seeking:** For an agent seeking surprise (orange in Fig. 4), we defined the intrinsic reward
 569 function as the Shannon surprise (a.k.a. surprisal)⁶⁵

$$570 \quad R_{\text{int},t}(s, a \rightarrow s') = -\log p^{(t)}(s'|s, a), \quad (18)$$

571 where $p^{(t)}(s'|s, a)$ is defined in Eq. 6. With this definition, the expected (integrated over s') intrinsic reward
 572 of taking action a at state s is equal to the entropy of the distribution $p^{(t)}(s'|s, a)$ ¹⁰⁸. If $\epsilon_{\text{new}} < \epsilon_{\text{obs}}$, then
 573 the most surprising transitions are the ones to unobserved states. Similar intrinsic rewards have been

574 used in machine learning^{15,43}.

575 Similarly to the case of novelty-seeking, we considered $\beta_{\text{MF,ext}}^{(1)} = \beta_{\text{MB,ext}}^{(1)} = 0$, $Q_{\text{MF,ext}}^{(0)} = 0$, and
 576 $T_{PS,\text{ext}} = T_{PS,\text{int}} = 100$; hence, the surprise-seeking algorithm had also a total of **27 parameters** (11
 577 main parameters + 14 inverse temperature parameters + 2 biases).

578 **4. Exploration by optimistic initialization (no intrinsic rewards):** As our last alternative algo-
 579 rithm (black in Fig. 4), we considered agents with no intrinsic reward:

580
$$R_{\text{int},t}(s, a \rightarrow s') = 0. \quad (19)$$

581 Exploratory actions of these agents are purely driven by MB and MF optimistic initialization described
 582 in **Informing RL agents of different goal states**. As a result, exploration based on optimistic initialization
 583 does not depend on any of the parameters that influence the intrinsically motivated part of the RL
 584 algorithm described above, ending up with a total of **21 parameters** (11 main parameters + 8 inverse
 585 temperature parameters + 2 biases) for the optimistic initialization (considering $T_{PS,\text{ext}} = 100$).

586 Model-fitting and model-comparison

587 To compare different algorithms based on their explanatory power, we did a stratified 3-fold cross-
 588 validation⁶⁹: We grouped our 57 human participants into 3 disjoint sets, where all sets had almost
 589 the same number of participants from different reward groups (i.e., 2 CHF, 3 CHF, 4 CHF). For each fold
 590 $k \in \{1, 2, 3\}$ of cross-validation, one set of participants was considered as testing set $D_k^{(\text{test})}$ and the union
 591 of the other two as the training set $D_k^{(\text{train})}$.

592 Then, for each model $M \in \{\text{novelty, inf-gain, surprise, opt. init.}\}$ and cross-validation fold $k \in \{1, 2, 3\}$,
 593 we fitted the model parameters Φ_M by maximizing likelihood of the training data given parameters:

594
$$\hat{\Phi}_{k,M} = \arg \max_{\Phi_M} P(D_k^{(\text{train})} | \Phi_M, M) \quad (20)$$

595 where $P(D_k^{(\text{train})} | \Phi_M, M)$ is the probability that $D_k^{(\text{train})}$ is generated by simulating model M with Φ_M (see
 596 Eq. 12), and $\hat{\Phi}_{k,M}$ is the set of estimated parameters that maximizes that probability. For optimization,
 597 we used a combination of gradient-free (Subplex¹⁰⁹; for a broad search of the parameter space) and
 598 gradient-based optimization algorithms (L-BFGS¹¹⁰; for fine-tuning), starting from 5 differently chosen
 599 initial conditions (see **Code and data availability**).

600 We then evaluated all models on the testing set: For each participant n in the testing set $D_k^{(\text{test})}$ of fold
 601 k , we evaluated the cross-validated log-likelihood as

602
$$\hat{\ell}_{n,M} = \log P(D_{k(n)}^{(\text{test})} | \hat{\Phi}_{k,M}, M), \quad (21)$$

603 where $D_{k(n)}^{(\text{test})}$ is the data of participant n (which we assumed to be in the testing set of fold k). We then
 604 used the cross-validated log-likelihoods in the Bayesian model selection method of ref. 67 with the random
 605 effects assumption: We assumed that, with an unknown probability P_M , the data of each participant n
 606 was generated by simulating model $M_n = M$. The goal of the model comparison is to infer probability P_M
 607 for all models; the one with the highest P_M is the most probable model of most participants. To do so, we
 608 performed Markov Chain Monte Carlo sampling (using Metropolis Hasting algorithm⁵⁴ with 100 chains of
 609 length 10'000) and estimated the joint posterior distribution over P_{novelty} , $P_{\text{inf-gain}}$, P_{surprise} , and $P_{\text{opt. init.}}$.
 610 Fig. 4B shows the expected value of P_M (the expected posterior probability; Fig. 4B1) and the probability
 611 of P_M being higher than $P_{M'}$ for all $M' \neq M$ (the protected exceedance probabilities; Fig. 4B2). Fig. 4E
 612 shows the protected exceedance probabilities when the posterior distribution is evaluated conditioned on

613 participants' data in only one of the reward groups. See ref. ^{37,79} for a similar approach and ref. ^{41,67,68} for
614 tutorials on the topic.

615 Finally, for each participant n in the testing set $D_k^{(\text{test})}$ of fold k , we evaluated the accuracy rate of novelty-
616 seeking (Fig. 4) in predicting the participant's actions (conditioned on the past actions) in each episode,
617 i.e., we evaluated the ratio of actions where novelty-seeking with parameter $\hat{\Phi}_{k,\text{novelty}}$ assigned the highest
618 probability to the participant's chosen action; whenever the maximum probability was shared between 2
619 or 3 actions, we considered the prediction 1/2 or 1/3 correct, respectively (i.e., a random model would
620 have a 33% accuracy rate).

621 Posterior predictive checks and model-recovery

622 For each model $M \in \{\text{novelty, inf-gain, surprise, opt. init.}\}$, we repeated the following steps 1500 times:
623 1. We picked, with one-third probability, the fitted parameter $\hat{\Phi}_{k,M}$ of fold $k \in \{1, 2, 3\}$. 2. We picked,
624 with one-third probability, one of the reward conditions (i.e., 2 CHF, 3 CHF, and 4 CHF). 3. We simulated
625 model M with parameters $\hat{\Phi}_{k,M}$ for 5 episodes in our environment, i.e., we sampled a trajectory D from
626 $P(D|\hat{\Phi}_{k,M}, M)$ (with the G^* of the environment corresponding to the reward group picked in step 2). As a
627 result, we ended up with 1500 simulated agents (with randomly sampled parameters) for each algorithm.

628 Depending on their exploration strategy and parameters, some simulated agents kept exploring the
629 stochastic part of the environment and did not escape it. Hence, we stopped simulations of each episode
630 after 3000 actions; note that the median number of actions taken by human participants is less than 100
631 (Fig. 2B-C). Accordingly, we considered the simulated agents who took more than 3000 actions in any
632 of the 5 episodes to be similar to the human participants who quit the experiment and excluded them
633 from further analyses. Moreover, we applied the same criterion that we used for the human participants
634 and excluded, separately for each algorithm, the simulated agents who took more than 3 times the group-
635 average number of actions in episodes 2-5 to finish the experiment. We then analyzed the remaining
636 simulated agents. Fig. 2D-F shows the data statistics of simulated novelty-seeking agents compared to
637 human participants.

638 Fig. 4C shows the median relative error (absolute difference divided by SE) of different algorithms in
639 reproducing 44 group-level statistics: (1) Ratio of excluded agents, (2) number of actions in episode 1,
640 (3-6) fractions of trials spent in trap states and stochastic parts during the 1st and 2nd halves of episode
641 1 (Fig. 2A), (7-10) median number actions in episodes 2-5 for each reward group and its correlation with
642 reward value (Fig. 2B1), (11-14) fraction of trials spent in the stochastic part in episodes 2-5 for each
643 reward group and its correlation with reward value (Fig. 2B2), (15-17) correlation of episode length with
644 episode number for each reward group (e.g., Fig. 2C for the 2 CHF group), (18-20) correlation of the
645 fraction of trials spent in the stochastic part with the episode number for each reward group, and (21-44)
646 the ratio of taking different actions (2 possibilities, i.e., progressing action and self-looping/stochastic
647 action) in different progressing states (3 possibilities, i.e., states 1-3, state 4, and states 5-6) and in
648 different periods of the experiment (4 possibilities, i.e., episode 1 for all participants and episodes 2-5
649 separately for each reward group). See Supplementary Materials for details.

650 Finally, for the simulated data of each algorithm, we repeated our model selection procedure (i.e., 3-fold
651 cross-validation plus Bayesian model selection) on the action choices of 5 groups of 60 simulated agents
652 (20 from each participant group, i.e., 2 CHF, 3 CHF, and 4 CHF). We always successfully recovered the
653 model that had generated the data, using almost the same number of simulated agents (60) as human
654 participants (57). See insets in Fig. 4B for confusion matrices.

655 Acknowledgement

656 AM thanks Vasiliki Liakoni, Johanni Brea, Sophia Becker, Martin Barry, Valentin Schmutz, and Guil-
657 laume Bellec for many useful discussions. All authors thank Peter Dayan and Joshua Gold for valuable
658 feedback on the manuscript. This research was supported by the Swiss National Science Foundation No.
659 CRSI2 147636 (Sinergia; MHH and WG), No. 200020 184615 (WG), and No. 200020 207426 (WG) and
660 by the European Union Horizon 2020 Framework Program under grant agreement No. 785907 (Human
661 Brain Project, SGA2; MHH and WG).

662 Author Contributions

663 AM, HAX, MHH, and WG developed the study concept and designed the experiment. HAX and WL
664 conducted the experiment and collected the data. AM designed the algorithms, did the formal analyses,
665 and analyzed the data. AM, MHH, and WG wrote the paper.

666 Competing Interests statement

667 The authors declare no competing interests.

668 Code and data availability

669 All code and data needed to reproduce the results reported in this manuscript will be made publicly
670 available after publication acceptance.

671 References

- 672 1. Gottlieb, J., Oudeyer, P.-Y., Lopes, M. & Baranes, A. Information-seeking, curiosity, and attention:
673 computational and neural mechanisms. *Trends in Cognitive Sciences* **17**, 585–593 (2013).
- 674 2. Kidd, C. & Hayden, B. Y. The psychology and neuroscience of curiosity. *Neuron* **88**, 449–460 (2015).
- 675 3. Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. *Nature
676 Reviews Neuroscience* **19**, 758–770 (2018).
- 677 4. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? how the human brain
678 manages the trade-off between exploitation and exploration. *Philosophical Transactions of the Royal
679 Society B: Biological Sciences* **362**, 933–942 (2007).
- 680 5. Schulz, E. & Gershman, S. J. The algorithmic architecture of exploration in the human brain.
681 *Current Opinion in Neurobiology* **55**, 7–14 (2019).
- 682 6. Wilson, R. C., Bonawitz, E., Costa, V. D. & Ebitz, R. B. Balancing exploration and exploitation
683 with information and randomization. *Current Opinion in Behavioral Sciences* **38**, 49–56 (2021).
684 Computational cognitive neuroscience.
- 685 7. Jaegle, A., Mehrpour, V. & Rust, N. Visual novelty, curiosity, and intrinsic reward in machine
686 learning and the brain. *Current Opinion in Neurobiology* **58**, 167–174 (2019).
- 687 8. Murayama, K. A reward-learning framework of knowledge acquisition: An integrated account of
688 curiosity, interest, and intrinsic–extrinsic rewards. *Psychological Review* **129**, 175–198 (2022).

689 9. Modirshanechi, A., Kondrakiewicz, K., Gerstner, W. & Haesler, S. Curiosity-driven exploration:
690 foundations in neuroscience and computational modeling. *Trends in Neurosciences* **46**, 1054–1066
691 (2023).

692 10. Poli, F., O'Reilly, J. X., Mars, R. B. & Hunnius, S. Curiosity and the dynamics of optimal explo-
693 ration. *Trends in Cognitive Sciences* **28**, 441–453 (2024).

694 11. Singh, S., Lewis, R. L., Barto, A. G. & Sorg, J. Intrinsically motivated reinforcement learning: An
695 evolutionary perspective. *IEEE Transactions on Autonomous Mental Development* **2**, 70–82 (2010).

696 12. Oudeyer, P.-Y., Kaplan, F. & Hafner, V. V. Intrinsic motivation systems for autonomous mental
697 development. *IEEE Transactions on Evolutionary Computation* **11**, 265–286 (2007).

698 13. Bellemare, M. *et al.* Unifying count-based exploration and intrinsic motivation. In Lee, D., Sugiyama,
699 M., Luxburg, U., Guyon, I. & Garnett, R. (eds.) *Advances in Neural Information Processing Systems*,
700 vol. 29 (Curran Associates, Inc., 2016).

701 14. Ostrovski, G., Bellemare, M. G., van den Oord, A. & Munos, R. Count-based exploration with
702 neural density models. In *Proceedings of the 34th International Conference on Machine Learning - Volume 70*, ICML'17, 2721–2730 (JMLR.org, 2017).

703 15. Pathak, D., Agrawal, P., Efros, A. A. & Darrell, T. Curiosity-driven exploration by self-supervised
704 prediction. In *Proceedings of the 34th International Conference on Machine Learning - Volume 70*,
705 ICML'17, 2778–2787 (JMLR.org, 2017).

706 16. Haber, N., Mrowca, D., Wang, S., Fei-Fei, L. F. & Yamins, D. L. Learning to play with intrinsically-
707 motivated, self-aware agents. In Bengio, S. *et al.* (eds.) *Advances in Neural Information Processing
708 Systems*, vol. 31 (Curran Associates, Inc., 2018).

709 17. Sekar, R. *et al.* Planning to explore via self-supervised world models. In III, H. D. & Singh, A. (eds.)
710 *Proceedings of the 37th International Conference on Machine Learning*, vol. 119 of *Proceedings of
711 Machine Learning Research*, 8583–8592 (PMLR, 2020).

712 18. Kim, K., Sano, M., De Freitas, J., Haber, N. & Yamins, D. Active world model learning with
713 progress curiosity. In III, H. D. & Singh, A. (eds.) *Proceedings of the 37th International Conference
714 on Machine Learning*, vol. 119 of *Proceedings of Machine Learning Research*, 5306–5315 (PMLR,
715 2020).

716 19. Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D. & Pathak, D. Discovering and achieving goals
717 via world models. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. & Vaughan, J. W. (eds.)
718 *Advances in Neural Information Processing Systems*, vol. 34, 24379–24391 (Curran Associates, Inc.,
719 2021).

720 20. Aubret, A., Matignon, L. & Hassas, S. An information-theoretic perspective on intrinsic motivation
721 in reinforcement learning: A survey. *Entropy* **25** (2023).

722 21. Ladosz, P., Weng, L., Kim, M. & Oh, H. Exploration in deep reinforcement learning: A survey.
723 *Information Fusion* **85**, 1–22 (2022).

724 22. Zajkowski, W. K., Kossut, M. & Wilson, R. C. A causal role for right frontopolar cortex in directed,
725 but not random, exploration. *eLife* **6**, e27430 (2017).

726 23. Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. Humans use directed
727 and random exploration to solve the explore–exploit dilemma. *Journal of Experimental Psychology:
728 General* **143**, 2074–2081 (2014).

729 24. Gershman, S. J. Uncertainty and exploration. *Decision* **6**, 277 (2019).

731 25. Horvath, L. *et al.* Human belief state-based exploration and exploitation in an information-selective
732 symmetric reversal bandit task. *Computational Brain & Behavior* (2021).

733 26. Cockburn, J., Man, V., Cunningham, W. A. & O'Doherty, J. P. Novelty and uncertainty regulate
734 the balance between exploration and exploitation through distinct mechanisms in the human brain.
735 *Neuron* **110**, 2691–2702 (2022).

736 27. Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D. & Meder, B. Generalization guides human
737 exploration in vast decision spaces. *Nature Human Behaviour* **2**, 915–924 (2018).

738 28. Bromberg-Martin, E. S. *et al.* A neural mechanism for conserved value computations integrating
739 information and rewards. *Nature Neuroscience* **27**, 159–175 (2024).

740 29. Kobayashi, K., Ravaioli, S., Baranès, A., Woodford, M. & Gottlieb, J. Diverse motives for human
741 curiosity. *Nature Human Behaviour* **3**, 587–595 (2019).

742 30. Ten, A., Kaushik, P., Oudeyer, P.-Y. & Gottlieb, J. Humans monitor learning progress in curiosity-
743 driven exploration. *Nature Communications* **12**, 5972 (2021).

744 31. Poli, F., Meyer, M., Mars, R. B. & Hunnius, S. Contributions of expected learning progress and
745 perceptual novelty to curiosity-driven exploration. *Cognition* **225**, 105119 (2022).

746 32. Ogasawara, T. *et al.* A primate temporal cortex–zona incerta pathway for novelty seeking. *Nature
747 Neuroscience* **25** (2022).

748 33. Daddaoua, N., Lopes, M. & Gottlieb, J. Intrinsically motivated oculomotor exploration guided by
749 uncertainty reduction and conditioned reinforcement in non-human primates. *Scientific Reports* **6**,
750 20202 (2016).

751 34. Anvari, F., Billinger, S., Analytis, P. P., Franco, V. R. & Marchiori, D. Testing the convergent
752 validity, domain generality, and temporal stability of selected measures of people's tendency to
753 explore. *Nature Communications* **15**, 7721 (2024).

754 35. Jach, H. K. *et al.* Individual differences in information demand have a low dimensional structure pre-
755 dicted by some curiosity traits. *Proceedings of the National Academy of Sciences* **121**, e2415236121
756 (2024).

757 36. Witte, K., Thalmann, M. & Schulz, E. How should we measure exploration? *PsyArXiv* (2024).

758 37. Xu, H. A., Modirshanechi, A., Lehmann, M. P., Gerstner, W. & Herzog, M. H. Novelty is not surprise:
759 Human exploratory and adaptive behavior in sequential decision-making. *PLoS Computational
760 Biology* **17** (2021).

761 38. Fox, L., Dan, O. & Loewenstein, Y. On the computational principles underlying human exploration.
762 *eLife* **12**, RP90684 (2023).

763 39. Brändle, F., Binz, M. & Schulz, E. *Exploration Beyond Bandits*, 147–168 (Cambridge University
764 Press, 2022).

765 40. Allen, K. *et al.* Using games to understand the mind. *Nature Human Behaviour* **8**, 1035–1043
766 (2024).

767 41. Daw, N. Trial-by-trial data analysis using computational models. *Decision making, affect, and
768 learning: Attention and performance XXIII* **23** (2011).

769 42. da Silva, C. F. & Hare, T. A. Humans primarily use model-based inference in the two-stage task.
770 *Nature Human Behaviour* **4**, 1053–1066 (2020).

771 43. Burda, Y. *et al.* Large-scale study of curiosity-driven learning. In *International Conference on*
772 *Learning Representations* (2019).

773 44. Pathak, D., Gandhi, D. & Gupta, A. Self-supervised exploration via disagreement. In Chaudhuri, K.
774 & Salakhutdinov, R. (eds.) *Proceedings of the 36th International Conference on Machine Learning*,
775 vol. 97 of *Proceedings of Machine Learning Research*, 5062–5071 (PMLR, 2019).

776 45. Savinov, N. *et al.* Episodic curiosity through reachability. In *International Conference on Learning*
777 *Representations* (2019).

778 46. Mavor-Parker, A., Young, K., Barry, C. & Griffin, L. How to stay curious while avoiding noisy TVs
779 using aleatoric uncertainty estimation. In Chaudhuri, K. *et al.* (eds.) *Proceedings of the 39th Inter-*
780 *national Conference on Machine Learning*, vol. 162 of *Proceedings of Machine Learning Research*,
781 15220–15240 (PMLR, 2022).

782 47. Jarrett, D. *et al.* Curiosity in hindsight. In *Deep Reinforcement Learning Workshop NeurIPS 2022*
783 (2022).

784 48. Schmidhuber, J. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). *IEEE*
785 *Transactions on Autonomous Mental Development* **2**, 230–247 (2010).

786 49. Sutton, R. S. & Barto, A. G. *Reinforcement learning: An introduction* (MIT press, 2018).

787 50. Daw, N., Gershman, S., Seymour, B., Dayan, P. & Dolan, R. Model-based influences on humans'
788 choices and striatal prediction errors. *Neuron* **69**, 1204–1215 (2011).

789 51. Huys, Q. J. *et al.* Interplay of approximate planning strategies. *Proceedings of the National Academy*
790 *of Sciences* **112**, 3098–3103 (2015).

791 52. Carver, C. S., Scheier, M. F. & Segerstrom, S. C. Optimism. *Clinical Psychology Review* **30**, 879–889
792 (2010).

793 53. Kass, R. E. & Raftery, A. E. Bayes factors. *Journal of the American Statistical Association* **90**,
794 773–795 (1995).

795 54. Efron, B. & Hastie, T. *Computer age statistical inference* (Cambridge University Press, 2016).

796 55. Rmus, M., Ritz, H., Hunter, L. E., Bornstein, A. M. & Shenhav, A. Humans can navigate complex
797 graph structures acquired during latent learning. *Cognition* **225**, 105103 (2022).

798 56. Yoo, J., Chrastil, E. R. & Bornstein, A. M. Cognitive graphs: Representational substrates for
799 planning. *Decision* **11**, 537–556 (2024).

800 57. Karagoz, A. B., Reagh, Z. M. & Kool, W. The construction and use of cognitive maps in model-based
801 control. *Journal of Experimental Psychology: General* **153**, 372–385 (2024).

802 58. Daw, N., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral
803 striatal systems for behavioral control. *Nature Neuroscience* **8**, 1704–1711 (2005).

804 59. Liakoni, V. *et al.* Brain signals of a surprise-actor-critic model: Evidence for multiple learning
805 modules in human decision making. *NeuroImage* **246**, 118780 (2022).

806 60. Van Seijen, H. & Sutton, R. Planning by prioritized sweeping with small backups. In Dasgupta, S. &
807 McAllester, D. (eds.) *Proceedings of the 30th International Conference on Machine Learning*, vol. 28
808 of *Proceedings of Machine Learning Research*, 361–369 (PMLR, Atlanta, Georgia, USA, 2013).

809 61. Mattar, M. G. & Lengyel, M. Planning in the brain. *Neuron* **110**, 914–934 (2022).

810 62. Gläscher, J., Daw, N., Dayan, P. & O'Doherty, J. P. States versus rewards: Dissociable neural
811 prediction error signals underlying model-based and model-free reinforcement learning. *Neuron* **66**,
812 585–595 (2010).

813 63. Mobin, S. A., Arnemann, J. A. & Sommer, F. Information-based learning by agents in unbounded
814 state spaces. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. & Weinberger, K. Q. (eds.)
815 *Advances in Neural Information Processing Systems*, vol. 27 (Curran Associates, Inc., 2014).

816 64. Little, D. Y.-J. & Sommer, F. T. Learning and exploration in action-perception loops. *Frontiers in
817 Neural Circuits* **7**, 37 (2013).

818 65. Modirshanechi, A., Brea, J. & Gerstner, W. A taxonomy of surprise definitions. *Journal of Mathe-
819 matical Psychology* **110**, 102712 (2022).

820 66. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian model selection
821 for group studies. *NeuroImage* **46**, 1004–1017 (2009).

822 67. Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian model selection for group
823 studies—revisited. *NeuroImage* **84**, 971–985 (2014).

824 68. Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral data.
825 *eLife* **8**, e49547 (2019).

826 69. Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. *The elements of statistical learning:
827 data mining, inference, and prediction*, vol. 2 (Springer, 2009).

828 70. Nassar, M. R. & Frank, M. J. Taming the beast: extracting generalizable knowledge from compu-
829 tational models of cognition. *Current Opinion in Behavioral Sciences* **11**, 49–54 (2016).

830 71. Dubois, M. *et al.* Human complex exploration strategies are enriched by noradrenaline-modulated
831 heuristics. *eLife* **10**, e59907 (2021).

832 72. Wittmann, B. C., Daw, N. D., Seymour, B. & Dolan, R. J. Striatal activity underlies novelty-based
833 choice in humans. *Neuron* **58**, 967–973 (2008).

834 73. Tomov, M. S., Truong, V. Q., Hundia, R. A. & Gershman, S. J. Dissociable neural correlates of
835 uncertainty underlie different exploration strategies. *Nature Communications* **11**, 2371 (2020).

836 74. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. Active inference: a process
837 theory. *Neural Computation* **29**, 1–49 (2017).

838 75. Klyubin, A., Polani, D. & Nehaniv, C. Empowerment: a universal agent-centric measure of control.
839 In *2005 IEEE Congress on Evolutionary Computation*, vol. 1, 128–135 Vol.1 (2005).

840 76. Brändle, F., Stocks, L. J., Tenenbaum, J. B., Gershman, S. J. & Schulz, E. Empowerment contributes
841 to exploration behaviour in a creative video game. *Nature Human Behaviour* (2023).

842 77. Meder, B. & Nelson, J. D. Information search with situation-specific reward functions. *Judgment
843 and Decision Making* **7**, 119–148 (2012).

844 78. Gershman, S. J. & Niv, Y. Novelty and inductive generalization in human reinforcement learning.
845 *Topics in cognitive science* **7**, 391–415 (2015).

846 79. Giron, A. P. *et al.* Developmental changes in exploration resemble stochastic optimization. *Nature
847 Human Behaviour* **7**, 1955–1967 (2023).

848 80. Kidd, C., Piantadosi, S. T. & Aslin, R. N. The goldilocks effect: Human infants allocate attention
849 to visual sequences that are neither too simple nor too complex. *PLoS One* **7**, e36399 (2012).

850 81. Cubit, L. S., Canale, R., Handsman, R., Kidd, C. & Bennetto, L. Visual attention preference for
851 intermediate predictability in young children. *Child Development* **92**, 691–703 (2021).

852 82. Wu, S. *et al.* Macaques preferentially attend to intermediately surprising information. *Biology
853 Letters* **18**, 20220144 (2022).

854 83. Dubey, R. & Griffiths, T. L. Reconciling novelty and complexity through a rational analysis of
855 curiosity. *Psychological Review* **127**, 455–476 (2019).

856 84. Morrens, J., Çağatay Aydin, Janse van Rensburg, A., Esquivelzeta Rabell, J. & Haesler, S. Cue-
857 evoked dopamine promotes conditioned responding during learning. *Neuron* **106**, 142–153.e7 (2020).

858 85. Montgomery, K. Exploratory behavior as a function of “similarity” of stimulus situation. *Journal
859 of Comparative and Physiological Psychology* **46**, 129–133 (1953).

860 86. Montgomery, K. C. The role of the exploratory drive in learning. *Journal of Comparative and
861 Physiological Psychology* **47**, 60–64 (1954).

862 87. Montag, C., Lachmann, B., Herrlich, M. & Zweig, K. Addictive features of social media/messenger
863 platforms and freemium games against the background of psychological and economic theories.
864 *International journal of environmental research and public health* **16**, 2612 (2019).

865 88. Montag, C., Yang, H. & Elhai, J. D. On the psychology of tiktok use: A first glimpse from empirical
866 findings. *Frontiers in public health* **9**, 641673 (2021).

867 89. Lieder, F. & Griffiths, T. L. Resource-rational analysis: Understanding human cognition as the
868 optimal use of limited computational resources. *Behavioral and Brain Sciences* **43**, e1 (2020).

869 90. Bhui, R., Lai, L. & Gershman, S. J. Resource-rational decision making. *Current Opinion in Behav-
870 ioral Sciences* **41**, 15–21 (2021).

871 91. Binz, M. & Schulz, E. Modeling human exploration through resource-rational reinforcement learning.
872 In Oh, A. H., Agarwal, A., Belgrave, D. & Cho, K. (eds.) *Advances in Neural Information Processing
873 Systems* (2022).

874 92. Barto, A., Mirolli, M. & Baldassarre, G. Novelty or surprise? *Frontiers in Psychology* **4**, 907 (2013).

875 93. Baldi, P. *A Computational Theory of Surprise*, 1–25 (Springer US, Boston, MA, 2002).

876 94. Kolossa, A., Kopp, B. & Fingscheidt, T. A computational analysis of the neural bases of Bayesian
877 inference. *NeuroImage* **106**, 222–237 (2015).

878 95. Reisenzein, R., Horstmann, G. & Schützwohl, A. The cognitive-evolutionary model of surprise: A
879 review of the evidence. *Topics in Cognitive Science* **11**, 50–74 (2019).

880 96. Nelson, J. D. Finding useful questions: on Bayesian diagnosticity, probability, impact, and informa-
881 tion gain. *Psychological Review* **112**, 979–999 (2005).

882 97. Maguire, R., Maguire, P. & Keane, M. T. Making sense of surprise: an investigation of the fac-
883 tors influencing surprise judgments. *Journal of Experimental Psychology: Learning, Memory, and
884 Cognition* **37**, 176–186 (2011).

885 98. Becker, S., Modirshanechi, A. & Gerstner, W. Representational similarity modulates neural and
886 behavioral signatures of novelty. *bioRxiv* (2024).

887 99. Oudeyer, P.-Y. Computational theories of curiosity-driven learning. *arXiv preprint arXiv:1802.10546*
888 (2018).

889 100. Kolter, J. Z. & Ng, A. Y. Near-Bayesian exploration in polynomial time. In *Proceedings of the*
890 *26th Annual International Conference on Machine Learning*, ICML '09, 513–520 (Association for
891 Computing Machinery, New York, NY, USA, 2009).

892 101. Strehl, A. L. & Littman, M. L. An analysis of model-based interval estimation for markov decision
893 processes. *Journal of Computer and System Sciences* **74**, 1309–1331 (2008).

894 102. Brainard, D. H. & Vision, S. The psychophysics toolbox. *Spatial Vision* **10**, 433–436 (1997).

895 103. Ghahramani, Z. Bayesian non-parametrics and the probabilistic approach to modelling. *Philosophical*
896 *Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* **371**,
897 20110553 (2013).

898 104. Lehmann, M. P. *et al.* One-shot learning and behavioral eligibility traces in sequential decision
899 making. *eLife* **8**, e47463 (2019).

900 105. Yu, A. J. & Cohen, J. D. Sequential effects: Superstition or rational behavior? In Koller, D.,
901 Schuurmans, D., Bengio, Y. & Bottou, L. (eds.) *Advances in Neural Information Processing Systems*,
902 vol. 21 (Curran Associates, Inc., 2009).

903 106. Liakoni, V., Modirshanechi, A., Gerstner, W. & Brea, J. Learning in volatile environments with the
904 Bayes factor surprise. *Neural Computation* **33**, 1–72 (2021).

905 107. Piray, P. & Daw, N. D. Linear reinforcement learning in planning, grid fields, and cognitive control.
906 *Nature Communications* **12**, 4942 (2021).

907 108. Cover, T. M. *Elements of information theory* (John Wiley & Sons, 1999).

908 109. Rowan, T. H. *Functional stability analysis of numerical algorithms*. Ph.D. thesis, The University of
909 Texas at Austin (1990).

910 110. Nocedal, J. & Wright, S. J. *Numerical optimization* (Springer New York, NY, 2006).