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Abstract

Emerging data on small cell lung cancer (SCLC), an aggressive malignancy with
exceptionally poor prognosis, support subtypes driven by distinct transcription regulators,
which engender unique therapeutic vulnerabilities. However, the translational potential of
these observations is limited by access to tumor biopsies. Here, we leverage chromatin
immunoprecipitation of cell-free nucleosomes carrying active chromatin modifications
followed by sequencing (cfChIP-seq) on 442 plasma samples from individuals with advanced

SCLC, neuroendocrine carcinomas (NEC), non-SCLC cancers, and healthy adults. Beyond
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providing reliable estimates of SCLC circulating free DNA tumor fraction, cfChIP-seq
captures the unique epigenetic states of SCLC tissue- and cell-of-origin. Comparison of
cfChlIP-seq signals to matched tumor transcriptomes reveals genome-wide concordance,
establishing a direct link between gene expression in the tumor and plasma cell-free
nucleosomes. Exploiting this link, we develop a classifier that discriminates between SCLC
lineage-defining transcription factor subtypes based on cfChIP-seq data. This work sets the
stage to non-invasively profile SCLC transcriptomes using plasma cfDNA histone

modifications.

Introduction

Small cell lung cancer (SCLC) is a neuroendocrine lung cancer that is highly aggressive with
dismal prognosis, accounting for approximately 15% of all lung cancers®. SCLC is one of the
solid tumors that sheds the largest amount of cfDNA?2. Prior studies have identified cfDNA
mutations in more than 80% of SCLC patients*™®, but recurrent targetable mutations in
known oncogenes, such as those seen in the kinases that comprise targetable drivers in
lung adenocarcinoma, are rare in SCLC'**°. Recurrent mutations also do not demonstrate

consistent co-occurrence or mutual exclusivity, and thus do not define SCLC subtypes.

SCLCs exhibit high expression of neuronal and neuroendocrine transcription factors and
MYC paralogs that drive expression of a broad range of genes related to cell proliferation
and growth signaling™**®. Importantly, SCLC subtypes driven by distinct transcription factors
have unique therapeutic vulnerabilities'”~??. However, identification of SCLC transcriptomic
subtypes and their application in the context of subtype-specific therapies has proven
challenging due to limited access to tumor specimens. The majority of SCLC patients do not
undergo surgical resection as their disease is detected after it has spread beyond the
primary site”®. Moreover, patients with relapsed disease generally deteriorate quickly, and
recurrence suspected on imaging is typically followed by immediate treatment without
biopsies. Highlighting this challenge, SCLC is represented in none of the large sequencing

initiatives like The Cancer Genome Atlas and Pan-cancer Analysis of Whole Genomes®.

Identifying tumor-specific alterations in cell free DNA (cfDNA) presents a powerful
opportunity to reduce cancer morbidity and mortality”>?®. Most of the current clinical
applications of cfDNA are centered around interrogating the mutational landscape, and as
such are of limited utility in defining transcriptomic subtypes. We recently reported chromatin
immunoprecipitation and sequencing of cell-free nucleosomes from human plasma (cfChlP-
seq) to infer the transcriptional programs by genome-wide mapping of plasma cell free-

nucleosomes carrying specific histone modifications?’. Specifically, tri-methylation of histone
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3 lysine 4 (H3K4me3) is a well characterized histone modification, marking transcription start
sites (TSS) of genes that are poised or actively transcribed, and predictive of gene

expression? .

The translational potential of the newly described SCLC transcriptional phenotypes and their
associated vulnerabilities is limited by access to tumor biopsies. We hypothesized that
plasma histone modifications may non-invasively track tumor gene expression programs,
including lineage-defining transcription factors, opening opportunities for subtype-directed
therapies for SCLC, currently treated as a single disease. To this end, we applied cfChIP-
seq on 305 plasma samples from self-reported healthy subjects (n=33), patients with non-
small cell lung cancer (NSCLC, n=16), colorectal cancer (CRC, n=40), neuroendocrine
carcinomas (NEC) (n=17) and SCLC (n=67) who had 119 plasma samples collected at
multiple timepoints during their treatment. The plasma-based gene expression programs
were benchmarked against corresponding tumor transcriptomes, chromatin accessibility,
and gene expression assessed by RNA-seq, ATAC-seq, and immunohistochemistry
respectively (Fig. 1A; Supplementary Table 1-2). Our findings reveal the significant
correspondence of plasma cfChlP-seq profiles with tumor gene expression and chromatin
accessibility and identify key variables that impact this relationship. By focusing on genes
that define SCLC subtypes, we show that plasma cfChIP-seq can effectively classify these
subtypes. To confirm these findings, we expanded our analysis to an additional SCLC and
NEC validation cohort (n=76/61 plasma samples), further corroborating the potential of
plasma histone modifications as biomarkers for tracking tumor gene expression and

informing subtype-specific therapies in SCLC.

Results

SCLCs have distinct cfChlP-seq signals that track tumor burden and prognosis

Plasma samples were collected, processed, and H3K4me3 ChlIP-seq?’ performed directly on
~1ml of plasma (Methods) with a median of 3.5 million unique reads sequenced per sample
(Supplementary Table 3). The number of normalized reads mapping to its respective TSS
region(s) was computed for every gene, resulting in gene counts analogous to transcription
counts in RNA-seq data. Comparing the gene counts in SCLC plasma samples to those in
healthy reference samples (Methods), we found significantly elevated counts in hundreds to
thousands of genes (Fig. 1B, S1A).

cfDNA of cancer patients consists of DNA fragments originating from tumor cells and DNA

released by normal cells, primarily from the hematopoietic lineage?”*!. The tumor-derived
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fraction of cfDNA can vary substantially, depending on several variables including tumor
burden and growth activity®?. To account for this variability, we developed an ‘SCLC-score’
that reflects the proportion of tumor-derived cfDNA. The score is generated using a linear
regression model that matches the observed gene count profile in a sample to a weighted
mixture of reference cfChiP-seq profiles. The reference dataset consisted of plasma
samples from healthy individuals and a representative SCLC archetype derived from the
10% of SCLC samples (n = 20), with the highest number of differential genes compared to
healthy samples (Fig. S1A, Methods).

The SCLC-score ranged from O (indicating a ‘healthy like’ profile) to 1 (‘'SCLC like"). In SCLC
patient samples collected before treatment, the median SCLC-score was 0.5, which dropped
to 0.11 post-treatment, suggesting a reduction in tumor-derived cfDNA due to therapy. In
contrast, plasma from healthy subjects and patients with non-SCLC cancers displayed
absent or very low SCLC-scores (median of 0 in healthy and NSCLC, 0.06 in CRC; ANOVA
p < 10™. Fig. 1C). To validate our estimation in an unsupervised manner, we performed
principal component analysis (PCA) on the gene counts of healthy controls and SCLC
samples (Methods). When we mapped the SCLC-score onto the two-dimensional PCA plot,
PCAL - the axis explaining the most sample variability - showed a near-perfect correlation
with the estimated tumor load (r = 0.98, p < 10™ Fig. 1D, S1B-C).

Importantly, cfChlP-seq SCLC-scores were significantly correlated with multiple other
measures of tumor fraction, including somatic copy humber alteration-based estimates from
ultra-low pass whole genome sequencing®, circulating tumor cell (CTC) counts, total cfDNA
concentrations (Methods. Pearson r = 0.78, 0.43 and 0.61; p < 2x10™, 0.01, and 0.03,
respectively), computerized tomography scan-based volumetric tumor assessments, and
standardized unidimensional tumor measurements® (Pearson r and p: 0.58 and 0.61;
<0.007 and <3x10™, respectively Fig. 1E and S1D-E). Furthermore, cfChIP-seq SCLC-
scores tracked radiographic tumor burden through the treatment time course (Fig. 1F), and

predicted treatment response and overall survival (Fig. 1G and S1F-G).

Taken together, these results demonstrate the potential of cfChlP-seq to non-invasively
detect and quantify SCLC from plasma. Further investigations are warranted to explore
whether this approach could be adapted for lung cancer screening, with the prospect of

significantly improving patient survival through early detection.
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Fig. 1: SCLC plasma samples exhibit distinct cfChIP-seq signals that correlate with tumor burden and
survival

A. Study outline. Plasma and tumor samples were collected from a cohort of healthy individuals and
patients with SCLC at various time points during treatment. cfChlP-seq was performed on plasma
samples and RNA-seq on tumor biopsy samples. Plasma cfChIP-seg-based gene expression profiles
were benchmarked against tumor RNA-seq, and key SCLC transcription regulators were examined.

B. Genes with significantly high coverage in selected SCLC (n=20) samples (Methods) compared to
healthy baseline. For each gene, we compare mean normalized coverage in the SCLC samples (y-
axis) to a healthy cohort reference (x-axis). 3197 genes with significantly higher coverage (gq<0.001)
in at least 6 SCLC samples are marked (Supplementary Table 4).

C. Median SCLC-score in different cohorts calculated by linear regression (Methods). Each dot is a
sample, and boxplots summarize each group's SCLC-scores distribution. Pre/post refers to the timing
of the collection relative to treatment. ****: P < 0.0001.

D. Principal components 1 and 2 of SCLC (orange) and healthy (green) samples. Transparency
indicates SCLC-score as in C. Principal component analysis was done using all Refseq genes
(~25,000).

E. Correlation of SCLC-score with other plasma and imaging-based measures of tumor burden.
Abbreviations: RECIST: Response Evaluation Criteria in Solid Tumors.

F. Changes of SCLC-score and radiological tumor burden in a patient with SCLC over the treatment
time-course (SCLC0191). Abbreviations: Tr. 1 - durvalumab & olaparib; Tr. 2 - Topotecan & M6620;
RT - radiation; Tr. 3 - investigational therapy; CR - complete response; SD - stable disease; PD -
progressive disease.

G. Kaplan-Meier survival plot in patients with SCLC-score above (red; median survival: 3 month) or
below (blue; median survival: 8.5 month) median. The survival curve was conducted on pre-treatment
samples. p calculated by log-rank test.

cfChlP-seq recovers SCLC tissue and cellular origins

We next investigated whether plasma cfChlIP-seq signals could provide insights into the
epigenetic state of tissue and cells of origin of SCLC tumors. Among the more than 3,500
genes with significantly elevated coverage in SCLC plasma (Fig. 1B, methods) many were
specifically elevated in SCLC samples compared with healthy controls or other cancers.
Interestingly, the signal across these genes generalized to plasma samples from patients
with NECs. These tumors can arise at almost any anatomic site, and exhibit tissue-
independent convergence to a neuroendocrine histology, while maintaining molecular

divergence driven by distinct transcriptional regulators(Wang et al. 2024). These results

underline the similarities in the transcription patterns of the SCLC and NEC. (Fig. 2A-B).
Notably, these SCLC-signature genes showed a remarkable enrichment for genes
expressed in SCLC cell lines®* and pulmonary neuroendocrine cells®, with significant
overlaps of 272 out of 465 and 53 out of 92 genes (p <7.8*10°" and <3.5*10*°,
respectively)* 8. Specifically, SCLC plasma exhibited elevated counts of canonical SCLC
genes such as DLL3, INSM1, CHGA, and CRMP1, with significantly higher levels than those
observed in healthy samples (Fig. 2C-D).

To characterize the tissue-specific origins of cfDNA, we established a set of tissue-specific

39,40

genomic loci using ChiP-seq reference data (Methods). Using this approach, we

confirmed that the signals in healthy plasma are mainly derived from neutrophils,
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megakaryocytes, and monocytes®”*",

In contrast, signals in SCLC plasma exhibited
additional signals derived from cells with characteristics of lung and brain tissues, as well as
B-cells, suggesting contributions from cells of pulmonary, neuronal, and lymphocyte lineages
(Fig. 2E and S2A). These tissue-specific signals positively correlated with the SCLC-score,

reinforcing their relevance (Fig. S2B).

To further investigate whether cfChiP-seq can provide clues to the cell-of-origin, we applied
lung cell-type-specific signatures derived from single-cell RNA-seq data **. Across the ~50
cell-types examined, spanning lung epithelial, endothelial, stromal, and immune cells, we
observed a strong enrichment of neuroendocrine cell type in SCLC plasma compared to
healthy controls (Fig. 2F). This finding is especially striking since neuroendocrine cells
constitute only 0.13% of a healthy lung tissue*. Furthermore, the neuroendocrine cell
signature was significantly elevated in SCLC plasma relative to normal lung tissue (Fig. 2G).
Signals of other lung cells including ciliated cells and alveolar epithelial type 1 cells were
also higher in SCLC plasma compared to healthy controls (Fig. 2F, S2C and S2D), hinting at
the possibility of SCLCs arising additionally from non-neuroendocrine cells-of-origin as

previously described® or indicating injury to the specific cells.

Together, these findings demonstrate that cfChiP-seq can capture the unique epigenetic

states of tissues and cells-of-origin associated with SCLC tumors.
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Fig. 2: cfChIP-seq recovers SCLC tissue and cellular origins

A. Hierarchical clustering of SCLC signature genes (rows) across the study cohorts (columns). Samples
within each cohort are ordered by the SCLC score. Normalized coverage on the gene promoter was
log-transformed (log2(1+coverage)) and adjusted to zero mean for each gene across the samples.
Abbreviations: SCLC, small cell lung cancer; NEC, neuroendocrine cancer; NSCLC, non-small cell
lung cancer; CRC, colorectal cancer.

B. Median and distribution of coverage on genes shown in A across the study cohorts. ****: P < 0.0001

C. Genome browser view of cfChlP-seq signal in canonical SCLC genes (DLL3, INSM1, CHGA,
CRMP1) and GAPDH as control. Orange and green tracks represent SCLC and healthy samples
respectively.

D. Median and distribution of the cumulative cfChIP-seq coverage over the SCLC-signature genes.

E. Cell and tissue of origin signatures in healthy and SCLC samples. x-axis indicates the absolute
contribution of signature (normalized reads/kb corrected by estimated cfDNA concentration; methods)

F. Single-cell RNA-seg-derived lung cell-type signatures in healthy and SCLC samples. x-axis indicates
the sum of normalized reads in the marker genes of every tissue. Ratio for signal in cell-types shown
in F of high-score SCLC samples (n=23) compared to Encode3 lung ChIP-seq.
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Plasma cfChlIP-seq reflects tumor chromatin accessibility state

Since chromatin accessibility is closely linked to gene expression programs, we asked
whether circulating nucleosomes reflect the chromatin accessibility state of the
corresponding tumors. Due to the challenges of mapping chromatin accessibility in small
biopsy samples, we generated patient-derived xenografts (PDX) (Fig. 3A) from tumors of
patients who had plasma profiled using cfChIP-seq, and performed transposase-accessible
chromatin using sequencing (ATAC-seq)* on these PDX tumors . The relationship between
ATAC-seq and the H3K4me3 mark is complementary, as ATAC-seq identifies regions of

open chromatin and H3K4me3 marks active promoters.

When comparing the ATAC-seq (PDX) and cfChlP-seq (plasma) promoter coverage in a
sample with high plasma SCLC-score, we observed a strong correlation between the two
assays (R = 0.72, p < 2x10™*°; Fig. 3B). In particular, the SCLC signature genes are
predominantly aligned along the diagonal. This high correlation is not seen when comparing
ATAC-seq coverage to the average cfChlP-seq coverage in the healthy cohort, suggesting
that much of the correlation is driven by the SCLC signature genes that exhibit increased
ATAC-seq signal and elevated cfChIP-seq signal (Fig. 3C). Comparison of ATAC-seq Vvs.
cfChIP-seq across all sample pairs demonstrated that the correlation between the assays
was associated with increasing SCLC scores, well beyond what could be attributed to
chance (Fig. 3D).

To examine whether differences in plasma cfChIP-seq signal between samples correlate
with differences in tumor chromatin accessibility, we compared the cfChIP-seq data from two
patients with high SCLC scores. Remarkably, the differentially active genes between the two
plasma samples exhibited a similar pattern of differential accessibility in the corresponding
tumor ATAC-seq data (Fig. 3E-F).

Collectively, these findings suggest that plasma nucleosomal H3K4me3 marks can serve as

reliable indicators of the tumor chromatin accessibility state.
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Figure 3: Plasma cfChlIP-seq reflects tumor chromatin accessibility state

A. Schematic outline of ATAC-seq experiment. Patient-derived xenograft (PDX) models were
established by transplanting tumor tissue obtained directly from patients subcutaneously into
immunocompromised mice. The resulting tumor is harvested and subject to ATAC-seq.

B. Comparison of ATAC-seq (y-axis) and cfChIP-seq (x-axis) promoter coverage of patient-matched
samples over all Refseq genes. Every dot represents a gene promoter. Colored dots represent the
3684 SCLC signature genes as in Figure 1B.

C. Y-axis is the same as in B. x-axis represents the average cfChIP-seq coverage in healthy individuals
(mean coverage of healthy cfChIP-samples).

D. Correlation of ATAC-seq and cfChlP-seq promoter coverage of corresponding samples (y-axis) as a
function of the SCLC-score (x-axis). The gray dots represent the correlation of the same ATAC-seq
samples to the healthy baseline. The labeled dots correspond to panels B and C.

E. Comparison of differential genes pattern across cfChIP-seq (right) and the corresponding ATAC-seq
(left) data in samples from two different patients. Genes in ATAC-seq (right) are colored by their
differential status in the cfChIP-seq (left).

F. Genome browser view of examples of genes that show differential signals between the two samples
shown in D and a control gene (ACTB). Three pairs of cfChIP-seq and the corresponding ATAC-seq
are shown.
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Plasma cfChlP-seq informs tumor gene expression

Recent studies reveal that SCLC tumors are transcriptionally heterogeneous®#*** (Fig. 4A).
We sought to understand whether plasma cfChlP-seq reflects gene expression patterns of
SCLC tumors.

As an example, among the high SCLC-score plasma samples, one sample (SCLC030-435)
in particular exhibited markedly higher signal at several genes (e.g., POU2F3 and BCL2)
compared to another high SCLC-score sample (SCLC147-1529, Fig. 4B). Examining time-
point matched tumor RNA-seq of these samples revealed differential expression of many of
the same genes, indicating that differential cfChIP-seq signals might indeed reflect tumor

gene expression (Fig. 4B and S3A).

To systematically examine the relationship between circulating chromatin state and tumor
gene expression, we compared cfChiP-seq profiles and RNA-seq data from the same
patients. Ideally, we would want time-matched samples where both report on the same
tumor state. However, due to clinical constraints, some comparisons involved RNA-seq from
an earlier biopsy and cfChlP-seq at the time of disease recurrence (Supplementary Table
1, Fig. S3B). To address this, we performed analyses on both time-matched samples (n =
36; smaller numbers but better correspondence) and the full set of samples (n = 73; larger
numbers but potential for weaker correspondence). Additionally, since the tumor's
contribution to cfDNA may be low in some cases, we focused on high SCLC-score samples

while also considering all available samples.

We computed for each gene the correlation between plasma cfChlP-seq counts and tumor
RNA-seq TMM-normalized CPM values. Excluding genes with low dynamic range in cfChlP-
seq or RNA-seq (Methods), a significant positive correlation was observed in more than 25%
of the genes (2286 genes with g < 0.05; Pearson 0.29 < r <0.97) of the full set of samples.
When comparing only the high SCLC-score samples with matched tumor sample (n=21),
despite the reduced statistical power, we still observed a large number of significant genes
(16%, 1524 genes with g < 0.05, 931 of them overlapping with the significant genes in the
full dataset) showing higher correlation (Pearson 0.56 < r < 0.99. Fig. 4C and S4A). In
particular, a high positive correlation was observed between cfChiP-seq and RNA-seq read

counts for several important SCLC oncogenes such as BCL2, NFIB, and SOX2 (Fig. 4D).

The agreement at the level of genes translates to the agreement of groups of genes. As an

example, we used a SCLC neuroendocrine status gene signature*®. We removed from this
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set genes that are high in healthy plasma samples (Methods) and compared the cfChlP-seq
aggregated signal over these genes to the aggregated RNA-seq of these genes across
samples with high tumor load (n = 21). This analysis revealed a significant positive
correlation (Fig. 4E; Pearson r = 0.75 and p < 0.0001).

To better understand the concordance between tumor RNA-seq and cfChIP-seq, we
examined factors contributing to variations in correlation. One source of discordance can be
poised promoters where the chromatin is accessible and marked by H3K4me3, but the gene
is transcriptionally inactive. In such instances, the cfChlP-seq signal may exhibit varying
signals, whereas the corresponding RNA-seq data would show no signal. Additionally,
chromatin marks are binary at the single-cell level (either present or absent), whereas RNA
levels span a broader dynamic range. Notebly, genes displaying a cfChIP-seq high dynamic
range tend to have stronger correlation (Fig. S4B). Another potential source divergence
between the cfChIP-seq and tumor RNA-seq stems from the contribution of non-tumorous

tissues to each measurement (Fig. 4A and Fig. S3C-E, Supplementary Table 6).

Overall, these findings demonstrate that cfDNA chromatin state, as assessed by cfChlP-seq,
informs the tumor gene expression programs, especially in plasma samples with high tumor
fraction. Moreover, these findings highlight crucial variables that influence the concordance

between cfDNA chromatin state and tumor gene expression.
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Fig. 4: Plasma cfChlIP-seq informs tumor gene expression

A. Concept figure illustrating the various sources and proportions of cells sampled in plasma cfChlP-seq
and tumor RNA-seq. The data obtained from these two assays is derived from a different unknown
mixture of multiple types of cells.

B. Comparison of gene expression in two high SCLC-score samples. Top: TMM-normalized CPM of
tumor RNA-seq. Bottom: normalized gene counts of cfChlP-seq. blue and red points indicate genes
that had high cfChlP-seq gene counts in one sample compared to the other and low gene counts in
healthy reference cfChliP.

C. Gene level analysis of the correlation between tumor gene expression and plasma cfChlP-seq
coverage across individuals with matched tumor and plasma samples (left: all SCLC samples. right:
high SCLC-score samples). For each gene, we computed the Pearson correlation of its tumor
expression and the normalized cfChlIP-seq coverage across the samples. Shown is a histogram of the
correlations on genes with high dynamic ranges (Methods). In gray is the histogram of a random
permutation of the relation between tumor expression and plasma cfChiP.

D. Examples of correlation for several known SCLC oncogenes.

E. Correlation of NE-score computed based on plasma cfChIP-seq and tumor RNA-seq. Only plasma
samples with matching tumors and high SCLC-score are presented.
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Plasma cfChlIP-seq predicts tumor gene expression of SCLC lineage-defining

transcription factors

Building on the concordance between tumor gene expression and plasma chromatin state,
we next focused on key transcription factors central to SCLC tumorigenesis. Transcriptional
signatures of SCLC heterogeneity converge on two major cell states, namely
neuroendocrine (NE) and non-neuroendocrine (non-NE)***’. The SCLC cell states are
further characterized by the expression of key lineage-defining transcription factors, ASCL1
and NEUROD1 defining NE cell states, and POU2F3 defining non-NE cell states. A fourth

48,49
1

subgroup has been characterized by expression of YAP or low expression of all three

transcription factors, accompanied by an inflamed gene signature™.

Most tumors in our cohort had high expression of NE-lineage defining genes ASCL1 and
NEUROD1, with co-expression of both in some cases (Fig. 5A). POU2F3, YAP1, and a

1,17,50
1

newly described subtype marker ATOH were expressed less frequently.

We sought to examine whether the expression of SCLC lineage-defining transcription factors
in the tumor is reflected in the plasma cfChlP-seq. cfChlP-seq counts for ASCL1,
NEUROD1, and POU2F3 were significantly elevated in SCLC plasma, compared to barely
detectable levels in healthy plasma. However, YAP1 counts were similar among healthy and
SCLC plasma samples (Fig. 5B and S5A), likely due to YAP1 activity in normal tissue
contributing to cfDNA, as suggested by H3K4me3 marks on YAP1 promoters in normal

tissue®.

To evaluate whether these cfChlP-seq signals accurately reflect tumor gene expression in
individual patients, we assessed their correlation with RNA-seq data from tumor samples in
high SCLC-score cases (n=36). A strong correlation between cfChlP-seq and tumor RNA-
seq was observed for ASCL1, NEUROD1, and POU2F3 (Pearson r =0.72, 0.72, and 0.86; p
< 8.2x107,6.2x107, and 1.9x10™ respectively), all of which which were absent from healthy
control cfDNA. A similarly high positive correlation was observed for ATOH1 (Pearson r =
0.82; p < 1.3x10®). This correlation was observed both in the SCLC and NEC samples (Fig.
5C). Notably, while the TSS of POU2F3 and ATOH1 were marked by H3K4me3 in many of
the SCLC samples, only in a subset of them did the signals span beyond the TSS region to a
wider region of approximately 10KB, suggesting that in these cases they are involved in cell-
type-specific functions®. We find these additional regions correlated best with gene

expression in the tumor (Fig. S5B-C).

To validate the agreement between cfChiP-seq signals and tumor gene expression at the

protein level, we performed immunohistochemistry of INSM1 on SCLC tumors (n=10).
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INSML1 is a standard marker used in diagnostic pathology of SCLC, and a super-enhancer-
associated transcription factor that regulates global neuroendocrine gene expression >2. The
results revealed high concordance between plasma cfChlP-seq and tumor protein levels (r =
0.74, p = 0.014; Fig. S5D).

Overall, these results demonstrate that plasma cfChlP-seq can reliably capture the
expression patterns of SCLC lineage-defining transcription factors, offering insight into tumor

cell states and heterogeneity.


https://doi.org/10.1101/2022.06.24.497386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.24.497386; this version posted January 14, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

TFs expression in tumor arc mutualy exclusive

. e o
150
ralative
% CPM . - Healthy
8 1004 . - scLC
median § .
xi/8 2
o .
=
tumor type %
50
P . !
5 ! :
= ] ]
1]
2
' " ‘
H
o wail i [l i L
ﬂS(‘:LI NEUhOD1 Y.ﬂ.F'1 F'OLI|2F3 AT‘C-JH1
3 a & £ x
&) [} & o Q
@ [ =2 £
= Q -
w o
z
C
ASCL1 NEUROD1 POU2F3
1004
%1 R=072,p=820-07 4 1 A=072 p=6.20-07 A =086, p=19a-11 A
A AM
A A L ] A A 30 [
10 10
A 4> 4
2 A 0
. s
A A
3 S{a® o 4 a
A 4 3 ° o
1 A o ¢ 1 rs A A
] FYy A 14
A [ ] 5 ¢ Ay
oo & o] AbasAt A 0| Al &
=
€ o i 3 1w s 100 0 1 3 10 30 100 0 ) 100
g ATOH1 YAR1
[
2% Ro082 p=13e09 A R#.039 01a ¢
= .p=13e )
e 1® 2% ral
A 2 @®  validation
10 o - LY
A Aaje
A A
° 10 At
3 ® NEC
A
3
1 A A scic
A 1
0 0 'y a
0 1 3 10 3 10 30 100
tumor RNA

Fig. 5: cfChIP-seq displays differential expression of SCLC transcription drivers

A. Heatmap showing relative expression levels of 5 canonical SCLC transcription drivers across the
tumor RNA-seq samples. Values are presented in TMM-normalized CPM and adjusted to zero mean
for each sample across the 5 genes. Transcription drivers' expression patterns are generally mutually
exclusive.

B. Median and distribution of SCLC and healthy cfChIP-seq plasma sample coverage on the gene
shown in A. ****p < 0.0001.
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C. Correlation of plasma cfChlP-seq coverage and tumor RNA-seq of the genes shown in C. Only
plasma samples with high SCLC-score (n=36) are presented. Color indicated the train/validation
status of the sample and shape represents the tumor type.

Subtyping of SCLC from plasma cfChlP-seq

Next, we sought to explore the possibility of subtyping SCLC tumors directly from plasma
using cfChIP-seq. Although SCLC subtyping is often viewed as a discrete classification
between the types, we observed cases where the tumors exhibited high levels of two or
more lineage-defining transcription factors simultaneously (Fig. 5B). This aligns with data
from recent studies™. Therefore, we decided to predict the activity of each factor separately,

examining four distinct classifications for each sample.

A straightforward strategy for classifying the lineage-defining transcription factors subtypes is
to classify based on the cfChIP-seq signal strength for each transcription factor. Evaluating
the predictive performance of this method using ROC curves, we observed high area-under-
the-curve (AUC) scores for NEUROD1, POU2F3 and ATOH1, even in samples with SCLC
scores as low as 0.05 (Fig. 6A,B).

However, single-gene-based classification proved challenging for ASCL1. A subset of
samples displayed a high cfChIP-seq signal at the ASCL1 promoter but low RNA
expression, (Fig. 5D), suggesting either a poised but inactive promoter or tumor
heterogeneity where the biopsy was not representative of all the tumor. We hypothesized
that employing a multigene signature, taking into account genes that are regulated by

ASCL1, would offer a more robust classifier.

To define such a set of genes, we applied a t-test to genomic regions influenced by the
estimated tumor contribution (Methods). We then performed leave-one-patient-out cross-
validation on the training data to determine the optimal number of regions for the signature,
selecting 100 regions based on performance metrics (Supplementary Table 7). The
aggregated read counts over the signature displayed a linear relationship with the SCLC-
score in positive samples but remained constant and low in other samples, even those with
high SCLC-scores. The ratio of signature counts to SCLC-score effectively discriminated
between the positive and negative samples, achieving a high predictive performance (AUC
0.82 on the validation cohort). The genes of the signature were significantly enriched for
“neuroendocrine cells in the lung” (p < 10™*; Descartes Cell Types and Tissue 2021%"%) (Fig.
6C-E).
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These findings suggest that cfChlP-seq can address an unmet need of molecularly
classifying SCLC into transcriptomic subsets in a minimally invasive manner, directly from
plasma. This approach could provide valuable insights for clinical decision-making and
precision medicine strategies in SCLC.

A . . 25 .
NEUROD1* 801 pouzFs’ 20 ATOH1'
261 o TRUE = TRUE -+ TRUE
- = FALSE © -+ FALSE 15, FMLSE
2 L 40 T
8 L . =2 - 5
B —~ g < 0
=z

’ / 2” / 5: )

s - - -
..q [ 3 ., % M " ’ { f_.
o] ive2 s L. d 0 Laeldl cooh o o ot - -.-q.n- ol seTEAt .-'m ﬁ

ealy 025 o5 o7 soie Healmy 025 05 075 sc':‘u_c He::ny 025 05 075 scle

ke like a
SCLC—score SCLC-score SCLC-score

train ASCL1-  validation ASCL1-
train, ASCL1+ validation ASCL1+

BB cce

I I ASCL1 (ChIP)

R | | e e

SFTA3

SFTA3
+ AP11-204E8.1
- ANK2

BTBD17

075

025 — ASCL1 (AUC = 0.8)

— NEURDD1 (AUC = 0.87)
— POU2F3 (AUC = 1)

= ATOH1 {AUC = 0.96)

NEAINZ

- MIR217HG

MELTF
MELTF
MYBPC1
CSMD1

0.001

1.00 075 050 025 0.00
specificity

CEP170B

HABF2

ASCL1'
HMP1a

APBB2

- KCNMB2

| PCBP3 6
\ AGS12 M,
CADM1

PHACTR1 !
0
1.00 075 0.50 025 000

025 05 075 SCLG apacificity SCLGscore  ASCL1 (ChIP) ASCL1 (RNA)
SCLC-score ]

|

o 05 1 0 10 20 30 o0 2 4 6 8 10

ASCL1 score

= train (AUC = 0.89)
= validation (AUC = 0.82)

000

Flgure 6: SCLC subtyping using cfChIP-seq signals
SCLC score (x-axis) and cfChlP-seq promoter coverage (y-axis) of samples that are annotated as
positive (blue) and negative (red) to NEUROD1, POU2F3 and ATOH1 based on biopsy RNA-seq. Linear
fit shows a positive relation between the promoter coverage and SCLC-score across the positive
samples while the negative samples remain low and constant.
B. ROC plot summarizing the performance of the single-gene classifiers.
C. ASCL1-specific signature strength (y-axis) increases linearly with SCLC-score (x-axis) in ASCL1"9"
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samples

D. Performance of the ASCL1 signature score on the training and validation set. Training set values were
obtained using leave-patient-out cross-validation.

E. cfChlP-seq coverage patterns of ASCL1-specific genomic regions (rows) across the training and
validation samples (columns). Color scale represents the normalized coverage on the genomic region.
Top bars display the ASCL1 cfChlIP-seq promoter coverage, ASCL1 score, log2(1+RNA-seq CPM) and
SCLC-score values across the samples. The order of samples within each group is determined by the
SCLC-score.

Discussion

17,56-58

Cancer master transcription factors control global gene expression programs , and are

attractive targets to classify and treat cancer given their essential role in driving distinctive

cell identities®®®°

and the tendency for cancer cells to become highly dependent on their
sustained and high-level expression®. However, transcription factor profiling in clinical tumor
samples is challenging, particularly for cancers where access to tumor specimens is limited.
Recent studies have identified subtypes of SCLC, the most lethal type of lung cancer,
defined by expression of lineage-defining transcription factors, and their unique therapeutic

vulnerabilities!’~

. Yet, further testing and broad clinical application of these findings is
limited by the availability of tumor tissue, a consequence of the widely metastatic and
aggressive nature of SCLC, which typically precludes surgical resection at diagnosis and
tumor biopsies at relapse. As such, under current guidelines, all patients with SCLC receive
the same treatments. Here, we apply plasma cfChlP-seq which reports the promoter state of
cell-free chromatin in circulation?” to SCLC samples. We find that cfChIP-seq recovers the
unique epigenetic states of SCLC tissue and cell of origin, and importantly tumor gene
expression, particularly SCLC lineage-defining transcription factors, providing a systematic
view of tumor state, opening the possibility of molecularly classifying SCLC directly from as

little as 1 ml of plasma.

Our findings reveal that SCLC has a distinct cell-free chromatin signature, which can be
detected in patient plasma using cfChiP-seq. This signature can differentiate SCLC from
other cancers and healthy controls and can be detected even when it has low representation
in the plasma (e.g., after therapy), and is highly correlated with serologic and radiological

estimations of tumor burden and prognosis.

In matched plasma and tumor biopsy samples, we show for the first time, the concordance
of gene expression inferred from plasma cell-free chromatin and tumor transcriptome at the

level of the individual patient. This concordance opens a new avenue to study the
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heterogeneity between SCLC tumors, tumor response to treatment, and the transcriptional

changes in the tumor throughout the patient trajectory.

Importantly, cfChlP-seq profiles identify the activity of key SCLC transcriptional drivers,
including ASCL1 and NEUROD1 that drive NE phenotypes and POUZ2F3 that drive a non-NE
phenotype'®**4547 These results set the stage for non-invasive subtyping and molecular
profile-based treatments for patients with SCLC, which might be more effective than the
current one-size fits all approach. A larger patient cohort and independent prospective

validation are needed to firmly establish the clinical utility of cfChIP-seq.

Recent studies have described methylation-based methods for subtyping SCLC preclinical
models and patient samples®®®. However, unlike cfChIP-seq, which directly reflects the
tumor transcriptional profile, the relevance of plasma methylation patterns to SCLC subtypes
and their representation of the tumor’s transcriptional landscape remains less clear. The
direct link between chromatin state and gene expression strengthens the utility of cfChiIP-
seq, suggesting its potential to uncover additional transcriptional characteristics of tumors. In
contrast, methylation-based approaches may require the development of specific classifiers

for relevant features, limiting their immediate clinical applicability.

This study also provides a broadly applicable framework for benchmarking features of cfDNA
against the tumor molecular profile. While plasma cfChIP-seq shows good agreement with
tumor RNA-seq, the correspondence is imperfect due to multiple factors. First, there are
inherent differences between chromatin state, which is to a large extent on or off, and gene
expression, which has a large dynamic range ?%°*®. In addition, several factors confound
our estimations of both the plasma and tissue compartments. Plasma cell-free chromatin
reflects contributions from multiple sources, which also include tumors. Tumor RNA-seq
contains contributions from multiple sources in addition to the tumor including tissue-
infiltrating immune cells, stromal cells, endothelial cells, and more. Thus, to understand the
plasma-tumor correspondence, we need to account for the different cell types contributing to
each compartment. By explicitly accounting for differences in SCLC-score we could extract
tumor-specific and tumor-extrinsic features even when the tumor contribution is low. Ideally,
we would deconvolve the signal from these different sources and extract from plasma
samples information about the state of multiple cell types (e.g., tumors, immune cells, stroma
cells). Establishing reliable deconvolution requires better references of the ChlP-seq profiles
of tumor cells and biopsies, together with baseline estimates of their fractions in each

sample®.


https://doi.org/10.1101/2022.06.24.497386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.24.497386; this version posted January 14, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Overall, our study bridges the gap between molecular studies and patient treatment in
SCLC, an exceptionally lethal malignancy, which to date is treated as a homogenous
disease with identical treatments for all patients. Moreover, this work suggests the
applicability of cfChlP-seq to a wider context to profile and subtype tumors, in a way that can

be transformative for patient care across multiple cancer types.
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Materials and Methods

Patients

We undertook an observational study using plasma collected from patients with small cell
cancer who received care at the National Cancer Institute (NCI). Patients were enrolled in
therapeutic clinical trials (ClinicalTrials.gov #NCT02484404; NCI protocol #15-C-0145;
ClinicalTrials.gov  #NCT02487095; NCI protocol #15-C-0150; ClinicalTrials.gov
#NCT02769962; NCI protocol #16-C-0107; ClinicalTrials.gov # NCT03554473; NCI protocol
#18-C-0110; and ClinicalTrials.gov # NCT03896503; NCI protocol #20-C-0009). We also
collected samples from small cell cancer patients who were enrolled in the NCI thoracic
malignancies natural history protocol (ClinicalTrials.gov # NCT02146170; NCI protocol #14-
C-0105). See Supplementary table 1 for information per patient. If tumor samples were
available, we also sequenced their RNA at matched or different time points of when the
plasma was collected. The human subjects committee at NCI approved the studies; all
patients provided written informed consent for plasma, tumor, and matched normal sample

sequencing.

Tumor RNA sequencing and Immunohistochemistry

Formalin-Fixed, Paraffin-Embedded (FFPE) tumor tissue samples or frozen tumor samples
in selected samples were prepared for RNA-seq. RNA enrichment was performed using
TruSeq RNA Exome Library Prep according to the manufacturer’s instructions (lllumina, San
Diego). Paired-end sequencing (2 x 75 bp) was performed on an lllumina NextSeq500
instrument. RNA was extracted from FFPE tumor cores using RNeasy FFPE kits according
to the manufacturer's protocol (QIAGEN, Germantown, MD). RNA-seq libraries were
generated using TruSeq RNA Access Library Prep Kits (TruSeq RNA Exome Kits; Illumina)
and sequenced on NextSeq500 sequencers using 75bp paired-end sequencing method
(lumina, San Diego, CA). Reads were aligned to the human genome (hgl9) using STAR
(2.7.10a)®° . For transcriptomic analyses, raw RNA-Seq count data were normalized for inter-
gene/sample comparison using TMM-CPM, as implemented in the edgeR R/Bioconductor

package®’. Immunohistochemistry for INSM1 was done as we previously described?.
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Tumor volumetric estimation

cfDNA Tfx

The DSP Circulating DNA kit from Qiagen was utilized to extract cell-free DNA from aliquots
of plasma which were eluted into 40-80 uL of re-suspension buffer using the Qiagen
Circulating DNA kit on the QIAsymphony liquid handling system. Library preparation utilized
the Kapa Hyper Prep kit with custom adapters (IDT and Broad Institute). Samples were
sequenced to meet a goal of 0.1x mean coverage utilizing the Laboratory Picard
bioinformatics pipeline, and Illumina instruments were used for all cfDNA sequencing with
150 bp and paired-end sequencing. Library construction was performed as previously
described ®. Kapa HyperPrep reagents in 96-reaction kit format were used for end repair/A-
tailing, adapter ligation, and library enrichment polymerase chain reaction (PCR). After
library construction, hybridization and capture were performed using the relevant
components of Illlumina's Nextera Exome Kit and following the manufacturer's suggested
protocol. Cluster amplification of DNA libraries was performed according to the
manufacturer's protocol (lllumina) using exclusion amplification chemistry and flowcells.
Flowcells were sequenced utilizing Sequencing-by-Synthesis chemistry. Each pool of whole
genome libraries was sequenced on paired 76 cycle runs with two 8 cycle index reads
across the number of lanes needed to meet coverage for all libraries in the pool. Somatic
copy number calls were identified using CNVKkit®® (version 0.9.9) with default parameters.

970 and sequenza™. cfDNA Tfx was

Tumor purity and ploidy were estimated by sclust
estimated based on the somatic copy number alteration profiles using ichorCNA, a

previously validated analytical approach® ™.

CTCs

CTCs were detected from 10 mL of peripheral blood drawn into EDTA tubes. Epithelial cell
adhesion molecule (EpCAM)-positive CTCs were isolated using magnetic pre-enrichment
and quantified using multiparameter flow cytometry. CTCs were identified as viable,
nucleated, EpCAM+ cells that did not express the common leukocyte antigen CDA45, as

described previously®.
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Radiological volumetric segmentation

We performed volumetric segmentation, a three-dimensional assessment of computed
tomography as previously described 2. that may more accurately predict clinical outcomes
than conventional evaluation by Response Evaluation Criteria in Solid Tumors (RECIST).
Briefly, experienced radiologists reviewed the computed tomography sequences to
determine the best ones to use for segmentation using the lesion management application
within PACS (Vue PACS v 12.0, Carestream Health, Rochester, NY). We also assessed
sizes of lesions by RECIST v.1.1.

Plasma cfChlIP-seq

Sample collection

Plasma for cfDNA was collected in EDTA tubes and centrifuged at 4C at 1500xg for 10
minutes. Plasma was carefully transferred into Eppendorf tubes, centrifuged a second time
at 4C at 10,000xg for 10 minutes, and transferred into standard cryovials.

Bead preparation

50ug of antibody was conjugated to 5mg of epoxy M270 Dynabeads (Invitrogen) according
to manufacturer instructions. The antibody-beads complexes were kept at 4°C in PBS,

0.02% azide solution.

Immunoprecipitation, NGS library preparation, and sequencing

Immunoprecipitation, library preparation, and sequencing were performed by Senseera LTD.
using previously reported protocols?’, with certain modifications that increase capture and
signal-to-background ratio. Briefly, ChIP antibodies were covalently immobilized to
paramagnetic beads and incubated with plasma. Barcoded sequencing adaptors were

ligated to chromatin fragments and DNA was isolated and next-generation sequenced.
Sequencing Analysis

Reads were aligned to the human genome (hgl9) using bowtie2 (2.3.4.3) with ‘no-mixed’
and ‘no-discordant’ flags. We discarded fragment reads with low alignment scores (-q 2) and
duplicate fragments. See Supplementary Table 3 for read number, alignment statistics, and

numbers of unique fragments for each sample.

Preprocessing of sequencing data was performed as previously described?’. Briefly, the

human genome was segmented into windows representing TSS, flanking to TSS, and
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background (rest of the windows). The fragments covering each of these regions were
quantified and used for further analysis. Non-specific fragments were estimated per sample
and extracted resulting in the specific signal in every window. Counts were normalized and

scaled to 1 million reads in healthy reference accounting for sequencing depth differences.

ATAC-seq library preparation data processing

Tissue samples for ATAC-seq were directly obtained from patients and PDX's (patient-
derived xenograft) models of different generations. The collected tissue samples were flash
frozen and kept at -80 degree Celsius and shipped to Novogene for sequencing. Samples
were sequenced at Novogene using NovaSeq 6000 as a sequencing platform with 150bp
paired-end sequencing mode. The obtained reads were trimmed using trimmomatic (version
0.39), filtered and aligned to the human genome (hg19) using BWA (version 0.7.17). PCR
duplicates and reads mapped to the mitochondrial chromosome or repeated regions were

removed.

Statistical analysis

Genes elevated in SCLC compared to healthy plasma

A reference of healthy plasma gene baseline and statistical test to evaluate whether a gene

is significantly elevated compared to the baseline were computed as previously described?’.

SCLC score

To estimate SCLC-score reflecting tumor-related fraction in samples, we performed a leave-

one-out non-negative least square using the ‘nnis’ R package (1.4).

Denoting by G the number of gene promoter, and by S the number of samples in the
reference cohort, a matrix Xy 541y is composed containing the counts per promoters in the S
healthy samples, with the addition of a ‘SCLC prototype’ composed on the mean promoter
counts of the 10% SCLC samples with most genes significantly higher than healthy (n=15).
For every vector Y,y of counts per promoter in the SCLC samples, we estimate the non-
negative coefficient f by computing argmaxg ||Xp — Y||? subject to g = 0. A similar process
is computed for healthy samples with the exception that for the i, sample we use the matrix
X_; where the column containing that sample is eliminated. The estimated £ is normalized

to 1 by computing g = ﬁ The tumor-related fraction is defined as the value of Bg., - the

fraction assigned to the SCLC prototype. The healthy fraction of the i;;, sample is defined as

Yizscc Bi - the sum of fractions assigned to all other healthy components.
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An alternative approach was tested using a reference atlas of roadmap tissue data. In this
approach the healthy fraction is set to be the sum of fractions assigned to common tissues
observed typically in healthy samples (neutrophils, monocytes, megakaryocytes) and the
tumor-related fraction is defined as 1 - the tumor-related fraction. The two approaches

resulted in very similar estimations for the vast majority of samples (not shown).

We compute the principal component analysis (PCA) of all gene counts in all SCLC and
healthy samples as implemented in the R ‘prcomp’ function. Scree plot was generated using

the *fviz_eig’ function of the R ‘factoextra’ package (1.0.7).

Tissue sighatures

Genomic regions selected for tissue-specific markers are as described previously?”. cfDNA
of SCLC patients consists of tumor-related cfDNA above the hematopoietic-derived cfDNA
observed in healthy individuals. Estimation of the absolute contribution of tissues to the
cfDNA pool was calculated by multiplying the normalized signal per signature and the
estimated number of reads in the sequencing library size % which approximates the cfDNA

concentration.

Lung single-cell signatures

To define pulmonary cell-type specific signatures, we made use of published pulmonary
scRNA-seq data*’ using cluster-specific marker gene sets defined by the authors. To
increase the specificity of cell-type signature in the cfDNA context, we include only genes

that meet the following criteria:
a. The percent of cells outside the cluster that express the genes is less than 0.1.

b. The average log fold-change expression in the cluster compared to other clusters is

more than 2.
c. The adjusted p-value of the gene is less than 0.1.
d. The mean gene promoter read counts in cfDNA in healthy reference is less than 3.

The last criterion aims to remove from the signature genes that are not lung-specific but
appear in circulation as part of normal cell turnover. A summary of the genes included in

every lung cell-type signature can be found in Supplementary Table 5.
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ChIP-RNA correlation

To examine the relationship of tumor RNA-seq of tumor and plasma ChlIP-seq, we computed
the Pearson correlation of all genes across the samples with matching tumor and plasma
samples. The correlation was computed between TSS counts of the ChiP-seq and CPM and
compared to the correlation achieved from a random permutation of the ChlP-seq samples.
The correlation was computed for all samples with matching tumor-plasma (n=73) and

separately for samples with SCLC-score > 0.5 (n=21) and matching tumor.

The dynamic range of ChiP-seq gene g was calculated by the 95th percentile - 5th percentile
of the normalized reads across all plasma samples. High dynamic range genes were set to
be genes with a dynamic range > 20. The dynamic range of the RNA-seq of gene g was

calculated similarly for CPM.

Subtyping of plasma samples

Based on the RNA-seq distribution, we defined the following CPM cutoffs: ASCL1 = 10,
NEUROD1 = 60, POU2F3 = 40 and ATOH1 = 4. Plasma samples with matching tumors
were annotated as TF-positive for each of the four TFs.

ASCL1 specific genomic regions

Tiling of the genome to genomic regions (windows) was performed as previously
described®’. The following procedure was performed to select informative genomic regions.

Given a set of labeled samples:

Select samples with SCLC score > 0.05

2. Select genomic regions whose mean healthy reference < 0.3 and mean over training
sample > 3.

3. Create a matrix of values that represent the 100% tumor contribution to the sample:
Xws = Xuws/Bs Where X, ¢ is the observed count at region (window) w in sample s
and f; is the estimated SCLC score of sample s

4. For each region w perform a t-test for the hypothesis that the mean in the positive
samples is higher than the negative one.

5. Choose the k windows with smallest (most significant) p-values

To evaluate different choices of k, we performed leave-person-out cross validation, where
we removed the samples of one patient from the training set, ran the procedure and

evaluated the resulting signature on the held-out samples.
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Fig. S1: SCLC-score correlates with tumor load and predicts response to treatment

A. Distribution of the number of genes with significantly higher coverage in SCLC samples compared to
healthy baseline (Methods). Dashed line represents the 90th percentile.

B. Scree plot of PCA (fig. 1D).

C. Correlation of PC1 and SCLC-score (presented in fig 1C-D). High correlation indicates that the main
variation in the data is driven by the SCLC contribution to the cfDNA.

D. Correlation of SCLC-score and other plasma-based methods for tumor load estimations (cfDNA
concentration, circulating tumor cells).

E. Correlation of cfDNA concentration and ctDNA fraction.

F. Dynamics of SCLC-score during treatments of topotecan and berzosertib (an ATR inhibitor)
(ClinicalTrial.gov identifier NCT02487095). Gray lines indicate multiple time points of the same
individual.

G. Median SCLC-score in patients that did or did not respond to various investigational treatments:
combination of topotecan and berzosertib (NCT02487095, NCT03896503); olaparib and durvalumab
(NCT02484404); nanoparticle camptothecin (CRLX101) and olaparib (NCT 02769962); M7824 (PD-1
inhibitor and TGF-B trapping) and topotecan or temozolomide (NCT03554473). Each dot is a sample,
and boxplots summarize distribution of values in each group. Abbreviations: ATR: ataxia
telangiectasia and Rad3-related.
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Fig. S2: SCLC tissue and cell of origin

A. Distribution of signal for cell-type signatures (same as fig. 2E).

B. Correlation of cell-type signature (shown in fig 2E) and SCLC-score. Cell-types observed only in
SCLC samples are positively correlated with SCLC-score, while cell-types observed in healthy
samples are negatively correlated to SCLC-score.

C. Left: number of marker genes used for every cell-type (Methods; Supplementary Table 5). Right:
Distribution of signal for lung cell-type marker genes (same as fig. 2F). **** and ***: P < 0.0001 and <
0.001, respectively

D. Heatmap showing patterns of signal in lung cell-type markers in the SCLC and healthy samples.
Color represents log2(1+cumulative coverage in promoters of marker genes).
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figure S3 - cfChIP and tumor RNA-seq comparison and examples of patient trajectories

A. Comparison of signal ratio of the two individuals shown in Fig. 3A in tumor RNA and plasma cfChlP.
Blue and Red points correspond to genes with higher cfChiP-seq counts in every sample. Lighter
points represent genes with low RNA counts (combined TMM-CPM< 3).

B. Disease time course and interventions (treatment and procedures) of two SCLC patients. Bottom
panel - section bordered by purple points represent treatment period, gray and black points
represents events of reoccurrence and death, green points represent tumor biopsy RNA-seq samples
used in presented in this study. Points below the line represent plasma cfChIP-seq samples
presented in this study (green points - samples with time-matched tumor biopsy, red points - samples
with unmatched tumor biopsy. Top panel - SCLC score of the cfChIP plasma samples. X-axis
represents the dates as in the bottom panel.
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Fig S4: cfChlIP-seq RNA correlation confounders

A. Gene level analysis of the correlation in tumor expression level and plasma cfChlIP-seq levels (same
as in Fig. 3B for all Refseq genes).

B. Comparison of the effect of cfChIP-seq and RNA dynamic range (x-axis) on cfChIP-RNA correlation
(y-axis) shown in Fig. 3B. Left panel for the observed correlation and right panel for a random
permutation (gray histogram of Fig. 3B). Results indicate that genes with low ChIP dynamic range
tend to have lower correlation.

C. Same as C for SCLC/healthy ratio (x-axis). The ratio was computed using the mean gene counts of
high SCLC samples and healthy samples.

D. TMM-CPM of tumor samples in liver specific genes. High expression is observed in samples where
biopsy was obtained from the liver.

E. Same as C for gene expression in the liver (x-axis).
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Fig. S5: cfChIP signal in SCLC lineage-driving genes

A. Genome browser view of cfChIP-seq signal in SCLC key transcriptional regulators.

B. Correlation of plasma cfChlP-seq coverage in promoter and gene body and tumor RNA-seq of the
genes POU2F3 and ATOH1. Noticeably, in these genes, the correlation to expression is higher in the
gene body.

C. Genome browser view of cfChIP-seq signal in panel D. Orange and green tracks represent SCLC and
healthy samples respectively. While a signal in the gene promoter is observed in many samples, only
in specific samples there is a significant coverage also in the gene body.

D. Correlation of plasma cfChiP-seq coverage in the promoter of INSM1 (y-axis) and the
immunohistochemistry H-score of the matching tumors (x-axis).
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