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Abstract 

Emerging data on small cell lung cancer (SCLC), an aggressive malignancy with 

exceptionally poor prognosis, support subtypes driven by distinct transcription regulators, 

which engender unique therapeutic vulnerabilities. However, the translational potential of 

these observations is limited by access to tumor biopsies. Here, we leverage chromatin 

immunoprecipitation of cell-free nucleosomes carrying active chromatin modifications 

followed by sequencing (cfChIP-seq) on 442 plasma samples from individuals with advanced 

SCLC, neuroendocrine carcinomas (NEC), non-SCLC cancers, and healthy adults. Beyond 
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providing reliable estimates of SCLC circulating free DNA tumor fraction, cfChIP-seq 

captures the unique epigenetic states of SCLC tissue- and cell-of-origin. Comparison of 

cfChIP-seq signals to matched tumor transcriptomes reveals genome-wide concordance, 

establishing a direct link between gene expression in the tumor and plasma cell-free 

nucleosomes. Exploiting this link, we develop a classifier that discriminates between SCLC 

lineage-defining transcription factor subtypes based on cfChIP-seq data. This work sets the 

stage to non-invasively profile SCLC transcriptomes using plasma cfDNA histone 

modifications.  

Introduction  

Small cell lung cancer (SCLC) is a neuroendocrine lung cancer that is highly aggressive with 

dismal prognosis, accounting for approximately 15% of all lung cancers1. SCLC is one of the 

solid tumors that sheds the largest amount of cfDNA2,3. Prior studies have identified cfDNA 

mutations in more than 80% of SCLC patients4–13, but recurrent targetable mutations in 

known oncogenes, such as those seen in the kinases that comprise targetable drivers in 

lung adenocarcinoma, are rare in SCLC14,15. Recurrent mutations also do not demonstrate 

consistent co-occurrence or mutual exclusivity, and thus do not define SCLC subtypes.  

SCLCs exhibit high expression of neuronal and neuroendocrine transcription factors and 

MYC paralogs that drive expression of a broad range of genes related to cell proliferation 

and growth signaling14,16. Importantly, SCLC subtypes driven by distinct transcription factors 

have unique therapeutic vulnerabilities17–22. However, identification of SCLC transcriptomic 

subtypes and their application in the context of subtype-specific therapies has proven 

challenging due to limited access to tumor specimens. The majority of SCLC patients do not 

undergo surgical resection as their disease is detected after it has spread beyond the 

primary site23. Moreover, patients with relapsed disease generally deteriorate quickly, and 

recurrence suspected on imaging is typically followed by immediate treatment without 

biopsies. Highlighting this challenge, SCLC is represented in none of the large sequencing 

initiatives like The Cancer Genome Atlas and Pan-cancer Analysis of Whole Genomes24. 

Identifying tumor-specific alterations in cell free DNA (cfDNA) presents a powerful 

opportunity to reduce cancer morbidity and mortality25,26. Most of the current clinical 

applications of cfDNA are centered around interrogating the mutational landscape, and as 

such are of limited utility in defining transcriptomic subtypes. We recently reported chromatin 

immunoprecipitation and sequencing of cell-free nucleosomes from human plasma (cfChIP-

seq) to infer the transcriptional programs by genome-wide mapping of plasma cell free-

nucleosomes carrying specific histone modifications27. Specifically, tri-methylation of histone 
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3 lysine 4 (H3K4me3) is a well characterized histone modification, marking transcription start 

sites (TSS) of genes that are poised or actively transcribed, and predictive of gene 

expression27–30.  

The translational potential of the newly described SCLC transcriptional phenotypes and their 

associated vulnerabilities is limited by access to tumor biopsies. We hypothesized that 

plasma histone modifications may non-invasively track tumor gene expression programs, 

including lineage-defining transcription factors, opening opportunities for subtype-directed 

therapies for SCLC, currently treated as a single disease. To this end, we applied cfChIP-

seq on 305 plasma samples from self-reported healthy subjects (n=33), patients with non-

small cell lung cancer (NSCLC, n=16), colorectal cancer (CRC, n=40), neuroendocrine 

carcinomas (NEC) (n=17) and SCLC (n=67) who had 119 plasma samples collected at 

multiple timepoints during their treatment. The plasma-based gene expression programs 

were benchmarked against corresponding tumor transcriptomes, chromatin accessibility, 

and gene expression assessed by RNA-seq, ATAC-seq, and immunohistochemistry 

respectively (Fig. 1A; Supplementary Table 1-2). Our findings reveal the significant 

correspondence of plasma cfChIP-seq profiles with tumor gene expression and chromatin 

accessibility and identify key variables that impact this relationship. By focusing on genes 

that define SCLC subtypes, we show that plasma cfChIP-seq can effectively classify these 

subtypes. To confirm these findings, we expanded our analysis to an additional SCLC and 

NEC validation cohort (n=76/61 plasma samples), further corroborating the potential of 

plasma histone modifications as biomarkers for tracking tumor gene expression and 

informing subtype-specific therapies in SCLC. 

Results 

SCLCs have distinct cfChIP-seq signals that track tumor burden and prognosis 

Plasma samples were collected, processed, and H3K4me3 ChIP-seq27 performed directly on 

~1ml of plasma (Methods) with a median of 3.5 million unique reads sequenced per sample 

(Supplementary Table 3). The number of normalized reads mapping to its respective TSS 

region(s) was computed for every gene, resulting in gene counts analogous to transcription 

counts in RNA-seq data. Comparing the gene counts in SCLC plasma samples to those in 

healthy reference samples (Methods), we found significantly elevated counts in hundreds to 

thousands of genes (Fig. 1B, S1A).  

cfDNA of cancer patients consists of DNA fragments originating from tumor cells and DNA 

released by normal cells, primarily from the hematopoietic lineage27,31. The tumor-derived 
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fraction of cfDNA can vary substantially, depending on several variables including tumor 

burden and growth activity32. To account for this variability, we developed an ‘SCLC-score’ 

that reflects the proportion of tumor-derived cfDNA. The score is generated using a linear 

regression model that matches the observed gene count profile in a sample to a weighted 

mixture of reference cfChIP-seq profiles. The reference dataset consisted of plasma 

samples from healthy individuals and a representative SCLC archetype derived from the 

10% of SCLC samples (n = 20), with the highest number of differential genes compared to 

healthy samples (Fig. S1A, Methods).  

The SCLC-score ranged from 0 (indicating a ‘healthy like’ profile) to 1 (‘SCLC like’). In SCLC 

patient samples collected before treatment, the median SCLC-score was 0.5, which dropped 

to 0.11 post-treatment, suggesting a reduction in tumor-derived cfDNA due to therapy. In 

contrast, plasma from healthy subjects and patients with non-SCLC cancers displayed 

absent or very low SCLC-scores (median of 0 in healthy and NSCLC, 0.06 in CRC; ANOVA 

p < 10-15. Fig. 1C). To validate our estimation in an unsupervised manner, we performed 

principal component analysis (PCA) on the gene counts of healthy controls and SCLC 

samples (Methods). When we mapped the SCLC-score onto the two-dimensional PCA plot, 

PCA1 - the axis explaining the most sample variability - showed a near-perfect correlation 

with the estimated tumor load (r = 0.98, p < 10-15 Fig. 1D, S1B-C).  

Importantly, cfChIP-seq SCLC-scores were significantly correlated with multiple other 

measures of tumor fraction, including somatic copy number alteration-based estimates from 

ultra-low pass whole genome sequencing33, circulating tumor cell (CTC) counts, total cfDNA 

concentrations (Methods. Pearson r = 0.78, 0.43 and 0.61; p < 2x10-4, 0.01, and 0.03, 

respectively), computerized tomography scan-based volumetric tumor assessments, and 

standardized unidimensional tumor measurements34 (Pearson r and p: 0.58 and 0.61; 

<0.007 and <3x10-4, respectively Fig. 1E and S1D-E). Furthermore, cfChIP-seq SCLC-

scores tracked radiographic tumor burden through the treatment time course (Fig. 1F), and 

predicted treatment response and overall survival (Fig. 1G and S1F-G).  

Taken together, these results demonstrate the potential of cfChIP-seq to non-invasively 

detect and quantify SCLC from plasma. Further investigations are warranted to explore 

whether this approach could be adapted for lung cancer screening, with the prospect of 

significantly improving patient survival through early detection. 
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Fig. 1: SCLC plasma samples exhibit distinct cfChIP-seq signals that correlate with tumor burden and 
survival 
 

A. Study outline. Plasma and tumor samples were collected from a cohort of healthy individuals and 
patients with SCLC at various time points during treatment. cfChIP-seq was performed on plasma 
samples and RNA-seq on tumor biopsy samples. Plasma cfChIP-seq-based gene expression profiles 
were benchmarked against tumor RNA-seq, and key SCLC transcription regulators were examined.  

B. Genes with significantly high coverage in selected SCLC (n=20) samples (Methods) compared to 
healthy baseline. For each gene, we compare mean normalized coverage in the SCLC samples (y-
axis) to a healthy cohort reference (x-axis). 3197 genes with significantly higher coverage (q<0.001) 
in at least 6 SCLC samples are marked (Supplementary Table 4). 

C. Median SCLC-score in different cohorts calculated by linear regression (Methods). Each dot is a 
sample, and boxplots summarize each group's SCLC-scores distribution. Pre/post refers to the timing 
of the collection relative to treatment. ****: P < 0.0001. 

D. Principal components 1 and 2 of SCLC (orange) and healthy (green) samples. Transparency 
indicates SCLC-score as in C. Principal component analysis was done using all Refseq genes 
(~25,000). 

E. Correlation of SCLC-score with other plasma and imaging-based measures of tumor burden. 
Abbreviations: RECIST: Response Evaluation Criteria in Solid Tumors. 

F. Changes of SCLC-score and radiological tumor burden in a patient with SCLC over the treatment 
time-course (SCLC0191). Abbreviations: Tr. 1 - durvalumab & olaparib; Tr. 2 - Topotecan & M6620; 
RT - radiation; Tr. 3 - investigational therapy; CR - complete response; SD - stable disease; PD - 
progressive disease. 

G. Kaplan-Meier survival plot in patients with SCLC-score above (red; median survival: 3 month) or 
below (blue; median survival: 8.5 month) median. The survival curve was conducted on pre-treatment 
samples. p calculated by log-rank test. 

 

cfChIP-seq recovers SCLC tissue and cellular origins 

We next investigated whether plasma cfChIP-seq signals could provide insights into the 

epigenetic state of tissue and cells of origin of SCLC tumors. Among the more than 3,500 

genes with significantly elevated coverage in SCLC plasma (Fig. 1B, methods) many were 

specifically elevated in SCLC samples compared with healthy controls or other cancers. 

Interestingly, the signal across these genes generalized to plasma samples from patients 

with NECs. These tumors can arise at almost any anatomic site, and exhibit tissue-

independent convergence to a neuroendocrine histology, while maintaining molecular 

divergence driven by distinct transcriptional regulators(Wang et al. 2024). These results 

underline the similarities in the transcription patterns of the SCLC and NEC. (Fig. 2A-B). 

Notably, these SCLC-signature genes showed a remarkable enrichment for genes 

expressed in SCLC cell lines35 and pulmonary neuroendocrine cells36, with significant 

overlaps of 272 out of 465 and 53 out of 92 genes (p <7.8*10-97 and <3.5*10-15, 

respectively)37,38. Specifically, SCLC plasma exhibited elevated counts of canonical SCLC 

genes such as DLL3, INSM1, CHGA, and CRMP1, with significantly higher levels than those 

observed in healthy samples (Fig. 2C-D).  

To characterize the tissue-specific origins of cfDNA, we established a set of tissue-specific 

genomic loci using ChIP-seq reference data39,40 (Methods). Using this approach, we 

confirmed that the signals in healthy plasma are mainly derived from neutrophils, 
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megakaryocytes, and monocytes27,31. In contrast, signals in SCLC plasma exhibited 

additional signals derived from cells with characteristics of lung and brain tissues, as well as 

B-cells, suggesting contributions from cells of pulmonary, neuronal, and lymphocyte lineages 

(Fig. 2E and S2A). These tissue-specific signals positively correlated with the SCLC-score, 

reinforcing their relevance (Fig. S2B).  

To further investigate whether cfChIP-seq can provide clues to the cell-of-origin, we applied 

lung cell-type-specific signatures derived from single-cell RNA-seq data 41. Across the ~50 

cell-types examined, spanning lung epithelial, endothelial, stromal, and immune cells, we 

observed a strong enrichment of neuroendocrine cell type in SCLC plasma compared to 

healthy controls (Fig. 2F). This finding is especially striking since neuroendocrine cells 

constitute only 0.13% of a healthy lung tissue41. Furthermore, the neuroendocrine cell 

signature was significantly elevated in SCLC plasma relative to normal lung tissue (Fig. 2G). 

Signals of other lung cells including ciliated cells and alveolar epithelial type 1 cells were 

also higher in SCLC plasma compared to healthy controls (Fig. 2F, S2C and S2D), hinting at 

the possibility of SCLCs arising additionally from non-neuroendocrine cells-of-origin as 

previously described42 or indicating injury to the specific cells. 

Together, these findings demonstrate that cfChIP-seq can capture the unique epigenetic 

states of tissues and cells-of-origin associated with SCLC tumors. 
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Fig. 2: cfChIP-seq recovers SCLC tissue and cellular origins 
A. Hierarchical clustering of SCLC signature genes (rows) across the study cohorts (columns). Samples 

within each cohort are ordered by the SCLC score. Normalized coverage on the gene promoter was 
log-transformed (log2(1+coverage)) and adjusted to zero mean for each gene across the samples. 
Abbreviations: SCLC, small cell lung cancer; NEC, neuroendocrine cancer; NSCLC, non-small cell 
lung cancer; CRC, colorectal cancer. 

B. Median and distribution of coverage on genes shown in A across the study cohorts. ****: P < 0.0001 
C. Genome browser view of cfChIP-seq signal in canonical SCLC genes (DLL3, INSM1, CHGA, 

CRMP1) and GAPDH as control. Orange and green tracks represent SCLC and healthy samples 
respectively.  

D. Median and distribution of the cumulative cfChIP-seq coverage over the SCLC-signature genes.  
E. Cell and tissue of origin signatures in healthy and SCLC samples. x-axis indicates the absolute 

contribution of signature (normalized reads/kb corrected by estimated cfDNA concentration; methods)  
F. Single-cell RNA-seq-derived lung cell-type signatures in healthy and SCLC samples. x-axis indicates 

the sum of normalized reads in the marker genes of every tissue. Ratio for signal in cell-types shown 
in F of high-score SCLC samples (n=23) compared to Encode3 lung ChIP-seq.  
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Plasma cfChIP-seq reflects tumor chromatin accessibility state 

Since chromatin accessibility is closely linked to gene expression programs, we asked 

whether circulating nucleosomes reflect the chromatin accessibility state of the 

corresponding tumors. Due to the challenges of mapping chromatin accessibility in small 

biopsy samples, we generated patient-derived xenografts (PDX) (Fig. 3A) from tumors of 

patients who had plasma profiled using cfChIP-seq, and performed transposase-accessible 

chromatin using sequencing (ATAC-seq)43 on these PDX tumors . The relationship between 

ATAC-seq and the H3K4me3 mark is complementary, as ATAC-seq identifies regions of 

open chromatin and H3K4me3 marks active promoters.  

When comparing the ATAC-seq (PDX) and cfChIP-seq (plasma) promoter coverage in a 

sample with high plasma SCLC-score, we observed a strong correlation between the two 

assays (R = 0.72, p < 2x10-15; Fig. 3B). In particular, the SCLC signature genes are 

predominantly aligned along the diagonal. This high correlation is not seen when comparing 

ATAC-seq coverage to the average cfChIP-seq coverage in the healthy cohort, suggesting 

that much of the correlation is driven by the SCLC signature genes that exhibit increased 

ATAC-seq signal and elevated cfChIP-seq signal (Fig. 3C). Comparison of ATAC-seq vs. 

cfChIP-seq across all sample pairs demonstrated that the correlation between the assays 

was associated with increasing SCLC scores, well beyond what could be attributed to 

chance (Fig. 3D). 

To examine whether differences in plasma cfChIP-seq signal between samples correlate 

with differences in tumor chromatin accessibility, we compared the cfChIP-seq data from two 

patients with high SCLC scores. Remarkably, the differentially active genes between the two 

plasma samples exhibited a similar pattern of differential accessibility in the corresponding 

tumor ATAC-seq data (Fig. 3E-F).  

Collectively, these findings suggest that plasma nucleosomal H3K4me3 marks can serve as 

reliable indicators of the tumor chromatin accessibility state.  
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Figure 3: Plasma cfChIP-seq reflects tumor chromatin accessibility state 
A. Schematic outline of ATAC-seq experiment. Patient-derived xenograft (PDX) models were 

established by transplanting tumor tissue obtained directly from patients subcutaneously into 
immunocompromised mice. The resulting tumor is harvested and subject to ATAC-seq. 

B. Comparison of ATAC-seq (y-axis) and cfChIP-seq (x-axis) promoter coverage of patient-matched 
samples over all Refseq genes. Every dot represents a gene promoter. Colored dots represent the 
3684 SCLC signature genes as in Figure 1B. 

C. Y-axis is the same as in B. x-axis represents the average cfChIP-seq coverage in healthy individuals 
(mean coverage of healthy cfChIP-samples).  

D. Correlation of ATAC-seq and cfChIP-seq promoter coverage of corresponding samples (y-axis) as a 
function of the SCLC-score (x-axis). The gray dots represent the correlation of the same ATAC-seq 
samples to the healthy baseline. The labeled dots correspond to panels B and C.  

E. Comparison of differential genes pattern across cfChIP-seq (right) and the corresponding ATAC-seq 
(left) data in samples from two different patients. Genes in ATAC-seq (right) are colored by their 
differential status in the cfChIP-seq (left).  

F. Genome browser view of examples of genes that show differential signals between the two samples 
shown in D and a control gene (ACTB). Three pairs of cfChIP-seq and the corresponding ATAC-seq 
are shown.  
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Plasma cfChIP-seq informs tumor gene expression  

Recent studies reveal that SCLC tumors are transcriptionally heterogeneous21,44,45 (Fig. 4A). 

We sought to understand whether plasma cfChIP-seq reflects gene expression patterns of 

SCLC tumors.  

As an example, among the high SCLC-score plasma samples, one sample (SCLC030-435) 

in particular exhibited markedly higher signal at several genes (e.g., POU2F3 and BCL2) 

compared to another high SCLC-score sample (SCLC147-1529, Fig. 4B). Examining time-

point matched tumor RNA-seq of these samples revealed differential expression of many of 

the same genes, indicating that differential cfChIP-seq signals might indeed reflect tumor 

gene expression (Fig. 4B and S3A).  

To systematically examine the relationship between circulating chromatin state and tumor 

gene expression, we compared cfChIP-seq profiles and RNA-seq data from the same 

patients. Ideally, we would want time-matched samples where both report on the same 

tumor state. However, due to clinical constraints, some comparisons involved RNA-seq from 

an earlier biopsy and cfChIP-seq at the time of disease recurrence (Supplementary Table 

1, Fig. S3B). To address this, we performed analyses on both time-matched samples (n = 

36; smaller numbers but better correspondence) and the full set of samples (n = 73; larger 

numbers but potential for weaker correspondence). Additionally, since the tumor's 

contribution to cfDNA may be low in some cases, we focused on high SCLC-score samples 

while also considering all available samples.  

We computed for each gene the correlation between plasma cfChIP-seq counts and tumor 

RNA-seq TMM-normalized CPM values. Excluding genes with low dynamic range in cfChIP-

seq or RNA-seq (Methods), a significant positive correlation was observed in more than 25% 

of the genes (2286 genes with q < 0.05; Pearson 0.29 � � �0.97) of the full set of samples. 

When comparing only the high SCLC-score samples with matched tumor sample (n=21), 

despite the reduced statistical power, we still observed a large number of significant genes 

(16%, 1524 genes with q < 0.05, 931 of them overlapping with the significant genes in the 

full dataset) showing higher correlation (Pearson 0.56 � � � 0.99. Fig. 4C and S4A). In 

particular, a high positive correlation was observed between cfChIP-seq and RNA-seq read 

counts for several important SCLC oncogenes such as BCL2, NFIB, and SOX2 (Fig. 4D).  

The agreement at the level of genes translates to the agreement of groups of genes. As an 

example, we used a SCLC neuroendocrine status gene signature46. We removed from this 
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set genes that are high in healthy plasma samples (Methods) and compared the cfChIP-seq 

aggregated signal over these genes to the aggregated RNA-seq of these genes across 

samples with high tumor load (n = 21). This analysis revealed a significant positive 

correlation (Fig. 4E; Pearson r = 0.75 and p < 0.0001).  

To better understand the concordance between tumor RNA-seq and cfChIP-seq, we 

examined factors contributing to variations in correlation. One source of discordance can be 

poised promoters where the chromatin is accessible and marked by H3K4me3, but the gene 

is transcriptionally inactive. In such instances, the cfChIP-seq signal may exhibit varying 

signals, whereas the corresponding RNA-seq data would show no signal. Additionally, 

chromatin marks are binary at the single-cell level (either present or absent), whereas RNA 

levels span a broader dynamic range. Notebly, genes displaying a cfChIP-seq high dynamic 

range tend to have stronger correlation (Fig. S4B). Another potential source divergence 

between the cfChIP-seq and tumor RNA-seq stems from the contribution of non-tumorous 

tissues to each measurement (Fig. 4A and Fig. S3C-E, Supplementary Table 6).  

Overall, these findings demonstrate that cfDNA chromatin state, as assessed by cfChIP-seq, 

informs the tumor gene expression programs, especially in plasma samples with high tumor 

fraction. Moreover, these findings highlight crucial variables that influence the concordance 

between cfDNA chromatin state and tumor gene expression.  
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Fig. 4: Plasma cfChIP-seq informs tumor gene expression  
A. Concept figure illustrating the various sources and proportions of cells sampled in plasma cfChIP-seq 

and tumor RNA-seq. The data obtained from these two assays is derived from a different unknown 
mixture of multiple types of cells.  

B. Comparison of gene expression in two high SCLC-score samples. Top: TMM-normalized CPM of 
tumor RNA-seq. Bottom: normalized gene counts of cfChIP-seq. blue and red points indicate genes 
that had high cfChIP-seq gene counts in one sample compared to the other and low gene counts in 
healthy reference cfChIP. 

C. Gene level analysis of the correlation between tumor gene expression and plasma cfChIP-seq 
coverage across individuals with matched tumor and plasma samples (left: all SCLC samples. right: 
high SCLC-score samples). For each gene, we computed the Pearson correlation of its tumor 
expression and the normalized cfChIP-seq coverage across the samples. Shown is a histogram of the 
correlations on genes with high dynamic ranges (Methods). In gray is the histogram of a random 
permutation of the relation between tumor expression and plasma cfChIP.  

D. Examples of correlation for several known SCLC oncogenes.  
E. Correlation of NE-score computed based on plasma cfChIP-seq and tumor RNA-seq. Only plasma 

samples with matching tumors and high SCLC-score are presented. 
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Plasma cfChIP-seq predicts tumor gene expression of SCLC lineage-defining 

transcription factors  

Building on the concordance between tumor gene expression and plasma chromatin state, 

we next focused on key transcription factors central to SCLC tumorigenesis. Transcriptional 

signatures of SCLC heterogeneity converge on two major cell states, namely 

neuroendocrine (NE) and non-neuroendocrine (non-NE)46,47. The SCLC cell states are 

further characterized by the expression of key lineage-defining transcription factors, ASCL1 

and NEUROD1 defining NE cell states, and POU2F3 defining non-NE cell states. A fourth 

subgroup has been characterized by expression of YAP148,49 or low expression of all three 

transcription factors, accompanied by an inflamed gene signature19.  

Most tumors in our cohort had high expression of NE-lineage defining genes ASCL1 and 

NEUROD1, with co-expression of both in some cases (Fig. 5A). POU2F3, YAP1, and a 

newly described subtype marker ATOH11,17,50 were expressed less frequently.  

We sought to examine whether the expression of SCLC lineage-defining transcription factors 

in the tumor is reflected in the plasma cfChIP-seq. cfChIP-seq counts for ASCL1, 

NEUROD1, and POU2F3 were significantly elevated in SCLC plasma, compared to barely 

detectable levels in healthy plasma. However, YAP1 counts were similar among healthy and 

SCLC plasma samples (Fig. 5B and S5A), likely due to YAP1 activity in normal tissue 

contributing to cfDNA, as suggested by H3K4me3 marks on YAP1 promoters in normal 

tissue39. 

To evaluate whether these cfChIP-seq signals accurately reflect tumor gene expression in 

individual patients, we assessed their correlation with RNA-seq data from tumor samples in 

high SCLC-score cases (n=36). A strong correlation between cfChIP-seq and tumor RNA-

seq was observed for ASCL1, NEUROD1, and POU2F3 (Pearson r = 0.72, 0.72, and 0.86; p 

< 8.2x10-7,6.2x10-7, and 1.9x10-11 respectively), all of which which were absent from healthy 

control cfDNA. A similarly high positive correlation was observed for ATOH1 (Pearson r = 

0.82; p < 1.3x10-9). This correlation was observed both in the SCLC and NEC samples (Fig. 

5C). Notably, while the TSS of POU2F3 and ATOH1 were marked by H3K4me3 in many of 

the SCLC samples, only in a subset of them did the signals span beyond the TSS region to a 

wider region of approximately 10KB, suggesting that in these cases they are involved in cell-

type-specific functions51. We find these additional regions correlated best with gene 

expression in the tumor (Fig. S5B-C).  

To validate the agreement between cfChIP-seq signals and tumor gene expression at the 

protein level, we performed immunohistochemistry of INSM1 on SCLC tumors (n=10). 
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INSM1 is a standard marker used in diagnostic pathology of SCLC, and a super-enhancer-

associated transcription factor that regulates global neuroendocrine gene expression 52. The 

results revealed high concordance between plasma cfChIP-seq and tumor protein levels (r = 

0.74, p = 0.014; Fig. S5D).  

Overall, these results demonstrate that plasma cfChIP-seq can reliably capture the 

expression patterns of SCLC lineage-defining transcription factors, offering insight into tumor 

cell states and heterogeneity. 
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Fig. 5: cfChIP-seq displays differential expression of SCLC transcription drivers 

A. Heatmap showing relative expression levels of 5 canonical SCLC transcription drivers across the 
tumor RNA-seq samples. Values are presented in TMM-normalized CPM and adjusted to zero mean 
for each sample across the 5 genes. Transcription drivers' expression patterns are generally mutually 
exclusive.  

B. Median and distribution of SCLC and healthy cfChIP-seq plasma sample coverage on the gene 
shown in A. **** p < 0.0001.  
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C. Correlation of plasma cfChIP-seq coverage and tumor RNA-seq of the genes shown in C. Only 
plasma samples with high SCLC-score (n=36) are presented. Color indicated the train/validation 
status of the sample and shape represents the tumor type. 

 

Subtyping of SCLC from plasma cfChIP-seq  

Next, we sought to explore the possibility of subtyping SCLC tumors directly from plasma 

using cfChIP-seq. Although SCLC subtyping is often viewed as a discrete classification 

between the types, we observed cases where the tumors exhibited high levels of two or 

more lineage-defining transcription factors simultaneously (Fig. 5B). This aligns with data 

from recent studies55. Therefore, we decided to predict the activity of each factor separately, 

examining four distinct classifications for each sample. 

A straightforward strategy for classifying the lineage-defining transcription factors subtypes is 

to classify based on the cfChIP-seq signal strength for each transcription factor. Evaluating 

the predictive performance of this method using ROC curves, we observed high area-under-

the-curve (AUC) scores for NEUROD1, POU2F3 and ATOH1, even in samples with SCLC 

scores as low as 0.05 (Fig. 6A,B).  

However, single-gene-based classification proved challenging for ASCL1. A subset of 

samples displayed a high cfChIP-seq signal at the ASCL1 promoter but low RNA 

expression, (Fig. 5D), suggesting either a poised but inactive promoter or tumor 

heterogeneity where the biopsy was not representative of all the tumor. We hypothesized 

that employing a multigene signature, taking into account genes that are regulated by 

ASCL1, would offer a more robust classifier.  

To define such a set of genes, we applied a t-test to genomic regions influenced by the 

estimated tumor contribution (Methods). We then performed leave-one-patient-out cross-

validation on the training data to determine the optimal number of regions for the signature, 

selecting 100 regions based on performance metrics (Supplementary Table 7). The 

aggregated read counts over the signature displayed a linear relationship with the SCLC-

score in positive samples but remained constant and low in other samples, even those with 

high SCLC-scores. The ratio of signature counts to SCLC-score effectively discriminated 

between the positive and negative samples, achieving a high predictive performance (AUC 

0.82 on the validation cohort). The genes of the signature were significantly enriched for 

“neuroendocrine cells in the lung” (p < 10-4; Descartes Cell Types and Tissue 202137,38) (Fig. 

6C-E). 
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These findings suggest that cfChIP-seq can address an unmet need of molecularly 

classifying SCLC into transcriptomic subsets in a minimally invasive manner, directly from 

plasma. This approach could provide valuable insights for clinical decision-making and 

precision medicine strategies in SCLC. 

 

Figure 6: SCLC subtyping using cfChIP-seq signals 
A. SCLC score (x-axis) and cfChIP-seq promoter coverage (y-axis) of samples that are annotated as 

positive (blue) and negative (red) to NEUROD1, POU2F3 and ATOH1 based on biopsy RNA-seq. Linear
fit shows a positive relation between the promoter coverage and SCLC-score across the positive 
samples while the negative samples remain low and constant. 

B. ROC plot summarizing the performance of the single-gene classifiers. 
C. ASCL1-specific signature strength (y-axis) increases linearly with SCLC-score (x-axis) in ASCL1high 

 

ar 
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samples  
D. Performance of the ASCL1 signature score on the training and validation set. Training set values were 

obtained using leave-patient-out cross-validation. 
E. cfChIP-seq coverage patterns of ASCL1-specific genomic regions (rows) across the training and 

validation samples (columns). Color scale represents the normalized coverage on the genomic region. 
Top bars display the ASCL1 cfChIP-seq promoter coverage, ASCL1 score, log2(1+RNA-seq CPM) and 
SCLC-score values across the samples. The order of samples within each group is determined by the 
SCLC-score. 

 

Discussion  

Cancer master transcription factors control global gene expression programs17,56–58, and are 

attractive targets to classify and treat cancer given their essential role in driving distinctive 

cell identities59,60 and the tendency for cancer cells to become highly dependent on their 

sustained and high-level expression61. However, transcription factor profiling in clinical tumor 

samples is challenging, particularly for cancers where access to tumor specimens is limited. 

Recent studies have identified subtypes of SCLC, the most lethal type of lung cancer, 

defined by expression of lineage-defining transcription factors, and their unique therapeutic 

vulnerabilities17–21. Yet, further testing and broad clinical application of these findings is 

limited by the availability of tumor tissue, a consequence of the widely metastatic and 

aggressive nature of SCLC, which typically precludes surgical resection at diagnosis and 

tumor biopsies at relapse. As such, under current guidelines, all patients with SCLC receive 

the same treatments. Here, we apply plasma cfChIP-seq which reports the promoter state of 

cell-free chromatin in circulation27 to SCLC samples. We find that cfChIP-seq recovers the 

unique epigenetic states of SCLC tissue and cell of origin, and importantly tumor gene 

expression, particularly SCLC lineage-defining transcription factors, providing a systematic 

view of tumor state, opening the possibility of molecularly classifying SCLC directly from as 

little as 1 ml of plasma. 

Our findings reveal that SCLC has a distinct cell-free chromatin signature, which can be 

detected in patient plasma using cfChIP-seq. This signature can differentiate SCLC from 

other cancers and healthy controls and can be detected even when it has low representation 

in the plasma (e.g., after therapy), and is highly correlated with serologic and radiological 

estimations of tumor burden and prognosis.  

In matched plasma and tumor biopsy samples, we show for the first time, the concordance 

of gene expression inferred from plasma cell-free chromatin and tumor transcriptome at the 

level of the individual patient. This concordance opens a new avenue to study the 
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heterogeneity between SCLC tumors, tumor response to treatment, and the transcriptional 

changes in the tumor throughout the patient trajectory. 

Importantly, cfChIP-seq profiles identify the activity of key SCLC transcriptional drivers, 

including ASCL1 and NEUROD1 that drive NE phenotypes and POU2F3 that drive a non-NE 

phenotype19,44,45,47. These results set the stage for non-invasive subtyping and molecular 

profile-based treatments for patients with SCLC, which might be more effective than the 

current one-size fits all approach. A larger patient cohort and independent prospective 

validation are needed to firmly establish the clinical utility of cfChIP-seq. 

Recent studies have described methylation-based methods for subtyping SCLC preclinical 

models and patient samples62,63. However, unlike cfChIP-seq, which directly reflects the 

tumor transcriptional profile, the relevance of plasma methylation patterns to SCLC subtypes 

and their representation of the tumor’s transcriptional landscape remains less clear. The 

direct link between chromatin state and gene expression strengthens the utility of cfChIP-

seq, suggesting its potential to uncover additional transcriptional characteristics of tumors. In 

contrast, methylation-based approaches may require the development of specific classifiers 

for relevant features, limiting their immediate clinical applicability. 

This study also provides a broadly applicable framework for benchmarking features of cfDNA 

against the tumor molecular profile. While plasma cfChIP-seq shows good agreement with 

tumor RNA-seq, the correspondence is imperfect due to multiple factors. First, there are 

inherent differences between chromatin state, which is to a large extent on or off, and gene 

expression, which has a large dynamic range 29,64,65. In addition, several factors confound 

our estimations of both the plasma and tissue compartments. Plasma cell-free chromatin 

reflects contributions from multiple sources, which also include tumors. Tumor RNA-seq 

contains contributions from multiple sources in addition to the tumor including tissue-

infiltrating immune cells, stromal cells, endothelial cells, and more. Thus, to understand the 

plasma-tumor correspondence, we need to account for the different cell types contributing to 

each compartment. By explicitly accounting for differences in SCLC-score we could extract 

tumor-specific and tumor-extrinsic features even when the tumor contribution is low. Ideally, 

we would deconvolve the signal from these different sources and extract from plasma 

samples information about the state of multiple cell types (e.g., tumors, immune cells, stroma 

cells). Establishing reliable deconvolution requires better references of the ChIP-seq profiles 

of tumor cells and biopsies, together with baseline estimates of their fractions in each 

sample31. 
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Overall, our study bridges the gap between molecular studies and patient treatment in 

SCLC, an exceptionally lethal malignancy, which to date is treated as a homogenous 

disease with identical treatments for all patients. Moreover, this work suggests the 

applicability of cfChIP-seq to a wider context to profile and subtype tumors, in a way that can 

be transformative for patient care across multiple cancer types.  
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Materials and Methods 

Patients 

We undertook an observational study using plasma collected from patients with small cell 

cancer who received care at the National Cancer Institute (NCI). Patients were enrolled in 

therapeutic clinical trials (ClinicalTrials.gov #NCT02484404; NCI protocol #15-C-0145; 

ClinicalTrials.gov #NCT02487095; NCI protocol #15-C-0150; ClinicalTrials.gov 

#NCT02769962; NCI protocol #16-C-0107; ClinicalTrials.gov # NCT03554473; NCI protocol 

#18-C-0110; and ClinicalTrials.gov # NCT03896503; NCI protocol #20-C-0009). We also 

collected samples from small cell cancer patients who were enrolled in the NCI thoracic 

malignancies natural history protocol (ClinicalTrials.gov # NCT02146170; NCI protocol #14-

C-0105). See Supplementary table 1 for information per patient. If tumor samples were 

available, we also sequenced their RNA at matched or different time points of when the 

plasma was collected. The human subjects committee at NCI approved the studies; all 

patients provided written informed consent for plasma, tumor, and matched normal sample 

sequencing. 

Tumor RNA sequencing and Immunohistochemistry 

Formalin-Fixed, Paraffin-Embedded (FFPE) tumor tissue samples or frozen tumor samples 

in selected samples were prepared for RNA-seq. RNA enrichment was performed using 

TruSeq RNA Exome Library Prep according to the manufacturer’s instructions (Illumina, San 

Diego). Paired-end sequencing (2 x 75 bp) was performed on an Illumina NextSeq500 

instrument. RNA was extracted from FFPE tumor cores using RNeasy FFPE kits according 

to the manufacturer’s protocol (QIAGEN, Germantown, MD). RNA-seq libraries were 

generated using TruSeq RNA Access Library Prep Kits (TruSeq RNA Exome kits; Illumina) 

and sequenced on NextSeq500 sequencers using 75bp paired-end sequencing method 

(Illumina, San Diego, CA). Reads were aligned to the human genome (hg19) using STAR 

(2.7.10a)66 . For transcriptomic analyses, raw RNA-Seq count data were normalized for inter-

gene/sample comparison using TMM-CPM, as implemented in the edgeR R/Bioconductor 

package67. Immunohistochemistry for INSM1 was done as we previously described21. 
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Tumor volumetric estimation 

cfDNA Tfx 

The DSP Circulating DNA kit from Qiagen was utilized to extract cell-free DNA from aliquots 

of plasma which were eluted into 40-80 uL of re-suspension buffer using the Qiagen 

Circulating DNA kit on the QIAsymphony liquid handling system. Library preparation utilized 

the Kapa Hyper Prep kit with custom adapters (IDT and Broad Institute). Samples were 

sequenced to meet a goal of 0.1x mean coverage utilizing the Laboratory Picard 

bioinformatics pipeline, and Illumina instruments were used for all cfDNA sequencing with 

150 bp and paired-end sequencing. Library construction was performed as previously 

described 68. Kapa HyperPrep reagents in 96-reaction kit format were used for end repair/A-

tailing, adapter ligation, and library enrichment polymerase chain reaction (PCR). After 

library construction, hybridization and capture were performed using the relevant 

components of Illumina's Nextera Exome Kit and following the manufacturer’s suggested 

protocol. Cluster amplification of DNA libraries was performed according to the 

manufacturer’s protocol (Illumina) using exclusion amplification chemistry and flowcells. 

Flowcells were sequenced utilizing Sequencing-by-Synthesis chemistry. Each pool of whole 

genome libraries was sequenced on paired 76 cycle runs with two 8 cycle index reads 

across the number of lanes needed to meet coverage for all libraries in the pool. Somatic 

copy number calls were identified using CNVkit69 (version 0.9.9) with default parameters. 

Tumor purity and ploidy were estimated by sclust69,70 and sequenza71. cfDNA Tfx was 

estimated based on the somatic copy number alteration profiles using ichorCNA, a 

previously validated analytical approach33,71. 

CTCs 

CTCs were detected from 10 mL of peripheral blood drawn into EDTA tubes. Epithelial cell 

adhesion molecule (EpCAM)-positive CTCs were isolated using magnetic pre-enrichment 

and quantified using multiparameter flow cytometry. CTCs were identified as viable, 

nucleated, EpCAM+ cells that did not express the common leukocyte antigen CD45, as 

described previously20. 
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Radiological volumetric segmentation 

We performed volumetric segmentation, a three-dimensional assessment of computed 

tomography as previously described 72. that may more accurately predict clinical outcomes 

than conventional evaluation by Response Evaluation Criteria in Solid Tumors (RECIST). 

Briefly, experienced radiologists reviewed the computed tomography sequences to 

determine the best ones to use for segmentation using the lesion management application 

within PACS (Vue PACS v 12.0, Carestream Health, Rochester, NY). We also assessed 

sizes of lesions by RECIST v.1.1. 

Plasma cfChIP-seq 

Sample collection 

Plasma for cfDNA was collected in EDTA tubes and centrifuged at 4C at 1500xg for 10 

minutes. Plasma was carefully transferred into Eppendorf tubes, centrifuged a second time 

at 4C at 10,000xg for 10 minutes, and transferred into standard cryovials.  

Bead preparation 

50μg of antibody was conjugated to 5mg of epoxy M270 Dynabeads (Invitrogen) according 

to manufacturer instructions. The antibody-beads complexes were kept at 4ºC in PBS, 

0.02% azide solution.  

Immunoprecipitation, NGS library preparation, and sequencing 

Immunoprecipitation, library preparation, and sequencing were performed by Senseera LTD. 

using previously reported protocols27, with certain modifications that increase capture and 

signal-to-background ratio. Briefly, ChIP antibodies were covalently immobilized to 

paramagnetic beads and incubated with plasma. Barcoded sequencing adaptors were 

ligated to chromatin fragments and DNA was isolated and next-generation sequenced. 

Sequencing Analysis 

Reads were aligned to the human genome (hg19) using bowtie2 (2.3.4.3) with ‘no-mixed’ 

and ‘no-discordant’ flags. We discarded fragment reads with low alignment scores (-q 2) and 

duplicate fragments. See Supplementary Table 3 for read number, alignment statistics, and 

numbers of unique fragments for each sample. 

Preprocessing of sequencing data was performed as previously described27. Briefly, the 

human genome was segmented into windows representing TSS, flanking to TSS, and 
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background (rest of the windows). The fragments covering each of these regions were 

quantified and used for further analysis. Non-specific fragments were estimated per sample 

and extracted resulting in the specific signal in every window. Counts were normalized and 

scaled to 1 million reads in healthy reference accounting for sequencing depth differences.  

ATAC-seq library preparation data processing 

Tissue samples for ATAC-seq were directly obtained from patients and PDX’s (patient-

derived xenograft) models of different generations. The collected tissue samples were flash 

frozen and kept at -80 degree Celsius and shipped to Novogene for sequencing. Samples 

were sequenced at Novogene using NovaSeq 6000 as a sequencing platform with 150bp 

paired-end sequencing mode. The obtained reads were trimmed using trimmomatic (version 

0.39), filtered and aligned to the human genome (hg19) using BWA (version 0.7.17). PCR 

duplicates and reads mapped to the mitochondrial chromosome or repeated regions were 

removed. 

Statistical analysis  

Genes elevated in SCLC compared to healthy plasma 

A reference of healthy plasma gene baseline and statistical test to evaluate whether a gene 

is significantly elevated compared to the baseline were computed as previously described27.  

SCLC score  

To estimate SCLC-score reflecting tumor-related fraction in samples, we performed a leave-

one-out non-negative least square using the ‘nnls’ R package (1.4).  

Denoting by � the number of gene promoter, and by � the number of samples in the 

reference cohort, a matrix �������� is composed containing the counts per promoters in the � 

healthy samples, with the addition of a ‘SCLC prototype’ composed on the mean promoter 

counts of the 10% SCLC samples with most genes significantly higher than healthy (n=15). 

For every vector ����  of counts per promoter in the SCLC samples, we estimate the non-

negative coefficient � by computing ��	
���  ||�� � �||	 subject to � � 0. A similar process 

is computed for healthy samples with the exception that for the �
�sample we use the matrix 

��
 where the column containing that sample is eliminated. The estimated � is normalized 

to 1 by computing � �
�

∑
�

��

. The tumor-related fraction is defined as the value of �����  - the 

fraction assigned to the SCLC prototype. The healthy fraction of the �
�  sample is defined as 

∑
����� �
 - the sum of fractions assigned to all other healthy components.  
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An alternative approach was tested using a reference atlas of roadmap tissue data. In this 

approach the healthy fraction is set to be the sum of fractions assigned to common tissues 

observed typically in healthy samples (neutrophils, monocytes, megakaryocytes) and the 

tumor-related fraction is defined as 1 - the tumor-related fraction. The two approaches 

resulted in very similar estimations for the vast majority of samples (not shown).  

We compute the principal component analysis (PCA) of all gene counts in all SCLC and 

healthy samples as implemented in the R ‘prcomp’ function. Scree plot was generated using 

the ‘fviz_eig’ function of the R ‘factoextra’ package (1.0.7).  

 Tissue signatures 

Genomic regions selected for tissue-specific markers are as described previously27. cfDNA 

of SCLC patients consists of tumor-related cfDNA above the hematopoietic-derived cfDNA 

observed in healthy individuals. Estimation of the absolute contribution of tissues to the 

cfDNA pool was calculated by multiplying the normalized signal per signature and the 

estimated number of reads in the sequencing library size 27 which approximates the cfDNA 

concentration.  

Lung single-cell signatures 

To define pulmonary cell-type specific signatures, we made use of published pulmonary 

scRNA-seq data41 using cluster-specific marker gene sets defined by the authors. To 

increase the specificity of cell-type signature in the cfDNA context, we include only genes 

that meet the following criteria:  

a. The percent of cells outside the cluster that express the genes is less than 0.1. 

b. The average log fold-change expression in the cluster compared to other clusters is 

more than 2. 

c. The adjusted p-value of the gene is less than 0.1. 

d. The mean gene promoter read counts in cfDNA in healthy reference is less than 3. 

The last criterion aims to remove from the signature genes that are not lung-specific but 

appear in circulation as part of normal cell turnover. A summary of the genes included in 

every lung cell-type signature can be found in Supplementary Table 5.  
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ChIP-RNA correlation  

To examine the relationship of tumor RNA-seq of tumor and plasma ChIP-seq, we computed 

the Pearson correlation of all genes across the samples with matching tumor and plasma 

samples. The correlation was computed between TSS counts of the ChIP-seq and CPM and 

compared to the correlation achieved from a random permutation of the ChIP-seq samples. 

The correlation was computed for all samples with matching tumor-plasma (n=73) and 

separately for samples with SCLC-score > 0.5 (n=21) and matching tumor.  

The dynamic range of ChIP-seq gene g was calculated by the 95th percentile - 5th percentile 

of the normalized reads across all plasma samples. High dynamic range genes were set to 

be genes with a dynamic range > 20. The dynamic range of the RNA-seq of gene g was 

calculated similarly for CPM.  

Subtyping of plasma samples  

Based on the RNA-seq distribution, we defined the following CPM cutoffs: ASCL1 = 10, 

NEUROD1 = 60, POU2F3 = 40 and ATOH1 = 4. Plasma samples with matching tumors 

were annotated as TF-positive for each of the four TFs.  

ASCL1 specific genomic regions 

Tiling of the genome to genomic regions (windows) was performed as previously 

described27. The following procedure was performed to select informative genomic regions. 

Given a set of labeled samples: 

1. Select samples with SCLC score > 0.05 

2. Select genomic regions whose mean healthy reference < 0.3 and mean over training 

sample > 3. 

3. Create a matrix of values that represent the 100% tumor contribution to the sample: 

���,� � ��,�/�� where ��,� is the observed count at region (window) � in sample � 

and �� is the estimated SCLC score of sample s 

4. For each region � perform a t-test for the hypothesis that the mean in the positive 

samples is higher than the negative one. 

5. Choose the � windows with smallest (most significant) p-values 

To evaluate different choices of �, we performed leave-person-out cross validation, where 

we removed the samples of one patient from the training set, ran the procedure and 

evaluated the resulting signature on the held-out samples.  
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Supplementary figures  

 

 

Fig. S1: SCLC-score correlates with tumor load and predicts response to treatment  
A. Distribution of the number of genes with significantly higher coverage in SCLC samples compared to 

healthy baseline (Methods). Dashed line represents the 90th percentile.  
B. Scree plot of PCA (fig. 1D).  
C. Correlation of PC1 and SCLC-score (presented in fig 1C-D). High correlation indicates that the main 

variation in the data is driven by the SCLC contribution to the cfDNA.  
D. Correlation of SCLC-score and other plasma-based methods for tumor load estimations (cfDNA 

concentration, circulating tumor cells). 
E. Correlation of cfDNA concentration and ctDNA fraction.  
F. Dynamics of SCLC-score during treatments of topotecan and berzosertib (an ATR inhibitor) 

(ClinicalTrial.gov identifier NCT02487095). Gray lines indicate multiple time points of the same 
individual.  

G. Median SCLC-score in patients that did or did not respond to various investigational treatments: 
combination of topotecan and berzosertib (NCT02487095, NCT03896503); olaparib and durvalumab 
(NCT02484404); nanoparticle camptothecin (CRLX101) and olaparib (NCT 02769962); M7824 (PD-1 
inhibitor and TGF-B trapping) and topotecan or temozolomide (NCT03554473). Each dot is a sample, 
and boxplots summarize distribution of values in each group. Abbreviations: ATR: ataxia 
telangiectasia and Rad3-related. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2022.06.24.497386doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Fig. S2: SCLC tissue and cell of origin 
A. Distribution of signal for cell-type signatures (same as fig. 2E).  
B. Correlation of cell-type signature (shown in fig 2E) and SCLC-score. Cell-types observed only in 

SCLC samples are positively correlated with SCLC-score, while cell-types observed in healthy 
samples are negatively correlated to SCLC-score.  

C. Left: number of marker genes used for every cell-type (Methods; Supplementary Table 5). Right: 
Distribution of signal for lung cell-type marker genes (same as fig. 2F). **** and ***: P < 0.0001 and < 
0.001, respectively 

D. Heatmap showing patterns of signal in lung cell-type markers in the SCLC and healthy samples. 
Color represents log2(1+cumulative coverage in promoters of marker genes).  
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figure S3 - cfChIP and tumor RNA-seq comparison and examples of patient trajectories 
A. Comparison of signal ratio of the two individuals shown in Fig. 3A in tumor RNA and plasma cfChIP. 

Blue and Red points correspond to genes with higher cfChIP-seq counts in every sample. Lighter 
points represent genes with low RNA counts (combined TMM-CPM< 3). 

B. Disease time course and interventions (treatment and procedures) of two SCLC patients. Bottom 
panel - section bordered by purple points represent treatment period, gray and black points 
represents events of reoccurrence and death, green points represent tumor biopsy RNA-seq samples 
used in presented in this study. Points below the line represent plasma cfChIP-seq samples 
presented in this study (green points - samples with time-matched tumor biopsy, red points - samples 
with unmatched tumor biopsy. Top panel - SCLC score of the cfChIP plasma samples. X-axis 
represents the dates as in the bottom panel. 
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Fig S4: cfChIP-seq RNA correlation confounders 
A. Gene level analysis of the correlation in tumor expression level and plasma cfChIP-seq levels (same 

as in Fig. 3B for all Refseq genes).  
B. Comparison of the effect of cfChIP-seq and RNA dynamic range (x-axis) on cfChIP-RNA correlation 

(y-axis) shown in Fig. 3B. Left panel for the observed correlation and right panel for a random 
permutation (gray histogram of Fig. 3B). Results indicate that genes with low ChIP dynamic range 
tend to have lower correlation.  

C. Same as C for SCLC/healthy ratio (x-axis). The ratio was computed using the mean gene counts of 
high SCLC samples and healthy samples.  

D. TMM-CPM of tumor samples in liver specific genes. High expression is observed in samples where 
biopsy was obtained from the liver.  

E. Same as C for gene expression in the liver (x-axis). 
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Fig. S5: cfChIP signal in SCLC lineage-driving genes  
 

A. Genome browser view of cfChIP-seq signal in SCLC key transcriptional regulators.  
B. Correlation of plasma cfChIP-seq coverage in promoter and gene body and tumor RNA-seq of the 

genes POU2F3 and ATOH1. Noticeably, in these genes, the correlation to expression is higher in the 
gene body.  

C. Genome browser view of cfChIP-seq signal in panel D. Orange and green tracks represent SCLC and 
healthy samples respectively. While a signal in the gene promoter is observed in many samples, only 
in specific samples there is a significant coverage also in the gene body.  

D. Correlation of plasma cfChIP-seq coverage in the promoter of INSM1 (y-axis) and the 
immunohistochemistry H-score of the matching tumors (x-axis).  
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