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Abstract

Background: Atopic Dermatitis (AD) is a persistent inflammatory disease of the skin to which a few novel treatment
options have recently become available. Multiple published datasets, from RNA sequencing (RNA-seq) and microarray
experiments performed on lesional (LS) and non-lesional (NL) skin biopsies collected from AD patients, provide a useful
resource to better define an AD gene signature and evaluate therapeutic effects.

Methods: We evaluated 22 datasets using defined selection criteria and leave-one-out analysis and then carried out a
meta-analysis (M-A) to combine 4 RNA-seq datasets and 5 microarray datasets to define a disease gene signature for AD
skin tissue. We used this gene signature to evaluate its correlation to disease activity in published AD datasets, as well
as the treatment effect of some of the existing and experimental therapies.

Results: We report the AD gene signatures developed separately from the RNA-seq or the microarray datasets, as well as
a gene signature from datasets combined across these two technologies; all 3 gene signatures showed a strong correlation
to the disease activity score (SCORAD) — microarray: Pearson’s p = 0.651, p-value < 0.01, RNA-seq: p = 0.640, p-value
< 0.01, combined: p = 0.649, p-value < 0.01. The gene signature improvement (GSI) of two existing effective therapies,
Dupilumab and Cyclosporine, as well as that of other experimental treatments, is consistent with their reported cohort
level efficacy from the associated clinical trials.

Conclusions: The M-A derived AD gene signature provides an evolution of an important resource to correlate gene
expression to disease activity and will be helpful for evaluating potential treatment effects for novel therapies.
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DEGs (387 up- and 208 downregulated) using absolute fold-
change (JFC|) > 2 and false discovery rate (FDR) < 0.05 as
the cutoff criteria. With the development of NGS technology,
RNA-seq provided an unbiased assessment of gene expression.
It has been reported that RNA-seq outperforms microarray in
determining the transcriptomic characteristics of cancer, and
performs similarly in clinical endpoints [5]. RNA-seq was also
found to be superior in detecting low abundance transcripts
in activated T-cells [6]. Benefiting from the improvement in
throughput and the decrease of pricing of NGS, RNA-seq has
been used in an increasing number of AD transcriptomics
studies [7-9]. As a result, it is imperative to develop a new
meta-analysis to include both data types and evaluate the
AD gene signature from each technology, as well as combined
technologies.

Here, we wanted to shed light on the molecular landscape
of AD across the publicly available transcriptomics data by
comparing lesional and non-lesional AD samples. Although
for many diseases numerous -omics datasets are available,
AD being no exception, these datasets routinely differ from
one another in many key ways, such as the nature of the
patients under study (e.g., in one study all patients could
be treatment-naive, in another, they could have previously
undergone therapy), whether just one or multiple samples
(e.g. a longitudinal collection) are available from each patient
in the study, which instrument was used for transcriptomics
measurements (the batch effect), and the transcriptomics
technology that was employed — microarray, or RNA-seq. All of
the above issues, save for the final one (microarray vs RNA-
seq data), have been studied extensively, and addressed by
either attempting to subtract the variance stemming from inter-
dataset differences from the data (most typically using ComBat
[10], an empirical Bayesian modeling-powered method), or by
incorporating them as covariates in the model, most typically
in the form of meta-analysis (M-A). Numerous libraries are
available for carrying M-A, most noteworthy among them
are metafor [11] and meta [12] for general purpose M-A, and
Metalntegrator [13] as an example of a M-A library focusing
on -omics data. Here, for our AD analysis, we used metafor
to extend the M-A approach typically used in transcriptomics
by enabling simultaneous modeling of microarray, and RNA-
seq datasets; this was achieved by incorporating into the model
an additional hierarchical level that describes which of these
two technologies a given dataset used. Our model (described
by equations 1 through 2) and the associated computational R
package called Omics Meta-Analysis (OMA) is further described
in Materials and Methods.

We used OMA to conduct a M-A of 4 RNA-seq studies
(GSE121212, GSE137430, GSE141574, GSE157194) and 5
microarray studies (GSE107361, GSE130588, GSE133385,
GSE140684, GSE58558), consisting of combined 323 patients.
The analysis datasets were extracted from a public repository
(Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/
geo), and the pre-processing and analytic procedures were
followed in each study as appropriate based on their respective
platforms on which they were recorded. A M-A model was
used to compare lesional and non-lesional biopsies at baseline,
resulting in three lists of DEGs: from microarray, from RNA-
seq, and Meta-Analyzed Atopic Dermatitis Transcriptome
(MAADT) — a list based on a combined microarray and
RNA-seq M-A. We then used the obtained list to evaluate
selected investigational and approved therapies to calculate
Gene Signature Improvement (GSI) and correlate the GSI to
clinical improvement.
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Results

Dataset selected and coherent genes

‘We have selected the microarray and RNA-seq datasets based
on the selection criteria and leave-one-out (LOO) analysis, as
described in Materials and Methods. The final datasets that
were retained and used in the M-A have been listed in Table 1.

Meta-analyzed transcriptome in Atopic Dermatitis

We used the approach described in Materials and Methods
to carry out three meta-analyses: 1) a M-A of 5 microarray
2) a M-A of 4 RNA-seq datasets, and 3) a
simultaneous M-A of 9 datasets, 5 from microarray and 4

datasets,

from RNA-seq, using a model with an additional hierarchical
level used to describe the technology that a given dataset was
recorded with (microarray or RNA-seq). The datasets that were
used for the meta-analyses are listed in Table 1. The findings
from these three meta-analyses are described in detail in Figure
1.C.

Differential genes can be reported at various effect size
(ES) and p-value cutoffs; here, we briefly describe the
results from our meta-analyses at the cutoff of |ES| > 2,
and FDR < 0.05. Our microarray M-A brought about 522
differential genes; our RNA-seq M-A resulted in 457 differential
genes; the M-A involving both the microarray and RNA-seq
datasets resulted in 422 differential genes. A summary of these
results can be viewed in Figure 1.C; a full list of results
has been provided in Supplementary File 1. Additionally,
we have carried out an analogous analysis separately for
the significantly underexpressed and overexpressed genes and
provided a summary of these results in Supplementary Figure
1.

In Figure 1.B, it can be seen that at our selected thresholds
(|JES| > 2, FDR < 0.05), overall, there has been 747 differential
genes split between the M-A of microarray datasets, the M-A of
the RNA-seq datasets, and the combined microarray and RNA-
seq M-A. 220 of these genes (~29%) were seen in the microarray
M-A only. 105 genes (14%) were observed uniquely in the RNA-
seq analysis; 190 genes total (256%) were seen in microarray as
well as combined M-A (70), or in RNA-seq and combined M-A
(120). Finally, 232 the 747 genes (~31%) were observed in all
three analyses.

Among the key AD genes reported in the MADAD study
[3], we are able to detect all except IFN. Overall, the results
are consistent between MAADT and MADAD. We compared
the MAADT list (422 genes) and the MADAD list (594
genes): there are 231 common genes between these two lists,
while 191 are unique to MAADT, and 363 are unique to
MADAD (Figure 2). We noted that all genes published in
MADAD had the same effect size directionality in MAADT
(i.e. all significant genes with positive effect sizes in MADAD
also had positive effect sizes in MAADT, and those with
negative effect sizes in MADAD also had negative effect sizes
in MAADT; see Supplementary Figure 2), with an extremely
high correlation between the effect sizes in these two studies
(Pearson’s correlation of 0.97, p-value < 2.2e-16). When we
ran the OMA analysis on the MADAD datasets, the effect
sizes remained highly correlated with MAADT (Pearson’s
correlation of 0.82, p-value < 2.2e-16), with a high directional
concordance (Supplementary Figure 3). Unsurprisingly, key AD
genes, including the markers of general inflammation (MMP12),
specific T helper activation (e.g. Th2/CCL18, Th1l/CXCL10,
Th17/PI3/elafin, Th17/Th22 S100A7/A8/A9), and markers
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Table 1. Datasets selected for M-A. All 5 microarray studies were generated from the same Affymetrix Human Genome U133 Plus 2.0 Array.
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The four RNA-seq datasets were generated from Illumina HiSeq instruments, one from 2500, one from 3000, and two from 4000.

Dataset Lesional # Nonlesional # Reference Platform
GSE133385 30 30 Pavel et al. 2019 Microarray
GSE58558 18 17 Khattri et al. 2014 Microarray
GSE130588 50 41 Guttman-Yassky et al. 2018 Microarray
GSE140684 31 21 Khattri et al. 2017 Microarray
GSE107361 39 40 Brunner et al. 2018 Microarray
GSE121212 21 27 Tsoi et al. 2019 RNA-seq Illumina HiSeq 2500
GSE137430 40 39 Ungar et al. 2020 RNA-seq Illumina HiSeq 4000
GSE157194 57 54 Moébus et al. 2020 RNA-seq Illumina HiSeq 3000
GSE141571 39 41 Guttman-Yassky et al. 2020 RNA-seq Illumina HiSeq 4000
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Fig. 1. A Overlaps of the differentially expressed genes of the individually analyzed datasets and meta-analyzed result under the same threshold (|ES|

> 2, FDR < 0.05) with microarray datasets (left) and RNA-seq datasets (right), only top 20 intersect groups were shown for simplicity. B Venn diagram
of M-A result with RNA-seq, microarray, and combined datasets at same threshold (|ES| > 2, FDR < 0.05) and C the number of DE genes from various
of thresholds combination for each M-A result, the red box indicates the threshold selected and the number of DE genes for comparison in panels A

and B.

of epidermal proliferation (KRT16, Mki67) highlighted in the
MADAD paper [3] are also on the MAADT list. Although
MAADT and MADAD have a common set of chemokines,
which play critical roles in leukocyte migration, there is only
one chemokine receptor (CCR7) on the MADAD list, while
MAADT has four additional chemokine receptors: CCRI1,
CCR2, CCR4, and CCR5. To better understand the biology
(and biological differences) captured by the lists, we submitted
the genes from both lists to GO Biological Process pathway

analysis (http://bioinformatics.sdstate.edu/go/) [14]. Results
(Supplementary Figure 4) indicate that 231 common genes and
191 genes that are unique to MAADT are mainly enriched
in inflammation-related pathways, while 362 genes unique to
MADAD are mainly enriched in cell division related pathways.
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MAADT MADAD
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Fig. 2. Venn diagram of MAADT and MADAD differentially expressed
gene lists. There are 231 common genes between the two lists, while 191
unique to MAADT and 363 unique to MADAD.

Ingenuity Pathway Analysis (IPA) and Pathway
Enrichment Analysis

IPA was used to identify pathways and functions significantly
overrepresented in the transcriptome obtained through M-A.
As the pathway information in IPA may have been updated
since a previous meta-analyzed MADAD transcriptome from 4
studies by Ewald et al [3], we have re-analyzed the MADAD
transcriptome with IPA from the differentially expressed genes
(DEGs) reported in MADAD and compared to the result
generated from MAAD. The strength of the association of
the canonical pathways in terms of —log,,(FDR) in the
MAAD transcriptome was compared to re-analyzed MADAD
transcriptome (Figure 3.A).

Among top 15 enriched pathways from MADAD and MAAD
transcriptomes, 11 overlap and satisfy the significance threshold
of FDR < 0.05. The MAAD transcriptome result yields a more
significant over-representation of key immune pathways such as
Granulocyte Adhesion and Diapedesis, Agranulocyte Adhesion
and Diapedesis, Atherosclerosis Signaling, Th1, Th2 Pathway
and IL-17 Signaling, which are associated with AD [15]. The
top two pathways, Granulocyte Adhesion and Diapedesis and
Agranulocyte Adhesion and Diapedesis, both represent the
innate immune system where they are involved the process
of leukocyte or WBC (White Blood Cell) migration from the
blood vessels to the site of pathogenic exposure, which is a
key event in the process of inflammation [16]. Atherosclerosis
Signaling, which was the third most enriched IPA pathway
in MAAD, includes the genes associated with broad vascular
inflammation. This is consistent with the previously reported
IPA result from the MADAD transcriptome by Ewald et al [3],
where the Atherosclerosis Signaling pathway was ranked fourth
most enriched pathway. This slight discrepancy could be due to
the updated IPA database since 2015.

To further understand the broad biological meaning and
the directional changes of the DEGs, 50 hallmark gene sets
corresponding to distinct and coherent biological pathways [17]
were tested for enrichment from RNA-seq-derived, microarray-
derived, and combined DEGs. The positively and negatively
regulated genes in each of the three gene sets generated in this
study were tested against each set from the collection of 50
above-mentioned sets to evaluate the directional enrichment.
There are 20 gene sets that were statistically significantly
enriched (FDR < 0.05) in at least one of the three DEG lists
generated in this study (Figure 3.B). The enriched upregulated
gene sets represented a variety of biological pathways that,
again, suggested a close link to immune response such as

made available under aCC-BY-NC-ND 4.0 International license.

Interferon Gamma response, Interferon Alpha response, and
Inflammatory response. Moreover, the enrichment analysis
results from microarray datasets show consistency with the
Collectively, the MAAD
transcriptome presented here provides a robust AD-specific

result from RNA-seq datasets.

signal and aligns with the existing known disease pathology.
To compare the biological relevance to the disease between
MAADT and MADAD. There are 186 genes identified unique
to MAADT and 358 genes unique to MADAD, where have
236 genes that are common between two genesets. Three
pathway enrichment analysis shows 7 pathways have statistical
significance (FDR < 0.05), which includes inflammatory related
pathways like keratinization, signaling by interleukins, and
IL10 signaling from 186 genes unique to MAADT. And 25
pathways (FDR < 0.05) from 358 genes unique to MADAD do
not contain any clear pathways specific to AD or inflammation.
In addition, among 40 pathways (FDR < 0.05) derived from
236 genes that are common between MAADT and MADAD,
top pathways are IL4/IL13 signaling, Signaling by interleukins
and interferon Alpha/Beta Signaling which are all with high
relevance to AD. All 7 pathways from MAADT unique genes are
overlapped to the 40 pathways derived from 236 common genes
between MAADT and MADAD, where none of the pathways
from MADAD unique genes are overlapped to the 40 pathways.
This indicates the superior biological relevance of MAADT over
MADAD to the disease and general inflammation processes.

Correlation to disease activity

Three disease gene signatures (DGS) were calculated based
on the upregulated genes from our RNA-seq, microarray, and
combined meta-analyses. To understand the disease relevance
to DGS, we examined the association of disease activity, as
measured by EASI activity scores and SCORAD scores, with
each DGS. We first evaluated the residual of each DGS, EASI,
and SCORAD by adjusting the treatment and time variables,
and the normally distributed residuals (Supplementary Figures
5 and 6) warranted the Pearson test to evaluate the correlation
coefficient and statistical significance. Baseline SCORAD scores
are strongly correlated to all 3 DGS with p-value < 0.01 and
p ranging from 0.640 to 0.650 (Figure 4.A), whereas Baseline
EASI also correlated with all 3 DGS with p-value < 0.01, but
with slightly weaker correlation at p ranging from 0.570 to
0.577.

We also followed individual patients over time to examine
whether the change of EASI and SCORAD from baseline
was correlated with the gene signature improvement from
positively regulated genes with each of the 3 gene sets. Slightly
stronger correlations were found between GSI and SCORAD
improvement (with all 3 GSI having p-values < 0.01 and p
ranging from 0.639 to 0.672), than between GSI and EASI
improvement (where the p-values ranged from 0.012 to 0.032
and p ranged between 0.406 and 0.469, Figure 4.B). In general,
DGS derived from either meta-analyzed microarray datasets,
RNA-seq datasets, or combined RNA-seq and microarray
datasets, all have a stronger correlation to SCORAD than
EASI.

GSI Comparison — investigational and approved
therapies

As measured by gene signature improvement through DGS,
we compared the GSI with the transcriptome obtained from
clinical trials of 7 investigational and 1 approved therapy for
AD to evaluate how GSIs (described by equation 3, detailed
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Fig. 3. A Ingenuity canonical pathways enrichment analysis compared between this M-A combined the RNA-seq & microarray datasets (grey) and the
MADAD transcriptome result (yellow) from Ewald et, al. 2015 with the same cutoff at [FC| > 2 and FDR < 0.05. The bars represent the —log,,(FDR),
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upregulated in the pathway are over-represented compared to all upregulated genes in the dataset, and vice versa.
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Fig. 4. A Disease severity index EASI and SCORAD correlation to gene scores from each meta-analyzed result under the same threshold (FC > 2, FDR

< 0.05) from published dataset (GSE130588). The gene scores calculated with the z-score method as described in Hanzelmann et, al 2013. B Disease
severity index EASI and SCORAD improvement relative to baseline (%, y-axis) correlation to Gene Signature Improvement (% GSI, x-axis) with last
available time point (Week 16) from published dataset (GSE130588). Only lesional samples at each time point are used for analysis. The correlation

coefficient and p-value are calculated with Pearson correlation analysis.

in Materials and Methods) correlate to the reported clinical
efficacy at a specified duration (Figure 5). Dupilumab, which
is an IL-4 receptor a monoclonal antibody that inhibits the
signaling of IL-4 and IL-13, has shown a significant 110.3% gene
signature improvement, which is consistent with the reported
clinical efficacy in this trial [18]. Cyclosporine displays a 118.7%

improvement at the end of week 12, which is also consistent
with the positive clinical outcome that was reported in that
study [19]. Secukinumab, which is a human IgGlx monoclonal
antibody that binds to interleukin-17A, showed no significant
gene signature improvement in any of the three gene signatures,
and also showed no clinical efficacy in AD from a phase 2
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Fig. 5. Forest plot with benchmarking result of GSI with RNA-seq, microarray, and Combined AD gene signature on 8 approved or experimental

therapies from published datasets. Only one therapy has the route of administration (ROA) through topical treatment. The color on the forest plot

indicates the indicates the level of gene signature modulation and the reported efficacy as defined by whether reach statistical significance with primary

endpoint at the specified duration.

randomized double-blind clinical study [7]. Crisaborole, which
is a topical treatment for AD for mild and moderate patients,
showed a moderate gene score improvement of 53% with a p-
value < 0.001. This level of gene score improvement at day
15 is comparable to investigational systemic therapies for AD
including Fezakinumab at week 12 [20], Gusacitinib at day 29
[21], and Ustekinumab at week 16 [22].

Discussion

-Omics profiling, and in particular measuring transcriptional
changes between the healthy state and the disease, has become
a standard way of investigating the mechanisms pathology.
Developments across various -omics technologies over the last
decade have been ever accelerating [23], with multi-omics
integration increasingly taking the center stage. The ability
to integrate multiple datasets has grown in importance and
become more commonplace, with numerous M-A methods and
studies being published.

AD is
across all geographies, therefore understanding its molecular

a disease that affects numerous individuals
underpinnings has been of high interest and importance.
Unsurprisingly, AD was previously investigated via M-A, with
MADAD [3] being a key study frequently referred to in pre-
clinical inquiries in the pharmaceutical industry. Here, we

decided to carry out a new M-A of AD data for several reasons:

e The number of datasets in our study: several datasets have
been recorded in the recent years — our M-A consisted
of 5 microarray and 4 RNA-seq datasets, while the
previous effort consisted of 4 microarray datasets. AD has
proven to be a highly heterogeneous disease, and therefore
incorporating more datasets in the M-A can help us tease
out the signal present across all those suffering from AD,
rather than inherent to a specific sub-stratum of the AD
population.

e Availability of data from multiple -omics technologies: four
of the datasets included in our M-A were recorded using
RNA-seq, while previous M-A concerned microarray data
only. We were interested in creating a list of genes stemming

from the both technologies, thereby mitigating the biases
inherent to either microarray or RNA-seq.

e In MADAD, the data was preprocessed using ComBat [10],
then meta-analyzed using a random effects model. Leaving
aside the fact that ComBat needs to be applied with care to
avoid overcorrecting true biological effects, random effects
M-A is meant to account for the batch (or dataset of
origin) of a given measurement. Typically, either ComBat
would be applied to remove the batch effect, or alternatively
batch effects would be modeled using fixed or random effect
modeling. Removing the batch effects using ComBat and then
still modeling the batch/dataset of origin as a random effect
seems a contradiction.

e Previous methodology favored the random effects model. In
our treatment, both the fixed effect and random effect model
was considered, and a hybrid result was presented for each
gene where a choice was made between the fixed and random
effect result based on the amount of excess heterogeneity.

e We wanted to pick the datasets carefully and present here
our rejection criteria in a clear fashion. Due to this, although
we started with ~20 microarray datasets, our final analysis
utilized only 5 of them, highlighting the importance of
scrutiny when using public datasets.

It should be noted that the ability of M-A to increase
the focus of the analysis on the signal common to all (or
the majority of) the datasets is at the same time a potential
limitation of M-A: unless specifically incorporated in the model,
subtypes of a disease will not be assumed — the results will focus
mostly on the signal that fits a “pan-disease” view of pathology.

The fact that we decided to analyze microarray data
together with RNA-seq data necessitated developing a slightly
altered version of traditional M-A: a hierarchical model with an
additional level of hierarchy able to accommodate the influence
of the technology with which a dataset was recorded as a
contribution to the recorded effect (see Supplementary Table
S1).

‘We have devised three lists of genes expressed differentially
between involved AD and non-involved AD tissue: one from
the microarray datasets, one from the RNA-seq datasets,
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and, finally, one from the combined microarray and RNA-seq
As elaborated in the Results section, the overlap
between these lists was significant, but there was also a large

datasets.

number of genes differentially expressed only in the microarray
list or only in the RNA-seq list. These types of differences
should be expected due to the overall number of datasets in
each platform still being low, combined to some extent with
the systematic biases of each platform. Overall, we recommend
using the combined analysis list utilizing the microarray as well
as RNA-seq data, due to its sample size being twice as high as
either of the other two lists alone, and owing to the fact that,
as such, it has the highest potential to reduce both the various
technical and sampling biases.

As with all meta-analysis, our study is limited by the sample
size of each study included. The 422 MAADT genes missed
220 genes only observed in microarray studies. Some of these
220 genes might be noisier (and missed the |[FC| or FDR
cutoff) in the RNA-seq datasets; some of these genes might
be advantageously selected on the microarray platform, which
therefore selectively enriched within the microarray datasets.
Similarly, there 105 genes uniquely existed in the RNA-seq
platform. The genes presented in MAADT have the advantage
of being robustly overexpressed across the majority of the
datasets, RNA-seq or microarray, a trend that is desired when
combining multiple datasets.

Crucially, the genes present in MAADT (which include genes
that are not present in MADAD) correspond to pathways with
higher relevance to AD and general inflammation processes,
while the genes that are not present in MAADT but are
present in MADAD are more in generic biological processes of
little significance to AD, which indicates the superior biological
relevance to the disease for MAADT.

The disease gene set derived from this meta-analysis showed
a strong correlation to the disease activity. A previously
reported AD gene set [3] has been widely cited and used to
evaluate treatment effects and understand the mechanism of
treatment. With additional datasets added to the M-A and
the result of gene signature correlation to disease activity
score, we presented here an updated AD disease gene set,
and provided a resource to evaluate the treatment effects from
potential new therapies. In comparison to DE genes derived
from single dataset (GSE130588), the gene score or GSI derived
from a meta-analyzed gene set has a comparable, if not better,
correlation to the disease activity score or disease activity score
improvement from that dataset (Supplementary Figure 7). This
suggests the derived gene set’s adaptation to other datasets.

In conclusion, we developed a M-A framework for derivation
of disease gene sets from multiple datasets, with the ability
We applied this
framework to generate an AD gene set for further investigation

to handle paired samples, and covariates.
of AD pathology, biomarker selection, and potential targeted
treatment detection. This gene set may serve as an up-to-date
reference AD transcriptome for future investigations. The AD
genes presented here can be further evaluated through RT-
PCR. The transcriptome can also be used to evaluate the
response to new treatments, with the help of metrics like
the gene signature improvement score used in this study. The
framework and the R package developed here can be further
used for disease gene set development, of to investigate other
pathologies beyond AD.
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Key Points

e We developed a novel method that treats the transcriptomics
technology type in each dataset as a separate level of
hierarchy in meta-analysis.

e We have used this method to carry out a meta-analysis of 5
microarray and 4 RNA-seq atopic dermatitis datasets and
created gene expression and pathway enrichment signatures
for this disease.

e Our atopic dermatitis gene signature was significantly
correlated with the EASI and SCORAD atopic dermatitis
disease activity scores.

e For our gene signatures, we observed a significant gene score
improvement in published data demonstrating the effect of
multiple approved AD therapeutics — this highlights the
practical utility of the gene signature presented here.

Materials and Methods

Microarray Dataset Inclusion Criteria and Selection
of Coherent Genes

In this study, we have evaluated 16 microarray and 5 RNA-seq
datasets (listed in Supplementary Table S1). The list of datasets
included for the microarray M-A was built up by sequentially
picking a dataset from the list of available datasets with the
largest amount of lesional AD samples, checking if including
this dataset will increase the overall number of lesional samples
in the already selected datasets by more than 5%, then, based
on this criterium, either including this dataset or not, and
finally discarding the dataset from the list of available datasets;
this was repeated until the first dataset that did not meet the
“>5% criterium” was found, resulting in a list of 7 microarray
datasets. Two additional datasets were removed — GSE120899,
since it was preprocessed using a batch correction method by
the authors and an unprocessed version of the data was not
available [24], and GSE99802 was eliminated in the leave-one-
out analysis due to its high heterogeneity — resulting in the
datasets in Table 1.

RNA-seq Dataset Processing for Meta-Analysis

The fastq files from four RNA-seq datasets (GSE121212,
GSE137430, GSE141571, and GSE157194) were downloaded
from GEO using NCBI SRAToolkit (https://www.ncbi.nlm.nih.
the compiled binaries/install scripts
. The SRR numbers
or the fastq file names required for the SRAToolkit are retrieved
from “SRA Run Selector” link in the NCBI GEO accession
Processing of the fastq

gov/sra), specifically,

named “Ubuntu Linux 64 bit architecture”

display page for each GEO number.
files was performed using the QuickRNASeq pipeline [25] utilizing
GRCh38 or hg38 for the genome and Gencode v30 for
annotation.

Multilevel Model for Simultaneous Microarray and
RNA-seq M-A

The scenario that our modeling approach is concerned with
is one in which for a (potentially large) collection of genes g
we have a number of -omics experiments s that span either
one or both of the microarray and RNA-seq technologies. Our
objective is to, separately for each gene, account for any inter-
study and inter-technology heterogeneity, and, for a collection
of measured effect sizes derive the true underlying effect size.
To do so, we use standard fixed effects and mixed effects
methodologies, as detailed below.
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M-A of datasets captured by just one of these technologies
can be adequately described across all the genes using the fixed
effects model:

Y =XB3 +e, (1)

where X is the sxf fixed effects design matrix (f is the
number of dataset-related fixed effects, and, in our case, we only
have a single fixed effect: the expected effect size) common to all
genes, B3 is the g X f matrix of fixed effects, Y is the gx s matrix
of observed effect sizes. € is the corresponding ¢gXxs matrix of
measurement errors, where for gene g and measurement s the
corresponding error is given by €gs ~ N(0,v4s), and vy, is the
within-study variance.

This formulation can be extended into a mixed effects model,
which additionally captures the random effects:

Y =XB8+Zb+e (2)

In our current case, we are focused on two specific random
effects (inter-study and inter-technology), which are captured
by Z and b:

z:[z2 Z3]7andb:[b2 bg]T.

Here, Zs is the sXry level-two random effect design matrix
(where r2 is the number of level-two random effect classes),
Z3 is the sxrs level-three random effect design matrix (where
rg is the number of level-three random effect classes), both
common to all genes, and bz and bs are the corresponding
gXre and gXxrs matrices of level-two (used here to represent
the inter-study heterogeneity) and level-three random effects
(representing the inter-technology heterogeneity), given by
bag ~ N(O,T:Ir,z) and bz g ~ N(O,w;‘;Im), where 7'3 is
the inter-measurement variance for gene g, and w§ is the
inter-technological variance for gene g.

It can be seen that if we expand Zb in equation 2, we can
obtain:

e a standard two-level model (when 7'3 > 0, but w;‘; = 0 and
the Zsbs contribution for gene g vanishes),

e a full three-level model with significant inter-dataset and
inter-technological variance (when 7'5 and wf] are both non-
Z€ro), or

e a model that describes negligible inter-dataset variance in
the presence of significant technological variance (when
wg > 0, but T92 = 0 and the Zsba contribution for gene
g vanishes).

This three-level approach is also detailed on the metafor
project’s website!, and also in more detail in the core
publication referenced therein [26].

In the analyses presented here, we calculate the meta-effect
size (3 for each gene using both the model represented by
equation 1, and the one in equation 2 in the case of two- or
three-level M-A (in the case of M-A of effect sizes stemming
from two technologies: RNA-seq, and microarray), as described
above.

We describe how the model can be fitted efficiently for all
genes in the following subsection.

I https://www.metafor-project.org/doku.php/analyses:
konstantopoulos201li#references

made available under aCC-BY-NC-ND 4.0 International license.

M-A Model Fitting

In mixed effect M-A, there are several ways to compute the
fixed effect estimate 8 and random effects 72 and w? in
equations 1 and 2. Here, we used the Restricted Maximum
Likelihood (REML) approach, an efficient method that is
known to mitigate the problems that other methods are know to
suffer from, for example underestimating the random effects in
commonly used methods like DerSimonian-Laird (DL) [27] or
Maximum Likelihood Estimation (MLE). In REML, at every
step of the optimization loop the fixed effect estimate, 3, is
computed directly, and we maximize the REML £ based on
that estimate, as well as the current estimates of the random
effects 72 and w?.

The computation carried out in the REML optimization can
be written for every gene g as:

A Txr—1v) Ty, —1
B, = (x v, x) X"V lY,,
~ —1
var(B,) = (xTvglx) ,
H, =YV, , =diag(vy) + 7, 22 + Zsw. Z3 ,
l

and

1 _
Ly = Z -3 (logdet H, + logdet(XTH_q 1X)—Q—

s

(Y, - XB,) H, ' (Y, - XB,)),

where H, represents the variance across the three levels
I considered here, and vg = [vg1,vg2,...,Vgs] is a vector of
measurement variances for gene g.

M-A Model Selection

There are various ways to compare and pick between two M-A
models, which differ in complexity, that are typically employed
depending on what types of models are being compared.

To compare the fixed effect and random effect models,
Cochrane’s Q and its corresponding p-value are the standard
measures that are typically applied [28] — a practice that we
also followed in this work.

To compare two random effect models of varying complexity,
the likelihood ratio is a frequently used measure [29]. In our case
L, is measured on the log scale, so when comparing the two-
and three-level model, we can calculate the likelihood ratio as:

Lrg=—2(L2,4— 53,9) )

where L3 4 is the (log) REML for gene g obtained from the
two-level random effects model (with 72 = 0 and w? # 0),
L3 g is the (log) REML for gene g obtained from the three-
level random effects model, and Lg 4 is their ratio (expressed
as a difference in the log space). For each gene g, Lr 4 was
compared to the X? distribution, and we used the resulting p-
value to determine whether the more or the less complex model
was a more appropriate form of M-A for gene g.

Data Preparation, and Application of DGE and M-A
Each of the datasets listed in Table 1 underwent a final
step of preparation before further analysis, where its sample
annotation was standardized to Entrez gene IDs. Each dataset
was then analyzed separately using limma [30], where the
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lesional samples were contrasted with the non-lesional ones.
In the case of RNA-seq datasets, an additional edgeR [31]
TMM correction was carried out prior to limma, followed by
normalization (via the voom function).

We have carried out three meta-analyses in this study,
The two M-A runs,
focusing on a single technology (i.e. the M-A carried out on

as described in earlier sections. each
microarray data only, and the M-A carried out on the RNA-
seq data only), were ran using the rma function from the
metafor package. Two meta-analyses were carried out for each
technology — one using the fixed effects model, and another
using the random effects model (using the REML approach).
The p-values of the M-A ES estimate were FDR-corrected [32].
These FDR-corrected p-values along with the ES from the fixed
effects and random effects models have been reported here
in Supplementary File 1. Additionally, for each gene in the
M-A Cochrane’s Q heterogeneity was calculated along with a
corresponding Cochrane’s p-value [28]. In each case where the
heterogeneity was significant (Cochrane’s Q p-value < 0.05),
the random effects results were picked; if the heterogeneity was
not significant, the fixed effects results were picked; for each
gene, these respective picks were presented as the hybrid result
(a hybrid of fixed and random effects results). For these hybrid
results, FDR-corrected p-values were computed anew using a
list of raw p-values from the model selected for each gene.
The mixed M-A where the datasets from microarray were
analyzed together with the RNA-seq datasets was carried
out using two- or three-level M-A described in detail the
previous sections. The results of this analysis were also reported
In this model,
level result where the technology-based effect w?

in Supplementary File 1. we report a two-
is reported
alongside the ES, and a three-level result where the inter-
study heterogeneity 72 was also reported, and a hybrid result
that is a mixture of the two former models obtained using
the likelihood ratio method described in the previous section.
Therefore, the structure of this result in Supplementary File
1 is similar to that of the results from the single-technology
analyses, but its interpretation is complicated by the additional
level of hierarchy.

Ingenuity Pathway Analysis and pathway enrichment
analysis

IPA software (www.ingenuity.com) was used to characterize
pathways significantly over-represented in the identified gene
sets following the instruction manual, the DE genes used for
IPA analysis was defined with the criteria |Fold-Change| > 2
and FDR < 0.05. It uses Fisher’s exact test to determine the
probability of each biological pathway assigned to each gene
set by chance and controlling for the false discovery rate with
Benjamini—-Hochberg procedure. To identify pathways enriched
in the DE genes (|Fold-Change| > 1.5 and FDR < 0.05)
from 3 M-A, we employed the plot_pathway function in the
RVA R package for hypergeometric tests and visualization with
Hallmark gene sets from the Molecular Signatures Database
(version 6.0) [17]. To compare the enriched pathways from the
genes unique and common in MADAD/MAADT genes, three
pathway enrichment analysis was conducted with enricher
function from clusterProfiler R package using Reactome
geneset library [33].

NC-N

correla

10 Interna |ona| license. ‘

es with ( 1sease activity and therapeutic effects 9

Estimation of Gene Signature Improvement (GSI)
scores

Three gene sets from the M-A of RNA-seq,
and combined datasets were quantified by using the z-score
method from Gene Set Variation Analysis (GSVA) [34], an
unsupervised sample-wise enrichment method that generates a

microarray,

score of activity for gene sets from each sample. Modeling was
performed by using mixed effects models, with treatment and
time as fixed factors and a random effect for each patient. Fold
changes (FCHs) for the change from baseline (CFB) analysis
were estimated with the lesional (LS) samples, and hypothesis
testing was conducted with contrasts with linear models in R
limma package. The averaged baseline gene signature score
difference between lesional and non-lesional (NL) skin was
calculated. The GSI score G was defined as:

—[CLs/E(Brs — Bnr)] - 100%, (3)

where Cps is the estimated effect of change from baseline
of gene signature score in lesional skin, and E(Brs — BnL) is
the averaged gene signature score difference of baseline lesional
skin By s and non-lesional skin Byy. A G of 100% indicates a
full recovery of lesional skin to the baseline non-lesional level.

Calculation of GSI correlation to disease activity

The gene expression and meta data along with the disease
activity score were obtained from dataset GSE130588 in Gene
Expression Omnibus (https://ncbi.nlm.nih.gov/geo). Gene
signature scores from positive regulated genes from the 3 gene
sets were calculated as described earlier with the z-score method
from GSVA. The correlation of disease activity score to gene
signature score was evaluated by using Pearson correlation
coefficients.

GSI

between post-baseline and baseline gene signature score for

Individual-level was calculated by the difference
each subject over the averaged baseline difference between
LS and NL. Two disease activity scores, “Eczema Area and
(EASI) and “SCORing Atopic Dermatitis”
(SCORAD), were used to calculate clinical improvement. The

Severity Index”

EASI improvement and SCORAD improvement were calculated
as change from baseline over the baseline averaged of each
disease activity score. The correlation of disease activity score
improvement to GSI was evaluated by Pearson correlation
coefficients.

Statistical Language and Packages

The model used for the multi-level meta-analysis in this study
(described in detail earlier in this section) was captured as an
R package called OMA that we have made available at https:
//doi.org/10.5281/zenodo.15505102.
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Table E7. Ingenuity canonical pathway analysis result of meta-analyzed AD genes from LS vs NL with microarray datasets

at cutoff threshold (|JFCH| > 2, FDR < 0.05).
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Supp. Fig. 3. Strong correlation of meta-analyzed effect size between MAADT and MADAD datasets reanalyzed using OMA. Parson’s correlation p =
0.82, p-value < 2e-16.
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Table S1. All datasets considered before applying inclusion criteria.

Microarray datasets RNA-seq datasets

E-MTAB-729

GSE5667

GSE60709

GSE107361

GSE32924

GSE36842 GSE121212
GSE120899 GSE137430
GSE130588 GSE140227
GSE153007 GSE157194
GSE133385 GSE141571
GSE133477

GSE140684

GSE59294

GSE27887

GSE58558

GSE99802
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