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Abstract

Background: Atopic Dermatitis (AD) is a persistent inflammatory disease of the skin to which a few novel treatment
options have recently become available. Multiple published datasets, from RNA sequencing (RNA-seq) and microarray
experiments performed on lesional (LS) and non-lesional (NL) skin biopsies collected from AD patients, provide a useful
resource to better define an AD gene signature and evaluate therapeutic effects.
Methods: We evaluated 22 datasets using defined selection criteria and leave-one-out analysis and then carried out a
meta-analysis (M-A) to combine 4 RNA-seq datasets and 5 microarray datasets to define a disease gene signature for AD
skin tissue. We used this gene signature to evaluate its correlation to disease activity in published AD datasets, as well
as the treatment effect of some of the existing and experimental therapies.
Results: We report the AD gene signatures developed separately from the RNA-seq or the microarray datasets, as well as
a gene signature from datasets combined across these two technologies; all 3 gene signatures showed a strong correlation
to the disease activity score (SCORAD) – microarray: Pearson’s ρ = 0.651, p-value < 0.01, RNA-seq: ρ = 0.640, p-value
< 0.01, combined: ρ = 0.649, p-value < 0.01. The gene signature improvement (GSI) of two existing effective therapies,
Dupilumab and Cyclosporine, as well as that of other experimental treatments, is consistent with their reported cohort
level efficacy from the associated clinical trials.
Conclusions: The M-A derived AD gene signature provides an evolution of an important resource to correlate gene
expression to disease activity and will be helpful for evaluating potential treatment effects for novel therapies.
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Introduction

Atopic dermatitis (AD) is a common chronic inflammatory

skin disease characterized by intense pruritus and eczematous

lesions [1], with a great unmet need for safer and more

effective treatments. AD typically has its onset in infancy

or early childhood, showing spontaneous remission in a

subset of patients, while others develop a lifelong disease.

AD has a significant impact on the quality of life of the

patients and represents a significant socio-economic burden

[1]. AD is characterized by elevated production of the type 2

cytokines interleukin-4 (IL-4), IL-5, and IL-13, which promote

AD pathogenesis [2]. Current treatment strategies in AD

have focused on either broad or selective immunosuppression

to combat pathologic type 2 inflammation. The approvals

of the anti-IL-4Rα antibody dupilumab, the small-molecule

Janus kinase inhibitor baricitinib and abrocitinib, and the

anti-IL-13 antibody tralokinumab have provided first-in-class

representatives of different therapeutic strategies for the

treatment of moderate to severe forms of AD. However, the

treatment options remain limited and follow a one-size-fits-all

format.

Public transcriptomic data in AD skin biopsies has the

potential to serve as a useful resource to better define the

AD gene signature and evaluate the therapeutic effects. Meta-

analysis has been previously carried out on AD skin biopsy data

based on Genechip microarray methods [3]. With the increasing

popularity and efficiency of next-generation sequencing (NGS)

technology, multiple RNA-seq datasets recorded from AD skin

biopsies have been published. Therefore, incorporating these

new RNA-seq data into the meta-analysis is desired.

AD transcriptomics data was recorded using microarray

technology and published as early as 2006 [4]. A significant

contribution to the AD transcriptomics studies was the

generation of MADAD (meta-analysis derived atopic dermatitis),

an AD gene signature resulting from a meta-analysis of four

microarray studies containing 97 samples, with 54 from LS

and 43 from NL tissue [3]. MADAD identified a set of 595
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DEGs (387 up- and 208 downregulated) using absolute fold-

change (|FC|) ≥ 2 and false discovery rate (FDR) ≤ 0.05 as

the cutoff criteria. With the development of NGS technology,

RNA-seq provided an unbiased assessment of gene expression.

It has been reported that RNA-seq outperforms microarray in

determining the transcriptomic characteristics of cancer, and

performs similarly in clinical endpoints [5]. RNA-seq was also

found to be superior in detecting low abundance transcripts

in activated T-cells [6]. Benefiting from the improvement in

throughput and the decrease of pricing of NGS, RNA-seq has

been used in an increasing number of AD transcriptomics

studies [7–9]. As a result, it is imperative to develop a new

meta-analysis to include both data types and evaluate the

AD gene signature from each technology, as well as combined

technologies.

Here, we wanted to shed light on the molecular landscape

of AD across the publicly available transcriptomics data by

comparing lesional and non-lesional AD samples. Although

for many diseases numerous -omics datasets are available,

AD being no exception, these datasets routinely differ from

one another in many key ways, such as the nature of the

patients under study (e.g., in one study all patients could

be treatment-näıve, in another, they could have previously

undergone therapy), whether just one or multiple samples

(e.g. a longitudinal collection) are available from each patient

in the study, which instrument was used for transcriptomics

measurements (the batch effect), and the transcriptomics

technology that was employed – microarray, or RNA-seq. All of

the above issues, save for the final one (microarray vs RNA-

seq data), have been studied extensively, and addressed by

either attempting to subtract the variance stemming from inter-

dataset differences from the data (most typically using ComBat

[10], an empirical Bayesian modeling-powered method), or by

incorporating them as covariates in the model, most typically

in the form of meta-analysis (M-A). Numerous libraries are

available for carrying M-A, most noteworthy among them

are metafor [11] and meta [12] for general purpose M-A, and

MetaIntegrator [13] as an example of a M-A library focusing

on -omics data. Here, for our AD analysis, we used metafor

to extend the M-A approach typically used in transcriptomics

by enabling simultaneous modeling of microarray, and RNA-

seq datasets; this was achieved by incorporating into the model

an additional hierarchical level that describes which of these

two technologies a given dataset used. Our model (described

by equations 1 through 2) and the associated computational R

package called Omics Meta-Analysis (OMA) is further described

in Materials and Methods.

We used OMA to conduct a M-A of 4 RNA-seq studies

(GSE121212, GSE137430, GSE141574, GSE157194) and 5

microarray studies (GSE107361, GSE130588, GSE133385,

GSE140684, GSE58558), consisting of combined 323 patients.

The analysis datasets were extracted from a public repository

(Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/

geo), and the pre-processing and analytic procedures were

followed in each study as appropriate based on their respective

platforms on which they were recorded. A M-A model was

used to compare lesional and non-lesional biopsies at baseline,

resulting in three lists of DEGs: from microarray, from RNA-

seq, and Meta-Analyzed Atopic Dermatitis Transcriptome

(MAADT) – a list based on a combined microarray and

RNA-seq M-A. We then used the obtained list to evaluate

selected investigational and approved therapies to calculate

Gene Signature Improvement (GSI) and correlate the GSI to

clinical improvement.

Results

Dataset selected and coherent genes
We have selected the microarray and RNA-seq datasets based

on the selection criteria and leave-one-out (LOO) analysis, as

described in Materials and Methods. The final datasets that

were retained and used in the M-A have been listed in Table 1.

Meta-analyzed transcriptome in Atopic Dermatitis
We used the approach described in Materials and Methods

to carry out three meta-analyses: 1) a M-A of 5 microarray

datasets, 2) a M-A of 4 RNA-seq datasets, and 3) a

simultaneous M-A of 9 datasets, 5 from microarray and 4

from RNA-seq, using a model with an additional hierarchical

level used to describe the technology that a given dataset was

recorded with (microarray or RNA-seq). The datasets that were

used for the meta-analyses are listed in Table 1. The findings

from these three meta-analyses are described in detail in Figure

1.C.

Differential genes can be reported at various effect size

(ES) and p-value cutoffs; here, we briefly describe the

results from our meta-analyses at the cutoff of |ES| > 2,

and FDR < 0.05. Our microarray M-A brought about 522

differential genes; our RNA-seq M-A resulted in 457 differential

genes; the M-A involving both the microarray and RNA-seq

datasets resulted in 422 differential genes. A summary of these

results can be viewed in Figure 1.C; a full list of results

has been provided in Supplementary File 1. Additionally,

we have carried out an analogous analysis separately for

the significantly underexpressed and overexpressed genes and

provided a summary of these results in Supplementary Figure

1.

In Figure 1.B, it can be seen that at our selected thresholds

(|ES| ≥ 2, FDR ≤ 0.05), overall, there has been 747 differential

genes split between the M-A of microarray datasets, the M-A of

the RNA-seq datasets, and the combined microarray and RNA-

seq M-A. 220 of these genes (∼29%) were seen in the microarray

M-A only. 105 genes (14%) were observed uniquely in the RNA-

seq analysis; 190 genes total (25%) were seen in microarray as

well as combined M-A (70), or in RNA-seq and combined M-A

(120). Finally, 232 the 747 genes (∼31%) were observed in all

three analyses.

Among the key AD genes reported in the MADAD study

[3], we are able to detect all except IFN. Overall, the results

are consistent between MAADT and MADAD. We compared

the MAADT list (422 genes) and the MADAD list (594

genes): there are 231 common genes between these two lists,

while 191 are unique to MAADT, and 363 are unique to

MADAD (Figure 2). We noted that all genes published in

MADAD had the same effect size directionality in MAADT

(i.e. all significant genes with positive effect sizes in MADAD

also had positive effect sizes in MAADT, and those with

negative effect sizes in MADAD also had negative effect sizes

in MAADT; see Supplementary Figure 2), with an extremely

high correlation between the effect sizes in these two studies

(Pearson’s correlation of 0.97, p-value < 2.2e-16). When we

ran the OMA analysis on the MADAD datasets, the effect

sizes remained highly correlated with MAADT (Pearson’s

correlation of 0.82, p-value < 2.2e-16), with a high directional

concordance (Supplementary Figure 3). Unsurprisingly, key AD

genes, including the markers of general inflammation (MMP12),

specific T helper activation (e.g. Th2/CCL18, Th1/CXCL10,

Th17/PI3/elafin, Th17/Th22 S100A7/A8/A9), and markers
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Table 1. Datasets selected for M-A. All 5 microarray studies were generated from the same Affymetrix Human Genome U133 Plus 2.0 Array.

The four RNA-seq datasets were generated from Illumina HiSeq instruments, one from 2500, one from 3000, and two from 4000.

Dataset Lesional # Nonlesional # Reference Platform

GSE133385 30 30 Pavel et al. 2019 Microarray

GSE58558 18 17 Khattri et al. 2014 Microarray

GSE130588 50 41 Guttman-Yassky et al. 2018 Microarray

GSE140684 31 21 Khattri et al. 2017 Microarray

GSE107361 39 40 Brunner et al. 2018 Microarray

GSE121212 21 27 Tsoi et al. 2019 RNA-seq Illumina HiSeq 2500

GSE137430 40 39 Ungar et al. 2020 RNA-seq Illumina HiSeq 4000

GSE157194 57 54 Möbus et al. 2020 RNA-seq Illumina HiSeq 3000

GSE141571 39 41 Guttman-Yassky et al. 2020 RNA-seq Illumina HiSeq 4000

Fig. 1. A Overlaps of the differentially expressed genes of the individually analyzed datasets and meta-analyzed result under the same threshold (|ES|
≥ 2, FDR ≤ 0.05) with microarray datasets (left) and RNA-seq datasets (right), only top 20 intersect groups were shown for simplicity. B Venn diagram

of M-A result with RNA-seq, microarray, and combined datasets at same threshold (|ES| ≥ 2, FDR ≤ 0.05) and C the number of DE genes from various

of thresholds combination for each M-A result, the red box indicates the threshold selected and the number of DE genes for comparison in panels A

and B.

of epidermal proliferation (KRT16, Mki67) highlighted in the

MADAD paper [3] are also on the MAADT list. Although

MAADT and MADAD have a common set of chemokines,

which play critical roles in leukocyte migration, there is only

one chemokine receptor (CCR7) on the MADAD list, while

MAADT has four additional chemokine receptors: CCR1,

CCR2, CCR4, and CCR5. To better understand the biology

(and biological differences) captured by the lists, we submitted

the genes from both lists to GO Biological Process pathway

analysis (http://bioinformatics.sdstate.edu/go/) [14]. Results

(Supplementary Figure 4) indicate that 231 common genes and

191 genes that are unique to MAADT are mainly enriched

in inflammation-related pathways, while 362 genes unique to

MADAD are mainly enriched in cell division related pathways.
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Fig. 2. Venn diagram of MAADT and MADAD differentially expressed

gene lists. There are 231 common genes between the two lists, while 191

unique to MAADT and 363 unique to MADAD.

Ingenuity Pathway Analysis (IPA) and Pathway
Enrichment Analysis
IPA was used to identify pathways and functions significantly

overrepresented in the transcriptome obtained through M-A.

As the pathway information in IPA may have been updated

since a previous meta-analyzed MADAD transcriptome from 4

studies by Ewald et al [3], we have re-analyzed the MADAD

transcriptome with IPA from the differentially expressed genes

(DEGs) reported in MADAD and compared to the result

generated from MAAD. The strength of the association of

the canonical pathways in terms of −log10(FDR) in the

MAAD transcriptome was compared to re-analyzed MADAD

transcriptome (Figure 3.A).

Among top 15 enriched pathways from MADAD and MAAD

transcriptomes, 11 overlap and satisfy the significance threshold

of FDR ≤ 0.05. The MAAD transcriptome result yields a more

significant over-representation of key immune pathways such as

Granulocyte Adhesion and Diapedesis, Agranulocyte Adhesion

and Diapedesis, Atherosclerosis Signaling, Th1, Th2 Pathway

and IL-17 Signaling, which are associated with AD [15]. The

top two pathways, Granulocyte Adhesion and Diapedesis and

Agranulocyte Adhesion and Diapedesis, both represent the

innate immune system where they are involved the process

of leukocyte or WBC (White Blood Cell) migration from the

blood vessels to the site of pathogenic exposure, which is a

key event in the process of inflammation [16]. Atherosclerosis

Signaling, which was the third most enriched IPA pathway

in MAAD, includes the genes associated with broad vascular

inflammation. This is consistent with the previously reported

IPA result from the MADAD transcriptome by Ewald et al [3],

where the Atherosclerosis Signaling pathway was ranked fourth

most enriched pathway. This slight discrepancy could be due to

the updated IPA database since 2015.

To further understand the broad biological meaning and

the directional changes of the DEGs, 50 hallmark gene sets

corresponding to distinct and coherent biological pathways [17]

were tested for enrichment from RNA-seq-derived, microarray-

derived, and combined DEGs. The positively and negatively

regulated genes in each of the three gene sets generated in this

study were tested against each set from the collection of 50

above-mentioned sets to evaluate the directional enrichment.

There are 20 gene sets that were statistically significantly

enriched (FDR ≤ 0.05) in at least one of the three DEG lists

generated in this study (Figure 3.B). The enriched upregulated

gene sets represented a variety of biological pathways that,

again, suggested a close link to immune response such as

Interferon Gamma response, Interferon Alpha response, and

Inflammatory response. Moreover, the enrichment analysis

results from microarray datasets show consistency with the

result from RNA-seq datasets. Collectively, the MAAD

transcriptome presented here provides a robust AD-specific

signal and aligns with the existing known disease pathology.

To compare the biological relevance to the disease between

MAADT and MADAD. There are 186 genes identified unique

to MAADT and 358 genes unique to MADAD, where have

236 genes that are common between two genesets. Three

pathway enrichment analysis shows 7 pathways have statistical

significance (FDR ≤ 0.05), which includes inflammatory related

pathways like keratinization, signaling by interleukins, and

IL10 signaling from 186 genes unique to MAADT. And 25

pathways (FDR ≤ 0.05) from 358 genes unique to MADAD do

not contain any clear pathways specific to AD or inflammation.

In addition, among 40 pathways (FDR ≤ 0.05) derived from

236 genes that are common between MAADT and MADAD,

top pathways are IL4/IL13 signaling, Signaling by interleukins

and interferon Alpha/Beta Signaling which are all with high

relevance to AD. All 7 pathways from MAADT unique genes are

overlapped to the 40 pathways derived from 236 common genes

between MAADT and MADAD, where none of the pathways

from MADAD unique genes are overlapped to the 40 pathways.

This indicates the superior biological relevance of MAADT over

MADAD to the disease and general inflammation processes.

Correlation to disease activity
Three disease gene signatures (DGS) were calculated based

on the upregulated genes from our RNA-seq, microarray, and

combined meta-analyses. To understand the disease relevance

to DGS, we examined the association of disease activity, as

measured by EASI activity scores and SCORAD scores, with

each DGS. We first evaluated the residual of each DGS, EASI,

and SCORAD by adjusting the treatment and time variables,

and the normally distributed residuals (Supplementary Figures

5 and 6) warranted the Pearson test to evaluate the correlation

coefficient and statistical significance. Baseline SCORAD scores

are strongly correlated to all 3 DGS with p-value < 0.01 and

ρ ranging from 0.640 to 0.650 (Figure 4.A), whereas Baseline

EASI also correlated with all 3 DGS with p-value < 0.01, but

with slightly weaker correlation at ρ ranging from 0.570 to

0.577.

We also followed individual patients over time to examine

whether the change of EASI and SCORAD from baseline

was correlated with the gene signature improvement from

positively regulated genes with each of the 3 gene sets. Slightly

stronger correlations were found between GSI and SCORAD

improvement (with all 3 GSI having p-values < 0.01 and ρ

ranging from 0.639 to 0.672), than between GSI and EASI

improvement (where the p-values ranged from 0.012 to 0.032

and ρ ranged between 0.406 and 0.469, Figure 4.B). In general,

DGS derived from either meta-analyzed microarray datasets,

RNA-seq datasets, or combined RNA-seq and microarray

datasets, all have a stronger correlation to SCORAD than

EASI.

GSI Comparison – investigational and approved
therapies
As measured by gene signature improvement through DGS,

we compared the GSI with the transcriptome obtained from

clinical trials of 7 investigational and 1 approved therapy for

AD to evaluate how GSIs (described by equation 3, detailed
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Fig. 3. A Ingenuity canonical pathways enrichment analysis compared between this M-A combined the RNA-seq & microarray datasets (grey) and the

MADAD transcriptome result (yellow) from Ewald et, al. 2015 with the same cutoff at |FC| ≥ 2 and FDR ≤ 0.05. The bars represent the −log10(FDR),

and the grey dotted line shaded area indicates the area where FDR > 0.05. The union of top 15 pathways from each gene sets (Combined and MADAD)

are shown on the plot. B Comparison of pathway enrichment analysis results with hallmark pathways, whereas the bars represent the −log10(FDR).

The sign indicates the enrichment among overexpressed (+) or under-expressed (-) genes, e. g. the positive −log10(FDR) value indicates the genes

upregulated in the pathway are over-represented compared to all upregulated genes in the dataset, and vice versa.

Fig. 4. A Disease severity index EASI and SCORAD correlation to gene scores from each meta-analyzed result under the same threshold (FC ≥ 2, FDR

≤ 0.05) from published dataset (GSE130588). The gene scores calculated with the z-score method as described in Hanzelmann et, al 2013. B Disease

severity index EASI and SCORAD improvement relative to baseline (%, y-axis) correlation to Gene Signature Improvement (% GSI, x-axis) with last

available time point (Week 16) from published dataset (GSE130588). Only lesional samples at each time point are used for analysis. The correlation

coefficient and p-value are calculated with Pearson correlation analysis.

in Materials and Methods) correlate to the reported clinical

efficacy at a specified duration (Figure 5). Dupilumab, which

is an IL-4 receptor α monoclonal antibody that inhibits the

signaling of IL-4 and IL-13, has shown a significant 110.3% gene

signature improvement, which is consistent with the reported

clinical efficacy in this trial [18]. Cyclosporine displays a 118.7%

improvement at the end of week 12, which is also consistent

with the positive clinical outcome that was reported in that

study [19]. Secukinumab, which is a human IgG1κ monoclonal

antibody that binds to interleukin-17A, showed no significant

gene signature improvement in any of the three gene signatures,

and also showed no clinical efficacy in AD from a phase 2
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Fig. 5. Forest plot with benchmarking result of GSI with RNA-seq, microarray, and Combined AD gene signature on 8 approved or experimental

therapies from published datasets. Only one therapy has the route of administration (ROA) through topical treatment. The color on the forest plot

indicates the indicates the level of gene signature modulation and the reported efficacy as defined by whether reach statistical significance with primary

endpoint at the specified duration.

randomized double-blind clinical study [7]. Crisaborole, which

is a topical treatment for AD for mild and moderate patients,

showed a moderate gene score improvement of 53% with a p-

value < 0.001. This level of gene score improvement at day

15 is comparable to investigational systemic therapies for AD

including Fezakinumab at week 12 [20], Gusacitinib at day 29

[21], and Ustekinumab at week 16 [22].

Discussion

-Omics profiling, and in particular measuring transcriptional

changes between the healthy state and the disease, has become

a standard way of investigating the mechanisms pathology.

Developments across various -omics technologies over the last

decade have been ever accelerating [23], with multi-omics

integration increasingly taking the center stage. The ability

to integrate multiple datasets has grown in importance and

become more commonplace, with numerous M-A methods and

studies being published.

AD is a disease that affects numerous individuals

across all geographies, therefore understanding its molecular

underpinnings has been of high interest and importance.

Unsurprisingly, AD was previously investigated via M-A, with

MADAD [3] being a key study frequently referred to in pre-

clinical inquiries in the pharmaceutical industry. Here, we

decided to carry out a new M-A of AD data for several reasons:

• The number of datasets in our study: several datasets have

been recorded in the recent years – our M-A consisted

of 5 microarray and 4 RNA-seq datasets, while the

previous effort consisted of 4 microarray datasets. AD has

proven to be a highly heterogeneous disease, and therefore

incorporating more datasets in the M-A can help us tease

out the signal present across all those suffering from AD,

rather than inherent to a specific sub-stratum of the AD

population.

• Availability of data from multiple -omics technologies: four

of the datasets included in our M-A were recorded using

RNA-seq, while previous M-A concerned microarray data

only. We were interested in creating a list of genes stemming

from the both technologies, thereby mitigating the biases

inherent to either microarray or RNA-seq.

• In MADAD, the data was preprocessed using ComBat [10],

then meta-analyzed using a random effects model. Leaving

aside the fact that ComBat needs to be applied with care to

avoid overcorrecting true biological effects, random effects

M-A is meant to account for the batch (or dataset of

origin) of a given measurement. Typically, either ComBat

would be applied to remove the batch effect, or alternatively

batch effects would be modeled using fixed or random effect

modeling. Removing the batch effects using ComBat and then

still modeling the batch/dataset of origin as a random effect

seems a contradiction.

• Previous methodology favored the random effects model. In

our treatment, both the fixed effect and random effect model

was considered, and a hybrid result was presented for each

gene where a choice was made between the fixed and random

effect result based on the amount of excess heterogeneity.

• We wanted to pick the datasets carefully and present here

our rejection criteria in a clear fashion. Due to this, although

we started with ∼20 microarray datasets, our final analysis

utilized only 5 of them, highlighting the importance of

scrutiny when using public datasets.

It should be noted that the ability of M-A to increase

the focus of the analysis on the signal common to all (or

the majority of) the datasets is at the same time a potential

limitation of M-A: unless specifically incorporated in the model,

subtypes of a disease will not be assumed – the results will focus

mostly on the signal that fits a “pan-disease” view of pathology.

The fact that we decided to analyze microarray data

together with RNA-seq data necessitated developing a slightly

altered version of traditional M-A: a hierarchical model with an

additional level of hierarchy able to accommodate the influence

of the technology with which a dataset was recorded as a

contribution to the recorded effect (see Supplementary Table

S1).

We have devised three lists of genes expressed differentially

between involved AD and non-involved AD tissue: one from

the microarray datasets, one from the RNA-seq datasets,
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and, finally, one from the combined microarray and RNA-seq

datasets. As elaborated in the Results section, the overlap

between these lists was significant, but there was also a large

number of genes differentially expressed only in the microarray

list or only in the RNA-seq list. These types of differences

should be expected due to the overall number of datasets in

each platform still being low, combined to some extent with

the systematic biases of each platform. Overall, we recommend

using the combined analysis list utilizing the microarray as well

as RNA-seq data, due to its sample size being twice as high as

either of the other two lists alone, and owing to the fact that,

as such, it has the highest potential to reduce both the various

technical and sampling biases.

As with all meta-analysis, our study is limited by the sample

size of each study included. The 422 MAADT genes missed

220 genes only observed in microarray studies. Some of these

220 genes might be noisier (and missed the |FC| or FDR

cutoff) in the RNA-seq datasets; some of these genes might

be advantageously selected on the microarray platform, which

therefore selectively enriched within the microarray datasets.

Similarly, there 105 genes uniquely existed in the RNA-seq

platform. The genes presented in MAADT have the advantage

of being robustly overexpressed across the majority of the

datasets, RNA-seq or microarray, a trend that is desired when

combining multiple datasets.

Crucially, the genes present in MAADT (which include genes

that are not present in MADAD) correspond to pathways with

higher relevance to AD and general inflammation processes,

while the genes that are not present in MAADT but are

present in MADAD are more in generic biological processes of

little significance to AD, which indicates the superior biological

relevance to the disease for MAADT.

The disease gene set derived from this meta-analysis showed

a strong correlation to the disease activity. A previously

reported AD gene set [3] has been widely cited and used to

evaluate treatment effects and understand the mechanism of

treatment. With additional datasets added to the M-A and

the result of gene signature correlation to disease activity

score, we presented here an updated AD disease gene set,

and provided a resource to evaluate the treatment effects from

potential new therapies. In comparison to DE genes derived

from single dataset (GSE130588), the gene score or GSI derived

from a meta-analyzed gene set has a comparable, if not better,

correlation to the disease activity score or disease activity score

improvement from that dataset (Supplementary Figure 7). This

suggests the derived gene set’s adaptation to other datasets.

In conclusion, we developed a M-A framework for derivation

of disease gene sets from multiple datasets, with the ability

to handle paired samples, and covariates. We applied this

framework to generate an AD gene set for further investigation

of AD pathology, biomarker selection, and potential targeted

treatment detection. This gene set may serve as an up-to-date

reference AD transcriptome for future investigations. The AD

genes presented here can be further evaluated through RT-

PCR. The transcriptome can also be used to evaluate the

response to new treatments, with the help of metrics like

the gene signature improvement score used in this study. The

framework and the R package developed here can be further

used for disease gene set development, of to investigate other

pathologies beyond AD.

Key Points
• We developed a novel method that treats the transcriptomics

technology type in each dataset as a separate level of

hierarchy in meta-analysis.

• We have used this method to carry out a meta-analysis of 5

microarray and 4 RNA-seq atopic dermatitis datasets and

created gene expression and pathway enrichment signatures

for this disease.

• Our atopic dermatitis gene signature was significantly

correlated with the EASI and SCORAD atopic dermatitis

disease activity scores.

• For our gene signatures, we observed a significant gene score

improvement in published data demonstrating the effect of

multiple approved AD therapeutics – this highlights the

practical utility of the gene signature presented here.

Materials and Methods

Microarray Dataset Inclusion Criteria and Selection
of Coherent Genes
In this study, we have evaluated 16 microarray and 5 RNA-seq

datasets (listed in Supplementary Table S1). The list of datasets

included for the microarray M-A was built up by sequentially

picking a dataset from the list of available datasets with the

largest amount of lesional AD samples, checking if including

this dataset will increase the overall number of lesional samples

in the already selected datasets by more than 5%, then, based

on this criterium, either including this dataset or not, and

finally discarding the dataset from the list of available datasets;

this was repeated until the first dataset that did not meet the

“>5% criterium” was found, resulting in a list of 7 microarray

datasets. Two additional datasets were removed – GSE120899,

since it was preprocessed using a batch correction method by

the authors and an unprocessed version of the data was not

available [24], and GSE99802 was eliminated in the leave-one-

out analysis due to its high heterogeneity – resulting in the

datasets in Table 1.

RNA-seq Dataset Processing for Meta-Analysis
The fastq files from four RNA-seq datasets (GSE121212,

GSE137430, GSE141571, and GSE157194) were downloaded

from GEO using NCBI SRAToolkit (https://www.ncbi.nlm.nih.

gov/sra), specifically, the compiled binaries/install scripts

named “Ubuntu Linux 64 bit architecture”. The SRR numbers

or the fastq file names required for the SRAToolkit are retrieved

from “SRA Run Selector” link in the NCBI GEO accession

display page for each GEO number. Processing of the fastq

files was performed using the QuickRNASeq pipeline [25] utilizing

GRCh38 or hg38 for the genome and Gencode v30 for

annotation.

Multilevel Model for Simultaneous Microarray and
RNA-seq M-A
The scenario that our modeling approach is concerned with

is one in which for a (potentially large) collection of genes g

we have a number of -omics experiments s that span either

one or both of the microarray and RNA-seq technologies. Our

objective is to, separately for each gene, account for any inter-

study and inter-technology heterogeneity, and, for a collection

of measured effect sizes derive the true underlying effect size.

To do so, we use standard fixed effects and mixed effects

methodologies, as detailed below.
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M-A of datasets captured by just one of these technologies

can be adequately described across all the genes using the fixed

effects model:

Y = Xβ + ϵ, (1)

where X is the s×f fixed effects design matrix (f is the

number of dataset-related fixed effects, and, in our case, we only

have a single fixed effect: the expected effect size) common to all

genes, β is the g×f matrix of fixed effects, Y is the g×s matrix

of observed effect sizes. ϵ is the corresponding g×s matrix of

measurement errors, where for gene g and measurement s the

corresponding error is given by ϵgs ∼ N(0, vgs), and vgs is the

within-study variance.

This formulation can be extended into a mixed effects model,

which additionally captures the random effects:

Y = Xβ + Zb + ϵ. (2)

In our current case, we are focused on two specific random

effects (inter-study and inter-technology), which are captured

by Z and b:

Z =
[
Z2 Z3

]
, and b =

[
b2 b3

]T
.

Here, Z2 is the s×r2 level-two random effect design matrix

(where r2 is the number of level-two random effect classes),

Z3 is the s×r3 level-three random effect design matrix (where

r3 is the number of level-three random effect classes), both

common to all genes, and b2 and b3 are the corresponding

g×r2 and g×r3 matrices of level-two (used here to represent

the inter-study heterogeneity) and level-three random effects

(representing the inter-technology heterogeneity), given by

b2,g ∼ N(0, τ2
g Ir2

) and b3,g ∼ N(0, ω2
gIr3

), where τ2
g is

the inter-measurement variance for gene g, and ω2
g is the

inter-technological variance for gene g.

It can be seen that if we expand Zb in equation 2, we can

obtain:

• a standard two-level model (when τ2
g > 0, but ω2

g = 0 and

the Z3b3 contribution for gene g vanishes),

• a full three-level model with significant inter-dataset and

inter-technological variance (when τ2
g and ω2

g are both non-

zero), or

• a model that describes negligible inter-dataset variance in

the presence of significant technological variance (when

ω2
g > 0, but τ2

g = 0 and the Z2b2 contribution for gene

g vanishes).

This three-level approach is also detailed on the metafor

project’s website1, and also in more detail in the core

publication referenced therein [26].

In the analyses presented here, we calculate the meta-effect

size β for each gene using both the model represented by

equation 1, and the one in equation 2 in the case of two- or

three-level M-A (in the case of M-A of effect sizes stemming

from two technologies: RNA-seq, and microarray), as described

above.

We describe how the model can be fitted efficiently for all

genes in the following subsection.

1 https://www.metafor-project.org/doku.php/analyses:

konstantopoulos2011#references

M-A Model Fitting
In mixed effect M-A, there are several ways to compute the

fixed effect estimate β̂ and random effects τ2 and ω2 in

equations 1 and 2. Here, we used the Restricted Maximum

Likelihood (REML) approach, an efficient method that is

known to mitigate the problems that other methods are know to

suffer from, for example underestimating the random effects in

commonly used methods like DerSimonian-Laird (DL) [27] or

Maximum Likelihood Estimation (MLE). In REML, at every

step of the optimization loop the fixed effect estimate, β̂, is

computed directly, and we maximize the REML L based on

that estimate, as well as the current estimates of the random

effects τ2 and ω2.

The computation carried out in the REML optimization can

be written for every gene g as:

β̂g =
(
X

T
V

−1
g X

)−1
X

T
V

−1
g Yg,

var(β̂g) =
(
X

T
V

−1
g X

)−1
,

Hg =
∑
l

Vl,g = diag(vg) + τ
2
gZ2 + Z3ω

2
gZ

T
3 ,

and

Lg =
∑
s

−
1

2

(
log detHg + log det(X

T
H

−1
g X)+

(Yg − Xβ̂g)
T
H

−1
g (Yg − Xβ̂g)

)
,

where Hg represents the variance across the three levels

l considered here, and vg = [vg1, vg2, ..., vgs] is a vector of

measurement variances for gene g.

M-A Model Selection
There are various ways to compare and pick between two M-A

models, which differ in complexity, that are typically employed

depending on what types of models are being compared.

To compare the fixed effect and random effect models,

Cochrane’s Q and its corresponding p-value are the standard

measures that are typically applied [28] – a practice that we

also followed in this work.

To compare two random effect models of varying complexity,

the likelihood ratio is a frequently used measure [29]. In our case

Lg is measured on the log scale, so when comparing the two-

and three-level model, we can calculate the likelihood ratio as:

LR,g = −2 (L2,g − L3,g) ,

where L2,g is the (log) REML for gene g obtained from the

two-level random effects model (with τ2 = 0 and ω2 ̸= 0),

L3,g is the (log) REML for gene g obtained from the three-

level random effects model, and LR,g is their ratio (expressed

as a difference in the log space). For each gene g, LR,g was

compared to the χ2
1 distribution, and we used the resulting p-

value to determine whether the more or the less complex model

was a more appropriate form of M-A for gene g.

Data Preparation, and Application of DGE and M-A
Each of the datasets listed in Table 1 underwent a final

step of preparation before further analysis, where its sample

annotation was standardized to Entrez gene IDs. Each dataset

was then analyzed separately using limma [30], where the
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lesional samples were contrasted with the non-lesional ones.

In the case of RNA-seq datasets, an additional edgeR [31]

TMM correction was carried out prior to limma, followed by

normalization (via the voom function).

We have carried out three meta-analyses in this study,

as described in earlier sections. The two M-A runs, each

focusing on a single technology (i.e. the M-A carried out on

microarray data only, and the M-A carried out on the RNA-

seq data only), were ran using the rma function from the

metafor package. Two meta-analyses were carried out for each

technology – one using the fixed effects model, and another

using the random effects model (using the REML approach).

The p-values of the M-A ES estimate were FDR-corrected [32].

These FDR-corrected p-values along with the ES from the fixed

effects and random effects models have been reported here

in Supplementary File 1. Additionally, for each gene in the

M-A Cochrane’s Q heterogeneity was calculated along with a

corresponding Cochrane’s p-value [28]. In each case where the

heterogeneity was significant (Cochrane’s Q p-value < 0.05),

the random effects results were picked; if the heterogeneity was

not significant, the fixed effects results were picked; for each

gene, these respective picks were presented as the hybrid result

(a hybrid of fixed and random effects results). For these hybrid

results, FDR-corrected p-values were computed anew using a

list of raw p-values from the model selected for each gene.

The mixed M-A where the datasets from microarray were

analyzed together with the RNA-seq datasets was carried

out using two- or three-level M-A described in detail the

previous sections. The results of this analysis were also reported

in Supplementary File 1. In this model, we report a two-

level result where the technology-based effect ω2 is reported

alongside the ES, and a three-level result where the inter-

study heterogeneity τ2 was also reported, and a hybrid result

that is a mixture of the two former models obtained using

the likelihood ratio method described in the previous section.

Therefore, the structure of this result in Supplementary File

1 is similar to that of the results from the single-technology

analyses, but its interpretation is complicated by the additional

level of hierarchy.

Ingenuity Pathway Analysis and pathway enrichment
analysis
IPA software (www.ingenuity.com) was used to characterize

pathways significantly over-represented in the identified gene

sets following the instruction manual, the DE genes used for

IPA analysis was defined with the criteria |Fold-Change| > 2

and FDR < 0.05. It uses Fisher’s exact test to determine the

probability of each biological pathway assigned to each gene

set by chance and controlling for the false discovery rate with

Benjamini–Hochberg procedure. To identify pathways enriched

in the DE genes (|Fold-Change| > 1.5 and FDR < 0.05)

from 3 M-A, we employed the plot pathway function in the

RVA R package for hypergeometric tests and visualization with

Hallmark gene sets from the Molecular Signatures Database

(version 6.0) [17]. To compare the enriched pathways from the

genes unique and common in MADAD/MAADT genes, three

pathway enrichment analysis was conducted with enricher

function from clusterProfiler R package using Reactome

geneset library [33].

Estimation of Gene Signature Improvement (GSI)
scores
Three gene sets from the M-A of RNA-seq, microarray,

and combined datasets were quantified by using the z-score

method from Gene Set Variation Analysis (GSVA) [34], an

unsupervised sample-wise enrichment method that generates a

score of activity for gene sets from each sample. Modeling was

performed by using mixed effects models, with treatment and

time as fixed factors and a random effect for each patient. Fold

changes (FCHs) for the change from baseline (CFB) analysis

were estimated with the lesional (LS) samples, and hypothesis

testing was conducted with contrasts with linear models in R

limma package. The averaged baseline gene signature score

difference between lesional and non-lesional (NL) skin was

calculated. The GSI score G was defined as:

G = − [CLS/E(BLS − BNL)] · 100%, (3)

where CLS is the estimated effect of change from baseline

of gene signature score in lesional skin, and E(BLS − BNL) is

the averaged gene signature score difference of baseline lesional

skin BLS and non-lesional skin BNL. A G of 100% indicates a

full recovery of lesional skin to the baseline non-lesional level.

Calculation of GSI correlation to disease activity
The gene expression and meta data along with the disease

activity score were obtained from dataset GSE130588 in Gene

Expression Omnibus (https://ncbi.nlm.nih.gov/geo). Gene

signature scores from positive regulated genes from the 3 gene

sets were calculated as described earlier with the z-score method

from GSVA. The correlation of disease activity score to gene

signature score was evaluated by using Pearson correlation

coefficients.

Individual-level GSI was calculated by the difference

between post-baseline and baseline gene signature score for

each subject over the averaged baseline difference between

LS and NL. Two disease activity scores, “Eczema Area and

Severity Index” (EASI) and “SCORing Atopic Dermatitis”

(SCORAD), were used to calculate clinical improvement. The

EASI improvement and SCORAD improvement were calculated

as change from baseline over the baseline averaged of each

disease activity score. The correlation of disease activity score

improvement to GSI was evaluated by Pearson correlation

coefficients.

Statistical Language and Packages
The model used for the multi-level meta-analysis in this study

(described in detail earlier in this section) was captured as an

R package called OMA that we have made available at https:

//doi.org/10.5281/zenodo.15505102.
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Supplementary Materials

Supplementary materials available online:

• Supp. File 1. Full MAADT result table.

• Supp. Table S2. Meta-analyzed AD genes from LS vs NL with combined RNA-seq and microarray datasets.

• Supp. Table S3. Meta-analyzed AD genes from LS vs NL with RNA-seq datasets.

• Supp. Table S4. Meta-analyzed AD genes from LS vs NL with microarray datasets.

• Supp. Table S5. Ingenuity canonical pathway analysis result of meta-analyzed AD genes from LS vs NL with combined RNA-seq

and microarray datasets at cutoff threshold (|FCH| ≥ 2, FDR ≤ 0.05).

• Supp. Table E6. Ingenuity canonical pathway analysis result of meta-analyzed AD genes from LS vs NL with RNA-seq datasets

at cutoff threshold (|FCH| ≥ 2, FDR ≤ 0.05).

• Supp. Table E7. Ingenuity canonical pathway analysis result of meta-analyzed AD genes from LS vs NL with microarray datasets

at cutoff threshold (|FCH| ≥ 2, FDR ≤ 0.05).

List of acronyms or abbreviations:

• MAADT: Meta-Analyzed Atopic Dermatitis Transcriptome

• AD: Atopic Dermatitis

• LS: Lesional

• NL: Non-Lesional

• M-A: Meta-Analysis

• OMA: Omics Meta-Analysis
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Supp. Fig. 1. Overlaps of the differentially expressed genes of the individually analyzed datasets and meta-analyzed result under the same threshold

with microarray datasets (A. ES ≥ 2, FDR ≤ 0.05; B. ES ≤ -2, FDR ≤ 0.05) and RNA-seq datasets (C. ES ≥ 2, FDR ≤ 0.05; D. ES ≤ -2, FDR ≤
0.05), only top 20 intersect groups were shown for simplicity.

Supp. Fig. 2. Strong correlation of meta-analyzed effect size between MADAD and MAADT (|FC| ≥ 2, FDR ≤ 0.05).
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Supp. Fig. 3. Strong correlation of meta-analyzed effect size between MAADT and MADAD datasets reanalyzed using OMA. Parson’s correlation ρ =

0.82, p-value < 2e-16.
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A

B

C

Supp. Fig. 4. A. Top 20 Go Biological Process pathway among 231 genes common to MAADT and MADAD. B. Top 20 GO Biological Process pathway

among 191 genes unique to MAADT. C. Top 20 GO Biological Process pathway among 362 genes unique to MADAD.
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Supp. Fig. 5. QQ plot and histogram of residuals for EASI, SCORAD,

and each gene score in dataset GSE130588.

Supp. Fig. 6. QQ plot and histogram of residuals for EASI, SCORAD,

and each gene score improvement in dataset GSE130588.
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Supp. Fig. 7. Disease severity index EASI and SCORAD correlation to gene scores from each meta-analyzed result and gene set obtained with one

dataset (GSE130588) under the same threshold (|FC| ≥ 2, FDR ≤ 0.05) from published dataset (GSE130588).

Supp. Fig. 8. The Q-Q plot of leave-one-out analysis to remove one dataset at a time and process M-A with a fixed model to show the heterogeneity

p-value and the result p-value. Each dotted curve shows the M-A result without that dataset, whereas on the right panel we can find the M-A result

have a stronger statistical significance once GSE99802 has been removed.
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Table S1. All datasets considered before applying inclusion criteria.

Microarray datasets RNA-seq datasets

E-MTAB-729

GSE5667

GSE60709

GSE107361

GSE32924

GSE36842 GSE121212

GSE120899 GSE137430

GSE130588 GSE140227

GSE153007 GSE157194

GSE133385 GSE141571

GSE133477

GSE140684

GSE59294

GSE27887

GSE58558

GSE99802
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