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Abstract  
 

The BXD family of recombinant inbred mice were developed by crossing and inbreeding 

progeny of C57BL/6J and DBA/2J strains. This family is the largest and most extensively 

phenotyped mammalian experimental genetic resource. Although used in genetics for 52 

years, we do not yet have comprehensive data on DNA variants segregating in the BXDs. 

Using linked-read whole-genome sequencing, we sequenced 152 members of the family 

at about 40X coverage and quantified most variants. We identified 6.25 million 

polymorphism segregating at a near-optimal minor allele frequency of 0.42. We also 

defined two other major variants: strain-specific de novo singleton mutations and epoch-

specific de novo polymorphism shared among subfamilies of BXDs. We quantified per-

generation mutation rates of de novo variants and demonstrate how founder-derived, 

strain-specific, and epoch-specific variants can be analyzed jointly to model genome-

phenome causality. This integration enables forward and reverse genetics at scale, rapid 

production of any of more than 10,000 diallel F1 hybrid progeny to test predictions across 

diverse environments or treatments. Combined with five decades of phenome data, the 

BXD family and F1 hybrids are a major resource for systems genetics and experimental 

precision medicine.  
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Background 

 
Understanding how genetic variation shapes biological traits, especially disease traits, 

remains one of the fundamental challenges in biology. This challenge lies at the heart of 

both evolutionary biology and precision medicine, yet our ability to connect genetic 

differences to phenotypic outcomes has been limited by the complexity of natural genetic 

variation. Deep whole-genome sequencing of genetic reference populations has become 

essential for understanding complex trait architecture and advancing precision medicine. 

Here, we report the comprehensive sequencing of the BXD family—the largest and most 

extensively phenotyped experimental genetic resource in mammals. Through linked-read 

sequencing of 152 BXD strains at ~40X coverage, we have created an unprecedented 

catalog of genetic variants, from single nucleotide changes to complex structural 

variations. This resource, combined with five decades of accumulated phenotype data, 

enables us to move beyond traditional genetic mapping to precise variant-level 

predictions of phenotypic outcomes. Our work demonstrates how deep sequencing of a 

well-characterized genetic reference population can bridge the gap between genotype 

and phenotype, providing a powerful platform for experimental precision medicine. 

Recombinant inbred (RI) strains are inbred strains that are produced by crossing and then 

inbreeding two or more inbred strains. In addition to mice [1–5], RI strains have been 

generated for numerous model systems, including yeast[6], plants[7,8], flies[9,10], 

nematodes[11], fish[12],  and other rodents[13]. The BXDs RI strains are the largest 

mammalian RI panel and one of the oldest family of RI strains.  

The first BXD strains were created in the early 1970s by crossing female C57BL/6J (B6) 

and male DBA/2J (D2) inbred mice[14]. The F2 progeny and all subsequent generations 

were then sibling mated to establish new “recombined” inbred lines (Figure S1). Each RI 

strain has a unique and stable genome that is a linear mosaic of ancestral haplotypes, 

inherited from B6 and D2 parents[15] (Figure S1). The first set of 26 BXDs were used 

mainly for mapping Mendelian loci[16,17], but as the family has grown—now to ~152 

members, they have found new uses, including mapping complex traits (phenotype-to-

genotype), reverse genetics using phenome-wide association (genotype-to-phenotype), 

understanding gene-by-environment and gene-by-sex interactions[14,17,18], and causal 

modeling[19].  

Two factors set the BXD family apart from other vertebrate genetic reference 

panels. First, the number of family members is large enough for well powered and precise 

genetic analyses[14]. There are now 120 strains available directly from The Jackson 

Laboratory (Table S1) with an additional 24 available from our laboratory at the University 

of Tennessee Health Sciences University. Second, the BXD has an extraordinarily rich 

multiomic phenome that has accumulated over more than 50 years. Virtually all of these 

“polyphenome” data are available from our large and FAIR-compliant[20] web service 

(GeneNetwork.org). This dense and well-integrated phenome consists of over 10,000 

classical phenotypes[21] and well over 100 molecular and expression QTL-type data sets, 
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with the ability to replicate deeply and to extend across many treatments and 

environments[22,23].  

Although BXD progeny are all descended from the same B6 and D2 founders, 

because they have been created over several epochs, that are separated by several 

decades, the B6 and D2 parental strains have inevitably accumulated de novo mutations 

such that each epoch used slightly different B6 and D2 founders (Table S1). Furthermore, 

some of these epochs were produced using F2 intercrosses, while others used advanced-

intercross progeny (Figure S1A and S1B). This has resulted in a hierarchical family 

genetic architecture that is not easily captured by genotyping arrays, but which is ideal 

for a family pangenome assembly — once all BXDs have been sequenced. 

Since the first draft of the mouse genome in 2002[24,25], there have been 

important insights into the biology of the genome, the creation of new mouse models by 

genetic engineering[26], whole-genome screens, and the characterization of genomic 

diversity across mouse strains[27,28]. On a parallel course, stable mouse reference 

populations, such as the BXDs, have continued to be used for forward genetics, and with 

the sequencing of their parental strains, have also been used for systematic reverse 

genetics (also referred to as phenome-wide association studies)[9,29,30].   

While inbred strains [24,27,28] have been sequenced previously [29,30], large, 

fully isogenic strain panels accompanied by rich, open phenome data have yet to be 

deeply sequenced. In the present study we have performed deep, linked-read sequencing 

of all the BXD family (mean read depth of 38.6X), enabling us to characterize the full 

complement of genetic variation within each BXD strain and epoch, including SNPs, small 

indels, short tandem repeats (STRs) and large structural variants (SVs > 1000 bp). 

We also provide new, updated, and curated genotypes for a total of 198 BXD family 

members—from BXD1 through to BXD220, including the parental strains C57BL/6J and 

DBA/2J,  44 strains that are now extinct but for which phenotype data have already been 

acquired (Table S1), and whole-genome sequencing data for 152 of the extant strains. 

Deep sequencing reveals private variants unique to individual BXD strains and shared 

variants within BXD epochs, enabling precise mutation rate analysis and even mapping 

of mutation-controlling loci [31,32].  BXD progeny with extreme phenotypes can be 

caused by polygenic interactions or by private variants that likely occurred de novo during 

or after inbreeding was completed; for example, blindness in the BXD24-Cep90 

line[26,28]. Whereas private mutations are a cause for concern when using RI lines for 

mapping, both epoch-specific and private variants, once identified, become valuable tools 

that bridge classic mutagenesis and quantitative genetic approaches. The result is an 

unprecedented compendium of variants within a single family, including many that are 

private to single strains or epochs. Combined with available phenome data, this resource 

enables us to transition from genetic dissection to genetic prediction and synthesis of 

genotype-to-phenotype relations. 
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Results 

High resolution genetic analysis of the BXD mouse population using linked-read 

sequencing 

We carried out linked-read sequencing from 10x Genomics on 152 extant BXD strains, 

plus their C57BL/6J and DBA/2J parents (Figure S1). Sequencing produced a mean read 

depth of 38.6X, a mean molecule length of 44.5 kb, and a mean 97% of reads mapped 

(Figure S1C, Table S1). The mean PCR duplication rate was 5.2%, indicating good 

library complexity. Coverage analysis showed that approximately 80% of the genome was 

covered at 20X or higher depth, with coverage declining more gradually at higher 

thresholds as shown in the coverage distribution curves (Figure S1C). Variants can be 

broadly separated into segregating variants - that is variants that are inherited from the 

C57BL/6J and DBA/2J parents of the population and segregate in the BXD family, and 

de novo variants - variants that have occurred in a particular BXD strain or group of strains 

during production. 

SNPs, indels and large structural variants 

Using the GATK pipeline[33,34] and a set of true-positive variants in which the DBA/2J 

differ from the reference C57BL/6J, 5,891,472 SNPs and 696,596 indels have a minor 

allele frequency (MAF) greater than 0.2  and so we assumed to be inherited in the BXD 

family from the parental strains (Figure S2B). We clearly saw genomic regions of high 

diversity between the two parental strains (and therefore in the BXD family), as well as 

regions that were close to identical-by-descent between the parental strains (and 

therefore with few segregating variants in the BXD family; Figure S2A). The allele 

frequency spectrum reveals a distinct pattern typical of inbred strains, with most variants 

showing either very low frequencies, or a peak at 0.5, reflecting their origin from the 

parental genomes (Figure 1A). The size distribution of indels shows a symmetric pattern 

centered around zero, with a predominance of small insertions and deletions (Figure 1B). 

We used SVJAM[35] to jointly genotype large structural variants. We analyzed 31,454 

candidate SVs suggested by the LongRanger pipeline[36] and called 4,153 SVs (1,968 

deletions, 1,106 duplications and 1,079 inversions; Figure S2C). The allele frequency 

spectrum of SVs shows a unimodal distribution centered around 0.5 (Figure 1A) with SV 

size ranged from 1002 to 1,991,907 bp (mean 76,453 bp, median was 34,424 bp; Figure 

1C). Notably, we found an SV hotspot with 272 SVs on chromosome 13. Of these, 128 

were located between 64–67 Mb, and 56 were located between 67–70 Mb. This is a 

region with a high density of annotated segmental duplications, likely facilitating high rates 

of homology based structural variation (Figure S2D).  

 

Short tandem repeats (STRs) 

To examine STRs, we built a genome-wide reference set of STRs with repeat units of 2-

20 bp in the GRCm38 (mm10) reference genome (Figure 1D)[37,38]. We then used 

GangSTR[37] to infer the repeat copy number at each STR in the reference in each BXD 
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strain (Methods). Genotypes showed high call quality across repeat classes, with 

decreased quality at dinucleotide STRs (Figure S3A) which are more prone to errors 

introduced by PCR[39] in the 10x workflow. The majority of STRs in our reference panel 

were mono-allelic (69.3%) in the BXD and thus were excluded from downstream 

analyses. Another 8% of loci were filtered out either because they overlapped known 

genomic duplications or had an insufficient call rate across the family. 

We used the resulting genotypes to characterize the extent of STR variation. As 

expected, D2 showed increased variation relative to the reference assembly (Figure 1E). 

Considering only homozygous calls, the parental strains varied at 60,462 (78.8%) of 

polymorphic STRs (Figure 1F) with a mean difference in repeat length of 1.9 units. The 

remaining polymorphic STRs not found in the parents were predicted to be de novo, and 

are discussed below. While we found some larger repeat expansions and contractions of 

up to 10 repeat units, the majority had a difference of 1–2 units. Contractions relative to 

the reference allele were more abundant in D2 (55%/45%).   

Figure 1: SNPs, indels and short tandem repeats (STRs) in the BXD family. (A) Allele frequency 

spectrum for three classes of variants: SNPs (blue), indels (gold) and structural variants (SVs, purple). Both 

SNPs and indels show a peak at low frequencies and a smaller peak at 0.5, while SVs display a unimodal 

distribution centered at 0.5 alternate allele frequency. (B) Size distribution of indels (gold) showing a 

symmetric pattern centered at zero, with most variants being small insertions or deletions (+/- 1-5 base 

pairs) and size distribution of structural variants by type: deletions (DEL), duplications (DUP), and inversions 

(INV), shown as density plots on a log scale (1kb to >1000kb). Deletions show a peak around 10kb, 
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duplications and inversions a peak near 100kb. (C) Description of STR reference panel. Bar height indicates 

abundance of STRs of a given motif length. Homopolymers (light blue) were omitted from genotyping and 

monoallelic loci (dark blue) were omitted from downstream analyses. Calls not passing quality control 

metrics (light green) were filtered out to generate a final call set of segregating STR loci (dark green). (D) 

Distribution of differences in STR repeat counts between BXD founder strains and inset example locus with 

an AATA motif, overlapping an exonic region of a gene is shown as an example of a repeat where founder 

strains differ (E) Distribution of mutation size for STR loci relative to size of repeat in the reference for both 

parental strains—C57BL/6J and DBA/2J. 

Infinite marker map 

A smaller set of 5,271,335 autosomal and 37,830 sex chromosome SNPs called with high 

confidence were used as the basis of an ‘infinite marker map’ that effectively defines 

every recombination point to the interval between the two nearest informative variants. 

This allowed us to identify almost every haplotype structure for each genome, and to 

identify the first and last variant in each haplotype block. We combined this with previous 

genotype-array data for extinct BXDs (Figure S4A). The total number of recombination 

per BXD ranged from 26 to 125 (Figure S4B). As expected, epochs derived from F2 

crosses (epochs 1, 2, 4 and 6) have approximately half the average number of 

recombination as epochs derived from advanced intercrosses (epochs 3 and 5; Figure 

S4B). 

The large numbers of recombinations in the BXDs, combined with the precise 

localization of each cross-over, increases the precision of QTL mapping. We reanalyzed 

the BXD phenome to demonstrate the advantages of these new genotype maps. For 

example, a phenotype that previously did not have a significant QTL (water intake of 13-

week old females; GN BXD_12889), now has a significant and well-defined QTL on Chr 

9 Figure 2A), encompassing only 5 coding genes. One of these genes, Sorl1, has a 

highly significant cis-eQTL in kidney. Although only 10 strains overlap between the gene 

expression dataset and the water intake, Sorl1 expression and water intake are well 

correlated (Pearson r2=0.61) across those strains. Finally, variants in SORL1 are 

associated with water intake in human PheWAS (p=0.00482; G/T, rs3781832, INI1528, 

https://biobankengine.stanford.edu/RIVAS_HG19/gene/SORL1). This demonstrates that 

the updated BXD genotypes allow in silico identification of novel gene loci with 

homologous function in mouse and human. 

To estimate the overall precision of QTL localization, we used the largest available 

BXD transcriptome studies, containing at least 70 strains, encompassing 81 total distinct 

strains. Accuracy and precision were defined as the distance between the probe site and 

the peak QTL linkage value for all cis-eQTLs within 5Mb of the probe site. The large 

numbers of recombination in the BXDs, combined with the precise localization of each 

cross-over, increases the precision of the mapping (Figure 2B).  Even for nominally 

significant loci (LOD 3.5), the median distance is 0.91 Mb, with the distance decreasing 

to 0.83 Mb at LOD > 4 and 0.74 Mb at LOD > 5. For these QTLs, the mean LOD is 8.94 

and median LOD is 4.61, exceeding typical significance thresholds. This demonstrates 

that the distance between the peak of the QTL and the true causal variant will often be 
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less than 1 Mb when using this new marker map. 

In summary, the new set of markers improves our ability to understand haplotype 

structures and more accurately identify recombination points in the BXD genomes. This 

feature greatly enhances QTL mapping accuracy and resolution, providing a valuable tool 

for both future genetic research in the BXDs, and the ability to reanalyze the phenome 

within the GeneNetwork integrated database.  

Figure 2. QTL mapping of water intake of 13-week old females (BXD_12889) using our new 

genotypes (A) and the old genotypes (B). The higher horizontal lines show genome-wide significance, 

whereas the lower horizontal lines show the suggestive threshold. Note that the QTL on Chr 9 is not even 

suggestive in B, but is highly significant in A. (C) cis-eQTL accuracy in BXD mice using our new 

genotypes. Each point represents the distance from the transcription start site of a gene (TSS) and the 

peak of a cis-eQTL for that gene, for LOD values between 3.5 (nominally significant) and 20 (highly 

significant). The black line is the best fit, showing the mean distance between the TSS and peak LOD. 

The inset shows a histogram of the number of cis-eQTLs with LODs between 0 and 20. 

Accumulation and sharing of de novo mutations among BXD strains 

Rates and spectra of new mutations - SNPs and indels 

RI strains have always been used for mapping common parental variants, whereas rare 

or spontaneous fixed variants have been largely ignored. However, each member of the 

family is expected to carry its own unique set of homozygous mutations, which have 

arisen and been fixed over many generations of sibling matings (Table S1). To investigate 

rates and patterns of fixed de novo mutation among the BXD, we searched for all private 

homozygous singleton variants in each family member. These singletons are by definition 

absent from both DBA/2J and C57BL/6J parents and all other BXD progeny. We required 

these variants to be supported by at least 10 sequencing reads and to have a Phred-

scaled genotype quality of at least 20. As expected, family members from earlier epochs 

have accumulated more homozygous singletons (Figure 3A). We additionally 

characterized the mutation spectrum of homozygous singletons, which describes the 

frequency of singletons corresponding to each of the six possible mutation types (C>A, 

A>G, etc.), in addition to C>T transitions at CG dinucleotides; overall, most singletons 

were C>T transitions (Figure 3B). 
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  Some germline mutations might also arise earlier during the production of inbred 

strains and/or in particular founder individuals used for a particular epoch. Such mutations 

may be inherited by a subset of BXDs despite being absent from both the canonical 

C57BL/6J and DBA/2J parental strains. As each BXD epoch was initiated from a unique 

group of C57BL/6J and DBA/2J animals, we expected that these germline mutations 

would be shared more frequently by BXDs from the same epoch. On the other hand, de 

novo mutations shared by multiple BXDs from different epochs might represent recurrent 

de novo mutations or common genotyping errors. For each pair of BXDs, we calculated 

the number of sites at which they share mutations with each other, divided by the 

combined number of sites at which those two BXDs share mutations with any BXDs (in 

effect, a measure of Jaccard similarity between the sets of shared mutations in each 

BXD). Overall, BXDs tended to share more mutations with mice from the same epoch, 

demonstrating that some germline mutations are epoch specific, and were inherited by 

multiple RI strains (Figure 3C). Between epoch mutation sharing was observed between 

strains from epochs 4 and 5, potentially reflecting that these epochs were initiated from 

the same cryopreserved founders (from the JAX genetic stability program)[40]. Those 

founders may possess unique mutations absent from the mouse reference sequence[41]. 

 

Rates and spectra of new mutations - STRs 

STRs exhibit rapid mutation rates that are orders of magnitude higher than those of 

SNPs[42]. These mutations may occur at STRs that were fixed at a single allele in the 

founders or may occur at an STR that was polymorphic in the founders, leading to three 

or more alleles. Similar to other variant types, we expect recent de novo STR mutations 

to be heterozygous, whereas mutations arising in ancestors to present-day strains are 

more likely to be homozygous as a result of inbreeding.  

We identified new mutations at STRs by searching for loci where BXD genotypes 

did not match either of the founder genotypes. The percentage of new variant loci per 

strain is highly correlated with the number of inbreeding generations (Figure 3D). Earlier 

epochs contain more than 1.2% de novo loci per strain, while more recently derived 

strains contain fewer. 
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Figure 3: Germline mutation rates and spectra in the BXD family. (A) Counts of autosomal homozygous 

singleton SNPs in each BXD, stratified by epoch of origin.  Average breeding generations are shown above 

each epoch. (B) Mutation spectrum of homozygous singleton SNPs across the BXDs, stratified by epoch 

of origin. Each homozygous singleton was classified according to its base substitution type, and C>T 

transitions were dichotomized by whether they occurred at CG dinucleotides. Mutations that were strand 

complements (e.g., C>T and G>A) were collapsed into a single mutation type. (C) Mutation sharing between 

BXD family members. We first identified mutations that were shared by 2 or more members of the BXD 

family, which likely represent recent de novo mutations private to a particular BXD lineage. For every pair 

of BXD family members, we then counted the number of mutations shared between the pair, and divided 

that number by the total count of mutations the two BXDs shared with any other BXDs; this fraction 

represents the degree of pairwise mutation sharing between the two BXD. Each epoch is outlined with a 

white box to highlight its self-similarity. (D) Correlation between number of inbreeding generations and 

percentage of accumulated non-parental STRs. 

 

Sharing of de novo mutations across strains 

Similarly to overall heterozygosity, the proportion of loci with one founder and one de novo 

allele increased in newer epochs, likely due to incomplete inbreeding (Figure 3D). 

However, these private heterozygous variants may also be enriched for genotyping 

errors. 

To get a more reliable estimate of the number of loci in BXD strains which are not 

found in the parental strains, we considered only STRs where at least one strain had a 
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homozygous non-parental genotype resulting in the identification of 18,135 unique STR 

loci harboring mutations (Figure 4B). As expected, the majority (54%) of non-parental 

mutations are singletons. The proportion of loci where we inferred a non-parental 

genotype for multiple strains drops off precipitously. As expected, many STR loci have 

three (the two parental alleles plus a mutation) or more alleles (Figure S3B). We validated 

a subset of observed homozygous new mutations using fragment analysis across 16 

strains at 27 unique STR loci. Fragment analysis matched GangSTR at 364/374 of calls 

(97%) available in both datasets. Across 39 total de novo mutations tested, 35 (90%) 

were confirmed by fragment analysis. The majority of discordant calls were at a single 

locus (Figure S3C) and differed by a single repeat unit.  

 

Genotypes for the majority (92–96%) of variable STRs analyzed in both parents 

and BXD progeny were inferred to be homozygous for one of the two parental alleles 

(Figure 4A) and recapitulated the homozygous patchwork of inheritance blocks in 

agreement with the SNP results (Figure 4B and Figure S4A). Additionally, we observed 

an increase in heterozygous genotypes for family members from more recent epochs 

(Figure 4A), consistent with incomplete inbreeding. 

 

 

Figure 4: Short tandem repeat (STR) identification. (A) Comparison of the proportion of homozygous 

(green) and heterozygous (blue) STR calls for each RI strain (left panel) and founders (right panel) between 

SNPs and STRs. (B) Proportion of homozygous to heterozygous de novo STR calls for each RI strain.  

 

Identification of a novel QTL regulating short interspersed element (SINE) 

transposition rate  

Approximately 40% of the mouse genome is composed of transposable elements, some 

of which remain active and contribute to genomic and functional diversity across 

laboratory strains[43,44].  SINE B2 elements are particularly abundant and active in 

mouse genomes, but the regulatory controls that limit their mobility to preserve genome 

integrity remain unknown [44]. To demonstrate our ability to find short interspersed 

elements (SINEs), we mapped B2 SINE counts using the newly generated marker map. 

We identified a significant QTL on Chr 5, peaking at 128.8 Mb, for the number of SINE 
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elements. Although the QTL region was large (112.7 - 132 Mb) the peak was close to 

Piwil1 (128.7 Mb), a gene that is known to promote the decay of a reporter mRNA 

containing a B1 or B2 SINE sequence[45].  

Unraveling the role of private causal variants  

Some private variants are already known in the BXD, especially those which cause 

extreme phenotypes. One example of this is the BXD24/TyJ-Cep290rd16/J strain. In 2004 

a spontaneous mutation occurred in the BXD24/TyJ strain, causing a blindness 

phenotype[46–48]. Fortunately, frozen embryos from an earlier generation of the 

BXD24/TyJ strain were cryopreserved in 1988, allowing identification of an in-frame 

deletion in the causal gene, Cep290. The post-2004 strain was renamed BXD24/TyJ-

Cep290rd16/J. Our study sequenced both of these strains, allowing us to confirm the 

variant and its position.  

Whole-genome sequence enables rapid identification of causal variants using 

either a forward genetics approach (seeing variation in a phenotype, and finding the 

causal variant, as with BXD24/TyJ-Cep290rd16/J), or a reverse genetics approach (finding 

a genetic variant, and identifying phenotypes linked to it). Using variants identified in this 

paper, we provide examples of both approaches. 

         For example, we used a large liver proteome dataset (GN_AccesionId 887), and 

carried out Rosner Outlier Tests to identify outlier strains for each peptide. Among the 

results, we saw that BXD63 is an outlier for expression of three peptides 

(Q8BJY1_LEAPLEELR_2, Q8BJY1_VFTAIDQPWAQR_2, Q8BJY1_ELTGEDVLVR_2), 

all of which are part of the protein PSMD5 (proteasome 26S subunit, non-ATPase 5). We 

also saw that BXD63 had low expression of Psmd5 in several liver transcriptome 

datasets. Examining our singleton variants in BXD63, we find a single variant, an insertion 

of a C (A > AC) at chr2:34860673, which Variant Effect Predictor (VEP) annotates as a 

regulatory region variant. We hypothesize that this insertion is the cause of low Psmd5 

expression and low levels of PSMD5-derived peptides observed in BXD63. 

BXD29, for which we sequenced two ‘sister’ strains, is an excellent example of 

how our new sequence data can solve old questions. It has previously been discovered 

that the BXD29-Tlr4lps-2J/J mouse strain has a highly penetrant bilateral nodular 

subcortical heterotopia and partial callosal agenesis, and that it is not caused by the Tlr4 

variant[49,50]. In our sequencing of the BXD, we have identified only 975 variants that 

are present in the BXD29-Tlr4lps-2J/J mouse strain that are not shared by the BXD29/TyJ 

strain - a strain derived from cryopreserved bankstock of F39 from 1979. From breeding 

records, we know that a spontaneous mutation arose in the BXD29-Tlr4lps-2J/J between 

1998 and 2004[49,50]. Given the large effect of the variant, we hypothesize that it is 

protein-coding, leaving only 30 of the 975 variants as candidates. These include a large 

duplication (chr11:74,689,025-75,132,234) affecting seven genes (Mettl16, Mnt, 

Pafah1b1, Sgsm2, Smg6, Srr, Tsr1). Importantly, in the human genome, duplication of 

this region, especially Pafah1b1, causes cortical defects[51,52], including subcortical 

heterotopia[53,54]. A F2 cross between the BXD29/TyJ and BXD29-Tlr4lps-2J/J 
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(sometimes termed a reduced complexity cross[55]) could be used to formally confirm 

this.  

Pangenomic analysis identifies complex variants and is informative about strain-

specific haplotypes 

All the above work has used the classic approach of aligning to a reference genome. 

However, pangenomes[56–59] have key advantages, allowing all known variants to be 

included as part of the alignment process. As such, we built the BXD pangenome of Chr 

19. This is expected to improve mapping of sequencing data (e.g. whole genome 

sequencing, RNA-seq and methylation-seq), and allow us to discover new variants. The 

BXD pangenome for Chr 19 consisted of 5.5M nodes and 8.6M edges (total length 

264,380,676 bp with 82,695 paths, Figure 5A), starting from haploid assemblies of 10X 

reads. Four strains were excluded for poor assembly quality, leaving 148 strains in the 

pangenome. 

We first focused on genetic variants up to 50bp (microvariants; SNPs and small 

indels). In DBA/2J we identified 182,643 variable sites. Of these, 178,557 are simple 

variants (SNPs and indels), and 4,086 are complex variants (allelic variants that overlap 

but do not cover the same range; Table S2), many of which were not detected by GATK 

in our reference based variant calling (Figure 5B). This shows that the pangenome 

enables calling of complex variants such as clumped multiple nucleotide polymorphisms 

(MNPs) and MNP/INDEL, variants not detected by traditional genomics methods(Table 

S2). The Ts/Tv ratio in the pangenomic calls is 2.08, which is slightly lower than figures 

from GATK (2.15 and 2.09 for 10X and PacBio data, respectively), reflecting the 

enrichment of complex variant calls in the pangenomic set. Within masked regions (i.e. 

regions that do not contain SINE, ALUs, LINE, LTR, and other DNA repeats), precision 

and sensitivity of vg[60] calls are 90% and 85-86%, respectively, when compared to 

GATK. For SNPs these figures rise to 93-94% and 84-85% (Figure 5C, Table S3), 

matching precision obtained from the comparison of the two truth sets (Table S3).  

Considering variants >50bp, we identified 61,381 variable sites. One example of 

these is a 2kb insertion (Figure 5D) in the second intron of the E3 ubiquitin ligase Zfp91 

(Figure 5E). This insertion was described in the DBA/2J strain[28] and is found in 48% of 

our BXD mice in complete linkage with two other insertions of 4 bp and 135 bp on a 

haplotype spanning 2,789 base pairs (Figure 5F). Using the presence or absence of the 

SV as a phenotype in GeneNetwork, we correlated this against the BXD phenome. The 

second most significant correlation was with ‘Thymic T-cell proliferative 

unresponsiveness (anergy) to anti-CD3-induced proliferation’ (p = 1.095e-04, r = 0.719). 

The same association between Zfp91 and T-cell proliferation has recently been made by 

others in gene knockout mice[61]. The Zfp91 gene facilitates TCR-dependent 

autophagosome formation to sustain T reg cell metabolic programming and functional 

integrity. Zfp91 deficiency attenuates the activation of autophagy and associated 

downstream pathways and impairs T reg cell homeostasis and function, rendering mice 

sensitive to colonic inflammation and inflammation-driven colon carcinogenesis[62]. 
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Therefore, there is strong evidence that segregating variants in Zfp91 in the BXD cause 

alterations in T-cell proliferation, and we expect this to result in clinically relevant 

phenotypes, e.g. relating to cancer and the immune system.  

A similar analysis performed for pangenome of chromosome 13, contributed to the 

identification of SVs as part of a recent Genome Research paper[32]. Overall, while the 

ideal data for an effective pangenome construction is long-reads, we conclude that the 

pangenome produced by short linked-read can be informative in model organisms[63]. 

Figure 5. Pangenome of the BXD family. (A) odgi-viz linear visualization of the pangenome of Chr 

19. Each line represents a haplotype. Line interruptions (white) are insertions in one or more strains, 

therefore deletions in the others (vertical white stripes). The left side is the centromere. In these two 

regions sequences are fragmented. (B) Types of microvariants (up to 50bp) at variable sites in the 
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pangenome call set (vg-10X), and the two truth sets (GATK-PacBio and GATK-10X). Simple variants are 

in shades of orange, complex in shades of purple. vg call set includes the higher fraction of complex 

variants. (C) Evaluation of vg call set in DBA/2J using two truth sets sequenced with different 

technologies and called with GATK. Evaluation by variant type is within masked regions. (D) Extract of 

the pangenome from the Zfp91 gene showing a 2,006 bp insertion found in DBA/2J and 48% of the 

BXD strains (green nodes in the graph). The insertion is in complete linkage with two other insertions of 4 

bp and 135 bp in a region spanning 2.8 kbp. (E) Strain-specific haplotypes (gray segments are not in 

scale) (F) Pangenomic extract in the gene context is represented here by the brown segment above 

the second intron of the gene. The region on display corresponds to Ensembl M.musculus version 102.38 

(GRCm38.p6) chr19:12,758,303-12,800,960. 

Discussion 

We report the sequencing of the entire BXD family, bringing deep, whole-genome, linked-

read sequencing to this widely used and deeply phenotyped resource. We have identified 

SNPs, small indels, large structural variants, short tandem repeats and SINEs. 

         Using the known family structure of the BXD and the deep phenome that has been 

collected, we are able to link these variants to phenotypes. We show how these can be 

used to find new, molecular phenotypes, and to improve our ability to find causal genes 

for classical phenotypes. 

The BXDs are well suited to studying gene-by-environmental interactions (GXE) 

and for experimental precision medicine[14]. For almost 50 years, they have been used 

to study the genetic and environmental factors that underlie a diverse collection of 

phenotypes, including environmental toxicant exposures, alcohol and drugs of abuse[64–

68], infectious agents[69–71,71,72], diets[73–78], and stressors[79,80].  Beyond this, 

there are also extensive -omics data available for many BXD family members, including 

over 100 transcriptome datasets (e.g,[81,82]), as well as more recent miRNA[83,84], 

proteome[85–87], metabolome[82,87,88], epigenome[17,89], and metagenome[90,91] 

profiles. As each of these new data sets is added, it can be integrated with previous data, 

thereby multiplicatively increasing the usefulness of the whole phenome. We can easily 

identify strains that are outliers for any particular trait or molecular phenotype, and 

immediately have a short-list of candidate variants. 

Although the BXD have been well characterized by array-based methods, allowing 

a long history of QTL mapping, this is the first time that the full breadth of variants have 

been available for the family. SINEs[92], CNVs[93], and large deletions[18] have been 

found in the family previously, but these required extensive work to get from locus to 

variant. With the whole catalogue of variants available this is now only an afternoons’ 

work. 

Using deep genome sequencing data, we have also been able to investigate 

variation in mutation rates and spectra across the BXD family[25,32]. These called 

variants can become molecular phenotypes, which themselves can be mapped to causal 

loci. For example, we are able to identify genes causing specific mutation 

signatures[31,32], and a locus influencing the number of SINEs in the genome. We give 
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a brief overview of some of these analyses here, but they are an interesting and important 

outcome in and of themselves, and will provide fuel for future research.  

The BXD are an enduring resource: phenotypes collected in the 1970s can be 

mapped using genotypes identified by our study, leading to the identification of novel 

QTLs. By extension, phenotypes collected in 2025 will still be informative in 2075. This is 

made possible not only by the use of well-characterized inbred strains, but by the 

dedicated community who have donated their data to open access resources, particularly 

GeneNetwork[22,23,87–94]. In this way, phenotypes collected across decades, 

continents and environments can be coherently coanalyzed, providing new insight from 

legacy data[94]. 

Furthermore, by crossing two BXD strains any of 22,350 isogenic F1 hybrids can 

be generated – a massive diallel cross (DAX)[14]. Thus, there are well over 22,000 

reproducible “clones” of F1 hybrids that can be generated from the current BXD families, 

each of which carries one chromosome from each of its BXD parents, and is therefore 

fully ‘in silico’ sequenced in advance. This will be a huge resource for the understanding 

of indirect genetic effects, gene-by-environment interactions, and epistasis. These can 

also be crossed to any other inbred strain, such as the Collaborative Cross population[1–

5], or genetically engineered mice[95–97], expanding the amount of variation, and 

allowing for identification of modifier alleles. This has been excellently demonstrated with 

the AD-BXD[98–101], and others[102,103].   

Given the deep and well recorded history, with over 180 generations of inbreeding 

in some strains, we have a unique resource. This project revitalizes this 50-year-old 

family, allowing many new analyses beyond the sample given here, and exponentially 

expands the utility of other data collected over many decades. This data not only allows 

the identification and genetic mapping of ‘molecular phenotypes’ (e.g. mutation spectra), 

but is fully interactable with the whole BXD phenome, and is available for all future users 

of the BXD family. 

In the context of genomic research, it has become increasingly evident that relying 

on a single reference genome can introduce significant biases and limitations that impact 

various aspects of genetic analysis. These biases can have adverse effects on variant 

discovery, gene-disease association studies, and the overall accuracy of genetic 

analyses. One example of this issue is the reference genome for DBA/2J, which, unlike 

the well-established C57BL/6J reference, lacks the same level of quality and 

completeness. Utilizing a lower-quality reference assembly for DBA/2J can introduce its 

own set of errors and biases into genomic analyses. 

To address these challenges and to advance the field of genomics, there has been 

a growing interest in transitioning from the use of single reference genomes to the 

adoption of pangenomes. Pangenomes represent a paradigm shift in genomic analysis, 

offering a more comprehensive and flexible approach. They encompass a broader 

spectrum of genetic diversity within a given species, capturing not only the common 

features found in most individuals but also the unique genomic variations that distinguish 
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individuals from each other.  In the near-future, sequencing technologies such as 

improved and cheaper long-read sequencing, offer the promise of constructing higher-

quality assemblies and pangenomes, quickly and easily. These technologies provide a 

more comprehensive view of genomic diversity and reduce reliance on a single reference 

genome. This shift has the potential to enhance our ability to discover genetic variants, 

unravel complex gene-disease associations, and improve the precision and reliability of 

genetic analyses in the future. 

 

Conclusions 
The deep sequencing of the BXD family at ~40X coverage represents two major 

breakthroughs in systems genetics. First, we achieved unprecedented precision in 

mapping recombination breakpoints in the BXD, revealing exactly where and how genetic 

material exchanges occur across generations. Second, using linked-read technology, we 

established a comprehensive catalog of genetic variants that far surpasses previous 

efforts, capturing three distinct classes of variation: founder-derived polymorphisms, 

strain-specific de novo mutations, and epoch-specific variants. This technical 

achievement provides a level of detail that was previously invisible to traditional short-

read sequencing, eliminating guesswork from variant identification. 

By integrating this precise genetic data with five decades of accumulated phenotype data, 

we've created more than just a reference database - we've developed a powerful platform 

for experimental precision medicine. The resource enables researchers to systematically 

analyze over 22,000 possible F1 hybrid combinations, each fully characterized at the 

sequence level before any experiments begin. This capability, combined with the 

extensive phenome data available through GeneNetwork.org, changes how we approach 

genotype-phenotype relationships, allowing precise variant-level investigations across 

diverse environments, treatments, and genetic backgrounds. The result is a 

transformative tool for understanding how genetic variations shape the diverse 

phenotypes observed in the BXD family, setting a new standard for genetic reference 

populations. 
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Methods 

 

Contact for Reagent and Resource Sharing 

Further information and requests for reagents may be directed to, and will be fulfilled by, 

the corresponding author David Ashbrook (dashbrook@UTHSC.edu). 

Data and code availability  

Sequence data have been deposited at European Nucleotide Archive and the 

Sequence Read Archive and are publicly available as of the date of publication. under 

project PRJEB45429. This paper does not report original code. Any additional 

information required to reanalyze the data reported in this paper is available from the 

lead contact upon request.  

Experimental Model and Subject Details 

Tissue was taken from 154 males, mainly young adults. Full details of all individuals are 

in Table S1. All BXD strains are available under a standard material transfer agreement; 

the most important limitation being that they cannot be sold or distributed without approval 

of the Jackson Laboratory or UTHSC. Availability information on all BXD strains are in 

Table S1. Mice were euthanized using isoflurane, tissue was collected immediately, flash 

frozen with liquid nitrogen, and placed in the -80 freezer for later analysis.  

Method details  

Sequencing the BXD families 

DNA was extracted from 50 to 80 mg of tissue. DNA extraction, library preparation and 

sequencing was carried out by HudsonAlpha. High molecular weight (HMW) genomic 

DNA (gDNA) was isolated using the Qiagen MagAttract kit. The Chromium Gel Bead 

and Library Kit (v2 HT kit, revision A; 10X Genomics, Pleasanton, CA, USA) and the 

Chromium instrument (10X Genomics) were used to prepare the libraries for 

sequencing. The barcoded libraries were sequenced on an Illumina HiSeq X10 system.  

Quantification and Statistical Analysis 

The phasing software LongRanger (v2.1.6)[36] was run to generate a phased call-set of 

single nucleotide variants (SNVs), insertion/deletions (indels), and structural variant 

discovery, against the mm10 reference genome. 

Joint calling used GATK (v4.0.3.0)[104]. HaplotypeCaller was used to create joint 

caller gvcf files from bam files produced by LongRanger. Variant calls use family-wide 

information, increasing the likelihood of detecting segregating variants—either between 

the parental strains, or within the subfamily epochs. 

         Variant quality was calculated using variant quality score recalibration (VQSR) 

from GATK, the inputs are gVCFs files and the mm10 reference genome. A list of known 

variants was produced by finding those variants we detected in all three of the following 
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independent resources: 1. our own new sequencing of DBA/2J; 2. Wang et al (2016)[18] 

sequencing of DBA/2J using both SOLiD and Illumina; and 3. the Sanger Mouse 

Genomes project[28] sequencing of DBA/2J using Illumina. The union of these three 

includes 3,972,727 SNPs, 404,349 deletions and 365,435 insertions. As expected, these 

variants segregate with a MAF close to 0.5. This set has been taken as a validated 

dataset. A training dataset was created using the 

mgp.v5.merged.snps_all.dbSNP142.vcf.gz (5/12/15) and 

mgp.v5.merged.indels.dbSNP142.normed.vcf.gz (4/30/15) files from ftp://ftp-

mouse.sanger.ac.uk/current_snps. 

Structural variant calling 

We developed a joint calling method, SVJAM, that detects large structural variants (SV) 

from linked-read data across multiple samples. A detailed description of the algorithm is 

available from Gunturkun et al. 2021[35]. Briefly, SVJAM first collects candidate SV 

regions from individual samples reported by LongRanger[36], which is error prone. We 

then retrieve barcode-overlapping data for each candidate location from all samples using 

the Loupe application of the 10x Chromium Platform (Figure 6A, 6B), one image for each 

individual from a genomic location of interest. The intensity of pixels in these images 

represent the depth of barcode overlap for the corresponding genomic locations and are 

the primary data for our analysis. 
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Figure 6: Joint calling of large SVs from linked-read data. (A) Example barcode 

overlapping images of deletion, duplication and inversion. (B) Examples of homozygous 

reference, homozygous alternative, and heterozygous variants.(C) Joint calling showing 

one, two or three genotypes. Samples (showing as dots) are projected onto a two 

dimensional space after principal component analysis. Colors represent genotype calls 

obtained using a clustering algorithm with a custom distance matrix. 

We used slightly different processes for different types of SV. Conventional image 

processing techniques are used to detect deletions, which are represented by symmetric 

gaps with no barcode overlap along the diagonal of the image (Figure 6A, first image). 

The beginning and end of the deletion are determined according to the location of the gap 

on the x- and y-axis. Duplication (Figure 6A, second image) and inversion (Figure 6A, 

third image) are called using a convolutional neural network (CNN) with convolution, max 

pooling, dropout and flatten layers. This CNN is trained on a set of 12,000 images with 

validated labels (i.e. type of SV).    

To further increase the accuracy of genotype calls, we designed a joint calling 

procedure that determines the presence of structural variants and the genotype of each 

individual. This procedure first converts each image into a matrix and then flattens it to a 

vector. The vectors of each sample are then combined in columns to form a matrix having 

approximately one million (pixels per image) times 152 (number of samples) dimensions 

for each candidate location.  

The primary algorithm of the joint calling is a principal component (PC) analysis on 

the high dimensional matrices. Samples projected onto a two-dimensional space of the 

first two PCs display different patterns based on the number of genotypes: no distinctive 

pattern is shown when only one genotype is present, two distinctive clusters are shown 

when there are two genotypes. Because the BXD panel is inbred, when heterozygotic 

samples are present, they always contain a small number of samples and are located 

between the two homozygotic clusters (Figure 6C). 

We applied hierarchical clustering to the data projected onto the 2D plane to call 

the genotypes. We designed a custom metric dM that does not require the samples to be 

evenly distributed on the two PCs.  

 

This distance matrix is formed by dM for each genomic location.  

We also built performance evaluation scores for clustering quality and the number 

of genotypes present. The weight n in the above formula is chosen such that it generates 

the highest clustering quality. Furthermore, we calculate a membership probability that 

shows the probability of an individual belonging to each genotype cluster. The pipeline 

then produces a gvcf file that captures the information discussed above. 
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Identification of a novel QTL regulating short interspersed element (SINE) 

transposition rate 

To demonstrate our ability to find short interspersed elements (SINEs), we assembled the 

genome of each strain using SuperNova, blasted the B2 SINE sequence against these 

148 assemblies, and counted the number of high quality hits (e-score <1E-10, length > 

149 nucleotides, identify > 75%). We then mapped B2 SINE counts using our marker map 

generated above. 

Detection of BXD-private and shared variants 

Methods for identifying high-confidence autosomal singleton variants are described in 

detail in a previous manuscript[31]. Briefly, we used cyvcf2[105] to identify single-

nucleotide variants at which both founder genotypes (DBA/2J and C57BL/6J) and all but 

one of the BXD RILs were homozygous for the reference allele; at these sites, we 

therefore required a single BXD RIL (the focal line) to be either heterozygous or 

homozygous for the alternate allele. If the focal RIL was heterozygous for the alternate 

allele, we further required the fraction of reads supporting the alternate allele in that RIL 

to be >= 0.9. Finally, we required that the genotypes in both of the founders, as well as 

the focal RIL, were supported by >= 10 reads and had a Phred-scaled genotype quality 

of at least 20. We also removed all putative singletons that overlapped segmental 

duplications or simple repeat annotations in mm10/GRCm38, which were downloaded 

from the UCSC Genome Browser[106]. To identify epoch-private variants, we applied the 

same filters as previously described, but instead required the variant to be present in at 

least two of the sequenced BXDs, and for all of the BXDs with the shared variant to have 

the same parental haplotype. We also considered heterozygous genotypes with very high 

allele balance (i.e., the fraction of reads supporting the alternate allele >= 0.9) to be 

effectively homozygous. For candidate heterozygous and homozygous singletons (or 

candidate shared variants), we required the genotype call to be supported by at least 10 

sequencing reads and have a Phred-scaled genotype quality of at least 20. Finally, we 

confirmed that at least one other BXD shared a parental haplotype identical-by-descent 

with the focal strain (i.e., the strain with the putative singleton) at the singleton site but 

was homozygous for the reference allele at that site. 

We additionally annotated the full autosomal BXD VCF with SnpEff  version 4.3t [107], 

using the GRCm38.86 database and the following command: 

java -Xmx16g -jar /path/to/snpeff/jarfile GRCm38.86 /path/to/bxd/vcf > 
/path/to/uncompressed/output/vcf 

We estimated copy number states from read depth computed in non-overlapping 500bp 

sliding windows using mosdepth[108]. Specifically, the executed command was: 

mosdepth -n -b 500 -t 2 -x $PREFIX $BAM 

Raw read depth values were then corrected for potential GC-biases introduced during 

library preparation. Briefly, we used the mm10 reference genome to compute the 
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observed GC content of each 500bp window. GC content values were rounded to the 

nearest 0.001 and regions with identical GC content were binned. For each strain, we 

then computed the mean read depth across all genomic windows that fell into each GC 

content bin. Next, we fitted a second degree polynomial to the relationship between read 

depth and GC content using the scatter.smooth function in R and with span parameter = 

0.7. For each GC-bin, we then computed the difference between the fitted polynomial and 

the genome-wide average read depth. These values correspond to the magnitude of 

“inflation” or “deflation” in read depth across windows of a given GC-content due to 

systematic GC biases in the data. The read depth value in each 500bp window was then 

adjusted by the appropriate GC correction factor. Finally, these GC-corrected read depths 

were divided by the average per-sample coverage to convert into absolute copy number 

estimates. CN values across Chr X and Chr Y were then visualized using bedGraphs 

uploaded to IGV. 

Genome-wide STR genotyping 

We used Tandem Repeats Finder[109] (TRF) to identify regions within the mm10 mouse 

reference genome predicted to harbor STRs with repeat unit lengths up to 20bp using 

options matchscore=2; mismatchscore=5; indelscore=17; maxperiod=20; pm=80; pi=10; 

minscore=24; maxlen=1000. We processed this initial reference set using a custom script 

to (1) exclude homopolymer repeats which are highly error prone; (2) keep the shortest 

repeat unit for STRs that share either the same start or end position; (3) exclude 

“compound” repeats, consisting of multiple directly adjacent STRs with different repeat 

units; (4) trim repeat regions to only contain perfect repeats with no sequence 

imperfections; (5) collapse any duplicate STRs introduced by trimming; (6) remove 

overlapping STRs for which the repeat unit is identical; and (7) exclude very short repeats 

which we have observed are unlikely to be polymorphic. We filtered dinucleotide STRs 

with less than 5 perfect copies, trinucleotides with less than 4 perfect copies, and all other 

repeat classes with less than 3 perfect copies in mm10.  After filtering, 1,176,016 STRs 

remained in our reference. 

We used the “fix_read_length” development branch of GangSTR[37] (available at 

https://github.com/gymreklab/GangSTR/tree/fix_read_length) to genotype the reference 

STR loci in 152 BXD RI strains and the two founder strains C57BL/6J and DBA/2J from 

10X Genomics Illumina short-read sequencing data. To reduce the effects of PCR 

“stutter” errors, we removed PCR duplicate reads using the –drop-dupes option. We then 

used HipSTR[110] to estimate per-locus stutter probabilities. We used a custom build to 

extend HipSTR to ignore the “AS/XS” BAM tags present in Chromium data, which are not 

properly currently handled in the HipSTR release, and to perform only stutter estimation 

but not genotyping. We ran HipSTR jointly on BAMs for all strains using our custom 

reference using option --min-reads 20 to output custom stutter models for each STR. For 

STRs at which HipSTR could not infer stutter models, including all repeats with repeat 

units >9bp, we set missing stutter parameters to default values of p=0.9; up=0.05; 

down=0.05. Additionally, since read length is a critical parameter used in GangSTR’s 

statistical model, we trimmed the second read in each read pair to 128bp to match the 
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length of the first read. We then called GangSTR separately on each strain using our STR 

reference panel, trimmed and de-dupped reads, and per-locus stutter error probabilities 

as input. We additionally applied non-default parameter --max-proc-read, which was set 

to 4500 for DBA/2J which had higher coverage and 3000 for all other strains. This 

parameter skips loci with extremely high coverage which are likely to be error prone and 

consume high amounts of memory. 

STR genotypes for each strain were filtered using the dumpSTR function from the 

TRTools package[111] with options --min-call-DP 20; --max-call-DP 1000; --min-call-Q 0.9; 
--filter-badCI; --require-support 2; --readlen 128 to remove genotype calls with insufficient 

read depth, read support, or quality scores. Calls were then merged into a single multi-

sample VCF file containing maximum likelihood diploid genotypes for each STR in each 

strain. 

We applied the following filters to remove low-quality STRs from the merged VCF: 

(1) STRs overlapping known segmental duplication regions in the mm10 reference based 

on the mm10.genomicSuperDups table obtained from the UCSC Table Browser[106]; (2) 

STRs with call rates less than 90% across unfiltered strains; (3) STRs with no variation in 

repeat number across all strains; and (4) STRs for which variants from the mm10 

reference were only observed in heterozygous genotypes. The final call-set contained 

76,727 STR loci across 152 RI strains with an average per-strain call rate of 96.4%. 

Validating STR genotypes using capillary electrophoresis 

For each candidate STR, we designed primers to amplify the TR and surrounding region. 

A universal M13(-21) sequence (5’-TGTAAAACGACGGCCAGT-3’) was appended to 

each forward primer. We then amplified each TR using a three-primer reaction previously 

described57 consisting of the forward primer with the M13(-21) sequence, the reverse 

primer, and a third primer consisting of the M13(-21) sequence labeled with a fluorophore. 

The forward (with M13(-21) sequence) and reverse primers for each TR were 

purchased through IDT. The labeled M13 primers were obtained through ThermoFisher 

(#450007) with fluorescent labels added to the 5’ ends (either FAM, VIC, NED, or PET). 

TRs were amplified using the forward and reverse primers plus an M13 primer with one 

of the four fluorophores with GoTaq polymerase (Promega #PRM7123) using PCR 

program: 94°C for 5 minutes, followed by 30 cycles of 94°C for 30 seconds, 58°C for 45 

seconds, 72°C for 45 seconds, followed by 8 cycles of 94°C for 30 seconds, 53°C for 45 

seconds, 72°C for 45 seconds, followed by 72°C for 30 minutes. 

Fragment analysis of PCR products was performed on a ThermoFisher SeqStudio 

instrument using the GSLIZ1200 ladder, G5 (DS-33) dye set, and long fragment analysis 

options. Resulting .fsa files were analyzed using manual review in genemapper. 

Long-read genome sequencing and data analysis 

Two healthy adult male DBA/2J mice from the colony at the University of 

Tennessee Health Science Center were used. Spleen was used for DNA extraction. 

Oxford Nanopore (ONT) sequencing were conducted by using a Promethion instrument 
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by DNA Link (Los Angeles, CA 90015). A total of 779,223 reads were obtained (14.25 

billion bases, N50 of 29,205). 

ONT data were mapped to the reference genome mm10 using minimap2 (version 

2-2.17)[112]. SVs were detected using Sniffles (version 1.0.12)[107], SVIM (version 

1.4.2)[113], and NanoVar (version 1.3.9)[114]. 

Pacific Biosciences (PacBio) HiFi data were generated by the DNA sequencing core 

facility at the University of Wisconsin. A total of 2,674,984 reads were obtained 

(28,568,875,629 bp, N50 of 11,307 and largest contig of 44,747).  A total of 2,674,984 

reads were obtained (28,568,875,629 bp, N50 of 11,307 and largest contig of 44,747). 

Pangenome generation, and variant calling 

Supernova haployd assemblies obtained by 10X linked reads were mapped against the 

GRCm38/mm10.fa reference genome using wfmashv.0.6.0 

(https://github.com/ekg/wfmash) to select for reads mapping to chromosome 19. Mapped 

assemblies were used to build the pangenome with pggb (v.0.2.0-pre+d8a5709-2)[115] 

using the following combination of parameters: 

pggb-0.2.0-pre+d8a5709-2 -i chr19.pan+ref.fa.gz -o chr19.pan+ref -t 48 -p 98 -s 100000 -
n 140 -k 229 -O 0.03 -T 20 -U -v -L -Z  

The variant calling on the pangenome was done using the following combination of 

parameters in vg(v1.35.0-59-ge5be425c6)[60]. 

 

vg-e5be425 deconstruct -t 16 -P REF -e -a -H '#' graph.gfa > graph.vcf 

 

Validation of the call set was performed on DBA/2J using two true positive sets obtained 

from GATK (v.4.0.3.0) HaplotypeCaller on two sets of raw sequencing: the 10x and the 

PacBio sequence reads of DBA/2J. Prior to comparison the pangenome-derived, the 

PacBio-based, and the validated call sets were processed to remove missing data, sites 

where alleles are stretches of Ns, homozygous reference genotypes and variants greater 

than 50bp before normalization and decomposition using bcftools[116] under standard 

parameters. While the pangenome-derived VCF was based on haploid assemblies, for 

comparison purposes the calls were considered as homozygous diploid in the assumption 

that DBA/2J is fully isogenic, given ~200 generations of sib-sib inbreeding. Comparison 

of the three call sets was performed with RTG tools (v.3.12.1)[117] using the --squash-

ploidy option. RepeatMasker[118] was used to mask complex regions. 

For pangenome graph visualization we used odgi[119] (v.0.6.2) and bandage[120] (v. 

0.8.1). 
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Supplementary information  

Figure S1: Creation of the BXD family (A, B), and sequencing statistics (C). The epochs of the BXD 

family were created using either a standard F2 (A, n = 85) or by advanced intercrosses (B, n = 69) from the 

C57BL/6J and DBA/2J parents in several epochs, from the 1970s, and the oldest of these strains have 

been bred for ~200 generations (Table S1). Red  represents regions of the genome inherited from the 

C57BL/6J, and white represents regions of the genome coming from the DBA/2J. Solid lines represent a 

single generation. Adapted from[9,122]. This design results in both strain-specific variants, and variants 

between epochs. To detect these we used link read sequencing from 10X Genomics (C), in which the 

genome is fragmented into ~40Kb fragments, and these fragments are barcoded before further 

fragmentation and short read sequencing. Sequencing metrics across strains are given (C). Sequencing 

metrics across strains are given (C), showing high quality data with a mean proportion of mapped reads of 

0.97, mean molecule length of 45kb, mean sequencing depth of 38.5X (after duplicate removal), and low 

PCR duplication rate of 5.2%. The coverage distribution curves (bottom panel) demonstrate the proportion 

of bases covered at different sequencing depths across all strains, with most strains showing similar 

coverage profiles except for two outlier samples with notably different coverage patterns. 
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Figure S2: Quantitative results of small and large structural variant detection. (A) The distribution of 

SNPs (purple), Indels (orange), and STRs (green) across the BXD genome. Note areas that have a low 

number of all types of variants, indicating regions that are identical by decent between the C57BL/6J and 

DBA/2J strains. (B) Distribution of segregating (MAF > 0.2) SNPs and Indels across the autosomes of the 

BXD family (C) Number of structural variants (SVs). Deletions (red) are the most common form of SV 

detected. Variants are spread across the genome, although there is significant variation between 

chromosomes (D) Location of structural variants. There are SV hotspots throughout the genome.  
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Figure S3: Summary of short tandem repeat (STR) identification. (A) proportion of (top panel) and 

average call quality of STRs of a given motif length in the dataset. (B) Distribution of the number of 

unique genotypes per locus for STRs. (C) STR genotype validation using capillary fragment analysis. 

Rows and columns represent strains and loci respectively, which were selected for validation. Heatmap fill 

indicates validation status: validated (blue), not validated (yellow). Strain/loci combinations missing a 

GangSTR call to compare to are filled in gray. Strain/loci combinations where a de novo STR variant was 

predicted by GangSTR are highlighted with a black border. 
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Figure S4. Recombinations per strain and precision of QTL mapping. (A) Homozygous patchwork of 

founder haplotype inheritance (C57BL/6J: green; DBA/2J: blue) for BXD RI strains, visualized as a strain 

by position matrix for STRs (left) and SNPs (right). (B) Recombination map of Chr 1. Regions of Chr 1 are 

shown as either C57BL/6J-like (red), DBA/2J-like (green) or unknown (white, either due to only having 

array-based genotypes available or because they were heterozygous at the time of sequencing). (C) The 

number of recombinations on each chromosome per strain, coloured by the chromosome, and divided by 

the epoch. It is clear to see that epochs 3 and 5, which were produced from advanced intercross lines, have 

more recombinations than those epochs produced from simple F2s. 
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Supplementary Tables  

 

Table S1  

https://docs.google.com/spreadsheets/d/16WzQc1qM-

ehDar8UPmVVQArr41QTI5i54aMVVsDm8Kg/edit?usp=sharing 

 

 

Table S2: Variable sites on chromosome 19 in DBA/2J as called by GATK on genomics versus 
vg on pangenomic data. Truth sets are GATK on 10X (GATK-10X) and GATK on PacBio (GATK-
PacBio) that were obtained by reference-based variant calling. Only microvariants (length up to 50bp) 
are considered.  

Type of 
microvariant  

Type of variant Number of variable sites  

GATK-10X GATK-PacBio  vg-10X 

simple SNPs 143,060 155,426 132,963 

simple INDELS 60,700 52,264 31,771 

simple MNPs 0 0 13,823 

 total simple  203,760 207,690 178,557 

complex SNP/INDEL 2,576 269 1,255 

complex MNP/CLUMPED 0 0 260 

complex MNP/INDEL 0 0 1925 

complex INDEL/CLUMPE
D 

0 0 646 

 total complex  2,576 269 4,086 
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Total variable sites 206,336 207,959 182,643 

 

Table S3: Quality of variant calling from the pangenome in DBA/2J evaluated on variants described in table 
S2. GK-10x: GATK on 10X sequence data; GK-PB: GATK on PacBio sequence data; vg-10X: vg on 10X sequence 
data. Gray columns (GK-10X vs GK-PB) are comparisons among the truth sets, in this case only the sequence 
technology is being evaluated. 

  PRECISION (%) SENSITIVITY (%) F-MEASURE (%) 

  GK-10X 
vs 

GK-PB 

GK-10X 
vs 

vg-10X 

GK-PB 
vs 

 vg-10X 

GK-10X 
vs 

GK-PB 

GK-10X 
vs 

vg-10X 

GK-PB 
vs 

 vg-10X 

GK-
10Xvs 
GK-PB 

GK-
10Xvs 
vg-10X 

GK-PB 
vs 

 vg-10X 

Masked 
(37,677,383 bp) 

All 91.9 89.8 90.2 91.2 84.7 86.1 91.5 87.2 88.1 

SNPs 95.3 93.2 94.1 97.3 85.3 84.3 96.3 89.1 88.9 

Indels 78.3 88.5 86.3 67.7 51.8 57.4 73.8 65.3 69 

Unmasked 
(23,742,621 bp) 

All 76.7 75.5 79.2 82.1 70.7 69.9 79.3 73 74.3 
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