
 

1 

Integrating bulk and single cell RNA-seq refines 
transcriptomic profiles of individual C. elegans 
neurons. 
 

 

 
 

Author list: Alec Barrett1, Erdem Varol2, Alexis Weinreb1,3, Seth R. Taylor4, Rebecca M. 
McWhirter4, Cyril Cros5, Berta Vidal5, Manasa Basaravaju1,3, Abigail Poff4, John A. Tipps4, 
Maryam Majeed5, Chen Wang5, Emily A. Bayer5, Molly Reilly5, Eviatar Yemini (ORCID: 0000-
0003-1977-0761) 5,6, HaoSheng Sun5,7, Oliver Hobert (ORCID: 0000-0002-7634-2854) 5,8*, 
David M. Miller III4,8*, Marc Hammarlund1,3* 
 

1 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 
2 Department of Statistics, Columbia University, New York, NY, USA 
3 Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA 
4 Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 
Nashville, TN, USA 
5 Department of Biological Sciences, Howard Hughes Medical Institute Columbia University, 
New York, NY, USA 
6 Present Address: Department of Neurobiology, University of Massachusetts Chan Medical 
School, Worcester, MA, USA 
7 Present Address: Department of Cell, Developmental, and Integrative Biology, University of 
Alabama Birmingham, AL, USA 
8 Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA 

* Corresponding Authors 

 

Marc Hammarlund: marc.hammarlund@yale.edu 

David M. Miller, III: david.miller@vanderbilt.edu 

Oliver Hobert: or38@columbia.edu 

 
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2025. ; https://doi.org/10.1101/2022.04.05.487209doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487209
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

Abstract 

Neuron-specific morphology and function are fundamentally tied to differences in gene 
expression across the nervous system. We previously generated a single cell RNA-seq 
(scRNA-Seq) dataset for every anatomical neuron class in the C. elegans 
hermaphrodite. Here we present a complementary set of bulk RNA-seq samples for 52 
of the 118 canonical neuron classes in C. elegans. We show that the bulk RNA-seq 
dataset captures both lowly expressed and noncoding RNAs that are not detected in the 
scRNA-Seq profile, but also includes false positives due to contamination by other cell 
types. We present an analytical strategy that integrates the two datasets, preserving 
both the specificity of scRNA-Seq data and the sensitivity of bulk RNA-Seq. We show 
that this integrated dataset enhances the sensitivity and accuracy of transcript detection 
and differential gene analysis. In addition, we show that the bulk RNA-Seq data set 
detects differentially expressed non-coding RNAs across neuron types, including 
multiple families of non-polyadenylated transcripts. We propose that our approach 
provides a new strategy for interrogating gene expression by bridging the gap between 
bulk and single cell methodologies for transcriptomic studies. We suggest that these 
datasets advance the goal of delineating the mechanisms that define morphology and 
connectivity in the nervous system.  
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Introduction 

Neurons exhibit an extraordinary range of morphological forms and physiological 
functions. Because this diversity is largely driven by underlying differences in gene 
expression, a key goal of neuroscience is to identify the transcripts expressed in each 
neuron type.  

The adult C. elegans hermaphrodite contains 302 neurons divided into 118 anatomically 
distinct neuron types. The structure, connectivity, and lineage are known for each of 
these neurons(1-6). Recently, the C. elegans Neuronal Gene Expression Map & 
Network project (CeNGEN)(7) used single cell RNA sequencing (scRNA-seq) 
technology to generate a gene expression atlas that matches the single neuron 
resolution of the structural map of the mature C. elegans nervous system(8). 

The CeNGEN scRNA-seq dataset was acquired with 10x Genomics technology and is 
largely comprised of reads from poly-adenylated transcripts. Thus, major classes of 
non-poly-adenylated transcripts, especially noncoding RNAs, are under-represented in 
the CeNGEN scRNA-seq data. In addition, low abundance transcripts may be sparsely 
detected in scRNA-seq data, particularly in clusters with relatively few cells(8). Both 
noncoding RNAs and low abundance transcripts are potentially important mediators of 
neuronal fate. A description of their expression is therefore needed to complement the 
CeNGEN scRNA-seq map of neuronal poly-adenylated transcripts. 

Here, we use FACS to isolate single neuron types for bulk RNA sequencing with the 
goal of describing neuronal gene expression with high sensitivity and specificity. We 
generated profiles for 53 individual neuron types from the mature C. elegans 
hermaphrodite nervous system. These 53 types include 52 of the canonical 118 types, 
with separate data for the subclasses ASEL and ASER. This data set samples a wide 
range of neuron types including motor neurons, interneurons, and sensory neurons. We 
built sequencing libraries with random primers for robust detection of both poly-
adenylated and non-coding RNAs(9). We developed computational approaches that 
exploit the bulk dataset to enhance accurate detection of gene expression, including 
integration with the existing CeNGEN scRNA-seq dataset and methods for measuring 
non-coding RNAs. The resulting data sets refine quantitative measures of gene 
expression and improve detection of low-abundance and non-poly-adenylated 
transcripts. These data provide a unique opportunity for future studies that link gene 
expression to neuron function, structure, and connectivity.   
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Methods 

 

Strains 

Strains used for FACS isolation of individual neuron classes are listed in Table 1. 
Strains were either generated by us or are kind gifts of the C. elegans community. The 
lab origin of individual transgenic arrays can be inferred from the allele designation, as 
detailed at Lab List at the CGC (https://cgc.umn.edu/laboratories). All strains used in 
this study are available at the CGC. 

 

FACS isolation for RNA-seq 

Labeled neuron types were isolated for RNA-seq as previously described(10-12). 
Populations of synchronized L1s were grown at 23 C until reaching the L4 stage on 150 
mM 8P plates inoculated with Na22. The time in culture to reach the L4 stage varied 
(40.5-49 h) and was determined for each strain. 50-100 animals were inspected with a 
40X DIC objective to determine developmental stage as scored by vulval morphology 
(Mok et al., 2025). Cultures were predominantly composed of L4 larvae but also 
typically included varying fractions of L3 larvae and adults.Cells were dissociated from a 
sample of ~300 ul of packed L4 larvae and labeled neuron types isolated by 
Fluorescence Activated Cell Sorting (FACS) on a BD FACSAria III equipped with a 70-
micron diameter nozzle. DAPI was added to the sample (final concentration of 1 mg/mL) 
to label dead and dying cells. For bulk RNA-sequencing of individual cell types, sorted 
cells were collected directly into TRIzol LS. At ~15-minute intervals during the sort, the 
sort was paused, and the collection tube with TRIzol was inverted 3-4 times to ensure 
mixing. Cells in TRIzol LS were stored at -80C for RNA extractions. See Table S1 for list 
of samples and associated metadata. 

 

RNA extraction 

RNA extractions were performed as previously described(8, 12). Briefly, cell 
suspensions in TRIzol LS (stored at -80°C) were thawed at room temperature. 
Chloroform extraction was performed using Phase Lock Gel-Heavy tubes (Quantabio) 
according to the manufacturer’s protocol. The aqueous layer from the chloroform 
extraction was combined with an equal volume of 100% ethanol and transferred to a 
Zymo-Spin IC column (Zymo Research). Columns were centrifuged for 30 s at 16,000 
RCF, washed with 400 mL of Zymo RNA Prep Buffer, and centrifuged for 16,000 RCF 
for 30 s. Columns were washed twice with Zymo RNA Wash Buffer (700 mL, 
centrifuged for 30 s, followed by 400 mL, centrifuged for 2 minutes). RNA was eluted by 
adding 15 mL of DNase/RNase-Free water to the column filter and centrifuging for 30 s. 
A 2 μL aliquot was submitted for analysis using the Agilent 2100 Bioanalyzer Picochip to 
estimate yield and RNA integrity, and the remainder was stored at -80°C. See Table S1 
for list of samples and associated metadata. 

 

Bulk sequencing and mapping 
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Each bulk RNA sample was processed for sequencing using the SoLo Ovation Ultra-
Low Input RNaseq kit from Tecan Genomics according to manufacturer instruction, 
modified to optimize rRNA depletion for C. elegans(9). Libraries were sequenced on the 
Illumina Hiseq 2500 or Novaseq6000 with 150 bp paired end reads. Reads were 
mapped to the C. elegans reference genome from WormBase (version WS289) using 
STAR (version2.7.7a) with the option --outFilterMatchNminOverLread 0.3. Duplicate 
reads were removed using UMI-tools (v1.1.4), and a counts matrix was generated using 
the featureCounts tool of SubRead (v2.0.3). FASTQC was used for quality control 
before alignment, and four samples were removed for failing QC or for a low number of 
reads. Samples were excluded after sequencing and mapping if they had: fewer than 1 
million read pairs, <1% of uniquely mapping reads to the C. elegans genome, > 50% 
duplicate reads (low UMI diversity), or failed deduplication steps in the nudup package. 

Each biological sample contains one or more transgenes, and each transgene generally 
consists of many copies of a promoter sequence driving expression of a fluorophore 
(Table 1). To avoid artifacts stemming from spurious transcription of high-copy number 
transgenes, we masked 5kb of all genes whose promoters were used in transgenes, 
starting 4kb upstream of the start ATG and extending 1kb past the ATG. This approach 
removed 231 genes from our analysis (Table S2).  

 

Sample Normalization 

Intra-sample normalization (gene length normalization for bulk samples) was performed 
before integration (see below). Inter-sample normalization (library size normalization) 
was performed after integration. Library size normalizations were performed using a 
TMM (trimmed mean of M-values) correction in edgeR (version 4.0.1).  

 

Ground-truth genes 

As an independent measure of gene expression, we used a “ground truth” dataset of 
160 genes for which expression in individual neuron types is known with high precision 
across the entire nervous system (Table S3). This expression matrix is based on high 
confidence fosmid fluorescent reporters, CRISPR strains or other methods(8, 13-17).  

We also curated a list of 445 genes that are exclusively expressed outside the nervous 
system to assess potential non-neuronal contamination in each sample (Table S4). This 
list was curated from published datasets of fluorescent reporters, tissue specific RT-
PCR, and transcriptomic studies available on WormBase(15). Genes were included if 
two types of evidence documented expression in the same non-neuronal tissue (non-
identical expression in other tissues was allowed so long as at least one tissue 
overlapped), and for which there was no evidence for neuronal expression.  

An additional 936 ubiquitously expressed genes were used to evaluate gene expression 
accuracy in the bulk RNA-Seq samples (Table S5). To compile this list, we used the 
scRNA-Seq data(11), and defined the expression level of a gene in a given cluster as 
the proportion of cells in that cluster in which at least one UMI was detected. We then 
defined a gene as ubiquitous if at least 10 clusters displayed an expression level of 
>0.5%, excluding neuron-specific genes. 
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Comparing datasets to ground-truth 

When comparing data to “ground truth” gene expression, a static threshold was applied 
to the average normalized cell profile (i.e., arithmetic mean across all cells, or samples). 
Single cells were normalized to library size prior to averaging to calculate TPM 
counts(18). Bulk samples were normalized with the TMM method using edgeR (version 
4.0.1), noncoding RNA analysis was performed with length normalized TMM counts 
using the GeTMM method(19).  
 

 

LittleBites Subtraction algorithm 

LittleBites is an iterative algorithm for bulk RNA-seq datasets. LittleBites improves the 
accuracy of cell-type specific bulk RNA-seq sample profiles by removing counts from 
non-target contaminants (e.g. ambient RNA from dead cells, carry-over non-target cells 
from FACS enrichment due to imperfect gating). This method leverages single cell 
reference datasets and ground truth expression information to guide iterative and 
conservative subtraction to enrich for true target cell-type expression. LittleBites 
optimizes subtraction by using both a single-cell reference and an orthogonal ground 
truth reference, moderating potential biases in either reference. 

This algorithm first calculates gene level specificity weights in a single cell reference 
dataset using SPM (Specificity Preservation Method) (22, 23). SPM assigns high 
weights (approaching 1) to genes expressed in single cell types while applying 
conservative weights to genes with broader expression patterns, which helps to reduce 
inappropriate subtraction. 

The algorithm proceeds in a loop of three steps. 

Step 1: Estimate Contamination. Each bulk sample is modeled as the sum of a linear 
combination of single-cell profiles (target cell type and likely contaminants) using non-
negative least squares (NNLS). The resulting coefficients provide an estimate of how 
many of the sample’s counts come from the target cell type, and how many come from 
each contaminant cell type. 

Step 2: Weighted Subtraction. Each bulk sample is cleaned by subtracting the weighted 
sum of contaminant single-cell profiles. This subtraction is attempted multiple times 
(separately) across a series of learning rate weights (usually ranging from 0-1) which 
moderate the size of the subtraction step (Equation 1). This produces a range of 
possible “cleaned” sample options for evaluation. 

Step 3: Performance Optimization. For each learning rate, the cleaned result is 
evaluated against a set of ground truth genes by calculating the area under the receiver 
operating characteristic curve (AUROC). The learning rate that optimizes the AUROC is 
then selected. When multiple learning rates yield equivalent AUROC values, the lowest 
learning rate value is chosen to minimize subtraction. 

If the optimal learning rate at Step 3 is 0 (no subtraction option beats the baseline) then 
the loop is halted. Else, the cleaned bulk profile is returned to Step 1, and the loop 
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continues until the AUROC cannot be improved upon using the single-cell reference 
modeling. 

��������	1��^� 
 �� � � � � �� � �� 

B = bulk sample, A = estimated composition coefficient, S = Single cell reference, L = 
learning rate, i = sample, j = cell-type. 

 

Subtraction 

bMIND(20) was run by first excluding genes that are invariant in all cell types. 
Normalized aggregate tissue level scRNA-seq profiles for each cell type were used as 
the prior reference. Cell-type proportions were estimated using the NNLS option. 

ENIGMA(21) was run by first excluding genes that are invariant in all cell types. 
Normalized aggregate tissue-replicate level scRNA-seq profiles for each cell-type were 
used as the reference, meaning that each tissue was represented in multiple columns, 
with different columns for each experimental replicate in the scRNA-seq dataset. Cell-
type proportions were estimated using the robust linear regression (RLR) option. 
ENIGMA was run using the L2 norm, with a log transformation preprocessing step. 
Trace norm runs did not improve performance on ground truth gene detection (data not 
shown). 

LittleBites (this work) was run by first calculating gene level specificity weights in a 
single cell reference dataset using the SPM method(22, 23). The SPM method weights 
genes highly (values close to 1) only if they are present exclusively in one cell type, and 
the method is robust to different numbers of cell types. SPM specificity scores are 
conservative, and result in less subtraction for any gene that is expressed even in just a 
few cell types. The LittleBites algorithm runs in 4 steps: 1) Model each bulk sample as a 
linear combination of single cell reference profiles of target and putative contaminant 
tissues, using a non-negative least squares approach. The coefficients are used as 
estimates of the bulk sample composition. 2) Subtract the non-target single cell 
reference profiles from the bulk sample, using the modeled coefficients as weights for 
each corresponding profile (Equation 1). For each subtraction, set a range of learning 
rates from 0 to 1, and perform the subtraction for each learning rate supplied. 3) For 
each learning rate, compare the resulting subtracted values against known ground truth 
genes, and calculate the AUROC, and return the subtracted sample that maximizes the 
AUROC value. If more than one learning rate returns the same AUROC value, return 
the subtracted dataset with the lowest learning rate. 4) If there is no learning rate that 
produces a higher AUROC than a learning rate of 0, halt subtraction. Else, return to 
step 1 using the subtracted bulk sample as the input. 

LittleBites (this work) was run using cell-type level aggregate data from the scRNA-seq 
dataset were as a reference, with just the neuron of interest (e.g. ADL) and putative 
non-neuronal comtaminants (e.g. muscle, intestine, germline) used to model each 
sample. Ground truth genes were taken from a list of ubiquitously expressed genes, and 
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non-neuronal genes (see “Ground Truth Genes” methods second above). LittleBites 
was run with a log transformation preprocessing step for bulk and single cell references. 
LittleBites code is available at https://github.com/alecbarrett/LittleBites. 

 

Bulk sample composition estimates 

Contamination estimates were performed for each bulk sample by using non-negative 
least squares (NNLS) modeling on down-sampled and log transformed counts, 
averaging across 100 estimates per sample. Down-sampling was performed to reduce 
bias against neuron types with small cluster sizes. For each bulk sample (ex: AFD 
replicate 1), proportions were estimated using only neuronal cells for the corresponding 
single cell cluster (ex: AFD), and 7 identified non-neuronal clusters (Glia, Excretory, 
Hypodermis, Intestine, Muscle-mesoderm, Pharynx, and Reproductive). For each 
iteration, all 8 single cell clusters were down-sampled to 30 cells each, and average 
TPM counts were calculated using the arithmetic mean for each gene in the 30 cells. 
Gene level variance was calculated using the averaged TPM values, and low variance 
genes were removed. Bulk sample counts and single cell TPMs were log transformed 
before the NNLS calculation with a pseudocount of one. NNLS estimates across all 100 
iterations were averaged for the final estimate. NNLS calculations were performed using 
the nnls package in R (version 1.5). 

 

Correlating gene expression to non-neuronal contaminants 

Each gene was correlated to non-neuronal contamination across all samples using 
Spearman’s correlation test. High correlation to any contaminant was used to indicate 
that the gene is likely detected because of contamination, and not due to expression in 
the target neuron. For genes passing an expression threshold > 2 normalized counts in 
at least 2 samples, their highest correlation value to any contaminant tissue was 
collected, and cutoffs were determined by fitting a gaussian mixture model using the 
normalmixEM2comp function in mixtools (version 2.0.0), fitting 2 gaussian distributions 
to the distribution of highest contaminant correlations. Cutoffs were selected to exclude 
95% of the predicted contaminant distribution. 

 

Defining new gene expression for lowly expressed genes and for noncoding 
genes 
 

For protein coding genes that are under the detection threshold for specific single cell 
clusters, but are detectable elsewhere in the single cell dataset, we identified expanded 
gene expression profiles using the Integrated dataset. These genes were thresholded to 
match the FDR (14%) for the published single cell analysis(8). For protein coding genes 
that are never detected in the single cell dataset and for noncoding RNAs, genes with 
high correlation to non-neuronal contaminant estimates were removed, and for the 
remaining genes the threshold was set at 5 normalized counts, and genes were called 
expressed if they passed that threshold in >65% of samples. 
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Pseudobulk aggregation of single-cell data 

We downloaded the CeNGEN scRNA-seq dataset as a Seurat object from the CeNGEN 
website (www.cengen.org). Cells from the same cell type and experiment (e.g. AFD 
cluster) were aggregated together by summation into a single pseudobulk sample. For 
this work, single cell clusters of neuron subtypes were collapsed to the resolution of the 
bulk replicates (example: VB and VB1 clusters in the single cell data were treated as 
one VB cluster). Pseudobulk samples from cluster-replicates with fewer than 10 cells 
were excluded.  

 

Modeling Single Cell cluster proportions and counts 

To simulate a single cell pseudobulk-cluster, we sampled from a negative binomial 
distribution for each gene using the rnbinom function from the stats package in R 
(Version 4.3.2). We then modeled the number of counts per gene as the sum of the log 
odds-ratio and the log of the total cells in the simulated cluster (equation 2). For a given 
cluster k and gene g, Ck,g = total counts for the gene in the cluster, Pk,g = proportion of 
cells with at least 1 count for a given gene, and nk = the total cells in the cluster 

��������	2�: ������,�� 
 ��� � ��,�1 � ��,�

� � ��� 	��� 

We applied this formula to our real single cell dataset and used this equation to 
transform proportion measures of gene expression into a count space to generate the 
Prop2Count dataset for downstream analysis and integration with bulk datasets. This 
procedure allows for proportions data to be used in downstream analyses that work with 
counts datasets. However, it does limit the range of potential values that each gene can 
have, with the potential values set as:  

� � �0, 1� ,
2
� ,… , � 
 1

� , 1� 
As n approaches 0, the number of potential values decreases, which can be 
incompatible with some downstream models. Thus, caution should be used when 
applying this transformation to datasets with few cells. 
 
Prop2Count code is available at https://github.com/alecbarrett/Prop2Count. 
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Results 

 

Bulk sequencing of individual neuron types 

The model organism C. elegans is uniquely suitable for the task of defining gene 
expression in the nervous system at high resolution and genome scale. C. elegans is 
the first metazoan with a completely sequenced genome(24) and the only animal for 
which we know every cell division that gives rise to the adult body plan (i.e., “cell 
lineage”)(1, 2), as well as the anatomy of each neuron and all of its connections with 
other cells(3-6, 25). The entire C. elegans hermaphrodite nervous system contains 302 
neurons with 118 canonical anatomically-defined neuron classes, each comprised of 
relatively few cells, ranging from 1 to 13 neurons(3). Most of these neuron classes are 
either a bilateral pair of anatomically similar cells (70 classes) or single neurons (26 
classes) with unique morphological and functional characteristics. The rich array of 
distinct neuron classes in C. elegans, combined with the fact that these types are 
invariant among individuals, means that each neuron class can be analyzed in depth to 
reveal the genetic programs that define neuronal diversity. 

We previously generated a gene expression atlas for the entire C. elegans nervous 
system at the resolution of single neuron types(8). We completed this atlas with single-
cell techniques by adopting the strategy of using FACS to enrich for specific groups of 
neurons for a series of scRNA-seq experiments. The single-cell atlas provides a 
detailed description of gene expression across the C. elegans nervous system. 
However, the single-cell atlas may fail to detect lowly-expressed genes, particularly in 
clusters with few cells. Also, due to its reliance on poly-dT priming for reverse 
transcription, the single-cell atlas excludes non-coding transcripts that are not poly 
adenylated(11). Finally, because the scRNA-seq data is biased toward the 3’ ends of 
transcripts, it does not contain information about most splicing events(26, 27). 

To address these limitations and to provide a broader description of gene expression 
across the nervous system, we developed a bulk RNA sequencing strategy to profile 
individual neuron types(10). We hypothesized that bulk RNA-seq and scRNA-seq 
datasets might have complementary strengths and weaknesses. Bulk RNA-seq can 
enhance sequencing depth and gene detection, capture non-polyadenylated transcripts, 
and provide uniform coverage of the transcript body(9).  However, bulk RNA-seq data 
are typically contaminated with transcripts from non-target cell types which can limit 
specificity for some genes. By contrast, scRNA-seq datasets allows for high specificity 
in gene detection, as contaminating cells can be identified post-hoc, but can show 
reduced transcript sensitivity, especially for low abundance cell types(8).  

Our bulk sequencing strategy uses a series of C. elegans strains, each of which 
contains one or more fluorescent markers that label an individual neuron type for 
isolation by FACS. For example, we used flp-22::GFP and unc-47::mCherry, which 
together uniquely mark mark the single neuron AVL, for FACS (Fig. 1A). We selected 
strains based on the following criteria: 1) In the desired neuron type, the fluorophore(s) 
is expressed brightly enough to be clearly visible under a stereo scope. 2) The 
fluorophore, or combination of fluorophores, is uniquely expressed in the desired neuron 
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type. These strains thus represent a rich resource for studying individual neuron types 
in C. elegans; all are deposited at the CGC (Table 1). 

For each strain, we used FACS to isolate neurons from synchronized populations of 
hermaphrodites at the L4 stage, by which time all neurons have been born and are 
differentiated. Labeled cells were collected in TRIzol LS for RNA extraction. We isolated 
a wide range of cells (~700 – 90,000) in each sample across neuron types. Multiple 
biological replicates (e.g., separately grown cultures that were then dissociated and 
sorted separately) were generated for each neuron class. In total, we sequenced 206 
samples across 53 neuron types (Table S1). The 53 neurons that we profiled sample a 
wide range of anatomical locations (head ganglia, ventral cord, mid-body and tail 
neurons, pharyngeal neurons) functional modalities (sensory, inter- and motor neurons), 
neurotransmitter usage (glutamatergic, GABAergic, cholinergic, aminergic) and lineage 
history (Fig. S1A). A few of these bulk neuron profiles have been previously 
described(11). 

We used a ribodepletion strategy combined with random priming for cDNA synthesis. 
This approach optimized whole transcript coverage for each gene and also captured 
non-polyadenylated RNAs (see Methods)(9). The resultant datasets comprise a high-
resolution view of RNA expression across the C. elegans nervous system. A distribution 
of neuron-specific data sets for the first two principal components shows separation 
between sensory neurons (especially ciliated sensory neurons, e.g. ASK, ADL, AFD, 
AWA) vs motor and interneurons, a result consistent with patterns observed for scRNA-
seq data on the same neuron classes (Fig. 1B)(8). The average bulk data for each 
neuron type also correlates with the single-cell data for that neuron type, with the 
exception of the OLL neuron, which is an outlier in the single cell dataset with few 
sampled cells, and may therefore be less accurate (Fig. S1B). Overall, these new bulk 
datasets enable new studies of neuronal gene expression in individual neuron types in 
C. elegans. 

 

A novel subtraction approach to clean bulk data using information from single-
cell data 

Our bulk datasets rely on FACS for enrichment of each specific neuron type. Although 
FACS-isolated cell populations are highly enriched for the target cell type, these 
samples are also typically contaminated with additional RNA from other cell types—
either from errant cells or from ambient RNA in the cell suspension(28, 29). To address 
this problem, we developed an approach, ‘LittleBites’, that uses pre-existing and reliable 
information on gene expression to remove contamination from bulk sample data. 

LittleBites performs iterative linear subtraction on bulk RNA-Seq data using an scRNA-
seq reference and a set of ground truth genes. In brief, LittleBites models each bulk 
sample as a mix of single cell expression profiles, estimates the cell-type proportions, 
and then subtracts the non-target profiles. The subtraction is compared to a set of 
ground truth genes, and repeated iteratively until no further improvements can be made 
(Fig. 2A; see Methods). To evaluate the post-subtraction datasets we used the area 
under the Receiver-Operator Characteristic (AUROC) score. In brief, we set a wide 
range of thresholds to call genes expressed or unexpressed. For each threshold within 
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that range, we compared the resulting gene expression calls to expected expression 
from a set of ground truth genes. This comparison produces a true positive rate (TPR, 
the percentage of truly expressed genes that are called expressed), a false positive rate 
(FPR, the percentage of truly not expressed genes that are called expressed), and a 
false discovery rate (FDR, the percentage of genes called expressed that are truly not 
expressed) for each threshold. The Receiver-Operator Characteristic (ROC) is the 
graph of the line produced by the TPR and FPR values across the range of thresholds 
tested, and the AUROC is calculated as the sum of the area under that line. A “random” 
model of gene expression is expected to have an AUROC value of 0.5, and a “perfect” 
model is expected to have an AUROC value of 1. Thus, AUROCs below 0.5 are worse 
than a random guess, and values closer to 1 indicate higher accuracy. 
 

For example, the bulk VB sample VBr31 had an initial composition estimate of: 21% 
neuronal, 0% excretory, 7% glia, 11% hypodermis, 17% intestine, 5% pharynx, 5% 
muscle, and 33% reproductive, and its AUROC for ubiquitous and non-neuronal testing 
genes was 0.87. After LittleBites subtraction, the composition estimates were: 97% 
neuronal, 0% excretory, 0% glia, 0% hypodermis, 0% intestine, <1% pharynx, 2% 
muscle, and <1% reproductive, and the AUROC score for the testing gene set 
increased to 0.92. On average, the neuronal estimate for each sample increased 2.8-
fold, and the testing gene AUROC increased by 0.064 (7.7% increase in mean 
AUROC). 

To assess the performance of LittleBites on our bulk data, we compared it to two 
recently described tools designed to extract cell-type specific expression from bulk 
RNA-Seq data sets. bMIND uses a Bayesian approach to model cell type-specific 
expression profiles with a pre-calculated proportion matrix, leveraging averaged single 
cell profiles for each cell type as an informative prior for a gaussian distribution, 
estimating parameters using a Markov Chain Monte Carlo (MCMC)(30). ENIGMA uses 
a regularized matrix completion approach (using either an L2 regularization or a Trace 
Norm regularization to estimate a low matrix rank constraint) to estimate expression 
profiles for each sample(21). 

Two types of ground truth genes were used for assessment. 1) We used a set of 160 
ground truth genes with individual cell-type resolution in the nervous system so that we 
could also assess how well each technique can distinguish signals expressed in some, 
but not all, neurons (see Methods; Table S3). 2) We used negative ground truth genes 
that are expressed exclusively outside of the nervous system (‘non-neuronal’), paired 
with positive ground truth genes that are expressed in all neuron types (‘ubiquitous’), to 
assess each method’s ability to accurately remove non-neuronal counts without 
removing genes expressed in all neuron types (see Methods; Table S4 and S5). 
LittleBites was run with a testing subset of ubiquitous and non-neuronal genes as a 
ground truth comparison in the algorithm, and all assessments between methods were 
performed using a reserved set of testing genes. 

We assessed the performance of LittleBites, ENIGMA, and bMIND against these 
ground truth genes using the AUROC for the average resulting bulk profiles as the 
primary metric (Fig. 2B,C; S2A,B). We found that LittleBites improved the ubiquitous 
and non-neuronal AUROC by 7.0%, ENIGMA improved the neuronal AUROC by 6.89%, 
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and bMIND improved the AUROC by 3.2% (p < 0.0001). Further, LittleBites improved 
the neuronal AUROC by 7.5%, while ENIGMA and bMIND had a lesser effect. 
LittleBites is the only method that uses ground truth genes to guide cleanup, and we 
observed that training and testing gene splits have similar AUROC improvement, 
suggesting that LittleBites is not overfitting to the training genes (Fig. S2C). Comparing 
results on all individual RNA samples showed consistent improvements across samples 
from LittleBites (Fig. S2D,E). After LittleBites cleanup, all samples have higher AUROC 
scores for ubiquitous and non-neuronal testing genes, and all but one sample have 
higher AUROC scores for the neuronal testing genes compared to unaltered bulk 
samples. ENIGMA cleanup improves ubiquitous and non-neuronal AUROC for all 
samples but has little effect on neuronal AUROC for each sample. bMIND improves 
ubiquitous and non-neuronal AUROC for most samples, but some samples show little 
effect, and bMIND has a mixed effect on neuronal AUROC, improving some samples 
while reducing the score for others. We conclude that, for cases where robust ground 
truth data are available, LittleBites improves the accuracy of cell type expression data in 
bulk RNA samples. 
 

To test the stability of LittleBites cleanup across different single-cell reference dataset 
qualities, we ran the algorithm on a set of bulk samples by first subsetting the 
corresponding single-cell cluster’s population to 10, 50, 100, or 500 cells. We performed 
this process 500 times for each subsampling rate for each sample (2000 total runs per 
sample). We found that testing gene AUROC values are stable across reference cluster 
sizes (Fig. 2D), suggesting that even if the target cell type is rarely represented in a 
single cell reference, accurate cleaning is still possible. However, comparing gene level 
stability across target cluster population levels reveals that low abundance references 
have higher gene level variance (Fig. 2E), lower purity estimates (Fig. S2F), higher 
variance in the mean expression across genes (Fig. S2G), and they tend to have lower 
overall expression (suggesting more aggressive subtraction) (Fig. S2H). This indicates 
that while binary gene calling is improved even if the reference cluster is small, users 
should be cautious when using fewer than 100 cells in their single cell reference cluster 
as the resulting cleanup is less stable.  
 

 

A model for the relationship between gene counts and proportions in pseudobulk 
single-cell RNAseq data 

To integrate our previous scRNAseq data(11) with our bulk data, we first considered 
how to analyze the single cell data in each cluster. Gene expression in single cell data 
can be measured in two ways: as counts, averaging or aggregating across all cells in 
each cluster, or as proportions, assessing the proportion of cells in the cluster that 
detect the gene (Fig. 3A)(31-33). Comparing these two measurement systems against a 
set of ground truth genes in the C. elegans nervous system, we found that using the 
proportion yields a more accurate measurement of gene expression than the alternative 
of relying on counts (Fig. 3B)(11).  
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To exploit the improved accuracy that proportion measures provide, we aimed to 
transform these proportion values into units of counts for comparison to our bulk data. 
Building on previous work(32), we simulated a single cell dataset, using a negative 
binomial distribution to model counts for individual cells in a cluster. We found that this 
simulated dataset could be well-modeled using the log-likelihood ratio (logit) of the non-
zero proportion of cells, scaled by the total number of cells in the dataset (Fig. 3C). 
Using our real dataset, we observed a similar fit, with the exception that some genes 
with low non-zero proportions values showed very high counts (Fig. 3D). These 
exceptions may be caused by high ambient RNA background in some droplets, 
misassigned cells in the clustering step, doublets that escaped early filtering steps, or 
rare bursts of expression for lowly expressed genes. The presence of these outliers 
suggests why the non-zero proportion value may be a more robust measure for gene 
expression in single-cell clusters than counts: it may be more resistant to rare 
occurrences of contaminating information.  

We used the logit model to generate a denoised counts estimate for each single cell 
cluster, which we call the scProp2Count dataset. As a final test, we compared the 
accuracy of the scProp2Count dataset to a standard approach using counts on 
pseudobulk data, performing pairwise differential expression analysis using edgeR, and 
then comparing the differentially expressed genes to ground truth expression patterns. 
We found that the scProp2Count dataset slightly outperforms standard single-cell 
counts in detection sensitivity and correlation to ground truth, while matching the single-
cell counts in precision (Fig. S3). However, caution should be taken when using this 
approach in scRNAseq cases where all replicates of a cell type contain few cells. 
scProp2Count values are limited to the space of possible proportion values, and so 
replicates with low numbers of cells will have fewer potential expression “levels” which 
may break some model assumptions in downstream applications (see Methods). 
 

 

Integrating bulk and single-cell data improves gene detection accuracy. 

To integrate the bulk and single-cell data sets, for each neuron type in the bulk data set 
(Table 1) we computed the arithmetic mean of normalized gene counts across all 
biological replicates (‘Bulk’ dataset). Next, we integrated the Bulk data set with the 
scProps2Counts dataset by taking the geometric mean for each gene. The result of this 
analysis was three data sets, each containing normalized gene count data for C. 
elegans neuron classes: Bulk, scProps2Counts, and Integrated. Finally, for each of 
these three data sets we thresholded the gene counts to call every gene as either 
expressed or not expressed in each cell type. For this purpose, a single threshold was 
used for each data set, consisting of the average gene count value for all cells and all 
genes in each data set. Genes with count values above this threshold were defined as 
expressed. 

To assess whether integration improved the accuracy of expression, we compared 
expression calls to ground-truth data for both individual neuron types and non-neuronal 
cell types (see Methods; Table S3,4,5)(8). We found that the Integrated dataset 
generally outperforms the LittleBites-processed Bulk and scProps2Counts scRNA 
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datasets (Fig. 4). Like the LittleBites-processed Bulk dataset, the Integrated dataset 
approaches a True Positive Rate (TPR) of 100% at relatively low precision (or high 
FPR), whereas the scProp2Count scRNA dataset has a maximum TPR of 91.9%. The 
Integrated dataset improves the overall AUROC value by 3.8% compared to the 
scProp2Count scRNA data, and 2.4% compared to the LittleBites-processed Bulk data 
(P < 0.0001) (Fig. 4A,B). Like the scProp2Count scRNA dataset, the Integrated dataset 
has a relatively low False Positive Rate (FPR) for neuronal ground truth genes (Fig. 
4C). At a false discovery rate (FDR) of 5%, the Integrated dataset shows substantially 
better sensitivity than the LittleBites-cleaned Bulk and scProps2Counts scRNA datasets 
(Fig. 4D). At the level of individual ground truth homeobox and neurotransmitter genes 
expressed in neurons(34, 35), specific and broad improvements can be seen across the 
Integrated dataset, compared to all other dataset versions (Fig. S4A,B). 

In addition to using ground truth genes to assess the accuracy of the Integrated dataset, 
we also evaluated gene expression differences with the original sc-RNAseq dataset(11). 
We thresholded (see Methods) both datasets and determined that the integration 
strategy results in fewer expressed genes—for some neuron types, over 1,000 fewer 
genes (Fig. 4E). To further investigate the difference between the Integrated dataset 
and the original sc-RNAseq dataset, we examined the ‘unique’ genes for each neuron 
type: i.e., genes called expressed in that neuron type in one dataset but not the other. 
We analyzed these ‘unique’ genes using Tissue Enrichment Analysis and Gene 
Ontology (GO) for two representative neuron types, ADL and VB, both of which are 
well-represented in the sc-RNAseq dataset(11). Importantly, Tissue Enrichment 
Analysis maps genes to specific C. elegans cell types. We found that overall, 
contamination by other cell types was much lower in the Integrated dataset. Further, the 
‘unique’ genes in the sc-RNAseq dataset were more enriched in non-neuronal cell 
types, such as germline, and for non-neuronal GO terms. By contrast, the ‘unique’ 
genes in the Integrated dataset were more enriched for other neuronal cell types and 
neuronal functions (Fig. 4F,G, S4C). Testing against a curated list of non-neuronal 
genes from fluorescent reporters and genomic enrichment studies, we found that of 445 
non-neuronal markers, each gene was detected in an average of 12.5 cells or a median 
of 3 cells in the single-cell dataset, and an average of 8.7 cells or a median of 1 cell in 
the integrated dataset, at a 14% FDR threshold. Thus, integration appears to 
successfully remove most contaminating transcripts.  

Together, these results show that geometric mean integration of bulk RNA-seq and 
scRNA-seq datasets combines the strengths of both approaches, providing high 
sensitivity (bulk RNA-Seq) and high specificity (scRNA-Seq) across a wide range of 
thresholds. For most purposes, we propose that the Integrated dataset will give the best 
results. However, for certain applications (such as genes not detected in scRNA-seq 
data, or non-polyadenylated transcripts, see below) other approaches are needed. To 
make the Integrated data easily accessible to the community, we provide tables of gene 
expression for each neuron type based on the Integrated data set, both the values for 
all genes (Table S6) and values binarized at four thresholds (Tables S7-10). 
 

Bulk RNA-seq reveals both broadly expressed and neuron-specific noncoding 
RNAs 
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A significant benefit of our bulk RNA-seq approach is its sensitivity to non-poly-
adenylated transcripts, which include many species of non-coding RNA(9). However, 
similar to coding genes not found in the scRNA-seq dataset (see above), the scRNA-
seq dataset is largely uninformative about these transcripts. Further, we do not have a 
ground-truth data set of non-coding genes to evaluate accuracy of expression calling for 
these transcripts. Finally, most non-coding RNAs are expressed at lower levels than 
protein coding genes (Fig. S5A). We therefore applied a generous, uniform threshold for 
calling gene expression, consisting of > 5 normalized counts in 2/3 or more of the 
samples within a cell type. As we did for our analysis of coding genes not found in 
scRNA-seq, we used gene level correlation to contamination estimates as a procedure 
to eliminate non-coding genes that were likely detected due to contamination from other 
tissues in the bulk samples. First, we estimated contamination for each sample using a 
bootstrapped NNLS regression (Fig. S5B; see Methods), and then calculated per-gene 
Spearman correlations to each contaminant type. We applied a threshold on the gene 
level correlation to contamination estimates for each sample by fitting a Gaussian 
mixture model to the maximum correlation score for each gene. We selected a cutoff of 
0.23, which excludes 98% of the estimated contamination distribution (Fig. S5B). With 
these thresholds, an average of 512 noncoding RNAs were identified as “expressed” 
per cell type (95 CI ± 40.6) (Table S11). By RNA type, we detected 16.2 ± 1.2 lincRNAs, 
39.0 ± 5.3 pseudogenes, 54.8 ± 9.7 tRNAs, 41.8 ± 2.0 snRNAs, 131.5 ± 1.8 snoRNAs, 
and 228.9 ± 29.0 uncategorized ncRNAs per cell type (Table S12).  

Next, we sought to identify noncoding RNAs with broad expression across multiple 
neuron types. We defined broad expression as genes expressed in > 80% of neuron 
classes in our dataset (Fig. S5C). This approach defined 247 non-coding genes as 
broadly expressed, or “pan-neuronal”. These pan-neuronal noncoding RNAs include 
108 (43.8%) snoRNAs and 33 (13.4%) snRNAs, both tenfold greater than the expected 
proportion assuming a random distribution (Fisher’s exact test, P-value < 0.01) (Fig. 
5A). By contrast, pseudogenes and otherwise uncategorized ncRNAs were significantly 
depleted from the list of pan-neuronal noncoding RNAs (P-value < 0.001). These results 
indicate that snoRNAs and snRNAs are widely expressed, which matches studies 
showing broad expression of many snoRNAs and snRNAs in other systems(39, 40), 
and is consistent with their key roles in rRNA processing and splicing(41-43). 

We also sought to identify neuron-type-specific noncoding RNAs. We calculated tissue 
specificity scores for each noncoding RNA called expressed in at least one neuron type 
using the Preferential Expression Measure (PEM) score(23, 44). We called these genes 
neuron-type specific according to three criteria: (1) Called expressed in > one neuron 
type (see above); (2) PEM score > 0.65; (3) > 2 normalized counts in a maximum of 
10/53 neuron types. Using these thresholds, we identified 523 cell-type-specific 
noncoding RNAs (Fig. 5B). By RNA type, 293 (56.0%) of cell type-specific noncoding 
RNA genes are uncategorized ncRNAs, 93 (17.8%) are general pseudogenes 112 
(21.4%) are GPCR pseudogenes, 14 (2.7%) are tRNAs, 10 (1.9%) are lincRNAs, 1 
(0.2%) is a snoRNA, and none are snRNAs. We observed significant enrichment of 
pseudogenes, and a small but significant depletion of ncRNAs, snoRNAs, and tRNAs 
(P-value < 0.01). Clustering by genes and cell type modalities revealed clear enrichment 
for specific noncoding RNAs in individual neuron types (Fig. 5C), although the overall 
proportions of noncoding RNA types were similar between individual neuron classes 
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(Fig. S5D). The number of specific noncoding RNAs per cell type ranged from 0 (PVC) 
to 139 (ADL), with a mean of 10.2 (± 5.8).  

Interestingly, we observed that in ADL—the neuron that expresses the highest number 
of specific ncRNAs—many of these specific ncRNAs are GPCR pseudogenes (Fig. 
5C,D, Table S13). ADL also expresses the highest number of bona fide GPCRs among 
neurons in our dataset (Fig. 5E, Table S14). Looking across neuron types, we observe 
a rough correspondence between expression of specific GPCR pseudogenes and 
expression of bona fide GPCRs (Fig. 5D,E). This analysis suggests that pseudogenes 
retain their regulatory information, despite losing their coding potential. Overall, our data 
on expression of non-coding genes reveal a wide diversity of noncoding RNA 
expression across the nervous system and open the door to in depth studies of 
noncoding RNA contributions to individual neuron function. 
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Discussion 

In this work, we present bulk RNA-seq data for 53 neuron classes in the C. elegans 
nervous system. We describe new methods for integrating these bulk RNA-seq data 
with previously obtained single-cell RNA-seq data(11). We find that this approach 
improves gene detection accuracy in comparison to each individual data set. We use 
the bulk data sets to detect two important classes of genes that were underrepresented 
in the previous single-cell atlas: (1) lowly expressed genes, and (2) non-poly-adenylated 
transcripts, chiefly non-coding RNAs. Overall, our results provide a rich resource for 
studies of gene expression in the C. elegans nervous system. 

The rapid growth of scRNA-seq and bulk RNA-seq datasets create opportunities to 
combine these two data types to address diverse goals. For example, recent studies 
have combined data from bulk RNA sequencing and scRNA-seq to address the problem 
of deconvolution. The goal of deconvolution is to infer cell-type expression profiles from 
tissue level bulk samples, using scRNA-seq references as a guide(30, 45-47). In this 
study we combine these two types of data, both collected from the C. elegans nervous 
system, for a different purpose: to improve the accuracy of cell and tissue-specific 
transcriptional profiles. We developed three approaches: a subtraction approach, 
LittleBites, that uses information from scRNA-seq data, combined with ground truth 
gene expression data, to identify and remove contaminating counts from bulk RNAseq 
data; Prop2Count, that expands on the theoretical link between gene expression and 
single-cell dropout rates to provide a denoising approach for pseudobulk scRNA-seq; 
and an integration approach that directly combines information from bulk and single-cell 
approaches to improve sensitivity and specificity. Our computational approaches may 
be useful in other cases where scRNA-seq and bulk RNA-seq datasets are available to 
improve information on gene expression.  

In addition to enhancing the accuracy of gene expression, the integrated bulk RNA-seq 
dataset detects lowly expressed protein coding genes that were not detected by scRNA-
seq. Further, because our library construction methods were designed to capture non-
polyadenylated transcripts, our bulk RNA-seq data set detects noncoding RNAs that 
were not revealed by previous scRNA-seq results(8, 9). Some of these noncoding 
RNAs are broadly expressed in the nervous system, suggestive of shared functions 
across different types of neurons. Other non-coding RNAs are expressed in a limited 
number of neuron types, suggesting neuron type-specific functions. In addition, the bulk 
RNA-seq dataset contains transcript information across the gene body, which parallel 
efforts have used to identify mRNA splicing patterns that are not found in the scRNA-
seq dataset(26, 27).  

Overall, our approach achieves a comprehensive representation of all classes of 
transcripts expressed in individual neuron types. These data can now drive analysis of 
mechanisms that control gene expression across the genome in individual neuron 
types, and support identification of differentially expressed genes that define neuron-
type specific differences in morphology and function. Public access to these data 
(described below) will enable further analysis into the regulation and function of 
differential gene expression in C. elegans neurons. 
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Data Availability 

Bulk raw data and single cell raw data are available at Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo). Bulk data identifier: GSE229078. Single cell 
data identifier: GSE136049. Counts data and additional supporting files can be 
downloaded from the CeNGEN website (https://www.cengen.org). Code is available at 
GitHub (https://www.github.com/cengenproject). 
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Figures and Tables 
 

Table 1:  

All strains used for bulk RNA-seq experiments, including strain names, allele information, and transgenic 
fluorescent labels for sorting individual neuron types. 

Supplementary Table 1:  

Replicate metadata for bulk RNA-seq experiments, with replicate names, strain names, and the number 
of cells collected. 

Supplementary Table 2:  

List of genes that were removed from analysis because they overlap with promoter regions used in the 
construction of transgenic markers for FACS sorting. 

Supplementary Table 3:  

Ground Truth expression matrix for 160 genes in the C. elegans nervous system using fosmid and 
CRISPR/Cas reporter lines (see Methods). 

Supplementary Table 4:  

List of 445 genes that are expressed exclusively outside the C. elegans nervous system (see Methods). 

Supplementary Table 5:  

List of 936 ubiquitous genes (see Methods). 

Supplementary Table 6:  

Integrated gene expression matrix. 

Supplementary Tables 7-10:  

Thresholded gene-by-cell expression matrices using the Integrated data set, computed at four thresholds, 
values below the threshold are set to 0. 

Supplementary Table 11:  

List of ncRNA genes expressed in individual neuron types. 

Supplementary Table 12:  

List of ncRNA gene types expressed in individual neuron types. 

Supplementary Table 13:  

List of GPCR pseudogenes included in this analysis. 

Supplementary Table 14:  

List of protein coding GPCR genes included in this analysis. 

 

Figure 1: Single neuron bulk RNA-seq via targeted marker expression and FACS isolation. 

A) Labeling, tissue dissociation, and FACS-enrichment schemes for capturing individual neuron types. 
Intersecting flp-22::GFP and unc-47::mCherry markers uniquely label AVL for isolation by FACS from 
dissociated L4 stage larval cells. RNA from this pool of AVL-enriched cells was used for bulk RNA 
sequencing (see Methods). B) PCA plot showing all bulk RNA-seq data labeled by cell type and colored 
according to functional modality; Sensory neurons (blue), motor neurons (green), interneurons (red), and 
CAN neurons (purple). 

Supplementary Figure 1. 
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A) Number of cell types sequenced per functional modality. B) Heatmap of Spearman Correlations 
between average single cell RNA-seq (row) and Bulk RNA-seq (column) profiles for each neuron type. 
For each row, correlations were calculated for genes called expressed in that single cell cluster (from 
single cell thresholding)(11). The single cell data did not separate the DD and VD GABA motor neuron 
types(11); these rows are identical. 

Figure 2: Identifying and removing contamination from bulk data with LittleBites. 

A) Schematic representation of the LittleBites algorithm. Each iteration of the LittleBites algorithm 
contains 3 steps: 1) Use an NNLS regression to estimate the cell-type proportions of each bulk sample 
with aggregated single cell data as a reference. 2) Subtract the estimated contamination profiles, 
constrained by the proportion estimates, a gene level specificity weight, and a variable learning rate. 3) 
Compare the result of every tested learning rate against ground truth, and select the learning rate with the 
highest area under the receiver operator characteristic (AUROC). This loop repeats until further 
subtraction cannot improve the AUROC. B) Line plots of the receiver operator characteristic (ROC) curve 
for the unaltered bulk data and corrected datasets, as well as bMIND and ENIGMA analyses, assessed 
against ubiquitous genes and genes exclusively expressed in non-neuronal cells. C) Line plots of the 
ROC for the unaltered bulk data and corrected datasets, as well as bMIND and ENIGMA analyses, 
assessed against 160 genes expressed within the nervous system. D) Violin plot of AUROC values for 
bulk samples after LittleBites cleaning using a random subset of target cells in the single cell reference. 
X-axis indicates the number of target cells used in the reference. Each subsampling rate was run 500 
times. e.g. for a VB sample, it was modeled using 10, 50, 100, or 500 VB neurons in the reference. E) 
Violin plot of the average coefficient of variation (CV) per gene after LittleBites cleanup. The Y-axis 
indicates the average CV across all genes in a single sample, and the the X-axis indicates the number of 
target cells used in the single-cell reference. 

Supplementary Figure 2. 

A) Bar graph showing the AUROC values for each dataset assessed against ubiquitous genes and genes 
exclusively expressed in non-neuronal cells. Error bars represent bootstrap estimated confidence 
intervals. B) Bar graph showing the AUROC values for each dataset, assessed against 160 genes 
expressed within the nervous system. Error bars represent bootstrap estimated confidence intervals. C) 
Scatterplot of the training and testing AUROC improvement after LittleBites cleanup. Each dot represents 
one sample. Red line indicates x=y. D, E) Scatter plots of pairwise comparisons of sample-level AUROC 
values for unaltered and corrected bulk datasets. Ubiquitous and non-neuronal AUROCs are represented 
in panel C, and neuronal AUROCs are represented in panel D. F) Violin plot of unaltered bulk sample 
estimates for the proportion of the counts that come from neurons, vs the number of target cells used in 
the single cell reference. G) Violin plot in the coefficient of variation (CV) in the mean value of LittleBites 
cleaned samples, vs the number of target cells used in the single cell reference. H) Violin plot of the mean 
gene expression value after LittleBites cleanup, vs the number of target cells used in the single cell 
reference. Model was fit with slopes calculated for each neuron type separately. 

Figure 3: A model for the relationship between cell proportions and gene counts in sc-RNAseq 
data. 

A) Aggregate count and proportion measures of scRNA-seq data. UMAP representations of AFD neurons 
captured in the scRNA-seq dataset(11). A) Left, log scale representation of ttx-1 counts in all AFD 
neurons. Right, binarized representation of ttx-1 expression in all AFD neurons. B) ROC for C. elegans 
neuronal ground-truth genes in scRNA-seq counts and proportions. The teal line indicates the proportion 
of non-zero cells, and the red line indicates the normalized counts. C) Scatter plot of fitted log-counts for 
simulated data, with log-counts on the Y-axis, and the sum of the log likelihood ratio of the proportion of 
non-zero cells and the log of the number of cells in the cluster on the X-axis. Red line indicates Y = X. D) 
Scatter plot of fitted log-counts for one SIA neuron replicate from the C. elegans neuronal scRNA-seq 
dataset(11), with log-counts on the Y-axis, and the sum of the log likelihood ratio of the proportion of non-
zero cells and the log of the number of cells in the cluster on the X-axis. Red line indicates Y = X. 

Supplementary Figure 3.  

Box plots of edgeR differential expression metrics for single-cell counts and Prop2Count inputs. 1176 
neuron-neuron pairs were compared in edgeR, and differentially expressed genes were called as any 
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gene with a p.adj value < 0.05, and a log2 effect size > 2. Metrics were generated by comparing 
differentially expressed genes with 160 differentially expressed ground truth genes. A) Box plots of TPR 
values for neuron-neuron edgeR comparisons. B) Box plots of FPR values for neuron-neuron edgeR 
comparisons. C) Box plots of FDR values for neuron-neuron edgeR comparisons. D) Box plots of MCC 
values for neuron-neuron edgeR comparisons. Red box plots represent single-cell counts edgeR 
comparisons, and teal box plots represent Prop2Count edgeR comparisons. All comparisons were made 
with a two-way permutation test (* = p < 0.05, ** = p < 0.01). 

Figure 4: Integrating bulk RNA-seq and scRNA-seq data sets improves gene detection accuracy. 
A) Receiver Operator Characteristic (ROC) curve for bulk, single-cell, and integrated datasets compared 
to neuronal ground-truth genes. The x-axis shows the False Positive Rate (FPR), and the y-axis shows 
the true positive rate (TPR). B) Area under the receiver operator characteristic (AUROC). Error bars 
represent bootstrap 95% confidence intervals of the AUROC value. Pairwise statistical testing was 
performed using the deLong method for AUROC scores. *** = p < 0.0001. C) Precision-Recall (PR) curve 
for bulk, single-cell, and integrated datasets compared to neuronal ground-truth genes. The x-axis shows 
the Precision (1 – False Discovery Rate/FDR), and the y-axis shows the TPR (Recall). D) Boxplot of 
bootstrapped sensitivity scores for each dataset at a 5% FDR cutoff. E) Bar chart of the number of genes 
detected at the medium threshold (FDR = 0.14) for the integrated dataset (red) and the dynamic 
proportions single cell dataset (blue). Bars are ordered by the number of cells in the corresponding single 
cell cluster from lowest to highest. F,G) Bar plots of significant terms in Tissue enrichment analyses for 
genes detected only in the single-cell and integrated datasets in ADL neurons. Dynamic thresholding was 
used for single cell data, and medium thresholds were used to binarize both datasets.   

Supplementary Figure 4.  

A) Comparison between ‘ground truth’ fluorescent reporters and RNAseq gene expression for all 
datasets, shown for a set of homeobox genes(34). Fluorescent reporter expression is binarized and is 
shown as small central squares, with black = expressed and white = not expressed. RNA transcripts 
shown as natural log transformed TPM counts, color-mapped according to the scale. B) Comparison 
between ‘ground truth’ fluorescent reporters and RNAseq gene expression for the Integrated dataset, 
shown for a set of genes encoding neurotransmitter machinery(35). Fluorescent reporter expression is 
binarized and is shown as small central squares, with black = expressed and white = not expressed. RNA 
transcripts shown as natural log transformed TPM counts, color-mapped according to the scale. C) Bar 
plots of significant terms in GO and Tissue enrichment analyses for genes detected only in the single-cell 
and integrated datasets in ADL and VB neuron types. D) scatterplot of newly detected genes in the 
Integrated dataset that were previously undetected in all tissues using the single cell reference. Y-axis is 
the number of genes detected, X-axis is the number of cells in the single cell reference. Red line indicates 
the line of best fit (log model), and blue lines indicate 95% confidence intervals of the model. E) Boxplot of  
the number neurons that each ground truth non-neuronal gene was called expressed in at the 14% or 
8.4% FDR threshold. Integrated data is filled red, single cell data is filled teal. Notches indicate 95% 
confidence intervals. Dots represent outliers. 

Figure 5: Bulk analysis reveals noncoding RNA expression patterns. 

A) Proportions of classes of pan-neuronal noncoding RNAs. B) Proportions of classes of cell type specific 
noncoding RNAs C) Heatmap of average normalized counts per cell type for ncRNA genes considered 
cell type specific, rows are grouped by RNA class. Note that genes within individual neuron types are 
clustered by expression patterns, not similar gene function. D) Number of GPCR pseudogenes with 
specific expression per neuron type, grouped by neuron function. E) Number of GPCR genes per neuron 
type, grouped by neuron function. 

Supplementary Figure 5. 

A) Log-scaled expression distribution of protein coding genes (blue) and non-coding genes (pink). B) 
Density plot showing the distribution of gene level correlation to contaminant estimates (purple); values 
plotted are the highest correlation per gene. Genes plotted were called expressed in at least one cell 
type. Blue and black dashed lines represent a gaussian mixture model, used to threshold against 
contaminant genes. All noncoding genes with a maximum correlation above 0.22 (vertical red line) were 
removed from analysis. C) Histogram of ncRNA genes binned by number of neuron types in which they 
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are expressed; genes to the right of the red line are expressed in >90% of neuron types in this study. D) 
Barplot of the number of noncoding RNAs detected in each neuron type, colored by noncoding RNA 
class.   
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